当前位置: 仪器信息网 > 行业主题 > >

便携式土壤含水量测定仪

仪器信息网便携式土壤含水量测定仪专题为您提供2024年最新便携式土壤含水量测定仪价格报价、厂家品牌的相关信息, 包括便携式土壤含水量测定仪参数、型号等,不管是国产,还是进口品牌的便携式土壤含水量测定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合便携式土壤含水量测定仪相关的耗材配件、试剂标物,还有便携式土壤含水量测定仪相关的最新资讯、资料,以及便携式土壤含水量测定仪相关的解决方案。

便携式土壤含水量测定仪相关的资讯

  • ASD | 利用短波红外波段通过干燥过程分割来估计土壤含水量
    利用短波红外波段通过干燥过程分割来估计土壤含水量 土壤水分是直接影响蒸发、入渗和径流等多种环境过程的重要因素。而且,土壤水分在农业蒸散与粮食安全、湿地退化、干旱、陆气界面的能量交换等相关研究领域发挥着重要的作用。地面测量能够提供易于校准和长时间连续获取的数据,但该种方法仅针对单个小区域,难以支持空间变化研究或实地研究。基于水和土壤介电特性的巨大差异,微波遥感被广泛应用于大空间尺度的土壤水分监测,但不适用于精准农业等多种研究。热遥感可以根据地表温度来估算土壤水分,但热遥感信号不单受到土壤含水量(SMC)的影响,湿度、风速、大气条件等其他参数也会影响估计结果。而光学遥感由于其精细的空间分辨率和利用诸如MODIS、Landsat系列和Sentinel任务等卫星数据进行大尺度监测潜力之间的平衡而引起了诸多关注。目前已经提出了许多指标和模型来阐明反射率特征随SMC的变化,并利用实验室、实地、机载和卫星数据从窄带和宽带的反射率来估计SMC。这些方法/指标主要针对从饱和到风干的各级SMC;然而,作者发现饱和到风干的单一关系映射会导致准确估计的错误印象。在整个干燥过程中,光谱反射率特征和SMCs之间的回归关系不一致导致对相对较低的SMCs估计的精度较低。基于此,在本研究中, 来自南京大学、康奈尔大学和河南农业大学的研究团队提出了一种分割方法以更准确的估计SWC。作者监测了代表不同土壤特性的三种土壤样品的整个干燥过程,并通过蒸发速率变化确定其过渡点(如高SWC的阶段1干燥和低SWC的阶段2干燥)。建立了SMC估计指数,即短波归一化指数(SNI),基于辐射传输模型支持干燥过程中的SNI指数趋势。图1 实验装置示意图。利用ASD FieldspecPro光谱仪进行光谱辐射亮度采集。【结果】 图2 a) 三种土壤样品蒸发速率变化与干燥时间的关系,b) 干燥过程中三种土壤在2150 nm处的反射率变化。 c) 三种样品蒸发速率导数的最大值确定干燥阶段分割点。 图3 三种样品砂/土壤含水量与光谱反射率之间的线性和对数回归的R2,a) 石英砂,b) 圬工砂,c) 伊萨卡土壤,d) 模拟大气透射率。在 a)、b) 和 c) 中,黑色虚线标记为1680 nm和2150 nm。图4 a) 显示了SMC估计的验证结果。 b)、c) 和 d) 显示了三种样品的 建模曲线(实线)、回归曲线(虚线)和验证数据集(空心圆圈)。图5 a)SMC估计值和测量值关系图,其中SMC估计值使用SNI2在线性回归中计算,Bwater 在1980 nm处评估。 图 b)、c) 和 d) 显示了三种样品的建模曲线(实线)、回归曲线(虚线)和验证数据集(空心圆圈)。【结论】利用单一回归关系和单一指数估计整个干燥过程的SMC对所有土壤类型并不是有效的。该研究证明了利用现有方法估计SMC结果不准确,以及在分割干燥过程中估计SMC的基本原理。监测整个干燥过程中3种不同土壤样品的光谱反射率和重量,将其分为两个阶段用于训练和验证。此外,基于辐射传输模型研究不同干燥阶段所提出指数和光通过水的路径长度之间的关系,并支持了经验方法建立的回归关系,尤其是对路径长度相对较短的土壤。结果表明,在分割思想下,SMC估计值和测量值之间的相关性明显提高,尤其是在SMC较低的情况下(阶段2干燥过程)。蒸发速率变化决定了干燥过程的分割过渡点,所有的土壤类型并不是一个特定的SMC值;因此,理解蒸发和SMC变化导致的光谱反射率变化之间的关系是极其重要的。例如,在实际使用中,石英砂阶段2干燥可以忽略,但它却是伊萨卡土壤干燥的重要组成部分。SN1/SN2指数结合可以有效估计三种样品的SMC。对于阶段1干燥,利用SNI1指数在1680 nm和2150 nm处的反射率预测SMC是有效的。在阶段2干燥中,尽管使用1930-2150 nm组合的SNI2指数实现了最佳相关性,但作者认为1980 nm比1930 nm更适合实地应用。这种波段选择是为了避免强烈的大气水汽吸收,以确保足够的地面反射辐射到达飞机或卫星传感器。相对于将阶段2干燥视为阶段1干燥延续的指标,相关关系显著改善。作者得到了如下结论:1.干燥过程分割对从光谱反射率数据准确估计SMC是很有必要的,尤其是对于具有较长阶段2干燥过程的土壤。例如本研究中的伊萨卡土壤。对于与伊萨卡土壤相似的土壤,基于整个干燥过程的SMC估计可能会导致阶段1或阶段2干燥的偏差,这取决于哪个阶段有更多的训练集。2. 由于石英砂中光通过水的路径长度相对较长,因此当SMC较高时,SNI具有独特的特征。在圬工砂或伊萨卡土壤中,half-logistic型的SNI曲线不同于线性关系。当光程较长时,拟合关系应由线性回归变为对数回归。3. 在阶段2干燥过程中,利用现有卫星系统常用的光谱波段组合难以准确估计SMC;使用高光谱数据可以获得更高的精度,可以提供近强水吸收波段的数据,如1930 nm。虽然由于大气水汽的吸收,1930 nm不能在实验室外有效地使用,但稍微偏离中心的波长(如1980 nm)仍然比水吸收波段范围外的波长表现更好。
  • 115万!中国科学院青海盐湖研究所核磁共振土壤含水量分析仪采购项目
    项目编号:OITC-G220220640项目名称:中国科学院青海盐湖研究所核磁共振土壤含水量分析仪采购项目预算金额:115.0000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品采购预算(万元人民币)1核磁共振土壤含水量分析仪1是115 投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。2、技术要求详见公告附件。合同履行期限:合同签订后270天内本项目( 不接受 )联合体投标。
  • ATAGO发布全新产品土壤水分测定仪
    ATAGO(爱拓)发布全新产品:PAL-Soil迷你数显土壤水分测定仪 该产品的成功上市,标志着ATAGO(爱拓)仪器将从食品检测工具扩大到了农业、水文、环境和水土等新领域,掀开公司发展的新篇章。 随着科学研究的发展和生产技术的进步水分的定量分析已被列为各类物质理化分析的基本项目之一,作为各类物质的一项重要的质量指标。根据不同形式试样中的不同水分含量提出了测定水分的不同要求。土壤水分测定仪是土壤的一个重要物理参数,它对于植物的生长具有重要的意义,同时土壤水分状况对于降雨产流有重要的影响,也是企业生产中重要的控制指标之一。土壤水分测定仪将会是对园林业、种植业、环境水文等研究工作中检测的迫切需求。ATAGO(爱拓)土壤水分测定仪能够对土壤水分进行实时监测。 土壤水分的多少有两种表示方法,一种是以土壤含水量表示,分重量含水量和容积含水量,二者可以通过土壤容重来换算;另外一种则是用土壤水势来表示,土壤水势的负值则是土壤水吸力。而ATAGO(爱拓)土壤水分测定仪则是利用甘油的吸收水性,通过检测甘油水溶液(甘油与水的比率为5:3)折光率的下降来计算土壤的含水量。 便携、快速的特征使土壤水分测定仪(PAL-Soil)在实验室、田间或者现场中应急检测中独具优势;产品体积小、重量轻、操作方便,且一次性检测时间仅需10分钟,最快检测时间小于1分钟;具有双标度显示功能,能显示重土壤水分和土壤体积含水率。 访问日本ATAGO(爱拓)中文网站,您将获得更多信息 …查看详细仪器价格、技术资料并订购,请致电联系我们: http://www.atago-china.com更多关于新产品的详细信息,请留意ATAGO(爱拓)中文官方网站的信息更新
  • 实验表明:卡氏水分测定仪测药品中的含水量将更准确高效!
    卡尔费休滴定法是非水溶液中氧化还原滴定方法之一,其优点是试剂对水的作用特效性高,操作迅速、简便,一个样品只需几分钟,对0.001%以下的微量水分含量能准确的测定,可直接测定物质的结晶水或物质表面的吸附水。下面我们采用禾工AKF-2010V高精度卡氏水分仪对米格列奈钙进行含水量的检测。—实验配置—实验设备:AKF-2010V卡氏水分仪溶剂:无水甲醇;滴定剂:容量法单组份试剂,当量3mg/mL,国产;—产品参数— 产品名称AKF-2010V 智能卡尔费休水分测定仪分析方法容量法卡尔费休滴定滴定应用打空白(预滴定)试剂标定 卡尔费休滴定检测卡氏加热顶空进样滴定适用于固体,液体,气体样品滴定控制与终点智能滴定速度控制 自动待机滴定全自动漂移终点判断(绝对/相对漂移,最大时间/体积/)测定范围及指标含量范围:0.001%-100%最佳进样量建议:消耗0.5ml-4ml卡尔费休试剂为宜滴定精度:1/20000,1ul(20ml计量管),0.5ul(10ml计量管)先配计量管:20ml/10ml/5ml高精度计量管测定结果自动计算并显示结果(%,ppm,H2O,mL)结果统计(平均值,相对偏差,相对标准偏差)滴定曲线(V-E)结果存储,打印和输出;辅助功能计量管:吸液,回液,注液,吸溶剂,排废液,手动搅拌仪器检定,废液瓶溢出警示,智能故障保护用户界面7.0寸大屏幕实时显示滴定曲线;可使用触摸屏输入;GLP/GMP质量规范仪器名称及出厂编号;用户单位及操作员编号;仪器校正功能,校正记录;用户组及用户权限设置,及用户操作记录;审计追踪功能及审计追踪记录;U盘存储防实验报告;阀门、管路材质PTFE自动控制三通阀,全管路及接头全密封耐腐蚀抗紫外线设计输入输出接口Mv/pH测量电极接口,参比电极,PT1000温度电极接口;选配加热搅拌台,卡氏加热顶空进样器,微型数据打印机工作环境温度:5至35°C;湿度:小于80% RH(无冷凝)电源:交流100-240 V, 50/60 Hz;功率: 35W --测定方法--1、 使用仪器的“吸溶剂”功能向滴定池内注入约50ml的无水甲醇。2、 使用仪器的“打空白”功能滴定至终点,以去除滴定池内的水分,仪器就绪并保持终点的状态。3、 用经过干燥处理的微量进样针精确抽取10μL纯水,拭干针头后放入天平称量,选择仪器标定功能,将纯水注入到滴定池内液面以下,拭干针头后放入天平称量,将前后两次称量之差作为纯水的重量输入到仪器,开始标定。4、 重复步骤3,反复测量3~5次,仪器会自动保存标定结果并计算出平均值作为试剂的滴定度。5、 用称样舟称取样品,加入滴定池,将进样前后称样舟的称重之差作为样品进样量输入仪器,并开始测量。--测定结果--样品名称样品质量/g试剂消耗/ml检测时长测量结果/%米格列奈钙0.16002.802:285.42480.09941.7272:015.37570.15122.6393:115.3998平均值/%5.4001RSD0.455 由上述结果和实验操作可见,AKF-2010V卡尔费休水分测定仪,直接进样法测量,不但能有效检测出米格列奈钙中的含水量,测试结果的准确度和重复性较好,另一方面还能够减轻实验室人员的工作量,检测更准确高效!
  • 免费试用丨Plover 便携式土壤水分、温度和电导率测量系统
    科学研究可以带领人类探索更多未知的领域,而完成一项研究离不开科研仪器的“加持”,高效精准的仪器设备将为研究人员的探索之路助一臂之力。 自2021年《政府采购进口产品审核指导标准》发布以来,国家支持重大科研设施和仪器设备国产化的力度不断提升,各省市也相继发布支持政策,在保障科研需求的前提下,优先购置国产仪器。 但购置仪器不是一件小事,哪款设备能满足需求?哪款设备性价比高?采购前的持续观望、谨慎研究,只为找到能够更好满足科研需求的设备。 如何更深入地了解一款仪器设备?当然是“用起来”。 为提升用户对国产仪器品牌的了解,解决大家的“采购”之忧,普瑞亿科将招募“产品试用官”,开展一系列国产仪器免费试用活动,让有科研需求或购买意向的用户朋友们亲身体验到国产设备的优势,同时试用官真实的试用报告,也可以给予正在观望的用户非常有价值的参考建议,诚挚邀请大家参与活动,成为我们的“产品试用官”。 本期我们将招募“Plover便携式土壤水分、温度和电导率测量系统”产品试用官,为了让用户亲身感受到产品强大的性能和配置,普瑞亿科将开放3台Plover设备,面向有研究、测试需求的用户,推出15天免费试用活动,无需观望等待,试用后觉得合适您再购买。Plover 便携式土壤水分、温度和电导率测量系统 Plover便携式土壤水分、温度和电导率测量系统是基于“真时域反射”(TureTDR)技术的土壤三参数测量系统。该系统通过激发并测量高频(~1.5GHz)电磁波的运移时间进行土壤水分和电导率的测量,同时输出土壤温度。其它测量技术因采用低频测量信号,测量过程中存在严重的水和离子极化现象,因而对盐度异常敏感;而基于TureTDR技术的Plover土壤三参数测量系统更大限度克服了上述问题,对土壤中的含盐量及各种土壤类型不敏感,可更大限度提高土壤水分和电导率测量的准确性,并进一步拓展该系统的使用场景。 Plover可以实现便携式测量,通过安卓APP手机或平板进行操作并实时记录。该便携式土壤三参数测量系统能为农业、林业、草业、生态等科研和生产场景的土壤含水量便携测量提供稳定可靠数据。15天免费试用即日起至12月31日 可拨打电话详细咨询 试用结束后,可联系工作人员归还产品,也可成为我们的“产品推荐官”,推荐下一位新用户参与试用活动(将新用户联系方式提供给工作人员即可)。1、当新用户正式开始试用产品,即推荐成功,我们将给予“推荐官”200元现金奖励;2、如果新用户试用后决定购买产品,“推荐官”将再获得1500元现金奖励。 活动结束后,我们将在普瑞亿科公众号以推送的形式展示所有试用用户的使用体验,并发起投票活动,票数前三位用户将分别获得600元、400元、200元现金奖励。*该活动最终解释权归北京普瑞亿科科技有限公司所有
  • 锂离子电池原料的含水量检测
    pstrong一、前言/strongbr/  锂电池与我们生活息息相关,扮演着不可或缺的角色。比如我们每天不离手的手机以及笔记本电脑,家用电器等。作为交通工具的飞机、混合动力车、电动车等对锂离子电池的需求也显著增加。在锂离子电池的制造过程中,有很多东西是必须严格控制的,一是粉尘,二是金属颗粒,三是水分。br/strong二、水分对锂电池的影响及市场现状/strongbr/strong2.1 水分会对锂离子电池造成哪些不良影响?/strongbr/  主要表现为电池容量小,放电时间变短,内阻增大,循环容量衰减,电池膨胀等现象,因此在锂离子电池的制作过程中,必须要严格控制环境的湿度和正负极材料、隔膜、电解液的含水量。br/strong2.2 锂离子电池水分控制方法检测现状?/strongbr/  目前市场上水分含量测定的技术方法最常用的是加热失重法和卡尔费休法,由于锂电池行业所测样品含水量极低,加热失重法水分测定仪的精度根本达不到,这种方法被直接排除。br/strong三、分析与方法/strongbr/strong3.1 仪器/strongbr/  AKF-BT2015C 锂电池卡氏水分仪br/strong3.2 技术参数及特点/strongbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/2f8bdcbf-c688-4dfd-aa4d-bedd9c41a0f0.jpg" title="1.jpg"//ppstrong特点:/strongbr/1. 卡氏顶空样品瓶加热技术,有效避免加热炉膛和反应杯污染;br/2. 禾工独创的样品瓶连接器,让载气无须穿刺样品瓶隔垫即可进入到样品瓶内部,密封性好,减少隔垫耗材的同时可拆卸方便;br/3. 精确流量控制设计,载气消耗量仅为同类进口产品管式加热炉的十分之一;br/4. 大功率散热槽设计,迅速冷却样品瓶,提高工作效率;br/5. 7" 高分辨率彩色触摸屏界面,多参数显示,直观简洁;一键测定,操作极为简便;br/6. 防凝结保温管路无死体积设计,保证挥发后的水分管壁系统无残留;br/7. 加热温度最高达300° ,0-100ml 气体流量自由调节,满足大多数固体原料水分测定需求;br/8. 全自动恒流极化检测,无需人工设定终点,检测精度高,水分测量分辨率达到0.1ug br/9. 一键启动,操作简单,稳定可靠,故障低,使用寿命长;br/strong3.3 分析原理/strongbr/  样品用卡氏加热炉专用密封进样小瓶装载,用顶空瓶连接器密闭后进入加热槽中,样品中的水分(还可能有其他挥发性的溶剂)以蒸气的形式完全释放,通过干燥载气(如干燥的空气或者氮气)由顶空瓶经加热伴管路转移到KF 滴定杯中,然后卡尔费休水分测定仪进行检测并显示测量数据。br/strong3.4 检测方法/strongbr/1.将电解液注入电解池以及电解电极的阴极室内,液位至下刻度线,加入微量水然后电解至平衡。br/2.将气源连接至卡氏加热炉,将干燥样品瓶装入加热槽,温度设置为250℃,流量调整为50mL/min,吹扫样品瓶和管路内可能存在水分,等待再次平衡。br/3.将样品瓶移至冷却槽冷却后取出,用电子天平称取约0.5~3g 样品置于样品瓶内,然后在水分仪上点击开始测量,同时将样品瓶装入加热槽。br/4.输入样品称取的重量,等待测量结束后显示最终测量结果。br/strong四、数据与结论/strongbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/c2469d3d-16f8-4766-a1cb-7d8da27630e8.jpg" title="2.jpg"//ppstrong结论说明:/strongbr/  通过本实验方法,可以精确测得锂离子电池原料的水分含量,检测结果精度与重复性均达到进口同类产品的水平。AKF 库仑法卡尔费休水分测定仪和KH-1 卡氏加热炉顶空进样器联用,能自动扣除漂移,操作便捷,能准确可靠的测出锂电池跟原料的含水量。/p
  • 土壤墒情监测仪在墒情监测中立下了汗马功劳
    土壤墒情监测仪在墒情监测中立下了汗马功劳。随着现在环境保护意识的越来越强,减少化肥的使用可以有效改善土壤的状况,通过土壤墒情监测,可以提高灌溉水和化肥使用的有效率,在保证农作物水充足的前提下,最大限度的节约灌溉水和化肥的使用,节约灌溉水和化肥,对于环境保护方面也有重要的意义。通过这款WX-TZSQ60土壤墒情监测仪可以快速的测定土壤含水量,以往依靠经验来预测的生产方式已逐步被淘汰,因此这款系统能被大范围应用,能够满足科研、生产、教学等相关工作需求。它主要针对土壤水分含量和土壤温度进行监测,通过水分传感器和温度传感器测量土壤的体积含水量和温度值。土壤墒情监测仪是一款集土壤温湿度采集、存储、传输和管理于一 体的自动监测系统。在不同介电系数物质中的频率变化测得各土层的湿度,利用高精度数字温度传感器,测量各层土壤温度。可实现多参数环境监测。根据用户需求选配,具体选配,这款设备在农业、林业、环境保护、水利、气象等行业中立下了汗马功劳,值得选择。推荐阅读:便携式移动气象站——实现智慧农业、林业、城市的重要工具
  • 专题约稿|锂电材料之含水量检测解析
    p style="text-align: center "span style="font-size: 18px "strongspan style="color: rgb(255, 0, 0) "i专题约稿|锂电材料之含水量检测解析/i/span/strong/span/pp style="text-align: center "span style="color: rgb(127, 127, 127) "i——“锂电检测技术系列——成分分析技术”专题征文/i/span/pp style="text-align: center "span style="color: rgb(127, 127, 127) "i(作者:上海禾工科学仪器有限公司)/i/span/pp  电池材料关心的结构、动力学等性能,均与电池材料的组成与微结构密切相关,对电池的综合性能有复杂的影响。每一项性能可能与材料的多种性质有关,每一类性质也可能影响多项性能,具体问题需要具体分析,没有特别统一的规律,这给电池的研究带来了很大的挑战。准确和全面的理解锂电池材料的构效关系需要综合运用多种检测技术。/pp  strong仪器信息网/strong:请介绍贵公司锂电检测产品的定位、锂电检测产品在贵公司的地位、检测对象在锂电产业链中所处的环节?/pp  strong上海禾工/strong:目前,我司锂电检测产品AKF-BT2015C水分测定仪主要用于测量锂电池行业各类材料(正负极材料、电解液、隔膜)的水分,CT-1Plus电位滴定仪检测某些离子含量,保障锂电生产材料的可靠性。/pp  锂电检测产品是公司主推仪器之一,并且相关仪器的更新优化一直在做,确保能准确、高效的完成检测任务。/pp  检测对象属于锂电产业中用于电池生产的各种材料。/pp  strong仪器信息网/strong:请回顾贵公司锂电检测的研发及技术进展历史,贵公司在锂电检测方面有哪些优势/专利技术?/pp  strong上海禾工/strong:禾工产品研发进展史——上海禾工科学仪器有限公司2011年底,在浙江大学、中科院宁波材料所等第一批老师的帮助下,首先开始卡式加热炉结构设计和材料筛选的工作,经过几年的摸索,样机成型,并结合我司AKF-3库伦法卡氏水分测定仪,组成国产的第一套带卡式加热炉的卡尔费休水分测定仪系统,这台样机在我公司运行检验没有问题的情况下,送往客户工厂接受检验,国轩工厂经过3个月的使用,并和进口仪器进行数据对比,给我们做出了数据平行性良好,和进口数据对比接近,标准水测试符合要求,仪器长时间运转无故障的认可结论,并迅速在国轩的合肥工厂,以及华东地区的兄弟单位,比如安徽天康、钱江锂电等单位推广开来。至2016年8月底,短短两年时间,AKF-BT2015C锂电池专用水分测定仪在锂电新能源行业创造了累计销售数量过百!客户二次购买率超过60%!锂电市场占有率40%,国产设备占有率100%的非凡业绩。/pp  检测专利技术及优势——禾工AKF-BT2015C锂电池专用水分测定仪拥有专利的卡氏顶空进样器,采用特别加热技术,避免反应杯和加热炉膛污染同时减少载气消耗。检测过程中无需穿刺隔垫,样品瓶洗净可反复利用,耗材损耗小。 气体导出管路设计死体积小,无残留,无记忆效应,配备加热伴管防止水汽凝结,操作简单,自动扣除漂移,简化计算操作,测试结束自动计算含水量。/pp  strong仪器信息网/strong:贵公司当前锂电检测相关的主流产品和主流技术?/pp  strong上海禾工/strong:主流产品有AKF-BT2015C锂电池专用水分测定仪、CT-1Plus多功能全自动滴定仪 AKF-BT2015C主要检测各类电池材料含水量 CT-1Plus自动电位滴定仪进行电池主要成分分析。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/aefb41cc-706d-4e0c-97c8-cd1ad374dc2d.jpg" title="2.jpg" alt="2.jpg"//pp  strong仪器信息网/strong:贵公司锂电检测产品典型用户有哪些?/pp  strong上海禾工/strong:钱江锂电、个旧圣比和、惠州基安比、南阳嘉鹏、山西忻能、四川南光、新乡中科科技、安徽天康股份有限公司、江苏请陶能源科技有限公司、浙江谷神新能源科技有限公司....../pp  strong仪器信息网/strong:目前贵公司重点关注的锂电应用领域有哪些?最看好哪个领域?主推的解决方案?/pp  strong上海禾工/strong:最关注并看好新能源汽车行业领域,禾工产品可以用于保障电池制备材料的可靠性,针对各类材料含水量检测。/pp  strong仪器信息网/strong:预测未来锂电检测市场发展潜力(包括应用方向、方法标准、政策法规等)?/pp  strong上海禾工/strong:由于时下新能源、智能化热度很高,未来锂电检测市场很有潜力,目前常规锂电材料的检测标准基本已具备,预期随着未来锂电技术的快速发展,越来越多的锂电材料会出现,一旦在技术上过关,必然会带来很更广泛的应用,相应的法规也会制定。/ppstrongspan style="color: rgb(255, 255, 255) "  /span/strongstrongspan style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "附:关于锂电系列专题约稿/span/strongbr//pp  近十年间,在能源技术变革以及新兴科技的带动下,全球锂离子电池产量进入飞速增长期,根据公开数据,预计2018年全球锂电池增速维稳,产量达155.82GWH,市场规模达2313.26亿元。中国是锂电池重要的生产国之一,2018年预计全国锂电池产量达121亿只,增速22.86%。/pp  锂离子电池产业的蓬勃发展,也为锂离子电池检测领域带来新的机遇。随着锂离子电池基础科学研究仪器水平不断提升,几乎各类先进科学仪器都逐渐在锂离子电池的研究中出现,且针对锂离子电池的研究、制造也开发了许多锂电行业专用的仪器设备。/pp  为促进中国锂电检测产业健康发展,仪器信息网结合锂离子电池检测项目品类,将从2018年12月起策划组织系列锂电检测系列专题报道,为专家、仪器设备商、用户搭建在线网上展示及交流平台。span style="color: rgb(0, 176, 240) "锂电检测系列专题内容征集进行中:/spana href="https://www.instrument.com.cn/news/20181204/476436.shtml" target="_blank" style="color: rgb(255, 255, 255) background-color: rgb(192, 0, 0) text-decoration: underline "span style="color: rgb(255, 255, 255) background-color: rgb(192, 0, 0) "【征集申报链接】/span/a/ptable cellspacing="0" cellpadding="0" border="0" align="center"tbodytr class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px word-break: break-all " width="53"p style="text-align:center"strongspan style="font-family: 宋体"系列序号/span/strong/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="359"p style="text-align:center"strongspan style="font-family: 宋体"锂电检测技术系列专题主题/span/strong/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="126"p style="text-align:center"strongspan style="font-family: 宋体"专题上线时间/span/strong/p/td/trtrtd style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="53"p style="text-align:center"span1/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="359"p style="text-align:center"锂电检测技术系列——电性能检测技术/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px word-break: break-all " width="126"p style="text-align:center"span2019/span年span1/span月span style="color: rgb(0, 176, 240) "【/spana href="https://www.instrument.com.cn/zt/lidian1" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "链接】/span/a/p/td/trtrtd style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="53"p style="text-align:center"span2/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="359"p style="text-align:center"锂电检测技术系列——成分分析技术/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="126"p style="text-align:center"span2019/span年span3/span月/p/td/trtrtd style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="53"p style="text-align:center"span3/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="359"p style="text-align:center"锂电检测技术系列——形貌分析技术/p/tdtd rowspan="4" style="border:solid windowtext 1px border-left:none padding:0 0 0 0"p style="text-align:center"span2019/span年/p/td/trtrtd style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="53"p style="text-align:center"span4/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="359"p style="text-align:center"锂电检测技术系列——晶体结构分析技术/p/td/trtrtd style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="53"p style="text-align:center"span5/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="359"p style="text-align:center"锂电检测技术系列——spanX/span射线光电子能谱分析技术/p/td/trtrtd style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="53"p style="text-align:center"span6/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px word-break: break-all " width="359"p style="text-align:center"锂电检测技术系列——安全性和可靠性分析仪器及设备/p/td/tr/tbody/table
  • 乙烯生产稳定保障:英国肖氏SDHmini露点仪助力氮气含水量监控
    在乙烯装置的运行过程中,氮气含水量的监测和控制对于保证装置的稳定运行和产品质量具有重要意义。氮气作为乙烯生产过程中的重要介质,其干燥程度直接影响催化剂的活性、设备的运行效率以及产品的最终质量。因此,对氮气含水量的准确测试与监控成为了乙烯装置管理中不可或缺的一环。乙烯生产稳定保障:英国肖氏SDHmini露点仪助力氮气含水量监控一、氮气含水量对乙烯装置稳定性的影响乙烯装置在高温高压的环境下运行,氮气中含有的微量水分会对系统的稳定运行造成不良影响。首先,水分会与装置中的催化剂发生反应,导致催化剂中毒或失活,从而影响催化反应的效率和选择性。其次,水分还会与系统中的金属部件发生腐蚀反应,加速设备的老化和损坏,缩短设备的使用寿命。此外,水分还可能导致系统中的阀门、仪表等部件发生冻结,造成装置的非计划停车和安全事故。乙烯生产稳定保障:英国肖氏SDHmini露点仪助力氮气含水量监控二、氮气含水量对乙烯产品质量的影响乙烯作为重要的化工原料,其纯度和质量对于下游产品的生产具有重要影响。氮气中含有的微量水分会直接影响乙烯产品的纯度和质量。在乙烯的精馏和分离过程中,水分会随乙烯一起进入产品,导致产品纯度下降,影响产品的使用性能和市场竞争力。此外,水分还可能与乙烯中的其他杂质发生反应,生成新的杂质,进一步降低产品的质量和纯度。三、氮气含水量测试的重要性鉴于氮气含水量对乙烯装置运行稳定性和产品质量的重要影响,对氮气进行含水量测试显得尤为重要。通过定期或不定期地对氮气进行含水量测试,可以及时发现氮气中的水分含量是否超标,从而采取相应的措施进行处理和调整。例如,当发现氮气中含水量超标时,可以采取更换干燥剂、调整干燥设备运行参数等措施来降低氮气中的水分含量,保证乙烯装置的稳定运行和产品质量。乙烯生产稳定保障:英国肖氏SDHmini露点仪助力氮气含水量监控为了确保氮气含水量的测试结果的准确性和可靠性,乙烯装置运行测试通常采用较高精度、高可靠性的露点仪。在众多露点仪品牌中,英国肖氏SHAW手持式露点仪SDHmini凭借其良好的性能和便捷的操作,成为了工业应用的理想选择。进口露点仪英国肖氏SHAW研发的SDHmini手持式露点仪具备一系列先进的技术特点,使得它在氮气含水量测试中表现出色。首先,它拥有自动校准功能,可以自动调整仪器状态,确保测试结果的准确性。同时,场校准/电子跨度检查装置使得用户可以通过简单的菜单指示进行操作,轻松完成校准工作。在测试精度方面,SDHmini手持式露点仪具有±2℃露点的准确度,重复性优于±0.3℃露点,能够满足乙烯装置对氮气含水量高精度测试的需求。此外,该露点仪对样品流速的要求较低,理想流速为2-5L/min,最大可达10L/min,使得测试过程更加灵活便捷。在反应时间方面,SDHmini手持式露点仪表现出色。从潮湿至干燥的过程,在-10℃至-60℃的温度范围内,反应时间小于120秒;而从干燥至潮湿的过程,在-110℃至-20℃的温度范围内,反应时间小于20秒。这种快速的反应时间使得测试过程更加高效,能够及时发现氮气中的水分变化。在设计和制造上,SDHmini手持式露点仪同样表现出色。它的尺寸适中,便于携带和操作;重量仅为1.75kg,减轻了测试人员的负担。同时,该露点仪的操作压力、操作湿度、操作温度以及保存温度等参数均符合工业应用的要求,确保了在各种环境下的稳定工作。此外,其防水分类达到IP66/NEMA 4X标准,可在恶劣环境下正常工作。在显示和数据处理方面,SDHmini手持式露点仪采用了全彩色LCD大屏幕,分辨率高达320 x 240(24 bits),使得测试数据清晰可见。同时,SDHmini手持式露点仪还具备数据记录功能,可存储多达300,000个读数,并支持数据和时间打印以及下载到PC中,便于数据的分析和管理。乙烯生产稳定保障:英国肖氏SDHmini露点仪助力氮气含水量监控进口露点仪品牌英国肖氏SHAW便携式露点仪SDHmini凭借其良好的性能和便捷的操作,成为了乙烯装置氮气含水量测试的得力助手。通过使用SDHmini手持式露点仪进行氮气含水量的测试与监控,可以确保乙烯装置的稳定运行和产品质量,为乙烯生产的高效、稳定和安全提供有力保障。更多乙烯生产稳定保障:英国肖氏SDHmini露点仪助力氮气含水量监控、请致电英肖仪器仪表(上海)有限公司1⃣ ️ 7⃣ ️ 3⃣ ️ 1⃣ ️ 7⃣ ️ 6⃣ ️ 0⃣ ️ 8⃣ ️ 3⃣ ️ 7⃣ ️ 6⃣ ️ ,英肖仪器仪表(上海)有限公司是进口露点仪品牌英国肖氏SHAW总代理、代表处、肖氏SHAW露点仪售后服务保障。
  • 土壤呼吸 | 极端干旱改变土壤微生物功能群丰度来降低土壤异养呼吸
    土壤呼吸 | 极端干旱通过改变高寒泥炭地土壤微生物功能群丰度来降低土壤异养呼吸而非甲烷通量【温室气体】人类活动造成温室气体排放急剧增加,全球地表温度持续上升,显著改变了自然生态系统碳水循环格局。极端气候事件,尤其是极端干旱事件发生的频率和强度不断升高,对土壤含水量、土壤微生物群落结构和功能、土壤异养呼吸(Rh)以及土壤甲烷(CH4)通量具有重要影响。高寒泥炭地拥有巨大的碳储量,对气候变化高度敏感。虽然目前围绕高寒泥炭地碳排放开展了一些研究,但对高寒泥炭地生态系统碳排放对极端干旱响应的微生物机制仍不清楚。若尔盖国家级自然保护区基于此,中国林业科学研究院湿地研究所的研究团队以青藏高原东部若尔盖国家级自然保护区高寒泥炭地(33°47′56.62′′ N,102°57′28.44′′ E,3430 m.a.s.l.)为研究对象,依托模拟极端干旱的野外控制实验平台,通过原位观测和室内试验相结合,旨在解决以下问题:(1)不同植物生长期,极端干旱如何影响Rh和CH4通量?(2)极端干旱如何影响土壤微生物群落结构和功能群?以及(3)驱动Rh和CH4通量变化的主要因素是什么?作者于2019年6月18日至9月25日测量了Rh(PS-9000便携式土壤碳通量自动测量系统(北京理加联合科技有限公司))和CH4通量(一个闭路静态室(0.5×0.5×0.5 m)+ABB LGR便携式温室气体分析仪(UGGA,GLA132-GGA))。试验三个生长期结束时,作者测量了样地0-20 cm土壤的土壤性质,包括总氮(TN)、土壤有机碳(SOC)、有效磷含量(AP)、总磷(P)、pH值、溶解有机碳(DOC)、土壤含水量(SWC)、硝态氮(NO3--N)、铵态氮(NH4+-N)、微生物生物量磷(MBP)、微生物生物量氮(MBN)和微生物生物量碳(MBC)。此外,还进行了新鲜土壤样品的DNA提取、PCR扩增和测序。图1 PS-9000便携式土壤碳通量自动测量系统。【结果】图2 不同植物生长期极端干旱对土壤异养呼吸(a)和甲烷通量(b)的影响。“ED”,“MD”,和“LD”分别代表植物快速生长期、盛花期和植物生长衰退期。图3 不同植物生长期极端干旱对细菌碳循环功能群的影响。图4 驱动因素对土壤微生物呼吸(a)和甲烷通量(b)的相对贡献。【结论】极端干旱导致植物生长衰退期土壤异养呼吸显著降低38.04 mg m−2h−1,但对CH4通量无显著影响。极端干旱显著降低了细菌的α多样性,显著降低了植物快速生长期和衰退期的Rokubacteria和Chloroflexi菌的相对丰度,显著增加了盛花期Actinobacteria菌的相对丰度。在植物快速生长期和盛花期,极端干旱使芳香烃降解功能群(aromatic hydrocarbon degraders)相对丰度分别降低了50.26%和64.37%。在植物生长衰退期,极端干旱显著降低了甲醇氧化(methanol oxidizers)和木质素降解(lignin degraders)功能群的相对丰度,分别为81.63%和82.08%。随机森林模型分析表明,细菌功能群在决定土壤异养呼吸和甲烷排放中起着重要的作用。芳香族化合物降解(aromatic compound degraders)和芳香烃(aromatic hydrocarbon degraders)降解功能群对土壤异养呼吸累计贡献率为11.89%。芳香族化合物降解(aromatic compound degraders)、芳香烃降解(aromatic hydrocarbon degraders)、脂肪族非甲烷烃降解(aliphatic non-methane hydrocarbon degraders)和甲基营养(methylotrophs)功能群对甲烷通量的累计贡献率为13.29%。研究结果强调土壤细菌碳循环功能群对于探索未来极端干旱背景下土壤碳循环可能的微生物响应机制至关重要,为高寒泥炭地应对未来气候变化提供了理论基础和科学依据。【产品简介】PS-9000是一套用于测量土壤CO₂通量的便携式测量系统,采用动态气室法测量,专利设计。具有控制测量、存储和数据处理等功能,可测量呼吸室内CO₂浓度变化,同时结合自身测量的空气温度、大气压、土壤温度等传感器的数据,计算处理得到CO₂通量。PS-9000可通过掌上控制器实现无线操作,实时显示仪器测量的各种参数值,并可现场修改各种设置参数。
  • 土壤墒情速测仪对农业的影响
    水是地球的生命之源,万物生长都离不开水,包括植物也一样,之所以能在土壤中生长,不光是因为土壤中有养分存在,也是因为土壤中有水的存在,这是植物生长所必须的基本条件之一。地球上有很多地质形态,有湿地、有沼泽、有黑土地、也有沙漠,其中沙漠中因为严重缺少水分,所以几乎没有植物的存在,通过这个现象我们也可以看出水分对土壤的重要性。  在现代农业的生产中,检测、监测土壤水分是一项不可忽略的重要工作,在这项工作共发挥亮点作用的就是我们河南云飞科技发展有限公司研发生产的土壤墒情速测仪,该仪器可以帮助我们快速、精准的测量出土壤中的水分含量,并其将模拟信号直接转化为可读的数字信号。  土壤墒情速测仪是一款便携式的测量土壤水分的仪器,方便携带。土壤墒情速测仪可以通过GPS定位系统掌握土壤的墒情(水分)的分布状况,为差异化的节水灌概提供科学的依据,同时精确的供水也有利于提高作物的产量和品质。  通过土壤墒情速测仪的检测结果,我们就可以根据作物生长对水分的要求来进行土壤含水量的调整,达到作物生长理想的水分要求。如果是在农业物联网系统中,我们也可以通过土壤墒情速测仪对土壤水分进行长期定时监测,发现土壤水分已有偏差,就可以通过系统自动执行对土壤水分调节,并且除了在PC端之外我们也可以在现场仪器上读取数据。
  • 上海卢湘仪设计离心机法测量土壤水分特征曲线
    土壤水分特征曲线可反映不同土壤的持水和释水特性,也可从中了解给定土类的一些土壤水分常数和特征指标,研究土壤水分特征曲线具有重大意义。笔者获悉,近期,上海卢湘仪离心机仪器有限公司研发了一款测定土壤pF曲线专用离心机——H1400pF土壤用高速冷冻离心机,该离心机的成功研发将可助攻于农业科技领域的发展。一、产品简介 土壤检测离心机,用于土壤含水量对应的pF(水势)值的曲线测试,是表达土壤水势和土壤水分含量关系。 二、产品特点 土壤水分特征曲线通常采用压力膜(室)和离心机等方法进行测定。离心机法比其他方法操作简单、省时,可测定较宽的吸力范围,广泛应用于土壤水分动态模拟。这款离心机用于测量土壤含水量对应的pF(水势)值。 三、离心机设计 上海卢湘仪设计了特有的土壤水特性曲线专用水平转子,达到水平转子在测试中的转速14000转/分,相对离心力25220*g ,设计有接水器、过滤板、过滤膜、离心套筒、离心上盖、密封圈等,土壤离心机转子设计保正了在做测定土壤水特性pf曲线数据时高速旋转无渗漏,有效保证了所收集的水准确无误,使计算参数和依据得到了保证。 为了避免因空气和转子在高速旋转时产生温升过高而造成水分挥发损失,离心机设置制冷系统和温度调节系统,使工作腔温度恒定在4度左右,可根据客户需求进行调整温度。电气方面采用变频交流调速,电脑控制,离心机设有门盖,不平衡,超温,超速安全保护措施,保证高速旋转下的安全性。据相关工作人员表示,该离心机是卢湘仪技术团队倾力打造的一款离心机产品,具有多方面的技术优势。 四、离心操作方法 操作离心机前首先检查离心机电源,打开离心机总开关,取出转子上4组离心筒组件,准备土壤,准备水、天平、打开离心套筒组件,根据使用说明书要求安装稀释好的土壤,称重配平,安装离心套筒组件,检查4个组件对称放置,关上离心机门盖,设置参数,启动离心机,离心机倒计开始运转时间为0停机,打开门盖,取出离心完的离心套筒,取出接水器,将水倒入并记录水量。 五、土壤水分特征曲线概念不同质地土壤水分特征曲线有所不同 土壤水的基质势(或土壤水吸力)随土壤含水量的变化而变化,其关系曲线称为土壤水分特征曲线,英文名称为soil water characteristic curve。 一般,该曲线以土壤含水量Q(以体积百分数表示,比如土壤含水量为10%,那么在横坐标上就是对应的数字10)为横坐标,以土壤水吸力S(以大气压表示)为纵坐标。有了横坐标和纵坐标就可以绘制出不同土壤的水特性曲线图了。 六、研究土壤水分特征曲线的意义 土壤水分对植物的有效程度最终决定于土水势的高低,而不是自身的含水量。如果测得土壤的含水量,可根据土壤水分土特征曲线查得基质势值,从而可判断该土壤含水量对植物的有效程度。 土壤水分特征曲线可反映不同土壤的持水和释水特性,也可从中了解给定土类的一些土壤水分常数和特征指标。曲线的斜率倒数称为比水容量,是用扩散理论求解水分运动时的重要参数。曲线的拐点可反映相应含水量下的土壤水分状态,如当吸力趋于0时,土壤接近饱和,水分状态以毛管重力水为主;吸力稍有增加,含水量急剧减少时,用负压水头表示的吸力值约相当于支持毛管水的上升高度;吸力增加而含水量减少微弱时,以土壤中的毛管悬着水为主,含水量接近于田间持水量;饱和含水量和田间持水量间的差值,可反映土壤给水度等。故土壤水分特征曲线是研究土壤水分运动、调节利用土壤水、进行土壤改良等方面的最重要和最基本的工具。 关于上海卢湘仪离心机仪器有限公司 上海卢湘仪离心机仪器有限公司是中国一家获得美国FDA认证的专业离心机企业,生产历史悠久、技术力量雄厚、生产设备精良、检测设备齐全。其以设计精巧、造型新颖、工艺精良而闻名,生产的离心机产品质量可靠、性能稳定、规格齐全,广泛应用于高等院校,科研单位,生物制药,医疗,石油化工等领域。 经过四十多年的发展,卢湘仪已先后设计生产各种领域的离心机产品,本次研发生产的H1400pF土壤用高速冷冻离心机是一款专业测定土壤pF曲线的离心机产品,该产品将对于农业发展以及教学方面具有重要意义。
  • 乌克兰将执行新禽肉标准 含水量低于4%
    据世界禽类网站7月8日消息,乌克兰国家经济发展部门近日发表声明称,乌克兰将于2014年7月1日起执行新的禽肉制品中含水量的标准,新标准要求除霜禽肉中的含水量不能超过4%。  针对上述情况,检验检疫部门提醒相关企业:应主动加强与进口商及检验检疫部门的沟通,寻求技术和信息支持,积极研究应对措施 要加强输乌除霜禽肉产品的含水量的监控,尽量避免商品被拒绝进入目标市场。
  • 第八届中科院土壤生态学培训班圆满成功
    2016年4月15日,我们迎来了第八届中科院土壤生态学培训班,这是北京易科泰生态技术有限公司与中科院大学的合作项目,每年一届,今年已经第八个年头。来自中科院20多个所的研究生参加了培训。新技术——LIBS元素分析系统成了本年度培训班上的亮点。Sci-Trace LIBS元素分析系统由欧洲工程技术中心(CEITEC)研制生产,用于岩矿、材料、塑料、土壤及植物等的元素分析和元素分布2D成像,可广泛应用于地质科学、材料科学、土壤科学、生物科学、环境科学、考古学、生物医学等领域样品分析。中科院老师对新技术非常感兴趣,提了很多问题,与我们工程师热烈探讨 仪器演示环节,我们展示了SoilBox便携式土壤呼吸测量系统、Soilbox-343便携式土壤呼吸测量系统和TRIME-PICO-IPH TDR剖面土壤水分测量系统, SoilBox便携式土壤呼吸测量系统可同时测量土壤O2和CO2,从而更加精确、客观、全面地反映土壤呼吸和碳排放。 Soilbox-343便携式土壤呼吸测量系统最大的优势是简单轻便,可随身携带去野外考察,适应于各种恶劣的地形地貌,下图是ECOLAB实验室在沙漠进行实验。TRIME-PICO土壤水分测量系统可方便、快速地测量土壤表层含水量,与延长杆联合使用也可以测量深层土壤含水量。基于FAO2006的标准,TRIME-PICO探头可用于对高盐土壤情况进行普查;也可以通过测量土壤电导率的大小,间接地反映土壤含盐量,从而对施肥管理提供指导。 同学们之前只是从课堂上学过理论知识,这次有机会见到实物,都非常兴奋,非常踊跃,摩拳擦掌地说要试试。团团围住工程师,认真听工程师的介绍并提出很多问题,然后还自己动手进行操作。培训班进行得非常顺利,我们离开的时候得到了同学们热烈的掌声。
  • 物联网土壤墒情监测系统-关注土壤-发展农业
    物联网土壤墒情监测系统-关注土壤-发展农业【FT-TS600】土壤含水量是农业生产中的重要信息,快速准确地测定农田土壤含水量,不仅对研究土壤含水量和作物生长发育期对我来说意义重大,而且还可以按照科学的灌溉时间调节,实现自动灌溉精细化,节约宝贵的水资源,更好地发展农业生产。  FT-TS600土壤墒情监测站是一款高度集成、低功耗、可快速安装、便于野外监测使用的高精度自动气象观测设备。  该设备支持有线、GPRS、蓝牙等传输方式,免调试,可快速布置,广泛应用于农业、林业、地质、高校、科研等方面。主要针对土壤水分含量和土壤温度进行监测,通过水分传感器和温度传感器测量土壤的体积含水量(VWC)和温度值。同时,根据用户需求,可以扩展配置土壤电导率、土壤PH、空气温度、空气湿度、太阳辐射、雨量等气象传感器。技术参数  1)土壤水分:测量范围:0-100%,精度:±3%,探针长度:5.5cm,探针直径:3mm,探针材料:不锈钢  2)土壤温度:测温范围 -40+125℃,测量精度±0.5℃,分 辨 率:0.1℃  3)土壤电导率:测量范围 可选量程:0-5000us/cm,10000us/cm,20000us/cm,测量精度0-10000us/cm范围内为±3% 10000-20000us/cm范围内为±5%,分辨率0-10000us/cm内10us/cm, 100000-20000us/cm内50us/cm(选配)  4)土壤PH:测量范围:0-14 分辨率:0.1 测量精度:±0.2%(选配)  5)空气温度:测量原理二极管结电压法,-40℃~85℃(±0.3℃)(选配)  6)空气湿度:测量原理电容式,0~100%RH(±2%RH)(选配)  7)太阳辐射:测量原理光电效应,0-2000W/m2(0.1W/m2)(选配)  8)光学雨量:测量原理光电式,0~4mm/min(选配)  9)数据存储:不少于50万条   10布设时间:1人,不大于30分钟完成布设   11)生产企业具有ISO质量管理体系、环境管理体系和职业健康管理体系认证  12)生产企业具有和土壤墒情软件注册证书  13)生产企业为3A级信用企业
  • 2100 | 不同土壤水分条件下土壤水与植物茎木质部水的同位素偏差研究
    【摘要】土壤含水量的时空异质性影响着土壤水和植物茎木质部水的同位素组成。然而,土壤水分条件对广泛报道的土壤水-植物茎木质部水同位素偏差的影响尚缺乏系统地评估。为此,本研究连续两年在两个土壤水分条件不同的样地测定了柠条茎木质部水和土壤水的δ2H和δ18O值(利用全自动真空冷凝抽提系统LI-2100,北京理加联合科技有限公司)提取土壤和植物茎木质部中的水分,然后进行同位素测量)。结果表明,在较湿润的样地1,茎木质部水与土壤水在两年中都表现出明显的同位素偏差(两者的重叠率20%),土壤水-茎木质部水lc-excess差值(Δlc-excess)平均值为10.7‰,茎水SW-excess的平均值为&minus 9.1‰。但在干旱年,茎木质部水与土壤束缚水高度匹配。在土壤含水量相对较低的样地2,茎木质部水与土壤水在湿润年发生同位素偏移,两者的重叠率为20%,Δlc-excess和SW-excess平均值分别为13.7‰和&minus 11.8‰。有趣的是,在干旱年份,茎木质部水与土壤水同位素的重叠率达到97%。样地2土壤含水量与Δlc-excess值呈正相关,与SW-excess值呈负相关。本研究表明土壤束缚水与柠条茎木质部水同位素之间较高的匹配度,支持了“两个水世界”假说。土壤水-植物茎木质部水同位素偏差极有可能与土壤含水量驱动的土壤水同位素异质性密切相关。该研究结果阐明了不同水分条件下植物茎木质部水和土壤水同位素信号的变化,有助于更好地理解植物在异质土壤中如何吸收水分。【研究区域】该试验是在中国黄土高原北部六道沟小流域 (38°46′-38°51′N,110°21′-110°23′E)进行。【研究方法】(1) 土壤束缚水同位素的计算本研究中,将张力计在&minus 60 kPa压力下收集到的水分视为土壤移动水,而压力值大于&minus 60 kPa时收集到的水分则视为土壤束缚水。在土壤水分特征曲线上,土壤水吸力为60 kPa时对应的土壤含水量被认为是土壤束缚水的最大含水量。土壤水的质量含水量可以通过野外试验测定。土壤水含水量与土壤束缚水最大含水量的差值为土壤移动水的含水量。最后,根据实测的土壤水与土壤移动水的同位素值,可以计算出土壤束缚水的同位素值。式中,δLMW 、δBW、δMW分别为土壤束缚水、土壤水和土壤移动水的同位素值,θLMW、θBW、θMW分别为土壤束缚水、土壤水和土壤移动水的土壤含水量。(2) lc-excess值的计算按照Landwehr and Coplen(2006)的方法,计算了土壤水和植物茎木质部水的lc-excess值,并利用两者的差值(Δlc-excess)评估同位素偏差。Δlc-excess值越大,表明植物茎木质部水与土壤水同位素偏差越大。式中,下标“s”代表样本,a和b分别是区域降水线LMWL的斜率和截距。(3) SW-excess 值的计算按照Barbeta et al.(2019)的方法,计算了柠条茎木质部水的SW-excess值,用以评估柠条茎木质部水与土壤水同位素之间的偏离程度。若SW-excess为负值,则在δ2H-δ18O双同位素图中茎木质部水位于土壤水的下方。SW-excess值越负,表明柠条茎木质部水与土壤水同位素偏差越大。式中,下标“s”代表柠条茎木质部样本,abw和bsw分别是2018-2019年每个月份土壤水线的斜率和截距。(4) 重叠面积法评估植物-土壤水同位素偏差利用R软件中的SIBER(Stable Isotope Bayesian Ellipses)模型计算了植物茎木质部水和土壤水的重叠面积,最后给出两者的重叠面积与茎木质部水面积的比值(%)。较高的比值意味着植物茎木质部水与土壤水同位素重合度高。【结果】图1 研究期间植物水和土壤水δ18O和δ2H值的标准椭圆(95% 置信区间)。图2 样地1-2土壤水-茎木质部水分lc-excess差值(Δlc-excess)及茎水SW-excess值。图3 不同吸力下土壤水分类型示意图及样地1-2水分特征曲线。图4 植物水和不同移动性的土壤水δ18O和δ2H值的标准椭圆(95% 置信区间)。图5 土壤含水量与(a)Δlc-excess和(b)SW-excess的关系。【结论】植物茎木质部水-土壤水同位素偏差是一个复杂的问题,涉及水分提取方法、植物生理和土壤水分动态等多个方面。前人的研究已经为植物茎水同位素异质性、水分提取方法和同位素分馏如何影响同位素偏差提供了令人信服的证据,但这些影响因素均不能为本研究结果提供合理的解释。本研究在两个土壤水分条件不同的采样点,连续两年对灌木种柠条茎木质部水和土壤水进行取样。结果发现湿润样地(样地1)在丰水年或干旱年以及干旱样地(样地2)在丰水年均发生了茎水-土壤水同位素偏差,而样地2在干旱年份,柠条茎木质部水与土壤水在δ2H-δ18O双同位素空间上高度重合。此外,样地1茎木质部水与土壤束缚水同位素趋于一致,进一步支持“两个水世界”假说。样地2土壤含水量与Δlc-excess呈正相关,与SW-excess呈负相关。这些研究结果表明,土壤水-植物茎木质部水同位素偏差极有可能与土壤含水量驱动的土壤水同位素异质性密切相关。该研究也提出了一些需要解决的问题。该试验是在自然条件下进行的,目前的数据限制了我们进一步明晰水分提取技术和植物茎水同位素异质性是否会对同位素偏差产生影响。尽管这些解释并不能完全适用于本研究,但仍然不能排除这些因素对本研究的潜在影响,有必要在未来研究中全面地加以考虑。无论如何,我们的研究有助于更深入地了解植物在不同水分条件下如何利用水分,并有助于预测它们对水文气候变化的响应。
  • 微量水分测定仪|石油产品中含水的危害及微量水分测定的意义
    石油产品中含水的危害水的相对分子能量比油的相对分子能量小得多,气化后体积猛增,使系统压力降增加,动力消耗随之增加,因此油品中含量高,会使装置操作波动,造成冲塔。并且由于含水带入的无机盐(Call2、MgCl2)还会加剧装置的腐蚀。轻质燃料油中含水会使冰点、结晶点升高,导致油品低温水动性变差,造成油品在低温下分析出冰粒而堵塞过滤器及油路,尤其是航煤和柴油中的含水,会造成供油中断,酿成严重事故。润滑油中含水,会破坏润滑膜,使润滑不能正常进行,增加机件的磨损。水分带入的无机盐还会增加润滑油的腐蚀性,加剧机件的腐蚀。当使用含水的润滑油在温度较高的环境下工作时,由于水的汽化就会破坏润滑膜。重整原料油中水含量超标,会使催化剂中毒,由于油中过多的水占据了催化剂的酸性中心,破坏了酸性中心金属中心的平衡,使催化剂活性下降甚至失活,影响催化剂使用寿命。因此,水分含量是各种油品标准中不可缺少的质量指标。微量水分测定的意义1、测定油品中的水分可提供准确的计量油品的数量,即检尺后减去水量,就可得知整个容器中油的实际上数量。2、测出油品中的水分,可根据其含量的多少,确定脱水的方法,以防止造成以下危害:如石油产品中的水分蒸发时要吸收热量,会使发热量降低。3、轻质石油中的水分会使燃烧过程恶化,并能将溶解的盐带入气缸内,生成积炭,增加气缸的磨损;在低温情况下,燃料中的水会结冰,堵塞燃料导管和滤清器,阻碍发电机燃料系统的燃料供给。4、石油产品中有水会加速油品的氧化生胶;润滑油中有水时不但会引起发动机零件的腐蚀,而且水和高于100℃的金属零件接触时会变成水蒸气,破坏润滑油膜。5、轻质油品密度小,黏度小,油水容易分离。而重质油品则相反,不易分离。进入常减压蒸馏装置的原油要求含水量不大于0.2%~0.5%;成品油的规格标准要求汽油、煤油不含水,轻柴油水分含量不大于痕迹;重柴油水分含量不大于0.5%~1.5%;各种润滑油、燃料油都有相应的控制指标。相关仪器A1070微量水分测定仪采用经典理论——卡尔&bull 费休微库仑电量法,依据电解定律反应的水分子数同电荷数成正比,仪器检测参加反应电荷数(库仑)自动换算成对应的水分子数,因此此方法测试精度高,测试成本低,能可靠的对液体、气体、固体样品进行微量水分的测定。具有高灵敏度、高精度、高再现性,低功耗节能设计,可内置蓄电池用于便携测量。广泛适用于石油、化工、电力、制药、商检、科研、环保等领域。执行标准适用标准:GB/T11133、GB/T11146、GB/T 7600、GB/T6023、GB/T6283、GB/T606等仪器特点:1、液晶彩色7寸触摸屏显示,自动平衡,人机对话界面,各种参数具有菜单提式输入,具有与电脑、wifi连接功能。2、配有试验日期、时钟等多种参数提示功能,微分检测,系统偏差自动修正,搅拌、检测、打印数据微机自动完成,具有μg水与ppm单位同时显示功能。3、操作简单,使用方便,测试准确、稳定、易操作,是试验室理想的测量仪器。技术参数&bull 测量范围:3μg~100mg&bull 电解速度:≤2.4毫克/分&bull 分 辨 率:0.01μg&bull 准 确 度:10μg~1mgH2O ±3μg 1mgH2O 以上为3%(不含进样误差)&bull 终点显示:信息显示、蜂鸣器响、终点指示灯亮&bull 显示时钟:年 月 日 小时 分钟 秒(掉电保持)&bull 打 印 机:16个字符针式打印,纸宽44毫米&bull 电源电压:AC220V±10%,50HzA1071便携式微量水分测定仪采用经典理论—卡尔●菲休微库仑电量法,测试精度高,测试成本低,能可靠的对液体、气体、固体样品进行微量水分的测定。具有高灵敏度、高精度、高再现性,低功耗节能设计,适用于石油、化工、电力、商检、科研、环保等领域。适用标准:GB/T11133、GB/T11146、GB/T7600、GB/T6023、GB/T6283、GB/T606等仪器特点1、中文彩色液晶显示,触摸屏操控,直观方便。2、平衡点漂移补偿电路,误差更小,结果更精确。3、WIFI无线连接,数据传输方便,可在手机PC上存储分析数据。4、仪器可存储带时间的历史记录,存储1万条。5、仪器具有自检功能,电极开路、短路自检报警功能。6、具有屏幕保护功能,延长液晶使用寿命。7、电解池接口螺纹锁紧设计,密封性好,保证携带时不漏液。8、24V10Ah锂电池组,保证供电10小时以上。技术参数&bull 测量范围:3ug~200mg&bull 精 度:测试水量在3ug~1000ug之间,误差小于±3ug 测试水量大于1000ug,误差小于±0.3% &bull 分 辨 率:0.1ug &bull 电解电流:0~400Ma&bull 待机功耗:4W &bull 最大功耗:20W&bull 工作电源:AC220V±20%,50Hz&bull 外形尺寸:370mm×240mm×180mm&bull 重 量:约5kgA1072库仑法微量水测定仪采用经典理论——卡尔&bull 费休微库仑电量法,依据电解定律反应的水分子数同电荷数成正比,仪器检测参加反应电荷数(库仑)自动换算成对应的水分子数,因此此方法测试精度高,测试成本低,能可靠的对液体、气体、固体样品进行微量水分的测定。具有高灵敏度、高精度、高再现性,低功耗节能设计,可内置蓄电池用于便携测量。广泛适用于石油、化工、电力、制药、商检、科研、环保等领域。执行标准适用标准:GB/T11133、GB/T11146、GB/T 7600、GB/T6023、GB/T6283、GB/T606等仪器特点:1、液晶彩色7寸触摸屏显示,自动平衡,人机对话界面,各种参数具有菜单提式输入,具有与电脑、wifi连接功能。2、配有试验日期、时钟等多种参数提示功能,微分检测,系统偏差自动修正,搅拌、检测、打印数据微机自动完成,具有μg水与ppm单位同时显示功能。3、操作简单,使用方便,具有排加液功能,测试准确、稳定、易操作,是试验室理想的测量仪器。技术参数&bull 测量范围:3μg~100mg&bull 电解速度:2.4毫克/分(最大)&bull 分 辨 率:0.01μg&bull 准 确 度:10μg~1mgH2O ±3μg 1mgH2O 以上为0.3%(不含进样误差)&bull 终点显示:信息显示、蜂鸣器响、终点指示灯亮&bull 显示时钟:年 月 日 小时 分钟 秒(掉电保持)&bull 打 印 机:16个字符针式打印,纸宽44毫米&bull 电源电压:AC220V±10%,50HzA1075石油产品水分测定仪(双联)根据国标GB/T260《石油产品水分测定法》规定的要求设计制造的。适用于测定石油产品中的水分含量,也适用于按GB/T512《润滑脂水分测定法》的标准规定的试验方法测定润滑脂中的水分含量。执行标准:适应标准:GB/T260、GB/T512技术参数:1、工作电源:AC 220V±10%,50Hz。2、电炉加热功率:300W。3、加热控制:双向可控硅无级调压控制。4、环境温度:≤35℃。5、相对湿度:≤85%。6、整机功耗:不大于310W。A1078全自动水分测定仪适用于煤矿、火电厂、矿业、化工、地质勘测、环保、检疫检验、科研及院校等相关行业和部门对待测水份值的样品(煤、煤渣、焦炭、岩石、油品等)。为用户提供水分数据用于仲裁、教学等。适应标准:GB/T211和GB/T212仪器特点:1、采用光波加热方式,光波加热更均匀、加热速度更快、加热效率更高、更节能,节能效率提高15%,测试速度快。2、自动化程度高:采用计算机实时通讯技术和自适应控制技术,将高精度**电子天平集成到仪器的内部,结合一套自动称量机构,实现自动称量,自动送样,自动处理数据、结果计算、报表打印和存储等,实验过程自动控制。3、具有断电重启功能:仪器在短暂停电后,开机即可恢复上次试验,无需将上次全部样品实验报废。4、速度快,结果准:高自动化程度和新型加热方式,既可缩短测试时间、减少人为误差,又提高了测试准确度和效率,测定20个内水样品只需30分钟,减轻了操作人员的劳动强度。5、具有自动充氮装置,水分测试时可采用充氮干燥法。6、采用TCP网络通信协议,确定仪器通信无误码率。7、采用PT100测温探头,测温清度高,结果更准确。8、仪器上面增加显示屏显示天平数据,优化称样效率。9、分析测试系统:可连接本公司绝大部分煤质分析设备。可自动上传数据,生产报表。(用户可根据自身需求设计报表)。10、实时显示样重,具有断电记忆功能,突然断电不会丢失测试数据,通电即可继续完成试验。技术参数:&bull 试样个数:20个/次&bull 试样质量:空干基水分:0.9-1.1g;¢6全水分:10-12g&bull 试验时间:分析水〈35min;全水60min&bull 工作炉温:105~110℃&bull 控温精度:±1℃&bull 煤样粒度:空干基≤0.2mm;¢6全水分≤6mm&bull 最大功率:2.0KW。&bull 主机尺寸:505*400*570
  • 美国SPECTRUM发布新产品TDR350 土壤水分温度电导率三参数测定仪
    美国SPECTRUM发布新产品TDR350 土壤水分温度电导率三参数测定仪。该土壤三参数测定仪具体介绍如下:TDR土壤水分温度电导率三参数测定仪TD350利用可靠的时域反射技术,能够对土壤水分变化全量程的进行精确测量。通过新的功能改进,能够为优化草皮提供精准测量和更加稳定的性能表现。能够对土壤EC进行测量,修正土壤水分读数。一键获取土壤水分读数,多种探针长度可以让您更好的测量目标区域数据。 TDR土壤水分温度电导率测定仪TD350产品特点:提高土壤水分测量精度(体积含水量)能够测量EC值测量草皮表面温度行业独家背光显示内部集成蓝牙和GPS模块能够保存超过50000条含有GPS的测量记录使用改进后的伸缩固定支架,调整探杆长度。6435 TDR 350 complete with case整套设备 TDR土壤水分温度电导率测定仪TD350可选附件红外温度传感器行业独家设计将土壤水分仪与红外温度测量相结合,使困难的测量变得更见快捷,简单容易实现。能够与TDR350很方便的连接高度准确的瞬时红外温度测量,能够读到冠层或土壤表面的温度温度数据与土壤水分、地理信息相结合无需测量土壤水分也可以得到目标温度能够快速准确的测量冠层表面的热量和萎蔫胁迫3676T TDR350红外温度传感器 TDR土壤水分温度电导率测定仪TD350中国总代理:南京铭奥仪器设备有限公司
  • 中国气象局购入100套土壤水分速测仪
    面对我国粮食主产区旱情的持续发展情况,为了准确测定土壤墒情,掌握农田旱情分布状况,科学指导抗旱,中国气象局统一向多个省、市、区气象部门配发自动土壤水分观测设备。  近日,首批100套GStar-S406土壤水分速测仪已在中国气象局气象探测中心上海物资管理处的土壤水分检测实验室一次性全部通过性能检测,已陆续发至各地投入农田干旱调查服务。该批设备是由河南省气象科学研究所和中国电子科技集团公司第27研究所共同研制,可测80厘米深度以内的各层土壤含水量,并具有GPS定位及地温测量功能,可方便进行土壤墒情调查。
  • 来看看便携式重金属测定仪能有多实用
    来看看便携式重金属测定仪能有多实用!随着人类经济的飞速发展,环境污染问题越来越引起人们的关注。其中,重金属污染问题更加突出。为了及时发现和控制重金属污染,便携式重金属测定仪应运而生。测定仪是一种利用吸光光度法或荧光法来测试污染物浓度的分析仪器。它可以精确测定样品中镉(Cd)、铬(Cr)、铜(Cu)、铅(Pb)、锌(Zn)等常见的重金属元素。测定仪主要由光源、检测单元、光路系统和数据处理系统等组成。它通过光学方式检测样品中的重金属元素含量,并将数据传递到数据处理系统进行分析。    便携式重金属测定仪可以在现场快速检测样品中的重金属元素含量,避免了传统实验室需要将样品带回实验室分析的时间和成本。检测过程不需要对样品进行化学处理或摧毁,因此可以保留原始的样品,具有非破坏性检测的优点。测定仪通过采用先进的光学系统和数据处理技术,能够精确快速地测定样品中的重金属元素含量,从而提高了检测的准确性和可靠性。由于其小巧便携的特点,测定仪可以轻松携带到野外、工厂、车间等现场进行检测和监测,方便快捷。其主要有以下应用:    1、检测大气污染    重金属是大气污染的主要成分之一。重金属测定仪可以在现场快速检测大气中的重金属元素含量,及时控制污染。    2、土壤监测    土壤中的重金属元素对农产品的安全和人体健康有直接影响。重金属测定仪可以在野外实时检测土壤中的重金属污染情况,并向农民提供土壤改良建议。    3、水质分析    重金属元素可以通过水流进入水体,造成水质污染。重金属测定仪可以为环保部门或自来水厂提供一种方便快捷的手持式水质分析工具。    4、金属加工    在金属加工领域中,重金属测定仪可以用于检查加工液中的重金属元素含量,保障工人的身体健康和生产的质量。    综上所述,便携式重金属测定仪是一种非常实用的分析仪器,其快速、准确、非破坏性和便携性强的特点赢得了广泛的应用。在减少环境污染、维护人民健康、提高生产质量等方面,它都具有重要的作用。
  • 土壤养分测定仪器快速检测土壤中养分含量-莱恩德新品
    点击此处可了解更多详情→土壤养分测定仪器  土壤养分测定仪器是一款能够快速准确检测土壤养分含量的设备。它包含了多种高精度传感器,可以测量土壤中的氮、磷、钾等关键养分元素的含量,并通过数字显示屏直观地呈现检测结果。土壤养分测定仪器是一种用于快速检测土壤中养分含量的设备,其主要功能是对土壤中的关键养分进行快速准确的分析和测量。以下是土壤养分测定仪器的一些介绍:    1. 快速准确:土壤养分测定仪器采用先进的检测技术,能够在短时间内对土壤样品中的养分含量进行快速准确的检测。它们通常具有高灵敏度和高选择性,可以检测到不同养分的浓度,确保检测结果的准确性和可靠性。    2. 多参数检测:土壤养分测定仪器通常可以同时检测多种关键养分,如氮、磷、钾、有机质等。这些养分是土壤肥力和植物生长的重要指标,通过快速检测可以了解土壤中各种养分的含量和平衡情况。    3. 简便易用:土壤养分测定仪器通常具有简单易懂的操作界面和操作流程,不需要复杂的实验技能。农民、农业技术人员等可以轻松使用这些设备进行快速检测,了解土壤肥力情况。    4. 实时反馈:土壤养分测定仪器可以在现场实时提供结果,无需等待实验室分析报告。这样可以及时了解土壤养分状况,并根据结果进行调整和管理,提高农作物生产效益。    为了满足不同使用需求,土壤养分测定仪器还配备了便携式设计,方便携带和操作。通过简单的操作步骤,用户可以快速获取土壤养分信息,为农业生产提供科学依据。
  • ASD | ASD FieldSpec光谱仪在预测土壤水力特性上的应用
    土壤水力参数,如田间持水量(FC)和永久萎蔫点(PWP),在灌溉管理、干旱风险评估和土地利用规划等方面发挥着重要作用。这些水力特性是动态的,随土壤类型、作物类型和生长季而变化。传统方法估算大尺度水力特性费时费力,而土壤传递函数(PTF)作为一种替代方法,已被用于使用易测量的土壤特性(如土壤粒级、有机碳和容重)来估计土壤水力特性。这些预测参数在很大程度上受各种内在土壤特性如土壤质地、结构、有机质、容重和孔隙度的影响。随着光谱技术的不断发展,因其快速、低成本和无损测量,许多研究者已经利用可见近红外(Vis-NIR)光谱预测了土壤特性,而使用光谱数据绘制印度土壤类型水力特性的研究非常有限。基于此,在本研究中,一组研究团队在印度卡纳塔克邦高原北部地区收集了558个土壤样本,在实验室中测量了其FC, PWP和土壤含水量,并利用ASD FieldSpec光谱仪测量土壤光谱反射率。通过支持向量机、随机森林和偏最小二乘回归三个模型预测FC和PWP。其中,2/3的数据集用于校准(368个样品),1/3的数据集用于验证(190个样品)。本研究目标为通过不同统计技术检验实验室Vis-NIR光谱数据估算水力参数的有用性。研究区域图【结果】卡纳塔克邦高原北部土壤光谱反射率分布(平均值和标准偏差)(N = 558)。FC和PWP预测模型的性能(50 次迭代)验证集FC和PWP预测值和观测值散点图(RF方法)(变性土-绿点,淋溶土-红点,弱育土-蓝点,新成土-黄点)。传统PTF方法预测验证集FC和PWP含水量的性能。【结论】验证结果表明,与PLSR模型相比,RF和SVM性能较好。与田间持水量(R2=0.66-0.69和RMSE=7.25-7.51%)相比,永久萎蔫点预测良好(R2=0.70-0.74,RMSE=5.44-5.74%)。在土纲中,Vis-NIR光谱(R2=0.34&0.42)对变性土FC和PWP的预测不佳,对淋溶土(0.44&0.52)和弱育土(0.55&0.65)的预测结果一般,而对新成土(0.83&0.76)预测结果较好。总体而言,结果与传统PTF方法相当。目前结果表明,可见近红外光谱有助于快速准确地估计该国半干旱地区的水力特性。
  • 1310万!中国农业科学院农业环境与可持续发展研究所环发所农业环境公共实验室仪器设备采购项目
    一、项目基本情况项目编号:ZGGJ-BJ21-23041224项目名称:环发所农业环境公共实验室仪器设备购置项目预算金额:1310.0000000 万元(人民币)采购需求:包号序号标的名称数量(台/套)本包最高限价(万元)简要技术需求或服务要求是否允许采购进口产品011液相色谱-三重四级杆型电感耦合等离子体质谱仪1233详见招标文件第五章采购需求是2荧光定量PCR仪1是3多功能酶标仪1是021傅立叶变换红外光谱仪1317详见招标文件第五章采购需求否2元素分析仪1是3三维荧光光谱仪1是4生物发酵罐1否5热重分析仪1是6纯水超纯水一体机1否7同步热分析仪1是8气相色谱质谱联用仪1是9纤维素测定仪1否10紫外可见分光光度计1否031全自动化学分析仪1257详见招标文件第五章采购需求是3近红外分析仪1是4总有机碳(总氮)分析仪1是5快速粘度分析仪1是6实验室喷雾冷冻干燥机1否7半制备型液相色谱仪1是8纳米粒度及Zeta电位分析仪1是041土壤含水量测量系统1365详见招标文件第五章采购需求是2便携式土壤呼吸测量系统1是3便携式氧化亚氮/水痕量气体分析仪1是4便携式光合作用测量系统1是5外皮包裹式茎流计1是6光谱仪1是7搪瓷反应釜1否8双螺杆塑料挤出机1否9差热扫描仪1是051液态水同位素分析仪198详见招标文件第五章采购需求是061土壤微生物信息数据分析服务器140详见招标文件第五章采购需求否2土壤微生物信息数据存储设备1否合同履行期限:交货日期:采购人指定时间,详见招标文件第五章采购需求本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年06月07日 至 2023年06月13日,每天上午9:30至12:00,下午12:00至17:00。(北京时间,法定节假日除外)地点:北京市海淀区上地四街华成大厦四层方式:本招标文件每包售价为500元人民币,售后不退。购买招标文件需报名供应商首先在中工国际招标有限公司网站上进行信息填报,填报链接:http://101.200.176.189/qpoaweb/prg/gys/baoming.aspx?id=6558TCYL填报并将公司信息提交成功后对公转账或现场付款售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国农业科学院农业环境与可持续发展研究所     地址:北京市海淀区中关村南大街12号        联系方式:吴老师 82106795      2.采购代理机构信息名 称:中工国际招标有限公司            地 址:北京市海淀区上地四街华成大厦四层            联系方式:张跃 15600611080            3.项目联系方式项目联系人:张跃电 话:  15600611080
  • 原生态有限公司应邀参加第十四届中国水论坛
    8月25-27日,第十四届中国水论坛在长春召开,原生态有限公司应邀参加了此次会议,并展示了L2140-i超高精度液态水和水汽同位素分析仪、G2201-i CO2 CH4同位素分析仪、CRS-1000/B土壤含水量测量系统以及IM-CRDS水同位素分析仪等多款仪器。本次大会由中国科学院东北地理与农业生态研究所、吉林大学、吉林省科学技术协会、长春市科学技术协会等单位共同承办,以“面向未来的水安全与可持续发展”为主题。超过600位的水科学领域专家学者参会,围绕变化环境下水循环演变与水资源配置、生态水文与水生态文明建设、农业水资源高效利用、地下水管理与污染修复以及河湖水系连通理论与技术等7个议题,与会专家学者开展了广泛、深入的讨论。多位中科院院士做了精彩的特邀主题报告。我公司非常重视此次会议,由公司销售总监周女士亲自带队参与了此次盛会。值得一提的是,我公司展示的仪器,特别是超高精度液态水和水汽同位素分析仪(L2140-i、L2130-i)、CRS-1000/B土壤含水量测量系统两款仪器,得到了与会专家学者的极大关注,大会期间不断有专家学者来到我公司展台前,对超高精度液态水和水汽同位素分析仪(L2140-i、L2130-i)、CRS-1000/B土壤含水量测量系统的仪器性能、操作使用等相关问题进行详细地咨询,领取产品资料,并留下仪器使用需求和购买意向。我公司销售工程师刘洪涛就与会学者关心的问题,进行了耐心而细致地解答。超高精度液态水和水汽同位素分析仪(L2140-i、L2130-i),可做到一个设备进行固态水、液态水和气态水的同位素测量,具有极高的稳定性、灵敏度、精度以及野外的耐用性,对环境温度变化不敏感,具有最小的记忆效应和漂移。CRS-1000/B土壤含水量测量系统,是一套创新的中尺度土壤含水量测量系统,该分析仪通过测量近地面环境宇宙射线中的快中子浓度,确定土壤含水量。其主要特点是无危害、非接触、无破坏、不受土壤质地和盐分等影响。此外,该分析仪测量范围大、测量深度适中,可野外连续自动测定大面积的土壤含水量,是遥感反演土壤含水量的有效验证手段。原生态有限公司(即北京普瑞亿科科技有限公司)非常注重产品应用培训和售前售后技术服务,投资500万建立了开放实验室,依托现有设备,通过与用户互动,进行样品分析测试、咨询服务、售后培训和维修等工作。通过参加本届水论坛,进一步促进了我公司与研究学者的深入交流,加强了与同领域科研机构和大学的对接,原生态有限公司会一直致力于搭建提供优秀的解决方案和先进的仪器设备的平台,为我国经济社会可持续发展和生态文明建设的水安全保障提供支持。产品链接:G4301 便携式CO2 CH4 H2O分析仪IM-CRDS水同位素分析仪CRS-1000/B土壤含水量测量系统超高精度液态水和水汽同位素分析仪(L2130-i、L2140-i)G2201-i CO2 CH4同位素分析仪RhizoScan原位根系扫描仪关于北京普瑞亿科科技有限公司: 北京普瑞亿科科技有限公司以经营稳定性和放射性同位素分析仪、超痕量气体分析仪、环境气象观测系统、元素分析仪等仪器设备为主,兼顾自主创新研发,致力于为广大用户提供先进仪器设备和成套解决方案的综合性企业。公司在温室气体研究、同位素分析、食品掺假和溯源分析、痕量气体检测、元素分析、气象观测、应急响应、军事防御、城市安全等领域开展工作。 北京普瑞亿科科技有限公司已与多家国际著名厂商签订独家代理协议,负责其产品在中国区的推广、销售、维修和技术支持等服务。主要包括以激光稳定性同位素分析仪和超痕量气体仪而著称的美国Picarro公司,以提供高品质民用航空和军事气象站解决方案而著称的美国Coastal公司,以提供中尺度土壤含水量测量系统而著称的美国Hydroinnova公司,以提供最高精确度绝对碳含量测量而著称的美国UIC公司,以基于零空白自动取样技术的高品质微型元素分析仪而著称的意大利NC Technologies公司,以提供多用途光谱分析系统解决方案而著称的德国Tec5公司;同时与美国PerkinElmer公司,美国ThermoFisher公司等进行深度合作,并与波兰Easy Test ,美国2B,美国Apollo SciTech等公司达成合作共识。 更多详情请关注北京普瑞亿科科技有限公司官网:www.pri-eco.com
  • SoilScope生态水文过程观测模拟设施在红壤地区观测农作物蒸散量中的应用
    SoilScope生态水文过程观测模拟设施在红壤地区观测农作物蒸散量中的应用一、观测背景季节性干旱缺水严重制约着我国红壤区农业的可持续发展。在江西省水土保持科学研究院位于九江市德安县的生态科技园内,利用SoilScope自动称重式蒸渗仪,为红壤地区水文循环过程中的土壤下渗、地下径流和蒸散发等精确测定提供数据支持;为南方红壤蒸发和植物蒸腾研究提供试验手段;为四水(大气水、地表水、土壤水和地下水)转化、SPAC(土壤-作物-大气连续体)系统水分循环研究提供支撑。图1 SoilScope生态水文过程观测模拟设施顺利验收二、观测系统布设 SoilScope自动称重式蒸渗仪以第四纪红壤为研究对象,整套系统由罐体、称重系统、地下水连通系统、产流系统、土壤传感器、溶液取样系统和数据采集系统组成图2 SoilScope生态水文过程观测模拟设施外观 三、观测数据采集罐体高2m,面积1㎡,称重范围0-10t,称重系统精度0.1mm。数据每10min自动实时测定和采集,如下图3所示,通过称重数据的变化就可以计算出实时蒸散量图3 称重系统精度和数据实时测定展示 • 采用TDR水分传感器、水势传感器观测20cm、40cm、80cm和180cm深度土壤水分、水势、温度和电导率数据,如下图4所示,数据每60min自动实时测定和采集。图4 自动实时测定和采集不同层次的传感器数据展示• 采用澳作公司自主研发,集数据传输与远程诊断于一体的云服务中心软件Envidata,如下图5所示,独特的多参数曲线同时显示功能,能更好的展示出环境因子的相互作用和影响。图5 云服务中心软件Envidata多参数曲线同时显示功能展示四、观测数据分析以花生为例,在2019年5月8日至8月24日期间,开展了土壤蒸发和植物蒸腾的研究。试验设置2个处理,裸地对照和种植花生处理。图6 SoilScope生态水文过程观测模拟设施观测案例结果显示,降雨过后,土壤含水量增加,而降雨停止,随着时间的延长,土壤含水量逐渐减少。累计降雨量数据和累计罐体重量变化量关系发现,二者具有很好的一致性,降雨增加,累计罐体变化量随之增加。作物蒸散发根据水量平衡公式进行计算,计算方程如下: ET = I + P - R - D + ΔWET是作物蒸散发,mm; I是灌溉水量,mm;P是降雨量,mm R是地表径流量,mm;D是深层渗漏量,mm;ΔW是土壤水分变化量。图7 SoilScope生态水文过程观测模拟设施观测结果结果显示,裸地处理总蒸散量是264mm,而花生则高达392mm,结果符合物理常识。五、观测应用扩展SoilScope蒸渗仪不仅能够为研究作物生长过程进行长期有效的监测,提供完整的和精确度高的数据支撑,而且能够结合气象站、水势仪等设备进行联动试验和拓展运用。目前已经广泛运用于水势调节观测系统、水文观测系统、气象蒸散观测系统和森林生态观测系统等众多领域。图8 SoilScope蒸渗系统工程项目全国分布图更多详情请关注北京澳作生态仪器有限公司网站:www.aozuo.com.cn查询相关仪器资料。更多详细信息请联系 sales@aozuo.com.cn 索要相关资料。
  • 浙江大学罗忠奎研究团队揭示青藏高原不同气候梯度下土壤碳矿化与微生物群落组成之间的解耦
    2018年,由北京普瑞亿科科技有限公司研发的PRI-8800全自动变温培养土壤温室气体在线测量系统,一经推出便得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达26篇。 今天与大家分享的是浙江大学环境与资源学院罗忠奎研究团队在研究土壤有机碳矿化及其温度敏感性(Q10)与微生物群落多样性和组成之间关系方面取得的进展。在该项研究中,研究团队利用PRI-8800测定土壤CO2排放速率,为研究结果提供了有力的数据支撑。 土壤微生物驱动着有机碳的矿化,由于不同微生物群落在代谢效率以及对不同温度变化的响应存在差异,因此土壤有机碳矿化及其温度敏感性(Q10)与微生物群落多样性和组成之间应该存在密切的关系。然而,这些关系很少被检验。 基于此,浙江大学环境与资源学院罗忠奎研究团队通过室内培养实验,评估了藏东南地区不同海拔(气候)梯度中土壤微生物α多样性对温度的响应以及r-和k-策略微生物的相对丰度。图.培养第128天的土壤有机碳矿化速率及其Q10与门水平微生物群落丰度的相关性。灰色表示相关性不显著(即P 0.05),彩色网格表示相关性显著(P 0.05),颜色梯度表示相关性的大小和强度。R5°C-128和R25°C-128分别为5°C和25°C培养温度下第128天的有机碳矿化速率。Q10-128为土壤有机碳在128天培养期间的温度敏感性。F:新鲜土壤样品;5、25分别为在5°C和25°C培养的土壤样品。 在土壤培养实验设计及有机碳矿化测定的过程中,研究团队采用由普瑞亿科研发的PRI-8800全自动变温土壤培养温室气体分析系统测定土壤CO2排放速率(μg CO2-C g&minus 1 SOC day&minus 1),每个土壤样品测定时间设置为3分钟,此数据的获取为该项研究提供了有力的数据支撑。基于不同温度下测定的土壤CO2排放速率,计算了有机碳矿化的温度敏感性(Q10)。 研究结果表明:培养128后测定的α多样性以及r-和k-策略微生物的相对丰度受温度的显著影响(P 0.05),但是这些微生物变量并不能很好地预测同步测定的土壤有机碳矿化速率。相反,新鲜土壤的微生物群落多样性以及r-和k-策略微生物的相对丰度对不同培养阶段的土壤有机碳矿化速率及其Q10的影响是一致且显著的(P 0.05)。与此同时,路径分析表明,当考虑到气候、土壤有机碳化学、物理保护和土壤性质的变化时,微生物α多样性以及r-和k-策略微生物对土壤有机碳矿化速率及其Q10的影响并不是独立的。本研究结果表明,虽然土壤微生物群落的多样性和组成是土壤有机碳质量和有效性的重要指标,但它们并不是土壤有机碳矿化速率及其Q10的根本的决定因素。 相关研究成果以“Decoupling of soil carbon mineralization and microbial community composition across a climate gradient on the Tibetan Plateau”为题发表在国际SCI期刊Geoderma(IF2022=6.1,中科院一区)。Zheng, J., Mao, X., Jan van Groenigen, K., Zhang, S., Wang, M., Guo, X. et al. (2024). Decoupling of soil carbon mineralization and microbial community composition across a climate gradient on the Tibetan Plateau. 441, 116736.https://doi.org/10.1016/j.geoderma.2023.116736 截至目前,以PRI-8800为关键设备发表的相关文章已达26篇,分别发表在10余种影响因子较高的国际期刊上——数据来源:https://sci.justscience.cn/ 很荣幸PRI-8800可以为这些高质量学术研究贡献一份力量,感谢各位老师对普瑞亿科产品的支持和信任。即日起,如果您成功发表文章,并且在研究过程中使用了普瑞亿科的国产仪器设备,请与我们公司联络,我们为您准备了一份小礼物,以感谢您对国产设备以及普瑞亿科的信任和支持! 为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。 土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。 以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。可设定恒温或变温培养模式;温度控制波动优于±0.05℃;平均升降温速率不小于1°C/min;307 mL样品瓶,25位样品盘;一体化设计,内置CO2 H2O模块;可外接高精度浓度或同位素分析仪。 为了更好地助力科学研究,拓展设备应用场景,普瑞亿科重磅推出「加强版」PRI-8800——PRI-8800 Plus全自动变温培养土壤温室气体在线测量系统。 1)原状土冻融过程模拟:气候变化改变了土壤干湿循环和冻融循环的频率和强度。这些波动影响了土壤微生物活动的关键驱动力,即土壤水分利用率。虽然这些波动使土壤微生物结构有少许改变,但一种气候波动的影响(例如干湿交替)是否影响了对另一种气候(例如冻融交替)的反应,其温室气体排放是如何响应的?通过PRI-8800 Plus 的冻融模拟,我们可以找出清晰答案。 2)湿地淹水深度模拟:在全球尺度上湿地甲烷(CH4)排放的温度敏感性大小主要取决于水位变化,而二氧化碳(CO2)排放的温度敏感性不受水位影响。复杂多样的湿地生态系统不同水位的变化及不同温度的变化如何影响和调控着湿地温室气体的排放?我们该如何量化不同水位的变化及不同温度的变化下湿地的温室气体排放?借助PRI-8800 Plus,通过淹水深度和温度变化的组合测试,可以查出真相。 3)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800 Plus程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。 除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800 Plus的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。 PRI-8800 Plus除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。 4)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800 Plus可以通过手动调整土壤含水量的做法,并在PRI-8800 Plus快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800 Plus的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。 5)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。 6)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。1.Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 2023, 432: 116385.2.Ma X, Jiang S, Zhang Z, et al. Long‐term collar deployment leads to bias in soil respiration measurements[J]. Methods in Ecology and Evolution, 2023, 14(3): 981-990.3.He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2023, 29(4): 1178-1187.4.Mao X, Zheng J, Yu W, et al. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile[J]. Soil Biology and Biochemistry, 2022, 172: 108743.5.Pan J, He N, Liu Y, et al. Growing season average temperature range is the optimal choice for Q10 incubation experiments of SOM decomposition[J]. Ecological Indicators, 2022, 145: 109749.6.Li C, Xiao C, Guenet B, et al. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe[J]. Soil Biology and Biochemistry, 2022, 167: 108589.7.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.8.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.9.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.10.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.11.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.12.Yingqiu C, Zhen Z, Li X, et al. Temperature Affects new Carbon Input Utilization By Soil Microbes: Evidence Based on a Rapid δ13C Measurement Technology[J]. Journal of Resources and Ecology, 2019, 10(2): 202-212.13.Cao Y, Xu L, Zhang Z, et al. Soil microbial metabolic quotient in inner mongolian grasslands: Patterns and influence factors[J]. Chinese Geographical Science, 2019, 29: 1001-1010.14.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.15.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. 2018.Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.16.Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.17.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.18.He N P, Liu Y, Xu L, Wen X F, Yu G R, Sun X M. Temperature sensitivity of soil organic matter decomposition:New insights into models of incubation and measurement. Acta Ecologica Sinica, 2018, 38(11): 4045-4051.19.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochemistry, 106: 18-27.20.Liu Y, He NP, Xu L, Niu SL, Yu GR, Sun XM, Wen XF. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23: 3393-3402.21.Wang Q, He NP*, Liu Y, Li ML, Xu L. 2016. Strong pulse effects of precipitation event on soil microbial respiration in temperate forests. Geoderma, 275: 67-73.22.Wang Q, He NP, Yu GR, Gao Y, Wen XF, Wang RF, Koerner SE, Yu Q*. 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. Journal of Geophysical Research: Biogeosciences, 121: 399-410.23.He NP, Wang RM, Dai JZ, Gao Y, Wen XF, Yu GR. 2013. Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.24.Liu Y, Kumar A, Tiemann L K, et al. Substrate availability reconciles the contrasting temperature response of SOC mineralization in different soil profiles[J]. Journal of Soils and Sediments, 2023: 1-15.25.Liu YH,Xiong DC,Wu C,et al.Effects of exogenous carbon addition on soil carbon emission in a subtropical evergreen broad-leaf forest[J]. Journal of Forest & Environment, 2023, 43(5).26.Zheng, J., Mao, X., Jan van Groenigen, K., Zhang, S., Wang, M., Guo, X. et al. (2024). Decoupling of soil carbon mineralization and microbial community composition across a climate gradient on the Tibetan Plateau. 441, 116736.
  • 饮用水需要便携式余氯测定仪检测吗?
    饮用水需要便携式余氯测定仪检测吗?【霍尔德电子HED-YL01】关于饮用水氯消毒副产物毒性的研究,国内外已有大量报道[2-3],污水消毒后的尾水排入水体或作为回用水时,虽然因为水质与饮用水有所不同,但所形成的消毒副产物对水体造成的潜在危害也是极大的。尾水氯消毒后,将含有一定浓度的余氯,直接排入水体,无论其是化合性或游离性余氯都将对鱼类或水生生物造成毒性影响。霍尔德电子HED-YL01水质检测仪适用于纯净水厂、自来水厂、生活污水处理厂、工业污水、水产养殖、河流监测、游泳场馆、水源保护、生产监测、科研实验等。配合快速显色检测试剂,可“快速、简单、准确、稳定”进行测量,拥有精美的外观造型,简单的操作界面,准确的检测系统,帮助用户获得精细的数据,可更准确、有效的分析水体状况,提前预防养殖风险,及时避免损失。土壤养分检测仪,食品安全检测仪,农药残留检测仪-山东霍尔德电子科技有限公司www.huoerd.com/山东霍尔德电子科技作为仪器优势厂家,性能高,保质保量,广受市场一直好评,赢得了一致赞誉。赵经理:15336461112,电话咨询,优惠更多检测原理:提取一定量水体样品,经过前处理后根据不同检测项目按照试剂说明书滴入检测试剂,检测试剂会与水体中的待测物质发生反应,反应液呈现特定的颜色。利用白光LED对显色液进行照射,传感器可得出其三光色值,首先检测空白液的三光色值,再检测被测样品的三光色值,根据波长与颜色的关系,按照试剂反应后的颜色,将三光色值归一化,根据吸光度公式A=lg(I0/I1),其中I0为入射光强,I1为透射光强,得到A值后,仪器根据内置标准曲线其对应的吸光度(A)可准确计算出检测项目在水体中的浓度值。选择山东霍尔德仪器,这里有各种检测仪器,无论是食品检测,还是土壤检测、微生物检测、植物检测、环保检测,都能满足您的需求
  • 全国第三次土壤普查土壤样品检测技术规范(征求意见稿)
    按照《国务院关于开展第三次全国土壤普查的通知》要求,根据《第三次全国土壤普查工作方案》(农建发〔2022〕1号)确定的全国统一技术路线,各省、自治区、直辖市等开始组织开展土壤普查实验室筛选工作。第三次全国土壤普查实验室分为检测实验室、省级质量控制实验室和国家级质量控制实验室 3 类。其中,检测实验室通过筛选确定,省级质量控制实验室和国家级质量控制实验室通过确认确定,分别承担不同职责任务。  检测实验室需依据《第三次全国土壤普查土壤样品制备、保存、流转和检测技术规范(试行)》等要求和省级第三次土壤普查领导小组办公室土壤普查样品检测任务安排,做好样品制备、保存、流转和检测工作。本文特摘录《全国第三次土壤普查土壤样品制备、保存、流转和检测技术规范(征求意见稿)》第5部分:样品检测,供相关检测实验室参考。5样品检测各省(区、市)农业农村部门负责确定本区域承担任务质量控制实验室和检测实验室,组织样品检测工作。承担任务的检测实验室应在质控实验室的指导下按照检测任务要求和规定的技术方法开展土壤样品检测工作,按时报送检测结果。5.1 检测计划省级土壤三普工作领导小组办公室负责对本区域内土壤样品检测工作进行统筹,制定样品检测计划。样品检测计划应包括样品检测指标、检测方法、质量控制要求、检测数据上报要求等。5.2 检测方法检测实验室严格按照以下规定的技术方法开展检测工作。5.2.1 土壤容重5.2.1.1 环刀法:《耕地质量等级》附录 E(规范性附录)土壤容重的测定(GB/T 33469-2016)。5.2.2 机械组成5.2.2.1 吸管法:《土壤分析技术规范》第二版,5.1 吸管法。5.2.2.2 比重计法:《耕地质量等级》附录 D(规范性附录)土壤机械组成的测定(GB/T 33469-2016)。5.2.2.3 吸管法(森林土壤):《森林土壤颗粒组成(机械组成)的测定》(LY/T 1225-1999)。5.2.2.4 密度计法(森林土壤):《森林土壤颗粒组成(机械组成)的测定》(LY/T 1225-1999)。5.2.3 水稳性大团聚体5.2.3.1 人工筛法:《土壤检测第 19 部分:土壤水稳性大团聚体组成的测定》(NY/T 1121.19-2008)。5.2.3.2 机械筛选法:《森林土壤大团聚体组成的测定》(LY/T 1227-1999)。5.2.4 土壤田间持水量5.2.4.1 环刀法:《土壤检测 第 22 部分:土壤田间持水量的测定 环刀法》(NY/T 1121.22-2010)。5.2.4.2 环刀法:《森林土壤水分- 物理性质的测定》(LY/T 1215-1999)。5.2.5 矿物组成5.2.5.1 X-射线衍射仪XRD 法:《土壤粘粒矿物测定 X射线衍射法》。5.2.6 pH5.2.6.1 电位法:《耕地质量等级》附录 I(规范性附录)土壤 pH 的测定(GB/T 33469-2016)。5.2.6.2 电位法:《森林土壤 pH 值的测定》(LY/T 1239-1999)。5.2.7 可交换酸度5.2.7.1 氯化钾交换-中和滴定法:《土壤分析技术规范》第二版,11.2 土壤交换性酸的测定。5.2.7.2 氯化钾交换-中和滴定法(森林土壤):《森林土壤交换性酸度的测定》(LY/T 1240-1999)。5.2.8 水解性酸度5.2.8.1 乙酸钠水解-中和滴定法:《森林土壤水解性总酸度的测定》(LY/T 1241-1999)。5.2.9 阳离子交换量5.2.9.1 乙酸铵交换-容量法(酸性、中性土壤):《中性 土壤阳离子交换量和交换性盐基的测定》(NY/T 295-1995)。5.2.9.2 乙酸钙交换-容量法(石灰性土壤):《土壤检测第 5 部分:石灰性土壤阳离子交换量的测定》(NY/T 1121.5-2006)。5.2.9.3 EDTA-乙酸铵盐交换-容量法:《土壤分析技术规范》第二版,12.1EDTA-乙酸铵盐交换法。5.2.9.4 乙酸铵交换-容量法(酸性、中性森林土壤):《森林土壤阳离子交换量的测定》(LY/T 1243-1999)。5.2.9.5 氯化铵-乙酸铵交换-容量法(石灰性森林土壤):《森林土壤阳离子交换量的测定》(LY/T 1243-1999)。5.2.10 水溶性盐总量5.2.10.1 重量法:《耕地质量等级》附录 F(规范性附录)土壤水溶性盐总量的测定(GB/T 33469-2016)。5.2.10.2 质量法、电导法(森林土壤):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.11 交换性盐基总量5.2.11.1 乙酸铵交换法-中和滴定法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)。5.2.11.2 氯化铵-乙醇交换-原子吸收分光光度法/火焰光度法(石灰性土壤):《石灰性土壤交换性盐基及盐基总量的测定》(NY/T 1615-2008)。5.2.11.3 乙酸铵交换法-中和滴定法(酸性、中性森林土壤):《森林土壤交换性盐基总量的测定》(LY/T 1244- 1999)。5.2.12 电导率5.2.12.1 电导法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.13 有机质5.2.13.1 重铬酸钾氧化-容量法:《耕地质量等级》附录C(规范性附录)土壤有机质的测定(GB/T 33469-2016)。5.2.13.2 重铬酸钾氧化-外加热法:《森林土壤有机质的测定及碳氮比的计算》(LY/T 1237-1999)。5.2.14 总碳5.2.14.1 杜马斯燃烧法:《土壤中总碳和有机质的测定元素分析仪法》。5.2.15 全氮5.2.15.1 自动定氮仪法:《土壤检测第 24 部分:土壤全氮的测定自动定氮仪法》(NY/T 1121.24-2012)。5.2.15.2 凯氏定氮法(森林土壤):《森林土壤氮的测定》(LY/T 1228-2015)。5.2.15.3 连续流动分析仪法(森林土壤):《森林土壤氮的测定》(LY/T 1228-2015)。5.2.15.4 元素分析仪法(森林土壤):《森林土壤氮的测定》(LY/T 1228-2015)。5.2.16 全磷5.2.16.1 氢氧化钠熔融-钼锑抗比色法:《土壤分析技术规范》第二版,8.1 土壤全磷的测定(氢氧化钠熔融-钼锑抗比色法)。5.2.16.2 碱熔-钼锑抗比色法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.16.3 酸溶法-钼锑抗比色/电感耦合等离子体发射 光谱法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.17 全钾5.2.17.1 氢氧化钠熔融-火焰光度法/原子吸收分光光度法:《土壤分析技术规范》第二版,9.1 土壤全钾的测定。5.2.17.2 碱熔-火焰光度法/原子吸收分光光度法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.17.3 酸溶-火焰光度法/原子吸收分光光度法/电感耦合等离子体发射光谱法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.18 全硫5.2.18.1 硝酸镁氧化-硫酸钡比浊法:《土壤分析技术规范》第二版,16.9 全硫的测定(硝酸镁氧化-硫酸钡比浊法)。5.2.18.2 燃烧碘量法(森林土壤):《森林土壤全硫的测定》(LY/T 1255-1999)。5.2.18.3 EDTA 间接滴定法(森林土壤):《森林土壤全硫的测定》(LY/T 1255-1999)。5.2.19 全硼5.2.19.1 碱熔-甲亚胺-比色法:《土壤分析技术规范》第二版,18.1 土壤全硼的测定。5.2.19.2 碱熔-姜黄素-比色法:《土壤分析技术规范》第二版,18.1 土壤全硼的测定。5.2.19.3 碱熔-等离子体发射光谱法:《土壤分析技术规范》第二版,18.1 土壤全硼的测定。5.2.20 全硒5.2.20.1 酸溶-氢化物发生-原子荧光光谱法:《土壤中全硒的测定》(NY/T 1104-2006)。5.2.21 全铁5.2.21.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.21.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.22 全锰5.2.22.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.22.2 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.23 全铜5.2.23.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.23.2 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.24 全锌5.2.24.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.24.2 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.25 全钼5.2.25.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.26 全铝5.2.26.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.26.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.27 全硅5.2.27.1 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.28 全钙5.2.28.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.28.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.29 全镁5.2.29.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.29.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.30 全钛5.2.30.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.30.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.31 有效磷5.2.31.1 氟化铵-盐酸溶液/碳酸氢钠浸提-钼锑抗比色法:《土壤检测第 7 部分:土壤有效磷的测定》(NY/T 1121.7-2014)。5.2.31.2 盐酸-硫酸/氟化铵-盐酸溶液/碳酸氢钠浸提-钼锑抗比色法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.31.3 盐酸-硫酸/氟化铵-盐酸溶液浸提-电感耦合等离子体发射光谱法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.31.4 氟化铵-盐酸/碳酸氢钠浸提-连续流动分析仪法(森林酸性土壤):《森林土壤磷的测定》(LY/T 1232- 2015)。5.2.32 速效钾5.2.32.1 乙酸铵浸提-火焰光度法:《土壤速效钾和缓效钾的测定》(NY/T 889-2004)。5.2.32.2 乙酸铵浸提-火焰光度法/原子吸收分光光度法/电感耦合等离子体发射光谱法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.33 缓效钾5.2.33.1 热硝酸浸提-火焰光度法:《土壤速效钾和缓效钾的测定》(NY/T 889-2004)。5.2.33.2 热硝酸浸提-火焰光度法/原子吸收分光光度法/电感耦合等离子体发射光谱法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.34 有效硫5.2.34.1 磷酸盐-乙酸溶液/氯化钙浸提-电感耦合等离子体发射光谱法:《土壤检测第 14 部分:土壤有效硫的测定》(NY/T 1121.14)。5.2.34.2 磷酸盐-乙酸溶液浸提-硫酸钡比浊法(森林土壤):《森林土壤有效硫的测定》(LY/T 1265-1999)。5.2.35 有效硅5.2.35.1 柠檬酸浸提-硅钼蓝比色法:《土壤分析技术规范》第二版,20.2 土壤有效硅的测定。5.2.35.2 HOAc 缓冲液浸提-硅钼蓝比色法(森林土壤):《森林土壤有效硅的测定》(LY/T 1266-1999)。5.2.36 有效铁5.2.36.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.36.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.36.3 DTPA 浸提-邻菲啰啉比色法(森林土壤):《森林土壤有效铁的测定》(LY/T 1262-1999)。5.2.36.4 DTPA 浸提-原子吸收分光光度法(森林土壤):《森林土壤有效铁的测定》(LY/T 1262-1999)。5.2.37 有效锰5.2.37.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.37.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.37.3 乙酸铵溶液浸提-高锰酸钾比色法(森林土壤交换性锰):《森林土壤交换性锰的测定》(LY/T 1263-1999)。5.2.37.4 乙酸铵溶液浸提-原子吸收分光光度法(森林土壤交换性锰):《森林土壤交换性锰的测定》(LY/T 1263- 1999)。5.2.37.5 对苯二酚-0.1mol/L 乙酸铵浸提-高锰酸钾比色法(森林土壤易还原锰):《森林土壤易还原锰的测定》(LY/T 1264-1999)。5.2.37.6 对苯二酚-0.1mol/L 乙酸铵浸提-原子吸收分光光度法(森林土壤易还原锰):《森林土壤易还原锰的测定》(LY/T 1264-1999)。5.2.38 有效铜5.2.38.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.38.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.38.3 0.1mol/L 盐酸/DTPA 浸提-DDTC 比色法(森林土壤):《森林土壤有效铜的测定》(LY/T 1260-1999)。5.2.38.4 0.1mol/L 盐酸/DTPA 浸提-原子吸收分光光度 法(森林土壤):《森林土壤有效铜的测定》(LY/T 1260-1999)。5.2.39 有效锌5.2.39.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.39.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.39.3 0.1mol/L 盐酸/DTPA 浸提-DDTC 比色法(森林土壤):《森林土壤有效锌的测定》(LY/T 1261-1999)。5.2.39.4 0.1mol/L 盐酸/DTPA 浸提-原子吸收分光光度 法(森林土壤):《森林土壤有效锌的测定》(LY/T 1261-1999)。5.2.40 有效硼5.2.40.1 沸水提取-甲亚胺-H 比色法:《土壤分析技术规范》第二版,18.2 土壤有效硼的测定。5.2.40.2 沸水提取-姜黄素-比色法:《土壤分析技术规范》第二版,18.2 土壤有效硼的测定。5.2.40.3 沸水-硫酸镁浸提-电感耦合等离子体发射光谱法:《土壤有效硼的测定 电感耦合等离子体发射光谱法》。5.2.40.4 沸水浸提-甲亚胺-H 比色法:《森林土壤有效硼的测定》(LY/T 1258-1999)。5.2.41 有效钼5.2.41.1 草酸-草酸铵浸提-示波极谱法:《土壤检测第 9 部分:土壤有效钼的测定》(NY/T 1121.9-2012)5.2.41.2 草酸-草酸铵浸提-电感耦合等离子体质谱法:《土壤检测 第 9 部分:土壤有效钼的测定》(NY/T 1121.9)。5.2.41.3 草酸-草酸铵浸提-电感耦合等离子体发射光谱法:《土壤检测 第 9 部分:土壤有效钼的测定》(NY/T 1121.9)。5.2.41.4 草酸-草酸铵浸提-硫氰化钾比色法/极谱法:《森林土壤有效钼的测定》(LY/T 1259-1999)。5.2.42 有效硒5.2.42.1 磷酸二氢钾溶液浸提-氢化物发生原子荧光光谱法:《土壤有效硒的测定 氢化物发生原子荧光光谱法》(NY/T 3420-2019)。5.2.43 交换性钙5.2.43.1 乙酸铵交换-原子吸收分光光度法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)5.2.43.2 氯化铵-乙醇交换-原子吸收分光光度法(石灰性土壤):《石灰性土壤交换性盐基及盐基总量的测定》(NY/T 1615-2008)。5.2.43.3 乙酸铵交换-EDTA 络合滴定法/原子吸收分光光度法(酸性、中性森林土壤):《森林土壤交换性钙和镁的测定》(LY/T 1245-1999)。5.2.44 交换性镁5.2.44.1 乙酸铵交换-原子吸收分光光度法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)。5.2.44.2 氯化铵-乙醇交换-原子吸收分光光度法(石灰性土壤):《石灰性土壤交换性盐基及盐基总量的测定》(NY/T 1615-2008)。5.2.44.3 乙酸铵交换-EDTA 络合滴定法/原子吸收分光光度法(酸性、中性森林土壤):《森林土壤交换性钙和镁的测定》(LY/T 1245-1999)。5.2.45 交换性钠5.2.45.1 乙酸铵交换-火焰光度法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)。5.2.45.2 乙酸铵交换-火焰光度法(森林土壤):《森林土壤交换性钾和钠的测定》(LY/T 1246-1999)。5.2.45.3 乙酸铵-氢氧化铵交换-火焰光度法(碱化森林土壤):《碱化土壤交换性钠的测定》(LY/T 1248-1999)。5.2.46 水溶性钠和钾离子5.2.46.1 火焰光度法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.47 水溶性钙和镁离子5.2.47.1 EDTA 络合滴定法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.47.2 原子吸收分光光度法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.48 水溶性碳酸根和碳酸氢根5.2.48.1 双指示剂中合法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49 水溶性硫酸根5.2.49.1 土壤浸出液中硫酸根的预测:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49.2 EDTA 间接滴定法(含量适中):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49.3 硫酸钡比浊法(含量较低):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49.4 硫酸钡质量法(含量较高):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.50 水溶性氯根5.2.50.1 硝酸银滴定法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.51 总汞5.2.51.1 氢化物发生原子荧光法:《土壤质量 总汞、总砷、总铅的测定 原子荧光法 第 1 部分:土壤中总汞的测定》(GB/T 22105.1-2008)。5.2.51.2 催化热解-冷原子吸收分光光度法:《土壤和沉积物 总汞的测定 催化热解/冷原子吸收分光光度法》(HJ 923-2017)。5.2.52 总砷5.2.52.1 原子荧光法:《土壤质量 总汞、总砷、总铅的测定 原子荧光法 第 2 部分:土壤中总砷的测定》(GB/T 22105.2-2008)。5.2.53 总铅5.2.53.1 电感耦合等离子体质谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.53.2 电感耦合等离子体原子发射光谱法:《固体废物22 种金属元素的测定 电感耦合等离子体原子发射光谱法》(HJ 781-2016)。5.2.53.3 石墨炉原子吸收分光光度法:《土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法》( GB/T 17141 - 1997)。5.2.53.4 火焰原子吸收分光光度法:《土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法》(HJ 491-2019)。5.2.54 总镉5.2.54.1 石墨炉原子吸收分光光度法:《土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法》( GB/T 17141 - 1997)。5.2.54.2 电感耦合等离子体质谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.55 总铬5.2.55.1 电感耦合等离子体原子发射光谱法:《固体废物22 种金属元素的测定 电感耦合等离子体原子发射光谱法》(HJ 781-2016)。5.2.55.2 电感耦合等离子体质谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.55.3 火焰原子吸收分光光度法:《土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法》(HJ 491-2019)。5.2.56 总镍5.2.56.1 电感耦合等离子体原子发射光谱法:《固体废物22 种金属元素的测定 电感耦合等离子体原子发射光谱法》(HJ 781-2016)。5.2.56.2 电感耦合等离子体质谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.56.3 火焰原子吸收分光光度法:《土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法》(HJ 491-2019)。土壤含水量的测定按《土壤检测 第 3 部分:土壤机械组成的测定》(NY/T 1121.3-2006)。采用林业行业标准的检测方法按《森林土壤含水量的测定》(LY/T 1213-1999)测定含水量。5.3 结果上报检测实验室完成样品检测后,检测员需及时填写检测原始记录。原始记录经三级审核无误后,检测结果(附表 4)及时录入上报至土壤普查工作平台,经省级质量控制化验室审核后确认。原文下载:全国第三次土壤普查土壤样品 制备、保存、流转和检测技术规范 (征求意见稿)更多资料:《第三次全国土壤普查资料汇编》——仪器+方法+采样+制备+质控(全册)
  • 原生态有限公司成功参加第三届《青年地学论坛》
    9月16-18日,第三届《青年地学论坛》在西安宾馆举行。应中国科学院地球环境研究所邀请,原生态有限公司作为唯一的生态环境领域参展商参加了此次会议,并主要展示了超高精度液态水和水汽同位素分析仪(L2130-i、L2140-i)、UIC碳分析仪(CM150、CM250)、CRS-1000/B土壤含水量测量系统、G4301便携式CO2 CH4 H2O分析仪、G2508 CO2 CH4 N2O NH3 H2O分析仪以及G2201-i CO2 CH4同位素分析仪等多款仪器。 “青年地学论坛”是以青年学者为主体的地球科学学术交流盛会,此次会议由中国科学院地球环境研究所承办,参会人员达350余人,参与单位超过110家。论坛围绕“第四纪地质与全球变化”、“地球化学与环境科学”、“生态过程与可持续发展”“海洋科学前沿进展”和“气溶胶与大气污染”五个专题展开。 开幕式上,安芷生院士通过视频致欢迎辞,对此次论坛的成功举办表示祝贺。会议期间于贵瑞研究员、刘青松教授、杨守业教授、康世昌研究员、黄方教授、韩永明研究员等分别做了大会专题报告,共计126位青年学者及学生就地球科学各个相关领域进行了探讨交流,并有54份poster进行了展板交流。 我公司非常重视此次会议,由公司销售主管张学涛亲自带队参与了此次盛会。值得一提的是,我公司展示的仪器,特别是超高精度液态水和水汽同位素分析仪(L2140-i、L2130-i)、UIC碳分析仪(CM150、CM250)、G4301便携式CO2 CH4 H2O分析仪三款仪器,得到了与会专家学者的极大关注,大会期间不断有专家学者来到我公司展台前,对这三款仪器性能、操作使用等相关问题进行详细地咨询,领取产品资料,并留下仪器使用需求和购买意向。我公司销售主管张学涛和销售工程师杨悦就与会学者关心的问题,进行了耐心而细致地解答。产品链接:UIC碳分析仪(CM150、CM250)G2508 CO2 CH4 N2O NH3 H2O分析仪G4301 便携式CO2 CH4 H2O分析仪IM-CRDS水同位素分析仪CRS-1000/B土壤含水量测量系统超高精度液态水和水汽同位素分析仪(L2130-i、L2140-i)G2201-i CO2 CH4同位素分析仪RhizoScan原位根系扫描仪关于北京普瑞亿科科技有限公司: 北京普瑞亿科科技有限公司以经营稳定性和放射性同位素分析仪、超痕量气体分析仪、环境气象观测系统、元素分析仪等仪器设备为主,兼顾自主创新研发,致力于为广大用户提供先进仪器设备和成套解决方案的综合性企业。公司在温室气体研究、同位素分析、食品掺假和溯源分析、痕量气体检测、元素分析、气象观测、应急响应、军事防御、城市安全等领域开展工作。 北京普瑞亿科科技有限公司已与多家国际著名厂商签订独家代理协议,负责其产品在中国区的推广、销售、维修和技术支持等服务。主要包括以激光稳定性同位素分析仪和超痕量气体仪而著称的美国Picarro公司,以提供高品质民用航空和军事气象站解决方案而著称的美国Coastal公司,以提供中尺度土壤含水量测量系统而著称的美国Hydroinnova公司,以提供最高精确度绝对碳含量测量而著称的美国UIC公司,以基于零空白自动取样技术的高品质微型元素分析仪而著称的意大利NC Technologies公司,以提供多用途光谱分析系统解决方案而著称的德国Tec5公司;同时与美国PerkinElmer公司,美国ThermoFisher公司等进行深度合作,并与波兰Easy Test ,美国2B,美国Apollo SciTech等公司达成合作共识。 更多详情请关注北京普瑞亿科科技有限公司官网:www.pri-eco.com
  • 全国土壤墒情培训班在杭举办,托普云农大力推动节水农业
    3月19-20日,全国农业技术推广服务中心在杭举办全国土壤墒情监测技术培训班,培训围绕规范墒情监测体系建设、数据采集和信息发布、农业用水效益评价方法、墒情监测技术现场教学等内容展开,还对全年墒情监测和节水农业工作作了重要部署。全国土壤墒情培训班在杭举办 土壤墒情是重要的农业基础工作,通过监测指定期测定不同层次土壤含水量,结合作物长势长相等,建立墒情评价指标体系,综合判定和评价土壤墒情级别,提出相应技术措施建议,指导和服务农业生产。墒情监测是节水农业的基础职能和核心支撑,是公益性技术推广服务的具体体现。 传统方法采集墒情数据,费工费力、时效性差,难以满足现代农业决策及时性、准确性和科学性需求。强化墒情监测自动站点建设,加快应用智能感知、物联网、大数据、移动互联等现代信息技术,提高数据获取、传输、处理和分析能力,是墒情监测工作的迫切需求。 为进一步做好墒情监测工作,强化墒情监测网络和信息平台建设,全面提升服务能力,3月19-20日,全国农技中心在杭州市举办了全国土壤墒情监测技术培训班。来自各省、自治区、直辖市、计划单列市、黑龙江省农垦总局土肥水技术推广部门的代表80多人参加了培训。培训班讲解了墒情监测新技术和新方法,培训了全国土壤墒情监测系统使用方法,交流了各地墒情监测工作开展情况,开展了现场教学,安排部署了全年墒情监测和节水农业工作。全国农技推广中心杜森处长、吴勇副处长、浙江省耕地质量与肥料管理总站虞轶俊副局长、陈红金副局长出席指导工作,托普云农作为行业代表作会议支撑。 培训班指出,要进一步理清发展思路、明确目标任务。建好“全国土壤墒情监测系统”信息平台,加快墒情监测自动站点建设和数据入网。强化对政府农业生产决策部门的服务,及时准确提供墒情信息和生产建议;强化对新型经营主体和农民的服务,科学指导适墒播种、因墒施肥、测墒灌溉,推广应用水肥一体化、集雨补灌等新技术。以自动化为重点,加快墒情监测自动站点建设;以信息化为核心,完善全国土壤墒情监测管理系统平台,构建全国墒情监测大数据;以智能化为目标,加强墒情监测数据分析和区域会商,强化生产指导和信息发布。培训班会议现场萧山临浦基地有效实现示范作用 会议期间,培训班一行实地参观了萧山区农科所临浦基地,并现场学习了标准化的田间监测点建设、现代化土壤墒情监测传感设备、全自动化托管式水肥一体化等内容。萧山区农科所临浦基地是由萧山农科所与托普云农联合打造的现代化农业产业示范园,园区通过顶层规划、科学部署,有效实现了土壤墒情监测和节水提效的示范作用。托普云农副总经理陈曦向培训班介绍托普智能终端 设立在基地东南角的土壤墒情监测点,能够实时监控基地内的土壤墒情数据,将数据传输至云端。通过云平台的数据整合与可视化处理,将能为土壤墒情监测预警工作提供时间、空间的多维支撑,为节水农业的落实提供重要的数据推演依据。 在基地的物联网智能大棚内,培训班见证了全自动化托管式水肥一体化系统的管理流程,对托普云农搭建的如此高效便捷精准的灌溉管理方式表达了充分认可。据了解,托普云农全自动化托管式水肥一体化系统基于物联网、云计算、人工智能等技术,可实现无人自动式精准灌溉。托普云农技术专家为培训班介绍水肥一体化系统托普云农让土壤墒情监测与节水农业有机结合 截至目前,托普云农已在全国30多个省份,共450余个县,建设780余个监测点,累计采集数据达18672000余次。基于这些数据,托普云农进行了技术革新与应用优化,利用土壤墒情监测与水肥一体化方案的结合,形成以赣南脐橙、德清早园笋、新余柑橘等为代表的高度适配的产业服务模式。 在德清山伢儿早园笋项目当中,通过土壤墒情监测系统,托普云农帮助早园笋实现节水增效、增产增值,还结合托普云农创新式的产供销一体化运作模式,为山伢儿早园笋实现了日销50吨的销售成绩,有效助推当地农业信息化改革与产业化发展。 未来,托普云农还将结合过往成功案例,凝练、锻造更多产业端应用场景,推动土壤墒情监测工作的开展与节水农业的建设,进而推动藏粮于地、藏粮于技战略的深入落实,为实现乡村振兴战略而贡献力量。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制