当前位置: 仪器信息网 > 行业主题 > >

气相色谱气体微量注射器

仪器信息网气相色谱气体微量注射器专题为您提供2024年最新气相色谱气体微量注射器价格报价、厂家品牌的相关信息, 包括气相色谱气体微量注射器参数、型号等,不管是国产,还是进口品牌的气相色谱气体微量注射器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气相色谱气体微量注射器相关的耗材配件、试剂标物,还有气相色谱气体微量注射器相关的最新资讯、资料,以及气相色谱气体微量注射器相关的解决方案。

气相色谱气体微量注射器相关的资讯

  • 安捷伦科技公司推出气相色谱低气压报警器、彩色标记注射器
    安捷伦科技公司推出为减少分析过程中的意外停机和为提高 分析效率而设计的气相色谱低气压报警器、彩色标记注射器 2009年3月20日,北京&mdash 安捷伦科技公司(NYSE:A)今天推出了新设计的附件,这些附件是针对一般分析过程中因气相色谱(GC)载气耗尽,或花时间寻找合适规格的注射器而造成的计划外停机和效率低下而设计的。 安捷伦新的低气压报警和气体管理系统是一种简单、安全、可靠而经济的设备,它将在气体钢瓶耗空和仪器停机之前通知气相色谱仪操作人员。钢瓶耗空不仅能造成计划外停机,而且还会损坏色谱柱、损失样品(以及相关的样品制备时间),并需要额外维修。 该系统在仪器气体耗尽之前(用户预先设置的压力点),以可闻和可视两种形式对低气压状态报警。 在2009匹茨堡会议上安捷伦通用实验室注射器也首次亮相。该注射器适用于稀释、内标添加、提取样品的转移和其它分析工作,体积有彩色标记,让操作者使用时一目了然。 安捷伦提供体积范围1 L 到 50 mL的100多种通用注射器。其包装是注射器体积两倍的可反复使用的容器,为找到合适的注射器提供了便利。 如需了解更多信息,请访问www.chem.agilent.com 并点击&ldquo 消耗品和备件&rdquo 表。 关于安捷伦科技 安捷伦科技(NYSE: A)是全球领先的测量公司,是通信、电子、生命科学和化学分析领域的技术领导者,公司的19,000名员工在110多个国家为客户服务。在2008财政年度,安捷伦的业务净收入为58亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn http://agilent.instrument.com.cn/
  • ETT-01薄膜拉力试验机除了测试注射器活塞的推拉力还能测试注射器的哪些物性
    在医疗行业中,注射器作为一种常见的医疗器械,其质量和性能直接关系到患者的安全和治疗效果。因此,对注射器的各项物性指标进行严格测试显得尤为重要。近年来,ETT-01薄膜拉力试验机凭借其高精度和多功能性,在注射器物性检测领域大放异彩。除了能够准确测量注射器活塞的推拉力外,它还能测试注射器的哪些物性呢?推拉力测试:测试注射器活塞的推力和拉力,确保其在规定范围内。穿刺力测试:评估注射器针头的穿刺能力,这对于确保药物能够准确注入至关重要。滑移力测试:测量注射器活塞在筒体内的滑动摩擦力,以保证注射器的顺畅使用。破坏性测试:通过施加超过正常使用范围的力,测试注射器的耐用性和可靠性。ETT-01薄膜拉力试验机能够对注射器的材料强度进行精确评估。通过模拟实际使用过程中的拉伸和压缩情况,试验机可以测量出注射器外壳、活塞以及密封件等部件的拉伸强度、压缩强度等关键参数。这些参数是评价注射器材料性能的重要指标,有助于确保注射器在使用过程中能够承受足够的压力,不易发生破裂或变形。此外,ETT-01薄膜拉力试验机还能对注射器的密封性能进行量化检测。密封性能是注射器的重要性能指标之一,直接关系到药液是否会发生泄漏。通过模拟实际使用中的压力变化,试验机可以测试出注射器各部件之间的密封效果,从而判断其是否满足使用要求。除了强度和密封性能外,ETT-01薄膜拉力试验机还能对注射器的摩擦性能进行测试。摩擦性能是指注射器在使用过程中各部件之间的摩擦情况,它直接影响到注射器的操作顺畅度和使用寿命。试验机可以模拟注射器在实际使用中的摩擦情况,测量出各部件之间的摩擦系数,为改进注射器的设计提供重要依据。此外,ETT-01薄膜拉力试验机还具有高度自动化的特点,可以大大提高测试效率。试验机配备了先进的传感器和控制系统,能够自动记录测试数据并生成测试报告,极大地方便了测试人员的工作。同时,试验机还具有操作简便、稳定性好等优点,能够满足不同用户的使用需求。综上所述,ETT-01薄膜拉力试验机在注射器物性检测领域具有广泛的应用前景。它不仅能够测试注射器活塞的推拉力,还能对注射器的材料强度、密封性能和摩擦性能进行全面评估。随着医疗技术的不断发展,相信ETT-01薄膜拉力试验机将在未来的注射器物性检测中发挥更加重要的作用,为保障患者安全和提升医疗质量贡献力量。
  • 医用注射器滑动性能测试仪的应用与重要性
    医用注射器滑动性能测试仪的应用与重要性在制药包装行业中,医用注射器作为一种不可或缺的医疗器械,扮演着至关重要的角色。它们被广泛用于临床医学中,通过吸入并注射药品至患者体内,以实现治疗目的。医用注射器的使用不仅需要确保药品的精确剂量,还需保证其在使用过程中的安全性和可靠性。因此,对医用注射器进行严格的性能测试,特别是滑动性能测试,显得尤为重要。医用注射器的应用与用途医用注射器通常由针管、活塞(芯杆)、针座、活塞柄、护帽和胶塞等部分组成,其设计精巧,操作简便。在制药包装行业中,医用注射器被用于封装各种药品,如注射液、疫苗等,以便安全、有效地传输给患者。其精确的剂量控制和密封性能,使得医用注射器成为临床治疗中不可或缺的工具。滑动性能测试的必要性为了确保医用注射器的使用质量,国家标准《GB15810-2001使用注射器》对其活塞滑动性能做出了严格规定。滑动性能是指活塞在注射器内移动时的顺畅程度,直接关系到注射过程中药品的推送效果和患者的感受。如果注射器的滑动性能不佳,可能会导致药品推注不畅、注射阻力过大或泄漏等问题,进而影响治疗效果和患者安全。因此,进行医用注射器滑动性能测试,是保障其使用质量、确保患者安全的重要措施。通过测试,可以评估注射器的滑动性能是否符合标准要求,及时发现并解决潜在问题。医用注射器滑动性能测试仪及其测试方法医用注射器滑动性能测试仪是一种专门用于检测注射器滑动性能的仪器。该仪器通过模拟实际使用过程中的推拉动作,对注射器的芯杆施加一定的力,并在一定速度下测量其试验拉力和试验推力。具体测试方法如下:固定器身:首先,将注射器的器身固定在测试仪上,确保其在测试过程中不会移动。施加力并测量:然后,给芯杆一端施加一个力,并设定测试仪的速度(通常为100mm/min±5mm/min)。在此速度下,测试仪将记录芯杆与注射器身之间的试验拉力和试验推力。数据记录与分析:测试仪将自动记录施加的力、芯杆的运动情况以及相应的拉力和推力数据。通过这些数据,可以分析注射器的滑动性能是否符合标准要求。值得注意的是,济南三泉中石实验仪器生产的注射器滑动性测试仪还配备了定制注射管夹具,可以精确测定注射时的初始力、滑动力以及保持力等参数。在拉伸和压缩技术试验模式下,控制横梁的上下移动模拟液体的注入和射出过程,生成相关数据,并计算分析报告初始、平均、最大和最小力等关键指标。综上所述,医用注射器滑动性能测试仪在制药包装行业中具有广泛的应用和重要的意义。通过严格的性能测试和评估,可以确保医用注射器的使用质量符合标准要求,保障患者的安全和治疗效果。
  • Drummond NanojectⅢ可编程显微注射器成功安装
    近日,上海书俊仪器设备有限公司核心代理的Drummond新款NanojectⅢ可编程显微注射器顺利通过福建某高校的安装验收。此次验收的显微注射器是Drummond厂家推出的全新型号, NanojectⅢ可编程显微注射器,注射体积范围和NanojectⅡ相比有所增大。 上海书俊仪器设备有限公司一贯致力于引进与推广国外质优价美的仪器设备与技术,Drummond显微注射器也凭借卓越的品质和先进的技术不断满足用户的实验需求,深受中国用户的喜爱,在众多显微注射器中占有一席之地。 想了解更多关于Drummond显微注射器的详情,请致电021-64825207,浏览上海书俊仪器有限公司官网www.primesci.com,或扫码、添加上海书俊仪器设备有限公司公众号primesci!
  • 2025版《中国药典》4040公示稿 | 预灌封注射器鲁尔圆锥接头检查法要求
    2025版《中国药典》4040公示稿 | 预灌封注射器鲁尔圆锥接头检查法要求2024年7月国家药典委发布了“4040 预灌封注射器鲁尔圆锥接头检查法-第三次公示稿”。此标准将会体现在2025版中国药典的药包材部分。在2015版YBB药包材标准上YBB00112004-2015《预灌封注射器组合件(带注射针)》中其实并没有带鲁尔接头的介绍,只是标准上收录了带针注射器的要求,因目前市面上不带针的注射器产品越来越多,而这种产品上与注射针配合的都需要鲁尔圆锥接头,因此为满足市场发展需求,国家药典委重新补充了鲁尔圆锥接头检查方法。同时参考了ISO 11040-4:2015 、ISO 11040-6:2019 、ISO 80369-20:2015、YY/T 0916.20-2019 液体和气体用小孔径连接件 第 20 部分:通用试验方法、ISO 0369-1:2018 、YY/T 0916.1-2021 液体和气体用小孔径连接件 第 1 部分:通用要求、YY/T 0916.1-2014 液体和气体用小孔径连接件 第 1 部分:通用要求、ISO80369-7:2021 、GB/T 1962.1-2015 注射器、注射针 6%(鲁尔)圆锥接头 第 1 部分:通用要求、GB/T 1962.2-2001 注射器、注射针 6%(鲁尔)圆锥接头 第 2 部分:锁定接头。因为是新标准,其中很多规定都是新增加,三泉中石因为起草了JJF(京) 139-2024《鲁尔圆锥接头性能测试仪校准规范》,因此对仪器的要求及校准有更深入的了解。三泉中石梳理了标准要求,结合自身仪器研发和应用在此加以说明:“4040 预灌封注射器鲁尔圆锥接头检查法”标准规定了5项测试项目:正压液体泄漏试验、应力开裂试验、抗轴向负载分离试验、抗旋开扭矩分离试验(仅适用于鲁尔锁定圆锥接头)、抗过载(滑丝)试验(仅适用于鲁尔锁定圆锥接头)。需要注意的是因为锁定接头和非锁定接头在使用过程中方法的不同,测试项目也有所差异。另外,三泉中石提醒采用配套的测试工装来进行专业测试对于鲁尔圆锥接头各项性能测试很有必要。不合适的工装在测试过程中会发生转动或者移动。甚至发生无法对中的情况,最后都会对结果有较大影响。在这样的背景下,三泉中石研发的RJT-03S鲁尔圆锥接头综合测试仪,这是一款专为医疗器械用锁定和非锁定鲁尔接头设计的测试设备。它具备漏液测试、漏气测试、分离力测试、应力开裂测试、旋开扭矩测试、抗滑丝测试等多种独立测试模式,能够全面评估鲁尔接头的性能。RJT-03S鲁尔圆锥接头综合测试仪广泛应用于医疗器械生产厂、检测机构等单位,为确保医疗器械的质量和安全性提供了强有力的技术支持。特别值得一提的是,“4040 预灌封注射器鲁尔圆锥接头检查法”所有的测试项目中都涉及到了轴向力和扭力,在一些项目中涉及到了液体压力,其实在普通的一次性注射器中还用到气压压力。这款综合测试仪安装有称重(力值)传感器、扭力传感器、压力传感器,能够精确测量轴向力和扭力,甚至液体和气体压力。它是一个集成式仪器,能够一次性完成所有规定的测试项目,同时需要按照三泉中石起草的JJF(京) 139-2024《鲁尔圆锥接头性能测试仪校准规范》进行校准,确保测试结果的准确性和可靠性,应该说在包材仪器中属于较为复杂的专用仪器。综上所述,RJT-03S鲁尔圆锥接头综合测试仪不仅是对“4040 预灌封注射器鲁尔圆锥接头检查法”标准的积极响应,也是医疗器械行业在确保产品质量和安全性方面迈出的重要一步。通过这款仪器的应用,可以大大提高鲁尔接头的测试效率和准确性,为医疗器械的安全性和可靠性提供有力保障。作为专业从事药品包装预灌封注射器检测仪器的行业制造商-济南三泉中石实验仪器有限公司,紧跟国家标准的要求,也参与部分国家药包材标准的制定工作。利用自身在药品包装检测领域多年的技术积累和行业应用经验,为标准的制定工作提供数据和理论的支持。同时,实时推出满足标准要求的检测仪器,为标准的顺利实施贡献自己的力量。
  • 气相色谱仪的常用操作小技巧
    气相色谱仪是一种多组份混合物的分离、分析工具,它是以气体为流动相,采用冲洗法的柱色谱技术。当多组份的分析物质进入到色谱柱时,由于各组分在色谱柱中的气相和固定液液相间的分配系数不同,因此各组份在色谱柱的运行速度也就不同,经过一定的柱长后,顺序离开色谱柱进入检测器,经检测后转换为电信号送至数据处理工作站,从而完成了对被测物质的定性定量分析。 Gas-PC20气相色谱仪  气相色谱仪的常用操作小技巧  1 加热  由于气相色谱仪的生产厂家和质量的不同,蛤定温度的方式也不相同 对于用微机设数法或拨轮选择法给定温度,一般是直接设数或选择合适给定温度值加以升温,而如果是采用旋钮定位法,则有技巧可言:  1.1 过温定位法  将温控旋钮调至低于操作温度约30℃处 给气相色谱仪升温 当过温至约为操作温度时,配台温度指示和加热指示灯,再逐渐将温控旋钮调至台适位置。  1.2 分步递进定位法  将温控旋钮朝升温方向转动一个角度,升温开始,指示灯亮:当温度基本稳定时,再同向转动温控旋钮。开始继续升温:如此递进调节、直至恒温在工作温度上。  2 调池平衡  调池平衡 实际是调热导电桥平衡.使之有较为台适的输出 讲调节技巧.其实是对具有池平衡、调零和记录调零等调珊能的气相色谱仪而言  3 点火  氢焰气相色谱仪 开机时需要点火,有时因各种原因致使熄火后,也需要点火 。然而,我们经常会遇到点火不着的情况 ,下面介绍两种点火技巧,供同行们相试。  3.1 加大氢气流量法  先加大氢气流量,点着火后,再缓慢调回工作状况 此法通用。  3.2 减少尾吹气流量法  先减少尾吹气流量,点着火后,再调回工作状况 此法适用于用氢气怍载气,用空气作助燃气和尾畋气情况。  4 气比的调节  氢焰气相色谱仪三气的流量比.有关资料均建议为:氮气:氢气:空气=l:l:10 但由于转子流量计指示流量的不准确性.事实上谁会去苛求这个配比呢?本人认为 为各气旌以良好匹配。目的是既有高的检测器灵敏度又能有较好的分离效果。还不致于容易熄火。本着上述原则 气比应按下法调节:  (1)氮气流量的调节  在色谱柱条件确定后、样品组分分离效果的好坏、氮气的流量大小是决定因素 调节氮气流量时.要进样观察组分分离情况.直至氮气流量尽可能大且样品组分有较好分离为止  (2)氢气和空气流量的调节  氢气和空气流量的调节效果,可以用基流的大小来检验 先调节氢气流量 使之约等于氮气 的流量。再调节空气流量 在调节空气流量时,要观察基流的改变情况 只要基流在增加,仍应相向调节,直至基流不再增加不止 最后,再将氢气流量上调少许。  5 进样技术  在定量分析中,应注意进样量读数准确在气相色谱分析中,一般是采用注射器或六通阀门进样 在考虑进样技术的时候,主要是以注射器进样为对象。  5.1 进样量  进样量与气化温度、柱容量和仪器的线性响应范围等因素有关,也即进样量应控制在能瞬间气化。达到规定分离要求和线性响应的允许范围之内 ,填充柱冲洗法的瞬间进样量:液体样品或固体样品溶液一般为0.01~ 10微升,气体样品一般为0.1~ 10毫升 。  (1)排除注射器里所有的空气  用微量注射器抽取液体样品时,只要重复地把液体抽凡注射器又迅速把其排回样品瓶,就可做到遗一点。  还有一种更好的方法,可以排除注射器里所有的空气 那就是用计划注射量的约2倍的样品置换注射器3~5次。每扶取到样品后,垂直拿起注射器,针尖朝上 任何依然留在注射器里的空气都应当跑到针管顶部 推进注射器塞子,空气就会被排掉。  (2)保证进样量的准确  用经换过的注射器取约计划进样量2倍左右的样品,垂直拿起注射器,针尖朝上,让针穿过一层纱布,这样可用纱布吸收从针尖排出的液体 推进注射器塞子。直到读出所需要的数值用纱布擦干针尖 ,至此准确的液体体积已经测得。需要再抽若干空气到注射器里,如果不慎推动柱塞,空气可以保护液体使之不被排走。  5.2 进样方法  双手章注射器 用一只手(通常是左手)把针插入垫片,洼射大体积样品(即气体样品)或输入压力很高时,要防止从气相色谱仪来的压力把柱塞弹出(用右手的大拇指)让针尖穿过垫片尽可能踩的进入进样口,压下柱塞停留1~ 2秒钟,然后尽可能快而稳地抽出针尖(继续压住柱塞)。  5.3 进样时间  进样时间长短对柱效率影响很大,若进样时间过长,遇使色谱区域加宽而降低柱效率 。因此,对于冲洗法色谱而言,进样时间越短越好,一般必须小于1秒钟。
  • 塑料薄膜拉力机测试注射器推拉力与滑移力有什么区别
    塑料薄膜拉力机是一种多用途的测试设备,它不仅可以用于测试塑料薄膜的物理性能,还可以用于测试医疗器械,如注射器的相关力学性能。在注射器的性能测试中,推拉力和滑移力是两个重要的测试项目,它们分别反映了注射器活塞的推进和拉动能力以及活塞在注射器筒体内的滑动性能。注射器推拉力测试定义:推拉力测试是指测量注射器活塞在推进或拉动过程中所施加的力量。推力测试用于模拟注射药物时活塞的推进动作,而拉力测试则用于模拟抽取药物或空气时活塞的拉动动作。测试目的:推拉力测试的目的是确保注射器活塞在操作过程中能够平滑、均匀地移动,且力量在可接受的范围内,既不会过大导致操作困难,也不会过小影响注射精度。测试过程:在塑料薄膜拉力机上进行推拉力测试时,将注射器活塞固定在设备的夹具中,设定一定的测试速度,然后记录活塞在推进或拉动过程中所需的力量。注射器滑移力测试定义:滑移力测试是指测量注射器活塞在筒体内滑动时所遇到的摩擦力。这个测试反映了活塞与筒体内壁之间的摩擦系数。测试目的:滑移力测试的目的是评估注射器在使用过程中活塞的滑动性能,确保其顺畅无阻,便于操作且不会引起用户的不适。测试过程:进行滑移力测试时,通常会将注射器活塞固定在塑料薄膜拉力机的上夹具中,而下夹具固定在注射器筒体的底部。通过设备施加一定的速度,模拟活塞在筒体内的滑动,并测量所需的摩擦力。区别测试对象:推拉力测试关注的是活塞的推进和拉动能力,而滑移力测试关注的是活塞在筒体内的滑动摩擦性能。测试目的:推拉力测试旨在确保注射器的操作力度适宜,滑移力测试则旨在评估活塞的滑动顺畅性。测试参数:推拉力测试测量的是活塞推进或拉动时的绝对力量,滑移力测试测量的是在特定速度下活塞滑动的摩擦力。应用意义:两者都是注射器性能的重要指标,推拉力影响注射器的操作便利性和精确度,滑移力影响注射器的使用舒适度和可靠性。结论塑料薄膜拉力机通过测试注射器的推拉力和滑移力,能够全面评估注射器的物理性能,为注射器的设计、制造和质量控制提供重要数据。这两种测试对于确保注射器在医疗应用中的安全性和有效性至关重要。通过精确的测试和数据分析,制造商可以优化注射器的设计,提高产品的市场竞争力,并满足医疗行业的严格标准。
  • RTK微量气体流量计在瘤胃发酵产甲烷研究中的应用
    反刍,是指在进食一段时间后将胃中半消化的食物再次返回嘴中咀嚼并返回胃中的现象,反刍对于一些食草动物具有重要的意义。瘤胃,是反刍动物的第一胃,是一个天然的降解纤维物质的发酵罐,对反刍现象的研究有利于深刻了解反刍动物的营养学特性。目前,一般有三种方法研究瘤胃发酵,第一种是活体研究,即在选定的动物胃部手术钻孔,将饲料放入其中,定期取样分析;第二种是将新鲜瘤胃取出并放入一个容器内,往瘤胃内放入饲料,研究饲料的消化特性;第三种是模拟实验,将人工唾液、各类微生物等和饲料混合,在一个发酵罐内模拟实验。其中,第一种方法最具真实性,研究数据也可靠,但是成本最高,且操作难度较大;第二种方法比较可靠,第三种方法操作相对简便,二者均适用于大批量模拟研究。采用体外瘤胃发酵实验研究反刍动物的产甲烷规律,产气量的测量是一个关键因素。目前常采用的方法有压力法、注射器法、排水法等测量手段,这些方法或多或少存在一些问题。比如人工量较大,主要表现在反应瓶多比如几十或几百个、采样间隔时间短比如2h采一次样;测量准确度较低,比如测试周期3天,总产气量只有几十或几百毫升,排水法或者压力换算法存在一定的误差。RTK自主研发生产的微量气体流量计(SGMC)非常适合于瘤胃发酵产生的甲烷测量,具有如下特点:(1) 测量精度0.03 mL或者0.1 mL可选,在常压下测试,无需启动压力;(2) 软件自动实时记录、存储数据,采样间隔低至每分钟,特别适合于细节研究;(3) 测量完后的气体可以无损收集,进一步测试气体组分;(4) 通道数可以串联拓展,特别适合多组平行试验,提高实验效率。洛克泰克仪器股份公司(RTK公司)是国家高新技术企业,基于自主知识产权研发生产了超微量气体流量计SGMC、非真空多通道光解水制氢系统RTK-Solar、化学催化产氢系统等产品,均已发表相关SCI论文,欢迎大家垂询!
  • 行业前沿 | RTU容器(小瓶,注射器和药筒)的机器人无菌灌装
    在药品包装以及病人使用之前,灌装及密封是生产的Last一个步骤。目前对患者的治疗已经从广泛的通用疗法转向小范围的针对性治疗,因此生物制药行业也由此过渡到了小批量的无菌生产。 从后端走向前端的机器人 不久前,机器人聚焦在生物制药行业生产线的后端功能,如装箱、码垛。目前,在RTU(Ready-To-Use)容器(小瓶,注射器和药筒)的初级包装过程中,利用机器人进行操作取得了进展。在RTU系统中,瓶子的包装是预先准备好的,因此整个过程中剩余部分是灌装以及容器密封,从而消除了前期清洗、灭菌等过程面临的挑战。 机器人解决方案为制药企业提供了一种更快、更灵活和更具成本效益的方式,使用相同的灌装线平台可以灌装不同规格的容器,以满足对小批量药品,订制包装,产品和模具的快速更换,减少人员干预等不断增长的需求。在灌装过程中,传统的灌装系统无法满足小批量生产的灵活性,多种容器规格或大小以及过程的可重复性。 随着技术的进步,机器人已经能够兼容样品的无菌生产,几乎不会产生任何颗粒,并且完全耐受消毒。与传统的无菌生产机器相比,机器人具有一项特殊的优势:灵活性。它们具有完全的适应性,如果应用或者容器规格进行更改,可以进行重新编程,将成本降到尽可能的小。 机器人灌装中的称重系统机器人灌装RTU容器的步骤 1.注射器、小瓶及药筒已经是经过清洗、灭菌直接可以使用的,他们装在一个密封的蜂巢盒中,因此不需要任何的清洗、灭菌以及特殊的传送系统。装有空的药品容器的蜂巢盒放在ISO标准的盒子中,可以确保运输的安全性,避免玻璃之间的接触。使用者将蜂巢盒放到可控制的区域(RABS/隔离器)进行自动撕膜并转移到下个位置。在撕膜过程中,机器人手臂轻轻地撕开预热的密封纸,并将其通过RABS/隔离器底板上的洞口扔到废物收集容器中。 将蜂巢盒的密封纸撕掉后,蜂巢盒中的容器便暴露在周围的环境中,通常会用RABS或隔离器进行保护来降低后续潜在的污染风险。在RABS和隔离器的保护下,机器人手臂提供了安全和清洁的操作,避免在容器转移和撕膜过程中人工干预产生的潜在污染风险。 撕膜机器人手臂 2.一旦蜂巢盒的膜被撕掉后,会转到下个步骤,第二个机器人手臂将带空容器的蜂巢盒转移到灌装位置,在灌装过程中,灌装头的位置是固定的,机器人通过移动蜂巢盒和容器到灌装头的位置完成每个容器的灌装,这样可以减少颗粒物的产生以及潜在的污染风险。 将蜂巢盒从底托中取出 3.每个药品瓶完成灌装后,立刻同步进行加塞这样可以尽量缩短灌装后的溶液在环境中暴露的时间。一旦蜂巢盒中所有的药品瓶都灌装和加塞完成,机器人手臂将整个蜂巢盒移动到原来带底托的位置,进行下一个步骤操作。 机器人手臂对药筒进行灌装 机器人集成到到整个灌装线过程中可以提供可靠的运行可重复性,同时可以对蜂巢盒和样品瓶进行小心操作,减少颗粒物的产生,空气干扰和意外的摇晃,防止样品溢出或其他事件的发生,否则可能会导致计划之外的人工干预,从而损害无菌环境。SP i-Dositecno SY注射器灌装机 SP ScientificSP i-Dositecno SY 注射器灌装机是一款多功能的机器,通过机器人实现灌装和加塞/加推杆,适用于玻璃和塑料注射器、药筒和蜂巢盒。最多可具有10个灌装头,达到200VPM的灌装速度,同时具备IPC在线称重功能。此外,还提供拆袋,撕膜,去蜂巢,贴标签,加推杆等一些列完整的功能,机器人采用洁净化工艺设计,可进行VHP灭菌,充分满足GMP标准下A级无菌环境生产需求。 美国SP集团可以为客户提供完整的无菌制药洗烘灌整体化解决方案,实现自动化,无菌化,标准化与集成化生产与管理。 不仅可以提供常用规格样品瓶的灌装,也可以提供非常规及特殊样品规格的定制化; 不仅可提供液体样品的灌装,也可以提供固体粉末样品的灌装; 可用于生物药品,疫苗,眼药类药品等的灌装,满足不同客户的不同需求。
  • 傅若农:酒驾判官—顶空气相色谱的前世今生
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。  第一讲:傅若农讲述气相色谱技术发展历史及趋势  第二讲:傅若农:从三家公司GC产品更迭看气相技术发展  第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状  第四讲:傅若农:气相色谱固定液的前世今生  第五讲:傅若农:气-固色谱的魅力  第六讲:傅若农:PLOT气相色谱柱的诱惑力  很多人是通过酒驾司机血液中酒精含量检测知道&ldquo 顶空进样气相色谱&rdquo 这一名称的。可能顶空进样气相色谱这一方法应用较多之一也是检测酒驾人员血液中的酒精含量(使用公安部的法定标准GA/T842-2009 进行检测)。  其实顶空进样气相色谱现在是应用非常广泛的一种分析方法,如果你用&ldquo 顶空进样&rdquo 这一关键词检索&ldquo 知网&rdquo 就会有两千多篇文章 在仪器信息网上的仪器展播中有关顶空进样的仪器有50多种,再看下面一张从1990年到2001年发表的有关顶空气相色谱文章的增长趋势图,12年里发表文章的总数达到4000篇,可见这一方法的应用有多么广阔。图 1 1990-2001年顶空进样气相色谱文献增长趋势HS-GC 全部顶空气相色谱 Dynamic 动态顶空气相色谱,SPME 固相微萃取顶空气相色谱( TrAC 2002, 21:608)  1 顶空进样气相色谱的起源  这里我简要地讲述一些顶空进样气相色谱的故事。  其实顶空进样气相色谱由来已久,先給大家讲一个故事:在 1958&ndash 1959 冬季 Leslie S. Ettre (国际知名色谱学家,匈牙利人,当时在Perkin-Elmer 公司作应用研究工程师),有一个马铃薯片公司的化学家要求他给这个公司设计一个用 GC 分析马铃薯片在贮存过程中变质后产生特有怪味的方法,用以检测马铃薯片变质的程度。几天后 Ettre 收到马铃薯片公司给他发来的一个大箱子样品,箱子里面有 144 个马铃薯片的袋子,这是他们可以运输的最少数量了,Ettre 把一些马铃薯片袋存放在室温下,另外一些马铃薯片袋存放在热的屋子里。几天以后 Ettre 打开常温和高温屋子存放的马铃薯片袋子,发现它们有很不同的气味。但是问题是如何把袋子里的气体注入到色谱仪里,当时气体进样常规的方法是使用气体进样阀,但是进样阀需要有正压才行。Ettre 就使用了一个医用注射器(0.5&ndash 1 mL),当时还没有微量注射器,用注射器针刺穿马铃薯片袋子吸取其中的0.5&ndash 1 mL 气体,注射到气相色谱仪中。的确,不同的马铃薯片袋子中的气体得到的色谱是不一样的。自然这一方法就是顶空气相色谱的方法了。据 Ettre 称 GC 中顶空进样的第一篇论文是在 1960 年一月份的 Food Technology 上由 Stahl 等人发表的,( W.H. Stahl, W.A. Voelker, and J.H. Sullivan, Food Technol. 1960,14 :14&ndash 16 ),文章的标题是&ldquo 罐头顶空气体(主要是氧气)的测定&rdquo 。  第一篇有关顶空进样的应用文章是在 1939年发表的,是 R.N.Harger 等人(印第安纳大学生物化学和药物学系)在一篇美国生物化学家学会的33届年会的报告(J. Biol. Chem.1939, 128:xxxviii&ndash xxxix )中叙述的,他们叫做&ldquo 气体测量法&rdquo (aerometric method),用来快速测定水和体液中的乙醇。这一方法,把动态和静态方法结合起来,把液体样品上面的气体通过一个硫酸-高锰酸盐试剂(进行氧化还原测定),用以定量测定乙醇的含量。作者们还用这一方法测定了空气-水体系在 0&ndash 40 ° C 的温度范围内的分配系数。  把顶空进样和气相色谱结合起来的分析开始于 1958 年的 Amsterdam 国际会议上,是 比利时 Schelle 电站的 Bovijn 等人用这一方法分析高压锅炉水中微量( 1-ppb 数据级)的烃类,取一部分平衡下的气相样品到气相色谱仪中,用热导池进行检测。据作者说这一装置在文章发表前在电厂已经运转了一年多。  Stahl 等人发表的标题为&ldquo 罐头顶空气体(主要是氧气)的测定&rdquo 文章中,他们是把罐头顶部刺一个孔,用注射器抽取 0.5&ndash 1 mL 顶空的气体注入气相色谱仪进行分析。显然 Stahl 的工作推动了 Beckman 公司开发出一种设备用于罐头顶空气体或其他密闭空间气体的测定(&ldquo Beckman Headspace Sampler, bulletin number 7012,&rdquo Beckman Scientific and Process Instruments Division (Fullerton, California,September 1962).)。  这一装置有一个带有刺孔针的抽取样品气的密闭容器,刺入要分析的罐头罐时可以把顶部气体吸入此密闭容器中,这一装置所用的原理是测定罐中存在的氧气,为了测定这一装置连接到一个极谱测定氧的传感器,并连接到直接读数的显示器上。(值得一提的是这一氧传感器也用于探测水星计划的空间舱中)。此外,气体样品可以通过这一容器侧面的橡胶隔垫用注射器抽出来,用于气相色谱分析,图 2 就是这一装置的照片图。这一仪器几乎被人们遗忘了。图 2 顶空取样容器照片  2 顶空进样气相色谱的基本原理和类型  顶空气相色谱(GC headspace Analysis,GC-HS analysis ) 是指对液体或固体中的挥发性成分进行气相色谱分析的一种间接测定法,它是在热力学平衡的蒸气相与被分析样品同时存在于一个密闭系统中进行的。例如测定血液中的乙醇,把血样置于一个密闭恒温的样品瓶中,测定恒温后样品瓶蒸气相中的乙醇浓度,通过校准曲线计算血样中的乙醇含量。这一方法从气相色谱仪角度讲,是一种进样系统,即&ldquo 顶空进样系统&rdquo 。有不少仪器公司有商品的顶空进样系统。有关顶空气相色谱分析的名称,美国称为:GC headspace Analysis,前苏联的文献称为: Equilibrium Vapour Analysis,德国叫做 Dampfraumanalyse ( 英文为:Vapour Volume Analysis ) 。我国一般称为:顶空气相色谱分析,但早期有人称为: &ldquo 液上气相色谱分析&rdquo ,这样的名称不全面,因为有不少样品是固体。所以现在统一名称还是用&ldquo 顶空气相色谱分析&rdquo 。  有关顶空进样气相色谱原理详细的描述由于篇幅的关系这里就不讲解了,需要了解的读者可以读读早期出版的书,在国内全面介绍顶空进样气相色谱分析的书有 Hachenberg等1977年出版的 Gas chromatographic headspace Analysis(气相色谱顶空分析),翻译本为&ldquo 液上气相色谱分析&rdquo (见下图3)。图4是1984年出版的原苏联列宁格勒国立大学(现名圣彼得堡大学)的 Ioffe 撰写的&ldquo 气相色谱中的顶空分析及相关方法&rdquo 和1997年出版(修订版是2006年)的Kolb 等撰写的&ldquo 静态顶空气相色谱分析&rdquo 封面,。图3 1977年(中译本1981年)出版的顶空气相色谱书图4气相色谱中的顶空分析及相关方法(Ioffe等)和 静态顶空气相色谱(B. Kolb 等)  顶空进样气相色谱的类型有:  (1)静态顶空气相色谱:所谓静态顶空气相色谱是在一个密闭恒温体系中,液汽或固汽达到平衡时用气相色谱法分析蒸气相中的被测组分 。如下图5图5 静态顶空气相色谱示意图1&mdash 注射器 2&mdash 密封隔垫 3&mdash 螺帽 4&mdash 容器 5&mdash 样品 6&mdash 恒温浴 7&mdash 温度计  (2)动态顶空气相色谱:也叫做吹扫-捕集(Purge-Tranp)分析法,这一方法是用惰性气体通入液体样品(或固体表面),把要分析的组分吹扫出来,使之通过一个吸附剂进行富集,然后再把吸附剂加热,使被吸附的组分脱附,用载气带到气相色谱仪中进行分析。如图6的示意图。图 6 动态顶空气相色谱示意图1&mdash 捕集管 2&mdash 冷却水 3&mdash 样品管 4&mdash 水浴 5&mdash 洗气瓶  (3)固相微萃取(SPME)顶空气相色谱:这种方法是在静态顶空瓶顶空蒸汽中装一支固相微萃取头,在一定温度下吸附顶空重的蒸汽分子一定时间,然后把固相微萃取头取出,插入气相色谱仪的进样口中,进行气相色谱分析。如下图7所示:图7 固相微萃取(SPME)顶空气相色谱示意图(Forensic Sci Intern 2000,107:129)左图4ml 顶空瓶,内装10mg头发,内标和1mL 4%的NaOH,0.5gNa2SO4,使头发消化预热30min。中间图:顶空吸附30min。右图:在气相色谱仪进样口脱附。  固相微萃取(SPME)装置如下图8所示:图8 固相微萃取装置示意图  (4)一滴溶剂顶空进样气相色谱:这种进样方式类似于SPME顶空进样,只是把固相微萃取进样装置换成一支注射器,在注射器针头处悬一滴萃取用溶剂液滴,如下图9所示:图 9 一滴溶剂顶空萃取示意图(J Chromatgr A 2007,1152:184)  3 静态顶空气相色谱的方法  静态顶空最简单的方式是在一个 恒温系统(空气浴、水浴、甘油浴或金属块加热,. 样品瓶多为玻璃样品瓶,加可穿刺的密封盖,瓶体积为十至数十毫升,. 注射器宜用气体注射器或气密性较好的医用注射器。样品在恒温器中于一定温度下加热一定时间,取蒸汽样注入气相色谱仪进行分析,当然在转移中由于温度降低会出现误差。所以现在多用各种顶空进样器连接在气相色谱仪上,通过保温管线转移到气相色谱仪中。  顶空气相色谱进样必须从密闭的样品瓶的顶空取样到气相色谱仪中,要控制取样的重复性是至关重要的,常使用压力平衡进样。所谓平衡压力进样就是使用惰性气体往恒温的密闭样品瓶中加压,然后让受压的顶空气体在一定的时间里膨胀到色谱柱中。依靠控制压力和时间可以很精确地从样品瓶中吸取一定容积的顶空气体样品。这一方法叫做&ldquo 平衡压力进样&rdquo ,平衡压力进样的过程如图 10所示。(a)恒温样品瓶和进样针是分开的,(b) 通入气体加压,(3)关闭载气,顶空瓶中的气体膨胀到色谱柱中。图 10 平衡压力进样的过程  根据上述原理P-E公司开发了顶空气相色谱自动进样器F-40,于1967年在德国法兰克福举行的化工展览会上展出,见图11。近年有大量各种各样的顶空进样器出现。图 11 F-40自动顶空进样器(L.S. Ettre, LC-GC,2002, 20(12), 1121)  4 静态顶空进样方法的应用  静态顶空的应用极为广泛,遍及各个领域,如食品、医药、环境、农业等,表1列举了近年利用顶空气相色谱进行分析检测的文章,同时也看出大多使用各种顶空进样器完成分析。  自动顶空进样器有很多种,在仪器信息网上展播的就有50多种,那些是使用比较多的呢,表1列举了60篇国内期刊上发表有关顶空进样气相色谱文章。从表中可以看出顶空进样气相色谱用于各种各样的分析中。第60篇是最新一期色谱杂志上的文章,他们使用Agilent 7697 自动顶空进样器和Agilent 7000气相色谱-三重四极杆质谱仪分析了化妆品中常见及禁用的36种有机溶剂,使用双柱(极性的VF-1301柱和非极性的DB-5ms柱,利用NIST MS search 2.0作检索工具,研究了36种挥发性有机溶剂的分析方法。表 1 顶空进样气相色谱论文所使用的顶空进样器序号题名使用顶空进样器文献1测定尿中三氯乙酸的自动顶空气相色谱法Agilent 7694E 自动顶空进样器李添娣等,职业与健康,2012,28(6):1982-19832顶空-毛细管气相色谱法测定葡萄酒中的甲醇TurboMatrix 40自动顶空进样器曾游等,现代食品科技,2013,29(2):405-4083顶空-气相色谱法测定水产品中一氧化碳TurboMatrix HS 40 Trap 顶空自动进样器王萍亚等,浙江海洋学院学报(自然科学版),2012,31(6):518-520,5354顶空- 气相色谱同时测定比卡鲁胺原料药中6 种有机溶剂残留量HP7694E 顶空进样器许瑞征等,现代仪器,2004,(3):15-165顶空萃取-气相色谱-质谱法分析芝麻油中的挥发性成分Agilent 7694E 自动顶空进样器陈俊卿等,质谱学报,2005,26(1):49-516顶空进样一毛细管气相色谱法侧定啤酒的香味组分Agilent 7694E 自动顶空进样器王莉娜等,啤酒科技,2001,(1):9-117顶空进样-气相色谱法测定大气中吡啶的研究DANI HSS 86.50 顶空进样器王艳丽等,中国环境监测,2013,29(2):62-648顶空进样器在快速检测食品美拉德反应风味物质中的新应用TurboMatrix HS 40 Trap 顶空自动进样器钟罗宝等,现代食品科技,2009,25(9):1091-10959顶空气相色谱-质谱联用法分析粪便中挥发性脂肪酸瑞士CTC CombiPAL 顶空进样器江振作等,分析化学,2014,42(3):429-43510顶空气相色谱法测定生物柴油中的微量甲醇Agilent 7694E 自动顶空进样器李长秀等,石油化工,2012,41(10):1196-120011顶空气相色谱法测定食品包装中残留乙烯TurboMatrix HS 40 Trap 顶空自动进样器周相娟等,食品工程,2012,(6):128-12912顶空气相色谱法测定药品中残留溶剂的影响因素考察Agilent 7694E 自动顶空进样器秦立等,药物分析杂志,2005,25(7):823-82613顶空气相色谱法快速检测卫生纸中的细菌含量Agilent 7694E 自动顶空进样器田迎新等,造纸科学与技术,2012,31 (2):59-6214顶空气相色谱内标法测定血液中乙醇含量Agilent 7694E 自动顶空进样器邹黎,检验医学与临床,2011,8(2):2761-276215顶空气相色谱.质谱法测定玩具中的10种挥发性有机物Agilent 7694E 自动顶空进样器吕庆等,色谱,2010,28(8):800-80416顶空气相色谱一质谱法测定婴幼儿食品中的呋喃Agilent 7694E 自动顶空进样器刘平等,色谱,2008,26(1):35-3817纺织品中挥发性有机物(VOCs) 的检测-静态顶空气相色谱质谱法Agilent G1888自动顶空进样器:涂貌贞,中国纤检,2009,(9):66-6819基于HS-GC-MS 的棉织物鱼腥味检测Agilent 7694E 自动顶空进样器王晓宁等,纺织学报,2011,32(2):68-7220利用气相色谱顶空装置测定红磷储存过程中生成的磷化氢Agilent 7694E 自动顶空进样器陈海群等,色谱,2004,22(4):442- 44421两种轻烃分析方法(&ldquo PTV切割反吹&rdquo 和&ldquo 顶空&rdquo )的对比研究意大利 FISONS 8500 气相色谱仪, HS800 顶空自动进样装置肖廷荣等,色谱,2001,19(4):304-30822啤酒中挥发性风味物质的分析及风味评价TurboMatrix 40自动顶空进样器王志沛等,酿酒科技,2001,21,(4):59-6123使用自动顶空进样器测定梨中代森锰锌残留量的电子捕获气相色谱法HT2000 自动顶空进样器(意大利)聂春林等,精细化工中间体,2010,40(6):63-6624水中12种卤代有机物的自动顶空- 气相色谱测定方法研究Agilent 7694E 自动顶空进样器张燕等,中国卫生检验杂志,2010,20(11):2716-271825水中54种挥发性有机物的顶空- 气相色谱法研究自动顶空进样器, 成都科林公司高玲等,中国卫生检验杂志,2010,20(7):1645-164826水中三氯甲烷、四氯化碳的QHSS-40 自动进样顶空气相色谱测定法QHSS-40 全自动顶空进样器(QUMA Elektronik & Analytik GmbH)罗黎明,职业与健康,2012,28(14): 1722-172327血中乙醇的顶空气相色谱分析安捷伦1888型自动顶空进样器刘兆等,中国人民公安大学学报(自然科学版),2008,(4):18-1928衍生- 顶空气相色谱法测定化妆品中游离甲醛Agilent 7694E 自动顶空进样器环境与职业医学,2012,29(7):459-46129液液萃取- 顶空气相色谱法测定饮用水中卤乙酸Tekmar7000自动顶空进样器中国卫生检验杂志,2011,21(6):1338-134030乙基纤维素乙氧基含量的顶空气相色谱法测定HS86-50型自动顶空进样器,意大利DANI公司付时雨等,华南理工大学学报(自然科学版),2011,39(11):17-2131用顶空进样法分析烯烃废碱液中硫化物TurboMatrix HS 40 Trap 顶空自动进样器高巍等,齐鲁石油化工,2013 ,41 ( 3 ) :252 - 25432蒸气顶空富集装置- 自动顶空气相色谱法在海水中痕量苯系物检测中的应用顶空自动进样器( 瑞士CTC Analysis AG 公司)孙秀梅等,山东化工,2014,43(7):73-7633柱前衍生化顶空气相色谱法同时检测非布司他原料药中3 种微量有机酸G1888 型自动顶空进样器(美国安捷伦科技公司朱圣亮等,中国药房,2012,23(25) :2372-237334自动顶空-毛细管气相色谱法测定水中苯系物德国MS6多功能自动进样器刘俩燕,中国卫生检验杂志,2010,20 (8):1918-192035自动顶空-毛细管气相色谱法测定饮用水中11 种挥发性有机物Agilent G1888 顶空自动进样器、刘兰侠等,上海预防医学,2014,26(1):27-28,4836自动顶空-气相色谱法测定地表水中乙醛的方法研究Agilent 7694E 自动顶空进样器邢志贤等,河北工业科技,2010,27(3):143-145,17337自动顶空- 气相色谱法测定食品包装材料中残留氯乙烯单体Agilent G1888 顶空自动进样器、戴华等,中国卫生检验杂志,2011,21(1):36-3738自动顶空- 气相色谱法测定水质中苯系物的研究Agilent G1888 顶空自动进样器刘保献等,现代仪器,201,18(3):30-3339自动顶空- 气相色谱法测定水中甲醇的方法优化Agilent G1888 顶空自动进样器付翠轻等,中国环境监测,2012,28(4):61-6440自动顶空- 气相色谱法测定水中四乙基铅方法研究DANI HSS 86.50 顶空进样器王玲玲等,环境科学与技术,2014,37(5):99-10141自动顶空-气相色谱法检测食品包装材料中挥发性有机物TurboMatrix HS 40 Trap 顶空自动进样器方 益等,食品科技,2013,38(2):291-29542自动顶空-气相色谱法同时测定水中7种挥发性卤代烃TurboMatrix HS 40 Trap 顶空自动进样器王建蓉等,供水技术,2012,6(4):62-6443自动顶空- 气相色谱质谱联用技术测定化工原料中1,2-二氯乙烷TurboMatrix HS 40 Trap 顶空自动蔡志斌等,中国卫生检验杂志, 2013,23(3):622-624,62744自动顶空GC /MS测定血液中乙醇含量不确定度评定DANI HSS 86.50 顶空进样器周枝凤,中国法医学杂志,2010,25(1):43-4645自动顶空进样-气相色谱法测定柠檬酸中溶剂残留AutoHS自动顶空进样器(成都科林)李锋格,检验检疫学刊,2011,21(1):6-1046自动顶空毛细管柱气相色谱法测定食品包装中残留丙烯腈单体PE Turbo Matrix 40 Trap 自动顶空进样器周相娟等,食品科技,2008,(10):240-24247自动顶空毛细管柱气相色谱法同时检测生活饮用水中7 种挥发性卤代烃Tekmar 7000 自动顶空进样器周闰等,中国卫生检验杂志,2013,23(6):1417-141948自动顶空气相色谱法测定番茄酱中二硫代氨基甲酸酯的残留量AutoHS自动顶空进样器(成都科林)姚伟琴等,中国卫生检验杂志,2009,19(1):52- 5348自动顶空气相色谱法测定番茄酱中二硫代氨基甲酸酯的残留量AutoHS自动顶空进样器(成都科林)姚伟琴等,中国卫生检验杂志,2009,19(1):52- 5349自动顶空气相色谱法测定番茄酱中乙烯利的残留量AutoHS自动顶空进样器(成都科林)姚伟琴等,中国卫生检验杂志,2008,18(8):1537- 153850自动顶空气相色谱法测定化妆品中的甲醇Agilent 7694E 自动顶空进样器高建民等, 化学分析计量,2003,12(3):7-1051自动顶空气相色谱法测定食品包装材料中残留丙烯腈单体AutoHS自动顶空进样器(成都科林)刘俊等,中国卫生检验杂志,2008,18(10):2021-202252自动顶空气相色谱法测定水中苯系物的研究AOC - 5000 液体自动进样、顶空、固相微萃取三合一自动进样器王臻等,中国热带医学2008,8(1):128-12953自动顶空气相色谱法测定血液中的乙醇Tekmar 7000 自动顶空进样器刘文卫等,1502 中国卫生检验杂志 2012,22(7):1502-1503 ,150654自动顶空气相色谱法测定液体餐具洗涤剂中的甲醇PE Turbo Matrix 40 Trap 自动顶空进样器王禄等,日用化学品科学2013,36(12):21-2455自动顶空气相色谱法测定饮用水中三氯甲烷和四氯化碳Combi PAL 自动顶空进样器杨志国等,中国卫生检验杂志 2013,23(3):589-59156自动顶空气相色谱法间接测定水中的苦味酸顶空自动进样器( 瑞士CTC Analysis AG 公司)邵国健等,中国卫生检验杂志, 2012,22(6):1275-1276.128057自动顶空气相色谱法快速测定饮用水中多种挥发性卤代烃Agilent 7694E 自动顶空进样器叶金伟等,工业用水与废水,2010,41(2): 90-9158自动顶空气相色谱法同时测定服装中残留丙烯腈和氯乙烯单体Agilent G1888 顶空自动进样器、刘俊等,中国卫生检验杂志2010,20(9):2164-216659自动顶空气相色谱法同时测定水中的甲醇乙醇丙酮和苯系物Agilent 7697 自动顶空进样器 邵红艳等,污染防治技术,2013,26(5):66-68,71 60化妆品中挥发性有机溶剂的通用检测方法Agilent 7697 自动顶空进样器 达晶等,色谱,2014,32(11):1251-1259  看看他们使用了那些自动顶空进样器。从表中可以看出使用较多的有Agilent 7694E 自动顶空进样器,Agilent G1888 顶空自动进样器,PE Turbo Matrix 40 Trap 自动顶空进样器,意大利DANI HSS 86.50 顶空进样器和国产成都科林公司的AutoHS自动顶空进样器。有关这些公司的进样器资料网上可以找到。图12是安捷伦公司的 7694E自动顶空进样器。图 12 7694E自动顶空进样器图 13 AutoHS自动顶空进样器(成都科林)图 14 PE Turbo Matrix 40 Trap 自动顶空进样器  由于篇幅的关系,有关吹扫捕集顶空进样、固相微萃取顶空进样、反应顶空进样,在下一讲继续讨论。
  • 美药管局批准首款可联用胰岛素注射器的动态血糖仪
    p  美国食品和药物管理局27日批准国内第一种“集成动态血糖监测系统”,用于监测2岁以上糖尿病患者血糖,并可与胰岛素自动注射器等设备联用。/pp  这款叫作“德康G6”的动态血糖监测仪,其监测片比一角硬币稍大,放置在腹部皮肤上,使糖尿病患者无须针刺指尖即可测出血糖水平,监测片可每10天更换一次。仪器每5分钟将数据传至手机医疗软件中,当血糖过高或过低时会发出警报。/pp  该仪器还可与胰岛素自动注射器、胰岛素泵、快速血糖仪等其他糖尿病管理设备联用。如与胰岛素自动注射器联用,血糖升高时会触发胰岛素释放。/pp  美药管局相关负责人说:“它可与不同的可兼容设备共同工作,让患者灵活打造个性化的糖尿病管理工具。”/pp  因能与其他设备无缝联用,美药管局将德康G6归为医疗器材中的“二级”(特别管制类),为后续集成动态血糖监测仪的开发提供了便利。/pp  美药管局评估了两项临床研究,样本包括324名2岁以上的儿童和成人糖尿病患者,在10天监测期内,未发现严重不良反应。/pp  由于该设备存在误差风险,美药管局将设置特别控制标准,以确保其准确和可靠。/p
  • 医用注射器器身密合性测试选用负压法密封仪还是正压法密封仪合理
    一、引言医用注射器作为医疗领域的重要器械,其器身密合性直接关系到患者的用药安全和治疗效果。因此,对医用注射器进行器身密合性测试至关重要。目前,常用的测试方法包括负压法密封仪和正压法密封仪。本文将围绕这两种测试方法展开讨论,分析各自的优缺点,并探讨在医用注射器器身密合性测试中选用哪种方法更为合理。二、负压法密封仪及其在医用注射器测试中的应用负压法密封仪主要通过抽取容器内的空气,使容器内部形成负压环境,从而检测容器的密封性能。在医用注射器器身密合性测试中,负压法密封仪可以模拟注射器在实际使用过程中可能遇到的负压环境,检测注射器的器身是否存在泄漏。优点方面,负压法密封仪可以直观地观察到注射器器身在负压环境下的密封性能,测试结果较为准确可靠。同时,负压法密封仪的操作相对简单,易于掌握。然而,负压法密封仪也存在一些局限性。首先,负压环境可能无法完全模拟注射器在实际使用中的所有情况,例如注射器在高压或快速注射时的表现。其次,负压法密封仪对测试环境的要求较高,需要保持测试环境的稳定性和一致性。三、正压法密封仪及其在医用注射器测试中的应用正压法密封仪则是通过向容器内施加一定的正压,检测容器在压力作用下的密封性能。在医用注射器器身密合性测试中,正压法密封仪可以模拟注射器在高压或快速注射时的状态,从而更全面地评估注射器的密封性能。优点方面,正压法密封仪能够模拟更广泛的使用场景,对注射器的器身密合性进行全面检测。此外,正压法密封仪通常具有较高的自动化程度,能够提高测试效率并降低人为操作误差。然而,正压法密封仪也存在一些不足。首先,正压法测试过程中可能会对注射器造成一定的压力损伤,影响其后续使用。其次,正压法密封仪的设备和维护成本相对较高,可能增加测试成本。四、负压法与正压法在医用注射器器身密合性测试中的比较与选择在医用注射器器身密合性测试中,负压法密封仪和正压法密封仪各有优缺点。负压法密封仪操作简单、直观可靠,但测试环境要求较高且无法完全模拟所有使用场景;正压法密封仪能够模拟更广泛的使用场景,自动化程度高,但可能对注射器造成压力损伤且成本较高。因此,在选择测试方法时,需要根据具体需求和实际情况进行权衡。对于一般性的医用注射器器身密合性测试,负压法密封仪可能是一个更为合适的选择,因为其操作简单、直观可靠且成本相对较低。然而,对于需要模拟高压或快速注射等特定使用场景的医用注射器,正压法密封仪可能更为合适,以更全面地评估注射器的密封性能。五、结论综上所述,医用注射器器身密合性测试中负压法密封仪和正压法密封仪的选择应根据实际需求而定。在大多数情况下,负压法密封仪因其操作简单、直观可靠且成本较低而更受欢迎。然而,在需要模拟特定使用场景或进行更全面的性能评估时,正压法密封仪可能更为合适。因此,在实际应用中,应根据具体情况灵活选择测试方法,以确保医用注射器的器身密合性得到准确可靠的评估。
  • 仪器选型篇 | 一文了解“气相色谱”的前世今生和庞大家族
    气相色谱(gas chromatography 简称GC)是二十世纪五十年代出现的一项重大科学技术成就。它是一种新的分离、分析技术,在工业、农业、国防、建设、科学研究中具有广泛应用。今天我们就其发展史、检测原理、结构及应用等和大家进行探讨,一起来学习一下吧~(还有哪些您想听的知识点文中没有讲到,亦或是觉得文章中有哪些观点您不太认同,欢迎积极留言~)0一、“气相色谱仪”的诞生和发展GC色谱的发展与下面两个方面的发展是密不可分的。一是气相色谱分离技术的发展,二是其他学科和技术的发展。从仪器来看,历史上最早的气相色谱仪是实验室自建仪器。1947年,捷克色谱学家Jaroslav Jank发明的“杨那克型气相色谱仪”,在历史上曾经流行过一段时间。该仪器以CO2为流动相、杜马测氮管为检测器测定分离开的气体体积。在样品和CO2进入测氮管之前,通过KOH溶液吸收掉CO2,按时间记录气体体积的增量。不足的是,它只能测室温下为气体的样品,样品中的CO2不能被测定,没有实现自动化;另外它结构简单,很多实验室自行搭建,没有发展到“让非专家能轻松使用”的商品化仪器阶段。▲ 图源网络虽然Jaroslav Jank的发明对于气相色谱的发展有很大的利好,但是真正气相色谱的发展要从诺贝尔化学奖得主英国的马丁(A.J.P.Martin)和辛格(R.L.M.Synge)聊起......▲ 属于“气相色谱”的关键时间点(图源网络)1952年James和Martin提出气液相色谱法,同时也发明了第一个气相色谱检测器。这是一个接在填充柱出口的滴定装置,用来检测脂肪酸的分离。用滴定溶液体积对时间做图,得到积分色谱图。以后,他们又发明了气体密度天平。1954年Ray提出热导计,开创了现代气相色谱检测器的时代。此后至1957年,是填充柱、TCD年代。1958年Gloay首次提出毛细管,同年,Mcwillian和Harley同时发明了FID,Lovelock发明了氩电离检测器(AID)使检测方法的灵敏度提高了2~3个数量级。20世纪60和70年代,由于气相色谱技术的发展,柱效大为提高,环境科学等学科的发展,提出了痕量分析的要求,又陆续出现了一些高灵敏度、高选择性的检测器。如1960年Lovelock提出电子俘获检测器(ECD);1966年Brody等发明了FPD;1974年Kolb和Bischoff提出了电加热的NPD;1976年美国HNU公司推出了实用的窗式光电离检测器(PID)等。同时,由于电子技术的发展,原有的检测器在结构和电路上又作了重大的改进。如TCD出现了衡电流、衡热丝温度及衡热丝温度检测电路;ECD出现衡频率变电流、衡电流脉冲调制检测电路等,从而使性能又有所提高。▲ 图源网络20世纪80年代,由于弹性石英毛细管柱的快速广泛应用,对检测器提出了体积小、响应快、灵敏度高、选择性好的要求,特别是计算机和软件的发展,使TCD、FID、ECD、和NPD的灵敏度和稳定性均有很大提高,TCD和ECD的池体积大大缩小。进入20世纪90年代,由于电子技术、计算机和软件的飞速发展使MSD生产成本和复杂性下降,以及稳定性和耐用性增加,从而成为最通用的气相色谱检测器之一。其间出现了非放射性的脉冲放电电子俘获检测器(PDECD)、脉冲放电氦电离检测器(PDHID)和脉冲放电光电离检测器(PDECD)以及集次三者为一体的脉冲放电检测器(PDD),4年后,美国Varian公司推出了商品仪器,它比通常FPD灵敏度高100倍。另外,快速GC和全二维GC等快速分离技术的迅猛发展,促使快速GC检测方法逐渐成熟。▲ VARIAN 气相色谱仪(图源网络)二、“气相色谱仪”的结构及原理气相色谱仪的六大系统气相色谱仪的种类繁多,功能各异,但其基本结构相似。气相色谱仪一般由气路系统、进样系统、分离系统(色谱柱系统)、检测及温控系统、记录系统组成。▲ 图源网络1. 气路系统气路系统包括气源、净化干燥管和载气流速控制及气体化装置,是一个载气连续运行的密闭管路系统。通过该系统可以获得纯净的、流速稳定的载气。它的气密性、流量测量的准确性及载气流速的稳定性,都是影响气相色谱仪性能的重要因素。气相色谱中常用的载气有氢气 、氮气 、氩气,纯度要求99.99% 以上,且化学惰性好,不与相关物质反应。载气的选择除了要求考虑对柱效的影响外,还要与分析对象和所用的检测器相配。气相色谱选择载气,是根据色谱柱系统及色谱仪的检测器等条件来确定的。氢气(H2)具有相对分子质量小、热导系数大、黏度小等特点,是热导检测器常用的载气、氢火焰离子化检测器中必用的燃气,但氢气易燃、易爆,使用时要特别注意安全。氮气(N2)相对分子质量较大、扩散系数小、柱效相对较高、安全、价格便宜,因此,氮气是最为常用的载气,在氢火焰离子化检测器中常用,但由于其热导系数低、灵敏度差、定量线性范围较窄,因此在热导检测器中少用。氦气(He)相对分子量小、热导系数大、黏度小、使用时线速度大,与氢气相比,更安全,但成本高,常用于气一质联用分析。氩气(Ar)相对分子量大、热导系数小,但由于成本高,因而应用较少。2. 进样系统(1)进样器:根据试样的状态不同,采用不同的进样器。液体样品的进样一般采用微量注射器。气体样品的进样常用色谱仪本身配置的推拉式六通阀或旋转式六通阀。固体试样一般先溶解于适当试剂中,然后用微量注射器进样。(2)气化室:气化室一般由一根不锈钢管制成,管外绕有加热丝,其作用是将液体或固体试样瞬间气化为蒸气。为了让样品在气化室中瞬间气化而不分解,因此要求气化室热容量大,无催化效应。(3)加热系统:用以保证试样气化,其作用是将液体或固体试样在进入色谱柱之前瞬间气化,然后快速定量地转入到色谱柱中。3. 分离系统分离系统是色谱仪的核心。其作用就是把样品中的各个组分分离开来。分离系统由柱室、色谱柱、温控部件组成。其中色谱柱是色谱仪的核心部件。色谱柱主要有两类:填充柱和毛细管柱。柱材料包括金属、玻璃、融熔石英、聚四氟乙烯等。色谱柱的分离效果除与柱长、柱径和柱形有关外,还与所选用的固定相和柱填料的制备技术以及操作条件等许多因素有关。4. 检测系统检测器是将经色谱柱分离出的各组分的浓度或质量(含量)转变成易被测量的电信号(如电压、电流等),并进行信号处理的一种装置,是色谱仪的眼睛。通常由检测元件、放大器、数模转换器三部分组成。被色谱柱分离后的组分依次进检测器,按其浓度或质量随时间的变化,转化成相应电信号,经放大后记录和显示,绘出色谱图。检测器性能的好坏将直接影响到色谱仪器最终分析结果的准确性。根据检测器的响应原理,可将其分为浓度型检测器和质量型检测器。(1)浓度型检测器:测量的是载气中组分浓度的瞬间变化,即检测器的响应值正比于组分的浓度。如热导检测器、电子捕获检测器。(2)质量型检测器:测量的是载气中所携带的样品进入检测器的速度变化,即检测器的响应信号正比于单位时间内组分进入检测器的质量。如氢火焰离子化检测器和火焰光度检测器。5. 温度控制系统在气相色谱测定中,温度控制是重要的指标,直接影响柱的分离效能、检测器的灵敏度和稳定性。温度控制系统主要指对气化室、色谱柱、检测器三处的温度控制。在气化室要保证液体试样瞬间气化;在色谱柱室要准确控制分离需要的温度,当试样复杂时,分离室温度需要按一定程序控制温度变化,保证各组分在最佳温度下分离;在检测器要使被分离后的组分通过时不在此处冷凝。控温方式分恒温和程序升温两种。(1)恒温模式:对于沸程不太宽的简单样品,可采用恒温模式。一般气体分析和简单液体样品分析都采用恒温模式。 (2)程序升温:程序升温是指在一个分析周期里色谱柱的温度随时间由低温到高温呈线性或非线性地变化,使沸点不同的组分,各在其最佳柱温下流出,从而改善分离效果,缩短分析时间。对于沸程较宽的复杂样品,如果在恒温下分离很难达到好的分离效果,应使用程序升温方法。6. 记录系统记录系统是记录检测器的检测信号,进行定量数据处理。一般采用自动平衡式电子电位差计进行记录,绘制出色谱图。一些色谱仪配备有自动积分仪,可测量色谱峰的面积,直接提供定量分析的准确数据。三、“气相色谱仪”的分类按固定相状态不同,可以分为两种,用固体吸附剂作固定相的叫气固色谱,用涂有固定液的担体作固定相的叫气液色谱,在实际气相色谱分析中,气液色谱占90%以上。 按色谱分离原理,可分为吸附色谱和分配色谱两类。吸附色谱是利用固体吸附表面对不同组分物理吸附性能的差异达到分离的色谱;分配色谱是利用不同的组分在两相中有不同的分配系数以达到分离的色谱。气固色谱属于吸附色谱,气液色谱属于分配色谱。按色谱柱外观形态,可分为填充柱色谱和毛细管柱色谱两类。一般填充柱是将固定相装在一根玻璃或金属管中,管内径为2~6毫米。毛细管柱色谱通常为常用内径0.1~0.5mm的玻璃或弹性石英毛细管。毛细管柱比填充柱有更高的分离效率,但因其内径小,柱容量小,且对进样技术要求高,载气流速控制要求更为精确。四、“气相色谱仪”的应用气相色谱仪利用被测物质各组分在不同两相间分配系数(溶解度)的微小差异,当两相作相对运动时,这些物质在两相间进行反复多次的分配,使原来只有微小的性质差异产生很大的效果,而使不同组分得到分离。气相色谱法作为近代迅速发展起来的一种新型分离分析技术,具有分离效能高,分析速度快,样品用量少等特点,被广泛用于石油化工、环境监测、医药生产、以及食品分析等领域。1、石油化工气相色谱常用于石油化工行业中常量气体组成及痕量杂质分析,一般采用热导池检测器(TCD)和氢火焰离子化检测器(FID)色谱法。汽油馏分组成分析也石化分析的一个重要部分,主要包括汽油中烃族、芳烃、含氧化合物、含硫化合物的组成分析,均离不开气相色谱的身影。2、环境监测气相色谱技术在土壤中的应用主要体现在对有机污染物的检测,包括农残、多氯联苯、多环芳烃等持久性污染物的分析等。环境水和生活饮用水中卤代烃、苯系物、有机酸、挥发性有机物(VOCs)等沸点较低,易汽化,气相色谱技术在上述物质的分析检测中具有广泛应用。伴随着工业生产,不可避免的会有有毒有害的挥发性有机物分散到空气中,利用空气采样管吸附,然后通过石油醚解析,并使用气相色谱外标法定性定量,可满足大气中多种有毒有害组分的分析。3、医药分析气相色谱在中药定性鉴别、杂质检查、含量测定、中药挥发油分析、中药农药残留量等各项指标分析中都有广泛应用。随着气相色谱与质谱、红外光谱等技术的联用,为未知试样的定性分析提供了新的手段,特别是与质谱联用适合于中药中挥发性成分指纹图谱的研究。中药的安全性控制,包括毒性成分、有害元素、农药残留等是其质量评价的重要内容。《中国药典》附录中收载有“农药残留量测定法“,对有机磷、有机氯类以及拟除虫菊酯类农药采用GC法测定。4、食品分析食品安全检测一直是重要的民生问题之一,气相色谱因其灵敏度高、分离效果好,在食品检测中已经得到广泛应用。主要应用之一为对水果蔬菜农药残留方面的检测。使用气相色谱法,可以对几十种农药同时进行检测。一般来说,主要通过毛细管色谱柱分离并使用ECD或FID进行检测,该方法具有速度快、结果准确的优势。主要应用之二为对食品添加剂的检测,如甜味剂、防腐剂等,一般都是采用GC/FID气相色谱技术。气相色谱还可以用于食品理化性质的分析,如白酒中甲醇含量、酯类成分分析等,以此来确定白酒品质和等级。五、“气相色谱仪”的安装及调试(一)色谱仪的安装准备 1、对色谱仪分析室的要求a. 分析室周围不得有强磁场,易燃及强腐蚀性气体。b. 室内环境温度应在5~35度范围内,湿度小于等于85%(相对湿度),且室内应保持空气流通。有条件的实验室最好安装空调。c. 准备好能承受整套仪器,宽高适中,便于操作的工作平台。一般要求高0.6~0.8米,平台不能紧靠墙,应离墙0.5~1.0米,便于接线及检修。d. 供仪器使用的动力线路容量应在10KVA左右,且仪器使用电源应尽可能不与大功率耗电量设备或经常大幅度变化的用电设备公用一条线,电源必须接地良好。2、气源准备及净化a. 气源准备一般用氮气,氢气,空气这三种气体,有的实验室使用氢气发生器和空气压缩机也可以,但空压机必须无油。当钢瓶气压下降到1~2Mpa时,应更换气瓶。上述气体一般要求纯度达到99.99%,电子捕获检测器必须使用高纯气源(纯度达99.999%及以上)。b. 气源净化为了除去气体中可能含有的水分,灰分和有机气体成分,在气体进入仪器之前应先经过严格净化处理。气相色谱净化装置装填的主要有5A分子筛(吸附气源中的水分和低摩尔质量的有机杂质),在5A分子筛之后装入少量变色硅胶(当分子筛失效时,水开始被变色硅胶吸附),硅胶变红说明分子筛需要重新活化。还需装入一些活性炭(吸附烃类杂质)。应定期进行各种净化剂的更换或烘干,以确保气体纯度。注意:净化管的出口和入口处应加标志;出口处应当用少量纱布或脱脂棉塞上,防止净化机粉尘流入气相色谱仪。(二)色谱仪成套性检查及安装仪器开箱后,按资料袋内附件清单,进行逐项清点,并将易损零件的备件予以妥善保存。然后按照仪器的使用说明书上要求,将其放置于工作平台上,并对着接线图和各插头,插座将仪器各部分连接起来,最后连接记录仪和数据处理机。注意各接头不要接错。1、外气路的连接a. 减压阀的安装有的仪器随机带有减压阀,若没有的则要购买。所用的是2只氧气,1只氢气减压阀。将2只氧气减压阀,1只氢气减压阀分别装到氮气,空气和氢气钢瓶上(注意氢气减压阀螺纹是反向的,并在接口处加上所附的O形塑料垫圈,以便密封),旋紧螺帽后,关闭减压阀调节手柄(即旋松),打开钢瓶高压阀,此时减压阀高压表应有指示,关闭高压阀后,其指示压力不应下降,否则有漏,应及时排除(用垫圈或生料带密封),有时高压阀也会漏,要注意。然后旋动调节手柄将余气排掉。b. 外气路连接把钢瓶中的气体引入色谱仪中,有的采用不锈钢管(φ2×0.5mm),有的采用耐压塑料管(φ3×0.5mm)。从钢瓶到仪器的管路长度视需要而定,不宜过长,然后用不锈钢管或耐压塑料管把气源和仪器(气体进口)连接起来。c. 外气路检漏把主机气路面板上载气,氢气,空气的阀旋钮关闭,然后开启各路钢瓶的高压阀,调节减压阀上低压表输出压力,使载气,空气压力为0.35~0.6Mpa(约3.5~6.0kg/cm3),氢气压力为0.2~0.35 Mpa。然后关闭高压阀,此时减压阀上低压表指示值不应下降,如下降,则说明连接气路中有漏,应予排除。2、色谱仪气路气密性检查气密性检查是一项十分重要的工作,若气路有漏,不仅直接导致仪器工作不稳定或灵敏度下降,而且还有发生爆炸的危险,故在操作使用前必须进行这项工作。方法是,打开色谱柱箱盖,把柱子从检测器上拆下,将柱口堵死,然后开启载气流路,调低压输出压力为0.35~0.6Mpa,打开主机面板上的载气旋钮,此时压力表应有指示。最后将载气旋钮关闭,半小时内其柱前压力指示值不应有下降,若有下降则有漏,应予排除。若是主机内气路有漏,则拆下主机有关侧板,用肥皂水(最好是十二烷基磺酸钠溶液)逐个接头检漏,最后将肥皂水擦干。3、仪器开机检查及调试仪器的调试把气路,仪器等按上述接好,安置好后,便可进行下面检查和调试工作。a. 将接通载气,调节主机面板上的载气旋钮(即:载气稳流阀),使载气流量为20~30ml/min。b. 启动主机,检查是否有异样声响及仪器运转情况;若无异常,检查仪器温控准确度,包括柱温箱、进样器、检测器温度控制精度,一般要求温控精度达到0.01度。4、色谱柱安装及老化色谱柱的正确安装才能保证发挥其最佳的性能和延长使用寿命。正确的安装请参考以下步骤:a. 检查气体过滤器、载气、进样垫和衬管等检查气体过滤器和进样垫,保证辅助气和检测器的用气畅通有效。如果以前做过较脏样品或活性较高的化合物,需要将进样口的衬管清洗或更换。b. 将螺母和密封垫装在色谱柱上,并将色谱柱两端要小心切平。c. 将色谱柱连接于进样口上。(色谱柱在进样口中插入深度应视仪器不同而定)正确合适的插入能最大可能地保证试验结果的重现性。通常来说,色谱柱的入口应保持在进样口的中下部,当进样针穿过隔垫完全插入进样口后,如果针尖与色谱柱入口相差1-2cm,这就是较为理想的状态。(具体的插入程度和方法参见所使用GC的随机手册)避免用力弯曲挤压毛细管柱,并小心不要让标记牌等有锋利边缘的物品与毛细柱接触摩擦,以防柱身断裂受损。将色谱柱正确插入进样口后,用手把连接螺母拧上,拧紧后(用手拧不动了)用扳手再多拧1/4~1/2圈,保证安装的密封程度。因为不紧密的安装,不仅会引起装置的泄漏,还有可能对色谱柱造成永久损坏。d. 接通载气当色谱柱与进样口接好后,通载气, 调节柱前压以得到合适的载气流速。将色谱柱的出口端插入装有己烷的样品瓶中,正常情况下,我们可以看见瓶中稳定持续的气泡。如果没有气泡,就要重新检查一下载气装置和流量控制器等是否正确设置,并检查一下整个气路有无泄漏。等所有问题解决后,将色谱柱出口从瓶中取出,保证柱端口无溶剂残留,再进行下一步的安装。e. 将色谱柱连接于检测器上其安装和所需注意的事项与色谱柱与进样口连接大致相同。如果在应用中系统所使用的是ECD或NPD等,那么在老化色谱柱时,应该将柱子与检测器断开,这样检测器可能会更快达到稳定。f. 确定载气流量,再对色谱柱的安装进行检查。(注意:如果不通入载气就对色谱柱进行加热,会快速且永久性的损坏色谱柱。)g. 色谱柱的老化色谱柱安装和系统检漏工作完成后,就可以对色谱柱进行老化了。将色谱柱升至一恒定温度,通常为其温度上限。特殊情况下,可加热至高于最高使用温度10-20℃左右,但是一定不能超过色谱柱的温度上限。当到达老化温度后,记录并观察基线。初始阶段基线应持续上升,在到达老化温度后5-10分钟开始下降,并且会持续30-90分钟。当到达一个固定的值后就会稳定下来。如果在2-3小时后基线仍无法稳定或在15-20分钟后仍无明显的下降趋势,那么有可能系统装置有泄漏或者污染。遇到这样的情况,应立即将柱温降到40℃以下,尽快的检查系统并解决相关的问题。如果还是继续的老化,不仅对色谱柱有损坏而且始终得不到正常稳定的基线。六、“气相色谱仪”的使用注意事项1、使用纯度满足要求的载气:载气一定要用高纯级的,以避免干扰分析和污染色谱柱或检测器。2、及时更换进石墨密封垫:石墨密封垫漏气是GC常见故障之一。尽量不要在不同色谱柱上重复使用同一密封垫,即使同一根柱卸下重新安装时,最好也要换新密封垫,这样能保证更高的工作效率。3、定期更换气体净化器填料:变色硅胶可据颜色变化来判断其性能,但分子筛等吸附有机物的净化器就不好用肉眼判断了,所以须定期更换,最好3个月更换一次。如果硅胶与分子筛装在一起,则更换硅胶时也要更换分子筛。4、使用性能可靠的气体减压阀:新的减压阀在使用时一定要试漏,在长期的使用过程中也要经常检漏。如果不注意该问题,轻则造成气体浪费,重则出现安全问题。5、定期更换进样衬垫:进样口衬垫漏气也是GC常见故障之一。另外,衬垫的老化降解也会给色谱分析带来干扰。比如其碎屑掉进汽化室内也可能导致鬼峰。至于多长时间换一次衬垫,则要看所分析的样品性质和分析条件而定。一般不建议,一个衬垫连续使用时间超过一周。6、及时清洗注射器:保持注射器清洁能避免样品记忆效应的干扰。更换样品时要清洗,用同一样品多次进样时也要用样品本身清洗注射器。一支注射器暂时不用时,更要彻底清洗,否则残留其中的样品可能将针芯粘牢,造成注射器报废。7、定期检查并清洗进样衬管:仪器长期使用后,进样衬管内会有焦油状物质,这是样品中的不挥发成分造成的。此外还会有颗粒状物质积存(隔垫碎屑,样品中的固体物质)这些都会干扰分析的正常进行。因此要定期检查,及时清洗。在衬管中填充一些经硅烷化处理的石英玻璃毛,既可提高样品的汽化效率,又能防止隔垫碎屑进入色谱柱造成堵塞。8、做好仪器使用和分析记录并定期归档:这是仪器的履历,应逐日记录,包括操作者、分析样品及条件、仪器工作状态等,一旦仪器出现问题,这是查找原因的重要资料。更多内容,请查看仪器信息网牵头编写的《气相色谱实战宝典》七、“气相色谱仪”的常见故障及排除1、进样后不出色谱峰气相色谱仪在进样后检测信号没有变化,不出峰,输出仍为直线。遇到该情况,应从进样针、进样口到检测器的顺序逐一检查。a. 首先检查进样针是否堵塞;b. 再检查进样口和检测器的石墨垫圈是否紧固、不漏气;c. 检查色谱柱是否断裂或漏气;d. 检测器是否出现故障,如堵塞或者未点火。2、基线出现负峰a. 载气不纯:当样品中的物质含量比载气低时便会有负峰,此时更换纯度更高的载气;b. TCD中,样品热导率大于载气热导率,或使用氮气作载气,或TCD电源接反;c. 积分仪或记录仪输入线接反,倒相开关位置改变;d. 在双柱系统中,进样时进错色谱柱;e. 离子化检测器输出选择开关的位置错误,放射源或电极被污染;f. 脉冲发生器不正常,收集极接触不良或短路。3、基线漂移在温度不变的情况下,若基线有漂移通常可考虑以下几种情况:a. 检查色谱仪本身和积分仪的接地线是否良好,保证接地可靠;b. 载气漏气、流速不稳也会使基线漂移,检漏;c. 柱箱密封性要好,使箱体周围没有间隙,防止室内空气进入箱内而造成温度不稳定;d. 载气阀(包括色谱内部阀)有故障,气源压力不稳;e. 从进样系统到检测器的连接管,或者TCD的池体受到污染需要清洗掉污染物;f. 若色谱柱填充物流失,需要重新老化色谱柱。在高灵敏度操作时,由于柱流失使基线漂移是正常现象;g. TCD 故障,检修或更换;h. 检测器的温度过高(或过低)。对于TCD,检测器质量较大,当温度改变时,热容大,温度平衡慢,允许有一定时间使基线稳定;i. 检测器检测元件被氧化,用不锈钢管或铜管替代四氟乙烯管,这样空气中的氧气不会渗透到载气管线中,从而减少元件的氧化;j. 基线漂移很大,色谱柱老化不充分,再次进行老化,色谱柱被污染也会发生大的漂移,只有充分老化色谱柱才行。色谱柱老化后又出现了大的基线漂移,可能是有高沸点液体样品在程序升温过程中没有被吹出去,在色谱柱允许的最高使用温度下,通载气,升温清洗;k. 如果是双柱系统操作时,两路载气不平衡,设置相同的柱流速即可。4、程序升温过程中基线上升在程序升温过程中基线上升,可能的原因以及排除方法如下:a. 色谱柱内固定相流失现象相对上升,可以老化色谱柱并进行柱补偿;b. 两柱的流速不一样,设置相同的柱流速;c. 色谱柱有可能被污染,充分老化色谱柱2h以上。5、基线不在零位基线不在零位,故障原因较多,主要考虑以下几种:a. 积分仪零点没调合适,重调其零点;积分仪接线错误,检查各条连接线,特别检查屏蔽线的接法;积分仪滑线电阻故障,检修或更换;b. TCD 电源故障或没有调平衡,检修或更换新件,重调平衡;c. 柱的固定相流失大,改用低流失柱;d. 检测器可能被污染,需要清洗。6、基线出现尖峰基线出现无规律或有规律的尖峰,其原因有:a. 房间内的开关门,排气扇的启动等使大气压迅速改变,拨打手机时产生的电磁信号流也会影响,可以通过改善仪器放置环境来解决这一问题;b. TCD电源故障,检修或更换新件;c. 热丝老化不好,充分老化;d. 温度不稳,桥流过大,设置合适的参数;e. 载气被污染,用大流量载气吹洗管路,净化载气或更换过滤器,或更换新的载气钢瓶;f. 有其他高沸点液体残留在TCD 检测器出口,将检测器温度升高,但不能超过其使用温度,使凝聚物蒸发, 或在检测器排气口注入少量的丙酮等溶剂热清洗,除去管内的凝聚物;g. TCD的检测器元件故障或桥流不稳定,更换有故障的元件。7、出现拖尾峰出现拖尾峰,可进行如下几种操作:a. 减少样品的进样量;b. 进样器气化管有残渣或破损,清洗或更换,检查检测器是否被污染,必要时清洗;c. 检查载气流量、隔膜清洗流量是否设置正确,分流比或其他条件设置是否合理;d. 气化温度设置是否正确,若柱箱温度过低,增加其温度,提高检测器温度;e. 色谱柱安装方法是否正确,在柱入口端切除1~2 m,使用的柱不合适,致使样品和固相担体相互作用,更换合适的色谱柱,填充柱使用时间过长,重新装填柱子。8、出现圆顶或平顶峰出现圆顶或平顶峰,有如下可能:a. 操作超出检测器输出范围,针对此种情况可以减小进样量,降低灵敏度;b. 积分仪故障或重新调整。9、信号陡然下降到原基线信号陡然下降到原基线,故障原因如下:a. 样品量过大,减小样品量;b. 检测器信号值太高,调零;信号线发生短路,或检测器已坏,进行修理更换;c. 载气流速太大,调整流速。更多内容,请查看仪器信息网牵头编写的《气相色谱实战宝典》八、“气相色谱仪”的采购建议气相色谱仪厂家众多,我们如何从众多气相色谱仪厂家之中找出合适自己样品分析的气相色谱仪呢?下面针对以上问题,为大家列举你在购买气相色谱仪的时候需要考虑的事情。1、被分析样品情况a. 样品本身的组成和状态,是气态,液态,固态还是混合态,能直接用气相色谱仪分析吗?b. 被测组分是热不稳定,易分解,还是易催化反应。时间,温度,压力等变化是否会引起被测组分的变化;c. 样品中是否有烟尘,悬浮物,高佛点组分和有腐蚀性成分。以考虑样品如何采集获得,如何进行样品的预处理;d. 样品来源容易吗?允许样品的消耗量,有利于选择进样方式;e. 不需分析的组分及大致的浓度范围;f. 每天需要分析样品的次数,两次分析的间隔时间。2、分析的目的a. 做定性分析:被分析组分已知或未知,有无标准物;b. 定量分析:在哪个范围—常量(10-1~10-3);半微量(10-3~10-5);微量(10-5~10-7);痕量(10-6~10-9)或超痕量(≤10-9);c. 定量精度和分析准确性,若是半定量要求就简单的多。3、单位需求定位a. 科研院所——各方面要求高;b. 监测和分析中心——数据准确可靠;c. 在线的现场分析用——重现性高。4、检出限仪器的检出限表示在一定的置信范围内能与仪器噪音相区别的最小检测信号对应的待测物质的量,是评价仪器的重要指标——简单的说,检出限越低,那么检测出来低浓度物质含量的能力越强。因此,在痕量分析中,应当尽可能的选择检出限较低的仪器。目前来说,国内外气相色谱仪中,FID和ECD检测器的检出限差别不大,其他检测器则有一定的差距。 5、相关标准及同行咨询寻找有无被分析样品的国标、行标、企标或国外有关参考资料,若有,在标准中会给出在一般场合下,应使用气相色谱仪的功能和技术要求。同行有无做同类样品的分析者,若有,对选型和日后建立色谱分析方法会有直接帮助。6、同一种样品,从理论上讲可能有用多种仪器的分析方法,从仪器的性价比,操作特性,维修服务等多方比较,列出选用气色谱仪分析的理由。7、实用性实用性指标某种程度上来说就是性价比。评价实用性应该从两个方面来谈:一方面是自己的仪器预算是多少,在预算的范围内购买合适档位的仪器;另外一方面是能不能满足自己分析要求,只要可以满足自己的分析要求,不一定要购买贵的。九、“气相色谱仪”检测器的分类及选择1、气相色谱仪检测器分类检测器是气相色谱仪的重要部件,其作用是将色谱柱分离后各组分在载气中浓度或质量变化转换成易于测量的电信号,然后记录并显示出来。根据检测原理的不同,气相色谱检测器可分为浓度型检测器和质量型检测器。浓度型检测器测量的是载气中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比,如热导检测器和电子捕获检测器。质量型检测器测量的是载气中某组分单位时间内进入检测器的含量变化,即检测器的响应值和单位时间内进入检测器某组分的量成正比。如火焰离子化检测器和火焰光度检测器等。根据样品是否被破坏,气相色谱检测器又可分为破坏性检测器和非破坏性检测器。破坏性检测器有:FID(氢火焰离子化检测器)、NPD(氮磷检测器)、FPD火焰光度检测器)等;非破坏性检测器有:TCD(热导池检测器)、PID(光离子化检测器)、ECD(电子捕获检测器)等。根据对被检测物质响应情况,气相色谱检测器又可分为通用型检测器和选择性检测器。常见的通用型检测器有:TCD(热导池检测器)、FID(氢火焰离子化检测器)、PID(光离子化检测器)。常见的选择性检测器有:FPD(火焰光度检测器)、ECD(电子捕获检测器)、NPD(氮磷检测器)。2、气相色谱常见的6种检测器a. 氢火焰离子化检测器(FID)通过有机化合物在氢气-空气的扩散火焰中燃烧形成离子流,产生电信号,经过放大,然后由记录器记录电压随时间的变化,从而得出色谱图。其特点是只对含碳有机物有明显的响应,而对非烃类、惰性气体或在火焰中难电离或不电离的物质,则讯号较低或无信号,如一些氮的氧化物(NO、N2O等)、一些无机气体(SO2、NH3等)、CO2、CS2和H2O等,甲酸因氧化态较高不易在火焰中形成离子也不产生显著的信号。FID检测器具有灵敏度高,线性范围宽,响应快等特点,常用于微量有机物分析。b. 热导检测器(TCD)根据各种物质均具有不同的热传导系数,当载气中混入其他气态物质时,热导率发生变化,利用被测组分与载气的热导率不同来检测组分的浓度变化。其结构简单,性能稳定,对无机和有机物都有响应,通用性好,而且线性范围宽,可用于常量、半微量分析。c. 电子捕获检测器(ECD)利用放射性同位素作为放射源轰击载气生成正离子和自由电子,在所施电场的影响下,电子向正极移动,形成了一定的离子流,称为基流。当载气带着微量的电负性组分(含卤素、硫、磷、氰基等的化合物)进入时,这些亲电子的组分将捕获电子形成负离子而使基流下降,从而产生检测信号。ECD检测器对电负性物质有极高的灵敏度,对非电负性的物质则没有响应。常用于有机氯农药残留分析。d. 火焰光度检测器(FPD)通过燃烧分解从色谱柱中流出的含P和S的化合物分子,使之碎片化,然后把这些碎片激发到高能级,这些激发态的分子回到基态,发射出特征的带状光谱。这些发射光谱通过392nm(对于硫)或526nm(对于磷)处的滤光片,用光电倍增管测定其强度。FPD检测器对含硫、磷化合物有高选择性和高灵敏度,常用于有机磷农药残留量测定、大气中痕量硫化物的微量分析。e. 氮磷检测器(NPD)具有与FID相似的结构,只是将一种涂有碱金属盐(如硅酸钠或硅酸铷)的陶瓷珠放置在燃烧的氢火焰和收集气之间,当试样蒸汽和氢气流经碱金属盐表面时,含N、P的化合物便会从被氢气还原的碱金属蒸汽上获得电子而离子化;失去电子的碱金属则形成盐再沉积到陶瓷珠表面上。这个碱金属陶珠是作为电子转移反应的催化剂来起作用的。NPD检测器只对含磷和氮化合物有很高的选择性和灵敏度,用于有机磷、含氮化合物的微量分析,主要用于食品、药品、农药残留以及亚硝胺类等物质的分析。f. 光离子化检测器(PID)是一种非破坏性的检测器,通过光子激发使载气中的样品分子电离而产生信号。10.2eV的光源使用得最广,它能使大多数分子电离(永久性气体、低于5个碳数的烃类、甲醇、乙腈和各种氯代甲烷除外)。PID检测器已经成功用于测定工业环境中的CS2、H2S、CH3SH和四乙基铅,水中芳香烃,无机组份,农药和药品中的含硫、氯组分等。十、“气相色谱仪”的常见品牌看到这里,相信各位已经对‍‍‍‍‍‍‍‍‍‍气相色谱仪有了较深的了解。那么目前,气相色谱的品牌都有哪些呢?最受关注的又是哪些呢?(以品牌简称首字母排序)A. 安捷伦产品:Agilent 8890 气相色谱系统Agilent 7890B 气相色谱仪等▲ Agilent 8890 气相色谱系统B. 北分瑞利产品:SP-3420A气相色谱仪北分瑞利气相色谱仪SP-3500等▲ SP-3420A气相色谱仪C. 岛津产品:岛津旗舰级气相色谱仪 Nexis GC-2030岛津气相色谱仪 GC-2010 Pro等▲ 岛津旗舰级气相色谱仪 Nexis GC-2030D. 东西分析产品:GC-4100系列气相色谱仪东西分析GC-4000A系列气相色谱仪等▲ GC-4100系列气相色谱仪E. 福立产品:福立GC9790Plus气相色谱仪福立GC9720 plus气相色谱仪等▲ 福立GC9790Plus气相色谱仪F. 磐诺产品:磐诺A91 Plus实验室高端气相色谱仪磐诺V5000实验室气相色谱仪等▲ 磐诺A91 Plus实验室高端气相色谱仪G. 珀金埃尔默产品:气相色谱仪PerkinElmer Clarus 680气相色谱系统PerkinElmer Clarus 590/690等▲ 气相色谱仪PerkinElmer Clarus 680H. 赛默飞产品:赛默飞TRACE 1300系列 模块化气相色谱仪赛默飞TRACE 1310 气相色谱仪等▲ 赛默飞TRACE 1300系列 模块化气相色谱仪I. 上海炫一产品:炫一M6物联网气相色谱分析平台等▲ 炫一M6物联网气相色谱分析平台J. 上海仪电分析产品:上海仪电分析-GC128 气相色谱仪(GC)上海仪电分析-GC126N 气相色谱仪(GC)等▲ 上海仪电分析-GC128 气相色谱仪(GC)K. 舜宇恒平产品:舜宇恒平GC1120气相色谱仪舜宇恒平GC1290 气相色谱仪等▲ 舜宇恒平GC1120气相色谱仪L. 天美产品:天美GC7980气相色谱仪Scion GC气相色谱仪436-GC/456-GC等▲ 天美GC7980气相色谱仪本文出现品牌由仪器信息网仪器导购专场大数据(品牌指数、3i指数等)综合计算得出最终解释权归仪器信息网所有十一、小结 以上,就是小编为大家整理的气相色谱百科知识大全,附上部分市场主流仪器品牌及型号,更多仪器,请点击进入“气相色谱仪”专场。 找靠谱仪器,就上仪器信息网【选仪器】栏目。它是科学仪器行业专业导购平台,旨在帮助仪器用户快速找到需要的仪器设备。栏目囊括了分析仪器、实验室设备、物性测试仪器、光学仪器及设备等14大类仪器,900余个仪器品类,收录3万+台优质仪器。也可微信扫描下方二维码关注仪器信息网公众号观看更多资讯及内容
  • 新品发布丨新一代自动注射器试验系统
    随着医疗技术的发展,自动注射笔在临床治疗中的应用越来越广泛。为了确保其安全性和有效性,国际标准化组织发布了 ISO 11608-5:2022 标准,对自动注射笔的性能进行了严格规定。Instron 和制药与医疗器械制造商密切合作开发的最新一代自动注射器试验系统,可以对各种给药装置进行全面的功能测试。 自动注射笔试验系统 Instron 自动注射笔试验系统能够测量一系列关键性能要求,包括护帽拔出力、剂量准确性、激发力、注射时间、进针深度、针头防护装置锁定力和“咔哒”声检测,确保自动注射笔的性能稳定可靠。通过系统的测试和评估,可以确保 NIS-AUTO (针基注射系统)在不同患者身上的剂量准确,从而提高治疗效果和患者满意度。 01护帽拔出力 护帽拔出力为在使用针基注射系统时,护帽从针头上拔出的所需力。适当的护帽拔出力可以确保用户在正常操作过程中能够轻松地拔出护帽,同时防止在使用、运输和储存过程中护帽意外脱落,减少意外伤害或感染风险。 02剂量准确性 测量剂量准确性对于确保药物的有效性、降低副作用风险、提高患者安全、符合标准和法规、促进设备改进以及提高治疗依从性至关重要。 03激发力 良好的激发力可以提升操作的顺畅性和舒适度,从而减少使用过程中的不便和疼痛感。04 注射时间精确测量注射时间可以确保药物能够在预定的时间内完全注入,避免因时间不当导致的剂量偏差,同时确保在合适的人体痛感时间范围内。 05进针深度 测量进针深度可以判断药物是否准确地注入到预定的身体部位,从而确保药物的有效性、减少并发症、提高患者安全。06 针头防护装置锁定力测量针头防护装置锁定力可以确保注射笔在使用后不会被意外激活,最大限度地降低意外锐器伤害的风险,从而提高使用安全性。 07“咔哒”声检测 “咔哒”声提示音是一种重要的操作反馈机制,通过检测“咔哒”声,用户可以知道药物是否开始或完成注射,有效提高设备的安全性和用户满意度。 试验系统特征 01试验系统灵活性 Instron 自动注射器试验系统适用于行业内常见的各种注射装置类型,工装切换方便,灵活性高。 Instron 的 Bluehill Universal 软件增加了简便的自动注射器测试方法,使用户能够轻松开发和更改测试方法。用户只需选择要运行的测试,并设置所需参数。系统将自动运行整个测试序列,并提供测试结果。 02 合规性 Bluehill 全新的适用性测试(SST)功能集成至整个工作流程,提示用户执行测试,并在审计追踪中自动追踪结果,以降低审计风险,进一步提高了对良好生产规范(GMP)的合规性。 强大的审计追踪功能,确保符合 FDA 21 CFR 第 11 部分。为了简化技术转移,用户可添加 Instron 的 Bluehill Central 软件中的实验室管理模块,从而简化设备和 SST 测试方法在同一实验室及全球其他实验室之间的管理和技术转移。Instron 还可提供售后服务,包括现场设备校准和IQOQ 服务,以帮助您的实验室加快验证过程。 03可靠性 采用天平和设备视觉摄像头测量注射时间,可交叉验证,确保数据可靠性。 采用气动夹具,确保夹持力恒定可靠。专业的下工装设计在最大限度上减少护帽拔出过程中的侧向力,提高护帽拔出力结果的准确性和一致性。 Instron 自动注射笔试验系统,凭借高精度、高稳定性和优秀的用户体验,是满足 ISO 11608-5:2022 标准要求的理想选择。我们始终助力医疗行业发展,共同提升医疗产品的质量和安全性,向所有医者致敬!
  • 固定污染源废气中的挥发性有机物现场测试方案-便携式气相色谱柱质谱法(中)-北京博赛德
    在 固定污染源废气中的挥发性有机物现场测试方案-便携式气相色谱柱质谱法(上)我们介绍了气袋采样、HAPSITE分析检测固定污染源废气中的挥发性有机物的前期准备:配件和预制校准曲线工作事项。今天我们继续介绍样品的采集与稀释、空白测试以及样品分析工作过程。2.样品采集和稀释2.1样品采集使用气袋法采样系统进行样品采集,参考HJ732。图1 气袋采样系统 2.2样品稀释样品稀释步骤如下:(1)使用气袋采样系统进行样品采集;(2)使用玻璃注射器取体积为 Vn的氮气,注入干净的气袋中;(3)使用玻璃注射器取体积为 Vs 的样品气,注入同一气袋中;(4)使样品气与氮气充分混合均匀,并尽快分析。稀释倍数按公式(1)计算: f=Vs+Vn/Vs 公式(1)式中:f ——稀释倍数;Vs——样品气体积,ml;Vn ——氮气或洁净空气体积,ml。注:若条件允许,使用气体稀释装置进行稀释。3.空白测试将高纯氮气冲入气袋并连接BCT仪器,做空白测试。4.样品分析4.1预调查和预检测预调查:在测试前,应事先调查污染源情况,如行业排放标准所列的常见挥发性有机污染物等。预检测:开启SURVEY速查方法,运行20~30s空白作基线;将装有样品的气袋连接BCT仪器,响应值上升,并稳定下来(约持续10~20s即可)后,移走样品;再运行10~20s使响应值回归到基线。通过TIC响应值来预估样品浓度,并衡量稀释倍数。 图2 Survey实时谱图 4.2样品测试根据预调查和预检测,按照2中的方法进行样品采集和稀释后选合适的方法进行测试。按以下两种情况进行:速查结果谱图的TIC_MAX≥500万,选择高浓度系列方法;TIC_MAX<500万,选择低浓度系列方法。 未完待续
  • 南京科捷食用油中溶剂残留检测气相色谱仪大促销
    目前食用油事件引起广大市民的热议,关于如何检测食用油中的溶剂残留南京科捷分析仪器有限公司提供了相应的解决方案!实验试剂:N-N-二甲基乙酰胺(DMA) 南京科捷分析仪器有限公司 六号溶剂油 设备:南京科捷气相色谱仪GC5890检测器:FID色谱柱:VB-5(30m× 0.32× 0.5um)色谱条件:进样器温度:250℃流速:2.5ml/min 检测器温度:280℃柱温箱温度:85℃(1min)20℃/min 130℃(2min)2、试剂: N-N-二甲基乙酰胺(DMA):吸取1毫升放入100毫升洗好干燥的带胶塞的玻璃瓶中,在50摄氏度放置30分钟,取液上气1ul注入气相色谱仪在10分钟内无干扰即可使用。如有干扰用超声波处理30分钟。 3、六号溶剂标准溶液:称取洗净干燥的10毫升气化瓶的质量为A,瓶中放入比气化瓶体积少0.5毫升的DMA密塞后称量为B(M5),用50ul的注射器取约0.2毫升六号溶剂标准通过塞注入瓶中,混匀,准确称量为C。用下式计算六号溶剂的浓度:X7=(M5-M6)/(M6-M7)/0.935× 1000 4、标准曲线的绘制 取预先在气相色谱仪测试无溶剂的成品油(新机榨毛油),分别称取25克放入以试过漏的6只气化瓶中,密塞。通过塞子注入六号溶剂标准液0、20ul 、40ul 、60ul、 80ul、 100ul。放入50摄氏度烘箱中,平衡30分钟,分别取液上气体注入色谱,各响应扣除空白后,绘制标准曲线。 5、 测定 称取25克食用油样,密塞后于50摄氏度恒温烘箱加热30分钟,取出后立即用微量注射器吸取15ul液上气体注入色谱,记录组分测量峰高,与标准曲线比较,求出液上六号溶剂的含量。 6、计算 六号溶剂含量=测定气化瓶六号溶剂的质量/样品质量南京科捷食用油中溶剂残留检测气相色谱仪主要特点:☆ 全兼容惠普HP5890II气相色谱仪,可直接接驳HP5890微型单丝热导检测器、氢火焰离子化检测器及相关检测器控制板.仪器技术指标、性能,检测器灵敏度可与HP5890相媲美!☆ GC5890气相色谱仪全新集成数字电子电路,控制精度高,性能稳定可靠,温控精度可达0.01℃.☆ 独特的进样口设计解决进样歧视;双柱补偿功能不仅解决升温带来的程序漂移,而且减去背景噪音的影响,可以得到更低的最小的检测限。☆ 柱箱容积大,智能后开门系统无级可变进出风量,缩短了程序升/降温后系统稳定平衡时间;加热炉系统:(温度范围)环境温度+7℃-400℃.三阶程序升温,升温速率0-50℃/min;增量0.1℃/min可以由用户重新校正炉温,并随意设定最高温度。由用户决定加热炉温度平衡时间。☆ 可同时安装两种进样系统:填充柱、毛细管分流/不分流进样系统(具有隔膜清扫功能);可同时安装两种相同或不同的检测器:氢火焰离子化检测器(FID)、热导检测器(TCD).可选配自动/手动气体六通进样阀进样器、顶空进样器、热解析进样器、裂解炉进样器、甲烷转化炉.☆检测器系统:火焰离子检测器容易拆卸和安装,便于清洁或更换喷嘴;高阻值单柱热导检测器检测灵敏度高,基线稳定快(15分钟即可稳定);输入信号可进行对数放大,减少干扰,提高灵敏度.可选配TCD、ECD、NPD、FPD。☆具有开机自诊断功能、秒表功能(方便流量测定)、运转定时器功能、停电储存保护功能、键盘锁定功能。
  • 用流动注射-质谱自动分析可疑样品——具有自动光谱库搜索的快速FIA-MS
    •Ryan De Vooght Johnson美国宾夕法尼亚马毒理学和研究实验室的分析师使用特殊的LC-MS设置开发的自动FIA-MS分析方法可以快速准确地识别没收样品中的药物。在为执法和兴奋剂控制或毒理学调查分析可疑样本时,速度和准确性至关重要。海关、警察或反兴奋剂机构没收的样本可能含有兴奋剂、特制药物或街头毒品,因此快速识别对药物和兴奋剂控制都很重要。质谱法是鉴定未知化合物的常用技术,可以直接进行,也可以通过GC或LC分离进行,但有一些局限性。例如,LC和GC分离可能非常耗时,需要分析专家,而且它们不包括所有潜在的没收化合物。具有电离界面的质谱法,如解吸大气压光电离(DAPPI)或解吸电喷雾电离(DESI),可以在不需要样品预处理的情况下给出快速结果,但不适用于分析注射用注射器中的液体样品。在宾夕法尼亚马毒理学和研究实验室,为了克服这些缺点,他们采用了注射器注入(SI)-质谱,这是一种用于生物样品代谢组学和脂质组学分析的方法。没收的样品直接注入ESI-MS源进行分析。SI将整个样品引入ESI源,因此可以检测样品中的所有物质,并且每天可以比LC-MS运行更多的样品。在SI-MS检测不到任何东西的情况下,可以使用GC-MS。整个SI-MS过程目前是手动进行的,从收集全扫描MS光谱开始。强度超过20%的离子注入CID以给出MS/MS光谱,然后将其与光谱库进行比较,以确定样品中的物质。由于需要获取大量的MS/MS光谱和手动库搜索,手动过程相当耗时。自动化这一过程将显著增加整个样本量,并降低劳动强度,因此马毒理学和研究实验室的关富宇(Fuyu Guan)和同事们开始这样做。为了实现该过程的自动化,作者使用了Vanquish UHPLC和Thermo Fisher公司的高分辨率QE+MS检测器,并将其用于流动注射分析。不寻常的是,该系统没有LC柱进行分离,因此流动注射分析是通过流动相从LC的自动进样器直接流向ESI源实现的。通常,由于低压,LC泵会在没有柱的情况下关闭,因此通过使用窄直径Viper管将自动取样器连接到检测器上的样品入口来产生背压。在注入20µL样品后,使用水:乙腈(50:50)(正电离模式和负电离模式分别使用或不使用甲酸)以50µL/min的速度进行2min等度运行,以将样品的所有成分从自动取样器带到检测器,尽管没有色谱分离。QE Plus探测器每周校准一次,并以正或负模式运行。进行了完整的MS和数据相关的MS/MS扫描,数据由Thermo Fisher的Compound Discover软件自动处理,允许通过各种数据库识别未知物。使用这种LC- MS类型设置的自动FIA仅需15min,明显快于手动SI-MS(secondary ion-mass spectroscopy, 二次离子质谱)过程所需的小时或更长时间。化合物发现者自动处理数据,并在一小时内识别样本中的成分,与SI-MS使用的手动库搜索相比,覆盖了更多的化合物。作者们对这种自动化方法的前景感到非常兴奋,认为它“有可能改变没收样本在多个领域的分析方式,包括运动兴奋剂控制和执法药物检测。”未来,他们希望增加更多的MS/MS数据库和搜索引擎,以扩大所涵盖的化合物数量。注释:LC- MS:液相色谱-质谱法GC- MS:气相色谱-质谱法FIA-MS:流动注射-质谱法ESI-MS:电喷雾-质谱法SI-MS:注射器注入-质谱法CID:电荷注入检测器(charge injection device)。原载:Automated analysis of suspicious samples with flow-injection MS, Wiley Analytical Science, 31 January 2023——Fast FIA-MS with automatic spectral library searching相关链接Guan F, Fay S, Adreance MA, et al. Automated identification of unknown doping agents in confiscation samples by flow-injection mass spectrometry and mass spectral library searches. Drug Testing and Analysis. 2023. https://doi.org/10.1002/dta.3445 De Vooght-Johnson R. Drug doping detected by data digging. Wiley Analytical Science. 7 August 2019 (https://analyticalscience.wiley.com/do/10.1002/sepspec.16c666e7b5b accessed 30 January 2023).De Vooght-Johnson R. MetAlign for retrospective doping data dive. Wiley Analytical Science. 8 July 2021 (https://analyticalscience.wiley.com/do/10.1002/was.0090126 accessed 30 January 2023).About the authors• Ryan De Vooght-JohnsonRyan是一名自由科学作家和编辑。在仪器和分析方法硕士毕业后,他曾在制药行业担任过各种分析开发角色,后来进入编辑岗位。作为一名委托编辑,他创办了两本与分析化学和药物相关的期刊,《生物分析和治疗传递》,并管理了许多其他期刊。他现在是一名自由撰稿人和编辑,让他有更多的时间陪伴家人、骑自行车和分配食物。供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 北分瑞利公司“一种应用于注射器的活塞密封结构“获美国专利授权
    近日,北分瑞利公司原子荧光组设计的“一种应用于注射器的活塞密封结构Piston Seal Structure For Injector”注射泵活塞技术荣获美国专利授权,专利号US11434889B2。该专利于2019年6月在国内获得实用新型专利授权,专利号ZL201920959386.7。中国发明专利目前处于实审公示阶段。注射泵是一种高精度、宽范围的定量注射泵,最小定量精度达到微升级,被广泛应用于精密仪器、生命科学、医疗等需要精确液体定量及转移的自动化应用领域。该技术采用聚醚醚酮(PEEK)材料取代传统的聚四氟乙烯(PTFE)或高分子聚乙烯材料制作注射泵的活塞,有效解决了传统注射器在对高盐或碱性溶液进行定量时对活塞密封材料的磨损问题,同时将高精度注射泵的工作温度范围从15℃-35℃扩展到了5℃-60℃,填补了高精度注射泵在该领域的技术空白。聚醚醚酮(PEEK)树脂是一种性能优异的特种工程塑料,与其他工程塑料相比较具有更多显著优势,耐正高温达到260℃、机械性能优异、自润滑性好、耐化学品腐蚀、耐剥离性、耐磨性、刚辐射、超强的机械性能等,是公认的最佳工程塑料材料。其线性热膨胀系数(约为4.8×10-5/℃)只有PTFE等材料的一半左右,对温度的敏感度较小。由于其硬度较高缺少弹性,虽然其他性能优越,但是直接用于活塞密封材料的密封效果并不理想。本专利的技术特点在于创新性的用碗状活塞取代传统的柱状活塞密封部,利用机械形变来形成微米级高精度密封配合,有效的解决了PEEK材料缺乏弹性无法密封的问题。
  • 给气相色谱仪使用者的11条建议
    1、按仪器说明书的规程操作  验收仪器时,不仅要清点所有零部件是否齐全,还要检查仪器说明书是否齐备,并妥善保存这些资料。在独立操作仪器之前,一定要认真阅读有关说明书,并严格按规程操作。这是做好仪器分析的前提条件,而且一旦仪器出了问题,也好与厂商交涉。 2、准备一份色谱柱测试标样  色谱柱性能是保证分析结果的关键。新买的色谱柱,首先要用测试样品评价其性能。如果用色谱柱厂商提供的测试条件测试而结果不合格时,就可要求退货或换货。更重要的是,此后的使用过程中色谱柱性能会变化,当分析结果有问题时,可以用测试标样测试色谱柱,并将结果与前一次测试结果相比较,这有助于确定问题是否出在色谱柱,以便于采取相应的措施排除故障。 3、使用纯度合乎要求的载气  载气一定要用高纯级的,以避免干扰分析和污染色谱柱或检测器。要知道一根色谱柱的价格是一瓶高纯氮气或氢气价格的20倍以上。如果因为要省钱而用普通气体作载气,可能是丢了西瓜拣了芝麻。检测器用辅助气体最好也用高纯级的。虽然在灵敏度要求不高时,可用普通气体,但其代价可能是检测器被污染。及时更换色谱柱密封垫。 4、及时更换石墨密封垫石墨密封垫漏气是GC最常见的故障之一。一定不要在不同的柱上重复使用同一密封垫,即使同一根柱卸下重新安装时,最好也要换新密封垫,这样能保证更高的工作效率。如果装上色谱柱后发现漏气而再更换密封垫,就要花费更多的时间,即使旧垫仍能使用,也要比原来多拧紧一些,弄得不好就会拧断毛细管色谱柱。  5、定期更换气体净化器填料变色硅胶可据颜色变化来判断其性能,但分子筛等吸附有机物的净化器就不好用肉眼判断了。所以须定期更换,最好3个月更换一次。如果硅胶与分子筛装在一起,则更换硅胶时也要更换分子筛。 6、使用性能可靠的气体减压器  新的减压器在使用时一定要试漏,在长期的使用过程中也要经常检漏,这是发现问题的一个好习惯。如果不注意这个问题,轻则造成气体浪费,重则出现安全问题,到时悔之晚矣。 7、定期更换进样衬垫  进样口衬垫漏气是GC常见故障之一。另外,衬垫的老化降解也会给分析带来干扰。比如其碎屑掉进汽化室内也可能导致鬼峰。至于多长时间换一次衬垫,则要看所分析的样品性质和分析条件而定。常规实验室一般每天更换一个进样衬垫。无论如何,一个衬垫的连续使用时间不要超过一周。 8、及时清洗注射器  保持注射器清洁能避免样品记忆效应的干扰。更换样品时要清洗,用同一样品多次进样时也要用样品本身清洗注射器。一支注射器暂时不用时(比如下班),更要彻底清洗,否则残留其中的样品可能将针芯粘牢,造成注射器报废。使用自动进样器的用户也应注意此问题,最好是经常更换和清洗注射器。 9、定期检查并清洗进样衬管  仪器长期使用后,进样衬管内会有焦油状物质,这是样品中的不挥发成分造成的。此外还会有颗粒状物质积存(隔垫碎屑,样品中的固体物质)这些都会干扰分析的正常进行。因此要定期检查,及时清洗。注意,在衬管中填充一些经硅烷化处理的石英玻璃毛,既可提高样品的汽化效率,又能防止隔垫碎屑进入色谱柱造成堵塞。 10、更换零部件要逐一进行  修理仪器时,不要一次更换多个部件,那样会造成故障原因的判断失误。应该一次更换一件,经测试后再更换另一件。这样可能更便于准确地判断故障原因,同时避免不必要的开支。 11、做好仪器使用和分析记录并定期归档  这是仪器的履历,应逐日记录,包括操作者、分析样品及条件、仪器工作状态等等。一旦仪器出现问题,这是查找原因的重要资料。
  • 中仪宇盛发布中仪宇盛-30位自动气体进样器新品
    AS-30G自动进样器 一、仪器简介 AS-30G自动进样器是由北京中仪宇盛科技有限公司自主研制,用于将储存在气袋或注射器中的气态样品批量自动进样至气相色谱仪或其他分析仪器,全过程自动化。主要应用于环境空气检测、石油化工气体分析、土壤水汽取样等方面。操作简单方便,可与所有进口、国产的GC、GCMS配合使用。二、仪器特点1.软件交互界面人性化设计,可快速灵活完成样品位置编辑以及信息录入,亦可实现无人值守操作;2.故障报警和提示,提高了仪器使用的安全系数;3.应用于批量常规气体自动进样,全过程自动化,适配气袋、注射器等,可连接国内外所有型号的GC、GCMS;4.定量环进样,可准确控制进样体积;5.每次进样前后,系统自动清洗样品管路和定量环,有效降低交叉污染;6.操作界面由PC软件控制,实时显示运行进度及各个参数,数据稳定可靠,重复性好;7.仪器运行稳定,各种元器件的选型皆考虑稳定性以及其使用寿命,更优质的降低仪器故障率,提升使用寿命和有效运行时间。三、仪器主要技术参数1.阀进样系统温度控制范围: 室温~220℃ 以增量1℃任设;2.样品传送管线温度控制范围: 室温~240℃ 以增量1℃任设 (为了操作安全,传送管线温度控制采用低压供电);3.控制方式:专用的工作软件4.主机功能:与气相色谱或其他分析仪器联用,自动化完成气体样品进样,以及进样管路清洗,定量环清洗。软件功能:快速完成样品位置的编辑,也可同时添加样品信息,并且对所编辑的信息实现自动保存。5.样品位数:30位6.配套的采样装置:注射器或者气袋7.采样管路:具有流量控制系统。8.体积:560*455*490mm长宽高(30位)创新点:1.软件交互界面人性化设计,可快速灵活完成样品位置编辑以及信息录入,亦可实现无人值守操作;2.故障报警和提示,提高了仪器使用的安全系数;3.应用于批量常规气体自动进样,全过程自动化,适配气袋、注射器等,可连接国内外所有型号的GC、GCMS;4.定量环进样,可准确控制进样体积;5.每次进样前后,系统自动清洗样品管路和定量环,有效降低交叉污染;6.操作界面由PC软件控制,实时显示运行进度及各个参数,数据稳定可靠,重复性好;7.仪器运行稳定,各种元器件的选型皆考虑稳定性以及其使用寿命,更优质的降低仪器故障率,提升使用寿命和有效运行时间。中仪宇盛-30位自动气体进样器
  • 一种灵巧的微量固相萃取技术(MEPS)
    往期讲座内容见:傅若农老师讲气相色谱技术发展第十九讲一种灵巧的微量固相萃取技术(MEPS)  大家知道在分析和生物分析方法的开发中,样品处理是十分重要的一步。现代分析对一个样品的分析测定所用的时间越来越短,但是,样品制备过程所用的时间却仍然很长。据统计,在大部分的仪器分析实验室中,将一个原始样品处理成可直接用于仪器分析测定的样品状态,所消耗的时间约占整个分析时间的60-70%。在各种样品前处理方法中,目前各种无(少)溶剂的绿色样品处理技术成为仪器分析主要的前处理方法。当然近年最具吸引力的技术是固相微萃取(SPME),它是从固相萃取(SPE)衍生出来的一种无溶剂的样品处理技术,从SPE衍生出来的另一种微量固相萃取方法是填充吸着剂微萃取(Microextractionbypackedsorbent,MEPS),它是2004年出现的一种精巧、环保、便利的固相萃取方法,(JChromatogrB,2004,801:317–321 JMassSpectrom,2004,39(12):1488)由瑞典阿斯特拉公司研发部(AstraZenecaR&DSodertalje)的MohamedAbdel-Rehim首先提出的。Abdel-Rehim(现时在瑞典斯德哥尔摩大学分析化学系)在2015年发表一篇有关MEPS的综述文章(TrAC,2015,67:34–44),讲述这一技术的发生和发展及其应用,这里以此文为主综合介绍MEPS的概况及应用。  MEPS是一种小型化的固相萃取(SPE)技术,用于样品的纯化,但与一般SPE有显著差异,它是把吸着剂直接集成到注射器中(BIN),而不是一个单独的小柱子。因此,不需要使用一个单独的萃取装置。MEPS甚至可以用于血浆或尿液样进行100次以上的萃取纯化,而常规固相萃取小柱只能使用一次。MEPS可以处理容量小的样品或容量大的样品(10μ L-1000μ L血浆,尿或水样),可与气相色谱/质谱,液相色谱/质谱,毛细管电色谱/质谱联用。可在反相、正相,混合离子交换模式下使用。用注射器作为进样装置,可以自动化,包括样品处理,萃取和注射等步骤。SPE的洗脱处理只能是从上到下,而MEPS可以从两个方向洗脱处理。1MEPS的装置  MEPS的装置是把大约2mg固体吸着剂像塞子一样装到注射器(100,250μ L)的筒和针之间,如图1所示,这种技术结合样品萃取、预浓缩和洗脱于一体,设备有两部分:MEPS注射器和MEPS床,也叫做BIN,BIN包括MEPS床(固体吸着剂),和填充MEPS床的注射器针。BIN使用100-μ L或250-μ L气密MEPS注射器,它可以经受正常SPE的压力。图1MEPS的装置  当BIN失效或需要更换其他吸着剂时,把螺母拧开更换旧的BIN,换上新的BIN。整个装置可以手动或在线使用,MEPS适合于使用反相、正相、和离子交换模式下进行萃取富集。一般上讲,MEPS可以适应SPE的特点要求,只是把有效体积缩小到10μ L,这样可以适应于LC或GC的自动进样注射器进样。MEPS的特点是使用很少量吸着剂,并且用很少量溶剂就可以把样品洗脱下来。2MEPS的各种形式  MEPS经过多年的研究进化,从手动(装在注射器中,或叫BIN)到半自动和全自动装置,见图2。图2MEPS的各种形式  MEPS的最重要的部分是吸着剂,重要的吸着剂见图3,最常用的是以硅胶为基质的键合于硅胶表面的烷烃固定相C2、C8和C18,很多研究者也喜欢使用聚酯类吸着剂。  通用型吸着剂的缺点是没有选择性,为了克服这个问题,人们选择分子印迹聚合物(MIPs),用以识别特异性的目标化合物。另一方面MEPS也使用聚吡咯或聚酰胺类吸着剂,它们成功地用于杀虫剂和水性样品的分离。此外有人合成了聚苯胺(PANI)纳米丝,做成网络用于从水样中选择性分离三嗪、有机氯、有机磷农药。  近来Abdel-Rehim研究组合成了一些适合于MEPS的新型吸着剂,具有高效、耐用、易于使用的特点,例如碳基吸着剂材料、针内溶胶凝胶MIP、溶胶凝胶MIP修饰的膜、和溶胶凝胶MIP点纺丝吸着剂。有关样品萃取吸着剂有多种多样品种可供选择(TrendsinAnalyticalChemistry,2016,77:23–43),下一讲讨论这一问题。3MEPS装置的自动化应用举例  MEPS自动化是把MEPS与自动进样器结合起来组成一个系统,来完成MEPS的所有步骤,包括样品的保温、萃取、清洗、温度控制、萃取和解析的时间控制,通过计算机上的操作系统来进行整个分析过程,这种设备有多家公司的商品仪器出售。  这种自动化的MEPS再与96微盘进样结合起来,可以大大缩短总分析时间,构成高通量分析模式。MEPS自动化可以使用多支萃取头组成萃取头集合,如图3的A,也可以和管尖填充固定相微萃取(MEPS),如图3的F,它的结构是萃取头放在微量吸液管的管尖处。也可以使用管内SPME或固相微萃取棒与HPLC组成自动化系统。图3MEPS的自动化设备图3的说明:  A--多个萃取头集合 B--96支微管机械手操作台:(1)96-TFME(薄膜微萃取)设备,(2,4,5)是轨道搅拌器,分别用于预处理、萃取、和解析,(3)是固定相洗涤台,(6)是96支微管的氮气排空设备,(7)是注射器臂,(8)是XYZ行程臂,用于TFME或氮气排空设备准确地定位,置于多管萃取瓶(2-5)上 C—是B图中TFME设备的详图 D—是TFME与DESI(脱附电喷雾电离)结合图,其中(1)电喷雾器,(2)进样毛细管,(3)是TFME设备固定于台子上,(4)是旋转台,(5)是按XYZ方向运行的样品台,(6)是气源,(7)是溶剂瓶 E—处于轨道搅拌器位置的活体SPME96微管解析设备 F--管尖填充固定相微萃取设备详图 G--管尖固相微萃取设备与商品TomtecQuadra96结合使用图。  (VuckovicD,TrAC,2013,45:136-153)4MEPS在各个方面的应用举例  MEPS近年有很多应用,下表1列出100例的应用实例。表1近年MEPS应用举例分析物吸着剂基体方法文献1利多卡因,甲哌卡因、布比卡因,罗哌卡因C18人血浆Gc-MSJChromatogrB,2004,801:317–3212肌氨酸MIP人血浆,尿液LC-MS/MSJSepSci,2014,doi:10.1002/jssc.2014011163局部麻醉药硅基苯磺酸阳离子交换剂人血浆LC-MS/MSJChromatogr,2004,B813:129–135.46-(苄基氨基)-2(R)-[[1-(羟甲基)丙基]氨基]-9-异丙基嘌呤(Roscovitine)聚苯乙烯聚合物ISOLUTEENV+血浆,尿液LC-MS/MSJChromatogrB,2005,817:303–3075奥罗莫星(Olomoucine)聚苯乙烯聚合物人血浆LC-MS/MSAnalChimActa,2005,539:35–396罗哌卡因,利多卡因,代谢物(甘氨酰二甲苯胺,甘氨酸二甲代苯胺,3-OH-利多卡因)硅胶基(C8),聚合物(ENV+),和甲基丙烯酸甲酯的有机整体柱血浆,尿液LC-MS/MSJLiqChromatogrRelatTechnol,2006,29:829–840.7醋丁洛尔,美托洛尔聚苯乙烯聚合物血浆,尿液LC-MS/MSJLiqChromatogrRelatTechnol,2007,30:575–5868美沙酮Csilica-C8血浆,尿液GC/MSJSepSci,2007,30:2501–25059环磷酰胺C2-吸附剂病人血浆LC-MS/MSJLiqChromatogrRelatTechnol,2008,31:683–694.10AZD3409(N-[2-[2-(4-氟苯基)乙基]-5-[[[(2S,4S)-4-[(3-吡啶羰基)硫代]-2-吡咯啉]甲基]氨基]苄基]-L-蛋氨酸1-甲基乙酯)C2,C8,聚苯乙烯聚合物大鼠,狗和人血浆样品LC-MS/MSJChromatogrSci,2008,46:518–523.11布比卡因和[d3]-甲哌卡因C18羟基化聚苯乙烯二乙烯基本共聚物(ENV+)血浆样品LC-MS/MSAnalChimActa,2008,630:116–12312氟喹诺酮类C18尿样CE-MSAnalChem,2009,81:3188–319313可卡因及其代谢物C8,ENV+,OasisMCX,CleanScreenDAU人尿样MS-TOFJAmSocMassSpectrom,2009,20:891–89914麻醉药品C18人血浆CE-MSElectrophoresis,2009,30:1684–169115甲基安非他明和安非他明C18头发MiAMi–GC/MSJChromatogrA,2009,1216:4063–407016溶解性有机物和天然有机物C18河水海水样品FT-ICR-MSAnalBioanalChem,2009,395:797–80717单萜类代谢产物C18人尿样GC/MSMicrochimActa,2009,166:109–11418有机优先污染物和暴露的化合物C18硅胶废水和雪水GC/MSJChromatogrA,2010,1217:6002–601119抗抑郁药C8人血浆LC-UVJChromatogrB,2010,878:2123–212920利培酮及其代谢产物C8血浆和唾液LC库伦检测器Talanta,2010,81:1547–155321紫外滤光片和多环麝香化合物C8,C18水样GC-MSJChromatogrA,2010,1217:2925–293222奥卡西平及其代谢物C18血浆和唾液LC-DADAnalChimActa,2010,661:222–22823可替宁C2,C8,C18,硅胶,C8/SCX人尿样GC–MSAnalBioanalChem,2010,396:937–94124甾体代谢物C18动物尿样GC–MSJChromatogrA,2010,1217:6652–666025利培酮和9-羟利培酮C8人血浆、尿样,唾液LC-UVJChromatogrB,2011,879:167–17326氟喹诺酮类化合物MIP水样LC–MS/MSAnalChimActa,2011,685:146–15227非极性杂环胺C18尿样μ LC-荧光检测Talanta,2011,83:1562–156728瑞芬太尼C8人血浆LC–MS/MSJChromatogrB,2011,879:815–81829氯氮平及其代谢产物--干血斑LC库伦检测器JChromatogrA,2011,1218:2153–215930阿托伐他汀及其代谢产物C8病人血清UHPLC-MS/MSJPharmBiomedAnal,2011,55:301–30831氯贝酸,布洛芬,萘普生,双氯芬酸和布洛芬C18水样PTV–GC–MSJChromatogrA,2011,1218:9390–939632雌激素类化合物的17β -雌二醇MIP,C18-硅胶(改性)水样GC–MSAnalChimActa,2011,70341–5133阿片类药物C8海洛因成瘾患者血浆LC-CDAnalChimActa,2011,702:280–28734(E)-白藜芦醇C2,C8,C18,SIL(未改性硅胶),M1(80%C8和20%SCX)酒UPLC-PDAJSepSci,2011,34:2376–238435美沙酮C18干血斑(美沙酮维持治疗患者)LC库伦检测器AnalBioanalChem,2012,404:503–51136黑索金,TNTC18人血浆,火药LC-UVChromatographia,2012,75:739–74537多环芳烃C18水GC–MSTalanta,2012,94:152–15738免疫抑制药物C8全血LC–MS/MSJChromatogrB,2012,897:42–4939生物相关的酚类成分C2,C8,C18,SIL,andM1酒UPLC-PDAJChromatogrA,2012,1229:13–2340哌嗪类兴奋剂C18人尿样LC-DADJPharmBiomedAnal,2012,61:93–9941精神治疗药C18,C8,和C8-SCX人血清LC-DADAnalBioanalChem,2012,402:2249–225742普萘洛尔、美托洛尔、维拉帕米C2,C8,C18,1M(阳离子交换剂)和Sil尿样微量毛细管阵列电离质谱RapidCommunMassSpectrom,2012,26:297–30343普伐他汀普伐他汀内酯C8大鼠血清和尿样UHPLC–MS/MSTalanta,2012,90:22–2944酚酸C18血浆GC–MSJChromatogrA,20121226:71–7645抗癫痫剂C18人血浆和尿样LC-UVJSepSci,2012,35:359–36646离子液体硅胶河水CETalanta,2012,89:124–12847有机磷农药聚吡咯/尼龙水样GC–MSJSepSci,2012,35:114–12048挥发性和半挥发性成分C2,C8,C18,硅胶和M1(混合C8-SCX)酒GC–MSTalanta,2012,88:79–9449哌嗪类兴奋剂C8,C18人尿样UPLC-DADJChromatogrA,2012,1222:116–12050感觉神经元特异性受体激动剂BAM8-22和拮抗剂BAM22-8C2,C8和ENV+血浆GC-MS,LC-MSBiomedChromatogr,27,2013:396–40351大环麝香香水C18废水GC-MSJChromatogrA,2012,1264:87–9452多环芳烃C8水GC-MSJChromatogrA,2012,1262:19–2653抗癫痫药物C18人血浆和尿液GC-MSJSepSci,2012,35:2970–297754卤代苯甲醚C18酒GC-ECDJChromatogrA,2012,1260:200–20555芳香胺C18环境水样GC-MSAnalBioanalChem,2012,404:2007–201556农药聚苯胺纳米线水样GC-MSAnalChimActa,2012,739:89–9857黄酮醇C2、C8、C18和C8/SCX,SIL葡萄酒UPLC-DADAnalChimActa,2012,739:89–9858褪黑素与其他抗氧化剂C8食品LC-荧光检测JPinealRes,2012,53:21–2859L-抗坏血酸的测定C2,C8,C18和含C8的硅胶类似M1饮料LC-UVFoodChem,2012,135:1613–161860卤代乙酸C18氯化水GC-MSJChromaogrA,2013,1318:35–4261局部麻醉剂:利多卡因,甲哌卡因和布比卡因MIP血浆和尿液LC-MS/MSBiomedChromatogr,2013,27:1481–148862心脏药物C8尿液UHPLC-MS/MSJChromatogrB,2013,938:86–95635-羟色胺再摄取抑制剂,抗抑郁药C8和强阳离子交换剂血浆非水-CEJBrazChemSoc,2013,24:1635–164164麝香酮C18河水表面增强拉曼光谱(SERS)AnalBioanalChem,2013,405:7251–725765利多卡因C8唾液LC-MS/MSBiomedChromatogr,2013,27:1188–119166非甾体类抗炎药C18人尿UHPLC-UVJChromatogrA,2013,1304:1–967苯基黄酮C2、C8、C18,SIL,M1啤酒UHPLC-DADJChromatogrA,2013,1304:42–5168大麻类C18口服液LC-MS/MSJChromatogrA,2013,1301:139–14669氯苯C18水样GC-MSAnalBioanalChem,2013,405:6739–6748.70迷迭香酸CMK-3纳米碳水样LC-UVChromatographia,2013,76:857–86071氧化应激生物标记物C2,C8,C18,SIL,M1病人尿样UHPLC-PDATalanta,2013,116:164–17272橄榄生物酚CMK-3纳米碳大鼠血浆LC-UV73AnalSci,2013,29:527–53273抗精神病药物80%C820%SCX血浆GC-MS/MSAnalBioanalChem,2013,405:3953–396374多环芳烃和硝基麝香C18环境水LVI-GC–MSAnalChimActa,2013,773:68–7575氧化损伤DNA尿中的生物标记物C8尿LC-PDAPLoSONE8(2013)e5836676抗精神病药物C18血浆GC-MSAnalChimActa,2013,773:68–7577羟基苯甲酸和羟基酸C2、C8、C18和C8,SIL/SCX葡萄酒LC-PDAMicrochemJ,2013,106:129–13878抗精神病药齐拉西酮C2血浆LC-UVJPharmBiomedAnal,2014,88:467–47179可的松,皮质酮,acortisolC8唾液、血浆、尿液和血液LC-DADJPharmBiomedAnal,2014,88:643–64880恩替卡韦多孔石墨化碳颗粒血浆,血浆超滤液LC-MS/MSJPharmBiomedAnal,2014,88:337–34481莱克多巴胺C18和C8/SCX,8μ L容器猪肌肉和尿液样本LC-UVFoodChem,2014,145:789–79582芳香胺DVB纺织品中偶氮染料GC-MSTalanta,2014,119:375–38483氨基甲酸乙酯SIL,C2,C8,C18,andM1强化葡萄酒GC-MSAnalChimActa,2014,818:29–3584贝塔受体阻滞剂美托洛尔和醋丁洛尔聚苯乙烯人血浆和尿样C-MS/MSM.M.Moein(Ph.D.thesis),StockholmUniversity,201485多环芳香族碳氢化合物C8水样GC-MSJChromatogrA,2006,1114:234–23886布比卡因,利多卡因,罗哌卡因C18人血样LC-MS/MSBioanalysis,2010,2:197–20587卤乙酸C18氯化水GC-MSJChromatogrA,2013,1318:35–4288三环类抗抑郁药C8/SCX口腔液体UHPLC–MSChromatogrA,2014,1337:9–1689氯酚C18土壤样品GC-MSJChromatogrA,2014,1359:52–5990溴联苯醚C18污泥GC-MSJChromatogrA,2014,1364:28–3591非甾体类抗炎药物C18血浆和尿样HPLC-PDAJChromatogrA1367(2014)1–892瘦肉精,MIP猪肉样品HPLCJPharm.BiomedAnal.91(2014)160–16893卡马西平、拉莫三嗪,奥卡西平,苯巴比妥,苯妥英和活性代谢物环氧化卡马西平和利卡西平C18血浆HPLC-DADJChromatogrB971(2014)20–2994千金藤素C8血浆UPLCJAnalMethodsChem,2014,2014:1–695磺胺类药物C8鸡粪废水样品HPLCJLiqChromatogrRelatTechnol,2014,37:2377–238896五种抗精神病药(奥氮平、奎硫平、氯氮平、氟哌啶醇、氯丙嗪)和七中抗抑郁药(米氮平、帕罗西汀、舍曲林、西酞普兰,氯丙咪嗪,丙咪嗪、氟西汀)氨丙基杂化硅胶整体柱血浆LC–MS/MSTalanta1,2015,40:166–17597肉碱和酰基肉碱C2,C8,C18,M1人尿LC–MS/MSJPharmaceuBiomedAnal,2015,109:171–17698儿茶酚胺类(如去甲肾上腺素、肾上腺素和多巴胺)C18干燥血浆和尿渍HPLC-库伦检测器JPharmaceuBiomedAnal,2015,104:122–12999氯胺酮及其代谢物M1血浆GC-MS/MSJChromatogrB,2015,1004:67–78100贝塔受体阻滞剂美托洛尔,醋丁洛尔Carbon-XCOS血浆LC-MS/MSJChromatogrB,2015,992:86–905小结  样品制备是分析复杂样品的难题,例如对生物分析样品的处理,其成分复杂,有时样品量很少,所以MEPS很适合在这一场合的应用,从举出的100例应用中也可以看出它适合于生物样品分析的前处理。
  • 【解决方案】阻击疫情,仪器人在行动—东西分析顶空进样-气相色谱法测定口罩中环氧乙烷残留量
    2020年,新冠病毒肺炎疫情爆发,口罩也因疫情的突袭成为“紧缺资源”,全国各地口罩短缺告急。抗击新冠疫情,我们仪器及检测人也在行动,再次呼吁,越是紧缺的市场环境,越不能忽视口罩的质量问题。口罩尤其是医用一次性口罩都是使用环氧乙烷(EO)灭菌的,因为它是广谱、高效的气体杀菌消毒剂。下面小动画是演示口罩生产过程中如何消毒的。EO(下图的黄色是为了高亮,其实无色的)达到一定浓度后完成了消毒过程。但EO残留一旦过量,将对人体产生毒害,不仅会引起中毒,还会有致过敏、致突变和致癌等作用。因此必须控制EO的残留。近日,东西分析推出利用顶空进样-气相色谱法测定口罩中的EO残留量的解决方案,为您的健康保驾护航!(图片来源于网络)实验部分仪器部分:GC-4100气相色谱仪配FID检测器HS-2型顶空进样器仪器条件:色谱条件:顶空进样器条件:标准曲线:结果:说明: 该方法适用于所有采用环氧乙烷灭菌装置消毒灭菌的一次性医疗用品环氧乙烷残留量检测,如一次性医用防护口罩、一次性使用无菌注射器、医用缝合线、一次性使用防护服等。 【环氧乙烷残留量检测执行标准】GB19083-2010《医用防护口罩技术要求》;GB/T 14233.1-2008 医用输液、输血、注射器具检验方法 第1部分:化学分析方法;GB/T 16886.7-2015医疗器械生物学评价 第7部分:环氧乙烷灭菌残留量。 GC-4100系列气相色谱仪高自动化整机实现计算机控制 高精度满意的峰面积和保留时间重复性检测器灵敏度大幅度提高,低的噪声,小的基线漂移 灵活性和扩展性可同时安装三种检测器、三个进样口和三根色谱柱可同时具有三个独立的电路、气路系统和信号输出端可扩展进样系统、灵活多样的进样方式可预留质谱联用通道 重复性好使用毛细管柱ECD检测器,分流进样方式,手动连续6次进样RSD≤1.50%(n=6,γ—666);自动进样器分析效果好,RSD可达1.00%以内。 疫情无情人有情,让我们众志成城,共克难关! 武汉加油!湖北加油!中国加油! 欢迎关注东西分析更多战疫情行动。
  • 固定污染源废气中的挥发性有机物现场测试方案-便携式气相色谱柱质谱法(上)-北京博赛德
    前言:大气污染治理重要的一环是控制污染源,通过对污染源废气的监测,分析废气的组成,为污染治理工作提供数据依据。和环境空气中挥发性有机物的分析不同,污染源中挥发性有机物的种类繁多,且浓度普遍偏高,对质谱定性能力和耐污染能力要求较高;污染源的现场环境条件复杂,高温、高湿和粉尘等会对挥发性有机物的分析产生巨大的影响。北京博赛德公司除提供完备的实验室分析方案,详见《真空瓶采样-热脱附气相色谱-质谱法测定固定污染源废气中挥发性有机物方案》,还推出现场分析检测方案。结合2020年3月25日生态环境部推出的《固定污染源废气 挥发性有机物的测定 便携式气相色谱-质谱法(征求意见稿)》,以及污染源废气高湿、高浓度等因素,推荐通过气袋(或真空瓶)采集固定污染源废气样品,稀释后使用HAPSITE便携式气质联用仪经吸附管富集、热脱附后分析检测。相比小体积定量环采样分析,此方案采样量更具代表性,且通过稀释,降低了样品浓度和湿度,从而减小对仪器的污染。本文将介绍气袋采样、HAPSITE分析检测固定污染源废气中的挥发性有机物的操作流程,分别从前期准备、样品采集与稀释、空白测试、样品分析、结果计算和附件来详细介绍。前期准备1.1配件(1)满电的内置电池或SuperPower便携式电池及连接线缆;(2)满瓶内置载气和内标气;(3)高纯氮气:纯度≥99.999%,用于空白测试、样品稀释;(4)无本底的干净气袋;(5)气袋采样系统:符合HJ732的相关规定;(6)注射器:用于样品稀释,玻璃材质;(7)标准气体:质控或现场单点校准。1.2预制校准曲线预先制作校准曲线,分别制作低浓度系列和高浓度系列校准曲线,参考如下:低浓度系列为 2.0 nmol/mol、5.0 nmol/mol、10.0 nmol/mol、25.0 nmol/mol、50.0 nmol/mol;高浓度系列为 50.0 nmol/mol、100 nmol/mol、200 nmol/mol、400 nmol/mol、600 nmol/mol。依次从低浓度到高浓度进行测定,绘制校准曲线。未完待续
  • 气相色谱仪使用气体的纯度分析
    操作气相色谱仪如何选用不同气体纯度的气源做载气和辅助气体,虽然是一个老的技术问题,但是对于刚刚接触气相色谱仪的用户,目前很难找到有关这方面的综合资料,所以他们总是到处询问究竟选择什么样的气体纯度zui好的这类问题。根据每一家用户具体使用的那一类仪器,选择什么样纯度的气体,确实是一个比较复杂的问题。原则上讲,选择气体纯度时,主要取决于①分析对象;②色谱柱中填充物;③检测器。我们建议在满足分析要求的前提下,尽可能选用纯度较高的气体。这样不但会提高仪器的高灵敏度,而且会延长色谱柱,整台仪器的寿命。实践证明,作为中仪器,长期使用较低纯度的气体气源,一旦要求分析低浓度的样品时,要想恢复仪器的高灵敏度有时十分困难。对于低档仪器,作常量或半微量分析,选用高纯度的气体,不但增加了运行成本,有时还增加了气路的复杂性,更容易出现漏气或其他的问题而影响仪器的正常操作。另外,为了某些特殊的分析目的要求特意在载气中加入某些“不纯物”,如:分析极性化合物添加适量的水蒸气,操作火焰光度检测器时,为了提高分析硫化物的灵敏度,而添加微量硫。操作氦离子化检测器要氖的含量必须在5~25ppm,否则会在分析氢,氮和氩气时产生负峰或“W”形峰等。本文就不在此做详细讨论了。 气体纯度低的不良影响 根据分析对象,色谱柱的类型,操作仪器的挡次和具体检测器,若使用不合要求的低纯度气体,不良影响有以下几种可能: 1)样品失真或消失:如H2O气使氯硅样品水解; 2)毛细管色谱柱失效:H2O,CO2使分子筛柱失去活性,H2O气使聚脂类固定液分解,O2使PEG断链。 3)有时某些气体杂质和固定液相互作用而产生假峰; 4)对柱保留特性的影响:如:H2O对聚乙二醇等亲水性固定液的保留指数会有所增加,载气中氧含量过高时,无论是极性或是非极性固定液柱的保留特性,都会产生变化,使用时间越长影响越大 5)检测器: TCD:信噪比减小,无法调零,线性变窄,文献中的校正因子不能使用,氧含量过大,使元件在高温时加速老化,减少寿命。 FID:特别是在Dt≤1Ⅹ10ˉ⒒/秒下操做时,CH4等有机杂质,会使基流激增,噪声加大不能进行微量分析。 ECD:载气中的氧和水对检测器的正常工作影响zui大,在不同的供电工作方式中,脉冲供电比直流电压供电影响大,固定基流脉冲调制式供电比脉冲供电影响大。这就是为什么目前诸多在操作固定基流脉冲调制式ECD时,在载气纯度低时必须把载气纯度选择开关从“标准氮”拨到“一般氮”位置的原因。大家会发现在此情况下操作,不但灵敏度变低,而且线性亦变窄了。实践证明:在操作ECD时,载气中的水含量低于0.02ppm,氧低于1ppm时可达到较理想的性能。值得指出的是,我们多次发现由于仪器的调节气路系统被污染而造成的对载气的二次污染至使ECD基频大幅度增加使信燥比减小。FPD和NPD等常用检测器,由于他们属于选择性检测器,操做时要根据分析要求,特别注意被测敏感物质中杂质的去除。 6)在做程序升温操作时,载气中的某些杂质,在低温时保留在色谱柱中,当拄温升高时不但引起基线漂移还可能在谱图上出现比较宽的"假峰"。 7)仪器影响 a. 各类过滤器加速失效 b. 调节阀(稳压阀,稳流阀,针形阀)被污染,气阻堵塞,调节精度降低或失灵; c.气路系统被污染,若要恢复仪器在高灵敏度情况下操做,有时要吹洗很长时间(可能一周以上)污染严重时有时再也无法恢复。 d.检测器的寿命,实践表明,对ECD和TCD的寿命影响zui明显,应引起用户特别注意。------ 责任编辑:瑞利祥合--色谱仪采购顾问版权所有(瑞利祥合)转载请注明出处
  • 气相色谱仪维修手册(堪称最全,没有之一!)
    哎呀,我的气相色谱进样后咋不出色谱峰?咦,怎么气相色谱基线又出现漂移问题了?气相色谱出了小故障,维修工程师不愿来,我这实验数据得马上出,咋办?  &hellip &hellip   各位是不是快被各种莫名其妙的气相色谱故障逼疯了?别发愁了,快来看看这篇《气相色谱仪维修手册》吧。它几乎囊括了气相色谱所有的常见故障,每种故障还列出了5种以上的排除方法;同时还包括N多种图谱分析方法,这可是从事色谱实验室分析工作的同学们必看的&ldquo 红宝书&rdquo 啊!&hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr 故障分析方法(一)  ▲故障分析的基础:  组成:由哪些部分组成?  作用:各部分起什么作用?  原理:各部分的工作原理是怎样的?  判别:如何判别工作正常与否?  注意事项:检修过程中哪些方面必须注意?故障分析方法(二)  ▲故障分析的思路:  注意事项:  1.保护人体,安全第一,防止事故发生。  2.保护设备,避免故障扩大、转移。  确定范围:  确定与该故障有关的部分和相关因素。  故障检查:  1.顺序推理法:根据工作原理顺序推理,检查、寻找故障原因。  2.分段排除法:逐个排除,缩小范围,检查、寻找故障原因。  3.经验推断法:根据经验积累,检查、寻找故障原因。  4.比较检查法:参照工作正常的仪器,检查、寻找故障原因。  5.综合法:综合使用上述各种方法,检查、寻找故障原因。故障分析方法(三)  ▲GC故障的种类:  气路部分故障:气体输入不正常、气体品种不对或纯度不够、气路泄漏、气路堵塞、气路污染、气路部件故障、流量设置不正常、色谱柱问题、等等。  主机电路部分故障:启动或初始化不正常、温度控制部分故障、键盘或显示部分故障、开关门不正常、点火不正常、电流设置不正常、量程或衰减设置不正常、其他功能性故障、等等。  检测器输出信号不正常:无信号输出、输出信号零点偏离、输出信号不稳定、输出信号数值不对、等等。  其他故障:气源不正常、电网电压不正常、二次仪表不正常、机械类故障、等等。故障分析方法(四)  ▲故障的判别:  基础:检查、寻找故障原因的基础是掌握故障判别的方法。掌握故障判别方法的基础是熟悉和了解仪器各部分的组成、作用、工作原理。  输入与输出:通常仪器的每个部分、部件、甚至零件都有它的输入和输出,输入一般是指该部分正常工作的前提,输出一般是指该部分所起的作用或功能。  举例:例如FID放大器,它的输入是FID检测器通过离子信号线传送过来的微电流信号、放大器的工作电源、以及放大器的调零电位器,它的输出是经过放大并送到二次仪表的电信号。判别FID放大器是否工作正常的方法是:A.如果输入正常而输出不正常,则放大器故障。B. 如果输入输出均正常,则放大器正常。C.如果输入不正常,则放大器是否正常无法判定。  收集与积累:积极收集、认真记录、不断积累仪器各个部分工作正常与否的各种判别方法,并了解、熟悉、掌握、牢记这些故障判别方法。&hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr 故障分析举例(一)  ▲气路部分不正常。  ⊙指气路系统出现堵塞、泄漏、无压力指示、无气体输出等故障。  A.检查气源部分(气瓶、气体发生器等)是否正常。  B.利用输入气体压力表检查气体输入是否正常,否则检查净化器等外部气路及稳压阀等是否正常。  C.如果是载气流路,则可在色谱柱前后检查进样器的气体输出是否正常,否则检查稳压阀至色谱柱这一段。  D.如果是氢气或空气流路,则可利用仪器顶部的气路转接架检查气体输出是否正常,否则检查稳压阀至气路转接架这一段。  E.检查检测器的气体输入、输出是否正常。  F.在气路系统的适当地方进行封堵,并观察相应压力表的指示变化,是检查漏气的常用方法。  G.安全起见,可以利用氮气对氢气流路进行检查。故障分析举例(二)  ▲仪器启动不正常。  ⊙指接通电源后,仪器无反应或初始化不正常。  A.关机并拔下电源插头,检查电网电压以及接地线是否正常。  B.利用万用表检查主机保险丝、变压器及其连接件、电源开关及其连接件、以及其他连接线是否正常。  C.插上电源插头并重新开机,观察仪器是否已经正常。  D.如果启动正常,而初始化不正常,则根据提示进行相应的检查。  E.如果马达运转正常,而显示不正常,则检查键盘/显示部分是否正常。  F.如果显示正常,而马达运转不正常,则检查马达及其变压器、保险丝等是否正常。  G.必要时可拔去一些与初始化无关的部件插头,并进行观察。  H.如果初始化仍不正常,则基本上可确定是微机板故障。故障分析举例(三)  ▲温度控制不正常。  ⊙指不升温或温度不稳定。  A.所有温度均不正常时,先检查电网电压及接地线是否正常。  B.所有温度均不稳定时,可降低柱箱温度,观察进样器和检测器的温度,如果正常,则是电网电压或接地线引起的故障。  C.如果电网电压和接地线正常,则通常是微机板故障,一般来说各路温控的铂电阻或加热丝同时损坏的可能性极下。  D.如果是某一路温控不正常,则检查该路温控的铂电阻、加热丝是否正常。  E.如果是柱箱温控不正常,还要检查相应的继电器、可控硅是否正常。  F.如果铂电阻、加热丝等均正常,则是微机板故障。  G.在上述检查过程中,要注意各零部件的接插件、连接线是否存在断路、短路、以及接触不良的现象。故障分析举例(四)  ▲点火不正常。  ⊙指FID、NPD、FPD检测器不能点火或点火困难。  A.检查载气、氢气、空气是否进入检测器,否则检查气路部分。  B.检查各种气体的流量设置是否正确,否则重新设置。  C.观察点火丝是否发红,否则检查点火丝是否断路或短路、接触不良,以及检查点火丝形状是否正常。  D.点火丝正常的情况下,FID、FPD检测器观察点火继电器吸合是否正常,点火电流是否加到点火丝上,否则检查相应的电路部分。  E.NPD检测器在确认铷珠正常的前提下,观察电流调节是否正常,否则检查相应的电路部分。  F.检查检测器是否存在污染、堵塞现象。  H.检查检测器内部是否存在漏气现象。故障分析举例(五)  ▲出部分反峰:  ⊙指大部分峰为正向出峰,但一部分峰为反向出峰,或基线往负方向偏移。  A.使用空气压缩机时,检查确认反向出峰或基线往负方向偏移是否与空气压缩机的动作(空气压力不足时空气压缩机自动动作)在时间上是否同步。  B.较多水份进入离子化检测器时,火焰的燃烧状态短时间会起变化,伴随出现反峰(这不是异常)。  C.检查各种气体的流量设置是否正常,以及是否存在漏气现象。  D.检查载气的纯度,如果载气里面有微量不纯物,而样品的纯度如果比载气的纯度高,就会出反峰。  E.气路切换时有压力冲击,也会出现反峰,此时气路中应加接稳压装置。  F.使用TCD时,如果载气和样品的热导系数过于接近,也会出现一部分或全部的反峰。故障分析举例(六)  ▲出峰后零点偏移:  ⊙指样品出完溶剂峰等平顶峰后基线不能回到原来的零点。  A.各气体流量是否正常(数值、稳定)。  B.柱箱、检测器的温度是否正常(数值、稳定)。  C.检测器是否被污染,如果污染进行清洗或更换零件  D.必要时在通入载气的情况下,将检测器的温度设置在200℃以上进行数小时的老化。  E.色谱柱是否老化不足,必要时在载气进入色谱柱的情况下,将色谱柱箱的温度设置在色谱柱的最高使用温度下30度左右进行10小时以上的老化,或用程序升温方式进行老化。  F.减少进样量。  G.使用TCD时,如果大量的氧成分注入TCD,会引起TCD钨丝的阻值发生变化,使得基线无法回零,钨丝的寿命也会减短。故障分析举例(七)  ▲基流过大、无法调零(1):  ⊙指对基线进行调零时,发现基流增大,零点与平时相比有偏离或无法调零。  A.将火焰熄灭或关闭电流之后基线还是无法回零时,要考虑是否电路系统的故障或接触不良、绝缘退化等因素:  1).检查检测器和离子信号线是否有接触不良、绝缘退化等现象。  2).检查检测器是否被污染,如果污染请进行清洗。  3).检查检测器温度是否正常,必要时对检测器进行老化。  4).检查是否离子信号线故障、放大器电路板故障、输出信号线故障、积分仪/工作站故障。  5).使用TCD时,检查TCD钨丝电流的设定是否太大。  B.色谱柱箱温度冷却到室温,调零还是不正常时,要考虑检测器自身的原因:  1).检查各种气体是否污染或流量不正常、漏气。  2).检查检测器是否被污染,如果污染请进行清洗。故障分析举例(八)  ▲基流过大、无法调零(2):  C.降低进样口温度后基始电流也不减少时:  1).检查载气是否污染或流量不正常。  2).检查色谱柱安装连接部分或进样垫部分是否有漏气现象。  3).检讨是否色谱柱老化不足,比要时在载气进入色谱柱的情况下对色谱柱进行老化。  D.降低进样器温度后基始电流有缩减少时,可以判定是进样口、进样垫或进样衬管等有污染现象,应对进样器部分进行清洗。故障分析举例(九)  ▲基线扭动(1):  ⊙指基线上下扭摆不停超出标准范围、无法走直稳定。  注意:发现基线扭动时,请先检查电网电源是否有异常波动或突变,特别是在同一电网电源上接有大功率装置时,更要注意。同时检查仪器的接地是否正确并且良好。  A.将火焰熄灭之后基线如果还是扭动:  1).检查检测器是否被污染,如果污染请进行清洗。  2).检查检测器的温度是否正常,必要时检测器进行老化。  3).检查是否离子信号线故障、放大器电路板故障、输出信号线故障、积分仪/工作站故障。  B.将火焰熄灭之后基线停止扭动,降低色谱柱箱的温度扭动幅度却不变小:  1).检查使用的空气是否有污染现象,注意更换气体过滤器的过滤剂,及对空气压缩机进行放水。  2).检查空气压缩机的起动与基线扭动有没有关系,否则维修空气压缩机。  3).检查检测器是否被污染,如果污染请进行清洗。  4).检查检测器的温度是否正常,必要时检测器进行老化。故障分析举例(十)  ▲基线扭动(2):  C.降低色谱柱温度后基线扭动减少,但降低进样器温度扭动幅度却不变小,则基线扭动的原因与色谱柱或载气有关:  1).检查载气是否污染或流量不正常。  2).检查色谱柱安装连接部分或进样垫部分是否有漏气现象。  3).检讨是否色谱柱老化不足,必要时对色谱柱进行老化。  D.降低进样口温度之后基线扭动减少,要考虑是否进样口有污染现象:  1).如果确认进样器污染,请进行清洗。  2).更换新的进样垫。  3).检查进样器温度是否波动。故障分析举例(十一)  ▲基线漂移过大(1):  ⊙仪器刚启动、色谱柱更换后不久,基线的漂移是正常现象。基线漂移过大是指基线的漂移比正常的标准高很多,并且始终无法稳定下来。  A.将火焰熄灭之后如果基线还是漂移很大,要考虑是否电路系统的故障或接触不良、绝缘退化等因素:  1).检查检测器和离子信号线是否有接触不良、绝缘退化等现象。使用TCD时,检查TCD的钨丝及引线是否接触不良。  2).检查检测器是否被污染,如果污染请进行清洗。  3).检查检测器的温度是否正常,必要时对检测器进行老化。  4).检查是否离子信号线故障、放大器电路板故障、输出信号线故障、积分仪/工作站故障。  B.将火焰熄灭之后基线不再漂移,降低色谱柱箱的温度漂移幅度却不变小,这种情况是色谱柱之后的部分有问题:  1).检查各种气体是否污染或流量不正常。  2).检查检测器是否被污染,如果污染请进行清洗。  3).检测器的使用温度在350℃以上时,某些毛细管色谱柱外侧的树脂成分可能受热分解引起基线漂移,这种情况请把FID温度降到350℃以下。  4).检查检测器温度是否波动。  5).使用TCD时,检查TCD钨丝电流的设定是否太大。故障分析举例(十二)  ▲基线漂移过大(2):  C.降低色谱柱温度后基线漂移减少,但降低进样口温度漂移幅度却不变小,这种情况基线漂移的原因与色谱柱或载气有关:  1).检查载气是否污染或流量不正常。  2).检查色谱柱安装连接部分或进样垫部分是否有漏气现象。  3).是否色谱柱老化不足,必要时对色谱柱进行老化。  4.检查检测器温度是否波动。  D.降低进样口温度之后如果基线漂移减少,要考虑是否进样口有污染现象,请进行下列项目的检查:  1).如果确认进样器污染,请进行清洗。  2).更换新的进样垫。  3).检查进样器温度是否波动。故障分析举例(十三)  ▲进样不出峰(1):  ⊙指进样后没有峰被检测出来,基线只画一条直线。  注意:发现进样不出峰时,首先要考虑载气是否进入仪器(包括色谱柱、检测器),否则可能会造成色谱柱的损伤或检测器的污染。因此发现进样不出峰时,应立即降低色谱柱恒温槽的温度让色谱柱冷却。使用TCD时,必须先将钨丝电流关闭。在确定载气系统正常之后方能进行其他项目的检查。  A.检查检测器的火焰是否熄灭,如果熄灭请重新点火 如果点不着火或者点着后又很容易熄灭时,请进行下列项目的检查:  1).检查点火线圈是否发红,如果不发红应该是点火极部分故障。  2).检查各种气体的流量是否正常,适当加大氢气流量试试。  3).使用TCD时,检查TCD钨丝及钨丝电流的设置是否正常。  B.检查离子信号线与检测器、放大器电路板的连接,以及输出信号线与仪器、积分仪/工作站的连接是否正常可靠。故障分析举例(十四)  ▲进样不出峰(2):  C.调零也不正常时,要考虑是否电路系统的故障,请检查是否信号线的故障、放大器电路板的故障、输出信号线的故障、积分仪的故障。  D.如果进甲烷等常规溶剂还是不出峰或保留时间变慢时,在确认了色谱柱箱的温度降到了室温左右后,请进行下列项目的检查:  1).检查色谱柱是否存在折断现象。  2).检查载气流量是否正常,并进入色谱柱、FID检测器等部分。  E.其他不出峰的原因,请按照下列项目进行检查:  1).注射器不正常。  2).检查色谱柱温度、进样器温度、检测器温度、量程设定等分析条件是否合适。  3).检查样品浓度、样品进样量是否正确。  4).检查样品的取用、色谱柱的选择有没有错误。故障分析举例(十五)  ▲噪声过大(1):  ⊙气相色谱仪启动后不久或色谱柱更换后不久,噪声是不可避免的,这是正常现象。噪声过大是指比正常的标准高得多的噪声或某些不正常的突变。  注意:发现噪声过大时,请先检查气相色谱仪和积分仪使用的电网电源是否有异常波动或突变,特别是在同一电网电源上接有大功率装置时,更要注意。此外,请检查仪器的接地是否正确并且良好。  A.改变量程范围,噪声的大小还是基本不变时,要考虑是否信号线的故障、放大器电路板的故障、输出信号线的故障、积分仪的故障。  B.将火焰熄灭之后噪声如果还是很大,要考虑从检测器到放大器电路板这一段是否存在问题,请进行下列项目的检查:  1).检查检测器的喷嘴、收集极、离子信号线插座、点火线等部分是否固定可靠,请排除接触不良的可能。  2).检查检测器是否被污染,如果污染请进行清洗。  3).要考虑是极化电压、放大器电路板、工作电源的故障。故障分析举例(十六)  ▲噪声过大(2):  C.将火焰熄灭之后噪声如果降低或消失,要考虑是否检测器本身产生过大噪声:  1).检查是否使用的气体纯度太低,请更换气体或使用气体过滤器去除气体中的杂质。  2).检查检测器是否被污染,如果污染请进行清洗。  3).检查空调器等冷暖设备的排风是否正对着气相色谱仪,请改变风向或更换仪器的位置。  D.降低进样口温度后如果噪声变小,要考虑是否进样口有污染现象。  E.降低色谱柱温度后如果噪声变小,要考虑是否载气纯度不够或色谱柱的老化不足,请更换载气或使用气体过滤器去除载气体中的杂质,并对色谱柱进行老化。故障分析举例(十七)  ▲全部出反峰  ⊙指所有样品均反向出峰。  A.检查气相色谱仪相应检测器的信号输出线与积分仪或记录仪、色谱工作站的信号输入端的连接是否正确,将信号输出线的正负两端对换即可。  B.对于具有极性切换功能的检测器,检查其输出信号的正负极性设置是否正确,必要时更改正负极性的设置即可。&hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr 维修注意事项(一)  ▲关于人体安全与环境保护:  ⊙在维修仪器的过程中,首先一定要注意安全和注意保护环境。GC维修中可能造成安全事故与环境污染的因素大致如下所述:  A.氢气泄漏造成爆炸、燃烧等安全事故。  B.电子捕获放射源造成人体伤害、环境污染事故。  C.易燃易爆、有毒、腐蚀性等危险性样品造成安全事故、人体伤害、环境污染事故。  D.高电压、大电流造成触电事故。  E.高温造成的烫伤事故。  F.其他说明书上已有描述的相关注意事项。  上述各项在维修仪器的过程中必须认真对待,例如严密仔细地进行氢气的漏气检查;热导检测器用氢气做载气的情况下,未安装色谱柱或未使用热导检测器时必须关闭气源;避免打开电子捕获检测器 按规范取用危险性样品;可以断电检修的部分尽量断电检修,并在检修时将电源插头拔掉;必须通电时应避开高电压、大电流部分;避免接触高温部分或先将温度降低,等等。维修注意事项(二)  ▲关于仪器的保护:  ⊙在维修仪器的过程中,还要注意按规范认真仔细地操作,避免损坏仪器,造成新的故障或将故障扩大。应该注意的内容如下所述:  A.已安装色谱柱的仪器,在通电之前应先通入载气,一般来说,载气对保护仪器是有利的。  B.热导检测器必须先通载气,然后才能加电流,否则可能烧断钨丝。热导检测器还必须防止氧气、空气进入,否则可能造成钨丝氧化。  C.电子捕获检测器必须防止氧气、空气、杂质进入,否则极易污染。  D.热导检测器和氮磷检测器的电流不能加得太大,否则可能烧断钨丝和铷珠。氮磷检测器的氢气也不能开得太大,否则也会烧断铷珠。  E.火焰光度检测器的光电倍增管必须避免长时间的强光照射。  E.检修时,在仪器通电之前,必须仔细确认各个接插件已正确地插好。  F.任何时候都要避免污染仪器的气路系统、进样及检测系统、色谱柱。  G.柱箱温度的设置不得大于色谱柱允许的最高温度。  H.其他说明书上已有描述的相关注意事项。维修注意事项(三)  ▲关于老化。  ⊙在很多情况下,所谓的故障是由于老化不充分引起的,所以在必要的时候(例如一段时间未用或更换色谱柱后)应该进行老化,避免出现不必要的所谓故障。各种老化的方法如下所述:(注:老化时应适当增加载气流量)  A.色谱柱的老化:在载气进入色谱柱的情况下,将柱箱温度设置在色谱柱允许的最高温度以下30℃,或正常使用温度以上30℃,进行十小时以上的恒温老化;或设置3-5℃/min的升温速率, 40~60℃ 的起始温度,色谱柱允许的最高温度以下30℃的终止温度,进行一阶程序升温老化。  B.进样器/检测器的老化:在载气进入进样器/检测器的情况下,将进样器/检测器温度设置在200℃以上进行数小时的老化。  C.电子捕获检测器的老化:在载气进入电子捕获检测器的情况下,将电子捕获检测器温度设置在200℃以上进行十小时以上的老化。  D.热导钨丝的老化:在载气进入热导检测器的情况下,将热导电流设置在使用值以上10-20mA,进行数小时的老化。  E.氮磷检测器铷珠的老化:在载气进入氮磷检测器的情况下,将铷珠电流设置在使用值以下0.4A和0.2A,各进行二十分钟左右的老化。&hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr 谱图分析(一)  ▲保留时间重现性差:  ⊙指仪器工作条件和样品分析条件等均没有变化的情况下,保留时间变化较大、重现性较差。  A.色谱柱的一部分是否与柱箱内壁的金属面存在接触现象。  B.进样垫、色谱柱、过渡衬管的安装连接处是否存在漏气现象。  C.载气的输入压力是否正常。  D.载气流量是否正常或出现变化。  E.进样器、柱箱、检测器等的温度是否稳定。  F.如果保留时间与峰高/峰面积的重现性同时变差,则进行了上述检查后再参照[峰高/峰面积重现性差]中的各项进行检查。  注意:如果载气的流量、分流比、色谱柱温度等有变动时,保留时间或峰高/峰面积一定会起变化。谱图分析(二)  ▲峰高/峰面积重现性差:  ⊙指仪器工作条件和样品分析条件等均没有变化的情况下,峰高/峰面积变化较大、重现性较差。  A.注射器的性能是否正常以及进样时是否存在操作失误。  B.样品浓度(特别是挥发性样品)是否因放置时间过长而起变化。  C.各种气体的输入压力是否正常。  D.各种气体的流量是否正常或出现变化。  E.进样器、柱箱、检测器等的温度是否稳定。  F.如果峰高/峰面积与保留时间的重现性同时变差,在进行了上述检查后再参照[保留时间重现性差]中的各项进行检查  注意:如果载气的流量、分流比、色谱柱温度等有变动时,保留时间或峰高/峰面积一定会起变化。谱图分析(三)  ▲出刀形峰:  ⊙指样品出峰时上升缓慢而下降迅速,形如刀状。  A.减少样品的进样量。  B.提高色谱柱箱的温度。  C.改用较大内径的色谱柱。  D.增加固定液的涂层的厚度。  E.选用样品的溶解度较高的固定液。  F.尝试提高进样器的温度,改善峰的形状。谱图分析(四)  ▲出钝峰:  ⊙指所出的样品峰不尖,所有峰或一部分峰的顶部呈不规则形状(平头或园形)。  A.进样量太大使色谱柱或检测器形成饱和,减少进样量或降低样品浓度。  B.进样器是否存在漏气现象或玻璃衬管是否存在破损现象。  C.采用分流进样方式时,检查分流比及分析条件的设置是否正确。  D.采用不分流进样方式时,检查分析条件的设置是否正确。  E.尝试提高进样器、检测器的温度,改善峰的形状。谱图分析(五)  ▲出怪峰:  ⊙指所出的峰与样品的成分不符,出现了不应该有的怪峰。  A.溶剂中是否混入了杂质。  B.注射器或放置样品的容器是否受到了污染。  C.隔膜清洗流量是否正常。  D.载气是否受到污染, 气体过滤器是否进行过保养。  E.如果怪峰是由于高沸点物质的溶出引起的,请提高分析温度或延长分析时间。  F.如果怪峰是由于样品的分解引起的,请降低进样口温度进行分析。  G.如果怪峰是由于进样垫的质量不好引起的,请选用质量较好的进样垫或将进样垫老化后再使用。谱图分析(六)  ▲出开叉峰:  ⊙指单一成分的样品所出的峰上部有开叉现象。  A.进样操作过程是否存在问题,重新进样再试。  B.减少进样量。  C.适当提高进样器温度,保证样品得到充分气化。  D.色谱柱的一部分是否与柱箱内壁的金属面存在接触现象。  E.将毛细管色谱柱的入口端一侧切除1∽2毫米或更换色谱柱。  F.采用不分流进样方式时,如果需要较大的进样量,可在分析色谱柱前加接数米长的缓冲色谱柱。或把样品溶剂换成与色谱柱固定相有较高亲和力的溶剂。  注意:缓冲色谱柱是指经过不活性处理的合金型二氧化硅毛细管,或涂有极薄的与样品溶剂较有亲和力的固定相的毛细管色谱柱。谱图分析(七)  ▲出拖尾峰:  ⊙指样品出峰结束回基线时有拖尾现象。  A.减少样品的进样量。  B.进样器玻璃衬管是否存在破损或污染现象。  C.载气流量和隔膜清洗流量的设置是否正确。  D.进样器温度是否能够保证样品充分气化。  E.尾吹气流量的设置是否正确。  F.适当提高检测器的温度。  G.检测器是否存在污染现象,必要时进行清洗。  H.色谱柱的安装方法是否正确。  I.适当提高色谱柱箱的温度。  J.将毛细管色谱柱的入口端一侧切除1∽2毫米或更换色谱柱。谱图分析(八)  ▲只出溶剂峰  ⊙指溶剂出峰正常,但样品主成份(溶质)不出峰或出峰很小 。  A.增加进样量。分梳进样时降低分流流量(分流比)。  B.提高量程范围或降低衰减倍数,设置较高灵敏度档。  C.重新配制样品,把样品浓度控制在0.02∽10%之间。  D.可能溶质与溶剂的沸点差太小,降低色谱柱箱温度试试。  E.改用与溶质的沸点差较大的溶剂。  F.可能色谱柱对样品主成份(溶质)的保持力太强,提高色谱柱箱温度试试,确认溶质从色谱柱溶出。  G.样品的沸点太高不能直接分析时,需用其他化学方法进行前处理。  H.换用合适的色谱柱。  I.如果样品的热稳定性较差,可能会在进样器内分解或化合,降低进样器温度避免出现这种情况。谱图分析(九)  ▲色谱柱性能迅速退化  ⊙指色谱柱性能迅速退化,导致样品分离效果变差。  A.排除载气的污染、泄漏等现象,检查各种气体的流量设置是否正确。  B.检查是否由于样品中的有害物质引起色谱柱的性能退化。  C.某些色谱柱(例如PLOT)在较大的的压力变化下可能引起性能退化。  D.快速的加热、冷却或较大的进样量可能引起某些没有经过化学结合的毛细管色谱柱的性能退化。  E.检查是否在色谱柱允许的最高使用温度以上的温度条件下进行分析操作。谱图分析(十)  ▲垂直回峰:  ⊙指样品出峰的开始、结束相对基线呈垂直状态,几乎没有曲线部分,而正常的出峰形状应为高斯分布。  A.通常是由于气相色谱仪的调零不适当,气相色谱仪的零点偏离积分仪或记录仪、色谱工作站等的工作范围。  B.一般积分仪或色谱工作站在负方向的输入电压范围较小,有些积分仪或记录仪、色谱工作站自身还具有调零功能,可以进行强制调零。  C.如果气相色谱仪的零点与积分仪或记录仪、色谱工作站自身的零点负向偏离太大,就会出现上述情形,此时请重新对气相色谱仪进行调零之后再进行分析。
  • 气象色谱测定水中滴滴涕和六六六
    滴滴涕和六六六(666)均系有机氯杀虫药剂,在水中性质稳定,并具有臭味。1 应用范围1.1 本法采用电子捕获鉴定器,可分离鉴定滴滴涕和666的各种异构体。适用于测定生活饮用水及其水源水中有机氯农药的含量。2 原理水中有机氯农药经有机溶剂萃取浓缩后,由氮气载入色谱柱进行分离,载有有机氯农药的氮气进入电子捕获鉴定器,其出峰顺序为:①?&mdash 666;②?-666;③?-666;④?-666;⑤o,p-DDE;⑥p,P-DDE;⑦o,p-DDT;⑧p,p-DDD;⑨p,p-DDT。电子捕获鉴定器中具有一个放射源(3H或63Ni)的电离室,其?射线可使氮电离,并产生自由电子。向电离室正极施加电压,移动速度较快的自由电子形成恒定的电源。当氮气将有机氯农药载入电离室时,与自由电子反应形成负离子,导致电流量的降低,根据电流量的改变进行定量分析。3 仪器所用玻璃器皿均需经铬酸洗涤液浸泡。3.1 具电子捕获鉴定器的气相色谱仪固定相:3%OV-210(或QF-1)加0.5%OV-17固定液的Chromosorb W 酸洗硅烷化担体80~100。色谱柱:长2m,内径3mm的玻璃管。温度:镍源鉴定器柱温:185℃,气化室:250℃,鉴定器:225℃;氘源鉴定器柱温:180℃,气化室:220℃,鉴定器:195℃。3.2 1000ml分液漏斗。3.3 10ml具塞比色管。3.4 5?l微量注射器。4 试剂4.1 滴滴涕,666标准贮备溶液:称取?-666,?-666,?-666,?-666和o,p-DDE,p,p-DDE,o,p-DDT,p,p-DDD,p,p-DDT各10.0mg,分别置于10ml容量瓶中,用苯溶解并稀释至刻度。4.2 滴滴涕、666标准溶液:用环己烷将标准贮备液分别稀释100倍,使各成为1.00ml含10.0微克的中间浓度溶液。4.3 滴滴涕、666混合标准溶液:分别吸取33.1.4.2标准溶液:?-666、?-666各0.10ml,?-6660.2ml、?-666、o,p-DDE、p,p-DDE各0.50ml,o,p-DDT、p,pDDD、p,p-DDT各1.00ml,合并于10ml容量瓶中,加环己烷至刻度,摇匀。混合标准液1.00ml含?-666、?-666各0.10?g,?-6660.20?g,?-666、o,p-DDE、p,p-DDE各0.50微克,o,p-DDT、p,p-DDD、p,p&mdash DDT各1.00微克。根据仪器的灵敏度,用环己烷将此混合标准液再稀释成标准系列,贮存于冰箱中。4.4 苯:色谱纯。4.5 环己烷:重蒸馏。4.6 硫酸:优级纯。4.7 无水硫酸钠:分析纯,经350℃灼烧4h,贮存于密闭容器中。4.8 4%硫酸钠溶液:称取4g无水硫酸钠(33.1.4.7),溶于纯水中,稀释至100ml。5 步骤5.1 萃取和净化5.1.1 洁净的水样:取水样500~1000ml,置于1000ml分液漏斗中,加入10.0ml环己烷(4.5),充分振摇3min,静置分层,弃去水相。环己烷萃取液经无水硫酸钠(4.7)脱水后,供测定用。5.1.2 污染较重的水样:取水样500~1000ml,置于1000ml分液漏斗中,加入10.0ml环己烷(4.5),振摇3min,静置分层,弃去水相。加入2ml硫酸(4.6),轻轻振摇数次,静置分层,弃去硫酸相。加入10ml 4%硫酸钠溶液(4.8),振摇数次,分层后,弃去水相。环己烷萃取液经无水硫酸钠(4.7)脱水后,供测定用。5.2 吸取上述萃取液5.0微升注入色谱柱内,记录色谱峰,从标准曲线中分别查出滴滴涕和666各异构体的浓度。5.3 标准曲线的绘制:分别吸取混合标准溶液(4.3)5.0微升,注入色谱柱,以测得的峰高或面积为纵坐标,各单体滴滴涕和666的浓度为横坐标,分别绘制校准曲线。6 计算式中:C&mdash &mdash 水样中各单体有机氯农药的浓度,微克/L;C1&mdash &mdash 相当于标准有机氯农药的浓度,微克/ml;V1&mdash &mdash 水样体积,ml;V2&mdash &mdash 萃取液总体积,ml。滴滴涕和666的总量分别为各单体量之和。
  • 赋能创“芯” | 赛默飞电子气体气相色谱分析解决方案
    赋能创“芯” | 赛默飞电子气体气相色谱分析解决方案原创 飞飞 赛默飞色谱与质谱中国 关注我们,更多干货和惊喜好礼高丽电子气体是半导体工业中使用的一类特殊气体,广义上的电子气体是指具有电子级纯度的特种气体,广泛应用在包括集成电路、显示面板、半导体照明和光伏等泛半导体行业。电子气体按其门类可分为纯气、高纯气和半导体特殊材料气体三大类。其中,特殊材料气体主要用于外延、掺杂和蚀刻工艺,高纯气体则主要用作稀释气和运载气。按纯度等级和使用场合分类,可以分为电子级、LSI(大规模集成电路)级、VLSI(超大规模集成电路)级和ULSI(特大规模集成电路)级。按用途可分为大宗气体,包括氮气、氢气、氩气、氦气、氧气、二氧化碳等;电子特种气体,包括笑气、氨气、三氟化氮、四氟化碳、六氟化硫、氯化氢、甲烷等气体。电子气体的使用对电子工业的发展至关重要,随着技术的进步,对电子气体纯度和洁净度的要求也越来越高,需要达到5N(99.9999%)以上的纯度,因为即使是痕量级杂质和污染物也会对最终器件质量和制造产量造成严重影响。赛默飞针对电子大宗气体、电子特气分析需求,推出高纯气分析解决方案。配置Trace1600系列气相色谱主机、脉冲放电氦离子检测器(PDD)、可安装色谱柱的大体积阀箱、带吹扫保护气阀的多阀多柱分析系统等,为用户提供数十种电子气体杂质的检测方案。01高纯氙中杂质分析氙气是一种天然稀有的惰性气体。由于具有较高的密度,低导热系数及可吸收X射线等特征,氙气被广泛的应用于电子电器,光电工业,医疗,电子芯片制造等行业。近年来随着氙气被应用于越来越多高端性产品的生产,行业对氙气纯度的要求也非常严格。赛默飞Trace GC-PDD系统可对高纯氙气中ppb及至ppm级浓度的氢气,氩气,氧气,氮气,一氧化碳,甲烷,二氧化碳,氧化亚氮,氪气,六氟化硫,六氟乙烷等杂质进行定性定量检测,其灵敏度完全符合GB/T 5828-2006的要求,同时具有优异的分离度和重现性。1.1仪器配置及色谱分析条件表1 气相色谱仪仪器配置及色谱分析条件(点击查看大图)1.2氙气中杂质分析色谱图如图1所示,标准气体中氢气,氩气,氧气,氮气,一氧化碳,甲烷,二氧化碳,氧化亚氮,氪气,六氟化硫,六氟乙烷等组分均得到良好的分离效果,氧气和氩气实现了基线分离(分离度大于1.5)。标气中浓度较大的氙气组分通过反吹放空,不进入检测器,从而避免了样品中氙气基质对目标组分的干扰。图1 高纯氙气中杂质典型色谱图(点击查看大图)1.3重现性表2分别列出了各个组分样品连续进样6次的峰面积重现性:各个组分的峰面积相对标准偏差(RSD)均低于1%;表3分别列出了各个组分样品连续进样6次的保留时间重现性:各个组分的保留时间重现性相对标准偏差(RSD)均低于0.01%。表2 各杂质连续6针进样峰面积重现性(点击查看大图)表3 各杂质连续6针进样保留时间重现性(点击查看大图)从测试结果可以发现,方案完全满足国标GB/T 5828-2006中对各杂质组分的检测要求。Trace GC-PDD系统在高纯氙气痕量杂质的分析中表现出优异的性能。反吹技术避免了氙气基质对系统的干扰,高分离效率色谱柱的使用实现了无需使用冷却装置即可分离氩气和氧气。02高纯氪中杂质高纯氪无色、无臭、无味、无毒、不可燃的单原子气体,化学上惰性。广泛应用于各类照明中,是良好的保护气和发光气。还应用于电真空、激光器、医疗卫生等领域。目前,高纯氪主要由大型空分设备从空气中提取,因其在空气中含量极少。因此售价高昂,被誉为“黄金气体”。由于高纯氪中杂质组分含量要求极低,脉冲放电氦离子化检测器(PDD)对痕量杂质组分有很高的灵敏度,被用于做高纯气体中痕量杂质的检测。针对以上检测需求,赛默飞采用Trace 1600系列气相主机、带有脉冲放电氦离子检测器(PDD)、多阀多柱分析系统,实现稀有气体高纯氪中痕量的氢气,氩气,氧气,氮气,一氧化碳,四氟化碳,甲烷,二氧化碳,氙等9种杂质含量的检测。方案分离效果好,检测限低,重复性好,完全满足标准GB/T 5829-2006 氪气的检测要求。2.1仪器配置及色谱分析条件表4 气相色谱仪仪器配置及色谱分析条件(点击查看大图)2.2氪气中痕量杂质分析色谱图按照2.1的色谱分析条件,对标气样品进样测定。如图2所示,以高纯氪为底的标准气体中痕量的氢气,氩气,氧气,氮气,一氧化碳,四氟化碳,甲烷,二氧化碳,氙各组分离效果理想,氧气和氩气实现了基线分离(分离度大于1.5)。标气中绝大部分的基质组分氪气通过阀切换被放空,不进入检测器,从而避免了基质组分氪气对痕量目标组分的干扰。图2 高纯氪气中痕量杂质典型色谱图(点击查看大图)2.3重复性连续进标气样品6针,考察高纯氪标气中各样品组分的峰面积重复性,其峰面积相对标准偏差(RSD)均低于2.33%,重复性结果见表5;表6是高纯氪标气中各个样品组分连续进样6次的保留时间重复性结果,其保留时间重复性相对标准偏差(RSD)均低于0.03%。表5 高纯氪标气中各杂质组分连续6针进样峰面积重复性结果(点击查看大图)表6 高纯氪标气中各杂质组分连续6针进样保留时间重复性结果(点击查看大图)从测试结果可以发现,方案完全满足国标GB/T 5829-2006中对各个杂质组分的检测要求。方案实现一次进样,完成高纯氪中多痕量杂质组分的检测,通过阀放空技术,有效避免了高纯氪基质对痕量杂质的干扰;优化的色谱柱分析系统实现了样品气中氩气和氧气的基线分离。03电子特气六氟化硫和三氟化氮中杂质分析赛默飞针对电子气体六氟化硫和三氟化氮中杂质检测的要求,配置 Trace 1610和大体积色谱阀箱、双通道设计、配置两个PDD检测器。一次进样实现六氟化硫和三氟化氮样品中H2, O2+Ar, N2, CH4, CO, CF4, CO2, SF6, N2O, SO2F2杂质组分分析,方案满足标准GB/T 21287和GB/T 18867的检测要求。3.1仪器配置及色谱分析条件表7 气相色谱仪仪器配置及色谱分析条件(点击查看大图)3.2六氟化硫和三氟化氮中杂质分析色谱图按照3.1的色谱分析条件,分别对六氟化硫标气和三氟化氮标气样品进样测定。F-PDD通道用于分析六氟化硫和三氟化氮样品中H2, O2+Ar, N2, CH4, CO, 杂质组分;B-PDD通道用于分析六氟化硫和三氟化氮样品中CF4, CO2, SF6, N2O, SO2F2杂质组分。六氟化硫中杂质组分典型色谱图见图3和图4;三氟化氮中杂质组分典型色谱图见图5和图6。图3 六氟化硫中杂质分析F-PDD通道色谱图(点击查看大图)图4 六氟化硫中杂质分析B-PDD通道色谱图(点击查看大图)图5 三氟化氮中杂质分析F-PDD通道色谱图(点击查看大图)图6 三氟化氮中杂质分析B-PDD通道色谱图(点击查看大图)滑动查看更多3.3重复性连续进标气样品6针,考察三氟化氮标气中各样品组分的峰面积重复性,其峰面积相对标准偏差(RSD)均低于2.88%,重复性结果见表8。表8 电子气体三氟化氮标气中各杂质组分连续6针进样峰面积重复性结果(点击查看大图)从测试结果可以发现,方案完全满足国标GB/T 21287和GB/T 18867中对各个杂质组分的检测要求。方案实现一次进样,双通道同时分析,完成电子气体六氟化硫和三氟化氮中杂质的检测。总 结赛默飞提供模块化气相色谱仪(Trace 1600系列)、模块化PDD检测器、搭载功能强大的大体积阀箱多阀多柱分析系统,为多种电子气体中痕量杂质分析提供高效的解决方案。实现一次进样,完成样品中痕量杂质组分的检测;方案通过阀放空技术,有效避免了高纯基质组分对痕量杂质的干扰;方案可提供填充柱分析系统或毛细柱分系统,优化的毛细柱分析系统实现了样品气中微量氩气和氧气的基线分离。此外,赛默飞在电子气体、高纯气分析领域,为广大用户提供更多完全定制化的解决方案,满足用户各不相同的检测需求。如需合作转载本文,请文末留言。
  • 悬“珠”济世——单液滴微萃取(SDME)的妙用
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。第一讲:傅若农讲述气相色谱技术发展历史及趋势 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 第四讲:傅若农:气相色谱固定液的前世今生第五讲:傅若农:气-固色谱的魅力 第六讲:傅若农:PLOT气相色谱柱的诱惑力第七讲:傅若农:酒驾判官&mdash 顶空气相色谱的前世今生第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展第九讲:傅若农:凌空一瞥洞察一切&mdash &mdash 神通广大的固相微萃取(SPME) 单液滴微萃取(single drop microextraction,SDME)类似于SPME,只是把萃取丝换成一滴有机溶剂液滴(悬于注射针头或毛细管口)。用单滴溶剂作为用液体吸着分析物在分析化学中的应用可以追溯到上世纪90年代中期的Dasgupta的工作,Dasgupta 研究组在1995年首次开发了用单滴液体作为吸着气体的界面来萃取空气中的氨和二氧化硫等气体( Anal Chem 1996,68:1817-1882),用石英毛细管口的水滴作吸着剂来收集被分析物,然后用在线光度法进行测定。1996年们又用滴中滴(水滴包围有机溶剂液滴)小型化溶剂萃取系统,他们把十二烷基硫酸钠和亚甲基蓝作为离子对萃取到氯仿液滴中,如图1所示 。他们利用一个蠕动泵把萃取后的液滴排除,用光纤检测器进行光度分析。图 1 滴中滴液-液微萃取( Anal Chem 1996,68:1817-1882)  Cantwell 研究组首次把单滴溶剂微萃取技术直接与色谱分析相结合(Jeannot M A , Cantwell F F, Anal Chem,1996,68:2236),他们在一只聚四氟乙烯棒底端做成一个窝,其中可容纳8&mu L辛烷液滴,把液滴浸入要萃取的水溶液中,搅拌水溶液进行萃取,他们把这一过程叫做&ldquo 溶剂微萃取&rdquo (&ldquo solvent microextraction&rdquo ,SME),见图 2 ,萃取之后用注射器抽取一部分辛烷液滴用气相色谱进行分析。图 2 &ldquo 溶剂微萃取&rdquo 示意图( Anal Chem 1996,68:2236)  1997年Jeannot和 Cantwell 首次使用注射器针头的有机溶剂液滴浸入水相进行液-液微萃取,然后把注射器进样到气相色谱仪中进行分析。图 3 &ldquo 用注射器针头下液滴进行溶剂微萃取&rdquo 示意图(M A Jeannot, F F Cantwell, Anal Chem,1997,69 :235-239)  进入新世纪之初,把SDME 延伸到顶空(HS)分析,是由Przyjazny、Jeannot、和Vickackaite研究组分别各自进行的( Przyjazny A, Kokosa J M, J Chromatogr A,2002 ,977:143   Theis A L, Waldack A J, Hansen S M, Jeannot M A, Anal Chem,2001,73 :5651) Tankeviciute A, Kazlauskas R, Vickackaite V, Analyst,2001, 126 :1674)。SDME 顶空(HS)分析如图 4所示图4 顶空溶剂微萃取示意图  通常用高沸点有机溶剂如1-辛醇或正十六烷作萃取溶剂,适合于测定挥发或半挥发性分析物, HS-SDME 可以得到较大液滴的稳定性,避免液滴被污染,不会由于样品基体&ldquo 脏&rdquo 而受到影响,与浸入法相比有些情况下会得到更快的萃取速度。  SDME 和SPME类似,快速、简单可以自动化,但是它很便宜,无需什么设备。通过选择适当的萃取溶剂改变其选择性,从而可以降低检测限。与常规的液-液萃取(LLE)不同的是只需要极少量溶剂,由于每次都使用新鲜的溶剂(每次更新溶剂)不会有携留问题。也不像SPME每次都要脱附。在SPME情况下,吸着剂涂渍在萃取丝的表面上,被分析物的吸着主要是吸附,在某些应用中全部被分析物能被吸附的很有限。在SDME中液滴不仅可以吸附还可以吸收,所以它的吸着容量要大于SPME。1、SDME 的模式  到目前SDME有7种模式,可以分为双相和三相微萃取,决定于相平衡中共存的相数。双相模式有直接浸入(DI)式,连续流动(CF)式,液滴到液滴(DD) 式,和直接悬浮(DSD)式。而三相模式有顶空(HS),液-液-液(LLL)式和LLL 与 DSD结合的模式。见图 5 单滴微萃取(SDME) 双相 三相直接浸入 (DI)连续流动(CF)液滴-液滴 (DD)直接悬浮(DSD)顶空(HS)液-液-液(LLL)液-液-液+直接悬浮(LLL + DSD)图 5 SDME的7种模式  SDME 各种模式的使用频率如图 6所示,双相萃取占52%,三相萃取占48%。图 6 SDME各种模式的使用频率  到目前为止,在SDME各种模式中使用最多的是顶空SDME,占到全部SDME的41%,其次是直接浸入SDME,占38%。所以如此是由于这两种模式简单,所需设备便宜,但也是由于他们是文献中第一个溶剂微萃取方法,其他5种模式使用不多,可能是由于要使用附加的设备如泵(CF),或者由于应用于分析物的范围小(如LLLME大多用于可离子化的化合物)。  为了改善传质速率,顶空SDME和直接浸入SDME可以使用动态模式,在动态模式下不仅供给相(样品),而且接受相(萃取溶剂)都可以流动。动态SDME可以使用两种方法:暴露液滴和不暴露液滴,在不暴露液滴(或者在注射器中)方法中,溶剂连同样品1&ndash 3 &mu L液体或顶空液滴一起抽吸到注射器中,保持一定时间(停留时间),然后把样品排出,把这一过程循环30-90次,分析萃取出来的样品。在暴露液滴方法中进行萃取的注射器针头下的溶剂液滴是暴露于被萃取样品的,在液滴周围的样品持续一定的时间后被吸入注射器中,停留一段时间后,再把液滴推出针头,但是样品没有排除注射器。不暴露液滴法是He和Lee首先开发出来,他们是以手动操纵注射器活塞完成推出和吸入操作的。此后有人使用重复性更好的注射泵完成注射器活塞的推出和吸入操作(Anal Chem 1997,69:4634)) 。He和Lee比较了静态和动态SDME方法的效果。  静态方法的操作:(1) 用10&mu L 注射器吸取1&mu L甲苯,(2)把注射器针头插入4 mL样品瓶中的样品溶液里,(3) 推动活塞形成1&mu L甲苯液滴到样品溶液里,在甲苯和样品之间平衡15min, (4) 把甲苯液滴抽回到注射器中并从样品瓶中拔出注射器,(5) 把注射器针插入气相色谱仪进样口进行分析。  动态方法的操作:(1) 用10&mu L 注射器吸取1&mu L甲苯,(2) 把注射器针头插入4 mL样品瓶中的样品溶液里,(3) 在大约2 s 时间内抽取3&mu L样品水溶液到注射器中,滞留约3 s的时间,然后在大约2 s 时间内再推出3&mu L样品水溶液,等待3 s ,这样的操作,约3 min 重复一次,进行20次。最后把样品溶液推出注射器,留下1&mu L甲苯,(4) 把注射器 从样品瓶中拔出, (5) 把注射器针插入气相色谱仪进样口进行分析。  暴露液滴法和不暴露液滴法的全盘自动化是由中山大学的欧阳钢锋等完成的( Ouyang G,.Zhao W, Pawliszyn J, J Chromatogr A ,2007,1138: 47),使用商品计算机与自动进样器连接来控制溶剂吸取、活塞速度、停留时间和注射器进样等动作。  两种使用最多的模式&mdash &mdash 直接浸入和顶空溶剂微萃取&mdash &mdash 具有一些不同的应用领域(尽管有一些分析物可以使用任何这两种样品制备方法),因为直接浸入SDME法的萃取溶剂要和水溶液样品直接接触,所用溶剂必须和水溶液不能混溶,即要使用非极性或弱极性溶剂,所以这一方法适合于从干净样品(如自来水或地下水)中分离和富集非极性或中等极性的挥发和半挥发物质。因为挥发性化合物最好使用顶空SDME,而直接浸入SDME最好用于半挥发性分析物,如有机氯农药、邻苯二甲酸酯类、或药物。  一般讲直接浸入SDME 萃取溶剂应该是挥发性溶剂,如己烷或甲苯,它们可以和气相色谱配合。因此气相色谱曾经是与直接浸入SDME 萃取相结合的主要方式,在文献中有超过62%是直接浸入SDME和气相色谱进行配合的。和其他分析方法配合的有液相色谱(超过21% 的 DI-SDME是和HPLC一起使用的),使用HPLC可以分析极性半挥发性物质如苯酚类化合物,但是在此情况下萃取溶剂一定要更换,包括把原来的萃取溶剂慢慢蒸发掉,再用可以与HPLC 流动相兼容的溶剂,或者HPLC 流动相溶解蒸发后的残留样品。  除去HPLC之外,可以用DI-SDME把样品处理之后进行分析的方法有:大气压基质辅助激光解析/电离质谱(AP-MALDI-MS),这一方法使用者日益增加。如果使用DI-SDME进行无机组分的分离/浓缩(如金属离子),那么在进行衍生化之后就可以用原子吸收光谱或诱导耦合等离子质谱进行分析。  DI-SDME的最大优点是使用的设备简单(至少在静态模式下是这样)费用低,在最简单的情况下,只用一个萃取样品瓶和一个隔垫盖,一只搅拌棒和电磁搅拌器,一支微量注射器,以及少许溶剂即可。DI-SDME的缺点是-在萃取过程中液滴容易从针头处脱落,这样就限制了样品溶液的搅拌速度,以及样品要相对干净一些(没有固体颗粒),典型的搅拌速度最大到1700 rpm。在液-液萃取系统中由于扩散系数小,传质速度慢,所以就需要激烈搅拌,或者使用动态模式,这样也就造成DI-SDME模式要比其他SDME模式要用较长的萃取时间。  顶空SDME 是萃取挥发和半挥发化合物样品的选项,无论是极性还是非极性都可以,样品复杂也好、脏也好都可以,含有固体颗粒也可以适应,除去液体样品之外,固体或气体也可以使用这一模式进行萃取。  在最简单的条件下,使用手动HS-SDME,通常用一只注射器抽取1 到 3 &mu L溶剂,较大的溶剂体积可以提高检测灵敏度,但是有使液滴从针头脱落的危险,一些实验人员建议把针头弄粗糙一些,这样有助于保留住液滴。样品可以使用20 mL大小的顶空瓶,用水浴加热20 到 30 min,并进行搅拌。萃取之后把液滴吸入针头内,注射到气相色谱仪中进行分析。  HS-SDME 可适应各种各样分析物,因为它对萃取溶剂除去挥发性之外没有什么限制,经常使用HS-SDME 萃取的样品例子如三卤甲烷、BTEX烃类、挥发性有机化合物、无机和金属有机化合物(萃取前要进行衍生化)。HS-SDME常常用于萃取极性挥发物如醛类化合物,之后或者同时进行衍生化,例如 Stalikas 等(Anal Chim Acta, 2007,599:76&ndash 83)就是用2&mu L正辛醇液滴(含有4.0× 10&minus 6M 浓度的正十五烷和2.0× 10&minus 3M浓度的 2,4,6-三氯苯肼)进行萃取并衍生化醛类,之后进行色谱分析。HS-SDME 也可用于萃取半挥发性化合物,如多环芳烃、多氯联苯、酚类和氯代酚。萃取溶剂可以使用非极性的或极性的,后者包括离子液体、水溶液甚至纯水。在HS-SDME中使用水基溶液很有意思,因为它完全回避了使用有机溶剂。例如Yi He(Anal Chim Acta, 2007,589:225)使用磷酸水溶液液滴萃取尿液中的甲基苯丙胺和苯丙胺。  在HS-SDME中普遍使用的萃取溶剂是1-辛醇、十六烷、十二烷和十烷,因为这一模式是三相系统,其平衡时间要比直接浸入两相平衡模式长,但是 HS-SDME可以通过增加顶空的容量即增加在顶空中被萃取物的量来提高效率,顶空容量等于顶空(空气)体积Va,和空气-水之间的分配系数Kaw,只要增加Va或Kaw,或二者都增加就会大大提高顶空容量,如果被分析物萃取到有机溶剂中的量小于顶空容量(小于5%),那么从顶空中萃取分析物就几乎不可能了。这样在快速萃取中只要几分钟就可以完成,因为在气相中的扩散系数要比在液相中扩散大得多(约4个数量级)。要提高传质速率提高样品温度是最简单的办法,这样可以使样品中的被测组分更多地蒸发到顶空中,但是提高温度又会降低溶剂液滴-顶空之间的分配系数,降低测试的灵敏度,如果把液滴温度降低就可以避免灵敏度的降低。如图7是华南理工大学杭义萍等在分析水溶液中的氟化物时,用冰袋冷却注射器,从而使萃取液滴得到降温。图 7 把液滴温度降低的设备图1&mdash 电磁搅拌器 2&mdash 水 3--电磁搅拌棒 4&mdash 样品溶液 5&mdash 液滴6&mdash 冰袋 7&mdash 微量注射器 8&mdash 聚四氟乙烯喇叭口(Anal Chim Acta,2010,661:161)  图 7的方法简单,但是温度不能正确控制,中科院大连化学物理研究所关亚风研究组设计的冷却方法可以精确控制冷却温度。他们的方法是在萃取瓶上的特殊瓶盖(图8中的a),盖顶端有一个直径为3mm 的洞,洞中可以容纳40&mu L溶剂而不会流出,用它做萃取溶剂液滴窝,在进行萃取时先用注射器往液滴窝中注入20&mu L溶剂(实验证明20&mu L溶剂萃取效果最好)(图中 b),把瓶盖拧到萃取瓶上(图中e),然后把冷却用热电冷却器装在瓶盖上(图中f),萃取溶剂的冷却。图8 用热电冷却器冷却萃取溶剂(J Chromatogr A,2010,1217:5883)2、SDME 与分析仪器的配合  与HS-SDME配合进行最后分析的技术主要是气相色谱仪,占到到过75%,而使用HPLC配合HS-SDME的只有不到10%,原子吸收光度分析的占5%,用毛细管电泳分析的占3.5%。  各种模式SDME 的配合所占比例见图 8图 8 SDME 与分析仪器的配合的比例  国内外期刊近几年有关用一滴溶剂微萃取进行分析的文献 1SDME 结合GC-FPD分析水中6种有机磷农药在5&mu L注射器针头装一个2mm 长的锥形物,抽取3.5&mu L萃取溶剂在水样中进行萃取Tian F,Liu W,Fang H ,et al,Chromatographia,2014,77:487&ndash 492(暨南大学)2通过衍生化SDME分析复杂体系中测定短链脂肪酸的有效预处理方法用BF3-乙醇衍生化短链脂肪酸经SDME萃取,1.0 &mu L邻苯二甲酸二丁酯做萃取溶剂,萃取20minChen Y, Li Y,Xiong Y,et al,J Chromatogr A,2014,1325:49&ndash 55(中科院地球化学所)3用全自动裸露和注射器内动态单滴微萃取在线搅动测定珠江口和南中国海表面水中多环麝香在优化条件下浓缩比达110-182,回收率为84.9 - 119.5%,Wang X,Yuan K,Liu H,et al, J Sep Sci,2014, 37: 1842&ndash 1849(中山大学)4动态超声雾化萃取结合顶空离子液体单滴液体微萃取分析连翘中的精油3 &mu L离子液体( 1-甲基-3-辛基咪唑六氟磷酸盐)作萃取液滴,50mg 样品萃取13minYang J, Wei H, Teng X,et al, Phytochem. Anal. 2014, 25:178&ndash 184(吉林大学)5新的纳米纤维-碳纳米管-离子液体三元萃取剂进行单滴微萃取使用三元萃取剂可以有效地萃取烧烤食品中的2-氨基-3,8-二甲基咪唑并 [4,5-f] 喹喔啉Ruiz-Palomero, C,LauraSoriano M, Valcá rcel M,Talanta,2014,125:72&ndash 77(西班牙科尔多瓦大学)6单滴微萃取-液相色谱-质谱快速分析主流烟草烟雾中六种有毒酚类化合物用1-十二醇作萃取液滴,萃取12min.六种酚类为苯酚、邻苯二酚、间苯二酚、对苯二酚、邻甲酚、和对甲酚Saha S, Mistri R,Ray B C,Anal Bioanal Chem, 2013,405:9265&ndash 9272(印度贾达普大学)7用自动注射器中单滴溶剂顶空萃取测定白酒中的乙醇注射器中液滴为8 mol /L硫酸中3 mmol/ L重铬酸钾,使乙醇还原后进行光度分析,测定乙醇含量&Scaron rá mková I, Horstkotte B , Solich P, et al, Anal Chim Acta 2014,828:53&ndash 60(捷克查尔斯大学)8单滴微萃取-气相色谱测定水样中的吡氟草胺,灭派林,氟虫腈,丙草胺1&mu L庚烷液滴浸入4.0 mL样品中,在室温下以500rpm搅拌30min进行萃取Araujo L, Troconis M E, Cubillá n D,et al, Environ Monit Assess, 2013,185:10225&ndash 102339用Fe2O3磁性微珠微波蒸馏和单滴溶剂顶空萃取测定花椒中的精油2.0 &mu L十二烷液滴作萃取剂,在微波炉中蒸发精油被液滴吸收Ye Q,J Sep Sci, 2013, 36: 2028&ndash 2034(上饶师范大学)10用香豆素作荧光开关以单滴微萃取分析化妆品中残留的丙酮 2.5&mu L水溶液液滴,含有3 x10-4mol/L 7-羟基-4-甲基香豆素或6 x10-6mol/L 7-二甲基胺-4-甲基香豆素(40%乙醇溶液),在4 ℃下萃取3minCabaleiro N,Calle I De la,Bendicho C,et al,Talanta,2014,129:113-118(西班牙维戈大学)11以单滴微萃取GC-MS分析细辛中的挥发物正-十三烷:乙酸丁酯(1:1)作萃取液滴,10 lL在70℃下萃取15min Wang G, Qi M,Chinese Chemical Letters,2013, 24:542&ndash 544(北京理工大学)12微波蒸馏顶空单滴微萃取-GC-MS分析具刺杜氏木属植物DC中的挥发物10 &mu L注射器取2.5 &mu L正-十七烷溶剂液滴,萃取微波加热蒸馏出来的被测组分Gholivand M B, Abolghasemi M M , Piryaei M, et al, Food Chemistry, 2013,138:251&ndash 255(伊朗Razi大学)13表面活化剂辅助直接悬浮单液滴微萃取浓缩气相色谱分析生物样品中的曲马朵的多变量优化把有机溶剂液滴用注射器注入含有Triton X-100和 曲马朵的水性样品中,在搅拌样品溶液条件下进行萃取,之后再用注射器把有机溶剂抽出进行色谱分析Ebrahimzadeh H,Mollazadeh N,Asgharinezhad A A,et al, J Sep Sci,2013, 36:3783&ndash 379014用离子液体辅助微波蒸馏单液滴微萃取及GC&ndash MS快速分析香鳞毛蕨精油1-乙基-3-甲基咪唑乙酸盐离子液体用作样品细胞破坏剂进行微波蒸馏,2 &mu L正-十七烷溶剂作萃取液滴 Jiao J ,Gai Q Y,Wang W,et al, J Sep Sci,2013, 36:3799&ndash 3806(东北林业大学)15农田土壤中阿特拉津和甲氨基粉的快速测定&mdash 使用单液滴中鼓泡微萃取浓缩GC-MS分析往注射器中吸入1 &mu L萃取溶剂,之后再吸入0.5 &mu L空气,满满地把溶剂和空气泡注入被萃取的水溶液中,让空气在溶剂中形成一个气泡,萃取20min 后把溶剂吸入注射器,用GC-MS分析Williams D B G,George M J, Marjanovic L,J Agric Food Chem. 2014, 62:7676&minus 768116用SDME/GC&ndash MS测定椰子水中19种农药残留(有机磷、有机氯、拟除虫菊酯、氨基甲酸酯、硫代氨基甲酸酯、嗜球果伞素)10 mL样品用甲苯作萃取剂,液滴1.0 &mu L,样品用HCl酸化,不加盐,200 rpm搅拌下萃取30 mindos Anjos P J, de Andrade J B, Microchem J,2014,112 :119&ndash 12617动态超声雾化萃取结合顶空离子液体单滴液体微萃取分析果汁中的风味化合物1-羟基-3-咪唑四氟硼酸盐离子液体作萃取液滴,萃取液体12.5 mL,萃取5min,萃取温度80 ℃ Jiang C, Wei S , Li X,et al, Talanta, 2013,106:237&ndash 242(吉林大学)18用顶空单滴液体微萃取光度法自动分析混凝土中的氨用0.1 М H3PO4作液滴吸收样品释放出来的人氨气,自动进行光度测定。Timofeeva I, Khubaibullin I, Kamencev M,et al, Talanta,2015,133:34&ndash 3719高效单滴液体微萃取-气相色谱新策略毛细管上安装一个漏斗状顶盖,用以悬挂有机萃取液滴,液滴中引入一定体积的空气泡,用1 &mu L氯苯液滴和1 &mu L空气进行萃取,以700 rpm进行搅拌,在3.4 min时间里可浓缩农药70 到 135倍Xie H Y, Yan J, Jahan S,et al,Analyst, 2014, 139: 2545&ndash 255020用离子液体辅助微波蒸馏单液滴微萃取及GC&ndash MS快速分析连翘精油1-乙基-3-甲基咪唑乙酸盐离子液体用作样品细胞破坏剂进行微波蒸馏,2 &mu L正-十七烷溶剂作萃取液滴Jiao J ,Ma D H,Gai Q Y, et al, Anal Chim Acta,2013, 804:143&ndash 150(东北林业大学) 21自动顶空单滴液体微萃取和顶空固相微萃取进行快速分析食用油中No. 6溶剂残留的比较用2&mu L正十一烷作萃取溶剂,30 ℃萃取3 min Ke Y, Li W, Wang Y,et al, Microchem J, 2014, 117:187&ndash 193(贵阳医学院)22用离子对单滴液体微萃取分析水中化学战剂降解产物分析物在水相形成离子对,萃取液滴中含有N-(特丁基二甲基硅烷基)-N-甲基三氟乙酰胺衍生化试剂Park Y K , Chung W Y, Kim B,Chromatographia,2013,76:679&ndash 68523液相微萃取-气质联用法测定水中硝基苯的含量l&mu L甲苯作萃取剂,,萃取15min,进行GC-MS中分析耿飞,青年科学,2014,(6):20824离子液体顶空单滴微萃取分析中药中的高沸点挥发性成分采用微量进样器下端的塑料套管烧制成一端凸起的圆饼状(3.5mm o.d),以增大悬挂的离子液体与套管的接触面积,用2 5&mu L微量进样器精密吸取12&mu L离子液体轻轻推出,使其在距液面1cm处形成液滴,顶空萃取30min,萃取后直接将液滴吸回,进样HPLC分析检测。李梅,科学与财富,2013,(12):26525顶空单滴液相微萃取与GC&mdash MS联用测定易挥发溶剂 了十二烷和正癸烷 作萃取溶剂,0.5&mu L萃取溶剂,萃取10 min徐庆娟, 冯宇辉, 吴学,延边大学学报(自然科学版),2011,37(2):144-14726单液滴微萃取一气相色谱/质谱法检测水中多环芳烃萃取溶剂1.0&mu L、萃取时间20 min,萃取温度室温常薇,郁翠华,周娟,环境污染与防治,2009,31(5)-:54-56,8227单滴液相微萃取-气质联用在香精分析中的运用正戊醇作萃取溶剂2.0&mu L ,萃取温度 30 ℃,萃取时间35 min徐青,何洛强,梁健林等,2013中国上海第三届全国香料香精化妆品专题学术论坛,163页28单滴微萃取.气相色谱-质谱联用测定水中的硝基咪唑类药物。用5&mu L迸样器吸取有机溶剂,将针尖浸入到待测溶液中,挤出进样器中的有机溶剂,在针尖形成一个小液滴。在50℃,600 rpm搅拌速度下,萃取20 min王金玲,李义坤,赵京杨等,分析试验室,2010,29(1):107-11029单滴微萃取.气相色谱法分析海水中的四种苯胺推荐一个环保的综合化学实验 将微量进样器吸 0.7O uL的甲苯使之在针尖形成稳定的液滴。在500 r/min 搅拌下,萃取l 5 min曾景斌,崔炳文,冯锡兰等,广东化工,2011,38(10): 215-21630单滴微萃取-气相色谱法测定塑料食品包装浸出液中邻苯二甲酸酯类物质1.4&mu L二甲苯为萃取剂,萃取时间为20 min,萃取温度为40℃,搅拌速度为200 r/min张聪敏,食品与生物技术学报,2011,30 (6):863-86731单滴微萃取技术测定饲料中硝基咪唑类药物残留研究 溶剂为2.5 &mu L正辛醇,温度为50℃,搅拌速度为600 r/min。时间为20rain。萃取后,微液滴于70℃衍生45min刘登才,赵京杨,王金玲等,湖北农业科学2010,49 (7):1703-170632超声雾化一顶空单滴微萃取气相色谱质谱联用检测八角茴香中挥发油成分 3&mu L 悬滴溶剂正十六烷悬在提取液的顶空,富集15 mim。富集后将正十六烷抽回微量进样器进入GC-MS系统分析王璐,张慧慧,李雪源等,分析化学学,2009,37(增刊)D07133不同品种荔枝对荔枝蒂蛀虫引诱活性成分的研究 将摘取的荔枝幼果,马上放进顶空样品瓶中(样品体积占顶空体积的一半),盖紧。室温下平衡l h后,插人已吸取3止正丁醇的微量进样针直至针尖距样品上表面约l cm,顶空萃取30 min进行分析郭育晖,叶慧娟,方炜等,天然产物研究与开发, 2013.25:1218-122134TG-SDME-GC/MS 联用法研究叶黄素在空气氛围中的热解行为 乙醇作为萃取溶剂,液滴体积保持约为10 &mu L吴亿勤,杨柳,秦云华等,烟草化学 ,2014 (10):61-663、SDME 参数对萃取的影响 (1) 萃取溶剂的影响(J. Sep. Sci. 2013, 36:3758&ndash 3768)  在单滴溶剂选择适当的溶剂是很重要的,影响这一方法的灵敏度、选择性、准确度和精密度,萃取溶剂需满足一下要求:  【1】 它应该能完全萃取所要分析的对象。  【2】 它应该有比较高的沸点、较低的挥发性和较低的蒸汽压,以便在萃取过程中不至于挥发掉。  【3】 它应该有较高的粘度,以便形成较大稳定的液滴。  【4】 它应该不能与水混溶。  【5】 它应该与以后分析仪器所用溶剂相适应。  如果需要,一滴溶剂中应该含有内标物、衍生化试剂或螯合试剂。  有人用水作一滴溶剂,用于分析一些无机物,把这一方法叫做&ldquo 顶空水基液相微萃取&rdquo ,是一种不用有机溶剂的绿色方法。含有纳米微粒的一滴溶剂用于生物大分子如肽和蛋白质的萃取, 金或银纳米微粒溶于甲苯中,用来预浓缩分析物,之后直接把液滴点到MALDI-MS的目标靶上进行分析。量子点分散到微滴有机溶剂中用于顶空-一滴液体挥发性有机物的分析中。近年把离子液体用于一滴液体微萃取分析中(Trends in Analytical Chemistry 61 (2014) 54&ndash 66)。  (2) 萃取温度的影响  一滴溶剂萃取过程的温度很重要,因为既要考虑萃取物从基体中挥发又要考虑在液滴和气相(液相)之间的平衡,提高温度可以让分析物更多地蒸发到空间,增加气相中分析物的浓度,但是增加温度也是萃取液滴的温度提高,这样会降低萃取效率,因为液滴萃取溶解分析物是一个放热过程,温度增加就会降低萃取效率,另外萃取温度度提高会使萃取液滴溶剂蒸发。所以就出现了冷却萃取液滴的办法和装置(图 7)。  (3)萃取时间的影响  研究萃取时间主要是为了最高的分析物信号,并保证得到满意的准确和再现的结果,传质速度决定时间的长短,一般来讲萃取时间增加会增加萃取量,然而时间太长液滴会变得不稳定,并增加整个分析时间,一般提高搅拌速度会缩短萃取时间,但是搅拌太快会使液滴从注射器针头脱落。  (4)样品溶液离子强度的影响  往样品溶液中加入盐广泛地用于液-液萃取中,水分子在盐离子周围形成一个水化的球,所以溶解萃取物的水量就相对降低,从而降低了萃取物在水中的溶解度,所以加入盐可以提高萃取效率,但是也有报告证明加入盐有相反的作用,其解释是盐的分子与被萃取物分子间的相互作用,或者说是改变了Nernst扩散层的物理性质,所以盐的加入要考虑萃取物的性质和盐的加入量。这一矛盾现象迫使人们在确定萃取条件时要考虑这一因素。  (5)搅拌萃取溶液速度的影响  在萃取过程中进行搅拌可以提高水相的传质速度,这样在水相和顶空气相或者说在水相和有机溶剂液滴之间的平衡加快了,所以在萃取过程中都要进行搅拌,可以提高样品的萃取效率,缩短萃取的时间,当然也不能搅拌太快,否则液滴会脱落。  小结:  一滴溶剂微萃取是一种简便易行的样品处理技术,可以和多种分析仪结合使用,简化了样品处理的时间和步骤,是固相微萃取的一个很好的补充,是液-液萃取技术的一次跃升,所以这一技术还在进一步研究和改进中。  下一讲和大家讨论&ldquo 扭转乾坤&mdash 神奇的反应顶空分析&rdquo
  • 傅若农:扭转乾坤—神奇的反应顶空气相色谱分析
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势第二讲:傅若农:从三家公司GC产品更迭看气相技术发展第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状第四讲:傅若农:气相色谱固定液的前世今生第五讲:傅若农:气-固色谱的魅力第六讲:傅若农:PLOT气相色谱柱的诱惑力第七讲:傅若农:酒驾判官&mdash 顶空气相色谱的前世今生第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展第九讲:傅若农:凌空一瞥洞察一切&mdash &mdash 神通广大的固相微萃取(SPME)第十讲:傅若农:悬&ldquo 珠&rdquo 济世&mdash &mdash 单液滴微萃取(SDME)的妙用 我们在前面讨论了四讲和顶空分析有关的色谱分析方法,它们都是针对挥发和半挥发性物质的,也就是说难挥发和不挥发性物质是不可以用这些方法分析的。但是化学是一种很神奇的东西,可以扭转乾坤,本来不可为,但是用化学的力量可以变成可为。反应顶空分析就是可以把难挥发和不会发性物质进行顶空分析。  反应顶空分析是反应气相色谱的一个分支,另外两个大的分支是裂解气相色谱和衍生化气相色谱,反应气相色谱就是不可能进行气相色谱的对象经过化学反应,使被分析物转化为有挥发性的物质,从而可以用气相色谱进行分析它们。  2001年华南理工大学的柴欣生教授在美国亚特兰大佐治亚理工大学造纸科学技术研究院任职期间和朱俊勇教授等最先提出了反应顶空分析的概念 [(J. Chromatogr. A,2001, 909:249&ndash 257)(Snow N. H. TrAC,2002,21(9+10):608)]。之后2003年Guzowski等[J Pharm Biomed Anal, 2003,33:963-974] 也把相转化反应技术应用于顶空气相色谱,用以测定化学试剂中的羟胺。通过在醋酸钠缓冲溶液中与FeCl3反应,羟胺在单步反应中可以转变成氧化亚氮(N2O) ,产物气体N2O用电子捕获检测测进行测定。大家知道氧化亚氮(笑气)是比较稳定的化合物,用气相色谱测定很容易。  在之后的十几年里,柴欣生教授在结合制浆造纸、生物质、高分子合成等学科的研究中开发出许多用顶空气相色谱分析不挥发样品的新方法,开通了可以使用顶空气相色谱分析不挥发和难挥发化合物的道路。反应顶空气相色谱的应用1. 测定造纸厂黑液中的碳酸盐含量  碳酸盐和酸作用生成二氧化碳,用顶空气相色谱测定CO2含量估算样品中的碳酸盐量,用纯碳酸钠标准溶液进行仪器的标定(J. Chromatogr. A,2001, 909:249&ndash 257),测定方法如下:  把一个21.6 ml的样品瓶配以有隔垫的瓶盖,用130 ml/s流速的氮气吹扫此样品瓶2 min,以排除样品瓶空气中的CO2气,然后加入0.5 ml 2mol/L 的硫酸溶液,用注射器加入10&ndash 1000 ml样品溶液,把样品瓶置于自动进样器上,进行顶空分析。许多工业液体如浓缩的黑液,白液,和绿液可以直接进样,无需预处理。而固体样品必须先溶解成溶液之后进行分析。(1) 温度的影响  二氧化碳于20℃下在水中的溶解度为(体积比)1:0.878,而在25℃下在水中的溶解度为(体积比)1:0.759,所以提高温度可以减少它在水中的溶解度,把它从水溶液中释放出来,从而提高测定的灵敏度,在本研究中使用60℃,同时溶液有过量的酸保证可以把CO2气体全部释放出来。不过不能是使用太高浓度的酸以防腐蚀仪器。(2) 检测器线性和恒定的凝固相释放气体速率  这一方法的基础是在给定实验条件下从凝固相中释放出气体的速率时恒定的,大家知道热导池检测CO2在空气中浓度变化的范围,是在热导池的线性范围之内,可以用检测器的线性来考察从凝固相中释放CO2气体的速率是否恒定。用碳酸钠溶液作标准样进行试验,实验证明碳酸钠的浓度可以达100 &mu mol。实验证明从碳酸钠转化为CO2气体的速率是恒定的。(3) 顶空气体稀释变化对分析准确度的影响  用碳酸钠标准溶液加入量的变化测试顶空气体稀释变化对分析准确度的影响,顶空气体稀释度的变化,可以通过两种反应物的起始样品量的变化,来改变反应瓶中反应后的顶空体积(。作者进行了两组实验,用固定体积的硫酸(反应物R)溶液(VR=0.5 ml)与碳酸钠标准溶液反应。第一组实验使用9个碳酸钠标准溶液含有同样数量的碳酸钠1.06&mu g,但是他们的体积不同,从Vs=100&mu L 到350&mu L,同样数量碳酸钠反应后近似的顶空体积等于[VT-(VR+VS)],由于样品体积变化带来的顶空稀释度的影响可以用GC信号的变化来计算,对使用21.6 ml样品瓶来说,当样品体积从100&mu L到1100&mu L ,GC信号的变化不超过5%。使用的商品自动进样器是恒压近样,可以抵消一部分样品体积变化带来的影响。测定出的相对标准偏差只有1.3%,可以忽略不计,见表1.  表 1 样品体积变对准确度的影响(1) 空气中二氧化碳的影响  空气中含有二氧化碳,会对结果又影响,在标准空气中二氧化碳的量约为15&mu mol/L,在21.6mL样品瓶中含有约0.3&mu mol二氧化碳,这一量高于检测灵敏度0.1&mu mol,这样对低浓度样品就会有影响。为了提高测定准确度需要把顶空瓶中的二氧化碳排除,在加入反映了物之前用用一只23号注射针以氮气彻底吹扫顶空瓶,降低二氧化碳的浓度,结果说明氮气以130mL/min的速度吹扫2min就可以使二氧化碳降低到检测不出来的程度。(2) 测定精度  作者测定了碳酸钠标准和造纸厂黑液中二氧化碳的浓度,把100&mu L 0.1mol 的碳酸钠标准溶液分析5次,100&mu L造纸厂黑液也分析5次,其结果见表2,标准偏差分别为0.62%和3.74%。  表 2 测定了碳酸钠标准和造纸厂黑液中二氧化碳的精度 2 用顶空气相色谱测定样品中少量酸和碱的方法  柴欣生等[J Chromatogr A, 2005,1093 : 212&ndash 216]使用顶空气相色谱测定少量含酸和含碱样品,这次是与前面的方法相反,使用标准的碳酸氢钠溶液和酸性盐反应产生二氧化碳,用气相色谱的热导检测器测定二氧化碳的含量。(1) 测定使用的仪器和条件  所有的测定都使用HP-7694自动进样器和HP-6890毛细管气相色谱仪,用热导检测器进行检测。  色谱条件:  色谱柱:大内径涂渍二乙烯基苯聚合物的PLOT柱(GS-Q PLOT柱)  柱温:60℃  载气:He 3.1 mL/min  样品瓶用He加压0.2 min,  样品环注入样品0.2 min  样品环平衡 0.05 min  样品瓶装液体样品平衡2 min  样品瓶装固体样品平衡 10 min(2)样品分析步骤  (a)分析样品中的碱:取一定量的样品(液体或固体)加入一定体积的0.100 mol/L的盐酸标准溶液中,把样品中的碱中和掉,还有多余的盐酸标准溶液,用注射器取一定量的此溶液,注入含有4mL标准碳酸氢钠溶液的顶空样品瓶中,进行顶空GC分析。  (b)分析样品中的酸:用注射器取一定量的被测溶液,直接注入含有4mL标准碳酸氢钠溶液的顶空样品瓶中,进行顶空GC分析。  (3)分析条件的影响  (a)温度:60℃时二氧化碳的无因次分配系数大于1000,几乎全部从溶液中释放出来,所以能够用测定二氧化碳进行定量分析样品中的酸或碱。但是在高温下碳酸氢钠会分解。但是碳酸氢钠分解放出二氧化碳也是一个平衡反应,碳酸氢钠分解出来的蒸汽相和液相之间完全平衡,在一个给定的样品瓶密闭空间中需要约8 min,约有10%的碳酸氢钠分解为二氧化碳,所以这样会影响样品测定的准确度,特别是测定的酸含量较低时更为显著。分解与碳酸氢钠的浓度有直接关系,根据实验研究在一个密闭空间、短时间内分解出来的二氧化碳来的二氧化碳量远小于样品分解出来的二氧化碳的量,如图 1所示,在60℃时短时间内分解量很小。 图 1 碳酸氢钠分解出CO2随时间的变化  (b)空气中二氧化碳的影响  在本实验中采用进行空白试验的方法,通过校准抵消空气中二氧化碳的影响。  (c)液体样品的体积  一般来讲,往顶空样品瓶中加入较多的样品量,可以提高测定灵敏度,但同时需要过量的碳酸氢钠,使用现行的商品自动进样器,改变顶空体积就会就会影响检测结果,所以避免大幅度改变顶空的体积,例如在一个20mL的顶空瓶含有4mL碳酸氢钠溶液,使用的样品量为200&mu L,这样会使用顶空体积改变1.25%,对测量结果没有多大影响。对固体样品可以用制备成的溶液量来调节。(3)这一方法的准确度和精密度  使用现有的商品仪器进行反应顶空气相色谱的精密度和准确度与经典方法进行了对比,如表3和表4所示。表3 测定酸与滴定法的比较样品盐酸/(mol/L)相对偏差/%本方法滴定法1号溶液0.10020.10000.22号溶液0.04980.0500-0.33号溶液0.02470.0250-1.24号溶液0.01010.01001.0表4 测定碳酸钠与电导法的比较样品碳酸钠/%相对偏差/%本方法电导法1号黑液4.94.74.32号黑液23.224.1-3.73号黑液25.124.52.44号黑液42.042.8-1.93 用反应顶空气相色谱测定木纤维中羧基  在纤维材料中含有的羧基(COOHs)代表它的离子交换能力,即在加工过程中吸收金属阳离子的能力,它影响木纤维的膨胀和均匀性,从而有助于纤维的结合,有利于造纸助留剂的吸附,纸的电性能决定于木纤维中羧酸基团结合金属离子的数量。另一方面,被羧酸基团吸着的阳离子对纤维和纸张干燥时的变色机制有影响。这些羧酸基团对木纤维的改性起着重要作用,因为有很强的反应能力,对加成和取代反应至关重要,最后这些羧酸基团可以增加专用级别溶解木浆的粘度并降低纤维的溶解度。  所以对木纤维羧基含量的测定无论是基础研究还是应用研究都是至关重要的。柴欣生等开发了用反应顶空气相色谱分析木纤维中的羧基含量[Ind. Eng. Chem. Res. 2003, 42:L5440-5444],关键问题是优化分析条件,把羧基完全转化为气相色谱可以检测的挥发性物质,以提高测定的准确性。(1) 测定原理  木纤维上的羧基与碳酸氢钠反应,可以释放出二氧化碳,用气相色谱热导检测器进行检测分析,反应如下:(2) 测定使用的仪器和条件  所有的测定都使用HP-7694自动进样器和HP-6890毛细管气相色谱仪,用热导检测器进行检测。  色谱条件:  色谱柱:大内径涂渍二乙烯基苯聚合物的PLOT柱(GS-Q PLOT柱30m x 0.53mm )  柱温:60℃  载气:He 3.1 mL/min,使用不分流模式  样品瓶用He加压0.2 min,  样品环注入样品0.2 min  样品环平衡 0.05 min  样品瓶装液体样品平衡2 min  样品瓶装固体样品平衡 10 min  样品瓶如图2所示:图 2 反应顶空气相色谱测定木纤维中羧基的样品瓶(3)测定步骤  首先在室温下把纤维样品用0.100mol/L盐酸溶液处理1h,以匀速用磁搅拌器进行搅拌,烘干的纤维在酸溶液中的浓度为1.2%,然后把纤维样品在一个离心果汁萃取器中脱水浓缩,确定脱水纤维的浓度,这样就确定了纤维中残留盐酸的量。  取4mL 0.005mol/L标准碳酸氢钠和0.1mol/L NaCl的混合溶液,注入顶空测试瓶中,取一支长 2.54 cm 的针,穿过顶空瓶隔垫(如图2),称量0.15g脱水纤维置于隔垫里面的针上,样品不要和瓶中的溶液接触反应,把顶空瓶的隔垫盖紧,把针拔出,纤维样品就落入反应溶液中。(4)这一方法的准确和精密度  表4列出用反应顶空气相色谱分析木纤维中羧基的比较结果表4 顶空气相色谱分析木纤维中羧基的比较结果样品纤维中羧基含量/(mmol/g)相对偏差/%本方法滴定法1号样品0.07890.07860.352号样品0.06820.0739-7.113号样品0.04130.0415-0.574号样品0.06950.06940.045号样品0.08150.07558.016号样品0.06110.06100.107号样品0.02250.0241-6.878号样品0.05770.0581-0.69(1) 方法的进一步改进  两年后柴欣生教授的研究组又进一步把方法加以改进[Ind. Eng. Chem. Res. 2005, 44, 10013-10015],把样品制备(即样品酸化之后把样品进行水洗),反应试剂的浓度(即降低碳酸氢钠的浓度,减少它的分解),和样品加入方式(即直接加入样品)进行改进。新方法更为简洁、可靠、更为实用,可以用于非纤维状的样品。  (a)修改后的方法:取烘干后的纸浆样品0.2g 置于装有200mL 0.1mol/L盐酸溶液的烧杯中,在室温下用电磁搅拌混合 1 h,之后把纸浆样品用去离子水彻底清洗,除去残留的盐酸,测定洗涤水的pH值以确定是否清洗彻底,把清洗后的纸浆样品放在恒温恒湿的环境下进行空气干燥。根据纸浆含有羧基的量用分析天平称取0.03-0.08 g样品置于顶空样品瓶中,加入4 mL碳酸氢钠溶液后立即把瓶密封,摇动顶空瓶使样品分散到溶液中,之后置于气相色谱仪的自动进样器中,进行顶空气相色谱分析。  (b)如果样品中含有更强的酸,就会和碳酸氢钠溶液立刻反应产生出二氧化碳,所以既要把样品和碳酸氢钠溶液的混合在顶空瓶密封之后进行,因此设计了如图3的方式,即把碳酸氢钠置于一个小试管中,等顶空瓶加上隔垫盖之后,使之倾倒与样品反应。图3 测定纸浆中羧基的顶空样品瓶4 用反应顶空气相色谱测定氧脱木质素过程溶液中的草酸盐  ( JChromatogr A,2006,1122:209-214)  测定造纸过程中氧脱木质素液体中的草酸盐对研究工艺条件有重要作用,大家从基础分析化学知道,测定草酸盐用高锰酸钾标准溶液以滴定法进行测定,反应如下:  这一反应在提高温度是会加速反应,以高锰酸钾的消耗量进行定量,但是这一反应如果样品中含有还原物时不能使用,如有机物,氧脱木质素液体很复杂,其中的草酸盐不能用此法进行定量分析。但是柴欣生教授的研究组把反应顶空气相色谱【他们叫做&rdquo 相变反应&rdquo (Phase conversion reaction,PCR)顶空气相色谱】与他们以前研究的&ldquo 多次顶空萃取&rdquo (multiple headspace extraction)(用于测定造纸厂黑液中甲醇形成的动力学研究(J Chromatogr A,2002,946:177-183)气相色谱相结合来解决这一问题。  氧脱木质素液体中的草酸盐与酸性高锰酸钾反应很快便产生出二氧化碳,但是和其中的有机物经氧化反应产生出二氧化碳要慢得多,因此可以用测定后者产生规律和数据来修正测定氧脱木质素液体中的草酸盐含量的方法。(这一方法相对复杂一些,由于篇幅不做详述,有兴趣的可以阅读柴教授的原文)。  柴欣生教授的研究团队还有许多文章阐述反应顶空气相色谱的应用,这里无法一一介绍。  下面列出部分相关的文献供读者参考:序号题目原始文献1制浆过程废液挥发性有机化合物的生成规律(顶空气相色谱法)J. Pulp Paper Sci., 1999, 256-262.2顶空气相色谱分析复杂基质中的非挥发性物质J. Chromatogr. A, 2001, 909:249-257.3木质纤维羧基含量: 1.顶空气相色谱法测定羧基含量Ind. Eng. Chem. Res., 2003, 42: 5440-5444.4顶空气相色谱测定酸和碱组分J. Chromatogr. A, 2005, 1093:212-216.5顶空气相色谱测定木质素的甲氧基含量J. Agric. Food Chem., 2012, 60: 5307&minus 5310.6顶空气相色谱快速测定纸浆漂白废液的过氧化氢含量J. Chromatogr. A, 2012,1235:182-184.7顶空气相色谱测定丁二酸酐改性纤维素的取代度J. Chromatogr. A,2012,1229:302-304.8一种实用的顶空气相色谱法测定纸浆漂白废液的草酸根含量J. Ind. Eng. Chem., 2014,20:13-16.9一种新颖的顶空气相色谱法分析乙基纤维素的乙氧基含量Anal. Lett., 2012, 45: 1028-1035.10顶空气相色谱技术快速测定个护用品中的甲醛含量Anal. Sci., 2012, 28: 689-692.11顶空气相色谱测定以甲醛为原料的聚合物乳液中的残余甲醛含量J. Ind. Eng. Chem.,2013,19:748-751.12顶空气相色谱法检测纸浆中羰基含量的研究中国造纸, 2014,33(10): 36-39.13静态顶空气相色谱技术化学进展, 2008,20(5): 762-766.5 更多反应顶空气相色谱的应用  国内还有不少学者在许多领域使用反应顶空气相色谱解决诸多分析问题,下面列出一些用例。序号题目方法要点 1顶空进样-气相色谱法测定大气中吡啶的研究用硫酸溶液为吸收液采集大气中的吡啶,吸收液倒入20 mL 顶空瓶中,加入3 g 氯化钠,少量氢氧化钠,调节pH为12,密闭摇匀至所加盐全部溶解,于顶空进样器进样,气相色谱仪分析。王艳丽等,中国环境监测,2013,29(2):62-642顶空气相色谱法测定粮食中的氰化物称取试样5-10 g于100 ml顶空管中加入纯水至80 ml, 混匀, 在超声波清洗器中超声提取20 min, 取出, 分别加入磷酸盐缓冲溶液1.0 ml和1%氯胺T溶液0.25 ml, 立即用橡胶反堵胶塞密封, 混匀, 置于40℃恒温水浴中, 反应及平衡50 min, 抽取顶空气体100 &mu l注入气相色谱仪进行测定。刘宇等,中国卫生检验杂志2009,19(3):552-5533顶空气相色谱法测定膨化大枣中的亚硫酸盐含量将粉碎样品放入500mL 顶空瓶中, 加入浓盐酸, 在40℃恒温水浴中反应10min, 亚硫酸盐在酸性条件下转化为SO2气体, 取顶空气体进行气相色谱分析。通过测定气相中二氧化硫的含量, 间接测定样品中的亚硫酸盐含量王晓云等,山东化工,2007,36(1):36-384使用自动顶空进样器测定梨中代森锰锌残留量的电子捕获气相色谱法在20 mL 顶空瓶中加入0.1 g 抗坏血酸、0.2 gEDTA 络合物,然后称取5.0 g 匀浆后的样品于此顶空瓶中,再加入10 mL 预先配制好的氯化锡盐酸溶液,加盖密封,超声震荡2 min,然后在水温为80℃的水浴锅中加热2 h,每隔30 min 摇匀一次,摇匀时间为1 min,待反应完成,稍冷,然后置于自动顶空装置托盘,顶空平衡温度60℃,平衡时间3 min,分析反应产生的二硫化碳聂春林等,精细化工中间体,2010,40(6):63-665测定尿中三氯乙酸的自动顶空气相色谱法尿中的三氯乙酸加热脱羧生成三氯甲烷进星气相色谱分离,,取5 ml 样品移入顶空瓶中,同时取5 ml 双蒸水作为空白对照,立即加盖密封。顶空瓶放入90 ℃水浴中150 min,然后依次放入顶空装置内,启动自动进样分析李添娣等,职业与健康 2012,28(16 ):1982-1983 小结:化学反应很神奇,利用它创造出瑰丽的世界,制造出无数无奇不有的物件,满足人们的各种需求,为人们提供了绚丽多彩的生活条件。利用化学反应把本来不能进行顶空气相色谱的样品变为可能,大大提高了它的应用范围。这一方法是有限的,但是这一思路是无限的。致谢:感谢柴欣生教授提供部分资料并对本文进行审阅和修改。
  • 莱顿公司推荐-色谱工作者的良好习惯
    1. 按仪器说明书的规程操作 验收仪器时,不仅要清点所有零部件是否齐全,还要检查仪器说明书是否齐备,并妥善保存这些资料。在独立操作仪器之前,一定要认真阅读有关说明书,并严格按规程操作。这是做好分析的前提条件,而且一旦仪器出了问题,也好与厂商交涉。特别在保修期,如果因为操作不当而出现故障或仪器损坏时,厂商是不会为你免费维修的。 2. 准备一份色谱柱测试标样 色谱柱的性能是保证分析结果的关键。新买的色谱柱,首先要用测试样品评价其性能。如果用色谱柱厂商提供的测试条件测试而结果不合格时,就可要求退货或换货。更重要的是此后的使用过程中色谱柱性能会变化,当分析结果有问题时,可以用测试标样测试色谱柱,并将结果与前一次测试结果相比较,这有助与确定问题是否出在色谱柱,以便于采取相应的措施排除故障。每次测试结果都应保存起来作为色谱柱寿命的记录。另外用过一段时间后,应对色谱柱进行一次高温老化,以除去柱内可能有的污染物,然后用测试标样评价色谱柱。 3. 及时更换毛细柱密封垫 石墨密封垫漏气是GC最常见的故障之一。一定不要在不同的色谱柱上重复使用同一密封垫,即使是同一柱上卸下重新安装时,最好也要换新密封垫,这样能保证更高的工作效率。如果装上色谱柱后发现漏气而再更换密封垫,就要花费更长的时间。即使旧垫仍能使用,也要比原来多拧紧一些,弄的不好会拧断色谱柱。 4. 使用纯度合乎要求的气体 载气一定要用高纯级的,以避免干扰分析和污染色谱柱或检测器。要知道一跟色谱柱的价格是一瓶氮气或氢气价格的20倍以上。如果因为要省钱而用普通气体作载气,可能是丢了西瓜捡芝麻。检测器用辅助气最好也用高纯级的。虽然在灵敏度要求不高时,可使用普通气体,但其代价可能是检测器被污染。 5. 定期更换气体净化气填料 变色硅胶可根据颜色变化来判断其性能,但分子筛等吸附有机物的净化器就不好用肉眼判断了。所以须定期更换,最好3个月更换一次。如果硅胶与分子筛装在一起,则更换硅胶时也要更换分子筛。 6. 使用性能可靠的压力调节阀 仪器上装什么阀也许我们不能控制,但装在钢瓶上的减压阀一定要保证质量。有一些质量不好的新阀也会漏气,所以,经常检漏,随时发现问题是一个好的习惯。如果不注意这个问题,轻则造成气体浪费,重则出现安全问题,到时就悔之晚矣。 7. 定期更换进样口隔垫 进样口隔垫漏气是另一个GC常见故障。仪器要有自动检漏功能当然好一些,但也不能保证发现微小的漏气,更别说没有自动检漏功能的仪器了。曾经有一个初作GC/MS的操作人员,有一次他的一瓶氦气一昼夜就用光了,且发现MS图上有一些含硅的离子峰。检查各个阀及管路均未发现问题,最后才发现是隔垫使用太久,中间已有一个透光孔!氦气是从此漏掉的。另外隔垫的老化降解也会给分析带来干扰。比如其碎屑掉进汽化室就可能导致鬼峰,上面的故事就是一例。 市售隔垫一般有三种类型,普通型(可耐温200℃)、优质型(可耐温300℃)和高温型(可耐温400℃)。耐高温和抗老化性能越好、寿命越长,价格就越高。操作人员可根据实际分析条件选择使用,常规分析实验室(汽化温度不超过300℃)选择优质隔垫就可以了,做高温GC分析时最好用高温隔垫。至于多长时间换一次隔垫,则要看所分析的样品性质和分析条件而定。常规实验室一般每天更换一个进样隔垫。无论如何,一个隔垫的连续使用时间不要超过一周。有经验的操作人员根据进样时的手感就可判断是否需要更换隔垫。 8.及时清洗注射器 干净的注射器能避免样品的记忆效应的干扰。更换样品时要清洗,用同一样品多次进样时也要用样品本身清洗注射器。一支注射器暂时不用时(比如下班),更要彻底清洗,否则残留在其中的样品可能将针芯粘牢,造成注射器报废。使用自动进样器的用户也应注意此问题,最好是经常更换和清洗注射器。 9.定期检查并清洗进样口衬管 仪器长期使用后,会发现衬管内积有焦油状物质,这是样品中不挥发成分造成的。此外还有颗粒状物质积存(隔垫碎屑,样品中的固体物质),这些都会干扰分析的正常进行。因此要定期检查,及时清洗。注意衬管中填充一些经硅烷化处理的石英玻璃毛,即可提高样品的汽化效率,又能防止隔垫碎屑进入色谱柱造成堵塞。 10. 保留完整的仪器使用记录 这是仪器的履历,应逐日记录,包括操作者、分析样品及条件、仪器工作状态等等。一旦仪器出现问题,这是查找原因的重要资料。工厂企业往往有严格的操作程序,这方面要做的好一些。有一些实验室有时不太注意这个问题,实在不是一个好的习惯。 11. 更换零部件要逐一进行 修理仪器时,不要一次更换多个部件,那样会造成故障原因的判断失误。应该一次更换一件,经测试后再更换另一个。这样可能更准确的判断故障原因,同时避免不必要的开支。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制