当前位置: 仪器信息网 > 行业主题 > >

蛋白质稳定性定量分析仪

仪器信息网蛋白质稳定性定量分析仪专题为您提供2024年最新蛋白质稳定性定量分析仪价格报价、厂家品牌的相关信息, 包括蛋白质稳定性定量分析仪参数、型号等,不管是国产,还是进口品牌的蛋白质稳定性定量分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合蛋白质稳定性定量分析仪相关的耗材配件、试剂标物,还有蛋白质稳定性定量分析仪相关的最新资讯、资料,以及蛋白质稳定性定量分析仪相关的解决方案。

蛋白质稳定性定量分析仪相关的方案

  • 研究蛋白质热稳定性的几种方法+蛋白质+稳定性
    蛋白质的热稳定性是指蛋白质多肽链在温度影响下的形变能力,主要体现在温度改变时多肽链独特的化学特性和空间构象的变化,变化越小热稳定性越高。蛋白质的热稳定性受到不同温度、pH值、离子强度等外界因素的影响,在生物技术、药物研发以及食品工业等领域,具有重要意义。蛋白质变性温度是生物学家们研究蛋白质的热稳定性的一个重要的概念,是指蛋白质在特定温度条件下受到热力作用时,其结构发生变化的温度点,一般温度较高时,蛋白质从稳定的三维结构变化成松散的无序结构。蛋白质的热稳定性一般使用热变性中点温度(meltingtemperature,Tm)来表示,即蛋白质解折叠50%时的温度。蛋白质的热变性过程与其空间构象的改变密切相关,Tm值能反映变温过程中蛋白质构象改变的趋势,是衡量蛋白质热稳定性的一个重要指标。蛋白质Tm值的测定在生物医药行业具有广泛的应用,如嗜热蛋白、工业酶等的改造与筛选,蛋白质药物与配体、制剂或辅料的相互作用,蛋白质药物的缓冲液稳定条件筛选等。
  • 利用LUM稳定性分析仪评估低温花生粕蛋白在饮料中的稳定性
    花生蛋白被公认为是继大豆蛋白之后,又一优质的食用蛋白资源。低温花生粕是花生冷榨提油后的副产物,蛋白含量达48%以上。与传统热榨工艺不同,冷榨工艺制备的花生饼粕中蛋白质变性程度小,产品后续应用空间更大。尤其是经过适度改性后的花生蛋白,其溶解性、持水性、乳化性及乳化稳定性等功能特性表现良好,具有非常优良的食品加工特性[。食品应用体系中,加强花生蛋白在饮料中的应用研究,一方面可以发挥花生蛋白独特风味、抗营养因子含量低等特点。另一方面可以增加饮料体系的蛋白质含量提高饮料附加值。但传统的花生蛋白饮料大多采用花生仁直接打浆、调配添加剂等工艺制成,生产成本较高,且饮品中脂肪含量高影响产品的营养价值和口感。顺应发展的需要与迫切性,已经出现一些以花生蛋白为原料,制备富含蛋白质的饮料的相关研究。但是数量和研究深度有限,且存在制备的花生蛋白加工特性不理想、饮料体系稳定性有待提高等问题。利用LUMiSizer稳定性分析仪,以压榨低温粕为原料制备的花生分离蛋白在饮料体系中应用的可行性。
  • 微波辅助蛋白质水解效果稳定性研究
    摘 要:目的:考察微波辅助蛋白质水解效果的稳定性。方法:以鱼粉和豆粕为研究对象,采用微波辅助蛋白质水解-柱后衍生-紫外检测法测定氨基酸,通过比较分析一定时期内鱼粉和豆粕样品氨基酸结果的变化,研究微波辅助蛋白质水解效果的稳定性。结果:在一定时期内,采用微波辅助蛋白质水解,进口鱼粉、豆粕样品氨基酸测定结果RSD值均小于4.0%。结论:微波辅助蛋白质水解效果的稳定性好,可替代传统蛋白质酸水解方法,并为保证氨基酸检测结果的准确性提供技术支持。关键词:氨基酸分析;微波辅助蛋白水解;稳定性
  • 利用LUMiSizer评估胶热处理对蛋白质乳液凝胶、复合维生素稳定性的影响
    果胶作为一种食品添加剂或配料应用于食品工业中,主要起到胶凝、增稠、改善质构、乳化和稳定的作用。蛋白质乳液凝胶又称乳化颗粒填充蛋白质凝胶,其特点是蛋白质凝胶中含有乳化的油滴。乳化油滴表面积较大,可以和凝胶网络中的分子有更多的接触,成为网络结构中的支撑物。通过改变油滴结构,包括粒径大小与分布、油相结晶度等可以调节凝胶的形成过程,并影响凝胶的质构特性。许多食品,如豆腐、香肠、奶酪、酸奶都可以归类为蛋白质乳液凝胶。通过控制大豆分离蛋白乳状液油滴粒径大小、调节油滴界面组成,应用LUMiSizer稳定性分析仪研究不同果胶添加量及热处理温度对乳状液稳定性特性的影响。
  • 使用Aggregates Sizer(带温控功能)进行蛋白质稳定性的加速试验
    在本次分析中,我们使用生物药品聚合体分析系统AggregatesSizer TC(带温控功能)(以下简称为Aggregates SizerTC)附带的3种材质的搅拌盘(PEEK、不锈钢、玻璃),在一定温度下一边施加物理性压力一边监控聚合体生成量,以进行蛋白质稳定性的加速试验。由此可知,不同材质对聚合体产生的不同影响以及评价稳定性时温控的重要性。本文将进行详细说明。
  • 蛋白配方稳定性
    可在不稀释蛋白质配方的情况下检测蛋白质的稳定性;蛋白质的变性或稳定性取决于温度和时间,根据温度变性可以立即发生或有明显的延后期; VROC? 可以检测到展开或变性造成的粘度的微小增加
  • 大分子蛋白的稳定性研究---多重光散射技术的稳定性研究---多重光散射技术
    蛋白质的稳定性指的是蛋白质抵抗各种因素的影响,保持其生物活力的能力。蛋白质在细胞和生物体的生命活动过程中,起着十分重要的作用。从生物的构成到生物的新陈代谢、遗传都和蛋白质的结构和功能密切相关。生物的结构和性状都与蛋白质有关。因此,合适的表征手段对研究蛋白质变性至关重要。
  • 盘点使用【PR系列蛋白稳定性分析仪】发表的国内外文献
    让我们来看看又有哪些国内外研究团队在PR系列蛋白稳定性分析仪的助力下成功发表文献,这些新的文献或许可为您近期或之后的检测提供新的实验思路或技巧哦!
  • 利用LUMiSizer稳定性分析仪快速评估均质工艺对燕麦稳定性的影响
    近年来谷物杂粮饮品迅速发展,受到越来越多消费者的青睐,但是谷物杂粮饮品易出现分层、沉淀等不稳定现象,影响其感官品质。因此,在加工过程中提高浆液体系稳定性非常重要。造成谷物杂粮饮品不稳定的主要原因是谷物原料中含有较多的淀粉、蛋白质等大颗粒物质,Stocks定律认为,流体粒子的沉降速度与粒子的半径有关,粒子的半径越小,沉降速度越小,体系的稳定性越高。而高压均质正是一种有效降低颗粒粒径的方法,谷物杂粮饮品通过高压均质后,不仅使得脂肪球和蛋白等颗粒细化,还使得糖、胶体等物质分散的更加均匀。当前采用均质工艺提高饮品稳定性的研究主要通过静置分层高度和离心沉淀率等指标进行评价[,但在实际实验中静置分层观察耗时较长,离心沉淀率在评价粘度较高的饮品时存在较大的不准确因素,采用一种耗时短、准确性高的稳定性评价方法是关键。因此,本论文针对酶解和调配后燕麦浆的稳定性问题,利用LUMiSizer稳定性分析仪研究了均质压力对浆液稳定性的影响,为燕麦浆类产品的开发提供参考。
  • 高通量人蛋白质组定量分析
    Q Exactive HF, DDA,DIA,293T,定量蛋白质组学数据非依赖性的扫描模式(data-independent acquisition, DIA)是近几年来发展的一种新的质谱数据采集方式(1)。DIA 扫描模式中,超高分辨质谱对特定质量范围内的所有母离子进行碎裂,采集所有母离子的碎片离子,并快速地依次扫描相邻的母离子窗口内的所有碎片离子。DIA 的数据中包含了所有碎片离子的保留时间和强度信息。用非常小的质量偏差窗口(如 10 ppm)目标性地抽提同一肽段的多个子离子,计算子离子的强度,就能对该肽段进行鉴定和定量。 DIA 定量相比传统的基于母离子强度的 DDA 定量有选择性好,定量准确等优点,所以 DIA 成为定量蛋白组学新的热门发展方向 (2)。Q Exactive HF 是赛默飞世尔科技在 2014 年的 ASMS 上推出的全新静电场轨道阱超高分辨质谱仪(3, 4)。Q Exactive HF 采用了分段式四极杆技术(Advanced Quadrupole Technology,AQT)使离子传输效率至少提高了 2 倍;超高场 Orbitrap 技术,提高了 Orbitrap 扫描速度,在 15000 分辨率时,二级谱图的扫描速度是 18 Hz。这两项技术提高了 Q Exactive HF 进行 DDA、DIA 数据的采集能力。本文用 Q Exactive HF 质谱,170 min 色谱梯度对 293T 细胞蛋白质组进行 DIA 定量分析,考察 Q Exacive HF DIA 定量的能力。
  • 内源差示扫描荧光技术如何应用到多功能蛋白质稳定性分析
    内源差示扫描荧光技术(intrinsic fluorescence DSF),通过检测温度变化/变性剂浓度变化过程中蛋白内源紫外荧光(350 nm/330 nm比值)的改变,获得蛋白的热稳定性(Tm值)、化学稳定性(Cm值)等参数。相比传统的方法,无需添加染料,通量高,样品用量少,数据精度高。
  • 创新数据非依赖性采集用于复杂基质目标蛋白质的定量分析
    数据非依赖性采集(DIA)是随着定量蛋白质组学而建立的质谱扫描技术。 DIA 能够获得扫描范围内所有母离子及二级子离子信息,不会造成低丰度离子信息的丢失,同时突破了高分辨质谱二级定量的通量限制。 本研究基于静电场轨道阱 Q-qIT-OT 三合一质谱,发展了经典 DIA 方法以及 WiSIM-DIA 和 Full MS-DIA两种全新 DIA 方法,并对 Hela 细胞全蛋白中添加的 10 条低浓度肽段进行定量分析,考察方法的线性、重现性和灵敏度。 结果表明,3 种方法的定量限均低至 amol (14 ~435 amol),并展示出良好的线性和定性确证可靠性。 其中,WiSIM-DIA 基于超高分辨一级监测定量,与经典 DIA 优势互补 Full MS鄄DIA 的选择窗口仅 3 amu,能够直接进行搜库鉴定,实现了数据依赖性采集(DDA)和 DIA 的统一,摆脱了 DIA 依赖于 DDA 建立谱图库的局限性。
  • LUM稳定性分析仪在涂料,墨水行业的应用
    LUM是世界上唯一拥有静置和离心加速两个系列稳定性分析仪的生产厂商。利用全球独家的STEP技术—空间和时间透光率扫描技术(图1),LUM各系列稳定性分析仪可在样品静置或离心加速的同时,设置任意时间长度的扫描间隔(最低可每秒钟扫描一次)对样品进行任意位置的透光率变化的检测。通过每个样品独特的透光率指纹图谱,可以对样品的分离行为和过程分析,得到样品的不稳定性指数,界面迁移速度,颗粒速度和分布,粒度和分布等定量分析。
  • 利用LUMiFuge稳定性分析仪快速评估乳化浆料中颗粒的沉降和油滴的上浮特性
    生活中我们会看到各种各样复杂的分散体,不仅仅是以单纯的乳液和悬浮液的形式存在。如牛奶的主要成分是蛋白质,脂肪,乳糖,维生素,矿物质等。不溶性的蛋白质会出现沉降和絮凝,脂肪会出现上浮和聚并等不稳定现象的出现。再比如原油中有油质,沥青质等几种主要组分,沥青质的沉积和油相的破乳往往是研究的重点。油滴和颗粒之间还会存在相互作用,固体颗粒吸附到油水界面还可以起到乳化稳定的作用。对于这些既有固体颗粒,又有液滴,或者颗粒和连续相的密度存在各种差异等原因导致的既有沉降行为,又有上浮/漂浮行为的复杂多组分分散体,如何表征其稳定性,甚至分别去比较沉降和上浮行为,对材料利用和产品开发来说是很重要的。本文利用光照式离心稳定性分析仪,对含有油滴和二氧化硅颗粒的乳化浆液进行失稳研究。以期可以为相关应用的客户提供参考。
  • 采用 Agilent 6495C 三重四极杆 LC/MS 系统定量分析宿主细胞蛋白质杂质
    本应用简报介绍了 mAb 产品中亚 ppm 宿主细胞蛋白质杂质的定量分析方法。本工作流程采用 Agilent AssayMAP Bravo 平台、Agilent 1290 Infinity II 液相色谱系统和Agilent 6495C 三重四极杆 LC/MS 系统。
  • 用 Agilent 1290 Infinity II 液相色谱 仪与 6495B 三重四极杆液质联用系统 定量分析宿主细胞蛋白质杂质
    前言宿主细胞蛋白 (HCP) 杂质是生物药物中低浓度的产物相关及工艺相关蛋白质杂质,来源于生产过程中的宿主生物。由于它们可能影响产品安全性和功效,因此根据法规要求必须对药品中的 HCP 进行监测和控制1。传统上,酶联免疫吸附测定法(ELISA) 是定量分析蛋白质治疗药物中 HCP 的标准方法。然而,ELISA 的特异性和覆盖率不足以鉴定并定量分析各种 HCP。因此,LC/MS 技术成为 HCP 分析的另一选择。在 HCP 的 LC/MS 定量分析过程中,主要挑战在于低丰度 HCP 肽段与高丰度药品肽段的共洗脱。因此需要在药品基质的高背景下对低丰度肽进行灵敏而可重现的定量分析。
  • 大气压冷等离子体处理对椰子球蛋白分散稳定性的影响
    椰奶富含蛋白质和油脂,容易受到微生物污染,在加工过程中需要进行杀菌处理。椰奶的传统杀菌方法是热杀菌,如巴氏杀菌和高温瞬时杀菌。在热加工中,食物结构和质地会不同程度被破坏。此外,热杀菌过程会导致大量蛋白质降解,从而影响椰奶的乳液系统,包括液滴聚集和分层。在椰奶中,椰子蛋白作为天然乳化剂,粘附在椰子油表面,形成油在水(O/W)乳液。椰子球蛋白(CG)是椰子中的主要蛋白质(占60-75%),具有良好的乳化性能,对椰奶的稳定性起着重要作用。大气压冷等离子体技术(ACP)作为一种新型的非热杀菌技术,其优点是低温操作,处理时间短,杀菌效果好,对食品质量影响最小。然而,在ACP处理期间,多种活性物质也会受到影响,如蛋白质、脂质和多糖。这些变化会影响食品的稳定性、结构、质地和感官性能,从而影响食品的质量。然而,ACP在食品中应用的最大挑战是如何精确定义操作条件,以实现微生物的有效灭活,同时将对食品质量的影响降至最低。因此,迫切需要研究不同ACP处理条件下食品成分和结构的变化,以促进ACP在食品中的大规模应用。本研究选择椰浆稳定性的重要成分椰子球蛋白(CG),探讨ACP处理对CG乳化性能的影响。同时为减少其他外源乳化剂的添加以及使用ACP处理来保持椰奶的质量和稳定性提供理论基础和实践指导。
  • 应用快速稳定性分析方法研究不同燕麦品种稳定性的影响
    燕麦奶作为一种新兴的植物性牛奶替代品,近年来受到广泛欢迎。然而,燕麦奶产品的稳定性和风味问题是影响其质量的主要因素。考虑提高潜在燕麦品种的加工能力有助于提高产品质量。在本研究对一个澳大利亚品种和三个中国品种生产的燕麦奶的特性进行了研究比较。采用本工艺生产的燕麦乳的稳定性优于商业产品,受到品种的高度影响。栽培品种的蛋白质和植物细胞碎片含量与最终产品的分离率和品种的脂质观察最终产品的乳化效果。在调查的栽培品种中,中国Bayou01(ZBY01)燕麦品种最适合燕麦奶的加工。用这个品种生产的燕麦奶具有更好的稳定性和感官可接受性。它可以提供约1%的蛋白质,9.84 mg/mL的β-葡聚糖和70.96 mg GAE/100 g DW多酚。我们的研究结果支持一个中国品种燕麦奶加工,并为原料选择提供可能的标准。燕麦在世界谷物产量中排名第五,仅次于玉米、大米、小麦和大麦。
  • 利用LUMiSizer?评估羧甲基魔芋葡甘露聚糖对豌豆蛋白水分散液的稳定性影响
    近年来,消费者对中性与酸性植物蛋白饮料的需求不断增加。豌豆蛋白作为一种植物来源的天然可持续性蛋白质,是代替动物蛋白用于食品配方的可靠原料之一。然而,豌豆蛋白因表面疏水性强且电荷量低,导致其在水中的溶解度低、物理稳定性差。尤其在酸性条件下,当体系pH值接近蛋白质等电点时,豌豆蛋白易发生聚集,使体系稳定性进一步大幅降低,因此豌豆蛋白在酸性蛋白饮料中的应用受到很大限制。天然生物大分子多糖与蛋白质相互作用,可以阻止或减缓蛋白质的聚集和沉降,提高蛋白分散液的物理稳定性。多糖对蛋白分散液体系的稳定主要有2 种作用机制:一是在酸性条件下,聚阴离子多糖,如果胶、羧甲基纤维素(carboxymethyl cellulose,CMC)或大豆可溶性多糖,可与带正电荷的蛋白颗粒形成静电复合物,通过静电排斥和空间位阻保持蛋白质分散液的稳定性。这些多糖与酪蛋白胶束发生静电吸附,在蛋白胶束表面形成了刷状或环状吸附结构,从而阻止了蛋白胶束的酸诱导聚集使体系稳定。二是,添加的多糖在体系中形成高分子物理缠结网络,增加了连续相的黏度,从而阻碍和迟滞了蛋白颗粒的聚集和沉降。近期对魔芋葡甘露聚糖(konjac glucomannan,KGM)、 CMC 和玉米纤维胶以及羧甲基改性的玉米纤维胶(carboxymethylated corn fiber gum,CMCFG)提高豌豆蛋白分散液(pea protein dispersion,PPD)稳定性的能力进行比较研究发现,KGM的添加可通过增黏作用实现PPD在中性和酸性(pH 3.5)条件下的物理稳定,羧甲基化的CMC和CMCFG则通过与豌豆蛋白的静电吸附促成了体系的稳定。
  • 利用LUMiSizer稳定性分析仪评估高压均质对脂质体囊泡稳定性的影响
    脂质体同时具有包埋脂溶性和水溶性活性物质的能力,极大提高了活性物质的传递效率,其在食品工业领域中的研究受到越来越多的关注。由于磷脂易发生不可逆的氧化降解和脂质体囊泡聚集沉降等现象,容易导致被包埋活性物质的渗漏,极大限制了脂质体在食品工业中的应用。目前已有研究利用果胶、蛋白质、壳聚糖及其衍生物等食品生物大分子物质对脂质体膜表面进行修饰,从而提高其理化稳定性。但新壳层材料的引入提高了食品脂质体的生产成本,使得制备工艺也更加复杂,规模化的工业生产容易因设备的限制导致产品质量不理想。同时考虑到膳食胆固醇长期过量摄入对人体的影响,如何控制脂质体中胆固醇的用量,以期得到稳定性良好且胆固醇相对含量偏低的脂质体是本研究的主要目的。高压均质法作为乳剂传递体系常用的破碎乳化制备方法,对提高乳剂的物理稳定性有重要作用,目前已在工业化生产中大规模应用;因此在工业化生产中利用高压均质法制备食品脂质体具备实际应用的可能。本实验采用传统薄膜水化法辅助高压均质制备脂质体,考察均质压力、均质次数和胆固醇含量对脂质体囊泡物理稳定性的影响。
  • 采用 Agilent 1290 Infinity II 液相色谱仪与 6495B 三重四极杆液质联用系统定量分析宿主细胞蛋白质杂质
    本应用介绍了用于宿主细胞蛋白质高灵敏度定量分析的工作流程,包括用于样品自动前处理的 AssayMAP Bravo 平台、用于样品分离的 Agilent 1290 Infinity II 液相色谱系统、用于数据采集的 Agilent 6495B 三重四极杆系统、用于 MRM 方法开发的 Skyline 软件中的安捷伦自动化工具、用于数据分析的 Skyline 和 Agilent MassHunter 定量分析软件的结合。使用基于多反应监测 (MRM) 的同位素稀释方法,结果显示可准确定量低至亚 ppm(ng/mg) 浓度的 HCP。
  • 快速评估不同芦丁浓度和混合条件对稳定性的影响
    芦丁具有优异的抗菌性和抗氧化性,可用作食用抗氧化剂和营养增强剂,对人体健康有益。本文利用LUMiFuge稳定性分析仪研究了芦丁浓度和芦丁-蛋白质复合物预处理(直接混合与pH驱动)对形成和稳定双层乳液的影响。
  • LUM稳定性分析仪在涂料,墨水行业的应用
    LUM系列稳定性分析仪可以实现多样品测试,最多可以同时测试12个样品。并且有温度控制模块,4-60℃的温控范围可以满足稳定性测试的常规温度条件。这些定性和定量的结果非常适合墨水,涂料等分散体的稳定性表征,最终实现指导新产品设计, 现有产品的优化,生产过程的质量控制及产品保质期/货架期预测等任务。本文结合诸多具体应用案例,浅谈LUM系列稳定性分析仪在涂料,墨水等分散体行业的实际应用。̷̷
  • 使用LUMiSizer评估增稠剂对燕麦饮料稳定性的影响
    以燕麦为原料开发的谷物饮料具有广阔的市场前景,但是由于饮料中淀粉、纤维素含量较高且含有一定的蛋白质,经高温灭菌后,在6~12个月的保质期内容易出现析水、沉淀、浮油及絮集等稳定性问题。本文应用LUMiSizer610稳定性分析仪对3种增稠剂——卡拉胶、结冷胶、微晶纤维素的不同添加量对燕麦饮料稳定性的影响,筛选出稳定性最佳的增稠剂。
  • 利用稳定性分析仪LUMiSizer®®快速筛选乳液配方
    buriti棕榈树果油和pequi巴西油桃木果油由于丰富的营养广泛应用于在食品和化妆品中。然而,由于不饱和脂肪酸的存在,这些油很容易被氧化,且很难分散在水性介质中。此外,其中的类胡萝卜素也极易被氧化。乳剂的生产,然后冷冻干燥使我们能够获得这些材料的粉末,它们可以分散在水介质中,方便在食品工业中的应用。乳清蛋白(WPI)被广泛用作乳化剂。WPI含有90%以上的蛋白质,主要是β-乳球蛋白(β-lg)。除了以天然形式作为乳化剂使用外,加热后的WPI会形成团聚体,促进水包油体系的稳定。因此,通过在油水界面中使用WPI聚集体生成乳液,并将这些乳液与干燥技术相结合,可以提高乳液的稳定性,从而促进对被包裹化合物的更好保护。本研究的目的是利用加热和未加热的WPI作为乳化剂/连续相,将巴西油桃木果油进行包裹,并将巴西油桃木果油和棕榈树果油共同包裹在水包油乳液中,然后进行冷冻干燥。
  • 牛奶咖啡饮料的稳定性评估
    目前,市场上销售的牛奶咖啡饮料,大多是以咖啡提取液或速溶咖啡粉为主要原料,加入乳粉、白砂糖及其他辅料制成,其在保质期内容易出现脂肪上浮、氧化、形成乳酪圈、蛋白质变性与咖啡粒子沉淀等品质劣化问题,严重影响产品外观品质,因此,需要添加稳定剂来改善产品稳定性。针对稳定剂品种的筛选和搭配,国内外研究学者大多采用目测观察法、离心沉淀率的测定等常规方法。为了更加科学全面、快速准确地判定牛奶咖啡饮料的稳定性,筛选出适宜的稳定剂品种,利用LUMiFuge稳定性分析仪,为牛奶咖啡饮料稳定剂筛选方法提供了一定参考。
  • 利用LUMiSizer探究均质工艺对燕麦稳定性的影响
    近年来谷物杂粮饮品迅速发展,受到越来越多消费者的青睐,但是谷物杂粮饮品易出现分层、沉淀等不稳定现象,影响其感官品质。因此,在加工过程中提高浆液体系稳定性非常重要。造成谷物杂粮饮品不稳定的主要原因是谷物原料中含有较多的淀粉、蛋白质等大颗粒物质,Stocks定律认为,流体粒子的沉降速度与粒子的半径有关,粒子的半径越小,沉降速度越小,体系的稳定性越高。而高压均质正是一种有效降低颗粒粒径的方法,谷物杂粮饮品通过高压均质后,不仅使得脂肪球和蛋白等颗粒细化,还使得糖、胶体等物质分散的更加均匀。当前采用均质工艺提高饮品稳定性的研究主要通过静置分层高度和离心沉淀率等指标进行评价[,但在实际实验中静置分层观察耗时较长,离心沉淀率在评价粘度较高的饮品时存在较大的不准确因素,采用一种耗时短、准确性高的稳定性评价方法是关键。因此,本论文针对酶解和调配后燕麦浆的稳定性问题,利用LUMisizer稳定性分析仪研究了均质次数和压力对浆液稳定性的影响,为燕麦浆类产品的开发提供参考。
  • Q Exactive HF实现高通量人蛋白质组定量分析
    首先对 293T 细胞裂解液酶切肽段建立谱图库,鉴定到 87743 个肽段,6270 个蛋白,然后用 DIA 对 293T 细胞裂解液酶切跳段进行定量分析。使用 170 min 的梯度,DIA 就能定量到 77000 个肽段,6000 个蛋白,显示出基于 Orbitrap 的 DIA 具有非常高的定量通量。
  • Cary 3500 多池紫外-可见分光光度计用于蛋白质分析的优势——提高极小体积样品定性和定量测量的效率和重现性
    紫外-可见分光光度计测量为样品的质量控制检查提供了一种快速可靠的方法。它们还可用于计算比活性或估算纯化后的产率,并鉴定含有蛋白质和氨基酸的组分。含有芳香侧链氨基酸的蛋白质,在接近 280 nm 处产生吸收。因此可以使用紫外-可见分光光度计进行定量分析。当吸收系数已知时,可根据比尔-朗伯定律 (1) 确定含有这些氨基酸的蛋白质的浓度。通常蛋白质的样品量有限,以最少体积进行测量对于样品的保存至关重要。通过波长扫描可提供潜在污染物的信息。Cary 3500 多池紫外-可见分光光度计具有永久光学准直的集成式多池支架,与超微量比色皿(图 1)配合使用,非常适用于可靠且可重现的定性及定量测量。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制