当前位置: 仪器信息网 > 行业主题 > >

应变计

仪器信息网应变计专题为您提供2024年最新应变计价格报价、厂家品牌的相关信息, 包括应变计参数、型号等,不管是国产,还是进口品牌的应变计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合应变计相关的耗材配件、试剂标物,还有应变计相关的最新资讯、资料,以及应变计相关的解决方案。

应变计相关的资讯

  • 三思纵横上海分公司成功研发专用扩展型应力应变测试仪
    为了解决客户在试验机使用过程中不方便使用引伸计而必须粘贴应变电阻片(应变计)进行应变测试的问题,近日,三思纵横上海公司成功研发了DSCC-5000K专用扩展型应力应变测试仪。  应力应变测试仪DSCC-5000K是与试验机配套的高速静态应变数据采集仪,同步采样频率60Hz,最小应变分辨率0.1&mu m,广泛应用于拉伸、压缩或弯曲等试验,能够精确测量材料变形,绘制力-变形、变形-时间、变形-变形等曲线。  该设备既可用于液压试验机,也可用于电子试验机,并可满足多通道应变采集与试验机加载力值采集同步。  三思纵横上海分公司研制成功的应力应变测试仪已经成功地应用于多家建筑工程质检公司。  更多新品资讯,请咨询三思纵横驻各地办事处销售人员或服务热线:400-882-3499。
  • 精密位移传感器技术比较
    精密位移传感器技术比较PIEZOCONCEPT 在其压电级中使用什么类型的位移传感器?为什么它优于其他传感器技术?PIEZOCONCEPT 使用单晶硅传感器,称为Si-HR 传感器。尽管它是应变仪传感器大系列的一部分,但它的性能优于其他两种常用技术(电容式传感器和金属应变仪)。这两种位置传感技术有其自身的特定缺点。 电容式传感器与 PIEZOCONCEPT 公司Si-HR 传感器的比较电容式传感器非常常用。他们提供了不错的表现,但他们对以下情况很敏感:• 气压变化:空气的介电常数取决于气压。电容测量将受到任何压力变化的影响。• 温度变化:同样的,空气的介电常数会随温度变化• 污染物的存在以上所有都会导致一些纳米级的不稳定性,因此如果您想实现真正的亚纳米级稳定性,则需要将它们考虑在内。即使可以对气压和温度进行校正,也无法校正其他因素(污染物、脱气)的影响。这解释了电容式传感器在真空环境中性能不佳的原因。此外,电容式传感器非常昂贵且体积庞大。因此,带有电容传感器的位移台不可能做的有像的 BIO3/LT3 这样薄,即使设计的好也会在稳定性方面进一步牺牲性能。因为它是一种固态技术,所以Si-HR 传感器的电阻不依赖于气压或污染物的存在。其次,温度变化会对测量产生影响(主要是因为材料的热膨胀),但这可以通过使用传感器阵列来纠正。基本上,我们为每个轴平行使用 2 个硅传感器 - 一个用于测量,另一个用于考虑由于温度变化导致的材料膨胀。金属应变计与 PIEZOCONCEPT Silicon HR 技术的比较金属应变计与我们的 Silicon HR 技术(也是应变计)之间的差异更大。金属应变计和硅传感器应变计之间存在两个巨大差异。竞争对手试图说所有的应变仪都具有相同的性能,因为它们测量的是应变。这是不正确的。半导体应变计在稳定性方面与金属应变计有很大不同。金属应变计和Si-HR 传感器(PIEZOCONCEPT 使用)之间的第yi个区别是应变系数:半导体应变仪(Si-HR)的应变系数大约是金属应变仪的 100 倍。更高的规格因子导致更高的信噪比,最终导致更高的稳定性。 更重要的是,第二个区别是金属应变计不能直接安装在弯曲本身上(即实现运动的地方):金属应变计必须安装在某种“背衬”上。因此,它必须安装在执行器本身上,因为您没有足够的空间将其安装在挠性件上。仅在执行器上测量的问题是压电执行器有很多缺陷......存在蠕变或滞后等现象。因此,由于压电执行器的伸长不均匀,因此仅测量执行器的部分伸长率并不能精确地扣除其完全伸长率。通过对弯曲本身进行测量,我们不会遇到这种“不均匀”问题。由于上述原因,如果您比较应变计(金属)和 PIEZOCONCEPT 的Si-HR 传感器,在信噪比和稳定性方面存在巨大差异。 关于法国PIEZOCONCEPT公司 PIEZOCONCEPT 是压电纳米位移台领域的领宪供应商,其应用领域包括但不限于超分辨率显微镜、光阱、纳米工业和原子力显微镜。其产品已被国内外yi流大学和研究所从事前沿研究的知名科学家使用,在工业和科研领域受到广泛好评。 多年来,纳米定位传感器领域电容式传感器一直占据市场主导地位。但这项技术存在明显的局限性。PIEZOCONCEPT经过多年研究,开发出硅基高灵敏度位置传感器(Silicon HR)技术,Si-HR传感器可以实现更高的稳定性和线性度,以满足现代显微镜技术的更高分辨率要求。 PIEZOCONCEPT的目标是为客户提供一个物美价廉的纳米或亚纳米定位解决方案,让客户享受到市面上蕞高的定位准确性和稳定性的产品使用体验。我们开发了一系列超稳定的纳米定位器件,包含单轴、两轴、三轴、物镜扫描台、快反镜和配套器件,覆盖5-1500um行程,品类丰富,并提供各类定制化服务。与市场上已有的产品相比具有显着优势,Piezoconcept的硅传感器具有很好的稳定性、超本低噪声和超高的信号反馈,该技术优于市场上昂贵的高端电容传感器。因此,我们的舞台通过其简单而高效的柔性设计和超本低噪声电子器件提供皮米级稳定性和亚纳米(或亚纳米弧度)本底噪声。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、先进激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。
  • 中航电测仪器8月13日开始网上招股
    中航电测仪器股份有限公司 (中航电测)首次公开发行不超过2,000万股人民币普通股(A股)并在创业板上市的申请已获得中国证券监督管理委员会证监许可[2010]1059号文核准。  本次发行采用网下向股票配售对象询价配售和网上向社会公众投资者定价发行相结合的方式进行,其中网下配售本次发行总量的20%,即400万股 网上发行数量为本次发行总量减去网下最终发行量。  为了便于社会公众投资者了解发行人的有关情况、发展前景和本次发行申购的相关安排,发行人中航电测仪器股份有限公司和本次发行的保荐人(主承销商)中信建投证券有限责任公司定于2010年8月13日在全景网举行网上路演,敬请广大投资者关注。  中航电测是中国航空工业集团公司控股的机载设备骨干企业。目前已发展成为以生产应变计、传感器、航空机载和地面测力系统、汽车检测设备和公路超限超载检测设备等电测产品为主,兼营人造宝石及其他晶体制品的多元化现代高新技术企业。  公司产品已经销往北美、欧洲等各地,是世界范围内应变计及其传感器的主要供应商之一。  此次募集资金将主要用于四个项目:应变计和传感器技术改造建设项目、板式传感器与汽车综合性能检测设备改造建设项目、数字传感器建设项目以及研发中心建设项目。
  • 香港猪流感戒备级别提升至严重
    从香港政府新闻网获悉,食物及卫生局局长周一岳宣布,因应墨西哥爆发猪流感个案,日内把猪流感列为须呈报个案 并已启动大流感应变计划,本港的戒备级别提升至严重。  当局已加强监测各出入口岸,识别有发烧及呼吸道感染征状的人士 并提升公众教育,也已联络香港大学研究有关猪流感的快速测试。  同时,医院管理局宣布,公立医院防备流感提升至严重应变级别。  戒备级别升至严重  周一岳今天(4月26日)联同卫生防护中心、医院管理局、食物环境卫生署、入境事务处、卫生署及渔农自然护理署,召开紧急会议后宣布,因应墨西哥爆发猪流感个案,已启动大流感应变计划,本港的戒备级别提升至严重。  他说,任何这些突发的病毒,特别是新的病毒,一定要特别小心,作最坏的打算 但同样希望把严重程度尽量减低。  渔护署已知会猪场通报不寻常情况。目前特敏福等流感药物对治疗猪流感有效,香港备有足够存货。  卫生防护中心已加强监测各出入境口岸,识别有发烧及呼吸道感染征状,以及来自有人类感染猪流感个案地方的旅客 也已知会航空公司,在所有来自受影响地区的直航班机上广播有关健康资讯。  不会禁止输入猪肉  前往受影响地区的旅客,应采取预防措施,如避免接触病人、避免用手触摸眼睛、鼻子或口部、经常用肥皂及清水洗手,或使用有酒精成分的洗手液 也应带备外科口罩,以便有需要时使用。  从受影响地区回来后7天内出现呼吸道感染征状的人士,应带上外科口罩,并尽快求医。  周一岳表示,在1、2天内把人类猪流感列入须呈报传染病,公营和私家医生如发现有怀疑个案,必须向卫生署呈报。  他表示,世界卫生组织的测试显示,这是全新的病毒,不是猪只流感的病毒,所以不会因为进食猪肉而传染这个病,政府不会因此禁止输入猪肉。  墨西哥也没有猪肉输入本港,美国则有部分冷冻和冰鲜猪肉输港。
  • 案例分享‖“深中牵手”成功!深中通道海底隧道顺利合龙
    6月11日凌晨,国家重大工程深中通道海底沉管隧道最终接头从E23管节顺利推出,与E24管节成功实现精准对接,标志着世界最长最宽钢壳沉管隧道正式合龙。最终接头长5.1米,宽46米,高9.75米,重约1600吨,套置于E23管节扩大段内,这种整体预制水下管内推出的结构装置为世界首创,进一步丰富了世界跨海沉管隧道的“中国方案”。该项目中要实现管道精准对接,首先要保证施工船舶稳定,船舶由于受到海面风浪的影响会不断地产生姿态变化,需要实时调节。同时施工船舶通过吊钩与沉管隧道连接,整个吊装、运输、下沉、对接过程,需要实时监测吊钩的应变应力以评估受力情况。某单位采用江苏东华测试DH59系列采集系统、表面式应变计、速度传感器,对吊钩进行应变应力实时监测以及施工船舶航向、转体、振动实时监测,为稳定船舶姿态、管道精准对接提供了技术保障。部分图文来源于网络
  • 一场应变测量的革命 --英斯特朗推出新视频引伸计AVE.2.0
    英斯特朗是全球领先的力学性能测试设备供应商,产品广泛应用于评价材料和部件机械(力学)性能。英斯特朗最新推出先进的视频引伸计AVE 2.0,这款视频引伸计可以充分满足各项严苛的测试标准要求,例如ISO527,ASTM d3039 ,ASTM D638等。这款第二代视频引伸计,也是当今市场上采用专利的,先进的视频引伸计技术中最快速,最准确的非接触式应变测量装置。AVE2.0一体化装置非常容易安装,可以适用于各种条件下的试验室环境,也适用市场上任何±10伏模拟输入的试验装置(测试表现则与各款试验机本身条件有关)。该产品设计自动降低了试验室测试中受热和照明变化产生的误差,同时AVE 2.0 也是目前市场上唯一具有实时490赫兹数据采集率并实现1微米精度的视频引伸计。AVE2.0出色性能使得用户可在各种试验环境条件下进行应变测试,与数字图像相关技术相结合(DIC)。还可以测量任何材料的模量和失效时的应变,包括塑料,金属,纺织,薄膜,复合材料,生物材料及更多。 关于英斯特朗:英斯特朗(INSTRON )是全球领先的材料和构件物性测试试验机制造商,美国五百强公司ITW集团旗下品牌,从基本的软组织到先进的高强度合金材料,其产品被广泛运用于测试各种材料,组件和结构在不同环境下的力学性能和特性。 自1946年英斯特朗成立并研制了世界上第一台闭环控制的电子万能材料试验机和第一个应变片式载荷传感器以来,英斯特朗以成为公认的力学性能测试设备世界领导者为使命,通过提供最高品质的产品,专业的技术支持和世界水平的服务,从而使用户获得拥有英斯特朗产品的最佳体验。 了解更多信息请访问英斯特朗官方网站: www.instron.cn用手机扫一扫,关注英斯特朗微信账号,获取更多英斯特朗的产品信息和测试tips
  • 山西大学激光光谱团队制作出基于三维竖直石墨烯应变传感器
    近日,山西大学激光光谱研究所陈旭远教授和王梅教授等人在《ACS Applied Materials & Interfaces》上发表文章《Vertical Graphene Canal Mesh for Strain Sensing with a Supereminent Resolution》,报导了一种基于三维竖直石墨烯(Vertical Graphene, VG)的超低检测限应变传感器。   微应变传感器的发展为微型机器人、智能人机交互、健康监测和医疗康复等众多领域提供了广阔的前景。高分辨率的柔性应变传感器可广泛应用于多种柔性可穿戴电子设备中,有助于提升设备探测灵敏度并保证亲肤性。目前,已有诸多活性材料在柔性传感器中展示了良好的应用效果,如碳纳米管、银纳米线、MXene等。但是具有极高分辨率的柔性应变传感器仍然是应变传感器研究中的一项挑战。   作者通过设计三维石墨烯微观和宏观结构制作了网状结构的应变传感器(VGCM),使其在0-4%的总应变范围内实现了低至0.1‰的应变精确响应,获得了极高的分辨率。同时通过实验验证及理论模拟揭示了VG在应变过程中微裂纹的演化规律和电阻变化机理。 图1 基于VGCM的应变传感器制备过程及VGCM的SEM图像   此工作以铜网为模板,利用等离子化学增强气相沉积法在铜网上生长了VG。利用化学刻蚀去除铜网后获得中空网状VGCM结构。这种网状结构使得拉伸应力集中,增强了应变过程中的电阻变化,实现了对低至0.1‰的微小应变的高分辨响应。 图2 拉伸过程中的应力分布示意图   有限元模拟展示了VGCM在拉伸过程中的应力分布。结果显示VGCM的中空管道结构使得应力集中分布在管状VGCM的顶端和底部。同时,三维石墨烯竖直结构也会导致应力在竖直结构之间形成集中。 图3 VGCM传感器传感原理图;VGCM应变中的SEM图像;VG和2D石墨烯应力分布模拟图   进一步通过实验验证了在拉伸情况下,应力集中产生裂纹且主要分布在中空管道顶端和底部。裂纹的产生加速了电阻的增加,从而提高了VGCM的灵敏度和分辨率,与模拟结果完全吻合。VGCM传感器利用了三维石墨烯的微观结构和网状的宏观结构的协同作用,使得应力集中,增大了电阻在拉伸过程中的变化,赋予了VGCM传感器卓越的分辨率和良好的应用前景。
  • 百若仪器:慢应变速率应力腐蚀试验机的研发成绩斐然
    2014年,上海百若持续创新,研发再上新台阶。YYF-50系列慢应变速率应力腐蚀试验机产品的研发,填补了国内在材料应力腐蚀敏感性研究领域的空白,产品处于国内领先,可完全替代同类的进口产品。该产品已在高温高压的超临界水介质环境、高温铅铋液态介质环境、高温盐溶液介质环境、高温高压H2S介质环境、海水环境等腐蚀介质应用领域成功使用,可进行慢应变速率腐蚀拉伸、应力腐蚀、腐蚀疲劳、腐蚀裂纹扩展测量、精确裂纹预置、低周疲劳等试验。在腐蚀介质环境下进行材料的腐蚀裂纹扩展测量存在较大技术困难,传统的COD法已不能实现测量应用,DCPD方法是腐蚀介质环境下测量裂纹扩展普遍推崇的方案,上海百若耗时多年进行研发和测试,完成了腐蚀介质环境下通过DCPD法精确测量材料裂纹扩展及扩展速率计算。该技术已成功在设备上安装使用,获得了用户的高度评价和认可。不断地研发投入和全面的科学测试,上海百若在应力腐蚀试验设备的销售推广取得了骄人的成绩,在诸多领域提供了试验设备:1. 高温高压超临界水,慢应变速率拉伸,腐蚀疲劳,腐蚀裂纹扩展测量。2. 高温铅铋溶液,慢应变速率拉伸,腐蚀疲劳。3. 高温盐溶液,慢应变速率拉伸,腐蚀疲劳。4. 高温高压H2S,慢应变速率拉伸,腐蚀疲劳,腐蚀裂纹扩展测量。5. 常温常压海水,慢应变速率拉伸。6. 微高温海水,慢应变速率拉伸,腐蚀疲劳,腐蚀裂纹扩展测量。7. 硫氰酸溶液,慢应变速率拉伸,氢脆敏感试验。2014年,加氧测量与控制水化学系统完成了设计和组建,并成功运行,系统得到了用户肯定和赞许。用于测试金属在高温高压水环境下腐蚀速率的静态高压釜,在运行期间水化学一直变化,水中的溶解氧逐渐降低,溶解氢浓度逐渐升高,溶解进入的金属离子使水的电导率逐渐升高。这样,静态高压釜一次实验的时间越长,测得的实验结果偏差越大。给高压釜系统添加一套水化学回路对于保证高压釜内的水质稳定非常重要。该系统能够在线监测溶解氧、电导率、pH值,并实现控制调节。上海百若是慢应变速率应力腐蚀试验机的国内唯一专业性研发公司,在诸多技术难点方面取得了成功突破,并在设备安全和长期稳定性方面做了大量的研究和测试,此类设备运行时间从1周到1、2年不等,运行时间长,设备的安全、可靠是首要考虑因素,我们在设备的各个方面设计了安全监测与保护,保障操作者、设备和试验的安全。在设备的研发过程中,我们与高校和研究院合作,得到了上海交通大学、中国科学院、中国原子能科学研究院、上海应用物理研究所、厦门大学等单位的大力支持和帮助,使得设备的研发取得突破性进展。慢应变速率应力腐蚀试验机应用范围广泛,主要研究材料在腐蚀介质环境下的腐蚀敏感特性,这些应用领域有:核电的一回路、二回路材料,热电材料,石化行业,海洋行业,汽轮机,及其它腐蚀性介质应用领域。
  • 双应变-温度传感器性能研究取得进展
    近日,广东省科学院化工研究所研究员曾炜团队在国家自然科学基金项目等的资助下,在双应变-温度传感器性能研究方面取得新进展。相关研究发表于Composites Part A。张静斐为该论文第一作者,曾炜为通讯作者。   在目前的双应变-温度传感器研究中,一般是将应变/温度敏感的导电材料,如金纳米粒子、氧化石墨烯和碳纳米管等引入弹性体或水凝胶来实现的。由于弹性体的伸展性差和导电材料的不透明性限制了其在大应变和可视化设备中的应用。而离子导电水凝胶具有透明度高、柔韧性好的优点,可以实现基于三维网络离子传输的同时,利用其电导率随应变和温度的变化而实现应变-温度双重传感,为传感器的多功能化提供了广阔应用前景。   研究人员通过自由基聚合,在氯化锂和甘油的存在下,制备了具有良好应变和温度敏感性的可拉伸离子导电性水凝胶。氯化锂的强离子水化作用和水分子、甘油形成强氢键协同作用从而抑制了冰晶的生成,使水凝胶具有优异的抗冻能力,能在-30 ℃~ 80 ℃的较宽温度范围内检测温度的变化。该水凝胶在36.5~40 ℃范围内的温度灵敏度为5.51 %/℃,检测限为0.2 ℃,并具有良好的升温-降温循环稳定性。   此外,水凝胶传感器在2000%的宽应变范围内具有良好的线性,可以达到17.3的高灵敏度,并具有低至1%的检测下限。利用该方法制备的应变-温度双重刺激响应水凝胶,在人体运动监测、发热检测等可穿戴设备中具有很大的应用潜力。
  • 【定制产品】上海百若——超纯水介质慢应变速率应力腐蚀试验机YYF
    p style="text-align: center "/pp style="text-align: center"img style="width: 345px height: 500px " src="http://img1.17img.cn/17img/images/201710/insimg/fed9f818-9b0d-4cf1-87d7-33b2037e3c09.jpg" title="1.jpg" height="500" hspace="0" border="0" vspace="0" width="345"//pp style="text-align: center "strong超纯水介质慢应变速率应力腐蚀试验机YYF/strongbr//pp strong 1.生产厂商/strong/pp  上海百若试验仪器有限公司/pp strong 2.采购单位/strong/pp  原子能科学研究院/pp strong 3.主要功能/strong/pp  阻尼器、助力器耐久性能测试 /pp  加载波形正弦运动规律,编程循环嵌套不低于3层 /pp  对阻尼器、助力器进行力——位移功量图绘制,力——位移——时间曲线图绘制 /pp  产品具有轴向疲劳加载、侧向同时加载的功能 /pp strong 4.产品技术特点/strong/pp  1) 采用高集成度、强大的控制、数据处理能力、高可靠性控制测量系统。/pp  2) 采用基于神经元自适应PID算法的全数字、三闭环(力、变形、位移)控制系统,实现力、变形、位移全数字三闭环控制,各控制环间可自动切换,并在各方式间切换时实现无冲击平滑过渡。/pp  3) 可进行定位移、定速度、定应变、定应变速率、定负荷、定负荷速率等多闭环控制模式。/pp  4) 高精准24Bit数据采集系统,高分辨率,可扩展至8路AD采集。/pp  5) 试验过程中实时显示滞回环曲线。/pp  6) 试验过程中显示负荷、位移峰值谷值变化情况。/pp  7) 试验过程中显示动态波形加载曲线。/pp  8) 采用DCPD(直流电位法)在腐蚀介质系统中测量裂纹长度,进一步提供金属材料在腐蚀介质中的裂纹扩展速率指标。/pp strong 5.产品技术参数/strong/pp  最大试验力:50kN/pp  试验力测量范围:1%~100%/pp  加载头移动速度:10mm/s~1x10-6/s/pp  疲劳加载波形:正弦波,三角波/pp  工作最大压力:20MPa/pp  试验釜内温度:350℃/pp  加载头位移分辨率:0.05μm/pp strong 6.产品应用介绍/strong/pp  采用YYF-50客户进行金属材料在环境诱导下的腐蚀、应力腐蚀、腐蚀疲劳失效的检测及评价。在整个核电材料领域,材料服役性能的评价、表征等贯穿于核电站设计、建设和运行的整个阶段。基于材料服役性能评价,明确材料应力腐蚀、环境疲劳等失效规律,预测材料的服役性能,评价关键部件的服役安全性,制订关键材料的服役、失效的预防与缓解提供了重要的技术测试平台。采用YYF-50慢应变速率应力腐蚀试验机,客户根据服役的条件,在水化学回路系统上调节PH值,溶解氧DO,电导率等参数,并设置应变或应力控制模式,加载波形及加载频率等参数,试验机即可按规定参数进行试验加载,水化学回路循环,高压釜加热等工作,最终检测出材料在腐蚀环境下的裂纹扩展速率等参数。客户在使用这台设备期间,完成了相关材料的应力腐蚀及腐蚀疲劳的评价。/p
  • 纳米材料,激发你的好奇心
    激发好奇心纳米材料纳米材料是近几十年来最伟大的技术成就所用的基石。它们为医药、可再生能源、化妆品、建筑材料、电子设备等领域的突破性改进奠定了基础。纳米材料具有形成新材料的潜力,因此其性质和相互作用成为研究的热点。安东帕是全球研究人员的可靠合作伙伴:世界排名前100位的大学中有96所,每天至少使用我们的一种仪器。安东帕独特而灵活的纳米材料研究仪器组合为客户实验室提供了前瞻性的解决方案,今天购买的仪器,也为未来提供了无数的可能性。纳米颗粒01纳米颗粒是一种用于许多不同领域的超细单元,从生物医学、制药到储能技术。由于它们的尺寸,很难进行跟踪和测量,但了解它们的特性是非常必要的,这样就可以设计它们来实现它们的目的。不同的测量技术可用于制备和表征纳米粒子,如微波合成、原子力显微镜、动态光散射、SAXS、激光衍射等。左右滑动查看更多022D材质单层材料是非常广泛应用的研究重点,包括纳米尺寸的应变计,用于人体植入的纳米晶TiO2涂层,以及原子台阶对生长现象的影响,或例如,研究阳极或阴极组件的2D材料结晶度,以便在电池中更快更有效地进行能量转移。安东帕公司的各种测量解决方案和不同技术在二维材料的表征中发挥着重要作用,如可进行温度控制的掠入射小角X射线散射(GISAXS)、原子力显微镜(AFM)、表面zeta电位或真密度仪。左右滑动查看更多复合材料03复合材料将两种或两种以上材料的不同特性结合在一起,形成一种新材料,其特性与单个部件不同。复合材料与固溶体和混合物的区别在于,它们各自的组分保持分离和区别。因此,研究和了解复合材料的性能对其应用至关重要。涉及到流变学研究或孔径表征金属有机框架(MOF)气体吸附分析仪。左右滑动查看更多04半导体在信息处理、全彩显示和新型传感器技术等领域,对纳米结构的理解和表征在前所未有的技术发展中起着至关重要的作用。安东帕的解决方案有助于我们时代的技术进步。它们包括颗粒尺寸的表征和表面zeta电位的研究,以改进化学机械抛光工艺,以及用掠入射小角X射线散射(GISAXS)分析纳米图形表面。
  • 深交所审议通过!中航电测仪器174.39亿元并购成飞
    深交所7月11日披露,中航电测仪器股份有限公司本次发行股份购买资产符合重组条件和信息披露要求。根据申报材料,以2023年1月31日为评估基准日,航空工业成飞净资产评估值为2,402,382.98万元,其中国有独享资本公积658,468.69万元未纳入本次交易标的作价范围,扣减后本次交易的航空工业成飞100%股权作价为1,743,914.29万元。中航电测表示,本次重组尚需中国证券监督管理委员会予以注册后方可正式实施。据了解,中航电测仪器股份有限公司是中国航空工业集团有限公司控股企业,聚焦“智能测控”领域,确立了航空防务、传感控制、数智产业、智能交通四大业务板块,产品主要涉及飞机测控产品和配电系统、电阻应变计、应变式传感器、称重仪表和软件、机动车检测系统等方向及领域,是国内提供智能测控产品及系统解决方案的骨干企业。成飞集团始建于1958年,是我国航空武器装备研制、生产和出口的主要基地,是国际一流的民机大部件供应商。成飞集团作为我国最重要的主机厂之一,涉及有人机、无人机产业链等多个重要环节。成飞已研制生产了歼5、歼7、枭龙、歼10等系列飞机数千架;国外军机用户达十多个国家。在民机方面,与成飞民机公司一道承担了大型客机C919、新支线客机ARJ21、大型水陆两栖飞机AG600机头的研制生产。最令人瞩目的是国内目前最新一代的双发重型隐形战斗机歼20,也是由航空工业成飞制造。航空工业成飞被视为航空工业集团旗下最后一块尚未上市的明星资产,其营收利润表现较为亮眼。2023年,实现营业收入749.68亿元,同比增长11.41%,实现归母净利润24.23亿元,同比增长高达84.54%。
  • Seametrics发布Seametrics水位水温记录仪Levelscout新品
    美国LevelSCOUT智能传感器集成了水位/温度测量,适用各种条件下的水位水温测量;采用工业化的Modbus协议,通用性高;该传感器具有极高的性价比。 产品特点 测量/存储水位计温度参数 低功耗—8年电池寿命(可快速更换电池) 兼容Modbus RTU协议,可与其他智能传感器组网使用 精度±0.05%FS 2.22cm小直径 5万条数据存储 应用领域 监测井水位评估 潮汐研究 地表水监测 地下水流量监控 含水层存储与恢复监测 技术参数 存储供电存储容量50000条数据内部电池一节1/2 AA 3.6V锂电池采样频率1x 秒预期电池寿命8年(取决于采样频率)软件赠送Aqua4plus2.0文件格式.CSV/.A4D压力外壳材质316不锈钢或二级钛敏感元件类型硅应变计温度敏感元件材质316不锈钢或Hastelloy C276敏感元件热敏电阻量程10,24,59,200米精度±0.1℃(-20℃-60℃)精度±0.05%FS分辨率0.01℃分辨率±0.001%FS创新点:LEVELSCOUT独创模块化设计、可现场便捷更换电池。更加胜任长期水位监测和抽水试验等大密度长时间监测的需求,避免了同类水位传感器电量耗尽就报废的情况。
  • 分布式光纤应变监测仪取得重要进展
    p style="text-align: justify text-indent: 2em " 由中兴通讯股份有限公司牵头的国家重点研发计划“重大科学仪器设备开发”重点专项“分布式光纤应变监测仪”项目经过近两年的努力,突破了高空间分辨率技术、超长距离测量技术和高精度布里渊信号处理等关键技术,开发出分布式光纤应变监测仪样机。近日,项目顺利通过了科技部高技术中心组织的中期检查。/pp style="text-align: justify text-indent: 2em "分布式光纤传感以光纤作为传感器,其测量参数包括应变和温度等,可以实现空间上的连续测量,监测点位可达百万个,测量距离可达百公里,具有传统点式传感器不可比拟的优势,是大尺度基础设施结构健康监测和大范围地质灾害监测最有效的技术手段。目前国内高性能分布式光纤传感监测仪主要依赖国外进口,国内还不能实现厘米级超高空间分辨率和百公里超长距离产品供货。该项目通过采用差分脉冲对技术和双频激光扫描技术,所开发的可工程化应用的分布式光纤应变监测仪,具有厘米级空间分辨率和百公里测量距离,已成功应用于油气管道、高速铁路、高压输电线、大型桥梁和山体滑坡监测等领域,中国公路学会组织的科技成果鉴定认为该项目整体技术达到了国际领先水平。开展分布式光纤应变监测仪的自主化研究,对于提高我国大型基础设施、大型结构装备和地质灾害的安全监测能力,提升公共安全水平,以及减小经济损失和社会影响具有重要意义。/pp style="text-align: justify text-indent: 2em "该项目下一步将加强仪器小型化设计,提高产品的工程使用灵活性;进一步加快工程应用示范及产业化推广等工作。 /p
  • 我国实现3000℃极端环境下的超高温应变场测量
    记者9日从北京航空航天大学李宜彬教授团队获悉,该团队首次利用自主研发的紫外-数字图像(UV-DIC)系统在超高温极端环境应变场测量领域实现了3000℃环境下的成功测量。相关研究成果近日发表于国际无损检测领域的权威杂志《无损检测与评价国际》上。25℃-3000℃散斑图:(a)T=25℃;(b)T=1100℃;(c)T=1500℃;(d)T=1900℃;(e)T=2100℃;(f)T=2300℃;(g)T=2500℃;(h)T=2700℃;(i)T=2900℃;(j)T=3000℃;(k)在加热至3000℃后冷却至25℃的散斑此前,在超高温极端环境应变场测量领域一直缺乏有效测量表征手段,主要难点包括:一是超高温热辐射导致测量图像过度曝光,无法表征;二是使用中性密度、蓝光、偏振等多组滤光片,导致测量步骤繁琐,表征成像效果欠佳;三是作为变形信息载体的散斑在超高温中容易脱落,导致测量失败,无法表征。典型温度下应变场云图:(a)1100℃;(b)2100℃;(c)2500℃;(d)2700℃;(e)2900℃;(f)3000℃该文章通讯作者、北京航空航天大学、天目山实验室助理研究员董亚丽表示,研究人员利用紫外-数字图像(UV-DIC)系统,仅用单个紫外滤光片就有效抑制了3000℃热辐射,同时开发了以碳化铪粉末为散斑材料的超高温散斑制备工艺,最终在3000℃环境下成功测量了石墨热膨胀系数,并清晰记录了被测对象从室温到3000℃的高质量图像。该成果由北京航空航天大学、天目山实验室联合研发。“以上难点在紫外-数字图像相关的应变场测量方法中均被很好地解决,该测量方法能够有效、准确测量热端部件在超高温极端热力耦合条件下的热变形,对于助力我国航空航天技术发展具有积极意义。”李宜彬说。
  • 金属所柔性应变传感器的手势识别应用研究取得进展
    基于手势识别技术的可穿戴柔性电子设备在医疗健康、机器人技术、人机交互和人工智能等领域颇具应用前景。研制性能优异的柔性应变传感器是实现高性能可穿戴设备应用的重要基础。感器的灵敏度决定可穿戴设备的感知精度,而在过载、瞬时冲击、多次循环弯曲/扭折等条件下的机械鲁棒性将影响可穿戴设备实际应用环境条件下的长期可靠服役。截至目前,采用简单方法制备兼具高灵敏度和机械鲁棒性的柔性应变传感材料颇具挑战性。如何将基础研究所获得的高性能柔性应变传感器推广应用到人机交互系统等实际应用场景中,将会为此类器件的研发提供全新思路。   近期,中国科学院金属研究所沈阳材料科学国家研究中心薄膜与微尺度材料及力学性能研究团队,在前期柔性基体金属薄膜力学行为研究的基础上,基于柔性器件传感的力学原理,提出将裂纹类传感器的传感机制引入高机械鲁棒性蛇形曲流结构中,通过对传感层进行巧妙的高/低电阻区调控实现高灵敏度传感的学术思想,研制出灵敏度与裂纹类传感器相当(GF 1000)且机械鲁棒性优异的柔性应变传感器。该传感器在过载、冲击、水下浸泡、高/低温等严苛环境条件的作用下表现出优异的循环稳定性,稳定响应周次达10000周。同时,该传感器具有响应和回复时间快( 58 ms)、滞后性低等优势。   该团队将传感器进一步集成到自主设计的无线可穿戴人机交互系统中,结合机器学习、用户界面设计等技术实现了实时手语翻译功能。传感器的高灵敏度和响应速度赋予了该系统及时准确的感知能力,同时高机械鲁棒性则赋予该系统在实际应用场景中长期可靠服役的能力。该系统利用机器学习分类算法实现了对15种单一手势手语的识别和6种组合手势手语的识别(识别准确率分别达98.2%和98.9%)。系统整体的响应时间小于1s。成本低廉、质轻便携且操作简便的系统既可将手语实时翻译成语音播放,又可通过定制的用户界面实现信号曲线和翻译结果的可视化。后期可通过优化电路设计、扩展机器学习的手势或手语数据库,将该手势识别技术进一步应用于人机交互、虚拟现实、手势认证、智能传感、医疗健康等关键场景。该研究为实现柔性条件下的稳定增敏机制提供了新思路,有望促进可穿戴人机交互系统的应用和产业化发展。此外,该团队基于微小尺度材料和纳米金属层状复合材料力学行为基础研究工作的长期积累,研制出微机电系统(MEMS)用超长服役寿命的纳米复合材料,有望应用于航天、通讯、导航和新能源等领域的射频MEMS上。   上述柔性应变传感手语识别系统的研究成果,以Ultra-Robust and Sensitive Flexible Strain Sensor for Real-Time and Wearable Sign Language Translation为题,在线发表在Advanced Functional Materials上。研究工作得到国家自然科学基金、金属所“引进优秀学者”项目、沈阳材料科学国家研究中心青年人才和基础前沿及共性关键技术创新项目的支持。东北大学科研人员参与研究。图1.柔性应变传感器的设计和制备。a、蛇形曲流结构的传感机制;b、传感单元在表面切应力作用下的位移云图;c、传感单元在不同表面切应力作用下相邻曲流条纹的间隙沿传感器宽度方向分布曲线;d、相邻曲流条纹的接触区域长度随应变的变化曲线;e、传感器制备流程示意图。图2.柔性应变传感器的传感性能。a、高/低电阻区调控前的响应曲线;b、高/低电阻区调控后的响应曲线;c、在不同峰值应变下的循环响应曲线,极限检测应变;d、响应和回复时间。图3.柔性应变传感器的机械鲁棒性。a、循环稳定性;b、最大可承受应变;c-e:对严苛环境的耐受力。图4.可穿戴手语翻译系统。a、应用场景示意图;b、系统框架;c、手语手套;d、无线电路板;e、用户界面。图5.手语识别验证。a、6种由复合手势组成的手语;b、手语翻译系统对6种手语的识别准确率;e、手语翻译系统的各项性能汇总。
  • 丹迪发布数字图像相关DIC应变测量仪新品
    仪器简介:DIC(Digital Image Correlation)数字图像相关技术是一种非接触式测量材料全场应变、位移的光学测量技术,该技术几乎适用于任何材料且测试面积广、结果精确。Dantec DIC Q-400丹迪公司研发生产的一款测量材料表面位移与应变的标准DIC设备,该设备不与被测物体表面发生接触,通过追踪物体表面的散斑图像,实现变形过程中物体表面三维坐标、位移场和应变场的测量。该设备几乎适用于任何材料且测量范围广、测量精度高。技术参数:测量维度:二维、三维测量区域:1mm×1mm—1m×1m(该区间外也可测量,但测量精度会相应下降)测量精度:位移(1μm),应变(0.01%)主要特点:精度高、测量范围广、无接触、方便使用创新点:1、新型的光学测量仪器,无接触测量材料的位移和应变2、测量结果准确,每个结果均含有一个置信区间3、测量时间短,系统操作简单、标定程序简单
  • 纳米压痕仪NHT³ | 焊接的应力应变研究
    焊接质量一般是通过焊缝质量好坏来做评定,而焊缝质量取决于所焊接的物体、焊接填充物以及所选用的焊接工艺及参数。为了更好地去优化和改善焊接工艺,对于焊缝及其热影响区进行力学性能表征是极其有意义的。对局部弹塑性特性的兴趣导致了一种新检测技术的发展,该技术使用球形压头对焊缝及其热影响区进行局部应力应变性能表征,加载期间使用振动的压痕允许非常局部地确定试验材料的代表性应力-应变曲线。简单的应力应变分析在Anton-Paar压痕软件中实现。该方法可适用于焊缝及其附近不同区域的局部力学性能的表征。01焊缝裂纹尖端附近的弹塑性行为研究纳米压痕仪 NHT3通过展示仪器化纳米压痕测试方法获得低合金钢焊缝中裂纹尖端附近区域和远离裂纹尖端区域的应力应变行为。焊缝出现裂纹通常是由焊接过程中焊缝快速凝固产生的热应力引起的,或由内部显微结构的发生改变所引起的,导致硬度和屈服强度增加,但抗断裂性降低。为了了解局部区域的应力应变行为,仪器化纳米压痕法是能够提供此信息的少数方法之一,局部应力应变测量的目的是帮助理解焊缝开裂的原因。图1 : 靠近或远离焊缝裂纹尖端局部区域的仪器化压痕测试使用Anton-Paar纳米压痕仪NHT3搭载半径为20 µm球型针尖对两个已经存在焊缝裂纹的样品进行测试,以获得局部的应力应变行为;与传统的静态测试方法不同的是,在这次的应用案例中将采用在加载过程增加正弦波加载方式的动态测试方法 (Sinus),选取最大载荷为500 mN,加载卸载速率为1000 mN/min,动态加载振幅为50 mN,频率为5 Hz。图2:载荷位移曲线图3:应力应变曲线图2和图3显示了动态加载测试下获得的压痕曲线,以及从两个区域的压痕曲线中获得的应力应变曲线。可以看出裂纹尖端附近区域的屈服强度远高于远离裂纹尖端的区域。屈服强度的增加通常与延展性的降低有关,这可能对焊缝的抗断裂韧性产生至关重要影响。在外部荷载作用下,靠近裂纹尖端的材料屈服强度增加,往往会出现比基材更早断裂的情况,因此在整个结构中是个力学薄弱点。焊缝中的断裂会导致整个部件失效,因此应该去调整焊接参数,使裂纹尖端附近的材料具有较低的屈服应力和较高的抗断裂性。02焊接铝合金的应力应变行为研究仪器化纳米压痕测试方法中应力应变分析的另一个经典应用是研究金属焊缝周围的弹塑性,尤其是软金属,例如铝合金。铝合金比钢对高温更敏感,因此,研究铝合金的焊接热效应尤为更重要。在本应用所提及的研究中,在加载过程中使用正弦波动态加载模式,利用球形纳米压痕针尖的特性对两种不同的铝合金焊缝附近的弹塑性行为进行局部表征。球形纳米压痕针尖用于确定靠近焊缝(区域A)且距离焊缝约2mm(区域B)的应力应变特性。图4:对比距离焊缝近的区域A和距离焊缝2mm处区域B的应力应变行为使用NHT3纳米压痕仪搭载半径20µm球型针尖作为表征手段,选取的最大载荷为300 mN、加载卸载速率为600 mN/min。在加载过程中采用正弦波的动态加载模式,振幅为30 mN,频率为5 Hz。图4展示了区域A和区域B的应力应变曲线的比较。两个区域表现出相类似的弹塑性行为,屈服应力约为0.3 GPa。这表明焊接过程中加热和冷却对材料的弹塑性性能的影响可以忽略不计。然而,并非所有情况下都是如此,焊接区域的局部应力应变行为仍然是优化焊接参数的重要信息。03搅拌摩擦焊接铝合金的应力应变研究搅拌摩擦焊(FSW)通常是铝合金焊接工艺更好地选择,而传统电弧焊由于铝的高导热性而容易产生较大的热影响区。FSW中的焊接温度远低于中心接触点,因此热效应的传导不如弧焊中明显。在这种情况下,将两种不同的铝合金AA6111-T4(T4)和AA6061-T6(T6)焊接在一起,并在距离熔核中心位置的1.1 mm、2.2 mm和3.3 mm处研究硬度、弹性模量和屈服应力。以下参数用于压痕:最大载荷300 mN,加载速率600 mN/min,动态加载模式下选取振幅30 mN,频率5 Hz。图5的结果表明随着距熔核距离的增加,所表现出的应力应变行为大致一样,仅存在微小差异。在所有的三个区域的屈服应力大约为0.33 GPa(两种基材中的屈服应力大约为0.27 GPa,图中未显示)。母材的硬度为0.8 GPa(T4合金)和1.1 GPa(T6合金)。所有三个区域(距焊缝熔核1.1 mm、2.2 mm和3.3 mm)的硬度均为1.1 GPa,这证实焊缝附近的弹塑性能并没有发生显著变化。图5:距熔核不同位置的应力应变曲线Aoton-Paar自研自产的纳米压痕仪能非常好地去胜任微观局部的应力应变分析,新一代的检测手段的开发有助于焊接行业的进一步发展。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 祝贺!多家仪器企业上榜第八批制造业单项冠军名单
    近日,各省市工信厅(局)陆续披露第八批制造业单项冠军企业和通过复核的第二批、第五批制造业单项冠军企业名单。其中,钢研纳克检测技术股份有限公司、中机试验装备股份有限公司、聚光科技(杭州)股份有限公司、长沙开元仪器有限公司等多家仪器企业跻身光荣榜。 第八批制造业单项冠军企业名单 (节选仪器企业)企业名称产品名称钢研纳克检测技术股份有限公司火花直读光谱仪中核控制系统工程有限公司核工业全厂仪控系统蓝星(北京)化工机械有限公司离子膜电解槽沈阳仪表科学研究院有限公司生物医学精密光学滤光片中机试验装备股份有限公司高温持久蠕变疲劳试验机东富龙科技集团股份有限公司药用真空冷冻干燥机南京茂莱光学科技股份有限公司高精度光学检测器件及系统聚光科技(杭州)股份有限公司激光气体分析仪(LGA)先临三维科技股份有限公司结构光三维扫描系统汉威科技集团股份有限公司气体检测仪器仪表长沙开元仪器有限公司煤质检测专用仪器及系统中航电测仪器股份有限公司电阻应变计及传感器 各省市 第八批制造业单项冠军企业名单
  • 赛智科技推出140997系列Micron传感器
    赛智科技(杭州)有限公司依托浙江大学先进学科、专注于分析测试领域的科技型企业,是国内领先的液相色谱仪及部件、耗材制造商,专业的HPLC应用方案服务提供商,也是我国最大的色谱软件供应商和服务商。 2012年,赛智科技取得美国micron instruments公司Micron传感器系列的代理权,成为该公司在中国的独家总代理商。  赛智科技的代理产品:Micron Model MP40是一个由防腐蚀钛(6AL4V)制成可安装的微型,低成本,可冲洗的一般型压力/温度传感器。钛密封头保证了MPT40系列绝对密封性质,并且正好位于传感器应变计隔膜后方,惰性环境使得传感器的稳定性和可靠性大大提高,也适用于高震动的情况。该产品广泛应用于测试和测量设备,能源控制,生产设备和控制,液位,实验室仪器及设备,校准设备应用领域。 2014年新年伊始,赛智科技根据特定用户需求,再次推出订制版140997系列传感器。Micron传感器细节图:中国官方代理申明: 以下为订制版140997系列数据:性能参数:平衡(零点) 0±3.00 mV全方位灵敏度 20.0 ±2.0 mV/V静误差带 ±0.50 %FS热平衡浮动 ± 0.02 %FS/°F热敏感性 ± 0.02 %FS/°F温度范围 0° TO 180°F补偿温度范围 30° TO 130°F加速度 100 g' s, any axis输入电压 5.0 V DC or AC最大电压 30 V for short periods输入电阻 1400 ± 400?输出电阻 850 ± 200?最小绝缘电阻 50 M? @ 50 VDC设计图: 赛智科技(杭州)有限公司 全国服务热线:400 001 2010 公司总机:0571-28021919技术服务热线:0571-28021930官方网站:www.surwit.com
  • 标准解读 |《汽车用金属材料圆棒室温高应变速率拉伸试验方法》
    10月26日,中国汽车工程学会正式发布由泛亚汽车技术中心有限公司联合中国汽车技术研究中心有限公司、清华大学苏州汽车研究院、中国飞机强度研究所、ITW集团英斯特朗公司、道姆光学科技(上海)有限公司、东风汽车集团有限公司等单位联合起草的CSAE标准《汽车用金属材料圆棒室温高应变速率拉伸试验方法》(T/CSAE 233-2021)。本标准提出的金属材料圆棒高应变速率拉伸试验方法适用于汽车底盘用的铸造、锻件类零件材料的高应变速率拉伸测试。本标准在GB/T 228.1-2010及GB/T 30069.2-2016基础上,对金属材料棒材在不同高应变速率下拉伸时,对试样的夹具,应力测试方法,样件尺寸及装夹,应变测试等方面作了较详细的规定,以确保棒材高应变速率拉伸测试的准确性。当前,汽车底盘用的铸造类零件如Knuckle和Mount等零件的材料高速拉伸曲线是CAE碰撞分析中重点关注技术参数,为了建立CAE分析用高速拉伸所需数据库,提高碰撞安全分析的准确性,需要借助高速拉伸机、三维光学测试(Digital Image Correlation, DIC)技术获取金属棒材的应力、应变场数据。目前对于铸铁、铸铝的圆棒试样的高速拉伸测试还没有相应的国际、国内标准,各整车企业及总成制造商对铸件材料的高应变率拉伸试验方法未见详细说明,测试结果也存在在较大差异,由此带来该对底盘类铸件材料性能和可靠性的评价存在诸多差异。起草工作组在充分总结和比较了国内外金属材料高应变速率拉伸测试方法标准、调研了国内外对车用铸、锻方法制造的零件用的金属材料棒材的试验方法的基础上,参考了GB/T 30069 《金属材料 高应变速率拉伸试验》和《ISO 26203 金属材料高应变率拉伸试验》,并确定板材的测试与棒材的测试有明显不同。通过金属材料棒材在不同高应变速率下拉伸时,对试样的夹具,应力测试方法,样件尺寸及装夹,应变测试等方面作了较详细的研究和试验。高应变速率拉伸测试系统是由高速拉伸机,高速相机,光源,数据采集及分析系统,同步器,夹具,散斑制备装置,应变片粘贴设备等部分组成。试验时,确保设备的连接可靠,经过静态速率试验确认力、速度、对中性及相机、数据采集均正常的情况下开始正式测试。编制组基于国内外行业研究现状,通过正交矩阵进行试验方案设计,共48组试验,每组数据需要完成3根样条。随后又增加汽车底盘锻压零件最小壁厚3毫米小直径样条的测试。合格的样条必须断在标距内。所有测试结果不需过滤处理,直接反映整个系统的测试状态和结果。经过一系列试验,为标准的制定奠定可靠的基础。首先是确定试验夹具,根据不同的拉伸设备,可以设计不同的设备连接方式,考虑到试样是圆形截面,推荐使用螺纹接头连接试样,螺纹的长度也进行了优化试验,选择大于2倍平行段长度。而且在夹具上做出平面以粘贴应变片。对夹具的选材上也做了研究,选用常用的45钢和钛合金进行比对。通过图1的试验结果,推荐使用钛合金材料,硬度28~38HRC,以减少夹具的固有震荡信号。编制组在充分总结和比较了国内外金属材料高应变速率拉伸测试方法标准、调研了国内外对车用铸、锻方法制造的零件用的金属材料棒材的试验方法的基础上,参考了《GB/T 30069 金属材料 高应变速率拉伸试验》和《ISO 26203 金属材料高应变率拉伸试验》,并确定板材的测试与棒材的测试有明显不同。通过金属材料棒材在不同高应变速率下拉伸时,对试样的夹具,应力测试方法,样件尺寸及装夹,应变测试等方面作了较详细的研究和试验。高应变速率拉伸测试系统是由高速拉伸机,高速相机,光源,数据采集及分析系统,同步器,夹具,散斑制备装置,应变片粘贴设备等部分组成。试验时,确保设备的连接可靠,经过静态速率试验确认力、速度、对中性及相机、数据采集均正常的情况下开始正式测试。编制组基于国内外行业研究现状,通过正交矩阵进行试验方案设计,共48组试验,每组数据需要完成3根样条。随后又增加汽车底盘锻压零件最小壁厚3毫米小直径样条的测试。合格的样条必须断在标距内。所有测试结果不需过滤处理,直接反映整个系统的测试状态和结果。经过一系列试验,为标准的制定奠定可靠的基础。首先是确定试验夹具,根据不同的拉伸设备,可以设计不同的设备连接方式,考虑到试样是圆形截面,推荐使用螺纹接头连接试样,螺纹的长度也进行了优化试验,选择大于2倍平行段长度。而且在夹具上做出平面以粘贴应变片。对夹具的选材上也做了研究,选用常用的45钢和钛合金进行比对。通过图1的试验结果,推荐使用钛合金材料,硬度28~38HRC,以减少夹具的固有震荡信号。图1 钛合金和45#钢夹具及分别在100-1s时的拉伸曲线在应变片的粘贴和标定方面做了详细的试验,在本标准中给出了具体阐述,尤其指明标定的系数R2≥0.999。设备状态的确认中,如果测试力的同时还需要测试应变,设备需要连接额外的数据线,试验前需检查所有的连线是否牢固连接,尤其是信号触发线。每次测试前先在静态试验机上低应变速率拉伸,然后在高速试验机上以同样的速率拉伸同一批次的试样检验设备。静态试验根据 GB/T 228.1-2010规定进行。为了验证验证圆棒试样的应变是否需要三维测试,分别用单台和两台相机试验,发现当使用单台相机时,大截面尺寸(5毫米直径棒材)会出现由于散斑扭曲导致跟踪不了散斑变化产生测量误差或试验失效,因此当出现散斑测试的应变变化跟不上力值变化时,应使用两台相机测试。如图2、3所示。铸铝(左) 铸铁(右)图2 一台相机照片-铸铁及铸铝的应变-时间&应力-时间的曲线铸铝(左) 铸铁(右)图3 两台相机照片-铸铁及铸铝的应变-时间&应力-时间的曲线标准起草组对于数据采集频率也做了研究,图像拍照及采集系统的采样频率应考虑试样断裂时间。当应变速率≤100s-1时,所取得的应变有效数据大于力值的采样数据,而且一般会大于400。当应变速率100s-1时,应变的有效数据会急剧下降,应调整应变的采集频率和拍摄参数,最终应变的有效采集不低于100个点。否则不能有效测出弹性模量及剪切模量。对于拉伸速度偏差认可的确认,各测试单位做了详细讨论,考虑到高应变率速度的影响因素复杂,因此给出按照最大力对应的应变划分不同平均速度的限制要求。即当最大力对应的应变率大于5%时,实际应变速率的平均值推荐在目标应变速率的±5%以内,当最大力对应的应变率小于5%时,记录实际应变速率到报告中。试样尺寸也是本标准重点考虑的内容,较短的测试长度有助于获得高的应变速率,但测量长度不能过小,否则不能保证反映材料的性能。因此参考静态的标准及高应变速率拉伸的现有标准,制作了4种不同的试样并测试。试样的装夹方式,尺寸及夹具材料在标准中得到具体描述。优化后的的试样如图4,并给出推荐尺寸。 图4 典型的试样尺寸说明:(1)尺寸公差为0.05mm,平行段工作部分粗糙度0.32,同轴度为0.01毫米。(2)推荐区域直径为5mm,=10mm,=15mm,R=16mm,=5mm,=35mm,D=12mm,或者区域直径为3mm,=10mm,=15mm,R=12mm,=5mm,=35mm,D=6mm。综上所述,该标准围绕车用金属材料的使用工况,对3毫米直径以上的哑铃型拉伸试样进行充分的试验,给出了从夹具,散斑制作,相机标定,系统试验前验证,试样尺寸与装夹,力的测试,数据采集及处理等方面系统的说明,试验准确性高,试验失效率低,同时避免不同试验员试验结果差异等问题。本标准充分考虑了汽车行业用到的铸件和锻件零件,具有普遍适用性,可以为CAE仿真高效地提供更加准确可靠的材料数据。与目前使用的GB/T 30069 《金属材料 高应变速率拉伸试验》和ISO 26203 《金属材料高应变率拉伸试验》中的方法协调统一,互不交叉,提供了标准外的常用形状试样的高应变速率下的详细试验方法,对现有标准起到补充作用。
  • 宁波材料所在柔性应变-温度双模态传感器研究方面取得进展
    人体活动所产生的包括应变和温度等生理信号是医疗健康、运动监测的重要数据来源,利用柔性可穿戴设备实现应变和温度的感知意义重大。柔性传感器是柔性可穿戴设备的核心部件,其发展趋势是集成化和多功能化。发展柔性应变-温度双模态传感器,实现应变和温度等信号的监测以及区分,同时兼具高的分辨率仍是一个难点。   Co基磁性非晶丝具有优异的软磁性能和巨磁阻抗效应(GMI),可以实现对磁场的高灵敏探测,是发展柔性多功能传感器的理想材料之一。前期,中国科学院宁波材料技术与工程研究所研究员李润伟、刘宜伟基于磁性非晶丝设计与发展了仿生触觉传感器与自供电弹性应变传感器,并在机器人假肢的触觉感知、运动捕捉的智能服装方面实现应用(Science Robotics. 2018, 3, eaat0429;Nano Energy, 2022, 92, 106754)。在此基础上,研究人员以磁性非晶丝为敏感材料,通过设计具有管状异质结构的双模态传感器实现了单一传感器对应变和温度的灵敏监测和实时区分。   该传感器具有独立的应变和温度感知机制。一方面,结合磁弹性体的磁弹效性和Co基非晶丝的巨磁阻抗效应可以实现应变灵敏探测;另一方面,用于阻抗输出的热电偶线圈具有显著的塞贝克效应,可以同时实现温度的检测。基于独立的感应机制,温度和应变信号之间不存在相互耦合,后续通过信号读取电路可实现温度和应变信号的实时区分和输出。   该研究中双模态传感器的应变-磁转换单元中具有磁弹效应的磁弹性体提供随应变而变化的磁场,通过内置的Co基磁性非晶丝,能够灵敏感知微小变化的磁场,从而输出变化的阻抗,实现应变的感知。此外,该工作设计了具有双功能的Cu-CuNi热电偶线圈,不仅可以实现阻抗的输出,而且本身具有的塞贝克效应可以实现对温度的感知。   进一步地,通过调控应变-磁转换单元的不同区域的相对模量,即磁弹性管和非磁性弹性管的相对模量,可以控制磁场变化快慢,从而能够实现应变灵敏度的可调。该传感器可实现0.05%的应变和0.1℃的低探测极限,5.29和54.9μV/℃的较高应变和温度感知灵敏度。   此外,该研究也从模拟和实验上对该双模传感器的应变-温度信号输出的耦合和相互干扰进行了验证。研究人员分别测试了双模传感器在不同应变下的温度输出信号和不同温度下的应变输出信号,发现该传感器具有的管状异质结构能够有效避免应变对温度的干扰,且磁性非晶丝和磁粉的磁性能在低于居里温度下具有良好的温度稳定性,可以确保温度对应变感知几乎没有影响。   该研究将所设计的管状线型双模传感器与织物集成,可以同时用于人体微小应变的探测,比如呼吸和吞咽等检测,也可用于膝盖弯曲等较大应变的探测,同时能实现体温或环境温度的实时监测,在健康监测、智慧医疗以及人机交互领域具有良好的应用前景。   相关成果近期以Dual mode strain-temperature sensor with high stimuli discriminability and resolution for smart wearables为题在线发表在Advanced Functional Materials上。研究工作得到国家自然科学基金重大仪器研制项目、国家自然科学基金项目、国家自然科学基金委中德交流项目、中科院国际合作重点项目、浙江省自然科学基金等项目的支持。图1(a)双模传感器的感应机制,(b)具有管状异质结构的双模传感器传感器制备流程,(c)应变-磁转换单元中磁弹性管的微观形貌,(d-i)具有磁弹效应的磁弹性管不同磁化方向磁化具有不同的磁性能,(j-m)双模传感器外观和柔性展示图2 双模传感器的应变感知性能
  • 天津大学新技术提高光纤应变传感器灵敏度
    天津大学精密仪器与光电子技术学院教授李恩邦研究发现一种新技术构成的光纤应变传感器,具有灵敏度高且对温度变化不敏感等特点。  光纤应变传感器是世界上应用广泛的传感器类型,具有许多电传感器不可比拟的优点,对于保障大型设施安全、防止恶性和灾难性事故发生具有非常重要的意义。  李恩邦的研究成果已发表在《应用物理快报》上,英国物理学会官方网站optics.org和美国《激光世界》杂志也对此进行了报道。
  • 北大杨林团队等人在Nature发文:首次揭示非均匀应变下声子谱扩展对导热的反常抑制现象
    纳米材料具备优异的力学特性,能够承受远超块体材料的应变,从而调节其物理/化学性能(如电子、光学、磁性、声子和催化活性)。基于力学应变工程,过去的研究优化设计了一系列前所未有的先进功能材料和器件,包括高迁移率芯片、高灵敏度光电探测器、高温超导体、和高性能太阳能电池以及电催化剂等等。尽管对基于应变调控电子输运性能和能带结构等方面进行了广泛研究,但由于单一施加应变梯度而不引入其他混淆因素(例如界面和缺陷)的困难,以及将纳米尺度热输运测量与原子尺度局域声子谱表征相结合的挑战,非均匀应变下的导热机制仍未被系统研究。这尤其令人沮丧,因为精确热管理被视为制约先进芯片和高端设备效率和寿命的关键瓶颈。针对这些挑战,北京大学工学院杨林研究员与北京大学物理学院高鹏教授、杜进隆高级工程师及西安交通大学岳圣瀛教授等人提出了实验探究非均匀应力对导热调控的新策略,他们揭示了均匀应力下不存在的,由应变梯度导致的独特声子谱扩展效应及其对导热的反常抑制现象。通过在自制的悬空微器件上弯曲单个硅纳米带(SiNRs)来诱发非均匀应变场,并利用具有亚纳米分辨率的基于扫描透射电子显微镜的电子能量损失谱(STEM-EELS)技术表征局域晶格振动谱,他们的研究结果显示,0.112%/nm应变梯度将导致热导率(κ)显著降低34±5%,这是先前文献中均匀应变下热导率调制结果的3倍以上(图1)。相关工作以“Suppressed thermal transport in silicon nanoribbons by inhomogeneous strain”为题发表于Nature。图1. 非均匀应力对硅纳米带导热的显著抑制现象。(a)实验测得的(实心符号)和理论模拟的(空心符号)结果表明,在均匀应变下,块体硅和硅纳米线的热导率基本保持不变,而弯曲硅纳米带的测量结果随着应变的增加急剧上升(半填充)。(b)基于悬空热桥微器件的热导率测试原理示意图。(c)高分辨透射电子显微镜显示弯曲硅纳米带的单晶特性。(d)实验测得的弯曲硅纳米带相较于无应力样品的热导率降低百分比为了揭示应变对声子传输的影响,直接测量弯曲硅纳米带的局域声子谱,并表征沿应变梯度声子模式的演变现象是非常必要的。与先前文献中观察到的在异质界面或缺陷周围的EELS峰移不同,运用同时具备亚纳米级空间分辨率和毫电子伏特(meV)能量分辨率的STEM-EELS技术,该工作首次表征了完全受非均匀应变调控的声子模式,揭示了应变梯度下奇特的声子谱扩展效应(图2)。图2. 表征受应变调控的局域声子谱。(a)基于STEM-EELS的局域声子谱表征技术示意图。带有弯折的弯曲硅纳米带HAADF图像(b)和EELS测量区域的放大视图(c)。(d)在不同位置(P1至P5)沿应变梯度测得的TA和TO声子模式的EELS谱。(e)弯曲硅纳米带的HAADF图像。(f)沿电子束移方向TA和TO声子模式的振动谱图。(g)在e中标记的区域沿应变梯度测得的EELS谱线与均匀应变下每个声子支具有的特定单一线条色散关系不同,不均匀应变的存在导致了在给定波矢处的声子频率分布区间(图3)。这种奇特的声子谱扩展效应增加了声子频率的多样性,以满足声子-声子散射的能量守恒约束,因此加速了声子-声子散射率并缩短了声子寿命,引发了一种均匀应变不存在的全新声子散射机制。图3. 声子谱扩展增强声子散射率。(a)受应变梯度调制的声子色散示意图。(b)左侧,硅在不同弹性应变下的声子色散。右侧,应变梯度为0.118% /nm下声子谱扩展引发的声子散射率,τsg−1通过开发跨微米-原子尺度的实验表征技术,并结合第一性原理的理论模拟,该工作为长期以来有关非均匀应变对声子传输影响的难题提供了关键线索。因此,这项研究不仅清楚地揭示了非均匀应变对固体导热的调制机理,而且为基于应变工程的功能性器件的创新设计提供了重要思路。例如,基于应变梯度引起的晶格热导率降低,与此前已证明的载流子迁移率增强之间的协同作用,为开发高性能的热电转换器件提供一种新颖策略。此外,基于非均匀应变调制热导率可实现功能性热开关器件,用于动态控制热通量。杨林和岳圣瀛是该论文的共同第一作者,杨林、高鹏、杜进隆是共同通讯作者。合作者包括东南大学陈云飞课题组、北京大学戴兆贺课题组、北京大学宋柏课题组和美国范德堡大学Deyu Li课题组。北京大学杨林课题组主要研究方向为功能性热材料和器件,包括先进微纳结构设计制造,极端尺度导热微观机理表征与调控,超高温储热技术研发,高性能热功能器件制备。研究成果以第一作者或通讯作者发表于Nature、Nature Nanotechnology、 Science Advances、Nature Communications、Nano Letters等国际顶级期刊。杨林曾入选2021年国家高层次海外青年人才计划,获得2019Nanoscale 年度精选热门文章、2020PCCP年度 精选热门文章等奖项。
  • 国家重大科学仪器设备开发专项“分布式光纤应变监测仪”项目启动
    p  近日,由哈尔滨工业大学董永康教授牵头作为项目负责人的国家重大科学仪器设备开发专项“分布式光纤应变监测仪”项目启动暨实施方案论证会顺利召开。/pp  作为国家重大科学仪器设备开发专项之一,该项目旨在开发具有自主知识产权、高精度、高可靠性与环境适应度、核心部件国产化的分布式光纤应变监测仪,充分利用云计算与大数据系统架构与技术,实现大型基础设施、地质灾害等远程实时安全监测,实现工程化开发、应用示范并进行产业化推广。项目由我校董永康教授牵头作为项目负责人,中兴通讯股份有限公司作为产业化牵头单位,联合中铁大桥科学研究院有限公司、中交公路规划设计院有限公司、中交第一公路勘察设计研究院有限公司和中国科学院武汉岩土力学研究所共同申报。该项目对于改善我国在大型基础设施、大型结构装备、地质灾害等安全监测水平,提升公共安全水平,减小经济损失和社会影响具有重要意义。/pp  在启动会上,项目负责人董永康教授作了项目总体情况汇报,6个项目课题负责人分别进行了课题实施方案汇报。项目专家组对项目的研究目标、研究内容及研究方案的可行性给予充分的肯定,并针对项目和各课题后续工作的具体实施、拟解决的关键科学和技术问题等提出了建设性的意见和建议。/pp  中国工程院院士杜彦良教授主持启动会,项目组专家及委员共30余位参加本次了会议。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/c8ed9c9b-8ffd-4d71-983f-a71c9483e324.jpg" title="LKsd-fyqtwzv2273554.jpg" style="width: 500px height: 333px " width="500" vspace="0" hspace="0" height="333" border="0"//pp style="text-align: center "与会专家合影/p
  • 香港食安中心:加强抽验日本输港食品辐射检测
    周一岳表示,香港食物安全中心已加强抽验日本输港的食品,并进行辐射水平测试  中新网3月14日电 据香港大公报报道,日本强烈地震海啸灾难,触发日本发生历来最严重的核电厂爆炸和核泄漏事故,当地生态有可能遭到毁灭性影响。香港食物及卫生局局长周一岳表示,香港食物安全中心已加强抽验日本输港的食品,并进行辐射水平测试。香港食安中心自灾难发生至今,已抽取十个日本进口食品样本,全部未受辐射污染。  港暂未发现本地辐射有异常  日本发生史上最强烈的地震海啸,触发福岛核电厂发生爆炸,导致辐射泄漏。周一岳昨日表示,福岛核电厂发生爆炸后,香港暂时未发现本地辐射水平有异常情况,天文台将一直监察情况,并留意事态发展。他说,香港就辐射事件已有一套应变计划,有需要时港府会开启计划,但至今暂时没有这需要。  因应福岛核电厂爆炸灾难,周一岳表示,食安中心已由前日开始,加强监察日本进口香港的新鲜食品,包括牛奶、蔬菜、水果等农产品,并进行辐射水平测试。他说,现时日本进口食品,只占香港整体入口食品很小比例,相信对香港食品供应不会有任何影响。至于港府会否停止入口日本食品,他表示,需视乎日本是否真的有辐射污染,若辐射污染严重,港府将采取相应措施,并相信日本政府亦会采取行动,阻止受污染的食品外销市场。  港食安中心抽检日本食品 无异常  由前日至昨日下午五时止,香港食安中心从日本进口的新鲜食品中,共抽取十个食品样本,包括蔬菜、肉类和水产,中心利用手提辐射仪器及辐射污染监察系统,量度食物批次的表面及样本中的辐射水平。检测结果全部满意,没受辐射污染。食安中心将与日本当局联络,以取得更多进口食品的资料。  周一岳说,灾难对日本当地的食品供应有严重影响,许多农田被海啸卷去,无法生产 作为地球村的一员,若日本有需要,港府定必提供协助。特区政府亦已接触日本政府及日本驻港总领事,了解当地有何需要。  周一岳:由日返港市民可前往医院检查  对于昨日有报道称,有四名港人仍处于福岛核电厂附近,被问及港府会否派救援队和医疗队到日本提供协助,周一岳表示,暂未收到日本有关求助的要求,需视乎日本需要决定是否派队。他说,港府曾接触日本的医疗同行,但日本方面认为可以自行处理。  周一岳说,若任何人从日本返港后感不适或担心受到辐射影响,可以前往医院接受医生检查。若市民在地震前或地震后很短时间内已离开当地,则受辐射污染的机会不大。至于仍留在当地接近核电厂的市民,他相信日本当局会为他们进行详细检查,才让他们离开。  香港专业教育学院应用科学系食品科学及食物安全课程主任方丽影认为,无论食品含辐射量的水平多或少,都属于危险现象,若市民进食这些受辐射污染的食品,最严重是会令体内细胞演变成癌细胞 但她说,仍需视乎食品受辐射污染的情况,现阶段无从得知最准确数据。
  • 热烈祝贺怡华新成功签署德国科伲可(Knick)中国南方区域总代理商!
    自2014年1月1日起,怡华新正式成为德国科伲可(Knick)公司在线产品(pH、电导、溶解氧)在中国南方区域的独家授权总代理商,全权负责该品牌产品在中国南方授权区域的市场推广、技术、销售及应用支持工作。德国科伲可(Knick)公司创立于1945年,是多种专业测量和控制设备领域的市场领导者。半个多世纪以来,在电子测量设备领域中,Knick早已成为高质量的代名词。1945年公司创立者Ulrich Knick工程师,开发出零点稳定的高精度直流放大器,从此以后Knick成为多种专业测量和控制设备领域的技术市场领导者,比如:电气隔离、过程分析、环路供电数字显示等领域。1. 用于 pH 值、电导率和溶解氧测量的过程设备2. 用于过程分析的传感器和连接件3. 用于 pH 值、电导率和溶解氧测量的实验室和便携式设备4. 用于电压、电流、应变计和温度测量的隔离放大器和变送器5. 用于面板和现场安装的环路供电指示器 Knick针对工业过程控制研发和销售了一系列模拟信号设备,50%为模拟信号的接口设备,另外一半业务则是为Knick带来高品质声誉的液体分析仪器领域,如pH、电导率、溶解氧测量。Knick的高品质测量系统已成为行业和实验室的标准。 作为行业领导者,Knick比任何同行更注重对研发的投入。至今,Knick公司的发展策略依旧着眼于高技术创新领域,每四位员工就有一位研发人员,这使得Knick公司拥有大量专利和认证证书。长期和世界上此领域的众多知名公司(SIEMEN、ABB、梅特勒、汉密尔顿、E+H、WTW、HACH……)合作,并贴牌生产,同时也实现了与其型号的一对一替换。产品以高精度、结构精巧、超长使用寿命而闻名。 Knick产品的应用贯穿化工,生物技术,系统工程和工业自动化。在欧洲及世界上主要的工业国家都广泛使用着Knick的先进技术。并且在整个欧洲,以及海外各个主要工业国家都设立了办事处,确保了先进的Knick科技的全球分布。 如今,我们的重点依旧是功能安全性、电磁兼容性、防爆保护,在这些领域中,Knick为高性能的代名词。 Knick自1993年就已经获得ISO 9001认证。Knick主要产品:1.接口组件.隔离器 2.过程分析 3.传感器.连接件.配件4.便携式和实验室仪表5.指示器 德国Knick(科伲可)过程分析及实验室产品特性:pH计、电导率仪、溶解氧仪分为在线式和实验室两大系列。传感器具有的自监测功能、统计功能和使用日志功能使KNICK分析仪具有更完善的安全体系。KNICK过程分析仪有着超群的性能,包括PROFIBUS和HART通讯接口,具有最佳的性能价格比。Protos3400,具有化工应用场合的C型,生物技术、制药和食品工业应用的S型。有很高的稳定性和寿命。 德国Knick(科伲可)隔离器实际应用:德国西门子、ABB、中国科学院强磁场研究所、武钢、首钢、莱钢、日钢、南钢等钢铁厂、上海磁悬浮、上海地铁、广州地铁等地铁、三峡输配电项目等。 致力于把全球最尖端仪器设备带入中国!专业提供世界一流品质实验室和工业检测仪器设备,十六年来,怡华新一步步发展、一步步壮大,今天的怡华新已经发展成为一家立足深圳、辐射全国的极具实力的实验室和工业检测仪器设备供应商。十六年来,一直坚持以优质的产品、合理的价格及快捷周到的服务深受国内各行业客户的信赖与支持。 携手Knick,共创未来,怡华新将为Knick新老用户提供更完善的技术支持和售前、售中及售后服务,更多Knick产品优惠活动,敬请联系怡华新各地办事处,或拨打全国免费热线:400-678-0788 深 圳 市 怡 华 新 电 子 有 限 公 司Shenzhen Yihuaxin Electronics Co.,Ltd地址:深圳市南山区深南大道10128号南山软件园(南山数字文化产业基地)西塔楼1507 电话:(+86) 0755-86218088 (+86) 0755-86218008 (+86) 0755-86218000 传真:(+86) 0755-86218111 邮编:518051邮箱:yhx@yihuaxin.net 网址:www.yihuaxin.net www.yhx17.com www.yihuaxin.cn.alibaba.com
  • BROOKFIELD推出实用型应力/应变控制流变仪
    R/S 应力/应变控制流变仪主要有RS-CPS(锥板),RS-CC(同心圆筒),RS-SST(软固体测试流变仪)oR/S流变仪既能进行控制应力的测量,也能进行控制应率的测量 o扭矩范围很宽:0.05 - 50 mNm.剪切速率:0.01-1000RPMo能够测量从1到900万cPs的粘度范围o转子的安装非常简单、快速R/S-CPS 锥/板流变仪1.操作模式包括:1.控制剪切应率(RPM)2.控制剪切应力(扭矩)3.单机操作(不需电脑)4.全电脑控制2.测试方法包括:剪切应率回环测试;剪切应力斜坡测试;单点或多点粘度测量;温度斜坡测试;直观的QC/QA检验。3.可以测出以下特性:假塑性(剪切变稀)行为触变性(时间相关性)温度影响屈服点4.温度控制方式:循环水浴(温度范围取决于所选水浴液体,从 -20 oC到 250 oC)Peltier控制器 (0到135 oC)Electronic控制器(50到250 oC)请联系:BROOKFIELD上海办事处上海市海宁路350号联合大厦2211室电话:021-62576046 13381669566
  • 课堂 | Leica EM TIC3X应用实例:高应变率作用下高导无氧铜(OFHC)的晶粒细化分析
    通过leica em tic3x 对样品进行离子束切割,样品ebsd mapping解析率得到明显提升,可达80%-90%以上,并且结果稳定可重复,更好地表征了晶粒的变形,以及大小角晶界的转变。实验样品高应变率作用下高导无氧铜(ofhc)实验目的通过电子背散射衍射技术(ebsd)对在高应变率、高温和大变形条件下获得的材料进行晶粒变形细化以及再结晶行为的表征,以期达到表征材料力学属性的目的。实验过程 1 原始样品的制备高速切削是一种集合高应变率、高温和大变形的一种材料变形的复杂材料変形条件,通过改变切削速度来改变上述的变形边界条件,高速切削的过程示意图如下:(图1 高速切削过程示意图)获得的切屑经过金相镶嵌和腐蚀之后的试样如图所示:(图2 经过镶嵌和腐蚀之后的切屑)从图2中可知晶粒已经严重变形,光镜已经无法分辨,而且对于晶粒到底发生了什么变化,光镜也无法做到表征的目的,因此对于材料ebsd表征十分必要。 2 实验样品的制备ebsd制样是本次实验的重中之重,本次实验较难主要体现在3个方面:一是因为经历了严重塑形变形的材料自身的晶粒内部就会存在一定的残余应力,在表征的时候有一定的难度;二是高导无氧铜是一种特别软的材料,在制样的时候非常容易带入应力,或者划伤测试面;三是经过高速切削得到的样品宽度非常细长,不是传统的块体,制样过程比较困难。目前解决方案主要有四种:机械抛光,电解抛光,振动抛光,离子抛光,这几种方法目前都有所尝试,解析率都不太高,究其原因,主要还是因为我的样品细长弯曲的原因,经过镶嵌之后,电解抛光无法满足,机械抛光很容易带入划痕,离子抛光镶嵌之后的样品效果不是十分理想,很多方法都不太适用。通过与徕卡电镜制样技术人员沟通,认为离子切割的方法能比较好的解决目前存在的问题,经过leica em tic 3x离子切割出来的样品解析率超过了80%,部分区域甚至能够达到90%以上,最重要的是这种制样方法非常稳定,实验的结果能够比较方便的被复现出来,可较好地满足我的研究需要。 3 实验观测通过ebsd测试,获得的mapping图的解析率有了较为明显的提升,更高的解析率意味着晶粒的变形,以及大小角晶界的转变也能更好的表征出来。图3 经过振动抛光之后获得的ebsd角度取向分布图图4 经过离子切割之后获得的ebsd角度取向分布图总结通过上述实验的结果可以得出结论,相比于目前主流的振动抛光、电解抛光和离子抛光,在进行一些形状比较特殊的样品的ebsd试样的制备时,离子切割方法所具备的不受样品自身形状限制,效率高,稳定性好,可重复性高等都是目前比较常用的制样方法所不具备的,因此离子切割为ebsd的制样方法做了一个十分重要的扩充!致谢:西安交通大学 机械学院 许祥关于徕卡显微系统leica microsystems 徕卡显微系统是全球显微科技与分析科学仪器之领导厂商,总部位于德国维兹拉(wetzlar, germany)。主要提供显微结构与纳米结构分析领域的研究级显微镜等专业科学仪器。自公司十九世纪成立以来,徕卡以其对光学成像的极致追求和不断进取的创新精神始终得到业界广泛认可。徕卡在复合显微镜、体视显微镜、数码显微系统、激光共聚焦扫描显微系统、电子显微镜样品制备和医疗手术显微技术等多个显微光学领域处于全球领先地位。 徕卡显微系统在全球有七大产品研发与生产基地,在二十多个国家拥有服务支持中心。徕卡在全球一百多个国家设有区域分公司或销售分支机构,并建有遍及全球的完善经销商服务网络体系。
  • CSTM《金属材料强度、应力应变关系的圆环压缩试验方法》团体标准征求意见
    p style="text-align: justify text-indent: 2em "日前,中国材料与试验标准平台发布了关于对strong《金属材料强度、应力应变关系的圆环压缩试验方法》/strong团体标准征求意见的函。span style="color: rgb(0, 112, 192) "strong内容如下:/strong/span/pp style="text-align: justify text-indent: 2em " 各有关单位:/pp style="text-align: justify text-indent: 2em "由中国材料与试验团体标准委员会材料试验标委会字[2019]128号文件strong《关于CSTM标准〈金属材料 圆环试验 强度、应力应变关系的测定〉的立项公告》/strong,由CSTM/FC53/TC04航空材料领域材料检测与评价技术委员会组织制定的CSTM标准strong《金属材料 圆环试验 强度、应力应变关系的测定》/strong(计划编号为CSTM LX 5304 00278-2019),已由西南交通大学为牵头单位的起草小组完成了征求意见稿,现开始征求意见。请于strong2020年3月27日/strong前,将strong《CSTM团体标准征求意见表》/strong反馈给CSTM航空材料领域委员会材料检测与评价技术委员会秘书处。/pp style="text-align: justify text-indent: 2em "联系人:刘世英/pp style="text-align: justify text-indent: 2em "电子邮箱:neulsy@163.com/pp style="text-align: justify text-indent: 2em "电话:010-62496241/17813261935/pp style="text-align: justify text-indent: 2em "strong附件:/strong/pp style="line-height: 16px "a href="https://www.instrument.com.cn/download/shtml/934301.shtml" target="_self" style="text-decoration: underline font-size: 14px color: rgb(0, 112, 192) "span style="font-size: 14px color: rgb(0, 112, 192) "征求意见函-金属材料 强度、应力应变关系的圆环压缩试验方法.pdf/span/a/pp style="line-height: 16px "a href="https://www.instrument.com.cn/download/shtml/934303.shtml" target="_self" style="text-decoration: underline font-size: 14px color: rgb(0, 112, 192) "span style="font-size: 14px color: rgb(0, 112, 192) "金属材料 强度、应力应变关系的圆环压缩试验方法-征求意见稿.pdf/span/a/pp style="line-height: 16px "a href="https://www.instrument.com.cn/download/shtml/934304.shtml" target="_self" style="text-decoration: underline font-size: 14px color: rgb(0, 112, 192) "span style="font-size: 14px color: rgb(0, 112, 192) "金属材料 强度、应力应变关系的圆环压缩试验方法-编制说明.pdf/span/a/pp style="line-height: 16px "a href="https://www.instrument.com.cn/download/shtml/934306.shtml" target="_self" style="text-decoration: underline font-size: 14px color: rgb(0, 112, 192) "span style="font-size: 14px color: rgb(0, 112, 192) "附件1:中国材料与试验团体标准征求意见表.doc/span/a/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/ef7c1265-c9c2-4ef3-a112-283a2aa38b0f.jpg" title="1.PNG" alt="1.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/ba66dc07-fb49-4191-8033-e5c3e5fc9c1b.jpg" title="2.PNG" alt="2.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/a0bb5606-4168-48e5-a101-2bdbcdc0c3d1.jpg" title="3.PNG" alt="3.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/5fac8e1a-4476-4509-a19f-d421dd182683.jpg" title="4.PNG" alt="4.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/a6e5cabc-1fd3-4fc7-a9e2-3ec3b3265ad6.jpg" title="5.PNG" alt="5.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/0c4d0644-7c71-4593-9449-e56a1ded411b.jpg" title="6.PNG" alt="6.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/150117b4-2ad7-42f0-b3ba-534c96fd53fb.jpg" title="7.PNG" alt="7.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/77dccf55-ac88-46f8-9186-91f1f2214ef7.jpg" title="8.PNG" alt="8.PNG"//ppimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/37defebf-9f9d-4a2f-9431-ecfc52b51830.jpg" title="9.PNG" alt="9.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/856010ec-10f4-4228-8b8f-afcdf5784253.jpg" title="10.PNG" alt="10.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/761162ba-a36a-425e-bd39-e0f242f4b509.jpg" title="11.PNG" alt="11.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/431abf31-a944-43a5-b99e-16434b49f3ac.jpg" title="12.PNG" alt="12.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/2d74d514-897a-451c-af90-435d452e6fb7.jpg" title="12.PNG" alt="12.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/363863f0-4b70-4665-b1a8-cdb5ec1e5e71.jpg" title="13.PNG" alt="13.PNG"//ppimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/1684e527-d32c-4e47-96b9-ef6a25bff050.jpg" title="14.PNG" alt="14.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/d39c2c32-7d75-4252-9592-a73051f1ab20.jpg" title="15.PNG" alt="15.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/c2eff1b4-3237-4b20-b7a0-96622aafcb4e.jpg" title="16.PNG" alt="16.PNG"//ppimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/9a24eb4b-f88d-455f-9a85-5d9253890e94.jpg" title="17.PNG" alt="17.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/4e31d11d-5877-417c-8e0a-9c6e57c4632b.jpg" title="18.PNG" alt="18.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/f9371f7f-d27c-4726-b10e-2652053a0c0e.jpg" title="19.PNG" alt="19.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/9e9f571c-e3b8-4d77-ba03-dbb2023c56da.jpg" title="20.PNG" alt="20.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/bf750142-eab3-4226-925a-a29400ebc8c3.jpg" title="21.PNG" alt="21.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/38a937ed-04d5-4f4d-9e5c-4225d8b4226b.jpg" title="22.PNG" alt="22.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/8821bf3e-f80b-41e1-84a5-2bcdcf7d0fd1.jpg" title="23.PNG" alt="23.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/f0fcf386-4066-48b8-9c7d-373f69ae164a.jpg" title="24.PNG" alt="24.PNG"//ppimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/c13000c4-b78d-4ff3-aceb-70e2236fe38d.jpg" title="25.PNG" alt="25.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/cdfc2bad-cd05-405d-b38b-b810c0ba53f2.jpg" title="26.PNG" alt="26.PNG"//ppimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/c8899f62-096a-4166-bd16-40710e3d9274.jpg" title="27.PNG" alt="27.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/52969a1b-9a3f-46fe-af34-fd1da3b6de6a.jpg" title="28.PNG" alt="28.PNG"//ppimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/35f2f4ee-668d-4ee0-b93f-0fe0c7887487.jpg" title="29.PNG" alt="29.PNG"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/bf6bc651-8ca7-4fc2-93cf-c3f22b36d576.jpg" title="30.PNG" alt="30.PNG"//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制