手持式数码裂隙灯显微镜

仪器信息网手持式数码裂隙灯显微镜专题为您提供2024年最新手持式数码裂隙灯显微镜价格报价、厂家品牌的相关信息, 包括手持式数码裂隙灯显微镜参数、型号等,不管是国产,还是进口品牌的手持式数码裂隙灯显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合手持式数码裂隙灯显微镜相关的耗材配件、试剂标物,还有手持式数码裂隙灯显微镜相关的最新资讯、资料,以及手持式数码裂隙灯显微镜相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

手持式数码裂隙灯显微镜相关的厂商

  • 400-860-5168转3750
    企业概况英国工业显微镜有限公司是一家专业从事开发和生产人机工学的体视显微镜和非接触式测量系统的制造厂商。自1958年创立以来,英国Vision已成为世界上最具有创新活力的显微镜制造厂商,其分支机构遍及欧亚及北美。 世界各地的工程人员和科学家广泛地使用着我们的产品系统来从事他们在工业领域以及生物工程的日常的放大、检测和测量应用。迄今为止,已在全球各地安装 超过30万套设备系统。 英国Vision主要的生产基地设立在英国伦顿南部的沃京。商业运行及生产装配部门也设立在附近的厂房。英国Vision的北美生产分部设立在美国康州丹堡丽市,并在美国东岸和西岸的独立机构进行直销和分销网络运作。 本公司分别在日本、中国、法国、德国、意大利、以及比利时-荷兰-卢森堡经济联盟等国家建立了多个分支机构,此外加上由120多个拥有库存并经过专业技术培训的分销代理商所组成的服务网络,在所有其它发达国家里为企业提供解决问题的应用方案。同时我们根据发展,不断地扩大新代理的加盟机会。 出口和分销渠道英国Vision的产品出口占总产值的80%%以上,所以我们认识健全分销渠道的重要性。在1991 年,英国Vision荣获出口成就的英女皇奖。公司获得的其他荣誉还包括:1997年度科技创新的威尔士亲王奖和 1974 年度技术成就的英女皇奖。**的光学技术 英国Vision所拥有的世界**光学技术改变了在传统双目显微镜上安装目镜的必要。这些技术来源于采用英国Vision的高能光学(Dynascope)装置、扩大光瞳和宽阔成像光学系统、以及先进的人-机工学所带来的舒适使用、光学的清晰度、和减轻眼部疲劳。这一系列的功能改善了客户的生产效益和产品质量。Vision 的 Mantis 体视观察器在各行业得以广泛采用的实例可说明无目镜光学技术的优势效益。 在1994 年推出的第一代Mantis体视观察器主要是填补台式放大镜与显微镜之间的空白。 从此Mantis 就成了所有体视观察器的首选,超过13 万套的Mantis设备已在全球安装使用。 英国Vision的新一代Mantis系列产品于2005年开始在各行业里使用,它秉承原型产品的实用价值,并融合人机工学以进一步优化Mantis的设计。 产品研发近年来,大量的研发投入已成为取得 成功的关键,它确保了新产品和现有产品的持续的发展,以不断满足科学界和制造领域的需求。英国Vision不断地以研发新产品和新技术在光学革新和技术前沿引领全球。
    留言咨询
  • 400-878-6829
    帕克(Park)公司的创始人是世界上第一台原子力显微镜发明组的一员,1986年研制了世界首台商用原子力显微镜,一直致力于原子力显微镜技术的开发与应用,帕克(Park)在原子力显微镜的发展过程中一直占有重要的一席之地。本公司作为纳米显微镜和计量技术领域的领导革新者,一直致力于新兴技术的开发。我们的总部遍及中国大陆,宝岛台湾,韩国,美国,日本,新加坡和德国等地,我们为研究领域和工业界提供世界上最精确,最高效的原子力显微镜。我们的团队正在坚持不懈的努力,力求满足全球科学家和工程师们的需求。随着全球显微镜市场的迅速增长,我们将持续创新,不断开发新的系统和功能,确保我们的产品始终得到最有效最快捷的使用!Park产品主要有以下特点: 1.非接触工作模式:全球唯一一家真实实现非接触式测量模式的原子力显微镜厂家,非接触模式使原子力针尖磨损大大降低,延长了探针寿命,提高了测量图像的重复性; 2.高端平板扫描器:所有产品型号均采用的高端平板扫描器,远远优于传统的管式扫描器 3.全球最高的测量精度:Z轴精度可达0.02nm; 4.智能扫描Smartscan:仪器操作极其简单,可实现自动扫描,对操作者无特殊要求,并且有中文操作界面; 5.简单的换针方式:换针非常方便,采用磁拖直接吸上即可,不需调整激光光斑; 6.Park拥有全球最广泛的工作模式:可用于光学,电学,热学,力学,磁学,电化学等方面的研究与测试。
    留言咨询
  • 原FEI公司,2016年被赛默飞世尔科技收购,成为赛默飞材料与结构分析(MSD) 电镜事业部,是显微镜和微量分析解决方案的创新者和供应商。 我们提供扫描电子显微镜SEM,透射电子显微镜TEM和双束-扫描电子显微镜DualBeam?FIB-SEM,结合先进的软件套件,运用最广泛的样本类型,通过将高分辨率成像与物理、元素、化学和电学分析相结合,使客户的问题变成有效可用的数据。更多信息可在公司官网上找到:http://thermofisher.com/EM 或扫描二维码,关注我们的微信公众号
    留言咨询

手持式数码裂隙灯显微镜相关的仪器

  • 裂隙灯显微镜,是进行眼科检查必不可少的仪器。显微镜由照明系统和双目显微镜组成,它不仅能使表浅的病变观察得十分清楚,而且可以调节焦点和光源宽窄,做成“光学切面”,使深部组织的病变也能清楚地显现。 S4型裂隙灯显微镜属于手持款式,用于小动物眼科检查时,操作非常灵活。 配备了四种大小的光斑直径,在明室和暗室均可使用; 光学系统设计合理,眼部光学切面清晰,亮度高,重量轻,携带方便,操作简单; 标配200W像素的数码相机,可连接电脑进行图像采集; 可选配500W像素的相机,带软件,可连接到电脑进行图像处理。 适用于大鼠、小鼠、兔子、猴子、比格犬等多种动物;主要技术参数: 总放大倍数:10x 目镜、16x 目镜、1x 物镜(10x 16x 物镜可选) 屈光度补偿:±5D 瞳距:45-70mm 裂隙宽度:0-10mm,连续可调 工作距离:78mm 光斑直径:φ0.1,φ1,φ3,φ10mm 裂隙高度:φ0.2,φ0.3,φ5,φ10mm 滤光片:隔热片,无赤片,钴兰片 照明旋转角度:水平圆周±30° 净重:750g 电源;7.4V 680mAh(锂电池),工作时间:充满电4小时 光源:白色LED 输入电压:220V/50Hz请关注玉研仪器的更多相关产品。如对产品细节和价格感兴趣,敬请来电咨询!
    留言咨询
  • 裂隙灯显微镜检定装置|标准器组不光可以校准生物显微镜,体式显微镜,显微医学装置。还可以校准裂隙灯显微镜、手术显微镜等。还可以按规程校准金相显微镜、读数显微镜的分辨力和放大倍数!1、专用玻璃线纹尺测量范围:(0~10) mm;分度值:0.1mm;示值最大允许误差:不大于±5mm。 2 、专用玻璃平行尺分度值:0.1mm; 分度值:0.1mm;示值最大允许误差:不大于±5mm;横向刻度:(0~1) mm;纵向长平行线:(0~20) mm;平行度最大允许误差:不大于0.1°。 3、带测微目镜的望远镜测微目镜测量范围: ( 0~8 ) mm
    留言咨询
  • IPM Scope手持式数字显微镜是一款价格合理的便携式数码显微镜。它集一台数码照相机、精密光学部件及 LED 照明于一体。该便携显微镜功能强大,能放大40-140倍,通过USB端口连接电脑,可在电脑屏幕查看放大图像,可以标签、标记、时间和测量尺度定义您的图像。通过升级视频软件,可获取捕捉即时影像和昆虫运动时序的能力。 IPM Scope手持式数字显微镜功能特性40 x 及 140 x 放大率在电脑屏幕查看放大图像包括软件,您可以以标签、标记、时间和测量尺度定义您的图像将静态图像存档或通过电邮发送需要将电脑进行连接操作,包括软件视频软件升级,具有捕捉即时影像和昆虫运动时序的能力 IPM Scope手持式数字显微镜订货指南订货号2860 IPM Scope手持式显微镜 订货号2860V 视频软件(升级版) 订货号2860UV IPM Scope紫外版 订货号2860MP IPM Scope-Mega Pixel 订货号2860HS 塑料马蹄形-3维图像装置 订货号2860MAC Mac版本软件
    留言咨询

手持式数码裂隙灯显微镜相关的资讯

  • 新品首发!DSX1000 数码显微镜强势来袭!
    奥林巴斯公司(代表董事兼总裁:竹內康雄)宣布在全球范围内推出 DSX1000 数码显微镜,它极大地改善了用户的检验工作流程,能够通过简易的操作实现对各种样品的分析。这款新产品由奥林巴斯科学事业于2019年6月3日面向全球发布。 DSX 系列数码显微镜将我们卓越的光学技术与先进的数字技术融为一体。DSX1000 数码显微镜用于观察和测量各种样品,包括电子元件和金属材料。此显微镜使用简单,只要放上样品,就可以轻松地完成 3D 观察、测量、报告自动生成等一系列操作。 您只需要一台 DSX1000 显微镜就可满足各种观察和分析需要,改善检验的工作流程。镜头数量增加至 15 个,涵盖20-7,000X的放大倍率。用户还可以利用该显微镜的六种观察方法,对各种样品进行观察与测量。比如突出显示样品表面的不规则和轮廓形貌。显微镜头部和载物台可以分别进行± 90°的自由角度调节,从而满足对各种复杂外形样品的任意角度观察。另外,新开发的算法可以实现更快的 3D 图像采集,与奥林巴斯传统数码显微镜相比,速度快了近十倍。最后,我们将根据每位用户的工作环境校准显微镜,以帮助用户实现精确、高效的观察和测量。新 品 首 发NEW ARRIVAL主要特点放大倍率范围 20–7,000X,可旋转式载物台。可迅速切换物镜和六种观察方式。远心光学系统保证了在整个放大范围内的测量准确度。放大倍率范围 20–7,000X,可旋转式载物台DSX1000 数码显微镜新增了 5 个物镜,物镜总数达到 15 个。20-7,000X 的放大倍率范围实现了精确观察,而长工作距离物镜则实现了对不规则样品的观察,例如电路板和机加工零件。显微镜头部和载物台都可以旋转± 90°,更易于观察和分析薄样品,如晶圆,或大型样品,如汽车部件。 可调节的头部和载物台显微镜头部和载物台可以分别旋转± 90°使用高分辨率长工作距离的物镜长工作距离使用户能够观察不规则形状的电子基板。 20–7,000X 放大倍率下的晶圆图像对比可迅速切换物镜和六种观察方式显微镜的电动变焦光路结合了先进的观察功能,可实现六种观察方法和对比度增强功能:明场、暗场、MIX、偏光、简易偏振和微分干涉。偏光观察和对比度增强功能可以突出样品表面的不规则和轮廓形貌。例如,此功能可用于在观察晶圆表面较大的不规则形状与细微破损和划痕之间快速切换。从而用户可以观察到使用其他方法难以检测到的对象。太阳能电池图像对比(左图:明场观察,右图:偏光观察)单侧光线照射突出了表面的不规则形状。该项技术适用于观察不规则形状、扭曲的样品和槽口。集成电路 (IC) 芯片图像对比(左图:常规;右图:带对比度增强功能)色彩清晰明亮的图像替代了明暗图像。远心光学系统保证了在整个放大范围内的测量精确性。*汽车制造商、精密设备和其他产品制造商必须精确测量和分析产品的规格,以证明产品的安全性。DSX1000 数码显微镜使用远心光学系统,在整个放大范围内图像失真极低,实现了有保证的准确度和重复性的高精度测量。为了确保准确度,在完成 DSX1000 显微镜的安装后,奥林巴斯的技术人员将根据客户使用环境对每台显微镜进行校准。 远心光学系统和非远心光学系统的图像采集对比图改变聚焦位置不会改变图像大小。此新闻稿中的公司名称和产品名称分别是其对应公司的商标或注册商标。*必须由奥林巴斯进行校准。奥林巴斯科学事业科学事业的主要产品为光学显微镜、工业视频内窥镜、无损检测设备和合金分析仪。通过这些产品,科学事业帮助维持社会基础设施的安全和稳定,包括医疗、生命科学和工业领域的研发;生产设施的质量改善;飞机和其他大型设备的检验等等。奥林巴斯将于 2019 年 10 月 12 日迎来百年华诞。我们向支持我们公司发展的客户和股东表示诚挚的感谢。我们期待秉承“实现世界人民的健康、安心和幸福生活”的使命,继续为社会做出贡献。
  • 浅谈影响数码显微镜分辨率的两大因素
    p style="text-align: justify text-indent: 2em "数码显微镜是在传统显微镜上增加了数字图像传感器CCD或CMOS的显微镜,与计算机、图像处理、自动化、互联网等技术相结合,可衍生出多种产品和应用,如自动显微镜、数码互动显微镜、数字切片扫描仪等,能给用户带来极大的便利,在教学、医疗、科研等领域得到广泛的应用。/pp style="text-align: justify text-indent: 2em "作为传感器,人眼和数字图像传感器CCD/CMOS主要有两方面的不同:一是数字图像传感器是由很多离散的感光器件组成,用其作为传感器接收显微图像,实际上是一个数字化过程(也称为空间采样)需要满足采样定理即奈奎斯特定理,这样图像才能准确重建;二是数字图像传感器的响应波长与人眼不一样,所以会受光源光谱特性的影响。本文从空间采样率和光源这两方面来分析对数码显微图像分辨率的影响。br//pp style="text-align: justify text-indent: 2em "strong空间采样率对数码显微图像分辨率的影响/strong/pp style="text-align: justify text-indent: 2em "奈奎斯特采样定理是指将模拟信号转化为数字信号时,要求采样频率fsubs/sub要大于模拟信号中最高频率fsubmax/sub的2倍,即fsubs/sub>fsubmax/sub才可以通过采样之后的数字信号准确地重建出模拟信号。对于显微图像的数字化,其最高频率就是由物镜的极限分辨率决定的,采样频率也称为空间采样率,一般实际应用时要求空间采样率为物镜的极限分辨率的2.8倍左右。/pp style="text-align: justify text-indent: 2em "显微镜的极限分辨率r是由物镜的数值孔径NA和波长λ决定的,满足式①span style="text-align: center " /spanimg src="https://img1.17img.cn/17img/images/202004/uepic/afecb7f6-313d-4fe3-a7d7-3a936fe605d8.jpg" title="1.png" alt="1.png" style="text-align: center max-width: 100% max-height: 100% "//pp因此波长越短,显微镜的极限分辨率越高。/pp style="text-align: justify text-indent: 2em "空间采样率s的计算式②为/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/6bfc528d-423f-46a1-8292-e3823f507b7c.jpg" title="2.png" alt="2.png"//pp式中p为数字图像传感器像素的边长;β1为显微物镜的放大倍率;β2为摄像镜头的放大倍率。/pp style="text-align: justify text-indent: 2em "因此改变摄像镜头的放大倍率,可以改变空间采样率。选用一组不同放大倍率的摄像镜头实现不同的空间采样率,以研究空间采样率对数码图像分辨率的影响。具体实验条件如下:/pp style="text-align: justify text-indent: 2em "显微镜:BA310显微镜。/pp style="text-align: justify text-indent: 2em "光源:白光LED和卤素灯(可互换),带有550/20nm的干涉滤色片。/pp style="text-align: justify text-indent: 2em "显微物镜:根据式①,其极限分辨率为0.45μm。/pp style="text-align: justify text-indent: 2em "摄像头:CM3-U3-50S5M黑白摄像头,像素边长为3.45μm。/pp style="text-align: justify text-indent: 2em "观察标本:采用USAF1951鉴别率板(如图1)所示,40× /0.75显微物镜可观察的极限线对数为2048(11-1组)。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 350px height: 350px " src="https://img1.17img.cn/17img/images/202004/uepic/900c84e7-0400-490e-9b1e-df00bd23a1ba.jpg" title="3.png" alt="3.png" width="350" height="350" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="font-size: 14px "strong图1 USAF1951鉴别率板/strong/span/pp style="text-align: justify text-indent: 2em "摄像镜头倍率:0.35× 、0.5× 、1× 分别对应三种不同的采样率,采集的图像如图2所示,结果如表1所示。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 450px height: 128px " src="https://img1.17img.cn/17img/images/202004/uepic/10ab04e3-b4cb-4324-9054-967b80dfda29.jpg" title="4.png" alt="4.png" width="450" height="128" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="font-size: 14px "strong图2 不同摄像镜头下的数码显微图像/strong/span br//pp style="text-indent: 0em text-align: center "span style="font-size: 14px "strong表1 不同摄像镜头下的数码显微图像分辨率 /strong/spanbr//pp style="text-indent: 0em text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/73950d5f-a61d-41aa-a1f6-1430b39f3040.jpg" title="5.png" alt="5.png"//pp style="text-align: justify text-indent: 2em "由此可见,在没有满足采样定理的情况下即欠采样,数码显微图像分辨率会降低;在过采样的情况下,并不会带来数码显微图像分辨率的提升。/pp style="text-align: justify text-indent: 2em "strongspan style="text-indent: 2em "光源对数码显微图像分辨率的影响/span/strong/pp style="text-align: justify text-indent: 2em "式①提及的波长λ是最终被传感器接收的波长,此波长与传感器响应曲线和光源光谱特性有关。作为传感器,人眼的响应波长为400~700nm,即通常说的可见光,如图3所示。而对于数字图像传感器CCD/CMOS,其响应波长更宽,包括人眼不敏感的紫外和近红外部分,其中近红外的波长更长,如图4所示,这会导致显微镜分辨率的下降。因此当光源的光谱包含有人眼不敏感的近红外光谱或者紫外光谱时,在使用数字图像传感器时就会有影响。显微镜中常用的光源有白光LED和卤素灯,其中白光LED的光谱是450~700nm,如图5所示,与人眼的响应曲线比较接近,而卤素灯的光谱为400~2500nm如图6所示,包括了更长波长的红外部分。在分别使用卤素灯和白光LED时,由图像传感器得到的结果是有区别的,如图7所示。/pp style="text-align: center text-indent: 0em " img style="max-width: 100% max-height: 100% width: 350px height: 241px " src="https://img1.17img.cn/17img/images/202004/uepic/63e10ec6-6db0-4cb4-b480-df43cecc4f65.jpg" title="6.png" alt="6.png" width="350" height="241" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="font-size: 14px "strong图3 人眼的响应曲线 /strong/spanbr//pp style="text-indent: 0em text-align: center "span style="font-size: 14px "strongimg style="max-width: 100% max-height: 100% width: 400px height: 221px " src="https://img1.17img.cn/17img/images/202004/uepic/4d151923-4162-4ff6-bed0-c4d379380b4b.jpg" title="7.png" alt="7.png" width="400" height="221" border="0" vspace="0"//strong/span/pp style="text-indent: 0em text-align: center "span style="font-size: 14px "strong图4 相机的响应曲线 br//strong/span/pp style="text-indent: 0em text-align: center "span style="font-size: 14px "strongimg style="max-width: 100% max-height: 100% width: 350px height: 278px " src="https://img1.17img.cn/17img/images/202004/uepic/263ba96b-37c6-4d8e-97a9-d1bf32f59d6c.jpg" title="8.png" alt="8.png" width="350" height="278" border="0" vspace="0"//strong/span/pp style="text-indent: 0em text-align: center "span style="font-size: 14px "strong图5 LED光谱曲线 /strong/span/pp style="text-indent: 0em text-align: center "span style="font-size: 14px "strongimg style="max-width: 100% max-height: 100% width: 350px height: 263px " src="https://img1.17img.cn/17img/images/202004/uepic/90d67a50-f6b4-43da-bac1-93120d97ba89.jpg" title="9.png" alt="9.png" width="350" height="263" border="0" vspace="0"//strong/span/pp style="text-indent: 0em text-align: center "span style="font-size: 14px "strong图6 卤素灯光谱曲线 br//strong/span/pp style="text-align: justify text-indent: 2em "表2为不同光源下的数码显微图像分辨率,可以发现,人眼在不同光源下观察到的极限线对是一样的,都是2048线对,而对于数码显微图像,采用卤素灯时,观察到的分辨率会有所下降。主要原因在于卤素灯有红外光谱,人眼直接观察时会将红外部分滤掉,所以效果与LED相当,而数字图像传感器可以响应卤素灯的红外波长,所以分辨率会下降。解决办法就是数字传感器前放置一个红外滤色片(俗称IR-cut),将卤素灯的红外部分滤除,得到接近于人眼的响应曲线,这样就与目视观察结果一致。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 450px height: 215px " src="https://img1.17img.cn/17img/images/202004/uepic/af939b79-1302-4765-828c-3e42b08ace0c.jpg" title="11.png" alt="11.png" width="450" height="215" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="font-size: 14px "strong图7 卤素灯和LED时的数码显微图像/strong/span/pp style="text-indent: 0em text-align: center "span style="font-size: 14px "strong表2 不同光源下人眼观察与数码显微图像分辨率的比较 br//strong/span/pp style="text-indent: 0em text-align: center "span style="font-size: 14px "strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/c1631144-1358-4af5-b3e3-51da6e4b4c82.jpg" title="捕获.PNG" alt="捕获.PNG"//strong/span/pp style="text-align: justify text-indent: 2em "因此在使用数码显微镜时,应严格遵从采样定理,并深入研究数码显微镜各个关键部件,这样才能选择合适的摄像镜头、光源、滤色片等,才能满足采样定理,准确重建出数字图像,达到最佳的观察效果。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(127, 127, 127) "ispan style="font-size: 14px "本文摘自:陈木旺. 浅析数码显微镜分辨率的影响因素[J]. 光学仪器, 2017, 40(3)./span/i/span/pp style="text-align: center text-indent: 0em "a href="https://www.instrument.com.cn/webinar/meeting_13067.html?hmsr=zixuan&hmpl=ling&hmcu=&hmkw=&hmci=" target="_self"img src="https://img1.17img.cn/17img/images/202004/uepic/8e3999fc-35db-4591-8d2d-1da82b8fafb0.jpg" title="10.png" alt="10.png" style="text-indent: 2em text-align: center max-width: 100% max-height: 100% "//a/pp style="text-align: justify text-indent: 2em "strong讲座:/strong《四合一数码显微镜,多种难题一机解决!》/pp style="text-align: justify text-indent: 2em "strong时间:/strong2020年4月22日 10:00/pp style="text-align: justify text-indent: 2em "strong主讲人:/strong夏天齐Draven,基恩士公司显微/3D测量系统部门,显微镜技术负责人,负责数码显微镜的技术支持工作。/pp style="text-align: justify text-indent: 2em "strong内容:/strong很多用户在使用光学/金相/测量显微镜时,经常会遇到景深小、倍率低、需要另外准备光源、不能直接拍摄图片等困难,而一台数码显微镜可以轻松解决以上问题。此次讲座旨在让更多客户了解到数码显微镜能解决的常规问题(讲座中有实机演示);作为技术储备,认识到该产品的一些功能和应用场景等;搭建交流平台,与行业内人士互动等。/pp style="text-align: left text-indent: 2em "a href="https://www.instrument.com.cn/webinar/meeting_13067.html?hmsr=zixuan&hmpl=ling&hmcu=&hmkw=&hmci=" target="_self"strong style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "免费报名参会:点击即可链接到报名官网/span/strong/a/p
  • 关于数码显微镜最困扰您的 9 个问题
    James DeRose 博士 Georg Schlaffer徕卡显微系统数码显微系统是显微镜学的流行语之一,此外,还有一些非常有用的常识。徕卡显微系统的产品经理 Georg Schlaffer 常常会被客户和同仁问及有关数码显微系统方面的问题。为了答疑解惑,他与科学作家 Jim DeRose 共同合作,对最重要的几个问题进行了全方位解答。到底什么是数码显微系统?数码显微镜属于带数码相机的光学显微镜,无需配备目镜。电子监控器显示屏会直接显示观察和分析的样品图像。数码显微镜还可以是常规体视或复式显微镜,它们同时配备目镜和相机,能够保存显微镜状态和相机设定值的反馈信息。在本文的接下来部分中,我们提到的“数码显微镜”是指不带目镜的显微镜,例如,Leica DVM6、Leica DMS1000,和 Leica DMS300,而不是配备相机的体视或复式显微镜。左:Leica DVM6 数码显微镜右:镀金焊盘,汽车用电子设备,总放大倍率:120:1。图像由 Leica DVM6 获取。哪些应用领域可以使用数码显微镜?在研发、生产和检测、质量控制和保证,以及失效分析过程中,数码显微镜是分析部件和样品并生成检测报告的理想仪器。左:镀金焊盘,汽车用电子设备,总放大倍率:360:1。图像由 Leica DVM6 获取。右:通过 Leica DVM6 倾斜显示屏予以显示。数码显微镜的优势何在?数码显微镜最显著的优势在于仪器的人机工程学设计。由于监控器会直接显示样品图像,用户可以在保持舒适、放松的直立坐姿的同时,还能即时观察样品,并利用软件分析样品图像,保证用户能以舒适的姿态高效地完成工作。在需要处理高通量样品,或每天需要在显微镜上花费较长时间的情况下,数码显微镜的人机工程学设计就显得意义非凡了。此外,很多数码显微镜还提供允许存储多个用户配置文件的软件。在多人共用一台显微镜时,这项功能非常有用,凭借这项功能,每个用户只需选择自己的显微镜配置文件,几乎无需调节显微镜工作台,即可轻松开始工作。左:纸上印刷图案,总放大倍率:750:1,环形光照明。图像由 Leica DVM6 获取。右:纸上印刷图案,总放大倍率:750:1,起偏镜开启时的同轴照明。图像由 Leica DVM6 获取。数码显微镜有哪些限制条件?相比体视或复式显微镜,数码显微镜存在一个明显的限制条件,即需要电源连接,因为数码显微镜未配备目镜,而样品图像却始终需要显示在监控器上。因此,至少需要一根电源线。通常情况下,数码显微镜还需要连接 PC,或至少需要连接显微镜的显示屏。通过传统的显微镜,用户仍可以选择使用目镜获取样品图像。左:Leica DMS1000 数码显微镜右:金属部件上的一个孔;自动更新每项变焦设置比例,实现快速测量。图像由 Leica DMS1000 获取。通过数码显微镜和目镜分别观察到的样品图像相比,结果如何?原则上,图像是相同的。视场角可能存在差别,这主要取决于我们正在讨论的数码相机和目镜的类型。但是,还有一个重要差别:采用体视显微镜的双筒目镜观察样品,将为您带来数码显微镜的二维图像无法达到的深度。左:表壳,通过环形光照明 (Leica LED3000 RL) 和入射光座捕捉。图像由 Leica DMS1000 获取。右:Leica DMS1000 B 图像:利用透射光座捕捉的秀丽隐杆线虫图像;因不断编码变焦,从而保证快速、简单地测量,即使在不配备电脑的单机模式下亦可实现。数码显微镜操作上比带目镜的显微镜要简单吗?尤其对于无经验的用户而言,利用数码显微镜,他们也能够更简单、更快速地获取样品图像。造成上述差别的主要原因是,熟悉设置和调整传统型显微镜,并透过目镜观察样品,这些操作需要花费较长时间。左:果蝇属筛查。图像由 Leica DMS1000 B 获取。右:利用固定在摇臂机架上的 Leica DMS300 观察印刷电路板样品“编码”的含义是什么?当显微镜硬件可直接与计算机软件进行通信,且能够利用图像数据完成对特定参数值的追踪和保存时,表示显微镜已完成“编码”。这些特定参数将得以被设定,并因此被称之为已编码参数值。正常情况下,触摸相关按钮,即可调用这些已编码参数,令重复工作和报告变得更轻松。必须成为显微系统的专家,才能操作数码显微镜吗?当然不需要。无论是显微系统的新手还是专家,都可以轻松使用数码显微镜。徕卡显微系统提供的数码显微镜,其设计宗旨就是简单易用、开箱即用,最大程度地减少培训时间。它们配备已编码的功能,能够轻松生成分析报告,令重复工作更加高效。数码显微镜需要配备哪些部件?所需配件依据应用领域而定。例如,可以根据所需的放大倍率范围,选择物镜透镜。您还可以在一系列主机和照明系统中进行选择。以下这些问题会帮助您决定需要哪些部件或功能: 是否需要快速获取高质量数字图像?如果需要,您可以选择高分辨率数码相机。 是否需要高通量样品的快速、实时图像显示?如果需要,您可以将相机速度设置为每秒 30 帧或更快。 是否需要从不同角度观察样品?如果需要,倾斜显微镜镜头或转动样品载物台,实现工作过程或物体的动态观测。 是否需要定性或定量分析样品?如果需要,必须认真选择软件功能。 是否需要平衡图像,同时清晰展示明亮和暗色部分?如果需要,您可以选择 HDR(高动态范围)功能,它能够为您精确提供所需的图像类型。了解更多:https://www.leica-microsystems.com/?nlc=20191231-SFDC-008340

手持式数码裂隙灯显微镜相关的方案

手持式数码裂隙灯显微镜相关的资料

手持式数码裂隙灯显微镜相关的论坛

  • 【原创大赛】BL-5000型手持式裂隙灯

    【原创大赛】BL-5000型手持式裂隙灯

    [align=center][b]BL-5000型手持式裂隙灯[/b][/align][align=center]西安国联质检安全评价中心 柯海阔[/align]在动物局部刺激试验中,眼刺激试验占有重要的地位,该试验不仅可以研究供试品对眼部的刺激反应情况,更可以方便快捷的评判一种供试品的眼毒性。[align=center]然而在试验前与试验后的症状观察方面,传统的肉眼或者耳鼻喉检查笔无法准确的观察到结膜与虹膜上的细微结构,故会对症状的评分造成偏差。本中心特购置便携式手持裂隙灯一台很好的解决了这个问题,使中心实验人员与兽医可以方便、快捷、准确地对眼刺激试验地反应进行评分。[img=,690,466]http://ng1.17img.cn/bbsfiles/images/2017/09/201709081745_01_2904018_3.png[/img][/align]本中心所购置的为BL-5000型手持式裂隙灯。其在实际操作中因检查对象为动物,故不能按照说明书中的指导进行操作。本中心通过长期的实践经验,对该仪器的操作得出一套新的规则,具体细则如下:[b] 4.1安装[/b]1) 从手提箱中取出手持式裂隙灯及屈光度调节杆、前额固定支架、电池等附件。然后,将电池稳固地插入底座的电池盒内。2) 安装目镜:根据检查具体的项目与精度选择10倍或者16倍的目镜,并进行安装。随后检查是否有松动,是否有污垢。如有松动旋紧即可,如有污垢,用脱脂棉沾取60%酒精和40%乙醚混合液轻轻拭去。[b]4.2 调节 [/b]1) 检查照明光源:将对焦杆安装在显微镜镜身的对应位置上,按逆时针的方向转动裂隙调节开关,然后将裂隙开到最大。打开照明开关,可见一圆形的照明光斑。若无光斑,检查裂隙调节环是否打开,如打开仍无,表示电池无电,应及时充电。将对焦杆取下,装上前额固定支架来调节被观察者的工作距离。检查旋转滤色片:无赤片、钴蓝片、隔热片。2) 屈光度调节:卸下前额固定支架的固定螺钉,然后装上屈光度调节杆。打开照明,检查者根据自己的屈光度进行的屈光度的调整。(工作距离为80mm)[b]4.3检查[/b]保定好动物,使其眼部位置稳定。随后安装前额固定支架,圆形部分顶住动物头部,打开裂隙灯电源,调整裂隙灯回转槽位置,使光源对准动物眼部。按压前额固定支架,从目镜观察直到出现清晰的像,固定前额固定支架螺钉旋钮。根据检查具体项目与类型,选择裂隙宽度(裂隙旋转环),选择滤色(滤色转换旋钮),选择照明角度(裂隙灯回转槽)。[b]4.4维护[/b]1) 目镜和物镜防尘玻璃盖与反光镜:如上面有手指印或者油脂,请用带有乙醚的擦镜纸或者软布清洁目镜和物镜防尘玻璃盖与反光镜的表面。2) 当检查完毕时,将照明调节旋钮调至最小,关闭照明开关,将裂隙灯回转槽调至正中,卸下目镜装进保护袋中,卸下对焦杆与前额固定支架,最后将所有配件整体放入裂隙灯箱中。

  • 手持数码显微镜有哪些特点

    手持数码显微镜有哪些特点?手持式数码显微镜也叫便携式数码显微镜,顾名思义是一种小巧便携的微型显微镜产品,显微镜可以将显微镜看到的实物图像通过数模转换,使其成像在显微镜自带的屏幕上或计算机上。从而,我们可以对微观领域的研究从传统的普通的双眼观察到通过显示器上再现,从而提高了工作效率。手持式显微镜深受消费者的喜爱,它的轻巧便捷是其它显微镜无法超越的,相对于传统光学显微镜它可以提供完美的解决方案让检测工作现场化,高效化。那么,手持数码显微镜有哪些特点?第一、体积小,便于携带,特别适合移动检测、现场检测,大小重量只有普通光学显微镜的1/10,突破传统显微镜使用空间的局限性。第二、观测物体可以将显微放大的图像直接显示在屏幕上,便于观察,而且可以实时拍照、录像,记录检测数据,极大的提高了检测效率。第三、在显微图像软件处理上,可以根据使用需求实现画面反色、黑白、倒置、对比等画面调节功能,同时还可以对显微图像进行数据测量(长度、角度、直径等),最高精度达0.001mm。第四、手持式显微镜可以连接多种显示设备(电视、电脑、投影),便于多人同时分享、讨论,数码教学等。第五、提供多种供电选择,电脑USB供电、干电池供电、锂电池供电,真正实现随时随地,现场检测!第六、根据观察物体及使用环境的的不同,可以提供多种光源(荧光、红外等),最大限度满足使用需求!文章转载于网络更多文章资讯:奥林巴斯显微镜(http://www.microimaging.com.cn/)

  • 【原创】裂隙灯显微镜的技术参数

    【原创】裂隙灯显微镜的技术参数

    [em09511]裂隙灯显微镜是眼科最常用的主要仪器。用于对眼部组织进行全面细致的检查。技术参数:显微镜类型:双目交角式立体显微镜显微镜总放大率:        1×物镜   1.6×物镜10×目镜   10×      16×16×目镜   16×      25.6×裂隙宽度:0~9mm,连续可调裂隙高度:1~9mm,连续可调光斑直径:¢9、¢8、¢5、¢3、¢2、¢0.2(mm)滤色片:隔热片、减光片、无赤片、钴兰片裂隙旋转角度:0~180°裂隙前倾角度:5°、10°、15°、20°四档照明灯泡:12V50W卤钨灯泡输入电压:交流110V/60Hz 220V/50Hz输入功率:80VA固视灯:红色发光二极管联系电话:010-63008128 13269828857 南小姐 QQ:632200478 MSN:yankenx@hotmail.com Email:yankenx@126.com http://www.optical8.cn裂隙灯 检眼镜 检影镜 电动升降台 眼科设备[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910261452_178028_1811473_3.jpg[/img]

手持式数码裂隙灯显微镜相关的耗材

  • 手持式数码显微镜WIFI/USB传输
    【产品详情】此WiFi或USB手持式数码显微镜为高科技微型数码显微镜,该产品创新性地运用旋转变焦原理进行放大,是一款无需更换镜头的便携式数码显微镜。产品应用范围:工业品质量检验:如模具、粉末冶金、印刷、光钎、精密机械、纺织行业质量检验等;微电子产品开发及生产管理:如IC芯片、电子元器件、集成电路、PCB电路板检验及维修;产品详细价格及资料,请登录电镜耗材在线商城网站查看。
  • HBO103W 荧光显微镜汞灯灯泡
    四、镀水银类白炽灯、钨灯220V20WOLYMPUSCHB、CHK显微镜专用120V30WOLYMPUSCHS、显微镜专用230V20WJAPAN标准牌专用220V20WJAPAN同上(磨沙)220W20WNIKONNIKON显微镜专用220V30WNIKON同上6V15WOSRAM老式显微镜6V15WOSRAMM10生化仪器专用物种灯头6-8V5AOLYMPUS显微镜用(卡口)6-8V5AOLYMPUS倒置显微镜用(带座)6-8V2AOLYMPUS倒置显微镜用(带座)24V5WTUNGSRAMO匈牙利X光机专用6V4.5AFUJI990型裂隙灯专用24V40WJAPAN日本大协制造厂五、荧光显微镜高压汞灯HBO50WOSRAMHBO50W/3/ACAO显微镜专用HBO100WOSRAMHBO100W/2OLYMPUS显微镜专用HBO103WOSRAMHBO103W/2OLYMPUS显微镜专用HBO200WOSRAMHBO200W/2OLYMPUS显微镜专用六、内窥镜类用灯泡150WPerKinELmer/LuxTel内窥镜用氙灯175WPerKinELmer/LuxTel内窥镜用氙灯300WPerKinELmer/LuxTel内窥镜用氙灯HTI250W/32COSRAMHTI250W/32C金属卤化物日光型短弧放电灯,内窥镜用灯HTI250W/22COSRAMHTI250W/22C同上HTI400W/24OSRAMHTI400W/24同上XBO100W/45COSRAMXBO100W/45C无臭氧超高气压氙灯,内窥镜专用灯XBO180W/45COSRAMXBO180W/45C同上XBO300W/60COSRAMXBO300W/60C同上七、冷光源灯泡(杯泡)6V10WPHILIPSJCR生化仪器用6V15WPHILIPS13528齿科光固化用6V35WOSRAM64600同上12V20WPHILIPSJCR生化仪器用8V50WOSRAMEFM/64607生化仪、显微镜专用10V52WPHILIPS13298齿科光固化机用12V50WPHILIPSJCM胃镜、生化仪用12V75WPHILIPS13865齿科光固化机用(扁插脚)12V75WPHILIPSEFN/6853内窥镜、生化仪用12V75WOSRAMEFN/64615同上12V75WFUJIEFN富士能内窥镜专用12V100WPHILIPSEFP/6834胃镜、生化仪专用12V100WOSRAMEFP/64627同上14V35WPHILIPS13165齿科光固化用15V150WPHILIPSEFR/6423内窥镜、生化仪用15V150WOSRAMEFR/64634同上15V150WOSRAM镀金杯泡内窥镜专用15V150WFUJIEFR富士能内窥镜专用15V150WOLYMPUSOLYMPUS内窥镜专用21V150WFUJIDNF宾德内窥镜专用(横插)21V150WOSRAMDNF/93631同上21V150WFUJIEKE内窥镜、显微镜专用(竖插)21V150WPHILIPSEKE/13629同上21V150WOSRAMEKE/93638同上24V150WFUJIEDR胃镜、手术显微镜24V250WOSRAMELC内窥镜、显微镜专用
  • 连续变倍体视显微镜
    MPXS8-T 连续变倍体视显微镜最大的 特点是在不影响目镜观察的同时能使用 CCD数码摄像装置,并可通过视频端与 电脑、监视器、电视机视频端连接。 技术参数: 聚焦 立杆高度300mm 升降范围105mm 光源 上光源20W可调卤素灯 下光源5W荧光灯
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制