当前位置: 仪器信息网 > 行业主题 > >

固装式高温气体分析系统

仪器信息网固装式高温气体分析系统专题为您提供2024年最新固装式高温气体分析系统价格报价、厂家品牌的相关信息, 包括固装式高温气体分析系统参数、型号等,不管是国产,还是进口品牌的固装式高温气体分析系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合固装式高温气体分析系统相关的耗材配件、试剂标物,还有固装式高温气体分析系统相关的最新资讯、资料,以及固装式高温气体分析系统相关的解决方案。

固装式高温气体分析系统相关的论坛

  • 【原创】气体分析系统

    气体分析系统是锅炉燃烧效率、烟气脱硫排放、转炉煤气回收和充油催化裂化等工业领域实现生产控制的必要监测系统。 在现代工业中,工业自动化控制对企业生产的安全、效率、管理、环保等方面起着重要的作用。分析系统(检测系统、监测系统)作为自动化控制的重要组成部分,必须精确、高效地采集相关数据,为自动化控制提供所需的所有控制依据。 气体的分析精度不仅仅依靠分析仪表的分析精度,因为大多数分析仪表必须要有超净、干燥、恒温、恒流的样气才能进行准确分析。所以气体分析系统不可或缺的组成部分是:采样系统、预处理系统、分析仪表、系统控制单元。 我们的气体分析系统能在粉尘大于10g/m3,湿度等于100%,温度小于1800℃等极端工况中正常连续采样并将样气处理到标准的分析级别。 该系统由四个相对独立的单元组成。1、气体采样单元:电加热采样探头内置过滤器,能在粉尘大于10g/m3,湿度等于100%,温度小于1800℃等极端工况中正常连续采样;加热采样线能够恒温输送气体达50米,有效解决结露问题,保障气体组份不丢失。2、预处理单元:无氟压缩机除湿器采用JetStream方法在26厘米内迅速除湿,同时将气体冷却至分析温度5±0.1C°;分析隔膜泵耐腐蚀、大流量保障系统快速响应时间;0.1um粉尘过滤器和气溶胶过滤器将气体中的杂质完全祛除,使被测气体达到超净、干燥、恒温、恒流的分析级别。3、分析单元:单组份、多组份分析仪器,精度高、反应时间短、多种指示及流量、湿度状态报警,输出标准信号到监测控制系统。4、系统控制单元:完成对取样探管的自动吹扫,自动取样,并完成系统流量低、分析值超限、股长等各种系统内部故障的报警,分析成分的预报警、联锁等功能。

  • 供应气体分析仪器及其成套系统

    重庆川仪九厂隶属于我国最大的仪器仪表企业—以重庆川仪为核心的中国四联仪器仪表集团公司。是重庆市高新技术企业、ISO9001/2000国际质量体系认证企业、ISO14001国际环境管理体系的认证企业、是我国分析仪器行业的骨干专业企业,在分析技术的应用上卓有成就,是分析仪器应用先驱。      主要产品有:气体过程分析仪器及成套系统、工业水质分析仪器及成套系统、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]系列、液相色谱仪系列、光学分析仪器系列以及工业自动化仪表。其中PS3000型过程分析成套系统、WS2000型工业水处理分析成套系统获得国家级重点新产品称号;PP1160干法高温取样探头获得国家实用新型专利;PS3400智能烟气(CEMS)系统是国家中小企业创新基金项目 从PS3000型升级换代的新产品PS6400型CEMS烟气排放连续监测系统获得中国环境保护产业协会中环协(北京)认证中心颁发的环境保护产品认证证书(证书编号:CCAEPI-EP-2006-044)。  重庆川仪九厂是ABB分析仪器中国销售及技术服务中心 。    重庆川仪九厂将秉承"川仪在用户身边,用户在川仪心中;以顾客为关注焦点,让顾客满意"的服务宗旨;本着"求实、拼搏、创新、发展"的企业精神;坚持"技术为先、品质优良、服务一流、用户至上"的经营理念;以优化结构、壮大求实、提高效益、加快发展为主题,用更新的技术、更好的服务与我们的客户诚信合作、共图发展。[em61]

  • 【转帖】气体分析仪器现状与发展趋势

    气体分析仪器现状与发展趋势一、气体分析技术介绍(1) 人工采样法传统的分析方法如化学分析法、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法较多采用人工采样法。人工采样法的特点是采用人工取样的方式,抽取某一时点的样气进行分析。它的缺点是显而易见的:必须对气体进行人工取样,在实验室进行分析,其中操作者的操作技能对分析的精度有很大影响;只能单一成份地逐个进行检测分析,不具备多重输入和信号处理功能;分析费时费力,响应速度慢,效率低,难以实时地反映工况信息。 (2) 连续采样法连续采样法主要有红外线式、紫外线式和热导式三种测量方法。连续采样法的特点是采用不同测量方法的气体分析系统都由采样预处理系统和分析仪表两部分组成,采样探头将被测气体从烟道或管道中引出并进行预处理后,连续送入仪器的气体室中,分析仪器通过不同的方法完成气体浓度的测量。上述三种测量方法的系统集成方式、适应性和性价比有很大的区别。应用最广泛的红外线式气体分析仪基于非色散红外吸收光谱(NDIR)的原理,其测量方法是基于气体对红外线进行选择性吸收的原理,当被测气体通过测量管道时吸收红外光源发出的特定频率光(与被测气体成分有关)使光强衰减,测出光强的衰减程度即确定了被测气体的浓度。紫外线式气体分析仪是基于被测气体对紫外光选择性的辐射吸收原理,可以测量SO2、NOx、HCl、NH3等气体,但在同等性能、功能情况下仪器价格较高。热导式气体分析仪的工作原理是利用各种气体不同的热导系数,即具有不同的热传导速率来进行测量的。当被测气体以恒定的流速流入分析仪器时,热导池内的铂热电阻丝的阻值会因被测气体的浓度变化而变化,运用惠斯顿电桥将阻值信号转换成电信号,通过电路处理将信号放大、温度补偿、线性化,使其成为测量值。热导式气体分析器的应用范围很广,如H2、Cl2、NH3、CO2、Ar、He、SO2、H2中的O2、O2中的H2和N2中的H2等等;它的测量范围也很宽,在0%~100%围内均可测量。热导式分析仪器是一种结构简单、性能稳定、价廉、技术上较为成熟的仪器。但是热导式分析仪器对气体的压力波动、流量波动十分敏感,介质中水汽、颗粒等杂质对测量影响较大,所以必须安装复杂的采样预处理系统。(3) 现场在线测量法现场在线测量法中以半导体激光吸收光谱技术(DLAS)最为先进和最具有代表性。DLAS技术的特点是无需采样预处理系统,分析仪器直接安装在测量现场,通过一束穿过被测气体的激光光束来实现现场在线气体分析。DLAS技术可实现多种气体如CO、CO2、O2、HF、HCl、CH4、NH3、H20、H2S、HCN、C2H2、C2H4等的自动检测,适用于钢铁、冶金、石化、环保、生化、航天等各种领域。虽然DLAS技术与其他吸收光谱气体分析技术都利用吸收光谱技术来实现气体分析,但由于DLAS技术采用了独特的“单线光谱”技术和调制光谱技术,可不受背景气体交叉干扰和粉尘、视窗污染的干扰,并可自动修正气体温度、压力等气体参数变化的影响,因此可以将分析仪器直接安装在测量现场,实现其他光谱吸收技术无法或很难实现的现场在线连续气体测量。DLAS技术的优势在于能适应高温、高水分、高粉尘、强腐蚀性和高流速的被测气体环境,无需采样预处理系统,测量精度高,响应速度快。随着半导体激光气体分析技术的逐步成熟,相关光电元器件成本的显著下降,其性价比优势更为突出。在发达国家,半导体激光气体测量技术已逐步取代传统气体检测技术,在气体在线监测领域得到了日益广泛的应用。二、DLAS技术简介聚光科技研发生产的LGA-2000系列激光现场在线气体分析仪是基于DLAS技术开发的现场在线气体分析仪器。DLAS(Diode Laser Absorption Spectroscopy)是半导体激光吸收光谱技术的简称。该技术是利用激光能量被气体分子“选频”吸收形成吸收光谱的原理来测量气体浓度的一种技术。具体来说,半导体激光器发射出的特定波长的激光束穿过被测气体时,被测气体对激光束进行吸收导致激光强度产生衰减,激光强度的衰减与被测气体含量成正比,因此,通过测量激光强度衰减信息就可以分析获得被测气体的浓度。九十年代后,半导体激光器和光纤元件发展迅速,性能大大提高,价格大幅下降,室温工作、长寿命(100,000小时)、单模特性和较宽波长范围的半导体激光器被大量地生产出来并投入市场,一些高灵敏度的光谱技术如frequency modulation spectroscopy、cavity ringdown spectroscopy等也逐渐成熟,DLAS技术开始被较多地应用于科学和工程研究,发达国家的一些仪器公司也开始将DLAS技术应用于气体监测。由于DLAS技术较传统光谱检测技术具有显著的技术优势而得到了迅速推广。Focused Photonics,Inc.(FPI)是DLAS技术的主要开发厂商之一,FPI自主开发了拥有完全知识产权的全系列的激光气体分析产品,并广泛应用于钢铁、冶金、石化、环保、生化、航天等领域。FPI通过聚光科技(杭州)有限公司将该技术引入中国,结合中国各行业的实际需求,开发了LGA-2000系列激光现场在线气体分析仪、LGA-3000系列激光采样在线气体分析仪,并且在钢铁、焦化、石化、电力、环保、航天等行业取得了良好的应用。三、DLAS技术的特点DLAS技术的特点主要表现为:1.恶劣环境适应能力强,无需采样预处理系统,实现现场在线连续测量激光在线气体分析仪采用DLAS技术独有的“单线光谱”原理,使用非接触式激光测量方法,测量仪器与被测量气体环境隔离,其分析测量不受测量环境中背景气体、粉尘以及环境温度和压力的影响,具有高温、高粉尘、高水份、高腐蚀性、高流速等恶劣测量环境的良好适应性,避免了传统气体分析系统必需的复杂的采样预处理系统,从而实现了现场在线连续测量。2.克服了背景气体、水分和粉尘的吸收干扰,测量精度大大提高DLAS独特的“单线光谱”技术、频率扫描技术、谱线展宽自动修正技术克服了背景气体、水分和粉尘的吸收干扰,修正了温度和压力等气体参数变化对气体浓度测量的影响,而且系统直接对现场气体进行测量,气体信息不失真。相对于传统的气体测量技术,这些独特的测量技术和现场测量方法大大提高了测量的精度。3.响应速度快,实现工业过程实时在线管理DLAS技术进行气体分析不需采样预处理系统,节省了样气预处理的时间和样气在管道内的传输时间。系统可以达到毫秒级的响应速度,几乎是实时地反映过程气体浓度及其他参数变化状况,完全可以满足工业过程实时在线管理的需要。4.可同时检测多种气体参数,能测量分析多种气体,应用面广,仪器发展潜力大采用DLAS技术可同时在线测量气体的浓度、温度和流速等,并可实现多种气体如CO、CO2、O2、HF、HCl、CH4、NH3、H20、H2S、HCN、C2H2、C2H4等的自动检测,可广泛应用于钢铁、冶金、石化、环保、生化、航天等领域。较以往采用多种检测技术并进行系统集成而言,采用DLAS技术可大大简化仪器的结构,进而实现气体分析仪器的微型化、网络化(远距离数据无线传输)、智能化和自动化。5.光纤传输特性使系统的应用更加灵活,性价比更高DLAS技术采用的激光光源与常规光纤有良好的兼容性,所以可以将半导体激光器放置在中央处理单元内,把光纤输出的激光通过树形光纤分路耦合器同时耦合到多根光纤,不同的光纤把激光传递到几个不同的测量位置,对这几个不同位置的气体同时进行测量,从而实现分布式的在线气体监测分析。采用光纤后测量系统的抗电磁干扰能力、适应恶劣环境和防爆环境的能力非常强;整套测量系统的成本大大降低;与传统的气体分析系统相比,配置更加灵活,性价比也更高。

  • 【分享】气体分析仪器现状与技术比较

    气体分析仪器现状与技术比较1、气体分析技术介绍 (1)人工采样法 传统的分析方法如化学分析法、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法较多采用人工采样法。人工采样法的特点是采用人工取样的方式,抽取某一时点的样气进行分析。它的缺点是显而易见的:必须对气体进行人工取样,在实验室进行分析,其中操作者的操作技能对分析的精度有很大影响;只能单一成份地逐个进行检测分析,不具备多重输入和信号处理功能;分析费时费力,响应速度慢,效率低,难以实时地反映工况信息。 (2)连续采样法 连续采样法主要有红外线式、紫外线式和热导式三种测量方法。连续采样法的特点是采用不同测量方法的气体分析系统都由采样预处理系统和分析仪表两部分组成,采样探头将被测气体从烟道或管道中引出并进行预处理后,连续送入仪器的气体室中,分析仪器通过不同的方法完成气体浓度的测量。上述三种测量方法的系统集成方式、适应性和性价比有很大的区别。 应用最广泛的红外线式气体分析仪基于非色散红外吸收光谱(NDIR)的原理,其测量方法是基于气体对红外线进行选择性吸收的原理,当被测气体通过测量管道时吸收红外光源发出的特定频率光(与被测气体成分有关)使光强衰减,测出光强的衰减程度即确定了被测气体的浓度。 紫外线式气体分析仪是基于被测气体对紫外光选择性的辐射吸收原理,可以测量SO2、NOx、HCl、NH3等气体,但在同等性能、功能情况下仪器价格较高。 热导式气体分析仪的工作原理是利用各种气体不同的热导系数,即具有不同的热传导速率来进行测量的。当被测气体以恒定的流速流入分析仪器时,热导池内的铂热电阻丝的阻值会因被测气体的浓度变化而变化,运用惠斯顿电桥将阻值信号转换成电信号,通过电路处理将信号放大、温度补偿、线性化,使其成为测量值。热导式气体分析器的应用范围很广,如H2、Cl2、NH3、CO2、Ar、He、SO2、H2中的O2、O2中的H2和N2中的H2等等;它的测量范围也很宽,在0%~100%围内均可测量。热导式分析仪器是一种结构简单、性能稳定、价廉、技术上较为成熟的仪器。但是热导式分析仪器对气体的压力波动、流量波动十分敏感,介质中水汽、颗粒等杂质对测量影响较大,所以必须安装复杂的采样预处理系统。 (3)现场在线测量法 现场在线测量法中以半导体激光吸收光谱技术(DLAS)最为先进和最具有代表性。DLAS技术的特点是无需采样预处理系统,分析仪器直接安装在测量现场,通过一束穿过被测气体的激光光束来实现现场在线气体分析。DLAS技术可实现多种气体如CO、CO2、O2、HF、HCl、CH4、NH3、H20、H2S、HCN、C2H2、C2H4等的自动检测,适用于钢铁、冶金、石化、环保、生化、航天等各种领域。 虽然DLAS技术与其他吸收光谱气体分析技术都利用吸收光谱技术来实现气体分析,但由于DLAS技术采用了独特的“单线光谱”技术和调制光谱技术,可不受背景气体交叉干扰和粉尘、视窗污染的干扰,并可自动修正气体温度、压力等气体参数变化的影响,因此可以将分析仪器直接安装在测量现场,实现其他光谱吸收技术无法或很难实现的现场在线连续气体测量。 DLAS技术的优势在于能适应高温、高水分、高粉尘、强腐蚀性和高流速的被测气体环境,无需采样预处理系统,测量精度高,响应速度快。随着半导体激光气体分析技术的逐步成熟,相关光电元器件成本的显著下降,其性价比优势更为突出。在发达国家,半导体激光气体测量技术已逐步取代传统气体检测技术,在气体在线监测领域得到了日益广泛的应用。

  • 【分享】解读气体分析仪器的现状与发展趋势

    [color=#00FFFF] 这是专家的著作,本人将其拿来供大家学习。[/color]一、不同的气体分析技术比较 1、气体分析技术介绍 (1)人工采样法 传统的分析方法如化学分析法、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法较多采用人工采样法。人工采样法的特点是采用人工取样的方式,抽取某一时点的样气进行分析。它的缺点是显而易见的:必须对气体进行人工取样,在实验室进行分析,其中操作者的操作技能对分析的精度有很大影响;只能单一成份地逐个进行检测分析,不具备多重输入和信号处理功能;分析费时费力,响应速度慢,效率低,难以实时地反映工况信息。 (2)连续采样法 连续采样法主要有红外线式、紫外线式和热导式三种测量方法。连续采样法的特点是采用不同测量方法的气体分析系统都由采样预处理系统和分析仪表两部分组成,采样探头将被测气体从烟道或管道中引出并进行预处理后,连续送入仪器的气体室中,分析仪器通过不同的方法完成气体浓度的测量。上述三种测量方法的系统集成方式、适应性和性价比有很大的区别。 应用最广泛的红外线式气体分析仪基于非色散红外吸收光谱(NDIR)的原理,其测量方法是基于气体对红外线进行选择性吸收的原理,当被测气体通过测量管道时吸收红外光源发出的特定频率光(与被测气体成分有关)使光强衰减,测出光强的衰减程度即确定了被测气体的浓度。 紫外线式气体分析仪是基于被测气体对紫外光选择性的辐射吸收原理,可以测量SO2、NOx、HCl、NH3等气体,但在同等性能、功能情况下仪器价格较高。 热导式气体分析仪的工作原理是利用各种气体不同的热导系数,即具有不同的热传导速率来进行测量的。当被测气体以恒定的流速流入分析仪器时,热导池内的铂热电阻丝的阻值会因被测气体的浓度变化而变化,运用惠斯顿电桥将阻值信号转换成电信号,通过电路处理将信号放大、温度补偿、线性化,使其成为测量值。热导式气体分析器的应用范围很广,如H2、Cl2、NH3、CO2、Ar、He、SO2、H2中的O2、O2中的H2和N2中的H2等等;它的测量范围也很宽,在0%~100%围内均可测量。热导式分析仪器是一种结构简单、性能稳定、价廉、技术上较为成熟的仪器。但是热导式分析仪器对气体的压力波动、流量波动十分敏感,介质中水汽、颗粒等杂质对测量影响较大,所以必须安装复杂的采样预处理系统。 (3)现场在线测量法 现场在线测量法中以半导体激光吸收光谱技术(DLAS)最为先进和最具有代表性。DLAS技术的特点是无需采样预处理系统,分析仪器直接安装在测量现场,通过一束穿过被测气体的激光光束来实现现场在线气体分析。DLAS技术可实现多种气体如CO、CO2、O2、HF、HCl、CH4、NH3、H20、H2S、HCN、C2H2、C2H4等的自动检测,适用于钢铁、冶金、石化、环保、生化、航天等各种领域。 虽然DLAS技术与其他吸收光谱气体分析技术都利用吸收光谱技术来实现气体分析,但由于DLAS技术采用了独特的“单线光谱”技术和调制光谱技术,可不受背景气体交叉干扰和粉尘、视窗污染的干扰,并可自动修正气体温度、压力等气体参数变化的影响,因此可以将分析仪器直接安装在测量现场,实现其他光谱吸收技术无法或很难实现的现场在线连续气体测量。 DLAS技术的优势在于能适应高温、高水分、高粉尘、强腐蚀性和高流速的被测气体环境,无需采样预处理系统,测量精度高,响应速度快。随着半导体激光气体分析技术的逐步成熟,相关光电元器件成本的显著下降,其性价比优势更为突出。在发达国家,半导体激光气体测量技术已逐步取代传统气体检测技术,在气体在线监测领域得到了日益广泛的应用。 二、DLAS技术简介 聚光科技研发生产的LGA-2000系列激光现场在线气体分析仪是基于DLAS技术开发的现场在线气体分析仪器。 DLAS(DiodeLaserAbsorptionSpectroscopy)是半导体激光吸收光谱技术的简称。该技术是利用激光能量被气体分子“选频”吸收形成吸收光谱的原理来测量气体浓度的一种技术。具体来说,半导体激光器发射出的特定波长的激光束穿过被测气体时,被测气体对激光束进行吸收导致激光强度产生衰减,激光强度的衰减与被测气体含量成正比,因此,通过测量激光强度衰减信息就可以分析获得被测气体的浓度。 九十年代后,半导体激光器和光纤元件发展迅速,性能大大提高,价格大幅下降,室温工作、长寿命(100,000小时)、单模特性和较宽波长范围的半导体激光器被大量地生产出来并投入市场,一些高灵敏度的光谱技术如frequencymodulationspectroscopy、cavityringdownspectroscopy等也逐渐成熟,DLAS技术开始被较多地应用于科学和工程研究,发达国家的一些仪器公司也开始将DLAS技术应用于气体监测。由于DLAS技术较传统光谱检测技术具有显著的技术优势而得到了迅速推广。 FocusedPhotonics,Inc.(FPI)是DLAS技术的主要开发厂商之一,FPI自主开发了拥有完全知识产权的全系列的激光气体分析产品,并广泛应用于钢铁、冶金、石化、环保、生化、航天等领域。 FPI通过聚光科技(杭州)有限公司将该技术引入中国,结合中国各行业的实际需求,开发了LGA-2000系列激光现场在线气体分析仪、LGA-3000系列激光采样在线气体分析仪,并且在钢铁、焦化、石化、电力、环保、航天等行业取得了良好的应用。 三、DLAS技术的特点 DLAS技术的特点主要表现为: 1.恶劣环境适应能力强,无需采样预处理系统,实现现场在线连续测量 激光在线气体分析仪采用DLAS技术独有的“单线光谱”原理,使用非接触式激光测量方法,测量仪器与被测量气体环境隔离,其分析测量不受测量环境中背景气体、粉尘以及环境温度和压力的影响,具有高温、高粉尘、高水份、高腐蚀性、高流速等恶劣测量环境的良好适应性,避免了传统气体分析系统必需的复杂的采样预处理系统,从而实现了现场在线连续测量。 2.克服了背景气体、水分和粉尘的吸收干扰,测量精度大大提高 DLAS独特的“单线光谱”技术、频率扫描技术、谱线展宽自动修正技术克服了背景气体、水分和粉尘的吸收干扰,修正了温度和压力等气体参数变化对气体浓度测量的影响,而且系统直接对现场气体进行测量,气体信息不失真。 相对于传统的气体测量技术,这些独特的测量技术和现场测量方法大大提高了测量的精度。 3.响应速度快,实现工业过程实时在线管理 DLAS技术进行气体分析不需采样预处理系统,节省了样气预处理的时间和样气在管道内的传输时间。系统可以达到毫秒级的响应速度,几乎是实时地反映过程气体浓度及其他参数变化状况,完全可以满足工业过程实时在线管理的需要。 4.可同时检测多种气体参数,能测量分析多种气体,应用面广,仪器发展潜力大 采用DLAS技术可同时在线测量气体的浓度、温度和流速等,并可实现多种气体如CO、CO2、O2、HF、HCl、CH4、NH3、H20、H2S、HCN、C2H2、C2H4等的自动检测,可广泛应用于钢铁、冶金、石化、环保、生化、航天等领域。较以往采用多种检测技术并进行系统集成而言,采用DLAS技术可大大简化仪器的结构,进而实现气体分析仪器的微型化、网络化(远距离数据无线传输)、智能化和自动化。 5.光纤传输特性使系统的应用更加灵活,性价比更高 DLAS技术采用的激光光源与常规光纤有良好的兼容性,所以可以将半导体激光器放置在中央处理单元内,把光纤输出的激光通过树形光纤分路耦合器同时耦合到多根光纤,不同的光纤把激光传递到几个不同的测量位置,对这几个不同位置的气体同时进行测量,从而实现分布式的在线气体监测分析。采用光纤后测量系统的抗电磁干扰能力、适应恶劣环境和防爆环境的能力非常强;整套测量系统的成本大大降低;与传统的气体分析系统相比,配置更加灵活,性价比也更高。

  • 【原创大赛】变压器油气体分析系统 原理简介

    【原创大赛】变压器油气体分析系统 原理简介

    变压器油气体分析系统 原理简介[align=center]概述[/align]采用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析方法,可以通过测定变压器绝缘油中各种特征气体种类和含量实时监测变压器的运行状态,判定变压器是否存在故障、故障的可能部位和性质。本文简述某[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法变压器油分析系统的基本原理。[align=center]背景介绍[/align][color=black]油浸式电力变压器在工业生产和生活中作用非常重要,需要长期可靠运行,变压器的实时状态监测、运行状态的评估、故障的预判和诊断比较重要。[/color][color=black]变压器长期正常运行过程中,绝缘油中存在的主要气体是一氧化碳和二氧化碳;绝缘材料发生部分放电的情况下,气体中会含有较多氢气和甲烷;变压器过热后气体中会含有较多乙烷乙烯,如果过热问题严重,气体中会存在较大含量的乙炔。[/color][color=black]。取样少量绝缘油,采用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]测定其含有的气体(氢气、甲烷、一氧化碳、二氧化碳、乙烷、乙烯、乙炔)的方法,较为简易和快速,是实际工作中常用的方法。[/color][align=center][color=black]方案介绍[/color][/align][color=black]本系统使Shimadzu公司的GC-2014型[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],配置有两个检测器——FID检测器和TCD检测器——和两根色谱柱。通过六通阀V的切换,实现两根色谱柱的不同组合,实现分离。系统待机状态如图1所示,此时C1柱和C2柱通过六通阀串联连接,载气由C1色谱柱流出后进入C2色谱柱。[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109232230569169_8438_1604036_3.png[/img][/align][align=center]图1 系统原理图[/align][color=black]待测的绝缘油经过处理,用气密性注射器吸取1mL其释放的气体,经由进样口注入到色谱柱C1内。在色谱柱C1中,样品大致被分成氢气、氧气、一氧化碳、甲烷合峰以及二氧化碳、乙烷乙烯乙炔两个部分。[/color][color=black]样品中的氢气、氧气、一氧化碳、甲烷等组分作为合峰流出并进入到C2色谱柱内。当上述组分全部进入C2色谱柱,六通阀旋转切换状态,此时C2色谱柱被封闭,所有组分被保留在C2柱中。二氧化碳、乙烷、乙烯、乙炔等组分被C1柱分离进入检测器。其中微量的CO2被镍触媒催化生成为甲烷,在FID检测器上被检测出来。[/color][color=black]待其出峰完毕,六通阀再次切换恢复至图1的状态,氢气、氧气、甲烷、一氧化碳依次流出C2色谱柱。氢气和氧气由TCD定量、微量一氧化碳经镍触媒转化之后,和甲烷一起在FID检测器上定量。[/color][color=black]系统谱图如下所示:[/color][img=,575,346]https://ng1.17img.cn/bbsfiles/images/2021/09/202109232232465638_1601_1604036_3.jpg!w575x346.jpg[/img][img=,559,265]https://ng1.17img.cn/bbsfiles/images/2021/09/202109232233105601_8303_1604036_3.jpg!w559x265.jpg[/img][align=center]小结[/align]变压器油分析系统原理简介。

  • 【原创大赛】气相色谱温室气体分析系统的原理

    【原创大赛】气相色谱温室气体分析系统的原理

    [align=center][size=24px][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]温室气体分析系统的原理[/size][/align][align=center][color=black]概述[/color][/align][color=black]某类型[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]温室气体(微量二氧化碳、甲烷、氧化亚氮)分析系统原理图解。[/color][align=center][color=black]一 背景介绍[/color][/align][color=#333333]温室气体指的是大气中能吸收地面反射的太阳辐射,并重新发射辐射的一些气体,如水蒸气、二氧化碳、大部分制冷剂等。[/color][color=#333333]温室气体的作用是使地球表面变得更暖,类似于温室截留太阳辐射,并加热温室内空气的作用。这种温室气体使地球变得更温暖的影响称为“温室效应”。水汽(H?O)、二氧化碳(CO?)、氧化亚氮(N?O)、氟利昂、甲烷(CH?)等是地球大气中主要的温室气体。[/color][color=#333333]本系统使用Shimadzu公司的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]GC-2014 ,配备有ECD和FID检测器,一次进样完成空气样品中微量(ppm级别)二氧化碳、甲烷、氧化亚氮的分析。[/color][align=center][color=black]二 结构原理[/color][/align][color=black]温室气体[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析系统结构如图1所示,系统由预切色谱柱(PC)、自动十通阀、主分析柱(C1)和四通阀(V2)组成(省略系统中的阻尼平衡柱)。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]系统分析程序对十通阀和六通阀进行精确、定时的切换,改变两根色谱柱的反吹和连接状态,实现样品的分离测定。[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/10/202110012231460495_3267_1604036_3.jpg[/img][/align][align=center]图1 温室气体分析系统硬件结构(系统待机状态)[/align][align=center][color=black]三 工作流程[/color][/align][color=black]该系统的工作流程如下:[/color][color=black]进样:[/color][color=black]样品通入十通阀完全替换掉定量环中残余气体后,十通阀旋转36°,此时样品进样至色谱柱PC中,此时系统状态如图2所示:[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/10/202110012231463101_7670_1604036_3.jpg[/img][/align][align=center]图2 进样状态下的系统结构图[/align][color=black]此时系统的简化结构图如图3所示:[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/10/202110012231466179_7921_1604036_3.jpg[/img][/align][align=center]图3 进样状态下系统结构简化示意图[/align][color=black]空气样品在预切色谱柱(PC)内各个组分的分布状态,如图4所示:[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/10/202110012231467097_3786_1604036_3.jpg[/img][/align][align=center]图4 PC色谱柱内组分分布状态[/align][color=black]在预切色谱柱(PC)内样品中各组分被分离成为空气+一氧化碳、甲烷、二氧化碳、氧化亚氮和重烃类+水等几个部分。[/color][color=black]其中的一氧化碳、甲烷、二氧化碳经由C1色谱柱的继续分离(各个组分在C1柱内的出峰顺序与PC柱相同),然后依次进入镍触媒,样品中的二氧化碳被转化为FID容易检测的甲烷,并在FID检测器被定量。[/color][color=black]反吹:[/color][color=black]当样品中的氧化亚氮流入C1色谱柱后,系统控制十通阀再次旋转36°,PC色谱柱的载气流向发生变化,PC柱内的重烃类和水被反吹经由Vent端口放空,系统状态如图5所示:[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/10/202110012231468113_1628_1604036_3.jpg[/img][/align][align=center][color=black]图5 系统反吹状态[/color][/align]切换检测器当二氧化碳组分从C1柱流出口,系统控制V2阀旋转90度,将ECD检测器切换进入流路,系统状态如图6所示:[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/10/202110012231469128_4244_1604036_3.jpg[/img][/align][align=center]图6 切换检测器状态下系统的结构[/align][color=black]此时系统的简化结构如图7所示:[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/10/202110012231469742_1936_1604036_3.jpg[/img][/align][align=center]图7 切换状态下的系统简化结构图[/align][color=black]此时微量的氧化亚氮进入ECD检测器出峰并被定量。[/color][color=black]系统的总体谱图,如图8所示。[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/10/202110012231470935_1938_1604036_3.jpg[/img][/align][align=center]图8 系统谱图[/align]

  • 【分享】金属中气体分析

    金属中气体分析 gas analysis in metals   金属中的气体主要是氧、氢、氮,通常以金属化合物、固溶体、气孔或气泡形式存在。气体的含量即使低至10ppm,对许多种金属的力学和物理性能仍有影响。因此超纯金属和半导体材料等中的气体含量甚至要低至 ppb级。气体分析已有50年的历史,约在30年代在精炼钢工艺过程中研究脱氧剂效果时,开始分析金属中气体。最初应用氢还原法测定钢铁中氧,应用真空加热法测定钢中氢等。1945年以后随着真空技术的发展,用真空熔融法测定氧,准确度大为提高。常用的气体分析方法有以下几种。   熔融抽取法 高温熔融抽取法应用最广,可单独或同时测定氧、氢、氮。已应用于分析钢铁、铁合金、有色金属及其合金、贵金属、难熔金属、稀土金属、半导体材料中的气体。金属在真空或惰性气体介质中,在高温条件下抽取气体。金属中的氧化物热稳定性高,加热难以完全分解,须用石墨碳还原成一氧化碳形式抽取,至于氢和氮则分别以氢分子和氮分子的形式抽取。首先加热石墨坩埚,达到2000℃以上,使之脱气。然后降低至操作温度测定空白值,空白值要低并稳定。投入试样抽取气体,必要时加浴料。脱气温度、时间,操作温度,浴料种类和用量,试样重量,抽取时间等等,可采用实验法找出最佳条件。真空熔融法准确度高,是气体分析的标准方法,但设备和操作繁杂,分析时间长,真空检漏费事。采用惰性气体载流,则设备简单,操作方便,分析速度快。分析的准确度和灵敏度取决于所用装置的结构和测定仪器的精度、操作条件、空白值等。试样须仔细制备,确保表面光洁,无发纹、裂纹、夹杂物、油污等。氢在金属中易于扩散逸出,最好制样后保存在液氮中,并及时分析。此法灵敏度一般可达ppm级、0.1ppm级或更高。  用高温熔融抽取法抽出的气体通过加热的氧化铜或五氧化二碘,使一氧化碳氧化为二氧化碳,氢氧化为水,以便分离和测定。测定气体的方法有:①[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法。将抽取的气体转移到硅胶色谱柱或分子筛色谱柱,用氩作载气,将一氧化碳、氢、氮分离,进入钨丝热导池测量,可同时测定氧、氢、氮的含量。②冷凝微压法。在真空系统内测定除去水汽和二氧化碳气前后的压差,计算氢、氧的含量。③质谱法。将抽取出的气体导入气体分析用的质谱计,测定氧、氢、氮。④库仑法。将二氧化碳导入一定pH的微碱性高氯酸钡电解液中,由于吸收二氧化碳而使pH改变,最后用恒定脉冲电流滴定,使pH复原,从消耗的电量求出含氧量。⑤电导法。电导池中,氢氧化钠溶液吸收二氧化碳后,电导发生变化,测量电导的改变,求出含氧量。⑥红外吸收法。将极性分子一氧化碳或二氧化碳导入红外线吸收池内,按红外线吸收量测定含氧量。⑦非水滴定法。将二氧化碳导入非水溶剂丙酮,用氢氧化钾甲醇溶液滴定,求出氧量。   化学分析法 氢还原法 用于粉末样品中氧和氮的测定。样品在高纯氢气流下加热还原,氧与氢反应生成水,可用重量法或卡尔菲休容量法测定。氮与氢反应生成氨,在酸性介质中吸收后用容量法、光度法、库仑法或离子选择性电极测定。   燃烧法 用于金属氢化物或含氢量高的金属。试样在高温下通氧燃烧,氢与氧生成水,再行测定。   凯氏法定氮 将试样溶于酸,氮转化为氨,在碱溶液中用蒸镏法分离氨,吸收于酸溶液中。测定方法同氢还原法。此法操作简单,适用范围广,灵敏度可达10-6左右。   其他方法 此外还有测定氧的硫化法、卤素法、溴碳法、汞齐法、铝法等;测定氮的氧化熔融法、还原碱溶法、卤化法、电解法等等。  物理分析法 试样可不经加热抽取或化学反应,直接用物理分析方法测定,主要有放射化分析法(活化法),同位素稀释法,火花源质谱法,发射光谱法等。物理法灵敏度较高,但设备昂贵。  固体电解质浓差电池法 此法用于监测熔化了的金属和合金中的氧、氮、氢的含量,能在冶炼过程中直接连续测定。   金属表面的气体分析 分析表面和近表面的气体对研究金属材料是极关重要的。方法有带电粒子束活化分析法和瞬发辐射分析法,利用光子束与电子束的表面分析仪器如化学分析用的电子能谱(ESCA)、紫外光电子能谱(UPS),俄歇电子能谱(AES),电子能量损失谱(LEED)和穆斯堡尔谱,二次离子质谱(SIMS),扫描电镜(SEM)等。

  • 实验室气路系统及实验室常用气体介绍

    在各大科研实验室中,不管是为了实验溶解试样的燃气还是分析仪器所需要的高纯载气,都需要通过实验室气路系统进行集中供气,这样不仅是使用方便,还有保护气体纯度、提高用气安全等特点。  实验室气路系统:  实验室气路系统,也称实验室集中供气系统工程,即从气瓶至仪器终端之间连接管线,集中供气,主要由气源(一般为气体钢瓶)、切换装置、管道系统、调压装置、用气点、气体泄漏监测报警系统组成。对于一些易燃易爆气体,如氢气、乙炔等,可能在设计和施工过程中稍有差异,需加入阻火器防止火苗串入。  实验室常用气体:  在实验室中常见的气体大概分两大部分:一部分是为了实验室处理和溶解试样供给的燃气,另一部分是实验室各分析仪器作载气使用的高纯气体。下面咱们就针对这两种气体做一个简单介绍。  1、实验室常用燃气:  在实验室中,可以提供热源的气体一般是:天然气、煤气、液化气等,使用这种燃气主要就是用于试样熔融分解和一些玻璃器皿制造,也能用在煤气沙浴。  它的使用场所一般是在试验台或者实验室通风柜中,但是在试验台上使用,要保证台面耐高温和设计[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]或其他排气装置,同样也具有耐高温的性能。以上可燃气体都具有高危险性,进行气体管路的设计和安装时要达到国家的要求标准、行业规范,非专业工程师不得随意改动和安装,以免气体泄漏,造成事故的发生。  2、实验仪器高纯气体:  常规情况下,我们在实验室中接触到的高纯气体有:氧气、氢气、氩气、氮气和乙炔等,这些高纯气体不同的等级代表着不同的纯度,可根据实验需求或者仪器使用要求来选择适合的气体纯度级别。  实验室高纯气体一般存放在高压气体钢瓶当中,使用时通过实验室气路系统进行减压,达到实验或仪器所需的压力值。像乙炔、乙烷、氢气等都是易燃易爆气体,一旦泄露对人体和环境有极大的危害,所以对气瓶的存放有严格要求,必须有独立的存放空间,不得和助燃气体混放、远离火源等。当然在使用任何气体时,都需要轻拿轻放,因为气瓶中压力很大,如果不小心磕碰,随时都会造成危险。投放使用之前检查好钢瓶的外观是否有破损、严重锈迹、阀门是否有泄露,出气口是否有灰尘杂质,出口头垫片是否老化,必要时要做好清理和更换

  • 【原创大赛】关于气相色谱仪气体进样系统吹扫优化-宁波分析测试团队

    【原创大赛】关于气相色谱仪气体进样系统吹扫优化-宁波分析测试团队

    [align=center][b] [/b][/align][align=center][b]关于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]气体进样系统吹扫优化[/b][/align][align=center]李久龙[/align][align=center](宁波中金石化有限公司)[/align][align=center][b] [/b][/align][b]一、仪器改造优化背景:[/b]我们公司有多台五阀七柱的快速炼厂气[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],分析的主要样品是炼厂的一些气体样品,包括:瓦斯气、循环氢气、纯氢、氮气、氧气和水煤气(合成气)等。由于样品种类及产生的装置不同,气体的清洁度和组成都不一致。很多样品含有高浓度的硫化氢、氯化氢、固体小颗粒、水分以及碳五、碳六等重组分。在上述样品分析的环境里,我们的仪器的气体进样系统会经常发生堵塞。[b]二、堵塞原因分析:[/b]产生堵塞的原因有几个,分析如下:1、由固体微小颗粒形成的进样系统堵塞;此种情况主要发生在六通阀进样前的管线处;2、由于含油腐蚀性的气体组分产生的材料腐蚀,导致系统堵塞;此种情况发生在一些未钝化处理的材料处,导致进样阀处堵塞;3、由于样品中重组分C5+以上组分发生的冷凝结焦及积碳形成的管路堵塞;此种情况主要发生在进样阀后端气体排放管线处,因为此处没有阀箱加热,样品冷却导致的。[b]三、优化处理措施:[/b]1、炼厂气分析仪阀图:[img=,690,398]https://ng1.17img.cn/bbsfiles/images/2019/07/201907011655389452_6902_3389662_3.png!w690x398.jpg[/img]2、优化措施:2.1、根据产生堵塞的原因,结合阀图的流路,决定在仪器进样口处增加一条吹扫管线,做完样品后使用吹扫气进行吹扫,将流路中的重组分吹扫出去,避免在定量环、进样阀及尾部排气线处进行残留从而导致堵塞;2.2、定期更换进样口处2um过滤网,有效的过滤掉样品气中的微小固体颗粒;3、改造所需材料:1/16 in铜管线3米、1/16in卡套连接件若干、截止阀一个;4、改造后仪器图片:4.1改造后仪器后面板图:[img=,690,509]https://ng1.17img.cn/bbsfiles/images/2019/07/201907011655506212_322_3389662_3.png!w690x509.jpg[/img]4.2改造后进样口连接处图:[img=,565,413]https://ng1.17img.cn/bbsfiles/images/2019/07/201907011656054809_695_3389662_3.png!w565x413.jpg[/img][b]四、改造后结论:[/b]仪器通过增加进样口吹扫管线,大大减少了仪器进样系统堵塞的频率。原来10-15天就会发生堵塞情况,现在安装吹扫管线后半年了,没有发生进样系统堵塞的现象。效果非常明显,可以减少仪器维修的频率又增加了仪器的使用效率。且如此改造比外加管线美观,整洁。

  • 水泥行业过程控制气体分析仪

    水泥行业按其测点温度的不同分为常温气体分析仪和高温气体分析仪。常温气体分析仪主要包括:预热器C1出口常温气体分析仪、窑尾电收尘入口常温气体分析仪、收尘器出口常温气体分析仪、煤磨煤粉仓常温气体分析仪。高温气体分析仪包括分解炉出口高温气体分析仪和窑尾烟室高温气体分析仪。按其功能又可分为优化燃烧和操作工艺,如分解炉出口高温气体分析仪、窑尾烟室高温气体分析仪、预热器C1出口常温气体分析仪和安全生产类:窑尾电收尘入口常温气体分析仪、收尘器出口常温气体分析仪、煤磨煤粉仓常温气体分析仪。

  • 气相色谱分析永久性气体(双阀三柱系统)?

    气相色谱分析永久性气体(双阀三柱系统)?

    我们公司采用岛津GC2010PLUS分析制氢工艺的CO/CO2/CH4/O2/N21. 分析系统样品经过十通阀一进样后,首先通过十通阀一进行预分离,O2,N2切换进入分子筛柱,分离后,通过TCD进行检测。样品中的CO, CO2通过六通阀二切换进入Porapak柱,然后经过分离后,经过转化炉,通过FID可以检测出气体中微量的CO, CO2。请问:可否帮忙把整个样品气分析过程描述出来?如何预处理?(预处理过程气体走向)?预处理分离的两路气体走向和气体组分?接着又是怎样分离的? http://ng1.17img.cn/bbsfiles/images/2015/06/201506051457_548925_1855673_3.pnghttp://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gifhttp://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gifhttp://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif

  • 分析实验室气体分析仪与气体检测仪不同

    1.仪器结构的不同 气体检测仪结构较简单,只包括探头(传感器)及传感器信号转换电路部分。而气体分析仪不仅在内部装有探头(传感器)而且还有一整套气路系统,即将样气引入到仪器内部,并且再引出仪器放空或回收的全套气路系统。 2.检测方式不同 气体检测报警仪利用探头直接暴露在被测的空气中或样气环境中进行检测。而气体分析仪是将被测气体(样气)通过特殊方式引入到仪器内部进行测定,然后再引出仪器外放空。 3.对测定条件的控制方式不同 气体检测报警仪不设有样气工艺技术条件的调整及控制部分,同时它也完全不考虑样气存在的环境条件,直接进行检测。 气体分析仪内部所配套的一整套气路系统及外部配套设备组成了一套较完整的化工工艺流程,气体分析仪内部对样气的工作条件进行全方位调整控制,以达到传感器正常稳定工作的目的,这是气体分析仪能够获得准确测定数据的保证。 4.完成测定全过程的操作方法不同 气体检测报警仪在应用时,只需将仪器放置于被测气氛内,仪器即可显示数值。而气体分析仪必须将样气仔细地引入到仪器内部,再进行工艺技术条件的严格调整,如温度、压力、流量等,只有当操作人员将仪器调整直到实现一个稳定的化工过程后,才能获得准确的测定数据。而在此以前所得到的数据是不正确的,必须弃之不用。 5.在检测过程中,对排除干扰因素考虑的方式不同 气体检测报警仪是将传感器直接置于大环境气氛中测定的,仪器结构设计及在实际使用检测过程中并不考虑大环境气氛中有无干扰测定的因素,并且不具备排除各种干扰因素的设计能力。而气体分析仪在设计选型及使用检测时,必须充分考虑各种影响测定的内部及外部因素,并且,要认真逐一排除,只有这样才能确保检测数据的准确性和真实性。否则,不适当地忽略了某一影响因素,对检测来说都是不被允许的和不能被接受的。 6.数据的准确度不同 气体检测仪只能提供定性分析结果和较为粗略的定量分析数据,这种仪器所显示的数据经不起推敲,不能进行误差分析(因只有分析数据偏离真值很小时才能谈到“误差”),因此,根本不能作为准确的分析数据确定(决定)重要工艺改进调整的措施。而气体分析仪则是一种严格的计量器具,在进行定量分析时,能够提供出十分准确的数据C这种数据可以作为气体生产及安全生产改进和提高的依据,用它来指导及进行生产管理,质量管理及企业管理。甚至于,这种数据可以作为司法刑侦工作的重要依据,利用它来打官司,确定是非界限。

  • 已有7890B GC System加装气体成分分析系统

    已有7890B GC System加装气体成分分析系统

    群里的资料太多还在看。目前刚好在负责了气体成分分析技术的建立。分享一下经验和进度。我司目前有2台Agilent 7890B [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]。其他零部件情况为:自动进样器,分流不分流进样口,1701柱子和DBWAX柱子,FID检测器。领导交代九十月份搞定,啥资料也没给,只提示了某公司有这个技术,并且他之前在学校也接触过这个。原想查一个月资料,先查一下锂电池循环、储存过程会产生哪些气体。再去搜索怎么实现这个分析技术。看了一些公众号,加上领导发的一张电池产气成分结果对比图,大概确定了哪些气体。当时还在看《化验员读本》里关于色谱的部分,快速过完该部分后,就去搜索气体成分分析技术,主要为论坛、文献还有专利。查了一段时间,文献还没有来的及查。专利也只确定了US20100154511A1,CN202383115U两篇,英文专利还未看,中文专利了解了下主要要改装的零配件,这篇专利里的气体分析装置,当时觉得挺复杂的,不过对我了解该技术还是提供了较大的帮助。论坛内容太多,加上小木虫,总的态度是,还是应该要联系专业人员。于是我就开始拨打400了。后来是负责我司[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]销售的那个工作人员和我联系的。他询问了我要测的气体有哪些,最大量多少,最低量多少。我是个憨憨~根据之前查的,要测的气体为CO,CO2,Ne,Ar,O2,N2,C1-C6,但最大量,最低量我一脸懵,后来把那张结果对比图发给销售了,并解释了下某些大概占比多少,对方表示明白先和工程师沟通一下。我还从销售那学到了一些东西,人生处处是老师啊。对方首先提出了个方案,电池气体主要为鼓包气,根据他们鼓包气分析经验,建议我们再购买一台Agilent 990 微型[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]系统。发来产品说明书,看了表示真的很强大,于是给领导提了。领导说,太贵了,不买,设备要20万,质谱也可以测,找几种气体,先进入测试看看,问一下怎么操作,他之前学校就是这样的,还发了一篇研究甲烷部分氧化反应的文献给我。此时有个同事建议可以跟测试过电池气体成分的客户咨询。于是我一边联系客户,一遍继续和A沟通.A那边沟通的结果是,[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]改装费用5-6万左右,电池鼓包气量较少,相对定量环过小,所以测试效果不会很理想,且切换装置较麻烦繁琐。[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/Q-TOF也可以测,不用改装什么,使用气瓶针就可以了(有没有老师可以发个图,我还没见过这个),但是大材小用了。所以最后还是请他再跟工程师沟通一下,他那边也表示多出几个方案到时候沟通一下。客户那边沟通的结果是:他们公司也是7890B,之前也是想改装,后来改装难度和费用比较高,所以购买了一台新色谱专测气体。加装TCD(好几万),一个阀箱,两个阀(6通/16通),(适用气体的)进样口,1根毛细管,3根填充柱,柱两端接口也要更换。并且测试气体品也不是很精准,测试气体后也不建议再测试液体样品,会污染气体的进样口,改造费要10万以上。目前就在等A那边出方案,销售人挺不错的,我也会过一两天主动询问情况,加强交流。领导的话感觉经常要做阅读理解,他说的这个我真的不太懂意思。明明我们自己这边有个交接的销售。[img=,503,488]https://ng1.17img.cn/bbsfiles/images/2020/07/202007151453247605_7706_3958916_3.png!w503x488.jpg[/img]

  • 【转】常用气体分析仪的各种分析原理介绍

    测量气体分析仪的流程分析仪表。在很多生产过程中,特别是在存在化学反应的生产过程中,仅仅根据温度、压力、流量等物理参数进行自动控制常常是不够的。例如,在合成氨生产中,仅控制合成塔的温度、压力、流量并不能保证最高的合成率,必须同时分析进气的化学成分,控制氢气和氮气的最佳比例,才能获得较高的生产率。又如在锅炉的燃烧控制中除需控制燃料与助燃空气的比例外,还必须在线分析烟道的化学成分,据此改变助燃空气的供给量,使炉子获得最高的热效率。此外,在排出有害气体的工厂中,也必须采用气体分析仪对有害气体进行连续监视,以防止危害工人健康或污染环境或引起爆炸等恶性事故。由于被分析气体的千差万别和分析原理的多种多样,气体分析仪的种类繁多。常用的有热导式气体分析仪、电化学式气体分析仪和红外线吸收式分析仪等。   1、热导式气体分析仪   一种物理类的气体分析仪表。它根据不同气体具有不同热传导能力的原理,通过测定混合气体导热系数来推算其中某些组分的含量。这种分析仪表简单可靠,适用的气体种类较多,是一种基本的分析仪表。但直接测量气体的导热系数比较困难,所以实际上常把气体导热系数的变化转换为电阻的变化,再用电桥来测定。热导式气体分析仪的热敏元件主要有半导体敏感元件和金属电阻丝两类。半导体敏感元件体积小、热惯性小,电阻温度系数大,所以灵敏度高,时间滞后小。在铂线圈上烧结珠形金属氧化物作为敏感元件,再在内电阻、发热量均相等的同样铂线圈上绕结对气体无反应的材料作为补偿用元件(图1)。这两种元件作为两臂构成电桥电路,即是测量回路。半导体金属氧化物敏感元件吸附被测气体时,电导率和热导率即发生变化,元件的散热状态也随之变化。元件温度变化使铂线圈的电阻变化,电桥遂有一不平衡电压输出,据此可检测气体的浓度。热导式气体分析仪的应用范围很广,除通常用来分析氢气、氨气、二氧化碳、二氧化硫和低浓度可燃性气体含量外,还可作为色谱分析仪中的检测器用以分析其他成分。   2、电化学式气体分析仪   一种化学类的气体分析仪表。它根据化学反应所引起的离子量的变化或电流变化来测量气体成分。为了提高选择性,防止测量电极表面沾污和保持电解液性能,一般采用隔膜结构。常用的电化学式分析仪有定电位电解式和伽伐尼电池式两种。定电位电解式分析仪(图2)的工作原理是在电极上施加特定电位,被测气体在电极表面就产生电解作用,只要测量加在电极上的电位,即可确定被测气体特有的电解电位,从而使仪表具有选择识别被测气体的能力。伽伐尼电池式分析仪(图3)是将透过隔膜而扩散到电解液中的被测气体电解,测量所形成的电解电流,就能确定被测气体的浓度。通过选择不同的电极材料和电解液来改变电极表面的内部电压从而实现对具有不同电解电位的气体的选择性。   3、红外线吸收式分析仪   根据不同组分气体对不同波长的红外线具有选择性吸收的特性而工作的分析仪表。测量这种吸收光谱可判别出气体的种类;测量吸收强度可确定被测气体的浓度。红外线分析仪的使用范围宽,不仅可分析气体成分,也可分析溶液成分,且灵敏度较高,反应迅速,能在线连续指示,也可组成调节系统。工业上常用的红外线气体分析仪的检测部分由两个并列的结构相同的光学系统组成。   一个是测量室,一个是参比室。两室通过切光板以一定周期同时或交替开闭光路。在测量室中导入被测气体后,具有被测气体特有波长的光被吸收,从而使透过测量室这一光路而进入红外线接收气室的光通量减少。气体浓度越高,进入到红外线接收气室的光通量就越少;而透过参比室的光通量是一定的,进入到红外线接收气室的光通量也一定。因此,被测气体浓度越高,透过测量室和参比室的光通量差值就越大。这个光通量差值是以一定周期振动的振幅投射到红外线接收气室的。接收气室用几微米厚的金属薄膜分隔为两半部,室内封有浓度较大的被测组分气体,在吸收波长范围内能将射入的红外线全部吸收,从而使脉动的光通量变为温度的周期变化,再可根据气态方程使温度的变化转换为压力的变化,然后用电容式传感器来检测,经过放大处理后指示出被测气体浓度。除用电容式传感器外,也可用直接检测红外线的量子式红外线传感器,并采用红外干涉滤光片进行波长选择和配以可调激光器作光源,形成一种崭新的全固体式红外气体分析仪。这种分析仪只用一个光源、一个测量室、一个红外线传感器就能完成气体浓度的测量。此外,若采用装有多个不同波长的滤光盘,则能同时分别测定多组分气体中的各种气体的浓度。   与红外线分析仪原理相似的还有紫外线分析仪、光电比色分析仪等,在工业上也用得较多。

  • 红外气体分析仪的一些基本结构组成

    7.1.2.1 光源 光源的作用是产生两束能量相等而又稳定的平行红外光束,光源多由镍锗丝制成。辐射区的光源有两种,一种是单光源,一种是双光源。单光源只有一个发光元件,经两个反光镜构成一组能量相同的平行光束进人参比室和测量室。而双光源结构则是参比室和测量室各用一个光源。与单光源相比,双光源因热丝放光不尽相同而产生误差。 7.1.2.2 切光片 切光片在电机带动下对光源发出的光辐射信号做周期性切割,将连续信号调制成一定频率(一颇为2-25Hz)的交变信号(一放为脉冲信号),以避免检测信号发生时间漂移。 7.1.2.3 滤光部分 吸收或滤去可被干扰气体吸收的红外线.去除干扰气体对测量的影响。滤光系统通常有两种,一种是充以干扰气体的滤光室,另一种是干涉滤光片。其中干涉滤光片能使红外分析仪根据需要更换干涉滤光片,以满足检测不同气体的需要.提高仪器的通用性。 7.1.2.4 测量室和参比室 测量室和参比室的两端用透光性能良好的caF2晶片密封。参比室内封人不吸收红外辐射的惰性气体,测量室则连续通入被测气体。测量室的长短与被测组分浓度有关,根据比尔定律,气体浓度低,测量信号小,采用的测量室较长,一般测量室的长度为0.3—200 mm。在测量腐蚀性气体时,一般采用镀膜气室。比如:防爆型超声波液位计 7.1.2.5 检测室 检测室(检测器)的作用是用来接收从红外光源辐射出的红外线,并转化成电器信号。大多数红外线分析器都采用电容微音器式检测器。检测器的两个接收室分别无有待测气体和惰性气体的混合物。两个接收气室间用薄金属膜片隔开;因此,当样品室发生了吸收作用时,到达接收室试样光束比另一接收气室的参比光束弱,于是检测器参比接收室中的气压大于样品接收室的气压。而金属隔膜和一个固定电极构成了一个扳动电容的两个极板。此电容器的电容变化与试样室内吸收红外线的程度有关。故测量出此电容量的变化.即可确定出样品中待测气体的成分。 7.1.2.6 微机系统微机系统的任务是将红外探测器的输出信号进行放大变成统一的直流电流信号,并对信号进行分析处理,将分析结果显示出来,同时根据需要输出浓度极值和故障状态报警信号:对信号处理包括:干扰误差的抑制,温漂抑制,线性误差修正,零点、满度和中点校准,量程转换、量纲转换、通道转换、自检和定时自动校准等。 返回——仪器仪表网

  • 批量求购或定制高温真空炉抽真空和充惰性气体全套气路装置

    批量求购或定制高温真空炉抽真空和充惰性气体全套气路装置

    1. 概述 针对目前常用的高温加热炉保护气体管路使用中存在的不便性,采用改进措施和配套装置,使得惰性气体管路的使用更方便、更安全和更直观。2. 常用保护气体管路结构 高温真空炉,如石墨加热炉和钨丝加热炉等,在工作过程中都需要惰性气体保护。常需对炉体先抽真空后充惰性气体,并使真空炉内惰性气体的气压略大于大气压,在整个升降温过程中真空炉始终处在正压状态,以避免发热体和工件氧化。保护气体管路结构如图 2-1所示。 http://ng1.17img.cn/bbsfiles/images/2017/04/201704021923_01_3384_3.png图 2-1 高温加热炉常用保护气体管路示意图3. 常用保护气体管路使用步骤 (1)使真空腔处于闭合状态,关闭所有阀门。 (2)开启真空泵和开关阀2,对高温加热炉真空腔开始抽真空。 (3)当真空腔内的真空度达到要求真空度时,一般为20Pa左右,先后开启气瓶减压阀和开关阀1,调节浮子流量计,用最小气体流量对真空腔进行充气,同时真空泵抽掉充气管路中的残存大气。 (4)按顺序先后关闭开关阀2和真空泵,调节浮子流量计增大充气流量,使真空腔内惰性气体较快速度接近大气压。 (5)当充气使得真空腔内气压达到放气阀出气压力时,调节浮子流量计到合适的最小流量,使充入的气体经过真空腔由放气阀排出,形成单向流动。 (6)保持浮子流量计调节位置不变,真空腔内始终处于恒定的正压环境,然后开始高温加热炉的升降温过程和其它试验操作。4. 问题提出 上述的高温真空炉保护气体管路在实际工程使用中存在以下问题: (1)充气管路中调节气体流速的浮子流量计真空密闭性很差,在负压状态下的充气过程中,大气会经浮子流量计进入到真空腔内。如果将充气管路和浮子流量计与真空腔一起抽真空,浮子流量计的泄漏会造成真空腔真空度始终无法达到高温加热炉腔体的真空度要求。 (2)当腔内气压达到设定正压,放气阀开始放气。但放气阀的放气过程并不直观,无法准确观察到放气现象。尽管有些单向放气阀带有放气哨音,但腔体始终处于正压放气状态,连续的放气哨音反而成为一种噪音。如果采用更复杂和准确的压力仪表来进行检测,会增加相应的成本。 5. 新型管路要求 所需求的加热炉保护气体管路如图 5 1所示。http://ng1.17img.cn/bbsfiles/images/2017/04/201704021924_01_3384_3.png 图 5-1 新型高温加热炉常用保护气体管路示意图 具体要求如下: (1)将浮子流量计改进为真空密封型的浮子流量计,便于将充气管路中的残存气体抽取干净,同时保证充气过程中的惰性气体纯度,避免外部空气渗入。如果不考虑气体流量的直观性调节,也可以增加两路充气管路,一路用开度较大的调节阀来进行快速充气,以满足较大真空腔体对快速充气的要求;另一路用开度较小的针阀控制充气,以满足较小体积真空腔体的充气要求,以避免腔体内部过压太快。 (2)将真空腔上两个放气阀更换为两个不同量程的单向限压阀,如6Psi和9Psi,其中6Psi限压阀保证只有真空腔内气压大于大气压6Psi时才能导通放气,9Psi限压阀保证只有真空腔内气压大于大气压9Psi时才能导通放气。这样配置两个不同量程单向限压阀的作用,一是将真空腔内的惰性气体正压严格控制在6~9Psi之间,二是当其中6Psi放气阀发生堵塞失效正压增加后,9Psi放气阀导通起到安全保护作用,控制真空腔内正压不至于过大。 (3)分别在两个不同量程的单向限压阀出气端连接上两个气泡式流量指示计,从两个限压阀流出的气体通过导管导入油内,以气泡形式指示出气体的流出和流量大小。 (4)如果高温真空炉内不要求有惰性气体正压形式,充入的惰性气体直接经过加热炉后直接以一个大气压压力直接排出炉外。这样可以不安装两个不同量程的单向限压阀,而是在相应接口处直接安装上两个气泡式流量指示计,或只安装上一个气泡式流量指示计而另一接口密封,这样排出的惰性气体可以通过气泡直接观察。在这种情况下,这种气泡式流量指示计就需要兼顾负压功能,即在抽真空状态过程中气泡式流量指示计自动密闭起到关闭阀门的作用,而在充惰性气体过程中当真空腔内气压接近一个大气压式自动打开排出气体并由气泡显示流量大小。6. 效果总结 改进后的管路可以更有效的消除充气管路内残留大气和浮子流量计大气泄漏所引起的真空腔内惰性气体不纯问题,惰性气体防护作用更有效。 通过改进后的高温加热炉保护气体管路,保护气体管路可以应用于有设定正压要求的高温加热炉系统,也可以应用于无正压要求的高温加热炉。 改进后的管路可以精确控制真空腔内惰性气体气压范围,提高真空腔内气压保护的安全性,可以直观的观察到真空腔内惰性气体的气压变化过程和速度,重要的是整体结构比较廉价。

  • Gasmet便携式傅里叶变换红外气体分析仪

    [color=#1c2a23]GASMET DX4045主要用于现场环境空气的快速定性、定量分析[/color][color=#1c2a23]可同时定量分析几十种有机、无机气体[/color][color=#1c2a23]提供丰富的气体组分光谱库进行定性搜索[/color][color=#1c2a23]分析范围宽、检出限低[/color][color=#1c2a23]现场单人无线操作[/color][color=#1c2a23]主要应用于环境应急事故现场监测分析、公共安全监测以及劳动卫生、商检、消防、防化等领域[/color][color=#1c2a23]芬兰GASMET DX4045 是真正意义上的便携式现场傅立叶变换红外气体分析仪,它将实验室分析技术真正运用到了应急现场环境气体或气态挥发物检测中。GASMET DX4045操作简单,结构牢固,分析功能强大,特别适用于如应急事故、战场、抢险救灾、事故灾害、卫生防疫、消防等恶劣现场环境。直接采样:DX4045无需样品预处理,内置在主机内的抽气泵直接抽取现场环境气体。也可根据现场情况采用灵活多样的采样方式。操作简单:通过对掌上无线中文PDA的单键操作,即可完成采样、定量分析和数据存储。多组分快速定量:可在几秒钟内同时给出50个气态组分的定量浓度值。未知气体快速侦别:NIST5500种红外光谱图海量定性搜索,Gasmet公司300多种定性、半定量光谱图。并可不断升级。低检出限:采用高灵敏MCT半导体制冷检测器,使得仪器对大多数气态物质有极低的检出限。多种工作方式:DX4045适用于现场单兵工作、样品分析、车载连续监测、无人值守监测等多种工作方式。软件功能强大:GASMET分析软件CALCMET全中文操作界面,具有多气体定量、定性、未知组分判定、光谱库搜索、光谱匹配、光谱存储、历史数据回放、用户自标定光谱、自建库、连续测量设定等丰富的功能, 使得DX4045成为现场气体分析的强大工具。低运行成本:DX4045除了准确定量时需用氮气进行标定外,无需其他耗材。为应急监测量身设计:适用于现场单兵工作,无线蓝牙PDA可进行快速连续采样、分析,一次可同时得到50个气态组分的定量分析结果,并同时进行数据和光谱的存储。PDA内置数码相机和GPS,一个人即可将测量结果,事故现场的照片发送给现场指挥。GASMET DX4045的结构牢固可靠,采用专利技术的GICCOR高透过率迈克尔逊干涉仪是当今市场上最可靠的干涉仪,坚固的结构超过军事振动标准。光学材料防潮防湿,样气室防腐蚀,直接采样不需样品预处理,内置充电电池或220V交流两种供电方式。无线PDA(中文界面)操作简单直观,中文分析软件CALCMET功能强大,一次可同时给出50个组分的定量分析结果。还可以进行未知气体快速定性、半定量。GASMET DX4045 出厂标定组分采用精确的单组分标定,以实现准确定量分析。每种组分可进行多点标定以保证线性。标定浓度可从ppm 级到百分含量级。分析精度为相应标定量程的±3%。只需一次初始标定,以后无需再次标定。GASMET DX4045 为不同应用领域的用户提供相应的出厂组分标定包用于多组分定量分析。如遇特殊情况,也可根据用户需要自行出厂标定。GASMET DX4045 配有不同应用领域的气体组分光谱库,用来进行对未知成分的定性搜索,并不断地得到升级。GASMET DX4045 的分析系统CALCMET功能强大,一次可同时显示50个组分的分析结果。用户可自定义量程范围和浓度单位。提供实时现场光谱记录,自动连续定时存储,浓度-时间趋势图。CALCMET具有多种光谱库搜索和比对功能,方便用户对未知气体进行快速搜索、定性。CALCMET提供用户自行设定各个组分报警限。现场回放功能,方便用户日后对现场的分析和研究。分析结果可以转存成文本格式,便于用户编写分析报告。GASMET DX4045 日常维护工作量很小、费用低,平均每2年才需进行一次清洁维护和水标定。[/color]

  • 【第二届网络大赛参赛作品】浅述变压器油中气体分析仪器的市场相关分析及气体分析(10月)

    [size=4][color=#00008B]摘要:介绍变压器中气体分析集中流程和分析特点,以及仪器市场的相关分析。关键词:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url] 变压器油中溶解气体分析[/color][/size]前言:变压器作为电力系统最主要的供电设备,其可靠运行程度直接关系到电力系统的安全运行。变压器油的绝缘状态受到重视,按其测量参数的性质,变压器绝缘检测技术可分为电测法(包括脉冲电流法、无线电干扰电压法、超高频检测法、)和非电测法(包括油中溶解气体分析法、超声检测法、光测法、红外检测法)。变压器油中溶解气体分析(Disslved Gases Analysis,简称DGA)包括从变压器中取出油样,再从油中取出溶解气体,用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析该气体的成分和含量,判断设备有无内部故障,诊断其故障类型,并推定故障点的温度、故障能量等。几种典型的油中气体如氢气(H2)、一氧化碳(CO)、二氧化碳(CO2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)及乙炔(C2H2),常被用作分析的特征气体。我国在20世纪70年代初,开始了[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法应用于变压器潜伏性故障检测,在累积了丰富的实践经验的基础上,制定了现行的DL/722-2000代替SD187-1986。变压器油中溶解气体分析(DGA)现在的发展方向主要是检测设备的在线化和便携化,完善诊断依据。检测设备现在主要是在油气分离膜,高效稳定色谱柱,高灵敏度传感器上研究。设备主要现在时现在主要采用的诊断依据主要有改良三比值法、专家经验(神经网路和范例推理)、大卫三角型、特征气体法和趋势分析。在故障诊断时,只有当气体含量或气体产气率超过注意值时才有理由判断可能存在的故障,此时采用以上方法诊断是有效的。对于含气量正常且无增长趋势的设备分析是无效的。本文主要介绍实验室[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析气体的成分和含量的各种流程的特点,已经市场的现状。

  • 那种便携式可燃气体分析适用于动火分析?

    公司生产系统需要定期的检维修,由于生产涉及到使用溶剂油,所以动火前需要对系统中的气体进行可燃分析,请问各位专家有什么可以推荐的品牌,价格以及使用介绍吗?我能通过仪器就知道可燃气体的含量吗?能不能检测氧气的浓度?谢谢

  • 奥氏气体分析仪 1906

    奥氏气体分析仪1906型的鼓泡式吸收瓶和接触式吸收瓶的区别?为什么要用两种类型不同的吸收瓶呢?

  • 气相色谱分析气体进样稀释问题

    大哥们,分析界的大脑们,小弟有个问题。我们样品是气体,直接进样。我们的标准品需要配置成气体形式,但标准品有的是液体,有的是气体。请问:液体如何配成气体状态,还有就是气体如何再稀释,我们按照国标要求,需要做曲线,所以要将标准气稀释。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制