当前位置: 仪器信息网 > 行业主题 > >

皮肤多光子断层扫描系统

仪器信息网皮肤多光子断层扫描系统专题为您提供2024年最新皮肤多光子断层扫描系统价格报价、厂家品牌的相关信息, 包括皮肤多光子断层扫描系统参数、型号等,不管是国产,还是进口品牌的皮肤多光子断层扫描系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合皮肤多光子断层扫描系统相关的耗材配件、试剂标物,还有皮肤多光子断层扫描系统相关的最新资讯、资料,以及皮肤多光子断层扫描系统相关的解决方案。

皮肤多光子断层扫描系统相关的资讯

  • 德国发明新型高精度激光断层扫描仪
    德国萨尔大学21日发表公报说,该校研究人员研发出能观察单个细胞内部情况的新型高精度激光断层扫描仪,可用于检验抗衰老产品效果以及分辨皮肤癌细胞病变等。  仪器发明者柯尼希介绍说,该仪器的分辨率比传统超声波仪器高上千倍,它不仅能观察单个细胞,甚至能观察线粒体等。借助此仪器能检验出防晒霜等抗衰老产品是否有效。它还能用以检验尼古丁、激素药物等对皮肤老化的影响。  此外,由于癌细胞在激光照射下会比健康细胞更亮,医生还能借助此仪器提供的三维图像判断皮肤癌患者的皮肤细胞是如何癌变的,而无需取下病人组织细胞进行分析。  柯尼希以该发明获得了德国贝特霍尔德莱宾格应用激光技术创新奖。
  • 预算900万!重庆大学招标采购1套MicroCT(X射线微型计算机断层扫描系统)
    近日,重庆大学发布公开招标公告,预算900万元采购1套MicroCT(X射线微型计算机断层扫描系统),允许进口产品。招标项目详情如下:项目编号:CQU-SS-HW-2024-048项目名称:重庆大学MicroCT(X射线微型计算机断层扫描系统)采购预算金额:900.000000 万元(人民币)最高限价(如有):900.000000 万元(人民币)采购需求:购置MicroCT(X射线微型计算机断层扫描系统)1套技术要求:1.分辨率※1.1空间分辨率(spatial resolution)≤500nm,最小可实现的体素(voxel) ≤40nm;▲1.2在原位加载情况下可实现体素分辨率(voxel size)≤1.5μm的清晰扫描三维成像,原位加载装置的直径不小于145mm(投标时需提供实际样品的测试结果);▲1.3 设备须配备闪烁体和光学物镜耦合技术,系统必须采用几何+光学两级放大的架构,以满足采购人对大样品进行局部高分辨率的成像需求。2.X射线源▲2.1封闭式透射型X射线源,最高工作电压≥160kV,最大功率≥10W;2.2封闭式射线源可以移动,移动范围(X射线方向)≥190mm;2.3配备手动X射线滤片转换支架,并包含12个以上滤光片;2.4 X射线源关闭12小时以上重新激活时间小于5分钟;2.5可进行长时间扫描,单次稳定扫描时间需≥24小时。3.探测器※3.1同时具备以下两种探测器:CCD探测器(像素数量≥2048×2048,像素尺寸≤15μm)和光电耦合物镜探测器(4个倍率的物镜探测器中必须包含0.4x,4x,20x和40x的物镜);3.2物镜探测器可以移动,探测器系统移动范围≥280mm;▲3.3需要在0.4x物镜下能实现宽视场模式实现≥2048×2048像素成像和三维重构,增大横向断层扫描体积;▲3.4 0.4x物镜的三维视野:≥50mm。4.样品台4.1全电动控制4轴样品台;4.2 X轴运动范围:≥50mm;Y轴运动范围:≥100mm;Z轴运动范围:≥50mm;R轴:n×360°;4.3最大可测样品重量≥25kg;4.4最大可测样品直径≥300mm(X射线能穿透的情况下)。5.X射线防护系统※5.1为最大程度上防护,安全屏蔽室采用铅钢全封闭,不留有可视透明窗口,设备内部样品和工作情况通过机台内部可见光相机清晰观察;▲5.2 系统应具备硬件+软件的自动防撞机制,可通过可见光扫描快速获取样品形状和实际轮廓,根据样品形状和轮廓,自动对源、探测器位置进行限位,以保证硬件和样品安全。6.系统控制和功能▲6.1具有数据采集软件,三维断层扫描图像重构软件,3D视图软件;▲6.2可进行高级三维重构后视图展示与三维高级数据处理与分析,包括定量分析与统计分布、切片配准与图像滤波、三维图像数据分割与特征提取、多模态融合与分析、三维模型生成与导出,几何特征计算等(如可以实现三维数据处理,对样品三维数据结果进行相分割,孔隙率计算,裂纹及孔的尺寸统计与空间分布),并且可与其它三维软件兼容;▲6.3支持横向的宽场模式拼接功能(0.4x物镜下可以实现);6.4支持定位放大扫描、导航式扫描功能;▲6.5配置一体化的人体工学摇臂操作台。※7.整体要求:设备主机总重量必须≤2600kg,满足现有场地最大承重安全要求。※(二)配置清单(不同厂家产品的配置名称与下表所列名称存在偏差时,满足功能需求即可)序号名称数量单位1X射线显微镜 主机台12160KV封闭式透射型X射线源套13高分辨CCD数字成像组件套14物镜探测器(包含0.4x,4x,20x,40x物镜)套154轴断层扫描马达样品台套16花岗岩工作台套17四门式辐射安全屏蔽罩套18机箱内部可见光相机套1924”LCD显示器套110人体工学用户操控台套111系统软件(包含数据采集、三维扫描、图像重构、3D视图)套112高速工作站套113对综合分辨率测试标样套114X射线过滤器(12个)套115样品座套116操作手册(印刷版和电子版)套117系统控制和图像采集工作站套1备注:“※”标注的技术需求为符合性审查中的实质性要求,投标文件若不满足按无效投标处理。“▲”标注的技术需求为重要技术需求,投标文件若不满足将按照评标因素中相关规定处理。未标注的技术需求为一般技术需求,投标文件若不满足将按照评标因素中相关规定处理。潜在投标人需于2024年03月08日至2024年03月15日(每天上午00:00至12:00,下午12:00至23:59)在“中国政府采购网(www.ccgp.gov.cn)”、“重庆大学政府采购与招投标管理中心(http://ztbzx.cqu.edu.cn)”获取招标文件,并于2024年03月29日10点00分(北京时间)前递交投标文件。 附件:重庆大学MicroCT(X射线微型计算机断层扫描系统)采购招标文件.doc
  • 技术线上论坛| 6月2日《大组织样本光片成像技术的新突破——光学断层扫描成像技术》
    [报告简介]光片显微成像技术由于其速度、灵活性和对发育中的生物体和大样本的快速活体成像等特特点而迅速发展。然而,光片成像仍然面临一个主要问题:散射。散射影响所有的显微成像方式,尤其对特别依赖于在介质内部透明化成像的方式影响更大。这意味着当存在散射时,激发光片快速衰减,严重影响了图片获取和终重构的结果。在本次研讨会中,我们将深入探讨大样本成像的几种方案,也会介绍西班牙Planelight公司在大样本成像领域深耕多年后发展起来的全新技术——光学断层扫描成像技术,该技术可有效降低散射对结果的影响,为透明化效果不好的组织样本或低透明度活体组织样本提供更优的成像解决方案。[报名注册] 您可通过点击此链接https://www.planelight.net/webinar-fast-imaging-of-large-volumes-with-scattering-contribution/或扫描下方二维码报名注册此次讲座。扫码注册报名[报告时间]2021年6月2日 17:00 -17:30[主讲人介绍]Prof. Jorge RipollJorge Ripoll教授于2000年在马德里自治大学获得博士学位,2000年至2011年在希腊电子结构和激光研究所从事光在生物医学领域的研究工作。他曾到宾夕法尼亚大学、哈佛医学院麻省总医院、苏黎世联邦理工等多个大学和研究机构进行访问交流,现在为西班牙马德里卡洛斯三世大学生物工程与航空航天工程系教授。Jorge Ripoll博士长期从事光在生物医学领域的研究,主要包括激发荧光三维成像的理论与算法、光学投影成像的理论与算法以及这些成像方法在生物医学中的应用。Jorge Ripoll教授是生物医学光子学领域的国际知名专家,在NatureBiotechnology,PNAS, IEEE Trans Medical Imaging, Physical Review E, Medical Physics等国际刊物上发表论文100余篇,Google scholar 被引次数7600多次,H因子41。[真机体验活动]为更好的助力国内科研学者的研究,Quantum Design中国公司引进了西班牙Planelight公司全新速多角度3D光片荧光显微镜QLS-Scope,QLS-Scope携SPOT技术,在背景散射较高时仍然可以提高图像分辨率。全新速多角度3D光片荧光显微镜QLS-Scope除了可以胜任传统光片显微镜的工作外,还扩大了支持样品的尺寸(25 × 25 × 25 mm),大幅提高了光片扫描样品的速度,是大尺寸、高质量、高速光片。作为新一代的光片系统,QLS-Scope支持自动更换物镜、自动对焦、快速换样、可根据样本尺寸灵活切换观察室,做到节约昂贵的成像液的同时适应各种不同尺寸的样品。在采集模式上QLS-Scope提供多种解决方案,支持单角度、双角度、四角度、SPOT、Z-Motor五种模式,可为您提供全面的大样品组织成像方案。目前该样机已在Quantum Design中国实验室安装完毕,各项功能已经对外开放测试,欢迎大家点击此处或扫描下方二维码预约体验!扫码即刻体验全新技术!
  • 蔡司首次将人工智能AI技术应用于3D X射线断层扫描重构中
    众所周知,软件重构算法是X射线三维断层扫描成像技术的重要基础。好的CT产品除了硬件条件优秀以外,还应配备优秀的重构算法。蔡司Xradia X射线断层扫描成像技术历经20余年的发展,在硬件方面精雕细琢、软件重构算法方面精益求精,使得产品系统能够一直保持成熟稳定的品质,并赢得了广大用户的青睐。为了满足广大用户对图像质量和工作效率的追求,蔡司在 Xradia 3D X 射线显微镜 (XRM) 或 Context 微米CT系统上推出高级重构工具箱(ART),可在不牺牲图像质量下将扫描速度最多提高10倍或在相同速度下显著提高图像质量,将3D X射线断层扫描重构技术提升到一个新的高度。蔡司3D X射线高级重构(ART)包括OptiRecon、DeepRecon Pro 和PhaseEvolve模块。尤其最新推出的DeepRecon Pro 和PhaseEvolve模块采用了人工智能 (AI)技术,相对于基于"滤波反投影"或标准的FDK 算法的传统重构算法,实现了成像速度和成像质量的显著提高。 蔡司DeepRecon Pro蔡司 DeepRecon Pro 是一种基于AI的重构技术,可针对各种不同样品类型提供最多 10 倍的吞吐量或提升图像质量的优势,节约了大量的扫描时间。它适用于半重复和重复样品的工作流程,也可用于单独的某个样品。用户友好的界面可以让用户体验“一键式”对机器学习网络模型进行自我训练,然后可将训练的模型应用于类似样品的重构中。 蔡司 DeepRecon Pro 用于陶瓷基复合材料 (CMC) 样品,在不牺牲图像质量的情况下实现 10 倍的速度提升。这为原位研究提供更高的时间分辨率。左图为标准重构(FDK):扫描时间9小时,3001个投影;中间图为标准重构(FDK):扫描时间53分钟,301个投影:右图为蔡司DeepRecon Pro:扫描时间 53 分钟,301 投影。 蔡司 DeepRecon Pro 用于2.5D半导体中介层封装,在不牺牲图像质量的情况下实现 4 倍的速度提升,DeepRecon Pro的重构结果依然能观察到1um左右的裂缝,信噪比显著提升。左图为标准重构(FDK):扫描时间2小时,1201个投影;中间图为标准重构(FDK):扫描时间30分钟,300个投影:右图为蔡司DeepRecon Pro:扫描时间 30 分钟,300 个投影。蔡司 DeepRecon Pro 用于智能手表中的电池样品,相同的扫描时间下明显提升了图像质量,包括正极和负极材料图像质量都有明显提升。左图为标准重构;右图为蔡司DeepRecon Pro,扫描时间为6小时。 蔡司PhaseEvolve蔡司PhaseEvolve 是一种针对重构数据的后处理算法,它通过软件算法对低密度材料拍摄过程中因相位衬度产生的边界效应进行处理,以改进的成像结果的衬度的均一性,便于后续数据分割更准确的定量分析,可节约大量定量分析的时间。 蔡司 PhaseEnvolve应用于药物粉末样品。高分辨率或低电压成像可导致材料固有的图像衬度被相位效应所遮盖。蔡司 PhaseEnvolve有效去除相位增强的边缘,以增强材料衬度并改善图像分割。 左图为标准重构;右图为PhaseEvolve重构。ART模块适用范围:蔡司高级重构工具箱改进了数据采集和分析的流程,加快决策速度,适用于如电子半导体的失效分析、地球科学、制药、电池、工程材料和4D原位实验等研究,尤其适用于4D 原位研究中进行的相同参数多次扫描测试的情况,图像质量和样品扫描速度的两难问题通过蔡司高级重构工具箱可以得到很好的解决。 作为蔡司高级重构工具箱ART 的首批用户之一,荷兰乌得勒支大学地球科学系 Markus Ohl 博士说:“蔡司 DeepRecon Pro 提供了基于AI和神经网络技术的简单而强大的应用,用户无需了解深度学习技术,能非常容易的实现基于深度学习的 X 射线断层扫描重构。”蔡司OptiRecon、DeepRecon Pro 和PhaseEvolve模块都可在现有的蔡司 Xradia Versa 系列X射线显微镜 和Context 微CT上进行升级。蔡司客户体验中心已经安装升级就绪,欢迎感兴趣的新老用户们联系我们,体验基于AI技术高级重构功能带来的全新成像效果。
  • 我国引进新型计算机断层扫描仪宝石能谱CT
    中国已批准引进国际最新型的计算机断层扫描仪——宝石能谱CT,首批将陆续在香港、北京、上海、广州等城市安装使用。这是记者从北京举行的新技术介绍会获得的信息。 由通用电气公司医疗集团研发的这一高端CT已通过国家食品药品监督管理局认证,并在北京医院、解放军总医院进行了临床试验使用。 参加临床实验使用的中华放射学会副主任委员、北京医院教授周诚称,新仪器为临床影像诊断研究提供了全新平台。由于其采用宝石做为探测器材料,并使用瞬时变能高压发生器和动态变焦球管等新技术,可消除金属硬化伪影,发现普通CT不能发现的小病灶,对于疾病的早发现、早诊断有显著优势。 北京阜外心血管医院吕滨教授指出,该仪器能精确观察冠脉狭窄程度与三毫米以下支架腔内结构,解决了长期困扰放射诊断医生的冠状动脉钙化与支架的硬化伪影问题,可显著提高诊断成功率,同时还可降低超过百分之九十以上的放射剂量。此外,它还可实现目前最高的图象空间与密度分辨率,临床常规扫描能显示支气管的五至七级分支,清晰显示毫米级血管。
  • 280万!中山市博爱医院计划采购光学相干断层扫描OCT
    一、项目基本情况项目编号:ZZ22300916项目名称:中山市博爱医院光学相干断层扫描OCT采购项目采购方式:公开招标预算金额:2,800,000.00元采购需求:合同包1(光学相干断层扫描OCT):合同包预算金额:2,800,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1医用光学仪器光学相干断层扫描OCT1(套)详见采购文件2,800,000.00-本合同包不接受联合体投标合同履行期限:合同签订后45日内完成安装;2个工作日内安装完毕。二、申请人的资格要求:1.投标供应商应具备《政府采购法》第二十二条规定的条件,提供下列材料:1)具有独立承担民事责任的能力:在中华人民共和国境内注册的法人或其他组织或自然人, 投标(响应)时提交有效的营业执照(或事业法人登记证或身份证等相关证明) 副本复印件。分支机构投标的,须提供总公司和分公司营业执照副本复印件,总公司出具给分支机构的授权书。2)有依法缴纳税收和社会保障资金的良好记录:提供投标截止日前6个月内任意1个月依法缴纳税收和社会保障资金的相关材料。 如依法免税或不需要缴纳社会保障资金的, 提供相应证明材料。3)具有良好的商业信誉和健全的财务会计制度:供应商必须具有良好的商业信誉和健全的财务会计制度(提供2021年度财务状况报告或基本开户行出具的资信证明) 。4)履行合同所必需的设备和专业技术能力:参照“投标文件格式与要求”填报《设备和专业技术能力情况表》,必须在表格中同时填报设备及专业技术能力(人员)两类信息。5)参加采购活动前3年内,在经营活动中没有重大违法记录:参照投标(报价)函相关承诺格式内容。 重大违法记录,是指供应商因违法经营受到刑事处罚或者责令停产停业、吊销许可证或者执照、较大数额罚款等行政处罚。(根据财库〔2022〕3号文,“较大数额罚款”认定为200万元以上的罚款,法律、行政法规以及国务院有关部门明确规定相关领域“较大数额罚款”标准高于200万元的,从其规定)2.落实政府采购政策需满足的资格要求:合同包1(光学相干断层扫描OCT)落实政府采购政策需满足的资格要求如下:本项目不属于专门面向中小企业采购的项目3.本项目的特定资格要求:合同包1(光学相干断层扫描OCT)特定资格要求如下:(1)供应商未被列入“信用中国”网站(www.creditchina.gov.cn)“记录失信被执行人或重大税收违法案件当事人名单或政府采购严重违法失信行为”记录名单;不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间。(以资格审查人员于投标(响应)截止时间当天在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网(http://www.ccgp.gov.cn/)查询结果为准,如相关失信记录已失效,供应商需提供相关证明资料)。(2)单位负责人为同一人或者存在直接控股、 管理关系的不同供应商,不得同时参加本采购项目(或采购包) 投标(响应)。 为本项目提供整体设计、 规范编制或者项目管理、 监理、 检测等服务的供应商, 不得再参与本项目投标(响应)。 投标(报价) 函相关承诺要求内容。(3)具有有效的《医疗器械生产许可证》或具备相关经营范围的《医疗器械经营许可证》(或《食品药品经营许可证》或《医疗器械经营备案凭证》)。三、获取招标文件时间: 2023年02月27日 至 2023年03月08日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外)地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/方式:在线获取售价: 免费获取四、提交投标文件截止时间、开标时间和地点2023年03月23日 09时30分00秒 (北京时间)递交文件地点:远程开标,请登录广东省政府采购网https://gdgpo.czt.gd.gov.cn/开标地点:远程开标,请登录广东省政府采购网https://gdgpo.czt.gd.gov.cn/五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.本项目采用电子系统进行招投标,请在投标前详细阅读供应商操作手册,手册获取网址:https://gdgpo.czt.gd.gov.cn/help/transaction/download.html。投标供应商在使用过程中遇到涉及系统使用的问题,可通过020-88696588 进行咨询或通过广东政府采购智慧云平台运维服务说明中提供的其他服务方式获取帮助。2.供应商参加本项目投标,需要提前办理CA和电子签章,办理方式和注意事项详见供应商操作手册与CA办理指南,指南获取地址:https://gdgpo.czt.gd.gov.cn/help/problem/。3.如需缴纳保证金,供应商可通过"广东政府采购智慧云平台金融服务中心"(http://gdgpo.czt.gd.gov.cn/zcdservice/zcd/guangdong/),申请办理投标(响应)担保函、保险(保证)保函。/七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中山市博爱医院地 址:中山市东区城桂路6号联系方式:0760-887762102.采购代理机构信息名 称:广东志正招标有限公司中山分公司地 址:中山市东区中山四路亨尾大街3号软件园东园区2楼20室联系方式:0760-88808187、888116013.项目联系方式项目联系人:李小姐电 话:0760-88808187、88811601广东志正招标有限公司中山分公司2023年02月24日
  • 2020年蛋白质冷冻电子断层扫描三维重构技术应用研讨会成功召开
    p style="text-indent: 2em "strong style="text-indent: 2em "仪器信息网讯/strongspan style="text-indent: 2em " 12月16日,由国家蛋白质科学研究(北京)北大分中心、北京大学生命科学学院和赛默飞世尔公司共同主办,中国生物物理学会冷冻电子显微学分会承办的2020年蛋白质冷冻电子断层扫描三维重构技术应用研讨会在北京大学中关新园成功举办。研讨会主席由北京大学郭强研究员、高宁教授、伊成器教授和赛默飞电镜生命科学亚太区市场拓展总监Eric Fung Chen共同担任,主题是“蛋白质冷冻电子断层扫描-桥连细胞生物学和分子生物学时代”,围绕三维冷冻电子断层扫描重构技术(Cryo-ET)样品制备、算法数据处理、应用以及交联质谱、FCS技术等方面进行了广泛研讨。本次研讨会共组织安排了11场精彩报告,其中来自德国马普生化所冷冻电子断层扫描技术的先驱Wolfgang Baumeister教授应邀作了主旨报告。作为冷冻电子断层扫描三维重构技术盛会,会议吸引了来自全国高等院校、科研院所、企事业单位的知名专家学者等共240余人。/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202012/uepic/7f9c68cf-1c1c-4fad-a95f-f2a154a2a686.jpg" title="1.jpg" alt="1.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "全体合影/span/pp style="text-indent: 2em "strong北京大学生命学院副院长高宁教授/strong和strong赛默飞材料与结构分析业务高级商务总监陈厅行/strong分别为大会致开幕辞。高宁教授指出在过去几年内,冷冻电镜技术的革命性发展非常深刻的改变了生命科学很多领域的研究范式。冷冻电镜技术未来的一个重要突破将是冷冻电子断层扫描三维重构技术(Cryo-ET),这些技术发展离不开国家层面鼓励的多学科交叉的方向。将来除了生物学、电子显微学还有材料、化学、大数据技术、人工智能等各学科的深度融合,我们坚信在5 ~ 10年内各项基于冷冻电镜的技术,特别是冷冻电子断层扫描三维重构技术将迎来新的突破,这将是一个新的革命性的时代,在座学生可以做好迎接新时代的准备。陈厅行在致辞中表示赛默飞在结构生物学领域和北大以及国家蛋白质中心都一直有着非常密切的合作,从仪器、服务到技术的普及和相关的学术活动。他希望凭借赛默飞仪器技术的升级能帮助科学家们攻克一个又一个的生物学问题,探究更多的人类的未解之谜,让我们的世界更健康,更清洁,更安全。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 199px " src="https://img1.17img.cn/17img/images/202012/uepic/93502dfe-279d-4ace-a365-a45683d57aab.jpg" title="2.png" alt="2.png" width="600" height="199" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "高宁教授(左)和陈厅行先生(右)/span/pp style="text-indent: 2em "随后在上午的学术报告中,strong清华大学欧光朔教授/strong报告了利用Cryo-ET技术研究线虫肠道内纤毛和微绒毛的最新研究成果。报告中,欧教授详细报告了如何从使用常温FIB-SEM研究线虫的大尺度三维重构的过程到使用Cryo-ET技术过程。在使用Cryo-ET技术过程,经历了很多艰辛,由于定位问题,很难获得高质量理想样品。最后在研究线虫肠道上皮内有大量的微绒毛过程中,非常意外的发现在小肠微绒毛膜的外面有成百上千的杆状结构。由于该茸毛存在于微米级细胞器Microvilli上,其直径5nm,长度35nm长,因此命名为Nanovilli,报告中将Microvilli和Nanovilli组成的结构形象的称之为狼牙棒(Rod with wolf teeth)结构。通过大量的数据分析并结合文献中微绒毛再生过程的研究结论,提出了微绒毛复制模型。欧教授幽默风趣的报告,赢得了阵阵掌声。/pp style="text-indent: 2em "strong中国科学院生物物理研究所章新政研究员/strong报告了新的高通量原位结构解析技术,该技术的定位效率与蛋白质大小和样品厚度密切相关,在低于120 nm的非切片数据里,可定位400 kD以上的蛋白并实现高分辨率解析。蛋白质的丰度和蛋白质分子量降低都会影响定位效率,但前者远小于后者的影响。经估算,在丰度极地的情况下,若切片厚度在100 nm左右,可解析约1 MD的蛋白高分辨率结构。由于相对较低的定位效率,算法无法确定原位环境中的蛋白复合物,因此如果目标蛋白的分布未知,可先收集Tomographic数据,通过Sub-Tomogram averaging技术研究蛋白在原位环境中的分布,然后使用该方法进一步提升分辨率。/pp style="text-indent: 2em "strong赛默飞电镜生命科学亚太高级业务拓展总监Eric Fung Chen/strong在会议上介绍了赛默飞多年以来持续在产品技术研发上做的大量投入,以及冷冻电镜在生命科学领域的技术新进展。赛默飞每年在持续在产品研发投入超过10亿美金,这使得赛默飞的技术创新一直走在科技的前沿:新推出的Selectris能量过滤器将冷冻电镜提升到了新的水平,分辨率可达1.2埃,实现了以真正的原子级分辨率观察蛋白;Aquilos 2 cryo FIB在样品制备方面进行了自动化改进和提供了细胞组织水平的冷冻薄片提取技术,从而大大简化了研究人员的制样步骤,提高了成功率;亲民新品Tundra(100kv CryoEM)也使得更多的客户有能力用冷冻电镜研究蛋白结构,最新数据是分辨率达到3.0埃(Apoferritin)等,所有的这些创新都是希望帮助科学家们解决更多的科学难题,实现科研往前推动重要的一步。/pp style="text-indent: 2em "strong北京生命科学研究所/清华大学生物医学交叉研究院董梦秋研究员/strong报告了利用化学交联及质谱分析辅助蛋白质结构分析,其团队开发了一种新可以在具有挑战条件下工作的交联剂DOPA2,该交联剂具有氨基特异性,可以在10 s内快速反应完成交联,远远快于目前常用交联剂的反应时间20 ~ 30min,而且不水解。该交联剂不仅可以使化学交联质谱分析用于分析未折叠或部分折叠的蛋白质,还可以捕捉蛋白质展开过程中的结构变化,最后她也希望在蛋白构象变化研究的路上,未来能研究出反应更快的交联剂,甚至是微秒级的交联剂,以更好研究跟踪更快的蛋白构想变化。/pp style="text-indent: 2em "strong北京大学生命学院郭强研究员/strong报告了利用冷冻电子断层扫描技术分析神经退行性疾病的细胞毒性分子机制。报告中列举了通过冷冻光电联用技术,电子断层扫描技术实现对多种神经退行性疾病模型中的蛋白聚集物的原位观察,展示了蛋白聚集物多样性的特征,并指出泛素化降解途径功能阻滞可能是ALS发病过程中的重要特征。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 375px " src="https://img1.17img.cn/17img/images/202012/uepic/f5144e7b-680e-48c0-8a89-823a6a1f418b.jpg" title="3.png" alt="3.png" width="500" height="375" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "上午报告人/span/pp style="text-indent: 2em "下午学术报告中,strong北京大学生命学院王世强教授/strong首先带来了精彩的报告。王老师虽然自己以前不是做结构相关的,但是王老师实验室使用电镜方面,有非常长的历史。一旦电镜有些新的技术,他都会让学生在第一时间尝试。在之前北大硬件相对比较差的时候,他就找各种的合作,试图用相对比较有限的条件应用最新的技术。王教授报告了使用常规Tomography技术获得的心肌细胞内钙信号转导大分子复合物signosome的三维结构并详细介绍了钙火花工作机制。/pp style="text-indent: 2em "strong清华大学李雪明副教授/strong报告了细胞原位冷冻电镜结构解析的技术挑战与研究进展,报告中指出,Cryo-ET的优势是可以研究真正的生理态状态、大尺度范围内的物质相互作用、涵盖了关键的生物学过程、分辨率可以从原子尺度到微纳尺度。同时从样品制备技术、数据采集、数据预处理、三维重构、图像识别(深度学习)系统介绍了冷冻电子断层扫描三维重构技术。特别是样品制备方面是Cryo-ET面临的瓶颈问题,决定了实验的成败。李教授详细汇报了课题组切割样品的过程,切割必须保持样品高质量的结构、定位问题、表面辐照损伤、切割的厚度、形变等等都会影响样品质量。未来高效智能的Cryo-ET技术依然是其努力方向。/pp style="text-indent: 2em "strong中科院计算技术研究所张法/strong研究汇报了电子断层三维重构中的计算方法,详细列举了研究组开发的数据对中(Markerauto)、弥补数据缺失重构(FIRT/ICON和Curvilinear projection Model)、三维体降噪和三维数据分类等软件的原理、优势及应用。生物物理所黄韶辉研究员报告了基于最大熵值法的荧光寿命相关光谱技术(FCS)用于分析生物分子亚毫秒级别的动态结构变化,其应用最大熵值法(MEM)可实现对均相溶液样品中三个荧光组份(三个FRET构象)的荧光寿命分布分析;而且应用荧光寿命相关光谱(FLCS)技术实现对以上三个FRET构象相互转换在亚毫秒时间尺度的动力学研究。同时他还希望能对溶液样品中更多( 3)FRET构象及其相互转换的动力学研究、数个毫秒级别的构象转换动力学研究以及解决更有意义的生物学问题。其自主研制的FCS CorTectorTM SX100国内外用户有美国国立卫生研究院、加州大学旧金山分校、清华大学、中科院生物物理研究所,他也期待和大家有更多的合作。/pp style="text-indent: 2em "仪器行业新锐strong荷兰Delmic公司的CEO Sander den Hoedt和冷冻电镜产品部主管Katherine Lau/strong在中国区总代理超微动力公司总经理葛鹏的协助下详细介绍了一款有巨大潜在应用价值的新产品Meteor。这是一款集成于cryo-FIB/SEM上的荧光显微镜实时观察系统,该系统可以减少样品转移环节,显著提高制样成功率和良品率,将宝贵的冷冻电镜机时用于真正有价值的样品。在报告中还提及了Delmic公司的另一项新产品——全自动高速电镜系统FastEM。这也是一款革命性的新产品,使电镜观察实现完全自动化,可将电镜的观察效率提高数十倍。这些产品的潜在应用价值得到主旨报告人Baumeister教授的充分肯定。/pp style="text-indent: 2em "strong马普生化所Baumeister教授/strong首先介绍了原位结构生物学的重要意义,接下来回顾了过去几十年冷冻电子断层扫描技术相关上下游仪器设备的发展历程。紧接着,介绍了研究组近期利用电子断层扫描技术解决的生物学问题,涵盖了神经生物学、光合成、相分离、细胞自噬、蛋白稳态等多个方面。最后,展望未来,Baumeister教授讲述了原位结构生物学未来需要解决的方法学难题及发展方向。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/a5f3d902-6910-42e2-b146-33b8f7418ffa.jpg" title="4.png" alt="4.png"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "下午报告人/span/pp style="text-indent: 2em "本次研讨会为国内学者提供了冷冻电子断层扫描三维重构技术的高水平交流平台,有效推动了蛋白质结构与功能研究的进步和发展。一天的交流,与会代表积极参与讨论,大家感受到了Cryo-ET技术的魅力与发展。郭强研究员最后期待在更大的会场和更多的学者可以进行更多的学术交流。本次研讨会得到了北京大学冷冻电镜平台的大力支持。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 265px " src="https://img1.17img.cn/17img/images/202012/uepic/93f7b2bb-cc72-4afc-b575-9eb5afb165e8.jpg" title="5.png" alt="5.png" width="600" height="265" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "会议掠影/span/p
  • 蛋白质冷冻电子断层扫描三维重构技术应用研讨会通知(第一轮)
    p style="text-align: justify text-indent: 2em "冷冻电子断层扫描技术是目前唯一可以在细胞生理状态下,对生物大分子和亚细胞结构在分子分辨率(1~10 nm)水平进行原位结构分析和功能研究的技术手段。这一研究尺度正是目前传统细胞生物学和分子生物学都无法涵盖的,因此这一技术是桥连两者的关键技术。/pp style="text-align: justify text-indent: 2em "近年来,伴随着聚焦离子束(FIB)、光镜电镜联用(CLEM)和相位板等技术手段的发展,冷冻电子断层扫描技术已经可以实现对不同亚细胞结构、细胞生物学现象进行原位观察。与此同时,相机成像质量的进步、计算能力的提升和算法的优化使得该方法可实现的分辨率大幅度提升,甚至可以做到亚纳米分辨率乃至原子分辨率的原位结构解析。/pp style="text-align: justify text-indent: 2em "基于这些发展,冷冻电子断层扫描技术对生命科学研究有两方面助力:一方面,对细胞生物学现象观测的空间分辨率提升一到两个数量级,这将有可能重塑我们对细胞生物学的认识;另一方面,相对传统结构生物学,在牺牲一定分辨率的代价下,可以对生物大分子在其生理状态下进行原位结构分析,获得其构象、功能及细胞微环境的关联,这将是生物学未来的重要发展方向。/pp style="text-align: justify text-indent: 2em "本次研讨会由国家蛋白质科学研究(北京)北大分中心、北京大学生命科学学院和Thermo Fisher Scientific公司共同主办,将围绕蛋白质三维冷冻电子断层扫描重构技术,从样品制备、数据收集、算法数据处理、应用等方面进行广泛研讨。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong会议主题:/strong/span蛋白质冷冻电子断层扫描-桥连细胞生物学和分子生物学时代/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong会议日期:/strong/span2020年12月16日9:00 - 17: 00/pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 112, 192) "会议地点:/span/strong北京大学中关新园群英厅/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong会议规模:/strong/span150人/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong主办单位:/strong/span国家蛋白质科学研究(北京)北大分中心、北京大学生命科学学院、Thermo Fisher Scientific公司/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong会议主席:/strong/span郭强、高宁、伊成器/pp style="text-align: justify text-indent: 2em "strong本次会议免费参加。请您将参会回执发送至aiwenfan@pku.edu.cn,邮件注明“xx参加蛋白质冷冻电子断层扫描三维重构技术应用研讨会”,以便安排用餐。/strong/pp style="text-align: justify text-indent: 2em "附件:img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" style="vertical-align: middle margin-right: 2px "/a href="https://img1.17img.cn/17img/files/202012/attachment/ff5916c6-1cd7-436a-95aa-87ba62efda59.doc" title="参会回执.doc" style="font-size: 12px color: rgb(0, 102, 204) "参会回执.doc/a/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong会议联系人:/strong/span/pp style="text-align: justify text-indent: 2em "郭振玺:北京大学生命学院,13466664284,guozhenxi9999@pku.edu.cn/pp style="text-align: justify text-indent: 2em "范爱文:北京大学生命学院,13051380795,aiwenfan@pku.edu.cn/pp style="text-align: justify text-indent: 2em "郝雪梅:北京大学生命学院,15811335516,haoxm@pku.edu.cn/pp style="text-align: right "北京大学/pp style="text-align: right "2020年11月30日/ppbr//p
  • 预算1950万!甘南藏族自治州人民医院计算机断层扫描仪器采购
    甘南藏族自治州人民医院发热门诊计算机断层扫描仪器采购项目公开招标公告甘南藏族自治州人民医院招标项目的潜在投标人应在登录甘南州公共资源交易网;获取招标文件,并于2021-12-21 09:10(北京时间)前递交投标文件。一、项目基本情况项目编号:7723-202107005项目名称:甘南藏族自治州人民医院发热门诊计算机断层扫描仪器采购项目预算金额:1950(万元)最高限价:1950.0(万元)采购需求:电子计算机断层扫描仪1套,具体要求详见招标文件要求;合同履行期限:按合同约定执行本项目(是/否)接受联合体投标:否二、申请人的资格要求1.满足《中华人民共和国政府采购法》第二十二条规定;1.1 须提供企业法人营业执照副本原件、税务登记证副本原件、组织机构代码证副本原件(前述法人营业执照、税务登记证、组织机构代码证已三证合一的,则需提供具有统一社会信用代码的营业执照副本);1.2 法定代表人身份证(正、反面复印件加盖公章)、被授权人身份证(正、反面复印件加盖公章)、法人授权委托书(原件);1.3 提供2021年度连续6个月依法缴纳税收和社会保障资金的凭据(证);1.4 须提供本公司开户许可证或基本存款账户信息(复印件加盖公章);1.5 由会计事务所出具或经第三方审计的2020年度的财务审计报告(成立未满一年企业可提供本企业财务报表和银行资信证明原件);1.6 供应商须为未被列入“信用中国”网站记录失信被执行人、重大税收违法案件当事人名单和政府采购严重违法失信行为记录名单;不处于中国政府采购网政府采购严重违法失信行为信息记录中的禁止参加政府采购活动期间的方可参加本项目的投标(以获取招标文件后在“信用中国”网站查询结果为准,如相关失信记录已失效,供应商需提供相关证明资料,相关截图打印加盖投标人公章后装入投标文件)。2.落实政府采购政策需满足的资格要求:(一)《政府采购促进中小企业发展管理办法》(财库〔2020〕46 号)、关于印发中小企业划型标准规定的通知(工信部联企业【2011】300号)。 (二)符合政府采购《节能产品政府采购清单》、《环境标志产品政府采购清单》优先采购政策。 (三)《司法部关于政府采购支持监狱企业发展有关问题》( 财库【2014】68号)。(四)《关于促进残疾人就业政府采购政策的通知》(财库【2017】141号)等 。3.本项目的特定资格要求:3.1 供应商必须具有医疗器械生产许可证或经营许可证(复印件加盖公章)。三、获取招标文件时间:2021-11-29至2021-12-03,每天上午0:00至11:59,下午12:00至23:59地点:登录甘南州公共资源交易网;方式:在线免费下载;获取人须准确填写投标人名称、地址、联系人、联系电话等相关信息,如填写信息有误,对其产生的不利因素由投标人自行承担(招标文件获取后投标资格不能转让)。售价:0.0(元)四、提交投标文件截止时间、开标时间和地点时间:2021-12-21 09:10地点:甘南州公共资源交易中心四楼第 五 开标大厅(线上开标);五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1、本项目投标文件采取网络递交方式,投标人须通过“远程在线不见面开标系统”投标文件固化工具对已完成的投标文件进行固化加密,在开标前上传加密后的投标文件。2、根据规定的开标时间,通过“远程在线不见面开标系统”投标文件固化工具提前登录“开标大厅”参与线上开标会议。开标会议开始后,投标人按照系统提示,解密本单位投标文件,按流程完成开标事宜。3、本项目若有更正将通过原采购公告发布媒体发布,请及时关注甘肃政府采购网、甘南州公共资源交易中心网。4、投标人在投标文件递交截止时间前应主动登录甘肃政府采购网或甘南藏族自治州公共资源交易网,以便及时了解相关投标信息和补充信息。如因未主动登录网站而未获取相关信息,对其产生的不利因素由投标人自行承担。①甘南藏族自治州公共资源交易网:http://ggzyjy.gnzrmzf.gov.cn/f②信用中国”网站:https://www.creditchina.gov.cn③中国政府采购网网址:http://www.ccgp.gov.cn/七、对本次招标提出询问,请按以下方式联系1.采购人信息名 称:甘南藏族自治州人民医院地 址:甘南州合作市人民东街50号联系方式:139094143062.采购代理机构信息名 称:甘肃丰盛科贸有限公司地 址:甘肃省兰州市城关区皋兰路街道民主西路226号第11层001室A002-1联系方式:136893337773.项目联系方式项目联系人:史森盛电 话:13689333777
  • 北大郭强课题组使用冷冻电子断层扫描技术对弓形虫速殖子增殖过程进行成像
    刚地弓形虫(Toxoplasma gondii)是一种能在细胞内寄生生活的寄生虫,它能够感染包括人在内的几乎所有温血动物,引发弓形虫病。处于速殖子阶段的弓形虫在宿主细胞内进行无性繁殖,即:母体细胞的细胞核附近产生两个子代弓形虫,后者会逐渐发育为成熟的速殖子,而母体细胞的结构随之消失。弓形虫速殖子具有表皮下微管(SPMTs)和类锥体(conoid)等骨架结构,在维持细胞形态、运动和侵染宿主过程中发挥重要作用。先前的相关研究主要聚焦于弓形虫成熟速殖子及其骨架结构,描述了细胞骨架在成熟速殖子中的分布情况,并通过冷冻电镜分别解析了表皮下微管和类锥体纤维的精细结构,揭示了表皮下微管是由13根原丝组成的“句号”形状;而类锥体纤维是由9根原丝组成的“逗号”形状 (Sun et al., 2022)。而对弓形虫速殖子增殖过程的结构研究目前仍以荧光显微技术为主要手段,缺少更高分辨率的结构。该增殖过程区别于常见的细胞“一分为二”的有丝分裂方式,存在大量未知的细节值得去探索。2023年2月25日,北京大学生命科学学院郭强课题组在Advanced Science发表了题为“Cryo-Electron Tomography of Toxoplasma gondii Indicates That the Conoid Fiber May Be Derived from Microtubules”的研究论文。该工作首次将冷冻电子断层成像技术应用于探究弓形虫速殖子的增殖过程,在纳米尺度下详细描述了子代弓形虫的三维原位结构,并在结构方面提供了类锥体可能起源自微管的证据。该研究利用了冷冻电子断层成像(cryo-ET)并结合了聚焦离子束(FIB)技术,获得了成熟速殖子及其细胞核附近新生的子代弓形虫的原位结构。作者分别展示了纳米尺度下的成熟和子代速殖子顶部复合物的三维结构(图1 B和H),重点描述了细胞骨架相关结构的细节,发现子代速殖子在早期就已经具备完整的细胞骨架结构,印证了荧光显微技术的研究结果。通过对比,作者发现成熟与新生速殖子的细胞骨架在空间分布上存在差异,猜测这可能与子代速殖子发育过程中所处的环境与成熟速殖子不同有关。让人意外的是,研究者发现子代速殖子的类锥体纤维中同时存在“句号”形状和“逗号”形状这两种结构。这两种形状能够同时出现在同一根类锥体纤维上(图1 C),并且存在一段约10 nm长、由“句号”形状向“逗号”形状过渡的区域。进一步计算表明“句号”形状的类锥体纤维由13根原丝组成(图1 C),与微管一致;基于两者在结构上的相似性,且两者都主要由tubulin蛋白组成,推测类锥体纤维可能起始于微管,其在成熟过程中失去4根原丝,并逐渐转变为最终的“逗号”形状(图1 I)。该研究有助于我们更深入地理解类锥体的组装,以及弓形虫增殖时子细胞从产生到逐渐成熟的过程,为进一步探寻弓形虫及其他顶复门寄生虫控制药物提供支持。图1 (A-C)来自弓形虫子代速殖子,(G-I)来自成熟速殖子。(A-B和G-H)为类锥体附近区域的结构。(C和I)为类锥体纤维不同位置的横截面。北京大学生命科学学院、生命科学联合中心郭强研究员为该研究的通讯作者。课题组20级PTN项目博士研究生李智勋为该研究的第一作者,课题组技术员杜文静,以及中山大学伦照荣教授,赖德华副教授和杨炅同学为该工作做出了重要贡献。该工作中冷冻电镜样品制备和数据采集在北京大学冷冻电镜平台完成。数据处理获得了北京大学未名超算平台的硬件和技术支持。北京大学国家蛋白质科学中心的工作人员提供了技术支持。该研究得到了北京大学生命科学中心(CLS)、生命科学学院(SLS)、SLS-启东创新基金以及昌平实验室的经费支持。参考文献:Sun, S.Y., Segev-Zarko, L.-a., Chen, M., Pintilie, G.D., Schmid, M.F., Ludtke, S.J., Boothroyd, J.C., and Chiu, W. (2022). Cryo-ET of Toxoplasma parasites gives subnanometer insight into tubulin-based structures. Proceedings of the National Academy of Sciences 119, e2111661119.研究组介绍郭强:北京大学生命科学学院、北大-清华生命科学联合中心,研究员、博士生导师。实验室研究领域:我们是原位结构生物学实验室。关注“细胞建筑学”:各个亚细胞结构是如何搭建成一个具有完整生物学功能的细胞,以及“生物大分子社会学”:细胞内的细胞器、生物大分子之间的相互关系。原位结构生物学是基于冷冻光电联用(CLEM)、冷冻电子断层扫描(cryo-ET)等技术的新兴结构生物学分支,是一种可以在细胞生理状态下,对生物大分子和亚细胞结构在分子分辨率(1 ~ 10 nm)水平进行原位的结构分析和功能研究的技术手段。我们主要研究方向包括:1. 在纳米、亚纳米尺度对基础细胞生物学问题的研究。2. 对包括神经退行性疾病在内的老龄化疾病致病机制的研究。3. 适用于组织样品的高分辨原位结构生物学方法优化。
  • 2300万!西藏自治区藏医院(西藏自治区藏医药研究院)医用X线诊断设备(高端X射线断层扫描系统)采购项目
    一、项目基本情况项目编号:GZFCG2024-21977项目名称:西藏自治区藏医院(西藏自治区藏医药研究院)2024年医疗卫生机构能力建设采购项目预算金额:2300.000000 万元(人民币)最高限价(如有):2300.000000 万元(人民币)采购需求:序号采购设备名称数量(套)合同履行期限交付地点备注1医用X线诊断设备(高端X射线断层扫描系统1 90 日历天具体以双方签订合同为准西藏自治区藏医院(西藏自治区藏医药研究院)院内(具体以双方签订合同为准)2随机附件13技术资料1具体技术参数详见招标文件第五章采购需求。合同履行期限: 90 日历天具体以双方签订合同为准本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年08月02日 至 2024年08月09日,每天上午8:00至12:00,下午12:00至21:00。(北京时间,法定节假日除外)地点:通过西藏自治区公共资源交易平台登录,网址https://ggzy.xizang.gov.cn/方式:网上下载售价:¥0.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:西藏自治区藏医院(西藏自治区藏医药研究院)     地址:城关区拉萨市娘热路26号        联系方式:刘先生17784515170      2.采购代理机构信息名 称:大成工程咨询有限公司            地 址:城关区慈松林文成公主西藏文化旅游园区3650三楼            联系方式:桂女士13889081436            3.项目联系方式项目联系人:桂女士电 话:  13889081436
  • 2020年蛋白质冷冻电子断层扫描三维重构技术应用研讨会通知(第二轮)
    p style="text-indent: 2em "span style="text-indent: 2em "2020年蛋白质冷冻电子断层扫描三维重构技术应用研讨会将于12月16日在北京大学中关新园群英厅召开。本次研讨会由国家蛋白质科学研究(北京)北大分中心、北京大学生命科学学院和Thermo Fisher Scientific公司共同主办,会议主席由北京大学郭强研究员、高宁教授、伊成器教授和赛默飞电镜生命科学亚太区市场拓展总监Eric Fung Chen共同担任,会议主题是“蛋白质冷冻电子断层扫描-桥连细胞生物学和分子生物学时代”,将围绕蛋白质三维冷冻电子断层扫描重构技术,从样品制备、数据收集、算法数据处理、应用等方面进行广泛研讨,规模控制150人。/span/pp style="text-indent: 2em "冷冻电子断层扫描技术是目前唯一可以在细胞生理状态下,对生物大分子和亚细胞结构在分子分辨率(1 ~ 10 nm)水平进行原位结构分析和功能研究的技术手段。这一研究尺度正是目前传统细胞生物学和分子生物学都无法涵盖的,因此这一技术是桥连两者的关键技术。/pp style="text-indent: 2em "近年来,伴随着聚焦离子束(FIB)、光镜电镜联用(CLEM)和相位板等技术手段的发展,冷冻电子断层扫描技术已经可以实现对不同亚细胞结构、细胞生物学现象进行原位观察。与此同时,相机成像质量的进步、计算能力的提升和算法的优化使得该方法可实现的分辨率大幅度提升,甚至可以做到亚纳米分辨率乃至原子分辨率的原位结构解析。/pp style="text-indent: 2em "基于这些发展,冷冻电子断层扫描技术对生命科学研究有两方面助力:一方面,对细胞生物学现象观测的空间分辨率提升一到两个数量级,这将有可能重塑我们对细胞生物学的认识;另一方面,相对传统结构生物学,在牺牲一定分辨率的代价下,可以对生物大分子在其生理状态下进行原位结构分析,获得其构象、功能及细胞微环境的关联,这将是生物学未来的重要发展方向。/pp style="text-indent: 2em "本次会议免费参加。请您将参会回执发送至strongaiwenfan@pku.edu.cn/strong,邮件注明“xx参加蛋白质冷冻电子断层扫描三维重构技术应用研讨会”,以便安排用餐。/pp style="text-indent: 2em "span style="color: rgb(255, 0, 0) "strong会议日程安排:/strong/span/ptable border="1" cellspacing="0" cellpadding="0" style="border-collapse:collapse border:none"tbodytr class="firstRow"td width="563" colspan="3" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif" /span/pp style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif"8:00 ~ 9:00 /spanspan style=" line-height:120% font-family:黑体"在中关新园群英厅门口签到处报到。/span/pp style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif color:#0000CC" /span/pp style="line-height:120%"span style=" line-height:120% font-family:黑体 color:#0000CC"主持人:郭/spanspan style=" line-height:120% font-family: ' Arial' ,sans-serif color:#0000CC"span /span/spanspan style=" line-height:120% font-family:黑体 color:#0000CC"强/spanspan style=" line-height:120% font-family: ' Arial' ,sans-serif color:#0000CC"span /span/spanspan style=" line-height:120% font-family:黑体 color:#0000CC"研究员/span/pp style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif color:#0000CC" /span/p/td/trtr style=" height:53px"td width="95" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif"9:00 - 9:05/span/pp style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif"9:05 - 9:10/span/p/tdtd width="78" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="text-align:left line-height:120%"span style=" line-height:120% font-family:黑体"致/spanspan style=" line-height:120% font-family:' Arial' ,sans-serif"span /span/spanspan style=" line-height:120% font-family:黑体"辞/span/pp style="text-align:left line-height:120%"span style=" line-height:120% font-family:黑体"致/spanspan style=" line-height:120% font-family:' Arial' ,sans-serif"span /span/spanspan style=" line-height:120% font-family:黑体"辞/span/p/tdtd width="390" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family:黑体"高/spanspan style=" line-height:120% font-family: ' Arial' ,sans-serif"span /span/spanspan style=" line-height:120% font-family:黑体"宁/span span style=" line-height:120% font-family:黑体"教/span span style=" line-height:120% font-family:黑体"授/spanspan style=" line-height:120% font-family:' Arial' ,sans-serif"span /span/spanspan style=" line-height:120% font-family:黑体"北京大学生命学院副院长/span/pp style="line-height:120%"span style=" line-height:120% font-family:黑体"陈厅行/span span style=" line-height:120% font-family:黑体"赛默飞材料与结构分析业务高级商务总监/span/p/td/trtr style=" height:53px"td width="95" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif"09:10-09:40/span/pp style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif" /span/p/tdtd width="78" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family:黑体"报/span span style=" line-height:120% font-family:黑体"告/span span style=" line-height:120% font-family:黑体"人:/span/pp style="line-height:120%"span style=" line-height:120% font-family:黑体"报告题目:/span/p/tdtd width="390" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family:黑体"欧光朔/span span style=" line-height:120% font-family:黑体"教/span span style=" line-height:120% font-family:黑体"授/spanspan style=" line-height:120% font-family:' Arial' ,sans-serif"span /span/spanspan style=" line-height:120% font-family:黑体"清华大学/span/pp style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif"Cryo-eletron tomography of microvilli and cilia in C. elegans/span/p/td/trtr style=" height:53px"td width="95" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif"09:40-10:10/span/pp style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif" /span/p/tdtd width="78" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family:黑体"报/span span style=" line-height:120% font-family:黑体"告/span span style=" line-height:120% font-family:黑体"人:/span/pp style="line-height:120%"span style=" line-height:120% font-family:黑体"报告题目:/span/p/tdtd width="390" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family:黑体"章新政/span span style=" line-height:120% font-family:黑体"研究员/span span style=" line-height:120% font-family:黑体"中国科学院生物物理研究所/span/pp style="line-height:120%"span style=" line-height:120% font-family:黑体"高通量原位结构解析技术/span/p/td/trtr style=" height:53px"td width="95" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif color:#0000CC"10:10-10:30/span/p/tdtd width="78" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family:黑体 color:#0000CC"休/spanspan style=" line-height:120% font-family: ' Arial' ,sans-serif color:#0000CC"span /span/spanspan style=" line-height:120% font-family:黑体 color:#0000CC"息/span/p/tdtd width="390" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family:黑体 color:#0000CC"集体合影群英厅/spanspan style=" line-height:120% font-family: ' Arial' ,sans-serif color:#0000CC" & /spanspan style=" line-height:120% font-family:黑体 color:#0000CC"茶歇/span/p/td/trtr style=" height:53px"td width="563" colspan="3" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family:黑体 color:#0000CC"主持人:伊成器/span span style=" line-height:120% font-family:黑体 color:#0000CC"教授/span/p/td/trtr style=" height:53px"td width="95" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif"10:30-11:00/span/p/tdtd width="78" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family:黑体"报/span span style=" line-height:120% font-family:黑体"告/span span style=" line-height:120% font-family:黑体"人:/span/pp style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif" /span/pp style="line-height:120%"span style=" line-height:120% font-family:黑体"报告题目:/span/p/tdtd width="390" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family:黑体"董梦秋/span span style=" line-height:120% font-family:黑体"研究员/spanspan style=" line-height:120% font-family:' Arial' ,sans-serif" /span/pp style="line-height:120%"span style=" line-height:120% font-family:黑体"北京生命科学研究所/spanspan style=" line-height:120% font-family: ' Arial' ,sans-serif"//spanspan style=" line-height:120% font-family:黑体"清华大学生物医学交叉研究院/spanspan style=" line-height:120% font-family: ' Helvetica' ,sans-serif color:black"br/ /spanspan style=" line-height:120% font-family:' Arial' ,sans-serif"Assisting Structural Analysis of Proteins by Chemical Cross-linking Coupled with Mass Spectrometry/span/p/td/trtr style=" height:53px"td width="95" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif"11:00-11:30/span/p/tdtd width="78" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family:黑体"报/span span style=" line-height:120% font-family:黑体"告/span span style=" line-height:120% font-family:黑体"人:/span/pp style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif" /span/pp style="line-height:120%"span style=" line-height:120% font-family:黑体"报告题目:/span/p/tdtd width="390" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif"Eric Fung Chenspan /span/span/pp style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif"Life Science Market Development Director/spanspan style=" line-height: 120% font-family:黑体",/spanspan style=" line-height:120% font-family:' Arial' ,sans-serif"Thermo Fisher/span/pp style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif"New Advances in CryoEM for Molecular and Cell Biology/span/p/td/trtr style=" height:53px"td width="95" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif"11:30-12:00/span/p/tdtd width="78" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family:黑体"报/span span style=" line-height:120% font-family:黑体"告/span span style=" line-height:120% font-family:黑体"人:/span/pp style="line-height:120%"span style=" line-height:120% font-family:黑体"报告题目:/span/p/tdtd width="390" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family:黑体"郭/spanspan style=" line-height:120% font-family: ' Arial' ,sans-serif"span /span/spanspan style=" line-height:120% font-family:黑体"强/span span style=" line-height:120% font-family:黑体"研究员/span span style=" line-height:120% font-family:黑体"北京大学/span/pp style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif"Solid fibril and amorphous gel, structural mechanism of ALS related protein aggregation toxicity revealed by cryo-ET/span/p/td/trtrtd width="563" colspan="3" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif color:#0000CC"12:25-13:30span /span/spanspan style=" line-height:120% font-family:黑体 color:#0000CC"午/spanspan style=" line-height:120% font-family: ' Arial' ,sans-serif color:#0000CC"span /span/spanspan style=" line-height:120% font-family:黑体 color:#0000CC"餐/spanspan style=" line-height:120% font-family: ' Arial' ,sans-serif color:#0000CC"span /span/spanspan style=" line-height:120% font-family:黑体 color:#0000CC"中关新园/spanspan style=" line-height:120% font-family: ' Arial' ,sans-serif color:#0000CC"6/spanspan style=" line-height:120% font-family:黑体 color:#0000CC"号楼/spanspan style=" line-height:120% font-family: ' Arial' ,sans-serif color:#0000CC"B1/spanspan style=" line-height:120% font-family:黑体 color:#0000CC"辰光咖啡厅自助餐/span/pp style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif color:#0000CC" /span/pp style="line-height:120%"span style=" line-height:120% font-family:黑体 color:#0000CC"主持人:高宁/span span style=" line-height:120% font-family:黑体 color:#0000CC"教授/span/p/td/trtr style=" height:53px"td width="95" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif"13:30-14:00/span/pp style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif" /span/p/tdtd width="78" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family:黑体"报/span span style=" line-height:120% font-family:黑体"告/span span style=" line-height:120% font-family:黑体"人:/span/pp style="line-height:120%"span style=" line-height:120% font-family:黑体"报告题目:/span/p/tdtd width="390" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family:黑体"王世强/spanspan style=" line-height:120% font-family: ' Arial' ,sans-serif"span /span/spanspan style=" line-height:120% font-family:黑体"教/span span style=" line-height:120% font-family:黑体"授/spanspan style=" line-height:120% font-family:' Arial' ,sans-serif"span /span/spanspan style=" line-height:120% font-family:黑体"北京大学/span/pp style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif"Three-dimensional architecture of a calcium signosome in cardiomyocytes/span/p/td/trtr style=" height:53px"td width="95" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif"14:00-14:30/span/pp style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif" /span/p/tdtd width="78" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family:黑体"报/span span style=" line-height:120% font-family:黑体"告/span span style=" line-height:120% font-family:黑体"人:/span/pp style="line-height:120%"span style=" line-height:120% font-family:黑体"报告题目:/span/p/tdtd width="390" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family:黑体"李雪明/spanspan style=" line-height:120% font-family: ' Arial' ,sans-serif"span /span/spanspan style=" line-height:120% font-family:黑体"副教授/span span style=" line-height:120% font-family:黑体"清华大学/span/pp style="line-height:120%"span style=" line-height:120% font-family:黑体"细胞原位冷冻电镜结构解析的技术挑战与我们的一些进展/span/p/td/trtr style=" height:53px"td width="95" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif"14:30-15:00/span/pp style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif" /span/p/tdtd width="78" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family:黑体"报/span span style=" line-height:120% font-family:黑体"告/span span style=" line-height:120% font-family:黑体"人:/span/pp style="line-height:120%"span style=" line-height:120% font-family:黑体"报告题目:/span/p/tdtd width="390" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family:黑体"张/spanspan style=" line-height:120% font-family: ' Arial' ,sans-serif"span /span/spanspan style=" line-height:120% font-family:黑体"法/spanspan style=" line-height:120% font-family: ' Arial' ,sans-serif"span /span/spanspan style=" line-height:120% font-family:黑体"研究员/span span style=" line-height:120% font-family:黑体"中科院计算技术研究所/span/pp style="line-height:120%"span style=" line-height:120% font-family:黑体"电子断层三维重构中的计算方法/span/p/td/trtr style=" height:53px"td width="95" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif"15:00-15:30/span/pp style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif" /span/p/tdtd width="78" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family:黑体"报/span span style=" line-height:120% font-family:黑体"告/span span style=" line-height:120% font-family:黑体"人:/span/pp style="line-height:120%"span style=" line-height:120% font-family:黑体"报告题目:/span/p/tdtd width="390" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family:黑体"黄韶辉/spanspan style=" line-height:120% font-family: ' Arial' ,sans-serif"span /span/spanspan style=" line-height:120% font-family:黑体"研究员/spanspan style=" line-height:120% font-family: ' Arial' ,sans-serif"span /span/spanspan style=" line-height:120% font-family:黑体"中国科学院生物物理所/span/pp style="line-height:120%"span style=" line-height:120% font-family:黑体"桌面式荧光相关光谱单分子分析仪的研制和应用/span/p/td/trtr style=" height:53px"td width="95" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif color:#0000CC"15:30-15:50/span/pp style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif color:#0000CC" /span/p/tdtd width="78" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family:黑体 color:#0000CC"休息/span/p/tdtd width="390" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family:黑体 color:#0000CC"茶歇/span/p/td/trtr style=" height:53px"td width="563" colspan="3" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family:黑体 color:#0000CC"主持人:郭/spanspan style=" line-height:120% font-family: ' Arial' ,sans-serif color:#0000CC"span /span/spanspan style=" line-height:120% font-family:黑体 color:#0000CC"强/spanspan style=" line-height:120% font-family: ' Arial' ,sans-serif color:#0000CC"span /span/spanspan style=" line-height:120% font-family:黑体 color:#0000CC"研究员/span/pp style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif" /span/p/td/trtr style=" height:57px"td width="95" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="57"p style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif"15:50-16:15/span/p/tdtd width="78" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="57"p style="line-height:120%"span style=" line-height:120% font-family:黑体"报/span span style=" line-height:120% font-family:黑体"告/span span style=" line-height:120% font-family:黑体"人:/span/pp style="line-height:120%"span style=" line-height:120% font-family:黑体"报告题目:/span/p/tdtd width="390" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="57"p style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif"Sander den Hoedt/spanspan style=" line-height:120% font-family:黑体",/spanspan style=" line-height:120% font-family: ' Arial' ,sans-serif"CEO of Delmic & Katherine La/span/pp style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif"Integrated workflows for cryo-ET/span/p/td/trtr style=" height:53px"td width="95" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif"16:15-17:20/span/p/tdtd width="78" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family:黑体"报/span span style=" line-height:120% font-family:黑体"告/span span style=" line-height:120% font-family:黑体"人:/span/pp style="line-height:120%"span style=" line-height:120% font-family:黑体"报告题目:/span/p/tdtd width="390" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="53"p style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif"Wolfgang Baumeister /spanspan style=" line-height:120% font-family:黑体"教授/span span style=" line-height:120% font-family:黑体"德国马普生化所/span/pp style="line-height:120%"span style=" line-height:120% font-family: ' Arial' ,sans-serif"Structural Biology in situ or the Power of Seeing the Whole Picture/span/p/td/tr/tbody/tablep style="text-indent: 2em "span style="color: rgb(255, 0, 0) "strong会议联系人:/strong/span/pp style="text-indent: 2em "郭振玺:北京大学生命学院,13466664284,guozhenxi9999@pku.edu.cn/pp style="text-indent: 2em "范爱文:北京大学生命学院,13051380795,aiwenfan@pku.edu.cn/pp style="text-indent: 2em "郝雪梅:北京大学生命学院,15811335516,haoxm@pku.edu.cn/pp style="text-indent: 2em " /pp style="text-indent: 2em text-align: right " 北京大学/pp style="text-indent: 2em text-align: right " 2020年12月9日/pp style="text-indent: 2em "span style="color: rgb(255, 0, 0) "strong附:参会回执/strong/span/pp style="text-indent: 2em "蛋白质冷冻电子断层扫描三维重构技术应用研讨会回执/pp style="text-indent: 2em "请将回执发送至E-mail:strongaiwenfan@pku.edu.cn/strong,邮件注明“参加蛋白质冷冻电子断层扫描三维重构技术应用研讨会”。/ppbr//ptable border="0" cellspacing="0" cellpadding="0" style="border-collapse:collapse"tbodytr style=" height:30px" class="firstRow"td width="84" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="30"p style="text-align:center line-height:27px"strongspan style=" font-family:宋体"姓名/span/strongstrong/strong/p/tdtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="30"br//tdtd width="105" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="30"p style="text-align:center line-height:27px"strongspan style=" font-family:宋体"职务/span/strongstrongspan style=" font-family:' Arial' ,sans-serif"//span/strongstrongspan style=" font-family:宋体"职称/span/strongstrong/strong/p/tdtd width="163" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="30"br//td/trtr style=" height:30px"td width="84" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="30"p style="text-align:center line-height:27px"strongspan style=" font-family:宋体"电话/span/strongstrong/strong/p/tdtd width="202" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="30"br//tdtd width="105" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="30"p style="text-align:center line-height:27px"strongspan style=" font-family:' Arial' ,sans-serif"E-mail/span/strong/p/tdtd width="163" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="30"br//td/trtr style=" height:36px"td width="84" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:center line-height:27px"strongspan style=" font-family:宋体"单位/span/strongstrong/strong/p/tdtd width="470" colspan="3" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"br//td/tr/tbody/tablep style="text-indent: 2em " /ppbr//pp style="text-indent: 2em " /pp style="text-indent: 2em " /pp style="text-indent: 2em " /ppbr//p
  • 扫描卫星新技术:可用于检测皮肤癌
    欧洲航天局发射的Proba-V卫星,科学家用该卫星对地球植被进行观测  有些疾病难以在早期被诊断出来,导致许多患者容易错过最佳治疗时机。但现在有项新技术,能比目前的医学用扫描仪更早发现皮肤病变与癌症的早期征兆,不过,特别的是,这项新技术不是医学新仪器,是来自欧洲航天局(ESA)小型植被扫描卫星 Proba-V 的高速摄影机。  Proba-V 是 ESA 用于扫描地球植被的卫星,配有先进的数码红外线感测器及高速摄影机,其任务为从地球轨道监测植被的变化,它每48小时更新一次地表植被影像图。  根据欧洲航天局的官方介绍,Proba-V卫星扫描的每幅图像的宽度覆盖2250公里的范围,分辨率为3072像素,其配备的高速摄影机里的红外线感测器可透过侦测,可以从森林中将不健康的植物从健康的群落中分辨出来,而人类单凭肉眼无法看出其中差异。  而现在这项技术将可望应用于医学用扫描仪中。研究人员称,若将 Proba-V使用的特殊摄影机和医学用扫描设备配合使用,Proba-V中的传感器工作的特殊波段,能帮助医生看见更深层的人体组织,甚至可及早发现皮肤病变征兆。  或许在几年之内,这项技术就能应用于皮肤疾病扫描,甚至能用来制作个人的人体组织图。
  • PerkinElmer小动物活体荧光断层成像技术与应用研讨会在京举行
    仪器信息网讯 2011年10月24日,由PerkinElmer主办的“FMT(Fluorescence Molecular Tomography)小动物活体荧光断层成像技术与应用研讨会”在北大博雅国际酒店举行。来自高等院校、医院、科研院所等近50名代表参加了本次研讨会。研讨会现场  PerkinElmer大中华区生命科学业务总监郭求真先生参加了会议开幕式并致辞:“PerkinElmer公司一直致力于医学诊断解决方案的发展,目前已是小动物活体成像领域全球领先的供应商。公司于2010年已成功收购荧光活体三维成像系统全球领先的供应商VisEn,今年9月对外宣布了已经与成像与检测解决方案的领先公司Caliper Life Sciences签订了最终收购协议。通过与他们在研发、应用技术和知识产权等方面进行整合,有助于提高PerkinElmer在分子成像与检测领域的全球领导者地位,更好的为各类高增长终端市场提供强劲的客户解决方案。”PerkinElmer大中华区生命科学业务总监郭求真先生致辞  PerkinElmer影像产品首席技术官Wael Yared博士首先作了专题讲座,详细介绍了PerkinElmer推出的FMT小动物活体荧光断层成像解决方案的技术特点以及应用领域。Wael Yared博士介绍,“当前,大部分成像系统的定量方法都是基于对小动物体表发光强度的测定,以体表发光强度来量化研究对象,做不到绝对定量。而FMT应用其专利的荧光分子断层技术对体内信号进行探测及定量分析,最终的定量结果以探针浓度表示,并可精确量化至皮摩尔级别,是真正意义上的绝对精确定量。而且,FMT的定量运算充分考虑了光信号在体内传播过程中的复杂性(如组织异质性、不同组织对光信号的吸收及发散程度、轮廓边缘性等),保证了定量结果的真实性和可信度。”  关于FMT的3D断层扫描及重建技术,Wael Yared博士介绍说:“FMT荧光3D断层技术利用激光底透扫描以及超声探头深度定位的方式,获取10万级数量的不同断层深度荧光信息,并结合独特的算法及强大的3D重建和分析软件实现了真实的三维断层信号扫描及重建”。随后,他还逐一介绍了FMT系统的体内深层信号观测、多通道同时成像、多模式成像等特点,并用具体案例介绍了FMT系统的操纵流程以及应用领域。PerkinElmer影像产品首席技术官Wael Yared博士报告题目:Fluorescence Molecular Tomography Technology Foundations and Current Work  PerkinElmer亚太地区活体成像产品专家Jia Fu博士主要介绍了PerkinElmer公司4种不同机制的活体荧光成像试剂:酶激活类荧光试剂、靶向类荧光试剂、血管及生理类荧光试剂、荧光染料及纳米颗粒类标记试剂。并向大家重点介绍了PerkinElmer荧光成像试剂最新产品——HypoxiSense,指出当前只有PerkinElmer供应此种靶向类荧光试剂。Jia Fu博士说:“PerkinElmer提供了非常广泛的荧光成像试剂产品,使用的是NIR fluorescence(近红外荧光材料),其低毒性和高效率的特点非常适合应用在活体成像实验中,而且操作简便,没有很高的技术要求。”报告最后,Jia Fu博士指出,PerkinElmer公司整套的荧光试剂研发的目的都是为了从转录后水平监测疾病的发展过程,因此随着技术的完善,相信将可见活体成像技术应用于临床将成为可能。PerkinElmer亚太地区活体成像产品专家Jia Fu博士报告题目:Fluorescence Imaging Agents and Platforms互动环节现场观众积极提问  交流会期间,PerkinElmer影像产品首席技术官Wael Yared博士、亚太地区影像产品销售主管Mark Dupal先生接受了仪器信息网独家专访,亚太地区活体成像产品专家Jia Fu博士陪同接受访问:  仪器信息网:FMT成像系统主要面向哪些客户群体?  Wael Yared博士:FMT成像系统可供两大类客户使用,第一类是制药公司,他们在药物研发过程中需要进行动物实验去证明药物功效、药物代谢过程等 第二类是开展动物实验的各科研机构,包括高等院校、科研院所等。FMT成像系统可以帮助这些客户开展相关实验。  仪器信息网:与生物发光原理相比,荧光断层成像技术的优势是什么?  Wael Yared博士:生物发光技术已广泛应用于生命科学、医学研究及药物开发等方面,但该技术主要存在着需要对研究对象进行基因改造以及二维成像不能绝对定量的不足。荧光3D断层技术是利用激光底透扫描以及超声探头深度定位的方式,实现了真实的三维断层信号扫描及重建,真正实现了绝对定量。而且无需进行基因改造工作,操作起来也十分简便。  仪器信息网:和FMT系统配套使用的荧光活体成像试剂能否用在其它系统上?  Jia Fu博士:可以在其它成像系统上使用,前提是要有合适波长的滤光片来获取PerkinElmer荧光活体成像试剂的信号,同时,FMT成像系统也能使用其它品牌近红外波段的成像试剂。但是,当前其它成像系统几乎为2D成像系统,即使使用PerkinElmer荧光活体成像试剂得到的也只是二维图像,对于使用同一成像试剂,FMT系统获取信息相对更多。  仪器信息网:贵公司如何看待活体成像产品在中国的市场前景?  Mark Dupal先生:中国是一个非常有潜力、有活力的市场,有很多制药公司、CRO公司,高等院校和科研机构,有着强劲的市场需求。美国、欧洲的市场已经比较稳定,增长速度不会有太大变化,但是未来的中国一定是个巨大的市场。FMT成像系统在欧美市场已经投放了10年,今年才开始在中国投放。对于我们来说,中国是个新的市场,我们会继续加大对中国市场的财力和人员的投入,做好客户支持和产品支持工作。  仪器信息网:贵公司如何看待PerkinElmer在小动物活体成像领域市场地位?  Mark Dupal先生:可以肯定的说,在收购Caliper之后,PerkinElmer在小动物活体成像领域已经成为全球最大的供应商。采访现场
  • 我国自主研制空间站双光子显微镜首获航天员皮肤三维图像
    神舟十五号航天员乘组近日使用由我国自主研制的空间站双光子显微镜开展在轨验证实验任务并取得成功。记者27日从空间站双光子显微镜项目团队获悉,这是目前已知的世界首次在航天飞行过程中使用双光子显微镜获取航天员皮肤表皮及真皮浅层的三维图像,为未来开展航天员在轨健康监测研究提供了全新工具。  双光子显微成像技术是基于双光子吸收及荧光激发的一种非线性光学成像技术,具有高分辨率、强三维层析能力、大成像深度等特点。由于传统的双光子显微镜整机系统庞大,不能满足在轨实验仪器设备对可靠性、体积、重量、抗冲击和振动性能等的苛刻要求,此前国际上还未能实现双光子显微成像技术在空间站在轨运行与应用。  2017年,北京大学国家生物医学成像科学中心主任程和平院士带领团队成功研制探头仅重2.2克的微型化双光子显微镜,为空间站双光子显微镜的开发奠定基础。2019年,在中国载人航天工程办公室大力支持下,由北大程和平、王爱民团队,中国航天员科研训练中心李英贤团队,北京航空航天大学冯丽爽团队联合相关企业及院所组建空间站双光子显微镜项目团队,由程和平担任总负责人。项目组攻克多项显微镜小型化技术难题,于去年9月研制成功空间站双光子显微镜。  项目团队成员、北京大学未来技术学院助理研究员王俊杰博士介绍,去年11月12日,空间站双光子显微镜搭乘天舟五号货运飞船成功运抵中国空间站,成为世界首台进入太空的双光子显微镜。近日,神舟十五号航天员乘组完成了双光子显微镜的安装、调试和首次成像测试,成功获取了在轨状态下航天员脸部和前臂皮肤的在体双光子显微图像。  据悉,空间站双光子显微镜能以亚微米级分辨率清晰呈现出航天员皮肤结构及细胞的三维分布,具备对皮肤表层进行结构、组分等无创显微成像的能力。成像结果显示,皮肤的角质层、颗粒层、棘层、基底细胞层、真皮浅层等三维结构清晰可辨。  “空间站双光子显微镜是体现我国高端精密光学仪器制造水平的重要成果。”程和平介绍,此次在轨验证实验实现了多项第一,例如世界上首次实现双光子显微镜在轨正常运行;国内首次实现飞秒激光器在轨正常运行;国际上首次在轨观测航天员细胞结构和代谢成分信息。“这些不仅为从细胞分子水平开展航天员在轨健康监测研究提供了全新工具和方法,也为未来利用中国空间站平台开展脑科学研究提供了重要的技术手段。”
  • 科学家研发可检测皮肤下组织的新型扫描仪
    p  据外媒报道,当医生需要评估炎症性皮肤病--牛皮癣的时候需要通过观察病人皮肤表面的红色鳞屑才行。不过这种诊断方式存在一定的限制性那就是诊断结果需要依据医生的主观意识。于是,来自德国亥姆霍兹慕尼黑中心和慕尼黑工业大学的科研人员想到了研发一种能够看到皮肤下面情况的手持扫描仪。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/57883ef9-b1d8-4e8a-981b-886903364868.jpg" title="9316350_9b524695b41cfb7_thumb.jpg" width="600" height="338" border="0" hspace="0" vspace="0" style="width: 600px height: 338px "//pp  据悉,这种扫描仪不会对人体产生任何辐射作用,它用到的是一种叫做RSOM的技术,这种技术只会对检测皮肤进行微弱的激光脉冲以此来达到加热组织的目的。加热之后的皮肤组织能暂时扩张进然后超声波。扫描仪的传感器能够检测到这些超声波并随后对其展开分析进而创建出一个高分辨率的图像。/pp  在实验中,科研人员利用RSOM检测出了志愿者的皮肤厚度、毛细血管密度、血管数量以及皮肤的血液总量。德国亥姆霍兹慕尼黑中心生物与医学影像学研究所主管Vasilis Ntziachristos表示,这种技术不仅使用简单、不会有任何辐射作用,而且还能在第一时间发现这种疾病。/pp  未来,这项技术将可能被用到皮肤癌、糖尿病等疾病的检测中。相关研究报告已发表在《 Nature Biomedical Engineering 》。/p
  • 精准医疗 | 准确测量皮肤表面积,3D扫描仪助力整形外科手术高效开展
    近年来,3D数字化技术在医疗行业的应用十分广泛,尤其是在口腔医学、骨科手术、矫形康复、生物医学工程等细分领域中,已成为数字化精准医疗基础手段之一。随着3D数字化技术在医疗领域的不断普及,在整形外科领域也逐渐被应用于临床治疗中,为患者带来福音。本期,小编将分享一则使用3D扫描技术帮助临床医生准确测量软组织扩张患者皮肤缺损表面积的应用案例。案例背景软组织扩张术作为一种革命性的整形外科治疗手段,已广泛应用于全身多个部位各种病损的治疗,在瘢痕修复、耳、鼻等多器官再造及体表肿瘤、先天性巨大痣等多个领域发挥着重要的作用。图片源自于网络小编解读:软组织扩张术是指将硅胶制成的软组织扩张器,经手术植入皮下或肌层下,通过定期注入生理盐水,使表面皮肤及软组织逐渐被延伸扩大,从而提供“额外”的皮肤和软组织,用以修复邻近组织的缺损。传统测量手段目前在临床上测量扩张皮肤面积的主要手段为薄膜涂色法、几何测量法、湿布取样法等。但这些方式存在一些弊端,如:1、测量过程较为复杂繁琐2、无法精确地实时评估扩张皮肤的表面积有多大3、无法精确地实时评估皮肤缺乏需要多少皮肤基于此,广州中山大学附属第一医院整形外科 刘祥厦课题组提出了一种创新性的方法,就是利用三维扫描技术在术前对皮肤缺损面积及扩张后获得的皮瓣表面积进行精确的评估。3D数字化解决方案(部分患者案例展示)3D扫描临床医生为患有先天性巨大痣及小耳畸形症病人实施皮肤软组织扩张术后,深圳木比白科技的技术人员利用先临三维EinScan Pro系列多功能三维扫描仪获取了患者软组织扩张后的皮肤表面积。扫描过程展示部分扫描数据展示测量分析获取患者耳、痣及扩张器的三维模型后,课题组李泽泉医生利用软件对患者正常耳表面积、先天性巨痣&小耳畸形、每次扩张后的组织扩张器及其底面积进行三维测量及对比分析。数据重建最后,根据这些三维扫描的测量结果和其他相关因素,如皮肤的质地和扩张的总体积,综合判断是否进行第二阶段的重建。目前,这个新型技术手段在深圳木比白科技有限公司的协助下已应用于临床治疗中,帮助医生准确地做出了11例软组织扩张器重建患者的术前决策,并成功进行软组织扩张的重建。经临床研究证明,3D扫描技术与其他测量方式相比具有简单快捷,测量精度高,抗干扰能力强,立体构建图像逼真等优点,在软组织扩张术治疗中为确定扩张器的尺寸和第二阶段手术时间提供了有效的基础数据保障,为整形外科医生的决策提供帮助,让术前设计更客观、更科学。END非常感谢广州中山大学附属第一医院整形外科和深圳木比白科技有限公司为此案例提供素材。
  • 纳克微束中标高通量电子显微断层成像系统项目
    近期,多模态跨尺度生物医学成像设施--高通量电子显微断层成像系统项目顺利完成招标工作,纳克微束(北京)有限公司成为高通量电子显微断层成像系统UT3D的提供商。多模态跨尺度生物医学成像设施是《国家重大科技基础设施建设“十三五”规划》确定的10个优先建设项目之一,由北京大学和中科院生物物理所承接建设任务,未来将成为国家级的生物医学成像科学中心。此次合作的达成,是行业客户对纳克微束卓越技术水平的认可,也意味着微束将承担项目中心建设的重要使命。   多模态跨尺度生物医学成像设施项目,旨在快速提升我国生命科学基础研究和临床医学等领域的研究水平,为实现我国生物医学研究整体水平,特别是原始创新能力的跨越式发展以及为高端生物医学影像装备的“中国创造”提供战略支撑和保障。在连接生物医学介观到微观尺度的这一关键节点,相关的多模态跨尺度串联技术和产品级的解决方案长期处于研发摸索阶段。因此,生物物理所希望通过合作,找到志同道合的订制成像方案服务方。   由于国内扫描电子显微镜行业起步较晚,国外企业几乎主导国内市场,为响应高端生物医学影像装备的“中国创造”的号召,纳克微束做出部署、展开攻关,以本次订制方案服务为契机,迎难而上,踔厉奋发,在国际上先人一步提出解决方案。高效解决生物样品从介观到微观的成像难点和痛点,改善微观尺度高效率切割和最终电子断层成像效率低的问题,对于扫描电子显微镜技术的发展具有里程碑的意义!   纳克微束秉承钢研的技术创新基因,积极探索新方向,守正创新,在钢研集团70周年之际,敢于“亮剑”,力战国内外厂商,成为生物医学成像科学中心的国产厂家,以达成高通量电子显微断层成像系统项目合作这一成绩为集团庆祝,吹响了解决生物医学介观到微观尺度问题的时代号角,在扫描电子显微镜行业崭露头角。   作为一家新创立公司,纳克微束成为高通量电子显微断层成像系统项目服务商,为高端生物医学影像装备“中国创造”吹响了进征的号角,秉持守正创新的精神,攻坚克难,为扫描电子显微镜领域的发展注入新动力,助力微观世界的探索与发现。此次合作只是一个起点,未来将持续投入综合显微成像的研发,开拓创新,推动技术升级,助力国产电镜行业实现崭新发展,致力成为中国电镜技术引领者。
  • 科学家发明新型太赫兹波射线扫描器可检测皮肤癌
    2005年11月7日据英国媒体报道,苏格兰科学家日前成功研制出一种新型扫描器,这种新型的扫描器使用一种少有人知的射线来检测不容易被发现的癌症。  目前,英国阿伯丁大学和格拉斯哥大学的研究人员正在制造这种新型扫描器的原型机,研究人员计划中的原型机将会与手持式的超声波扫描器相类似,研究人员在这种新型扫描器中将使用一种少为人知的不可见光,也就被称为太赫兹波的射线用来检测人体皮肤组织中的细微的不同之处。  太赫兹波射线能够发现人体组织水份中的细小差别,一般来说癌细胞会比周围的细胞含水量要多,所以更容易被发现,不过这项技术仍处于基础研究阶段,但是目前已经发现其诸多的应用前景。英国阿伯丁大学的高夫-杜恩教授表示,太赫兹波射线能够显示出高分辨率皮肤癌症图像,能够确切地反映癌细胞活动和扩散的情况,最主要的是这些图像比其它设备显示的图像更细致。不过,与X光射线和磁共振检测不同的是,太赫兹射线只能穿透几毫米的人体组织,并且不会造成一些健康的问题。  杜恩教授表示,医生利用这个新型扫描器对病人的皮肤进行扫描,然后就能得到皮肤组织的详尽图像,可以帮助医生发现早期的皮肤癌,外科医生根据图像资料能够除去病人体内所有癌变组织。专家预测,太赫兹波射线技术在检测癌症方面有着至关重要的作用,这项新技术对其它传统的扫描器检测不出的癌症的正确检测率能达到85%。杜恩教授称,第一个手持式扫描器原型机将会在三年内能够应用到实际。  研究人员最终的目的是想把这种扫描器设计成微型的,以便能够用于锁孔手术,这样实施手术的医生可以在手术时扫描出癌变组织,帮助外科医生把所有的癌变组织切除。研究人员表示,在手术中必须有个能生成癌变组织详细的图像的设备,因为在手术中外科医生只能依靠用手触摸来确定癌变组织的变化,但是这样的方法很容易造成一些癌变组织没被发现,最终使肿瘤反复甚至扩散,这个新设备将会产生令人惊奇的图像。
  • 微型化双光子显微镜研制十年路
    今年2月上旬,神舟十五号航天员乘组使用空间站双光子显微镜,开展在轨验证实验任务并取得成功。这是目前已知的世界首次在航天飞行过程中,使用双光子显微镜获取航天员皮肤表皮及真皮浅层的三维图像。 在南京脑观象台投入使用的微型化双光子显微镜成像系统。  “第三次双光子显微镜测试顺利结束!”  “无比完美!”  “这一次的曲线如此丝滑!”  ……  4月1日上午,中国科学院院士、北京大学未来技术学院教授程和平的微信对话框,被同事们发来的这些评论不断刷新。而在中国航天员科研训练中心内,掌声此起彼伏。让大家欢欣鼓舞的,是中国空间站再次传来的好消息。  当日,神舟十五号航天员乘组,使用空间站双光子显微镜进行成像测试。他们用探头轻轻掠过脸部和前臂,一旁的电子屏幕上立即显示出皮肤结构及细胞的三维分布影像。  这不是显微镜第一次在轨成像测试。今年2月上旬,神舟十五号航天员乘组使用空间站双光子显微镜,开展在轨验证实验任务并取得成功。这是目前已知的世界首次在航天飞行过程中,使用双光子显微镜获取航天员皮肤表皮及真皮浅层的三维图像。  “如果能从这些图像中发现空间环境中人体变化规律,就更好了!”程和平捧着手机与记者分享这些科学图像时说。  只有了解程和平团队十年来经历的艰难曲折,才能体会这些图像的来之不易。2013年,程和平带领团队开启微型化双光子显微镜研究时,“全世界都不看好”。  历经10年,该团队完成了从科研仪器技术创新,到技术产品化,再到技术服务平台化的跃迁。他们将中国带到全球大脑成像研究的前沿,让微型化双光子显微镜在中国的高校院所、企业得到推广应用,为脑科学研究搭建起重要实验平台、提供了海量数据支持。  程和平希望,用微型化双光子显微镜拓展人类对脑宇宙的认知疆域,为探索脑机接口原理、深化对大脑疾病机制的了解、推进药物研发开辟一片新天地。神舟十五号航天员乘组在轨使用空间站双光子显微镜(视频截图)  一束光的启迪  意识的生物学基础是什么,记忆是如何存储和恢复的……在世界各国的脑科学计划中,这些问题吸引着全球科学家们不断上下求索。  在2021年国际权威学术期刊《科学》发布的125个最前沿的科学问题中,有22个问题与脑科学相关。  双光子显微镜的出现,仿佛是照在生命科学研究领域的一束光。  1992年,程和平用世界上第二台双光子显微镜,首次实现了心肌线粒体成像。  “双光子显微镜,是用两个光子同时激发同一个荧光分子的光学成像技术。它具有天然的光学断层扫描效果,能看到的组织深度更深,成像的清晰度更高,像一个高性能的X光机。”程和平说,与单光子显微镜相比,双光子显微镜看得准、看得深、光损伤小。但传统的台式双光子显微镜非常笨重,足有房间那么大,所以只能观察头部固定的动物或者动物的脑切片。  研究一款微型化双光子显微镜,观察自由行走的小动物脑袋中的一颗颗神经元的动态变化,成为程和平藏在心底的一个梦想。  一个梦想的点燃,有时只需一个使命的召唤。  2013年,国家自然科学基金委员会启动了国家重大科研仪器研制项目。程和平带队申请了“超高时空分辨微型化双光子在体显微成像系统”项目。  那一年,美国启动“创新性神经技术推动的脑计划”,欧盟启动了旨在建立大型脑科学研究数据库和脑功能计算机模拟平台的“人脑计划”。  而此前,我国在《国家中长期科学和技术发展规划纲要(2006—2020年)》中,已把“脑科学与认知”列入基础研究8个科学前沿问题之一。  “中国科学家只有用自己研发的观测仪器,做出原创性的脑科学成果,国际科学界才会认可。我们希望研制一款成像仪,率先让中国科学家用起来。用国外的仪器做研究,都是在别人建设的四梁八柱上做文章。”程和平用使命必达的决心来筹备项目的启动。  一场跨越山海的探索  想实现双光子显微镜在自由活动的动物体上的高清成像,必须为它“瘦身”。  然而,极大的技术难度,让团队一度面临质疑。程和平向科技日报记者坦言,7200万元的投入“相当于一吨百元大钞”,究竟能不能收获一个看得见的未来,大家当时心里很忐忑。“那时世界多国尝试微型化双光子显微镜的研制,但都没有实质性突破,尝试十几次都无疾而终。”他说。  程和平所言非虚。2008年,瑞士有课题组公布了他们的微型双光子系统,仅重0.9克,并实现了大鼠在体钙成像信号。但其空间分辨率极低,也未实现真正的自由运动下的成像。  2009年,德国有课题组展示了它们的微型双光子系统,其理论分辨率接近大型的双光子显微镜。但其探头较重,扫描速度很慢。  程和平身后,有一支不同寻常的团队,团队中有人研究超快激光器,有人专攻高速电路,有人擅长图像处理,有人能做大数据分析……然而,研究起步阶段,团队中无人具备研制系统性科研设备的经验,技术路线也不确定。  “怎么办?只有一点点地认真做。”程和平给团队立下军令状。  在项目开始的前两年,大家争分夺秒地汲取多学科的营养。在北京大学分子医学研究所300平方米的大仪器联合实验室里,来自机械、光学、生物、电路等研究领域的师生汇聚在一起,交流切磋。每周六上午的集体学习,大家分享一周行业动态,介绍各自研究进展。同时,大量的国内外顶尖专家被邀请来作报告。  引进来的同时,团队也频频走出去。仅2014年,他们就涉足美国、俄罗斯、澳大利亚、西班牙。每去一个地方,大家都会在当天晚上写好总结,发给团队共同学习。空间站双光子显微镜对航天员皮肤表层成像。  一场持续十年的攻关  2017年,团队终于迎来了振奋人心的进展。  在如今北京大学膜生物学国家重点实验室设备研发平台内,一个只有拇指大小、重约2.2克的显微镜探头,被珍藏在实验室深处——这是团队于2017年成功研制的第一台微型化双光子显微镜的核心部件。  这台显微镜可以实现高时空分辨微型化成像,能实时记录数十个神经元、上千个神经突触动态信号。这些突破性的进展,使其入选2017年中国科学十大进展。  4年后,该团队推出微型化双光子显微镜的2.0版本,其成像视野扩大到初代显微镜的7.8倍,同时具备三维成像能力,获取了小鼠在自由运动行为中大脑三维区域内上千个神经元清晰稳定的动态功能图像。  今年2月,团队又发布了他们研制的微型化三光子显微镜。该显微镜能直接透过大脑皮层和胼胝体,首次实现对自由行为中小鼠的大脑全皮层和海马神经元功能成像,神经元钙信号最大成像深度可达1.2毫米,血管成像深度可达1.4毫米。  致广大而尽精微。10年,微型化双光子显微镜完成了从高清成像,向更广、更深成像的科研布局。然而,这在研制一款“大国重器”的探索之旅中,也许仅仅是开始。  2016年,当第一代微型化双光子显微镜的研究即将“破土”时,一个声音再次在程和平脑海里回响,“如果投入‘一吨百元大钞’,只是交付3台显微镜,性价比太低了。应该先让中国科研院所、企业的实验室用起来,做出领先国际的研究,再向国际市场推广。”  让程和平下定决心办公司的,还有3年来培养起来的一支团队。“国家投入这么大,让我们长了一身本事,项目结题后如果团队散了就太可惜了。”程和平说。  办公司让研究成果产品化,成为程和平团队的共识。2016年,程和平团队创立了北京超维景生物科技有限公司(以下简称超维景)。  一个新时代开启了。  一场自立自强的产业突围  当科学技术的光芒照进产业,不仅砥砺技术创新的成色,也可以点亮一片“暗夜”。要将高端精密科研仪器产品化,元器件的可靠性、稳定性必须过硬。  微型物镜,是微型化双光子显微镜的关键核心零部件。团队核心成员、北京大学未来技术学院特聘副研究员吴润龙记得,最初做原理样机时,团队从国外一家公司进口微型物镜。  但当团队进入显微镜产品化阶段后,对方的发展战略也发生变化。“对方要求我们购买他们合作伙伴的单光子显微镜系统,物镜不再单独售卖,而这个系统的价格要100多万元。代价太大,我们不能被‘卡脖子’。”吴润龙说,自此,团队开始自行设计高数值孔径的微型物镜,并联合国内企业加工,在超维景进行装配和测试。  自胜者强。2018年,赵春竹到北京大学未来技术学院做博士后研究,为助力物镜的自主研发按下了快进键。  “经过三代技术攻关,我们已经掌握了高端物镜的设计技术。但在自主设计、加工的基础上,还要形成高精度自主装配的流程和方法。微型物镜由多个镜片叠加而成,每片直径约3毫米,最初我们将所有的镜片一起装配完后,统一调试,但发现精度相差太大。后来,我们优化了装调工艺,每安装一片镜片,都用仪器检测光轴偏移量、焦距等参数。由于物镜直径太小,一开始,调整几微米的误差,都要耗时一两天。”赵春竹回忆,最艰难的时候,大家几乎绝望。但抱着不破楼兰终不还的信念,大家几微米几微米地死磕,想办法迭代技术,最终攻克了高端微型物镜装配技术。  光纤是显微镜微型化的另一个瓶颈。团队成员、北大电子学院副教授王爱民设计了一款蜂窝状的空芯光子带隙光纤,让激光通过光纤传输到微型化探头的过程中,脉冲不发生畸变、能量几乎不损耗,以有效激发小动物体内的荧光分子。  但让王爱民措手不及的是,设计方案有了,国内却没有厂家能生产这种光纤。“我们最初找了一家外国公司订制。但一年后,这家公司提出翻番的价格,每米光纤的价格接近万元,仅光纤的成本就增加了几百万元。”他回忆说,团队被“逼上梁山”,转而联袂上海光机所的一位青年学者一起摸索加工工艺,进行国产化。  在北京大学未来技术学院教授陈良怡看来,科研仪器国产化过程中的突围,也将带动应用基础研究与产业发展“双向奔赴”。  “我们的论文发表后,很多技术被公开了,但很多人做重复实验时无法再现,是因为加工中有很多细节问题难以解决,这些细节在学术论文中也难以呈现。”陈良怡说,如果想将这款显微镜尽快用起来,就要将科研成果产品化,带动产业的发展。而产品化的过程,也促使他们思考,如何用成像技术推动神经科学、脑科学乃至整个生命科学基础研究的发展。  目前,超维景研制的微型化双光子显微镜已服务了150余家国内实验室,年平均销售额达5000万元。今年,公司还将拓展国际市场。  一项世界首创的应用  10年前项目启动时,程和平抱着“从幼儿园开始读一个博士学位”的心态,研制微型化双光子显微镜。  时光浩荡向前,多年的厉兵秣马是否能支撑国家重大战略需求?团队将答卷写进宇宙苍穹。  2019年,在中国载人航天工程办公室大力支持下,程和平团队、中国航天员科研训练中心李英贤团队、北京航空航天大学冯丽爽团队联合相关企业及院所,组建了空间站双光子显微镜项目团队,由程和平担任总负责人。  “中国要发展载人航天、要研究生命科学,太空是一个难得的实验室。在失重环境下,人体细胞是如何完成新陈代谢的,大脑的神经元又将发生什么变化,都是很好的研究课题。双光子显微镜成像深度深,可以帮助我们逐层扫描、分析航天员的细胞结构和代谢成分信息。”程和平说。  2022年9月,空间站双光子显微镜研制成功。当年11月12日,空间站双光子显微镜搭乘天舟五号货运飞船成功运抵中国空间站,成为世界首台进入太空的双光子显微镜。  今年2月上旬的一天,空间站双光子显微镜终于开机。坐在中国航天员科研训练中心看到航天员操作画面传回,程和平松了一口气:“终于成功了。”  消息传来,整个团队沸腾了。“这辈子能做这么一件事情,值了!”王爱民至今回忆起来仍激动不已。  鲜为人知的是,为了达到航天应用的标准,显微镜经历了一次次蜕变。  精密的显微镜,要能承受飞船发射时的剧烈振动,这要求它足够抗振。“最初,激光器的核心部件被振得粉碎。”北京大学未来技术学院助理研究员王俊杰记得,为了让显微镜“强健筋骨”,他们将激光器的核心部件设计为固态结构,以增强激光器的机械强度,同时在激光器外部增加了减震装置,相当于给其上了一层保险。  超维景的团队也参与进来。超维景超快激光事业部经理陈燕川介绍,他们将激光器核心部件置于-40℃至80℃的温度下循环试验,使部件在短期内反复承受极端高低温变化应力以及极端温度交替突变的影响,以排查隐患。为了确保万无一失,团队还制作多组关键部件样品,进行加量级、破坏性的振动冲击试验,保证显微镜能满足航天发射环境各种极端条件的挑战。  最终,团队实现了多项突破:首次在轨验证实验实现了世界上首次双光子显微镜在轨正常运行,国内首次实现飞秒激光器在轨正常运行,国际上首次在轨、在体观测航天员细胞结构和代谢成分信息。  一个梦想的启航  从突破理论研究瓶颈,到试水产业蓝海,再到支撑国家重大战略需求,程和平团队将科技创新的底色写在从技术创新到产业应用的跃迁中。如今,一个更宏大的构想正在渐次舒展。  在南京江北新区,成立近4年的北大分子医学南京转化研究院(以下简称转化院),已搭建起高端脑成像的公共技术服务平台“南京脑观象台”。后者可以提供微型化双光子显微镜、超灵敏结构光超分辨显微镜及高速三维扫描荧光成像系统等设备,帮助科研团队获得从大脑突触、神经元集群、神经环路,再到全脑水平的全景式脑功能成像。  科研团队的身后,还有一群人与他们并肩作战。  几乎每天,实验员陈雪莉都要为小鼠注入观测所需的荧光蛋白,对小鼠进行行为训练。  当她为小鼠戴上显微镜探头后,一旁的屏幕上会立即呈现出小鼠大脑的钙活动影像。  “脑观象台有一支技术团队。对于遴选通过的研究项目,技术团队会与科研团队一起制订实验计划,为学者们制备、训练小鼠,采集小鼠的脑活动成像数据,再将小鼠的行为学数据和脑活动数据匹配,供科研人员分析小鼠在表现出某种行为时,大脑发生了什么变化。”转化院副院长赵婷解释,脑观象台希望将学者们从繁琐高难的实验技术细节中解放出来,加速从理论设想到实验发现的进程。  凭借南京脑观象台成像技术的支持,科学家们已经开始收获惊喜、成果迭出:小鼠有喜新厌旧的行为,而孤独症小鼠却存在这一行为缺陷;清醒状态下小鼠癫痫发作时,神经元异常放电……  赵婷介绍,如今,脑观象台已经服务了100多家单位的180余个课题组,开机时间累计超过2万小时。脑观象台与江北新区联合发起的两期“探索计划”,也已累计支持48项课题研究。  十年春华秋实。一颗在未名湖畔种下的种子,如今正在千里之外的扬子江畔落地生根、开枝散叶,荫泽全国的脑科学、神经科学等领域的研究。  40多年前,少年程和平曾在他的笔记本上写下带有科幻色彩的理想——“做一款思维记录器”。  跨越万水千山,如今,理想照进现实,中国脑科学研究风华正茂。
  • 中国首款“在体双光子显微成像系统”二类创新医疗器械获批上市!
    12月22日,由超维景公司自主研发的在体双光子显微成像系统获得江苏省二类创新医疗器械上市审批,其注册证编号为苏械注准20232061797,是中国首个基于双光子显微成像原理的医疗器械注册证。该产品用于医疗机构对体表上皮细胞及组织在体所成图像进行采集、储存、检索和显示,辅助医生进行临床诊断,具有实时、在体、原位、无创、动态的优势。该成像系统通过双光子激发角蛋白、NAD(P)H/FAD、弹性纤维、胶原纤维、黑色素等物质的自发荧光或谐波信号,不仅实现对表皮和真皮组织的高分辨率三维层切扫描成像,还可辅助识别组织组分、辅助判断代谢功能等,为皮肤科临床诊断和科学研究提供了一种多模态成像的新范式。皮肤结构示意图超维景由北京大学程和平院士及北大团队始创于2016年,是一家专注于高端生命科学仪器和医疗器械研发、生产和销售的国家高新技术企业。超维景的多学科交叉团队攻克了多项关键核心技术。2017年成功研制仅2.2g的超高时空分辨微型化双光子显微镜,在国际上首次获取了小鼠在自由行为过程中大脑皮层神经元和神经突触活动的动态图像,被 《Nature Methods》评为“2018年度方法”(无限制行为动物成像)。2023年微型化三光子显微镜再发《Nature Methods》,首次实现小鼠“深脑成像”。空间站皮肤双光子显微镜成功在空间站运行,是全球首次实现双光子显微镜在轨正常运行、首次在轨观测到航天员细胞结构和代谢成分信息。超维景成功开发一系列具有自主知识产权的微型化多光子显微成像系统,目前超维景已实现核心部件全部国产自主可控,科学家与企业家组合的创业团队未来将在多光子科研和医疗领域开拓创新并将积极开拓国内外市场。在生命科学和医学研究中,成像技术至关重要,是推动生命科学进步的核心动力,生物医学发展的历史大半部是成像技术的发展史。进入新千年,脑科学研究成为热点,根据《“十四五”规划纲要和2035年远景目标纲要》,我国脑科学与类脑研究将以脑认知原理解析、脑介观神经联接图谱绘制、脑重大疾病机理与干预研究等方向作为重点。中国要做原创科学,必须要有自己的仪器。超维景曾表示作为科技成果产业化的典型公司,将以自主创新的核心技术,将继续为我国的脑科学研究做出重要贡献,利用神经科学的基础研究成果来造福社会。
  • 宗伟健:新一代微型双光子荧光显微镜(多图)
    p  从石器时代原始部落的祭师对灵魂的崇拜,到中世纪后期哲人对大脑意识的产生溯源,到近代解刨学家发现井然有序的大脑功能分区,再到20世纪初Santiago Cajal得到了人类第一张清晰的大脑皮层神经元的照片,直至现在神经学家通过电生理,电子显微镜,光学显微镜等手段,在亚细胞,分子,基因水平对大脑的结构和功能进行研究,神经科学(neurosciences)这一门古老的学科,直至今日,仍然是全世界投入最大,最活跃的科学研究领域之一。/pp  限制科学家去理解和探索大脑的最主要因素是技术。每一次神经领域的重大突破,都是以技术的一次次革命与飞跃作为基础随之而来。19世纪末高尔基染色和尼斯染色技术的发明,使得单个神经元的结构得意完整清晰的呈现,并由现代神经学之父圣地亚哥· 拉蒙· 卡哈尔(Santiago Ramon y Cajal,1852-1934)总结并开创了神经元理论,至今仍是现代神经科学的基础。计算机体层扫描(CT)、磁共振成像(MRI)、经颅多普勒(TCD)、单光子发射计算机断层(SPECT)、正电子发射断层扫描(PET)等无创性影像学技术的发展,使得人类对大脑整体水平结构和功能的认识不断提高,并且对于大脑创伤和疾病的治疗提供了有利的参考工具。在实验神经科学领域,以模式动物作为研究对象,避免了把人作为研究对象在有创,改造等伦理方面的限制,使得更多的技术手段得以大显身手。其中包括电生理学方面,脑电图(EEG),多电极记录(MER),膜片钳技术(patch clamp)等技术的发明和有效使用,得以使科学家在亚微米空间尺度(单个神经突触连接),亚毫秒时间尺度(单次神经冲动电位)对神经元的功能进行研究。而最令人激动人心的是,近几年来蓬勃发展的光学显微成像技术,给实验神经科学带来了很多前所未有的思路和成果。2008年钱永健等人由于荧光蛋白(GFP,绿色荧光蛋白)的发现和使用,获得了诺贝尔化学奖,是对荧光成像技术的一次巨大肯定和推动。光学成像本身具有高分辨率、高通量(高速)、非侵入、非毒性等特点,再与荧光蛋白以及荧光染料等标记物在细胞中的定位与表达技术相结合,使得科学家可以特异性的分辨生物体乃至细胞内部不同结构与成分,并且能够在生命体和细胞仍具有活性的状态下(活体状态)对其功能进行动态观察。这就使得荧光成像技术成为了无可替代的,生物学家现今最为重要的技术手段之一。而随着近些年来各种新型的显微技术的出现,共聚焦显微镜(confocal microscopy),相干拉曼成像(CARS),超分辨率显微技术(super-resolution microscopy),光片显微技术(lightsheet microscopy)等使得荧光显微镜的分辨率,速度,成像深度等进一步提高。/pp  对于荧光成像技术在神经科学中应用,离不开双光子荧光显微镜(Two-photon Microscopy,简称TPM)1。目前,大多数细胞生物学,生理学研究主要还是在离体培养的细胞体系中研究。然而与细胞生物学研究有所不同的是,大脑的功能研究的整体性和原位性显得更加关键:仅研究分离的神经元无法解释神经系统的功能和规律。换句话说,必须要求神经元处在其正常生存的大脑环境中才能使其正常运转。然而,大脑是一个高度复杂的器官。即使是小鼠的大脑皮层也有将近1mm的厚度,海马,丘脑等深脑区核团更是深达3-5mm2,而且并不透明,充满了数以亿计的神经元胞体和突触,此外还有丰富的血管,粘膜(脑膜),最外层还有厚厚的颅骨和头皮包裹。使用包括共聚焦显微镜在内的传统的荧光显微镜,由于被观测的信号会受到样本组织的散射和吸收,根本无法穿透如此深的组织进行成像。而双光子显微镜的发明,则为此类研究带来了希望。双光子显微镜特有的非线性光学特性,再加上其工作波长处在红外区域等特点,令其在生物体组织内的穿透深度大大提高3,使得双光子显微镜成为神经科学家进行活体神经成像最理想的工具。神经动作电位(action potential)本身很难被光学信号捕获,但是动作电位产生的去极化会引起神经元Ca2+浓度的变化(钙内流现象)。科学家已经开发出多种Ca离子浓度的荧光探针,进而通过这种钙离子浓度的变化引起的荧光信号的变化来反映出神经活动。于是,双光子显微镜与在体的神经元Ca离子浓度指示剂标记技术相结合,碰撞出了耀眼的火花: 使得人们可以研究处于生理状态时的动物大脑内的神经元活动4。/pp  大脑的最重要功能是对生物体的行为活动进行调控,而反过来,最能反应大脑工作状态的同样是生物体的行为活动。所以说,为了了解大脑,研究者不仅要求在体状态下对神经元进行高分辨率观测,而且也希望生物体在被观测的阶段里,能够进行正常的行为活动。所以,在成像技术不断地提高分辨率和速度等性能的同时,科学家们也在积极开改进和革这些成像技术手段,使其进行成像时尽可能小的限制被观测对象的行为活动,以求得到最接近生理状态下的数据。但是这一目标始终存在诸多的技术瓶颈: 以啮齿类动物(大鼠或小鼠)神经元的双光子钙成像为例。早些年由于动物身体运动产生的晃动剧烈,而当时双光子显微镜成像速度又很低,所以科学家只能在麻醉状态下对头部固定的动物进行成像。后来随着成像速度的提高,并且对开颅手术技术的很大改进,使得科学家可以在清醒状态下对动物的神经活动进行观察(仍然需要头部固定)。近些年来,随着基因改造技术的突飞猛进,通过病毒转染和转基因技术,在神经元内源性表达“基因编码类钙指示剂(genetically encoded calcium indicator, 简称GECI)”成为神经元钙成像的大趋势4。这种由神经元自身产生钙指示剂的方法与之前的钙染料技术相比有着巨大的优势: 信噪比提升了一个数量级 对神经元特异性好,可以区分不同的神经元类型 并且可以在大脑神经元内持续表达数月(病毒转染)甚至整个生命历程(转基因动物)。于是,大概10年前开始,科学家就开始利用双光子成像结合GECI技术对神经元的活动和结构变化进行长期的观测和追踪,从而对记忆的形成,神经元病变等问题有了更深入的认识。其中,现在性能最好,使用最为广泛的GECI为绿色荧光钙调蛋白Gcamp家族4。目前已经改进到第六代,Gcamp6f,Gcamp6f已经成为神经成像里最受欢迎的指示剂之一。目前科学家最流行的对小动物行为过程中大脑活动进行成像的方法,是将虚拟现实与双光子成像相结合,在动物头部被固定的情况下,在其眼前制造影像,让动物认为自己处在”真实“的环境之中5。通过小鼠四肢在类似跑步机或者鼠标滚球上的运动来模拟其真实活动。以求达到研究神经元在动物行为中所起到的作用(如图1)。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/e167bfbc-be4e-4b26-aa38-6f15b1fdca08.jpg" title="1.png" width="600" height="429" border="0" hspace="0" vspace="0" style="width: 600px height: 429px "//pp style="text-align: center "图1 双光子成像结合虚拟现实场景,对头部固定,身体活动的动物进行研究。图片来自sup5/sup/pp  然而,这种虚拟现实加头部固定成像的方法,已经遭到许多科学家的质疑。人们认为,头部固定的动物在实验期间一直处在物理约束和情绪压力下,因此无法证明神经元对外界的响应在虚拟现实和自由探索下是等价的。更重要的是,许多社会行为,比如亲子护理,交配和战斗,都不能用头部固定的实验来研究。如何在动物自由活动的时候,直接对其神经元进行成像,是神经科学家还未能得到解决终极的诉求。/pp  一个理想的解决方案是开发微型荧光显微镜直接固定在自由活动的动物身上,让动物“带着显微镜跑”6。这种尝试大概从20年前开始。起初,科学家只是将一根或几根光纤插到小鼠头上,用以激光导入和荧光信号采集。然而,这种方式而只是记录某个区域内信号的总和,不具有空间分辨率,算不上真正意义上的成像。在最近的十几年里,由于光学,电子,材料技术的发展,人们开始尝试研制真正意义上的微型显微镜。其中,微型单光子宽场显微镜(miniature wide-field microscope),由于其原理与结构相对简单,是目前人们主要尝试研制的微型显微镜技术。例如由Ghosh及其同事开发的显微镜,通过将小型LED光源,微型CCD和自聚焦透镜整合到一个小于25px3的框架之中,研制出了一个重量为1.9g的微型宽场显微镜。该技术被用于研究大脑海马区place cell等与记忆和本能相关的实验当中7。然而,宽场成像方式由于不能很好的对离焦区域的背景信号进行过滤,并且对光的散射敏感,所以其无法达到细胞分辨率。更难以对更精细的诸如树突,轴突,树突棘等结构进行观察。所以一直难以达到神经科学家满意。/pp  于是,从大概15年前开始,世界上一些研究和开发双光子成像技术的研究组开始尝试将双光子显微镜这种在神经成像领域已经获得广泛应用的技术进行微型。然而,目前只有为数不多的几个课题组报道了他们在微型双光子显微镜研制方面的进展: 在2001年,Denk等的工作被认为是研制微型双光子显微镜的第一步8。然而,它仍然太过“巨大”(长7.5厘米,重25克),而且成像速度很慢(2 Hz 128x128的尺寸下速度为2 Hz, 512x512的尺寸下为0.5 Hz,如图2a)。之后,其他一些课题组相继报道了不同的微型双光子系统。 Helmchen课题组在2008年报道了他们的微型双光子系统,仅重0.9克9。它实现了512X512幅面下的8 fps的成像速度速度,并展示了利用该系统实现的大鼠在体钙成像信号。然而,从展示的效果来看,其空间分辨率极低,而且并没有实现真正的自由运动下的成像(如图2b)。Mark Schnitzler课题组在2009年也发表了他们的微型双光子系统10。他们的系统首次使用了微机电扫描镜(MEMS)来进行扫描,并将Z聚焦模块集成在了探头之中(如图2c)。但是扫描频率仍然很低(400x135约为4Hz) 空间分辨率也远远达不到要求(横向1.29 μm,轴向10.3 μm)。这些方面限制了其在神经元细胞核亚细胞水平成像中的应用。 Kerr课题组在2009年展示了它们的系统11,跟之前的微型双光子显微镜相比较,由于应用了微型透镜组构成的微型物镜(NA达到了0.9),这套系统的空间分辨率更高。然而,这套探头的重量也随之提高(5.5g)。此外,由于其仍然使用振动光纤的方式来进行扫描,所以其成像速度仍然比较慢。(对于64x64为10.9Hz,对于理论上的512x512为1.25Hz)(如图2d)。此外,还有一个之前所有的微型双光子系统都没有解决的问题。由于微型双光子显微镜一般需要利用光纤将飞秒激光导入到探头之中,而光纤由于存在诸如色散、截至模式、导通带宽等一系列限制,所以某一款光纤一般只允许一定带宽(一般为几十纳米)和特定中心波长的光传播。那就需要在制作微型显微镜的时候,结合使用的荧光指示剂所需要的激光波长对光纤进行选择。但是,目前商业化的,可以用来进行飞秒光传输的空心光子晶体光纤(hollow-core Photonic Crystal Fiber, HC-PCF)种类非常有限。例如,全球最大的光子晶体光纤生产商NKT公司仅提供中心波长为800nm,1030nm,1300nm和1550nm的HC-PCF。所有现有的微型双光子显微成像系统都是基于这几款光纤所限定的中心波长进行开发的。但是很遗憾的是,本文上述所提到的目前最广泛使用的GcamP指示剂需要920 nm的激光进行激发。所以先前的所有微型双光子都不能对Gcamp进行有效的成像。这限制了微型双光子显微镜的发展。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/4c1d7c1d-53eb-4a41-96d0-98ecb5ebda8d.jpg" title="2.png"//pp style="text-align: center "图2 微型双光子发展史上的几个典型工作。a、b、c、d分别选自参考文献sup8、9、10/sup和sup11/sup/pp  之所以这些早期的微型化双光子显微镜都无法得到真正的使用和推广,其原因在于,若要制造出具有实用价值的微型双光子显微镜,比研制单光子微型显微镜复杂和困难的多得多。微型双光子显微镜需要需要解决如下几个关键技术难题:/pp  1 如何将飞秒激光有效的导入微型显微镜 /pp  2 如何在微型显微镜内进行扫描/图像重建 /pp  3 如何在微型显微镜中进行高质量的激光汇聚,高效激发双光子信号。/pp  4 如何有效的对荧光信号进行收集 /pp  5 如何使整个系统在动物剧烈运动时仍保持稳定/pp  6 在满足前5项条件下,重量是否足够轻,以致尽量小地对动物的活动造成影响 /pp  本文作者所在的课题组,是由北京大学分子医学研究所、信息科学技术学院、动态成像中心、生命科学学院、工学院联合中国人民解放军军事医学科学院组成跨学科团队。我们在程和平院士的带领下,在国家自然科学基金委国家重大科研仪器研制专项《超高时空分辨微型化双光子在体显微成像系统》的支持下,历经三年多的协同奋战,成功研制了新一代高速高分辨微型双光子荧光显微镜,并将其取名为FHIRM-TPM。原始论文于5月29日在线发表于自然杂志子刊Nature Methods (IF 25.3)12。在这项成果中,我们解决了上文所提及的早先微型化双光子显微镜研制中存在的问题,获取了小鼠在自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/0418a0a6-f357-4e18-91b0-ef1c23d670bd.jpg" title="3.png" width="600" height="470" border="0" hspace="0" vspace="0" style="width: 600px height: 470px "//pp style="text-align: center "图3 FIRM-TPM示意图,来自sup12/sup/pp  新一代微型双光子荧光显微镜体积小,重仅2.2克,适于佩戴在小型动物头部,通过颅窗实时记录数十个神经元、上千个神经突触的动态信号。在大型动物上,还可望实现多探头佩戴、多颅窗不同脑区的长时程观测。相比单光子激发,双光子激发具有良好的光学断层、更深的生物组织穿透等优势,所以成像质量远优于目前领域内主导的、美国脑科学计划核心团队所研发的微型化宽场显微镜。其横向分辨率达到0.65μm,与商品化大型台式双光子荧光显微镜可相媲美 采用双轴对称高速微机电系统转镜扫描技术,成像帧频已达40Hz(256*256像素),同时具备多区域随机扫描和每秒1万线的线扫描能力。最为重要的是,FHIRM-TPM克服了先前限微型双光子显微镜应用的两个障碍。首先,我们定制设计的HC-PCF为 920纳米飞秒激光脉冲提供了无畸变传输,这种改进让有效的激发例如Thy1-GFP和GCaMP-6f等常用荧光指示剂成为可能。第二,由于双光子点扫描显微镜的高空间分辨率和层切能力,安装到动物头上的微型双光子显微镜非常容易受到运动伪影的影响。为了解决这个问题,我们对整个系统进行了充分的优化:(a)使用柔软的新型光纤束SFB来使得动物运动引起的扭矩和拉拽力最小化,并不降低光子收集效率 (b)采用独立的可旋转连接器来连接光学探头上的光纤和电线,以使动物在自由探索期间线的扭曲和缠绕最小化 (c)使用高速成像以减少运动引起的帧内模糊。此外,我们在实验之前预先训练动物适应安装在其头骨上的微型显微镜,并滴加1.5%低熔点琼脂糖使其充满物镜和脑组织之间,这些措施都显著降低了探头与大脑之间的相对运动,进而改善了实验短期和长期的稳定性,于是实现了在动物进行包含大量身体和头部运动的行为学试验中中进行高分辨率成像。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/0d8849db-62d7-4fdd-b7e0-4e572b3a1b03.jpg" title="4.png" width="600" height="437" border="0" hspace="0" vspace="0" style="width: 600px height: 437px "//pp style="text-align: center "图4 FIRM-TPM实物图,来自sup12/sup/pp  树突棘活动是神经元信息处理的基本事件,利用台式双光子显微镜在头固定的动物上的研究表明单个神经细胞的不同树突棘可以被不同朝向的视觉刺激或不同强度频率的声音刺激所激活。FHIRM-TPM实现了与传统的大型的台式双光子显微镜相同的分辨率和光学层切能力。与微型宽场显微镜相比,FIRM-TPM的高空间分辨率,固有的光学切片能力和组织穿透能力以及相当的机械稳定性都是极有优势的。所以虽然通过微型宽场显微镜可以获得数百个神经元在细胞水平上的活动,但是我们的 FHIRM-TPM无疑提供了一个更加强大的工具,即在自由活动的动物中对更加基本的神经编码单位——树突棘的时空特性进行观测。它能够在对小鼠依次进行的行为学试验(例如悬尾,跳台,以及社交行为)的过程中长时间观察位大脑中的神经元胞体、树突和树突棘的活动。这些功能的展示充分证明了FHIRM-TPM具有良好的性能和稳定性。未来,与光遗传学技术的结合,可望在结构与功能成像的同时,精准地操控神经元和大脑神经回路的活动。微型双光子荧光显微镜整机性能十分稳定,可用于在动物觅食、跳台、打斗、嬉戏、睡眠等自然行为条件下,或者在学习前、学习中和学习后,长时程观察神经突触、神经元、神经网络、远程连接的脑区等多尺度、多层次动态变化。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/90a13003-d9fd-404d-8df3-64926f598012.jpg" title="5.png" width="600" height="283" border="0" hspace="0" vspace="0" style="width: 600px height: 283px "//pp style="text-align: center "图5 三种模式在结构学成像中的成像质量对比,来自sup12/sup/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/44bc19d8-0a51-4583-8784-2f9240ac1cdd.jpg" title="6.png"//pp style="text-align: center "图6 FHIRM-TPM在三种不同的行为学范例对小鼠大脑皮层神经元活动进行成像,来自sup12/sup/pp  从2001年Denk发表第一篇微型双光子显微镜的原型机以来,微型双光子显微镜的发展已经走过了15年的时间。15年的发展历程,微型双光子显微镜从最开始的25克笨重的身躯,只能在分离的组织中进行验证性的实验8到如今重量仅两点几克重,可以对自由活动的小鼠神经元进行树突棘级别的成像,可以说取得了一定的进步。然而,在看到这个领域取得的成就的同时,也应看到,至今为止,微型双光子显微镜还未像共聚焦显微镜或者是荧光光片显微镜一样被生物学家广泛认可和应用。而后者(光片显微镜)的发展时间更短(2008年Science的一篇文献一般被认为是现代荧光光片显微镜镜的开端13)。究其原因,除了技术本身的限制以外,整个研究领域的气氛和投入,也是重要的影响因素之一。/pp  纵观这15年来微型双光子显微镜的发展道路,开疆拓土者有之 改革创新者有之 另辟蹊径者有之 浑水摸鱼、指鹿为马者亦有之。然而遗憾的是,愿意心无旁骛、全情投入者鲜有之 有意愿和能力建立为这个研究的领域建立范式者亦鲜有之。而中国,在不久前在这个领域基本上属于完全的空白。更不要说什么领先世界。/pp  然而令人十分兴奋的是,中国国家基金委国家重大科研仪器设备研制专项在2014年正式将“超高时空分辨微型双光子在体显微成像系统”立项。以5年七千两百万人民币的研究经费对这一项“世界上做的还并不怎么好,中国基本没人做过”的技术进行攻关研发。这样的大力投入无疑为这一领域注入了新鲜血液和十足动力。而我也有幸在博士五年期间全程参与了这个项目的工作。从2012年来到该项目首席负责人程和平院士和陈良怡研究员的联合课题组至今,我见证了这个项目从无到有,团队从幼小稚嫩到壮大成熟的整个过程。如今,我们有了初步的成果,不仅让我们这样一支完全由中国本国科研工作者建立的团队在世界上处在了较为领先的位置,同时也把这个领域向前推动了一些,我感到无比激动和自豪。/pp  该成果在2016年底美国神经科学年会、2017年5月冷泉港亚洲脑科学专题会议上报告后,得到包括多位诺贝尔奖获得者在内的国内外神经科学家的高度赞誉。冷泉港亚洲脑科学专题会议主席、美国著名神经科学家加州大学洛杉矶分校的Alcino J Silva教授在评述中写道,“从任何一个标准来看,这款显微镜都代表了一项重大技术发明,必将改变我们在自由活动动物中观察细胞和亚细胞结构的方式。它所开启的大门,甚至超越了神经元和树突成像。系统神经生物学正在进入一个新的时代,即通过对细胞群体中可辨识的细胞和亚细胞结构的复杂生物学事件进行成像观测,从而更加深刻地理解进化所造就的大脑环路实现复杂行为的核心工程学原理。毫无疑问,这项非凡的发明让我们向着这一目标迈进了一步。”/pp  1. Denk, W., Strickler, J. & Webb, W.Two-photon laser scanning fluorescence microscopy. Science248, 73-76(1990)./pp  2. Gewin, V. A goldenage of brain exploration. PLoS Biol3, e24 (2005)./pp  3. Zipfel, W.R.,Williams, R.M. & Webb, W.W. Nonlinear magic: multiphoton microscopy in thebiosciences.Nat Biotechnol21, 1369-1377 (2003)./pp  4. Chen, T.W. et al.Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature499, 295-300 (2013)./pp  5. Minderer, M.,Harvey, C.D., Donato, F. & Moser, E.I. Neuroscience: Virtual realityexplored. Nature533, 324-325 (2016)./pp  6. Hamel, E.J., Grewe,B.F., Parker, J.G. & Schnitzer, M.J. Cellular level brain imaging inbehaving mammals: an engineering approach. Neuron86, 140-159 (2015)./pp  7. Ghosh, K.K. et al.Miniaturized integration of a fluorescence microscope. Nat Methods8, 871-878(2011)./pp  8. Helmchen, F., Fee,M.S., Tank, D.W. & Denk, W. A Miniature Head-Mounted Two-Photon Microscope.Neuron31, 903-912 (2001)./pp  9. Engelbrecht, C.J.,Johnston, R.S., Seibel, E.J. & Helmchen, F. Ultra-compact fiber-optictwo-photon microscope for functional fluorescence imaging in vivo. Optics Express16, 5556 (2008)./pp  10. Piyawattanametha, W.et al. In vivo brain imaging using a portable 2.9 g two-photon microscope basedon a microelectromechanical systems scanning mirror. Optics Letters34, 2309(2009)./pp  11. Sawinski, J. et al.Visually evoked activity in cortical cells imaged in freely moving animals. Proceedings of the National Academy ofSciences106, 19557-19562(2009)./pp  12. Zong, W. et al. Fasthigh-resolution miniature two-photon microscopy for brain imaging in freelybehaving mice. Nat Methods (2017)./pp  13. Keller, P.J.,Schmidt, A.D., Wittbrodt, J. & Stelzer, E.H. Reconstruction of zebrafishearly embryonic development by scanned light sheet microscopy. Science322, 1065-1069 (2008)./p
  • 新型无辐射磁粉成像扫描仪面世
    扫描仪体积小、重量轻,可以随身携带,几乎可以在任何地方使用。图片来源:朱利叶斯-马克西米利安-维尔茨堡大学在一项最新研究中,德国物理学家和医生团队成功开发出一种便携式扫描仪,可借助新的无辐射成像技术——磁粉成像,可视化人体内的动态过程,例如血流情况。科学家们表示,这是迈向无辐射干预的重要的一步。相关研究刊发于最新一期《科学报告》杂志。磁粉成像是一种基于对磁性纳米颗粒直接可视化的技术。这种纳米颗粒不是在人体内自然产生的,必须作为标记物给药。最新研究负责人、朱利叶斯-马克西米利安-维尔茨堡大学物理研究所的沃尔克贝尔教授解释道,与依赖放射性物质作为标记物的正电子发射断层扫描一样,他们开发出的磁粉成像技术具有灵敏快速的优势,不会“看到”来自组织或骨骼的干扰背景信号。论文第一作者、物理学家帕特里克沃格尔解释称,纳米颗粒的磁化强度在外部磁场的帮助下被专门操纵,因此不仅可检测到这些纳米颗粒的存在,还可检测到它们在人体内的空间位置。在最新研究中,贝尔等人开发出了一款新的介入磁粉成像扫描仪,其体积小、重量轻,几乎可带到任何地方。他们在逼真的人体血管模型上进行了测量,并拍摄出了第一批图像。研究团队表示,这是迈向无辐射干预的第一个重要步骤,有可能彻底改变这一领域。他们正在进一步提升这款扫描仪的性能,以提高图像质量。
  • Advacam为巴西新同步辐射光源Sirius提供了无边Si传感器模块以用于光子计数X射线探测器PIMEGA的制作
    新型Sirius同步辐射介绍新的巴西同步加速器光源Sirius将成为巴西有史以来规模最大,最复杂的科学基础设施,并且是世界上最早的第四代同步加速器光源之一。同步加速器光源是一台大型机器,能够控制带电粒子(通常是电子)的运动以产生同步辐射光。在加速器中生产完后,同步辐射光被导向安装在存储环周围的称为Beamlines的实验站(如上图)。正是在束线中,辐射会穿过待分析的样品。同步辐射光源可容纳多条光束线,并且使用不同的技术进行实验,例如光谱学(从红外到X射线),X射线散射,晶体学,断层扫描等。Cateretê(相干和时间分辨散射)小组在负责CATERETê光束线的建设。同步辐射光源将被优化以用于相干X射线衍射成像(CXDI)和X射线光子关联光谱(XPCS)。这种分析方法的应用之一是研究石油,催化剂和聚合物领域的生物现象和纳米级结构的动力学,以及解决食品,制药和化妆品行业的问题。CATERETê光束线将在生物和软物质成像和动力学实验中提供独特的功能,特别着重于相干X射线散射和衍射技术的应用。相干X射线衍射成像(CXDI)和X射线光子关联光谱(XPCS)实验将是Cateretê光束线计划的活动的核心,同时得益于光源的高亮度,时间分辨的小角度X射线散射也能够开展。Cateretê光束线将在3 keV至12 keV的软X射线下工作,以对生物和纳米材料进行成像,从而充分利用Sirius辐射的相干特性。无边硅传感器模块和PIMEGA探测器Advacam非常骄傲能为这个创新且具开创性的项目提供基于Medipix3芯片的1x6无边缘模块。每个模块均由6个MPX3-RX V2读出芯片和一个14mm x 85.5mm的大面积,单片无边缘传感器组成。所制造的无边缘传感器的厚度分别为300 μm和675 μm。8个MPX3-RX V2 1x6无边缘传感器模块,准备发货到LNLS/CNPEM。PIMEGA-135D探测器由6个无边缘传感器模块紧密拼接而成,尽量避免过大的拼接缝隙(不敏感图像区域)。这个探测器有2,359千个像素 (1536 x 1536)和覆盖85毫米x 85.5毫米的探测区域。高帧率操作在同步辐射应用中是必不可少的,PIMEGA-135D能够以每秒2000帧的速度运行。PIMEGA-135D 探测器包含6个MPX3-RX V2 1x6无边缘传感器和675 μm的硅传感器PIMEGA-540D探测器由24块无边缘传感器模块拼贴而成,避免了激励图像区域。探测器有9,437千个像素 (3072 x 3072)和覆盖170毫米x 171毫米的探测区域。PIMEGA-540D能够以每秒1400帧的速度运行。PIMEGA-540D 探测器包含24个MPX3-RX V2 1x6无边缘传感器和300 μm的硅传感器,它被安装在Cateretê beamline.Advacam公司介绍Advacam S.R.O.源至捷克技术大学实验及应用物理研究所,不仅可以提供基于Medipix和Timepix芯片的辐射成像相机和X射线成像解决方案。同时Advacam是一家提供高质量交钥匙硅传感器制造和微封装服务的一站式供应商。Advacam产品系列:光子计数X射线探测器 minipix 系列光子计数X射线探测器 Advapix系列光子计数X射线探测器 Widepix 系列左右滑动查看更多图片Advacam可提供工艺服务:传感器制造倒装焊接晶圆焊撞北京众星联恒科技有限公司作为捷克Advacam公司在中国区的总代理,也在积极探索和推广光子计数X射线探测技术在中国市场的应用,目前已有众多客户将Minipix、Advapix和Widepix成功应用于空间辐射探测、X射线小角散射、X射线光谱学、X射线应力分析和X射线能谱成像等领域。
  • 5万亿设备更新|医疗设备配置启动,多地卫健委发布通知
    近期,国家发改委会同有关部门研究制定了《推动大规模设备更新和消费品以旧换新行动方案》,重点将实施设备更新、消费品以旧换新、回收循环利用、标准提升“四大行动”。在实施设备更新行动方面,重点将聚焦工业、农业、建筑、交通、教育、文旅、医疗等7个领域,这些领域设备更新换代需求巨大。目前,医疗设备更新的细节举措还未出台,具体落地方式还尚待揭晓。根据国家卫生健康委于2023年3月3日发布的《大型医用设备配置许可管理目录(2023年)》,新版大型医用设备配置许可管理目录中的管理品目已经由10个调整为6个。具体来看,甲类设备从4个减少到2个,乙类设备从6个减少到4个。这一积极调整有效降低了医疗机构配置大型医用设备的门槛。据观察,开年以来,北京、浙江、河北、安徽、河南等多地推进乙类大型医用设备配置审核工作。 北京市 北京市卫生健康委员会分别于3月18日和1月3日公布了两批乙类大型医用设备配置审核结果。市卫生健康委“双公示”委官网公示模板行政相对人名称*行政相对人代码_1(统一社会信用代码)或身份证号(加密)行政许可决定文书名称*行政许可决定书文号*许可内容*许可决定日期*许可机关*北京全景德康医学影像诊断中心有限公司91110106MA01HK0F85乙类大型医用设备配置许可证乙0108000001同意配置2024/3/11北京市卫生健康委员会北京一脉阳光医学影像诊断中心有限公司91110105330315742R乙类大型医用设备配置许可证乙0108000002同意配置2024/3/11北京市卫生健康委员会北京大学第一医院12100000400010558Y乙类大型医用设备配置许可证乙0101200062同意配置2024/1/3北京市卫生健康委员会首都医科大学附属北京世纪坛医院12110000400003235L乙类大型医用设备配置许可证乙0102000031同意配置2024/1/3北京市卫生健康委员会北京市密云区医院121102284010107444乙类大型医用设备配置许可证乙0102000032同意配置2024/1/3北京市卫生健康委员会首都医科大学附属北京潞河医院121101124009623800乙类大型医用设备配置许可证乙0102000033同意配置2024/1/3北京市卫生健康委员会北京华信医院12100000400001571T乙类大型医用设备配置许可证乙0102000034同意配置2024/1/3北京市卫生健康委员会北京清华长庚医院12110000318301495P乙类大型医用设备配置许可证乙0105200092同意配置2024/1/3北京市卫生健康委员会 浙江省 2024年3月11日,浙江省卫生健康委发布2023年第四季度医疗机构申请配置乙类大型医用设备申请许可情况的通告,同意新增配置X线正电子发射断层扫描仪(PET-CT)共3台,同意新增配置腹腔内窥镜手术系统共9台,同意新增配置医用直线加速器(LA)共7台。具体情况如下:一、许可同意浙江大学医学院附属第四医院、湖州市中心医院、丽水市人民医院(东城院区)新增配置X线正电子发射断层扫描仪(PET-CT)各1台;二、许可同意浙江大学医学院附属第一医院(之江院区)、浙江省中医院(钱塘院区)、杭州市中医院(丁桥院区)、宁波市医疗中心李惠利医院(兴宁院区)、湖州市中心医院、嘉兴市第一医院、金华市中心医院、衢州市人民医院、浙江省台州医院东院区新增配置腹腔内窥镜手术系统各1台;三、许可同意浙江大学医学院附属第一医院(庆春院区)、浙江大学医学院附属第四医院、宁波大学附属人民医院、桐乡市第一人民医院、金华市中心医院(金义院区)、衢州市人民医院、台州恩泽医疗中心(集团)恩泽医院新增配置医用直线加速器(LA)各1台。 河北省 3月3日,河北省卫生健康委发布了申报乙类大型医用设备配置许可的通知,申报类型包括正电子发射型磁共振成像系统(PET/MR),X线正电子发射断层扫描仪(PET/CT),腹腔内窥镜手术系统,常规放射治疗类设备(包括医用直线加速器、螺旋断层放射治疗系统、伽玛射线立体定向放射治疗系统),首次配置的单台(套)价格在3000—5000万元人民币的大型医疗器械。获得配置指标的单位须在2年内完成设备采购、安装调试检测并办理配置证副本。逾期未完成和不申请办理配置许可证副本的,将收回配置指标。 安徽省 2月9日,安徽省卫生健康委员会发布开展乙类大型医用设备配置许可审批工作的通知,审批范围包括:(一)新增设备,政府办医、自贸区以外社会办医新增拟采购配置的乙类设备分别实行行政审批和告知承诺制审批。(二)更新设备,经审批已有配置许可证的乙类大型医用设备,因达到使用年限或者损坏,经鉴定不能继续使用的,申请报废原有设备、更新配置同种类新设备。本次乙类大型医用设备配置审批工作涉及以下五类设备:(一)正电子发射型磁共振成像系统(英文简称PET/MR);(二)X线正电子发射断层扫描仪(英文简称PET/CT);(三)腹腔内窥镜手术系统;(四)常规放射治疗类设备(包括医用直线加速器、螺旋断层放射治疗系统、伽马射线立体定向放射治疗系统);(五)省内首次配置的整台(套)单价在3000-5000万元人民币的大型医疗器械。 河南省 2024年01月29日,河南省卫生健康委员会发布了关于同意河南省肿瘤医院等医疗机构配置乙类大型医用设备的通知,同意河南省肿瘤医院、河南科技大学第一附属医院等公立医疗机构新增1台PET/MR、8台PET/CT、8台腹腔内窥镜手术系统以及1台伽马刀等,具体情况如下:一、公立医疗机构(一)PET/MR及PET/CT 同意河南省肿瘤医院、河南科技大学第一附属医院各新增配置1台PET/MR。同意郑州市第三人民医院、河南省中医院、林州市人民医院等8家单位各新增配置1台PET/CT。同意开封市中心医院延期配置1台PET/CT(详见豫卫财务〔2020〕28号批复)。(二)腹腔内窥镜手术系统 同意许昌市中心医院、河南科技大学第一附属医院、河南中医药大学第一附属医院等8家单位各新增配置1台腹腔内窥镜手术系统。(三)常规放射治疗类设备 同意开封市肿瘤医院新增配置1台伽马刀。同意郑州人民医院、许昌市中心医院、社旗县人民医院等6家单位各新增配置1台直线加速器。同意信阳职业技术学院附属医院(详见豫卫规财〔2011〕193号批复)、新野县人民医院(详见豫卫规划〔2013〕33号批复)各更新配置1台直线加速器(乙类)。同意鄢陵县人民医院(详见豫卫财务〔2020〕28号批复)延期配置1台直线加速器(乙类)。二、社会办医疗机构 同意兰考第一医院新增配置1台直线加速器。同意郑州全景医学影像诊断中心、林州红旗渠医院各配置1台PET/CT。同意南阳南石医院新增配置1台伽马刀(全身)。
  • 360万!清华大学激光共聚焦显微镜和超声扫描显微镜采购项目
    项目编号:清设招第2022123号项目名称:清华大学激光共聚焦显微镜预算金额:160.0000000 万元(人民币)采购需求:包号名称数量是否允许进口产品投标01激光共聚焦显微镜1套是设备用途介绍 :高精度表面分析,用于微观形貌、微观结构的表征;厚胶光刻显影工艺、刻蚀释放工艺、厚金属剥离工艺等3D形貌观测分析、断层扫描成像分析等,非接触式、无损、快速成像。简要技术指标 :1)具备8英寸及以下基片上3D形貌观测分析、断层扫描成像分析等,非接触式、无损、快速成像和测量功能;2)3D观测方式:共焦光路系统,光源:反射激光和反射LED光源,激光共聚焦模式、彩色成像模式、彩色光学DIC成像,具备光学测量及成像模块,3D观测方式具有白光;明场、暗场及共聚焦;单色共聚焦或多色真彩共聚焦观察方式;3)成像图像X/Y平面分辨率≤0.12µm、Z轴显示分辨率精度≤0.006μm;4)5x,10x,20x,50x,100x均为激光专用复消色差物镜。合同履行期限:交货时间:合同签订后180日内本项目( 不接受 )联合体投标。项目编号:清设招第2022125号项目名称:清华大学超声扫描显微镜预算金额:200.0000000 万元(人民币)采购需求:包号名称数量是否允许进口产品投标01超声扫描显微镜1套是设备用途介绍 :利用材料内部组织因密度不同而对超声波声阻抗、超声波吸收与反射程度产生差异的特点,实现对材料内部缺陷的定性分析,在半导体封装及材料等行业中具有广泛的应用。对器件内部的结构、夹杂物、裂纹、分层、空洞等进行检测,是提供高分辨率无损检测的重要手段。简要技术指标 :1)最大扫描速率≥610mm/s;2)扫描精度:可设置最小扫描步进≤5μm,最大扫描步进≥500μm。合同履行期限:交货时间:合同签订后180日内本项目( 不接受 )联合体投标。
  • 可消除斑点噪声的全新成像技术问世
    p  英国《自然· 通讯》杂志19日发表了一项最新研究,美国科学家对新一代光学相干断层扫描技术(OCT)进行改良,可以更加清晰地成像更小的物体。这一新方法能“看”到传统OCT此前无法检测到的活体小鼠眼睛中的结构和人类指尖上的结构,有助极大地改善癌症和视网膜疾病的检测效果。/pp  光学相干断层扫描技术近年来发展迅速。这是一种常见的临床诊断成像方法,它利用弱相干光(频率相同的光子束)干涉仪的基本原理,检测生物组织不同深度层面对入射弱相干光的反馈信号,通过扫描即可得到生物组织二维或三维结构图像。但利用相干光成像而产生的一种现象——斑点噪声,却严重限制了OCT的诊疗潜力。/pp  人体组织内的流体运动使OCT图像中的每一个点随机呈明亮或暗淡状态,这就像大气运动引起星星闪烁一样。斑点噪声既降低了图像质量,又严重影响图像的目标检测、信息提取等诸多方面。而过去用于消除斑点噪声的方法,都会导致图像模糊,因此对诊疗功能的改善程度有限。/pp  此次,美国斯坦福大学研究人员亚当· 德拉泽达、奥利· 利巴及其同事,采用了一种全新的方法来解决该问题。研究人员通过调整斑点噪声模式,本质上讲就是操控用于照亮样本的光源,能够在不影响分辨率的情况下消除斑点噪声。实验表明,这种改良后的方法,能够检测活体动物组织内许多前所未见的微小结构,如部分小鼠角膜、小鼠耳内的细微结构和人类指尖皮肤内的汗腺管等,此前这些都会因斑点噪声影响而显得模糊。/pp  研究人员表示,这项新技术可以在临床上用于皮肤癌和视网膜疾病的初期检测。/pp strong 总编辑圈点/strong/pp  OCT发明才二十来年,已经成了眼科最常用的扫描技术,它能侦查出眼底微小的层次变化,像CT一样管用。最新的改进,将让OCT失误更少,分辨率更高。光学技术还有很大空间发展。有时候,样本不可能静静呆着让你看细到原子级别 想让活动的生物体纤毫毕现,是有点难度的。为此,科学家还要动很多脑筋,琢磨一些新诀窍。/p
  • IAEA:儿童用CT扫描辐射剂量可能过高
    日前,国际原子能机构(International Atomic Energy Agency ,IAEA)在其发表的公报中警告说,目前在临床医疗中广泛使用的计算机X射线断层扫描技术,即通常简称的CT扫描,因辐射剂量偏高,可能会对儿童造成过度伤害,并由此增加罹患癌症的风险。  国际原子能机构的一份最新研究报告指出,尽管专家们近10年来一直在对儿童接受CT扫描的安全性发出警告,但很多国家的医疗卫生机构却并未按照病人体质状况调整X射线的剂量。报告称,儿童对于放射线的敏感度是成年人的10多倍,儿童的细胞增殖速度快,平均寿命长,这些特点都会增加放射线后遗效应风险。同时,由于图像质量和射线剂量之间存在一定的因果关系,为增加图像的分辨率,操作人员往往需要增加扫描时的射线剂量,这无疑也让低龄患者承受了额外的X射线辐射。  国际原子能机构曾对非洲、亚洲和东欧地区28个发展中国家的总共128家医疗机构进行了调查,调查中发现,15岁以下的儿童在接受CT扫描检查时,其辐射水平和频率均存在巨大的差别。其中,有6个国家的11个CT中心为儿童使用的是与成年人同等剂量的X射线,其使用的扫描仪是老旧的型号,没有自动曝光控制的功能,而且其工作人员也没有这方面的保护意识。  国际原子能机构表示,由于缺乏核磁共振或超声波成像等替代技术,非洲国家的儿科使用CT扫描比亚洲和东欧国家更加频繁,因而也越发需要开展放射防护工作。报告呼吁,有关国家必须按照辐射使用正当化、防护水平最优化和个人剂量限值化这三条基本原则,建立CT扫描辐射剂量限制体系,并实施严格监管,同时重点针对儿童患者强化照射防护措施,例如缩短受照时间、降低照射剂量、增大与射线源间的距离,以及增加屏蔽防护设备等。
  • 复旦大学研究团队自主研发国产高端多光子显微镜!
    进入21世纪,脑科学领域受到越来越多的关注。脑科学研究的不断发展,让人类得以探索脑的基本工作原理,发现脑疾病的治疗新策略,为人类认知、学习、记忆、情感、行为等方面的理解提供基础支持。对脑科学家而言,观测神经元结构与功能是脑研究最重要的步骤之一。其中,多光子显微成像技术是进行活体深层成像的主要工具。7月底举办的中国神经科学学会第十六届全国学术会议上,复旦大学脑科学转化研究院的李博团队与工程与应用技术研究院(以下简称“工研院”)的董必勤团队,同蔡司联合推出一款中国自主创新研发的产品——DeepVision多光子成像与全息光刺激系统,致力于为活体深层组织成像提供多样化的解决方案。该系统采用多光子荧光激发技术,能够实现对深层组织的高分辨率成像,并配合全息光刺激技术,实现了对神经元的精确控制和调控,是神经科学、肿瘤免疫和药物代谢等研究领域的理想显微成像平台,将为脑科学研究和生命科学研究提供更精准和全面的观察方法。DeepVision多光子成像与全息光刺激系统(图片来源于复旦大学公众号)据董必勤介绍,市场上现有的高端科研显微镜基本由海外公司垄断,国内多光子成像市场空白,需长期引入海外公司的设备。这些设备大多是整机设计,各个部件无法定制细节。大脑是不透明的,目前的光学成像技术局限于观测最表面的皮层结构,光在组织中会产生强烈的散射,因此光学成像很难深入表皮直达内部,而多光子显微镜能够弥补光的这一短板。现有的多光子显微镜视野小、样品空间有限以及对新技术的兼容性低,已经很难满足生物医学前沿研究的需求。基于此,李博和董必勤团队决心研发一套全新设计的多光子显微镜。这款由模块化设计搭建起来的多光子显微镜,将各种各样具体的前沿技术做成一个个模块,在后期根据需求把这些模块拼装在一起组成整机,可以避免受制于光学系统复杂的整体性。李博介绍,大部分实验室需要双光子机型对脑部做浅层扫描,但也有相当一部分需要三光子机型的深层成像。多光子显微镜的模块化设计灵活,兼顾了实验室科研和市场需求。团队分别在双光子和三光子两个机型基础之上,在全息光刺激、载物台空间、多脑区成像等模块进行技术升级,并最终组建符合客户订单需求的成品。应用方面,除可用于脑部研究,该仪器在生命科学和医疗卫生领域的一些研究中也高度适用,例如观察肿瘤、胚胎或皮肤深层细胞以及扫描植物样品。此外还可广泛应用于材料、化学、物理等多个领域,帮助人们深入材料表层,观察内部结构细节。据了解,研究团队与蔡司合作,蔡司负责DeepVision多光子成像与全息光刺激系统的销售和售后工作,同时也会在产品搭建过程中根据客户需求提出建议,而核心研发工作由复旦大学科研团队主导。目前团队在攻克核心部件的生产技术,董必勤还在积极寻找多光子显微镜的关键零部件国产可替代品。写在最后:看到这个产品的推出,笔者脑中跳出一句话:国产高端光学显微镜的队伍又壮大了。曾有技术工作者告诉笔者,近几年在国家科研仪器专项的支持下,我国科研仪器行业迅猛发展,特别是高端显微镜研制已渐入佳境,近几年更是研究出了有自己特点的高端双光子显微镜。中国科学院苏州医工所推出的“中科希莱”品牌高速双光子荧光显微镜深入研究并掌握了基于12kHz共振扫描器和磷砷化镓探测器的高速高灵敏度在体双光子成像技术,开发了专用于生物在体成像的高速高分辨双光子显微镜系统,实现了深表层和高速神经功能成像,并能与电生理、光遗传等常用生理仪器完全同步联合运作;北京大学程和平院士牵头研发的微型化双光子活体成像技术的出现,使目前最新神经科学需要的针对清醒动物的功能研究实验得以实现,其核心技术 2.2 克可佩戴式微型化双光子荧光显微镜,在国际上首次获取了小鼠自由行为过程中大脑神经元和神经突触活动清晰稳定的图像。如今DeepVision多光子成像与全息光刺激系统的推出,对于脑科学和神经科学研究工作无疑又是一则好消息。
  • “超高时空分辨微型化双光子在体显微成像系统”专项取得重要成果
    p  在国家自然科学基金国家重大科研仪器研制专项“超高时空分辨微型化双光子在体显微成像系统”(项目编号:31327901)的支持下,北京大学分子医学研究所、信息科学技术学院、动态成像中心、生命科学学院、工学院联合中国人民解放军军事医学科学院组成跨学科团队,历经三年多的协同奋战,成功研制新一代高速高分辨微型化双光子荧光显微镜,并获取了小鼠在自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像。相关研究成果以“Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice”(高速高分辨微型化双光子显微镜在小鼠自由行为中获取大脑图像)为题于5月29日在线发表在Nature Method上。相关技术文档同步发表在Protocol Exchange上,并已申请多项专利。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201706/insimg/9523a7f7-b0b6-4b67-981d-b74805580c21.jpg" title="2017-06-14_094040.jpg"//pp style="text-align: center "2.2g可佩戴式微型双光子显微镜/pp  目前,各国脑科学计划的一个核心方向就是打造用于全景式解析脑连接图谱和功能动态图谱的研究工具。其中,如何打破尺度壁垒,整合微观神经元和神经突触活动与大脑整体的活动和个体行为信息,是领域内亟待解决的一个关键挑战。/pp  新一代微型化双光子荧光显微镜体积小,重仅2.2克,适于佩戴在小动物头部颅窗上,实时记录数十个神经元、上千个神经突触的动态信号。在大型动物上,还可望实现多探头佩戴、多颅窗不同脑区的长时程观测。相比单光子激发,双光子激发具有良好的光学断层、更深的生物组织穿透等优势,其横向分辨率达到0.65μm,成像质量与商品化大型台式双光子荧光显微镜可相媲美,远优于目前领域内主导的、美国脑科学计划核心团队所研发的微型化宽场显微镜。采用双轴对称高速微机电系统转镜扫描技术,成像帧频已达40Hz(256*256像素),同时具备多区域随机扫描和每秒1万线的线扫描能力。/pp  此外,采用自主设计可传导920nm飞秒激光的光子晶体光纤,该系统首次实现了微型双光子显微镜对脑科学领域最广泛应用的指示神经元活动的荧光探针(如GCaMP6)的有效利用。 同时采用柔性光纤束进行荧光信号的接收,解决了动物的活动和行为由于荧光传输光缆拖拽而受到干扰的难题。未来,与光遗传学技术的结合,可望在结构与功能成像的同时,精准地操控神经元和神经回路的活动。/pp  微型化双光子荧光显微成像改变了在自由活动动物中观察细胞和亚细胞结构的方式,可用于在动物觅食、哺乳、跳台、打斗、嬉戏、睡眠等自然行为条件下,或者在学习前、学习中和学习后,长时程观察神经突触、神经元、神经网络、远程连接的脑区等多尺度、多层次动态变化。/pp  该成果在2016年底美国神经科学年会、2017年5月冷泉港亚洲脑科学专题会议上报告后,得到包括多位诺贝尔奖获得者在内的国内外神经科学家的高度赞誉。冷泉港亚洲脑科学专题会议主席、美国著名神经科学家加州大学洛杉矶分校的Alcino J Silva教授在评述中写道,“从任何一个标准来看,这款显微镜都代表了一项重大技术发明,必将改变我们在自由活动动物中观察细胞和亚细胞结构的方式。它所开启的大门,甚至超越了神经元和树突成像。系统神经生物学正在进入一个新的时代,即通过对细胞群体中可辨识的细胞和亚细胞结构的复杂生物学事件进行成像观测,从而更加深刻地理解进化所造就的大脑环路实现复杂行为的核心工程学原理。毫无疑问,这项非凡的发明让我们向着这一目标迈进了一步。”/pp  可以期待,微型化双光子荧光显微成像系统将为实现“分析脑、理解脑、模仿脑”的战略目标发挥不可或缺的重要作用。/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制