当前位置: 仪器信息网 > 行业主题 > >

红外激光二抗荧光显微镜

仪器信息网红外激光二抗荧光显微镜专题为您提供2024年最新红外激光二抗荧光显微镜价格报价、厂家品牌的相关信息, 包括红外激光二抗荧光显微镜参数、型号等,不管是国产,还是进口品牌的红外激光二抗荧光显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外激光二抗荧光显微镜相关的耗材配件、试剂标物,还有红外激光二抗荧光显微镜相关的最新资讯、资料,以及红外激光二抗荧光显微镜相关的解决方案。

红外激光二抗荧光显微镜相关的论坛

  • 【求助】请问pe标记的抗体在荧光显微镜下是用蓝光观察吗?

    [color=#00FFFF][size=4][em09512] 请教大家一下哦,,我用pe荧光标记的抗体 在荧光显微镜是用蓝光去看吗? 那台是nikon的落射荧光显微镜来的,有绿光,蓝光,黄光可选的(那个是激发光的光源吗?), 我用蓝光去看什么都没有,用绿光去看就有一两颗红色一点的东西,那些是什么啊? 我是新手啊,请教大家罗,。。 谢谢。。[/size][/color]

  • 荧光显微镜常见的滤光片有哪些种类。

    荧光显微镜常见的滤光片有哪些种类。

    滤光片是荧光显微镜不可缺少的一个部件之一,赓旭小编给大家介绍荧光显微镜常见的滤光片有哪些种类。  1、吸热滤光片  吸热滤光片是防止光源光谱中的热辐射线损伤光具组所必需的滤光片。  2、阻挡滤光片  阻挡滤光片是选择性吸收短波谱线和红外线而通透较长波长可视线的滤光片,其功能是使观察都能看到被检物体所激发出来的荧光,同时保护观察都的角膜免遭紫外线伤害。[img=,640,428]http://ng1.17img.cn/bbsfiles/images/2018/04/201804160934486662_1236_3391505_3.jpg!w640x428.jpg[/img]  3、干涉滤光片  干涉滤光片是高性能激发[url=http://www.gxoptics.com/]滤光片[/url]的一种。它是将数张薄层金属膜叠放在抛光的两张玻璃片之间制成的滤光片。每张薄金属膜的折光系数都不相同,因此照明光源的各种不同波长的谱线在每张金属膜上反复进行反射,使得某些波长的谱线因相消干涉而抵消,另一些波长的谱线相加干涉而得以加强,并透射过去,这样得到透射波谱很窄、半波峰宽度只有6-20nm,透光度可达到60% -70%的滤光片。  4、激发光滤光片  激发光滤光片可以选择性吸收长波谱线而吸通透紫外线,紫色,蓝色和绿色光线的滤光片为激发滤色片。  5、色光分离滤光片  色光分离滤光片是将激发光反射到被检物体上,使被检物体激发出荧光,再将荧光透射到目镜的滤光反射镜。这类滤我片只能用于落射光聚光器中,而透射光荧光显微镜不需要色光分离。  所以,荧光显微镜常见的滤光片有吸热滤光片,阻挡滤光片,干涉滤光片,激发光滤光片和色光分离滤光片。那么荧光显微镜常见的滤光片种类,除了以上介绍的,欢迎大家补充共同探讨!

  • 什么是透射光荧光显微镜?

    透射光荧光显徽镜(transmited light fluorescence microscope)可以和暗视野置、干涉装置配合使用。因此目前奥林巴斯显微镜公司仍然出售这类型号的显微镜。但是透射光荧光显微镜的照明光路即激发光束必须通过载物玻片。为了减少激发光线的损失.透射光荧光微镜应该配用石英玻璃载物片。研究工作中大量使用石英载物片和盖玻片是一项昂贵的消耗。因为透射光荧光显微镜的这种缺点,目前愈来愈多的研究工作者欢迎落射光荧光显微镜。经济条件不足的基层研究单位急需使用荧光显微镜时,可以用尼康显微镜配制成简易但仍然很有效的荧光显微镜。例如电影放映机用的碳弧灯或高压汞灯当作光源.自制如所示透光鼓形瓶。瓶内装满5-10%硫酸铜水溶液。该溶液中逐滴加入氢氧化铁水。开始滴加时瓶内出现绵絮状沉淀物.随着铁水的滴加,绵絮状沉淀物愈来愈多。在继续加按水的过程中按水的量达到一定程度时,绵絮状沉淀物开始消融。这时要谨慎地滴加到最后的绵絮状沉淀物消失时停止加铁水。瓶内硫酸铜液由无色变成蓝紫色美丽的溶液.这种溶液可当作激发滤光片完全可以满足荧光显微镜观察的要求.激发光通过标本变成荧光成像光束进入目镜。在目镜上方或目镜体内放置黄色滤光片,以保护观察者的角膜。一般市售照像黄色滤光片可以使用。或者按着本书显微摄影一章中介绍的配方自制黄色滤光片。自制滤光片的方法比起该章介绍的方法还可以简化.例如取一段照像底片不经显影直接定影。通过定影剂将感光胶膜上的澳化银洗掉。胶片变成透明胶膜。将此膜浸泡于上述染液中即可制成滤光片。

  • 荧光显微镜和普通显微镜有哪些区别

    1、荧光显微镜的照明方式通常为落射照明,即光源通过物镜投射于样品上;2、荧光显微镜的光源为紫外光,波长较短,分辨力高于普通显微镜;3、荧光显微镜有两个特殊的滤光片,光源前的用以滤除可见光,目镜和物镜之间的用于滤除紫外线,用以保护人眼。 荧光显微镜用于研究细胞内物质的吸收、运输、化学物质的分布及定位等。 细胞中有些物质,如叶绿素等,受紫外线照射后可发荧光;另有一些物质本身虽不能发荧光,但如果用荧光染料或荧光抗体染色后,经紫外线照射亦可发荧光,荧光显微镜就是对这类物质进行定性和定量研究的工具之一。

  • 简谈激光共聚焦显微镜

    [url=http://www.leica-microsystems.com/cn/%E4%BA%A7%E5%93%81/%E5%85%B1%E8%81%9A%E7%84%A6%E6%98%BE%E5%BE%AE%E9%95%9C/]激光共聚焦显微镜[/url]用于对样品(如贴片细胞)进行荧光成像,一般具有几条不同波长的激光作为激发光,研究人员可根据自身不同的实验需要来选择合适的激光进行荧光成像。共聚焦显微镜相对于传统的荧光显微镜具有极大的优势。首先,激光共聚焦显微镜具有极高的层切能力,可以对样品进行三维成像。与普通荧光显微镜不同,共聚焦显微镜可以对待观察样品的某一平面清晰成像,通过改变样品的垂直位置对样品的不同平面进行依次成像,还可对样品的特定平面进行实时动态成像。其次,共聚焦显微镜相对于传统的荧光显微镜具有极高的分辨率,基本达到了光学显微镜分辨率的理论极限。再次,由于激光共聚焦显微镜基于单点扫描的成像模式,因此可以在此基础上开发出其他传统荧光显微镜不能达成的技术,如荧光漂白恢复技术,荧光相关光谱技术等。共聚焦显微镜在生物学和化学领域具有极其广阔的应用,如对样品的荧光信号进行定性定量分析,对组织样品进行三维结构观察等。

  • 【原创大赛】我与荧光显微镜

    【原创大赛】我与荧光显微镜

    显微镜,大家上中学实验的时候可能都用过,但是荧光显微镜我可是读了研究生才有接触。一开始,我只知道实验室有这个东西,但是这与我的实验无关,所以也从来不关注。后来,要做定位的实验,开始使用荧光显微镜。 最初,我是利用酵母系统对我关注的蛋白进行定位,把绿色荧光蛋白转入酵母,诱导表达后,在荧光显微镜下观察,每一个酵母都是绿绿的椭圆球,倒真是好看。把我关注的蛋白融合绿色荧光蛋白在酵母中表达,则是每个酵母中有几个圆点,很好玩呢,后来鉴定这些圆点原来是线粒体。http://ng1.17img.cn/bbsfiles/images/2012/12/201212132152_412427_1306303_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212132152_412428_1306303_3.jpg 再后来,要把关注的蛋白在植物中定位,这种普通的荧光显微镜就不好用了,因为植物的叶片太厚,在普通的荧光显微镜中只能模糊观察,难以得到清晰漂亮的图片。http://ng1.17img.cn/bbsfiles/images/2012/12/201212132153_412430_1306303_3.jpg 这个时候,我知道了激光共聚焦荧光显微镜(confocal)。激光共聚焦荧光显微镜可以对所要观察的目标进行逐层扫描,因为是单层,所以得到的照片非常清楚漂亮。http://ng1.17img.cn/bbsfiles/images/2012/12/201212132153_412431_1306303_3.jpg 再后来,我知道了用激光共聚焦荧光显微镜还可以对观察的目标进行三维重建。科研人员对关注的目标进行三维重建的,这样可以得到立体的效果,再制作成动画,已经成为很多最新发表的科研论文的重要实验结果,生动活泼,一改以前科研论文的枯燥。我的同事就有对染色体原位杂交结果进行三维重建的,这样可以得到立体的染色体的效果,让大家看到实际上染色体的真正形态和原位杂交效果,更加生动活泼。

  • 荧光显微镜原理及应用

    荧光显微镜的原理 :荧光显微镜是利用一个高发光效率的点光源,经过滤色系统发出一定波长的光(如紫外光3650入或紫蓝光4200入)作为激发光、激发标本内的荧光物质发射出各种不同颜色的荧光后,再通过物镜和目镜的放大进行观察。这样在强烈的对衬背景下,即使荧光很微弱也易辨认,敏感性高,主要用于细胞结构和功能以及化学成分等的研究。荧光显微镜的基本构造是由普通光学显微镜加上一些附件(如荧光光源 、激发滤片、双色束分离器和阻断滤片等)的基础上组成的。荧光光源——般采用超高压汞灯(50一200W),它可发出各种波长的光,但每种荧光物质都有一个产生最强荧光的激发光波长 ,所以需加用激发滤片(一般有紫外、紫色、蓝色和绿色激发滤片),仅使一定波长的激发光透过照射到标本上,而将其他光都吸收掉。每种物质被激发光照射后,在极短时间内发射出较照射波长更长的可见荧光。荧光具有专一性,一般都比激发光弱,为能观察到专一的荧光,在物镜后面需加阻断(或压制)滤光片。它的作用有二:一是吸收和阻挡激发光进入目镜、以免于扰荧光和损伤眼睛,二是选择并让特异的荧光透过,表现出专一的荧光色彩。两种[url=http://www.gengxu.cn]滤光片[/url]必须选择配合使用。荧光显微镜就其光路来分有两种:1.透射式荧光显微镜: 激发光源是通过聚光镜穿过标本材料来激发荧光的。常用暗视野集光器,也可用普通集光器,调节反光镜使激发光转射和旁射到标本上.这是比较旧式的荧光显微镜。其优点是低倍镜时荧光强,而缺点是随放大倍数增加其荧光减弱.所以对观察较大的标本材料较好。2.落射式荧光显微镜这是近代发展起来的新式荧光显微镜,与上不同处是激发光从物镜向下落射到标本表面,即用同一物镜作为照明聚光器和收集荧光的物镜。光路中需加上一个双色束分离器,它与光铀呈45。角,激发光被反射到物镜中,并聚集在样品上,样品所产生的荧光以及由物镜透镜表面、盖玻片表面反射的激发光同时进入物镜,反回到双色束分离器,使激发光和荧光分开,残余激发光再被阻断滤片吸收。如换用不同的激发滤片/双色束分离器/阻断滤片的组合插块,可满足不同荧光反应产物的需要。此种荧光显微镜的优点是视野照明均匀,成像清晰,放大倍数愈大荧光愈强。荧光显微镜使用方法.1.打开灯源,超高压汞灯要预热几分钟才能达到最亮点。2.透射式荧光显微镜需在灯源与聚光器之间装上所要求的激发滤片,在物镜的后面装上相应的阻断滤片。落射式荧光显微镜需在光路的插槽中插入所要求的激发滤片/双色束分离器/阻断滤片的插块。3.用低倍镜观察,根据不同型号荧光显微镜的调节装置,调整光源中心,使其位于整个照明光斑的中央。4.放置标本片,调焦后即可观察。 使用中应注意:末装滤光片不要用眼直接观察,以免引起眼的损伤;用油镜观察标本时,必须用无荧光的特殊油镜;高压汞灯关闭后不能立即重新打开,需经5分钟后才能再启动,否则会不稳定,影响汞灯寿命。荧光显微镜的观察在示教台上的荧光显微镜下用蓝紫光滤光片,可见经o.01%的丫啶橙荧光染料染色的细胞,细胞核和细胞质被激发产生两种不同颜色的荧光(暗绿色和橙红色)。

  • 荧光显微镜的分类

    1.透射式荧光显微镜: 激发光源是通过聚光镜穿过标本材料来激发荧光的。常用暗视野集光器,也可用普通集光器,调节反光镜使激发光转射和旁射到标本上.这是比较旧式的荧光显微镜。其优点是低倍镜时荧光强,而缺点是随放大倍数增加其荧光减弱.所以对观察较大的标本材料较好。 2.落射式荧光显微镜这是近代发展起来的新式荧光显微镜,与上不同处是激发光从物镜向下落射到标本表面,即用同一物镜作为照明聚光器和收集荧光的物镜。光路中需加上一个双色束分离器,它与光铀呈45。角,激发光被反射到物镜中,并聚集在样品上,样品所产生的荧光以及由物镜透镜表面、盖玻片表面反射的激发光同时进入物镜,反回到双色束分离器,使激发光和荧光分开,残余激发光再被阻断滤片吸收。如换用不同的激发滤片/双色束分离器/阻断滤片的组合插块,可满足不同荧光反应产物的需要。此种荧光显微镜的优点是视野照明均匀,成像清晰,放大倍数愈大荧光愈强。

  • 荧光显微镜

    大家好,今早领导说想买一台荧光显微镜,让我看看,本人对荧光显微镜不是很熟悉,刚大概查了一下,分透射和落射式荧光显微镜,还有什么正置、倒置和体视荧光显微镜,看了半天看蒙了,不知道这些荧光显微镜之间有什么区别。我们这边主要是做一些材料研究,买荧光显微镜主要用途是 物体构造的观察和物质辨别,样品一般都是不透光的黑色物质,要求仪器观察清晰、有图像处理功能和标尺。所以想麻烦大家给看看买什么型号的荧光显微镜合适?物体构造

  • 荧光显微镜

    大家好,今早领导说想买一台荧光显微镜,让我看看,本人对荧光显微镜不是很熟悉,刚大概查了一下,分透射和落射式荧光显微镜,还有什么正置、倒置和体视荧光显微镜,看了半天看蒙了,不知道这些荧光显微镜之间有什么区别。我们这边主要是做一些材料研究,买荧光显微镜主要用途是 物体构造的观察和物质辨别,样品一般都是不透光的黑色物质,要求仪器观察清晰、有图像处理功能和标尺。所以想麻烦大家给看看买什么型号的荧光显微镜合适?物体构造

  • 【分享】OLYMPUS荧光显微镜操作规程

    仪器名称 OLYMPUS荧光显微镜 型  号 BX51TF 主要指标 1、目镜放大倍数10X; 2、物镜放大倍数分别为 4,10,20,40,100X(油镜); 3、制冷CCD摄像头(300万像素)与IBM电脑连机操作; 4、除明场(Bright Field)外,还可产生四种激光(蓝Blue,绿Green,紫外UV,黄Yellow)。 功能范围 1、用于明场下染色标本的观察和拍照; 2、主要用于荧光染色标本和免疫杂交标本的观察和拍照。 荧光显微镜操作步骤 1、使用前确保你已经熟悉显微镜的基本操作,否则不允许操作。 2、先开电源(ON),启动发光器,再开照相机电源。以免先照相机再开荧光显微镜电源时,强大电源将照相机电子零件烧损。 3、在显微镜下找到需要的物象后,打开电脑的成像系统。需要使用荧光时,请务必预热荧光灯电源15分钟。 4、选择滤镜,将滤镜推入(以免光线向外散失)后,于暗室下开始观察。应一次把全部玻片观察完毕,勿中途切断电源,否则须待冷却后(约30分钟)才能再开电源。最少开机30分钟才可关机,以免缩短灯泡寿命。 5、荧光色素于普通光线照射下易消失,故未观察之标本宜置不透光盒内储存于冰箱(4~5℃)。而在荧光显微镜之紫外线照射下亦易使荧光消失,故照像宜速。 6、等冷却后,再将防尘罩罩上。 7、测试完毕后,请认真填写登记表格。 8、本区春夏气候潮湿,存放荧光显微镜暗室应有除湿设备,并每星期将荧光显微镜至少开机一次,以免显微镜发霉损及镜头与滤光镜。

  • 激光扫描共聚焦显微镜应用技术

    激光共聚焦扫描显微镜是近代最先进的细胞生物医学分析手段之一。与传统荧光显微镜相比,共聚焦显微镜能得到更清晰的样品图像。它不仅可观察固定的细胞、组织切片,还可对活细胞的结构、分子、离子进行实时动态地观察

  • 【资料】激光共聚焦扫描显微镜一些介绍

    激光共聚焦扫描显微镜简介一、 激光共聚焦显微镜的基本组成激光扫描共聚焦显微镜(laser scanning confocal microscope LSCM)是20世纪80年代发展起来的一项具有划时代意义的高科技新产品,是当今世界最先进的细胞生物学分析仪器。激光共聚焦显微镜利用激光作为光源,在传统光学显微镜基础上采用共轭聚焦的原理和装置,以及通过针孔的选择和PMT的收集,并带有一套对其所观察到的对象进行数字图像分析处理的系统软件。与传统光学显微镜相比,它具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点。所以它问世以来在生物学的研究领域中得到了广泛应用。激光共聚焦显微镜主要有四部分组成:1、显微镜光学系统。2、扫描装置。3、激光光源。4、检测系统。整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地进行。1.1 显微镜光学系统  显微镜是LSCM的主要组件,它关系到系统的成象质量。显微镜光路以无限远光学系统可方便地在其中插人光学选件而不影响成象质量和测量精度。物镜应选取大数值孔径平场复消色 差物镜,有利于荧光的采集和成象的清晰。物镜组的转换,滤色片组的选取,载物台的移动调节,焦平面的记忆锁定都应由计算机自动控制。1.2 扫描装置  LSCM使用的扫描装置在生物领域一般为镜扫描。由于转镜只需偏转很小角度就能涉及很大的扫描范围,图象采集速度大大提高,512×512画面每秒可达4帧以上,有利于那些寿命短的离子作荧光测定。扫描系统的工作程序由计算机自动控制。1.3 激光光源  LSCM使用的激光光源有单激光和多激光系统。多激光器系统在可见光范围使用多谱线氩离子激光器,发射波长为457nm、488nm和514nm的蓝绿光,氦氖绿激光器提供发射波长为543nm的绿光,氦氖红激光器发射波长为633nm的红光,新的405nm半导体激光器的出现可以提供近紫外谱线,但是小巧便宜而且维护简单。1.4 检测系统  LSCM为多通道荧光采集系统,一般有三个荧光通道和一个透射光通道,能升级到四个荧光通道,可对物体进行多谱线激光激发,样品发射荧光的探测器为感光灵敏度高的光电倍增管PMT,配有高速12位A/D转换器,可以做光子计数。PMT前设置针孔,由计算机软件调节针孔大小,光路中设有能自动切换的滤色片组,满足不同测量的需要,也有通过光栅或棱镜分光后进行光谱扫描功能的设置。二、激光共聚焦显微镜的特点以及在生物领域的应用传统光学显微镜相比,激光共聚焦显微镜具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点,在对生物样品的观察中,激光共聚焦显微镜有如下优越性:1、对活细胞和组织或细胞切片进行连续扫描,可获得精细的细胞骨架、染色体、细胞器和细胞膜系统的三维图像。2、 可以得到比普通荧光显微镜更高对比度、高解析度图象、同时具有高灵敏度、杰出样品保护。3、***图象的获得,如7 维图象(XYZaλIt): xyt 、xzt 和xt 扫描,时间序列扫描旋转扫描、区域扫描、光谱扫描、同时方便进行图像处理。 4、细胞内离子荧光标记,单标记或多标记,检测细胞内如PH和钠、钙、镁等离子浓度的比率测定及动态变化。5、荧光标记探头标记的活细胞或切片标本的活细胞生物物质,膜标记、免疫物质、免疫反应、受体或配体,核酸等观察;可以在同一张样品上进行同时多重物质标记,同时观察; 6、对细胞检测无损伤、精确、准确、可靠和优良重复性;数据图像可及时输出或长期储存。 由于共聚焦显微镜的以上优点,激光共聚焦显微镜在以下研究领域中应用较为广泛:1、细胞生物学:如:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化、细胞凋亡机制;各种细胞器、结构性蛋白、DNA、RNA、酶和受体分子等细胞特异性结构的含量、组分及分布进行定量分析;DNA、RNA含量、利用特定的抗体对紫外线引起的DNA损伤进行观察和定量;分析正常细胞和癌细胞细胞骨架与核改变之间的关系;细胞黏附行为等 2、生物化学:如:酶、核酸、受体分析、荧光原位杂交、杂色体基因定位等,利用共聚焦技术可以取代传统的核酸印迹染交等技术,进行基因的表达检测,使基因的转录、翻译等检测变的更加简单、准确。3、药理学:如:药物对细胞的作用及其动力学;药物进入细胞的动态过程、定位分布及定量 4、生理学、发育生物学:如:膜受体、离子通道、离子含量、分布、动态;动物发育以及胚胎的形成,骨髓干细胞的分化行为;细胞膜电位的测量.荧光漂白恢复(FRAP)、荧光漂白丢失(FLIP)的测量等。 5、遗传学和组胚学:如:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断; 6、神经生物学:如:神经细胞结构、神经递质的成分、运输和传递; 7、微生物学和寄生虫学:如:细菌、寄生虫形态结构; 8、病理学及病理学临床应用:如:活检标本的快速诊断、肿瘤诊断、自身免疫性疾病的诊断; 9、免疫学、环境医学和营养学。如:免疫荧光标记(单标、双标或三标)的定位,细胞膜受体或抗原的分布,微丝、微管的分布、两种或三种蛋白的共存与共定位、蛋白与细胞器的共定位;对活细胞中的蛋白质进行准确定位及动态观察可实时原位跟踪特定蛋白在细胞生长、分裂、分化过程中的时空表达,荧光能量共转移(FRET)。

  • 美德科学家因超分辨率荧光显微镜获诺贝尔化学奖(转载)

    瑞典皇家科学院8日宣布,将2014年诺贝尔化学奖授予美国科学家埃里克·贝齐格、威廉·莫纳和德国科学家斯特凡·黑尔,以表彰他们为发展超分辨率荧光显微镜所作的贡献。 诺贝尔化学奖评选委员会当天声明说,长期以来,光学显微镜的分辨率被认为不会超过光波波长的一半,这被称为“阿贝分辨率”。借助荧光分子的帮助,今年获奖者们的研究成果巧妙地绕过了经典光学的这一“束缚”,他们开创性的成就使光学显微镜能够窥探纳米世界。如今,纳米级分辨率的显微镜在世界范围内广泛运用,人类每天都能从其带来的新知识中获益。 声明还说,黑尔于2000年开发出受激发射损耗(STED)显微镜,他用一束激光激发荧光分子发光,再用另一束激光消除掉纳米尺寸以外的所有荧光,通过两束激光交替扫描样本,呈现出突破“阿贝分辨率”的图像。贝齐格和莫纳通过各自的独立研究,为另一种显微镜技术——单分子显微镜的发展奠定了基础,这一方法主要是依靠开关单个荧光分子来实现更清晰的成像。2006年,贝齐格第一次应用了这种方法。因此,这两项成果同获今年诺贝尔化学奖。 今年诺贝尔化学奖奖金共800万瑞典克朗(约合111万美元),将由三位获奖者平分。

  • 学会怎样使用荧光显微镜

    主体内容:操作步骤如下:荧光显微镜的使用程序荧光显微镜基本操作1.关闭房间内的电灯,开启显微镜汞灯;2.根据样品标记的荧光素选择相应的滤光片;3.放好样品,找到合适的视野;4.如需拍照,请确认照相机内已装好彩色胶卷(最好使用27定胶卷);5.开启自拍装置,选择手动档,通常拍摄速度在0.5---10秒内;6.使用结束,关闭所有电源并做好使用记录。注:A.为延长汞灯的使用寿命,汞灯开启不到15分钟的请在15分钟后关闭汞灯。B.在荧光状态下观察标本,标本内的荧光染色会较快的衰减,所以要避免长时间的在荧光下观察。

  • 【原创】荧光显微镜的原理和结构特点

    [color=#c001cb][size=4][font=SimSun] 荧光显微镜是利用一个高发光效率的点光源,经过滤色系统发出一定波长的光(如紫外光3650入或紫蓝光4200入)作为激发光、激发标本内的荧光物质发射出各种不同颜色的荧光后,再通过物镜和目镜的放大进行观察。这样在强烈的对衬背景下,即使荧光很微弱也易辨认,敏感性高,主要用于细胞结构和功能以及化学成分等的研究。荧光显微镜的基本构造是由普通光学显微镜加上一些附件(如荧光光源 、激发滤片、双色束分离器和阻断滤片等)的基础上组成的。荧光光源一般采用超高压汞灯(50一200W),它可发出各种波长的光,但每种荧光物质都有一个产生最强荧光的激发光波长 ,所以需加用激发滤片(一般有紫外、紫色、蓝色和绿色激发滤片),仅使一定波长的激发光透过照射到标本上,而将其他光都吸收掉。每种物质被激发光照射后,在极短时间内发射出较照射波长更长的可见荧光。荧光具有专一性,一般都比激发光弱,为能观察到专一的荧光,在物镜后面需加阻断(或压制)滤光片。它的作用有二:一是吸收和阻挡激发光进入目镜、以免于扰荧光和损伤眼睛,二是选择并让特异的荧光透过,表现出专一的荧光色彩。两种滤光片必须选择配合使用。 [/font][/size][/color]

  • 【资料】荧光显微镜结构原理

    【资料】荧光显微镜结构原理

    [img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812162103_124527_1601358_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812162104_124528_1601358_3.jpg[/img]荧光显微镜是免疫荧光细胞化学的基本工具。它是由光源、滤板系统和光学系统等主要部件组成。是利用一定波长的光激发标本发射荧光,通过物镜和目镜系统放大以观察标本的荧光图像。现在多采用200W的超高压汞灯作光源,它是用石英玻璃制作,中间呈球形,内充一定数量的汞,工作时由两个电极间放电,引起水银蒸发,球内气压迅速升高,当水银完全蒸发时,可达50~70个标准大气压力,这一过程一般约需5~15min。超高压汞灯的发光是电极间放电使水银分子不断解离和还原过程中发射光量子的结果。它发射很强的紫外和蓝紫光,足以激发各类荧光物质,因此,为荧光显微镜普遍采用。

  • 激光共聚焦显微镜系统的原理和应用

    激光共聚焦显微镜系统的原理和应用激光扫描共聚焦显微镜是二十世纪80年代发展起来的一项具有划时代的高科技产品,它是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代强有力的研究工具。激光共聚焦成像系统能够用于观察各种染色、非染色和荧光标记的组织和细胞等,观察研究组织切片,细胞活体的生长发育特征,研究测定细胞内物质运输和能量转换。能够进行活体细胞中离子和PH值变化研究(RATIO),神经递质研究,微分干涉及荧光的断层扫描,多重荧光的断层扫描及重叠,荧光光谱分析荧光各项指标定量分析荧光样品的时间延迟扫描及动态构件组织与细胞的三维动态结构构件,荧光共振能量的转移的分析,荧光原位杂交研究(FISH),细胞骨架研究,基因定位研究,原位实时PCR产物分析,荧光漂白恢复研究(FRAP),胞间通讯研究,蛋白质间研究,膜电位与膜流动性等研究,完成图像分析和三维重建等分析。一.激光共聚焦显微镜系统应用领域:涉及医学、动植物科研、生物化学、细菌学、细胞生物学、组织胚胎、食品科学、遗传、药理、生理、光学、病理、植物学、神经科学、海洋生物学、材料学、电子科学、力学、石油地质学、矿产学。二.基本原理传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共聚焦显微镜利用激光束经照明针孔形成点光源对标本内焦平面的每一点扫描,标本上的被照射点,在探测针孔处成像,由探测针孔后的光点倍增管(PMT)或冷电耦器件(cCCD)逐点或逐线接收,迅速在计算机监视器屏幕上形成荧光图像。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点不会在探测针孔处成像,这样得到的共聚焦图像是标本的光学横断面,克服了普通显微镜图像模糊的缺点。三.应用范围:细胞形态学分析(观察细胞或组织内部微细结构,如:细胞内线粒体、内质网、高尔基体、微管、微丝、细胞桥、染色体等亚细胞结构的形态特征;半定量免疫荧光分析);荧光原位杂交研究;基因定位研究及三维重建分析。1.细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化2.生物化学:酶、核酸、FISH(荧光原位杂交)、受体分析3.药理学:药物对细胞的作用及其动力学4.生理学:膜受体、离子通道、细胞内离子含量、分布、动态5.神经生物学:神经细胞结构、神经递质的成分、运输和传递、递质受体、离子内外流、神经组织结构、细胞分布6.微生物学和寄生虫学:细菌、寄生虫形态结构7.病理学及临床应用:活检标本诊断、肿瘤诊断、自身免疫性疾病诊断、HIV等8.遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断四.激光共聚焦显微镜在医学领域中的应用A.在细胞及分子生物学中的应用1.细胞、组织的三维观察和定量测量2.活细胞生理信号的动态监测3.粘附细胞的分选4.细胞激光显微外科和光陷阱功能5.光漂白后的荧光恢复6.在细胞凋亡研究中的应用B.在神经科学中的应用1.定量荧光测定2.细胞内离子的测定3.神经细胞的形态观察C.在耳鼻喉科学中的应用1.在内耳毛细胞亚细胞结构研究上的应用2.激光扫描共聚焦显微镜的荧光测钙技术在内耳毛细胞研究中的应用3.激光扫描共聚焦显微镜在内耳毛细胞离子通道研究上的应用4.激光扫描共聚焦显微镜在嗅觉研究中的应用D.在肿瘤研究中的应用1. 定量免疫荧光测定2. 细胞内离子分析3. 图像分析:肿瘤细胞的二维图像分析4. 三维重建 E.激光扫描共聚焦显微镜在内分泌领域的应用1. 细胞内钙离子的测定2. 免疫荧光定位及免疫细胞化学研究3. 细胞形态学研究:利用激光扫描共聚焦显微镜 F.在血液病研究中的应用1. 在血细胞形态及功能研究方面的应用2. 在细胞凋亡研究中的应用 G.在眼科研究中的应用1. 利用激光扫描共聚焦显微镜观察组织、细胞结构2. 集合特殊的荧光染色在活体上观察角膜外伤修复中细胞移行及成纤维细胞的出现3. 利用激光扫描共聚焦显微镜观察视网膜中视神经细胞的分布以及神经原的树枝状形态4. 三维重建H. 激光扫描共聚焦显微镜在肾脏病中的应用可以系统观察正常人肾小球系膜细胞的断层扫描影像及三维立体影像水平,使图像更加清晰,从计算机分析系统可从外观到内在结构,从平面到立体,从静态到动态,从形态到功能几个方面对系膜细胞的认识得到提高。

  • 激光扫描共聚焦显微镜在古气候纹层学的应用

    激光扫描共聚焦显微镜还能这么用!  众所周知,激光共聚焦显微镜主要的应用方向在观察活细胞结构及特定分子、离子的生物学变化,而在石笋这样的样品观察上使用激光扫描共聚焦显微镜,可以说脑洞大开了!让我们来看看原文,从Nikon A1激光扫描共聚焦显微镜使用者的角度看看,怎么把这个工具用活了!  激光扫描共聚焦显微镜在古气候纹层学的应用  第一作者:赵景耀 通讯作者:程 海  1984年第一台商业化的激光扫描共聚焦显微镜(Laser Scanning Confocal Microscope,简称 LSCM)出现,随之共聚焦显微镜技术成为了一个热点,并广泛应用在国内外生物和工业检测领域。现今,我们将LSCM首次应用于国内古气候纹层学研究。纹层学一直是古气候研究重要内容,特别是荧光微层在很多古气候载体中是重要的年代标尺和气候指标。2000年,Ribes等首次将LSCM应用于石笋荧光微层研究,发现LSCM分辨率可达1μm,因此,可适用于各种不同厚度的石笋年纹层;2008年,Orland等将LSCM与离子探针采样结合,首次发现了石笋δ18O的季节性信号,并表示以色列Soreq Cave单层δ18O季节波动可达2.15‰;2010年,Dasgupta等通过LSCM识别石笋纹层中的碎屑和粘土层,据此重建了美国明尼苏达州过去3000年极端暴雨事件,发现20世纪全球升温以来,其暴雨频率明显增加;2015年,Wendt利用LSCM,在巴西TBV Cave石笋纹层中发现了罕见的“双纹层”,且均出现在高生长速率的Heinrich事件期间,认为这与Heinrich期间,Intertropical Convergence Zone(ITCZ)南支南移所导致一年内存在2个雨季有关;2015年,Orland等再次将LSCM与离子探针技术应用于中国苦栗树洞石笋研究,发现全新世和B?lling-Aller?d暖期的夏季降水比例明显多于Younger Dryas时期。而目前,国内主要依赖于普通透射光和荧光显微镜,这一定程度上限制了国内古气候学研究。笔者在西安交通大学机械制造系统工程生物制造中心,利用购置的LSCM组件(图1a),观察石笋“年纹层”和砗磲“天纹层”,取得初步认识,以下分别就LSCM及其在古气候荧光微层方面的应用及注意事项作一简介。  图1 激光扫描共聚焦显微镜(LSCM)组件(a)及其原理(b)  1.倒置荧光显微镜(Inverted fluorescence microscope);2.荧光探测器(Flurescence detector);3.激光发生器(Laser generator);4.LSCM总控制器(Main controller);5.扫描头(Head of laser scanner);6.明场及电动载物台开关(Switch of bright-field microscopy and electric stage);7..荧光光源开关(Switch of fluorescent source);8.电动载物台(Electric stage);9.LSCM连接电脑(Computer and Monitor)  LSCM以激光为点光源,由照明针孔与探测针孔对被探测点的共轭关系(图1b),实现对被探测点所在焦面的逐点激发,逐点扫描,该技术称为共聚焦。与普通荧光显微镜一次性照明整个视野不同,LSCM通过逐点扫描探测,呈现标本荧光层的2维或3维图像(图2),因此其对不同焦点和焦面的辨析能力,是普通荧光显微镜所不能达到的。其中,图2a中3D切片z轴步进间距(即焦面间距)为3μm,当前仪器上限25nm(仪器型号:Nikon A1)。在LSCM标本纹层成像过程中,放置于探测器前的探测针孔(Pinhole)(图1b)起着关键作用,有效地阻挡了不同焦点带来的杂散光,只有被探测点所发射的荧光透过Pinhole,到达探测器形成图像,这对图像对比度和分辨率有重要影响(图2)。而且LSCM采用光电倍增技术,可将微弱荧光信号进一步放大。综上,利用LSCM可以真正地实现10μm级荧光纹层的清晰辨别,其分辨率和辨识度是普通荧光显微镜所不能实现的,在此基础我们可以观察并辨别10μm左右石笋“年纹层”(图2d)和3~5μm级别砗磲“天纹层”(图2e)。  图2 石笋荧光层3D切片拟合(a)、石笋荧光“年纹层”(b、c和d)和砗磲荧光“天纹层”(e)  所有图像在1024扫描分辨率下,利用波长为488-nm的蓝色激光作为激发光源激发,然后用荧光滤光片滤选发射波长为505~539nm绿色发射光,最终被检测器探测并扫描成像;图片(a)由LSCM连续拍摄31层平行荧光焦面拟合而成,3μm/层;石笋样品(a)和(c)取自湖北省犀牛洞,(b)取自南京葫芦洞,(d)取自吉林省琉璃洞;(e)砗磲取自中国南沙群岛永暑礁  不同于普通光学显微镜,通过制作极薄的显微镜[url=http://www.gengxu.cn]滤光片[/url](≤1mm)实现对于杂散光或荧光焦面的控制。LSCM装配倒置荧光显微镜直接对古气候标本切面观察,源于LSCM对不同焦面荧光信号的精准解析和辨别能力,对于石笋和砗磲等古气候标本,无需制作显微镜薄片,只需将样品切面抛光磨平,即可实现对抛光表面荧光微层和透光微层定焦高分辨率扫描。LSCM极大地简化标本处理,不仅能够更好地节约和保护标本,且能和其他分析(如稳定同位素分析)在同一样品上进行,有利于精细对照,对于古气候研究有重要意义。例如,最近Li等在其他方法精确定年困难的情况下,利用LSCM方法精确确定了近百年石花洞的石笋样品年代序列;对著名的南京葫芦洞样品的初步工作显示,将能够重建上个冰期精细到年的时间序列及气候变化的变率(图2b),而又不破坏极其珍贵的样品。  但是由于LSCM以激光作为光源,在镜下观察过程中发现,根据物镜倍数(10×、20×、40×、60×和100×)不同,导致激光聚光强度不同,会出现不同程度的荧光猝灭,对于常用倍数10×和20×,荧光猝灭微弱,肉眼无法识别,可忽略。但是在60×油镜及以上倍数,荧光猝灭快速,因此在使用过程中,要注意调焦与拍摄时间的平衡。另外,计算机对焦过程是纳米级对焦,在标本前期处理过程中,保证样品观察面平整,是快捷对焦、自动扫描和拼接大图的工作基础。对于目前使用的型号Nikon A1,由于LSCM电动载物台承重和规格限制,以及明场聚光器位置限制(图1a),要求古气候标本观察面≤6cm×6cm,厚度≤5cm,但可根据需要选择不同型号的载物台。最后,由于各种LSCM在许多研究机构和医学院都具备,且使用费用不高,因此进行该研究不必购置新设备。

  • 请推荐显微镜电子目镜和正置荧光显微镜(价格4万以内),先谢过

    实验室有两台国产的双目显微镜一台是体视的,想给它们配个电子目镜,看到网上价格从1两百到一两千都有,有些无从选择了。希望价格在1000左右,当然物美价廉更好。像素能够200万以上,成像效果较好,起码发文章能用。另外,由于需经常看荧光染色的植物(比如花粉管),微生物(荧光染色,紫外激发)的片子,打算购买一台国产的荧光显微镜。价格能控制在3 ,4万以内。看了上光的 “落射荧光显微镜XSP-63B”(http://www.sgaaa.com/yingguang1.htm),应该能满足使用。似乎贵了些。还请网上各位推荐合适的荧光显微镜,如能顺告价格,不胜感谢。

  • 倒置荧光显微镜特点

    [b][url=http://www.f-lab.cn/fluorescence-microscopes/ae31e-100w.html]倒置荧光显微镜AE31E-100W[/url][/b][color=#000000]是motic[/color][color=#000000]麦克奥迪AE31倒置显微镜系列的倒置生物显微镜产品,广泛[/color][color=#000000]应用于生物学、组织学、微生物学,免疫学和医学等领域,并且具有竞争力的倒置荧光显微镜价格。[/color][color=#000000]倒置荧光显微镜[/color]AE31E-100W[color=#000000]采用[/color][color=#000000]Motic无限远色差校正CCIS光学系统,具有超长工作距离和[/color][color=#000000]光学性能,提供了高亮度高清晰度和高对比度的荧光成像。[/color][b][color=#000000]倒置荧光显微镜[/color]AE31E-100W特点[/b][color=#000000]三目显微镜宽场高视点目镜,10X/22mm,瞳距可调,橡胶眼罩CCIS消色差物镜PL4X CCIS消色差相位物镜PL,PH10x, PH20xELWD N.A.0.30聚光器汞灯照明系统12V/100W45mm蓝光和绿色干涉滤波片供电100-240VAC [img=倒置荧光显微镜]http://www.f-lab.cn/Upload/AE31E-100W.jpg[/img][/color]倒置荧光显微镜:[url]http://www.f-lab.cn/fluorescence-microscopes/ae31e-100w.html[/url]

  • 激光共聚焦显微镜系统的原理和应用(光学)

    激光共聚焦显微镜系统的原理和应用激光扫描共聚焦显微镜是二十世纪80年代发展起来的一项具有划时代的高科技产品,它是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代强有力的研究工具。激光共聚焦成像系统能够用于观察各种染色、非染色和荧光标记的组织和细胞等,观察研究组织切片,细胞活体的生长发育特征,研究测定细胞内物质运输和能量转换。能够进行活体细胞中离子和PH值变化研究(RATIO),神经递质研究,微分干涉及荧光的断层扫描,多重荧光的断层扫描及重叠,荧光光谱分析荧光各项指标定量分析荧光样品的时间延迟扫描及动态构件组织与细胞的三维动态结构构件,荧光共振能量的转移的分析,荧光原位杂交研究(FISH),细胞骨架研究,基因定位研究,原位实时PCR产物分析,荧光漂白恢复研究(FRAP),胞间通讯研究,蛋白质间研究,膜电位与膜流动性等研究,完成图像分析和三维重建等分析。一.激光共聚焦显微镜系统应用领域:涉及医学、动植物科研、生物化学、细菌学、细胞生物学、组织胚胎、食品科学、遗传、药理、生理、光学、病理、植物学、神经科学、海洋生物学、材料学、电子科学、力学、石油地质学、矿产学。二.基本原理传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共聚焦显微镜利用激光束经照明针孔形成点光源对标本内焦平面的每一点扫描,标本上的被照射点,在探测针孔处成像,由探测针孔后的光点倍增管(PMT)或冷电耦器件(cCCD)逐点或逐线接收,迅速在计算机监视器屏幕上形成荧光图像。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点不会在探测针孔处成像,这样得到的共聚焦图像是标本的光学横断面,克服了普通显微镜图像模糊的缺点。三.应用范围:细胞形态学分析(观察细胞或组织内部微细结构,如:细胞内线粒体、内质网、高尔基体、微管、微丝、细胞桥、染色体等亚细胞结构的形态特征;半定量免疫荧光分析);荧光原位杂交研究;基因定位研究及三维重建分析。1.细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化2.生物化学:酶、核酸、FISH(荧光原位杂交)、受体分析3.药理学:药物对细胞的作用及其动力学4.生理学:膜受体、离子通道、细胞内离子含量、分布、动态5.神经生物学:神经细胞结构、神经递质的成分、运输和传递、递质受体、离子内外流、神经组织结构、细胞分布6.微生物学和寄生虫学:细菌、寄生虫形态结构7.病理学及临床应用:活检标本诊断、肿瘤诊断、自身免疫性疾病诊断、HIV等8.遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断四.激光共聚焦显微镜在医学领域中的应用A.在细胞及分子生物学中的应用1. 细胞、组织的三维观察和定量测量2. 活细胞生理信号的动态监测3. 粘附细胞的分选4. 细胞激光显微外科和光陷阱功能5. 光漂白后的荧光恢复6. 在细胞凋亡研究中的应用B.在神经科学中的应用1. 定量荧光测定2. 细胞内离子的测定3. 神经细胞的形态观察C.在耳鼻喉科学中的应用1. 在内耳毛细胞亚细胞结构研究上的应用2. 激光扫描共聚焦显微镜的荧光测钙技术在内耳毛细胞研究中的应用3. 激光扫描共聚焦显微镜在内耳毛细胞离子通道研究上的应用4. 激光扫描共聚焦显微镜在嗅觉研究中的应用D.在肿瘤研究中的应用1. 定量免疫荧光测定2. 细胞内离子分析3. 图像分析:肿瘤细胞的二维图像分析4. 三维重建 E.激光扫描共聚焦显微镜在内分泌领域的应用1. 细胞内钙离子的测定2. 免疫荧光定位及免疫细胞化学研究3. 细胞形态学研究:利用激光扫描共聚焦显微镜 F.在血液病研究中的应用1. 在血细胞形态及功能研究方面的应用2. 在细胞凋亡研究中的应用 G.在眼科研究中的应用1. 利用激光扫描共聚焦显微镜观察组织、细胞结构2. 集合特殊的荧光染色在活体上观察角膜外伤修复中细胞移行及成纤维细胞的出现3. 利用激光扫描共聚焦显微镜观察视网膜中视神经细胞的分布以及神经原的树枝状形态4. 三维重建H. 激光扫描共聚焦显微镜在肾脏病中的应用可以系统观察正常人肾小球系膜细胞的断层扫描影像及三维立体影像水平,使图像更加清晰,从计算机分析系统可从外观到内在结构,从平面到立体,从静态到动态,从形态到功能几个方面对系膜细胞的认识得到提高。北京中科研域科技有限公司(蔡司显微镜代理商)地址:北京市朝阳区建国路15号院甲1号北岸1292,一号楼406室联系人:张辉13911188977 邮编:100024电话:010-57126588 传真:010-85376588E-mail:[email=zhs_8000@126.com][color=#0365bf]zhs_8000@126.com[/color][/email]

  • 【求助】请问目前最好的荧光显微镜资料

    老板让做荧光显微镜的调研,想让预算尽量高一点儿,想写50W RMB (只是上报预算,不一定买) 目前的蔡司 铼卡 尼康 奥林巴斯等 哪一个最好 贵呀!希望给出具体型号及价格。 焦急等待。。。。。。。。。谢谢

  • 【原创】奥林巴斯品牌激光共聚焦显微镜你们了解多少?

    共聚焦显微系统(LSCM)诞生至今,短短二十多年里,已经成为了科学研究的重要工具。在我国生命科学研究领域,也发挥着巨大的作用。如何更好利用激光共聚焦技术,推动生命科学研究,受到了学术界的广泛关注。 激光共聚焦显微镜作为光学显微镜的重大改进,与传统场式(widefield)照明显微镜相比有许多独特的优点, 它可以控制焦深、照明强度,降低非焦平面光线噪音干扰,从一定厚度标本中获取光学切片。可以在不改变普通荧光显微镜的制片方法的前提下,观察到非常清晰的高质量图像,并且通过共聚焦显微镜可以十分方便的观察活的细胞或组织。 它的诞生,大大提高了科学研究的效率。目前共聚焦显微镜在国内的应用已经相当广泛,在越来越多的国家级科研院所与高校实验室,都能看到科研工作者忙碌在共聚焦显微镜前的身影。以下为奥林巴斯品牌类显微镜:智能激光扫描共聚焦显微镜——FV10iFV1000MPE:只关注多光子荧光成像FluoView™ FV1000共聚焦显微镜DSU转盘扫描显微镜奥林巴斯FluoView™ FV300(已停产)大家了解多少?欢迎讨论用后感想。

  • Nikon 80i荧光显微镜使用说明

    Nikon 80i荧光显微镜使用说明荧光显微镜操作步骤 △显微镜系精密仪器,务请不要碰击,要仔细耐心使用。 △荧光光源关闭后,15分钟内不得再开启。 △ 荧光灯泡的最佳使用期限是200小时,因此每次使用时请尽量缩短时间。 1.插上电源插座,打开主机电源开关。 2. 将待检标本置于载物台上。 3. 用10×物镜对焦点,根据使用者的眼间距调节双目镜筒的间距。 4. 调节光圈及灯光强度至合适位置。 5. 调节粗调和微调使标本至最清晰。 6. 拔出活动杆,使光路通过CCD至显示器。 7.保存图象至电脑中。 8. 使用完毕后关掉电源,如镜头上有指纹或污迹用擦镜纸将其擦除。 l 荧光光源操作 1. 插上荧光光源电源插座,打开荧光光源电源开关。 2. 打开光栅。 3. 根据使用荧光素的不同选择不同的荧光滤光片。 4. 将待检标本置于载物台上。5. 用10×物镜对焦点,根据使用者的眼间距调节双目镜筒的间距。6. 调节粗调和微调使标本至最清晰。7. 拔出活动杆,使光路通过CCD至显示器。8. 保存图象至电脑中。 9. 使用完毕后关掉电源,如镜头上有指纹或污迹用擦镜纸将其擦除。 10. 登记使用情况。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制