当前位置: 仪器信息网 > 行业主题 > >

智能电表载波模块测试仪

仪器信息网智能电表载波模块测试仪专题为您提供2024年最新智能电表载波模块测试仪价格报价、厂家品牌的相关信息, 包括智能电表载波模块测试仪参数、型号等,不管是国产,还是进口品牌的智能电表载波模块测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合智能电表载波模块测试仪相关的耗材配件、试剂标物,还有智能电表载波模块测试仪相关的最新资讯、资料,以及智能电表载波模块测试仪相关的解决方案。

智能电表载波模块测试仪相关的资讯

  • SYSTESTER发布智能全自动薄膜阻隔性测试仪新品
    智能全自动薄膜阻隔性测试仪品牌:【SYSTESTER】济南思克测试技术有限公司适用范围:气体透过率测定仪主要用于包装材料气体透过量测定工作原理:压差法测试原理型号:气体透过率测试仪(又称:薄膜透气仪,透氧仪,气体渗透仪,压差法透气仪,等压法透气仪,氧气透过率测试仪等,气体透过量测定义,药用复合膜气体透过率测试仪,人工智能技术仪,氧气渗透仪,济南思克,OTR透氧仪)智能全自动薄膜阻隔性测试仪采用真空法测试原理,用于各种食品包装材料、包装材料、高阻隔材料、金属薄片等气体透过率、气体透过系数的测定。 可测试样:塑料薄膜、塑料复合薄膜、纸塑复合膜、共挤膜、镀铝膜、铝箔复合膜、方便面包装、铝箔、输液袋、人造皮肤;(红外法)(电解法)水蒸气透过率测试仪气囊、生物降解膜、电池隔膜、分离膜、橡胶、轮胎、烟包铝箔纸、PP片材、PET片材、PVC片材、PVDC片材等。试验气体:氧气、二氧化碳、氮气、空气、氦气、氢气、丁烷、氨气等。 GTR系列 药用复合膜气体透过率测试仪,人工智能技术【济南思克】技术指标:测试范围:0.01~190,000 cm3/m2?24h/0.1MPa(标准配置)分 辨 率:0.001 cm3/m2/24h/0.1MPa试样件数:1~3 件,各自独立真空分辨率:0.1 Pa控温范围:5℃~95℃ 控温精度:±0.1℃ 试样厚度:≤5mm 试样尺寸:150 mm × 94mm 测试面积:50 cm2试验气体:氧气、氮气、二氧化碳、氦气等气体(气源用户自备)试验压力范围:-0.1 MPa~+0.1 MPa(标准)接口尺寸:Ф8 mm 外形尺寸:730 mm(L)×510mm(B)×350 mm(H) 智能全自动薄膜阻隔性测试仪产品特点:真空法测试原理,完全符合国标、国际标准要求三腔独立测试,可出具独立、组合结果计算机控制,试验全自动,一键式操作高精度进口传感器,保证了结果精度、重复性进口管路系统,更适合极高阻隔材料测试进口控制器件,系统运行可靠,寿命更长进口温度、湿度传感器,准确指示试验条件一次试验可得到气体透过率、透过系数等参数宽范围三腔水浴控温技术,可满足不同条件试验系统内置24位精度Δ-Σ AD转换器,高速高精度数据采集,使结果精度高,范围宽嵌入式系统内核,系统长期稳定性好、重复性好嵌入式系统灵活、强大的扩展能力,可满足各种测试要求多种试验模式可选择,可满足各种标准、非标、快速测试试验过程曲线显示,直观、客观、清晰、透明支持真空度校准、标准膜校准等模式;方便快捷、使用成本极低廉标准通信接口,数据标准化传递可支持DSM实验室数据管理系统,能实现数据统一管理,方便数据共享 (选购) 标准配置:主机、高性能服务器、专业软件、数据扩展卡、通信电缆、恒温控制器、氧气精密减压阀、取样器、取样刀、真空密封脂、真空泵(进口)、快速定量滤纸 执行标准:GB/T 1038-2000、ISO 15105-1、ISO 2556、ASTM D1434、JIS 7126-1、YBB 00082003 其他相关:系列一:透氧仪,透气仪, 透湿仪,透水仪,水蒸气透过率测试仪,药用复合膜气体透过率测试仪,人工智能技术,7001GTR透气仪系列二:包装拉力试验机、摩擦系数仪、动静摩擦系数仪、表面滑爽性测试仪、热封试验仪、热封强度测试仪、落镖冲击试验仪、密封试验仪、高精度薄膜测厚仪、扭矩仪、包装性能测试仪、卡式瓶滑动性测试仪、安瓿折断力测试仪、胶塞穿刺力测试仪、电化铝专用剥离试验仪、离型纸剥离仪、泄漏强度测试仪、薄膜穿刺测试仪、弹性模量测试仪、气相色谱仪、溶剂残留测试仪等优质包装性能测试仪!注:产品技术规格如有变更,恕不另行通知,SYSTESTER思克保留修改权与最终解释权!创新点:1.以边缘计算为特点的嵌入式人工智能技术赐予了仪器更高的智能性;2.赋予仪器高度自动化、智能化;3.外观设计独到智能全自动薄膜阻隔性测试仪
  • 速普仪器发布【SuPro】薄膜应力测试仪FST2000新品
    基于经典基片弯曲法Stoney公式测量原理,采用先进的矩阵激光点阵扫描方式和探测技术,以及智能化的操作,使得FST2000薄膜应力仪特别适合于晶圆类光电薄膜样品的曲率半径和应力测量。独特的双模扫描模式方便适应不同应用场景下需求:Mapping不同区域的薄膜应力分布或快速表征样品整体平均残余应力。 创新点:1.半导体薄膜、光电薄膜专用残余应力测试仪器;2.兼容区域性薄膜应力分布mapping结果和快速表征样品整体平均残余应力;3.通过独特对减模式算法,可数据处理校正原始表面不平影响。【SuPro】薄膜应力测试仪FST2000
  • 新品上市|高智能食品安全快速检测仪全新升级创新检测模块
    新品上市|高智能食品安全快速检测仪全新升级创新检测模块  山东云唐智能科技有限公司生产的食品安全综合分析仪,采用多功能集成、箱仪一体化设计,以高强度安全防护箱为载体,内部集成多个检测功能,适用于食药监局、卫生部门、高教院校、科研院所、农业农村局、食品深加工企业及检验检疫部门等单位。高智能食品安全快速检测仪产品链接https://www.instrument.com.cn/netshow/SH104655/C527480.htm 高智能食品安全快速检测仪创新点和产品特性:  1. 功能构成:主要包括分光光度模块、新型农残检测模块、胶体金检测模块、荧光检测模块、数字化管理模块等,所有模块集成一体,可快速检测200多种食品安全项目,如兽药残留、农药残留、非法添加剂、细菌数值等指标。  2. 检测样品种类:餐具及厨房用品、瓜果蔬菜及其制品、水产品及其制品、畜禽产品及其制品、婴幼儿乳品及奶粉制品、蜂蜜、粮油及其制品、调味品(食醋、酱油、味精、盐等)、酒类茶叶及其制品、食用菌、饮料、蛋类药物残留(鸡蛋,鸭蛋等)、米豆面制品、糖果糕点类(小食品)、薯类及膨化食品、瓶(桶)装饮用水、添加食用色素的食品、使用添加剂的食品、含有有毒有害物质的相关食品。  3、显示屏幕:仪器采用15.6英寸液晶触摸屏显,搭配运行安卓智能操作系统,主控芯片采用ARM Cortex-A7,RK3288/4核处理器,主频1.88Ghz,操作方便,性能更强。  4、供电模式:仪器交直流两用,直流12V供电,可连接车载电源,配18ah大容量充电锂电池,电量可实时显示,无外部电源条件下可持续工作至少 4 小时。  5、检测通道:≥24通道 采用精密旋转比色池设计,使用同芯片同光源校准精度,解决不同光源之间的误差值,更加准确高效,采用高精度进口四波长冷光源,每个通道均配置 410、520、590、630nm 波长光源,标配先进的光路切换装置,专利光路切换功能可实现64波长,并且所有检测项目可实现所有通道同时检测.  6、通讯接口:配备无线通信模块、4G(APN)通讯模块、蓝牙传输,同时具有双USB接口以及RJ45网线接口,可以多方式实现数据保存及数据传输。  7、存储方式:支持U盘存储,两个标准USB接口,免驱动安装。检测结果存储容量20万条以上,可生成Excel表格进行拷贝,并具有登录保护功能。  8、操作系统:仪器可在同一检测界面自动对应相关检测通道,一次性选择不少于11个样品名称,无需退出界面,节省操作时间。并可以对每个通道属性和样品信息单独进行编辑,例如送检单位、人员,检测人员等,打印时勾选打印显示。  9、数据集成系统:设备首页自动汇总分析检测数据,包含:周检测数据、月检测数据,全部检测总数量,包含检测总数,合格数,不合格数,以及相关柱形分析图,各项检测数据一目了然,无需电脑查询,更加快捷直观。  10、数据库系统:十几项数据库分类管理仪器:包含项目类型、项目数据、检测数据、历史记录、国标信息、曲线信息、采样信息、检测信息、受检信息、复核信息、图表信息、光源校准信息、打印样式信息、样品库信息等等,数据库之间互相协调联动保证数据的真实完整性。同时产品数据库以及历史检测记录支持一键检索功能。  11、限量规判系统:具有限量查询、添加物质合规判定系统。检测出结果后,系统自动调用系统数据库中相关国标进行比对判定,客观显示判定结果是否合格。  12、项目预设系统:仪器具有任务预设模块,一键提前预设,给出方便快捷的新检测方案,每一个任务分别可以设置不同的样品、批次、编号、来源、备注、抽样信息、检测信息、受检信息、复核信息等更多信息。样品送检时一键调取保存信息,并可多次调取,适用于大批量检测业务,可以大大提高检测效率。  13、数据监管系统:同步对接监管平台,数据可局域网和互联网数据上传,检测结果可直接传至食品安全监管平台。进行区域食品安全监管及大数据分析处理与数据统计,监测区域食品安全长短期动态及问题预估、预警。  14.1、全新打印系统:内置全新打印机,新创自定义打印方式,可按需灵活勾选控制:产品合格证(国家农业部标准要求),二维码,抽样信息、检测信息,受检信息、复核信息、抽样日期、检测日期等信息的打印。  14.2、A4纸版本报告打印功能:设备拥有两种结果展示方式,可以自动生成A4打印模板和小票打印模板两种样式,可通过WiFi及网线等方式连接外置打印机可进行打印。  15、胶体金检测模块:采用单通道CMOS成像处理技术及胶体金免疫层析技术,可读取胶体金卡数据,自动采集、处理分析,将检测结果显示,并可根据参考限值自动判断检测结果,可检测常见的兽药残留、生物毒素、抗生素、违禁添加物等。  15.1、可即时检测单联卡及三联卡   15.2、检测通道:2个通道   15.3、检测方式:消线法和比色法   15.4、显示模式:阴性或阳性   15.5、曲线形式:插入式扫描方式,显示金标卡图像,实时生成、识别CT曲线图,无需手动调整。兼容市场上其他金标卡,使用耗材不受限制。  16、荧光检测模块:快速检测水质中微生物、固体物细菌含量。利用“荧光素酶—荧光素体系”快速检测三磷酸腺苷(ATP)。以ATP含量表明样品中微生物与其他生物残余得多少,用于判断卫生状况。 适用于食品、餐具、手、液体等表面及水质洁净度的检测。  16.1、检测通道:双通道  检测精度:1×10-18mol  16.2、检测范围:0 to 99999 RLU  16.3、检测时间:15 秒  16.4、检测干扰:±5﹪或±5 RLU  16.5、操作温度范围:5℃到 40℃  16.6、操作湿度范围:20—85﹪  16.7、开机 30 秒自检、内置自校光源、自动判断合格与不合格、自动统计合格率 。  17、仪器具备远程升级功能,可定向分客户分仪器更新,开机后自动更新,并可持续性免费更新系统版本,无需像传统产品返厂更新,节省时间及人力成本并避免了物流运输返厂升级导致设备损坏的潜在风险。
  • FLIR红外热像仪模块Lepton用于EOC早期火灾探测摄像机
    FLIR Lepton可为建筑环境和电动汽车充电站提供超灵敏的24/7早期火灾探测功能。近期,Teledyne Technologies旗下的Teledyne FLIR宣布,韩国视频安全和热成像IP摄像机公司Eye on Cloud(EOC)将在其早期火灾探测(EFD)系列IP摄像机中采用Teledyne FLIR红外热成像仪模块Lepton。EOC推出的早期火灾探测系列产品,是“Thermal by FLIR”合作的一部分。Teledyne FLIR红外热像仪模块Lepton在美国制造,并且不受《国际武器贸易条例》(ITAR)约束,是世界上产量甚高的长波红外(8 µm至14 µm)热成像模块。Lepton结构紧凑、经济高效,实现了各种热成像创新应用,已被数百万客户采用。Lepton提供多种分辨率和视场(FoV)选项,并且特定型号还提供绝对温度输出。Lepton的低功耗、卓越的图像质量和集成支持,可助力客户实现移动、小型电子产品和无人值守传感器的创新性产品开发,适用于智能建筑、火灾探测、占用跟踪、设备状态监控等。红外热像仪模块Lepton技术参数为了降低开发成本并缩短上市时间,Teledyne FLIR不断改进Lepton的在线集成工具箱。应用说明、集成视频、快速入门指南,以及用于在Windows、Linux、Raspberry Pi和BeagleBone上进行测试的补充源代码可确保高效的集成。对于高级、大规模计划,Teledyne FLIR技术服务团队可对MyFLIR®应用软件和图像增强MSX®,以及Vivid-IR™的许可提供支持。EOC开发的HI1612-OH和HI1612-MW系列早期火灾探测摄像机提供多种分辨率选项,可用于持续监控电动汽车(EV)充电站和其它关键的基础设施、安全设施等。通过非接触式温度测量,FLIR Lepton可以在火灾前识别升高的热量,然后触发警报系统。EOC符合ONVIF标准的早期火灾探测摄像机有助于提高安全性,同时使消防人员能够比依靠传统的烟雾报警器更快地扑灭潜在火灾。EOC部分产品展示,其中第二个为早期火灾探测摄像机Teledyne FLIR产品开发副总裁Mike Walters表示:“我们开展了‘Thermal by FLIR’计划,以支持客户针对新的和正在开发的应用进行创新。EOC及其在电动汽车充电站和其它建筑环境中的早期火灾检测工作是FLIR Lepton和‘Thermal by FLIR’计划的自然合作基础。”“Thermal by FLIR”计划是一项合作产品开发和营销计划,支持原始设备制造商(OEM)将Teledyne FLIR红外热像仪模块集成到产品中,并为后续产品创新提供上市支持。EOC首席执行官(CEO)Dong Gyun Shin表示:“变电站、建筑和电动汽车停车设施的管理人员(包括购物中心和办公楼)需要能够帮助他们更好地检测可能威胁生命和财产的火灾的解决方案。我们的早期火灾探测系列摄像机采用‘热成像+可见光’双成像,提供了一种成本相对较低但有效的方法,可以在潜在火灾发生之前就识别出来。”关于Teledyne FLIRTeledyne FLIR专注于设计、开发、生产用于增强态势感知力的专业技术。通过热成像、可见光成像、视频分析、测量和诊断以及先进的威胁检测系统,Teledyne FLIR将创新的传感解决方案带入日常生活中。Teledyne FLIR提供多样化的产品组合,服务于政府与国防、工业和商业市场中的众多应用。Teledyne FLIR产品帮助救援和军事人员保护和挽救生命,提高行业效率,并创新面向消费者的技术。Teledyne FLIR致力于加强公共安全与人们的生活福祉,提高能源和时间效率,为健康和智能的社区做出贡献。
  • 智能模块,高效可靠——奥林巴斯显微镜图像处理软件PRECiV再升级!
    现代的工业生产环境,诸如在钢铁、半导体、电子、检测等行业内,对于产品的检测及分析尤为重要。在推出备受喜爱的奥林巴斯工业显微镜软件Stream之后,奥林巴斯推出平台级工业显微镜软件PRECiV,为客户的显微检测工作提高效率。PRECiV承袭了奥林巴斯工业显微镜软件Stream的诸多功能和材料解决方案,同时也将在不久的未来作为平台级软件,与奥林巴斯各工业显微镜机型进行配合,完成从实验观察、图像拍摄、尺寸测量和报告导出等功能。高兼容性及界面模块化,满足个性化且直观可见PRECiV软件配备Capture、Core、Pro、Desktop四种软件包PRECiV具备广泛的兼容性,使用人员只需要按上述顺序选择合适硬件,并选择搭配合适的软件包,即可完成配置。“选择机型、选择相机、选择附件、选择软件版本”,仅此四步。若是奥林巴斯工业显微镜的老用户,则可在Stream工业显微镜软件的基础上,免费升级到同等权限级别的PRECiV。针对不同用户的工作需求和预算,PRECiV工业显微镜软件配备Capture、Core、Pro、Desktop四种权限级别的模块化软件包,广泛涵盖了客户的多样化需求。功能模块化展示,直观易用提高工作效率智能成像,大放异彩左:扩展焦点图象(EFI)后的观测效果 右:实时观测画面目前PRECiV所支持的2D测量(随着日后升级将支持3D测量),涵盖的多种材料解决方案,让其显得与众不同。在图像采集、定制化工具、测量/ 图像分析、设备支持等多功能的加持下,适应于各种成像条件。当载物台移动时,全景图像(大尺寸图像采集)会自动重建,用户即刻进入即时全景模式,外加EFI(扩展焦点图像)功能,可在图像焦点丢失情况下,随时重新聚焦图像,大大拓展了成像条件的局限性。尤其在手动全景模式下,它还可通过将图像移动到适当的位置来引导用户,重建基于每个图像的拼接,不惧成像难题。界面直观,符合国际标准的用户指导与Stream工业显微镜软件相比,PRECiV工业显微镜软件具有更直观的界面。新界面按用途功能分为图像控制、文件区域、控制面板、实时控制、垂直选项卡。功能之间导航简单,在边缘检测和辅助线扩展测量功能的配合下,实现了快速测量与成像,对电子生产线上的现场观察和记录,起到了关键性的作用;软件接通互联网后,会定期收到有关错误修复和改进的服务更新,进行安全和版本升级,并可通过网络共享成像条件与图像等信息,使测量结果再现,提高工作效率。PRECiV整体界面直观易用PRECiV同时还提供“从图像采集到符合国际标准报告”的用户指导,可对检测室所有用户的工作流程进行指导,帮助大幅提升工作效率。高效协作,数据共享通过网络共享结果和方法,以提高结果再现性。使用PRECiV工业显微镜软件,可以通过管理员对软件权限进行管理,根据生产和研发的不同环节分配对应的权限和操作界面,并且在后期还能够将观测数据上传到云端与团队成员进行共享。图像采集方式、校准信息等将会被完整的保留在JEPG格式之中,无需再将任何XML或TXT文件附上。当团队内不同用户需要对比或参考其他成员的数据时,可以方便快捷的从云端调取多设备的检测数据。简洁的操作界面、全面的量测功能、丰富的软件包配置和专业的材料解决方案,全方位满足用户实际需求,提升用户工作效率。未来,PRECiV将支持更多型号的显微镜,并兼任3D观测模式,我们相信这将成为诸如在钢铁、半导体、电子、检测等行业在内,实实在在的生产好帮手。
  • Advanced Optical Materials | 王天武团队成功研发出基于超材料的柔性太赫兹载波包络移相器
    近日,空天信息创新研究院广州园区王天武研究团队关于太赫兹(THz)载波包络移相器的研发成果,发表于《先进光学材料》(Advanced Optical Materials)。其研究论文题为《基于超材料的柔性太赫兹载波包络移相器(Flexible THz Carrier-Envelope Phase Shifter Based on Metamaterials)》。作为太赫兹扫描隧道显微镜系统的核心部件,该载波包络移相器由不同的人工微结构阵列组成(图1)。研究团队首次利用“超材料”在亚波长厚度和不改变THz电场极化的情况下实现了对宽带THz载波包络相位(CEP)的消色差可控相移,其CEP的相移高达2。与传统的THz载波包络移相器相比,该移相器具有超薄、柔性、低插损、易于安装和操作等优点。超短脉冲的CEP决定了脉冲的瞬时电场强度,它在许多非线性物理过程中起着重要作用。例如,近年来,将亚皮秒THz脉冲耦合到纳米尖端以调制隧道结的偏压而开发的THz扫描隧道显微镜(THz-STM)已经在超快时间尺度上实现了原子级分辨率。通过简单高效的途径控制THz脉冲的CEP来实现对隧道结中近场THz时间波形的主动控制对推进电子的超快纳米尺度操纵是必不可少的。由多个THz偏振元件组成的复杂装置已用于控制THz脉冲的CEP,但由于菲涅耳反射损耗,其插入损耗很大。此外,天然材料在太赫兹波段具有弱的色散响应和小的双折射系数,因此不容易被设计用于具有宽频率成分的太赫兹脉冲的CEP控制。超材料作为一种由亚波长结构衍生而来的具有特殊光学特性的人工材料,与自然材料相比,它对电磁波的色散响应和双折射系数都可进行人为的定制。尽管超材料技术发展迅速,但由于近单周期THz脉冲的宽带特性,它对THz脉冲的 CEP控制仍然具有挑战性。基于此,研究团队提出了基于超材料的柔性THz载波包络移相器来控制THz CEP的方法,并对该移相器的性能进行了模拟和实验表征。研究者利用特定的金属分裂环谐振器的几何相位和共振相位来控制THz脉冲的CEP,并利用正交定向光栅来提高传输效率。当入射的THz脉冲依次被载波包络移相器中不同的微结构阵列调制时,通过THz时域光谱系统(THz-TDS)清晰地观察到了THz脉冲的时间波形在不同CEP值下的变化,与模拟结果十分吻合(图2a, b)。此外,通过实验验证了该移相器在广角入射和大的形变下具有良好的鲁棒性(图2c, d),并且通过适当缩放模型的结构参数。该设计方案也可以应用于其他波段。以上研究工作得到国家自然科学基金、广州市和广州市开发区项目的支持。研究合作单位包括北京凝聚态物理研究所、松山湖材料实验室以及中国科学院大学。点击此处查看论文图1. (a)移相器的单元结构示意图,(b)整体和局部光学照片图2. (a, b) 模拟和实验获得的不同CEP值对应的THz时间波形变化,(c, d) 广角入射和样品弯曲形变对器件性能的影响
  • 为何薄膜拉力机、摩擦系数仪、密封性测试仪是食品包装企业品控必须仪器
    食品包装企业在确保产品质量和安全方面扮演着至关重要的角色。薄膜拉力机、摩擦系数仪和密封性测试仪是品控过程中不可或缺的仪器,它们各自在包装材料的测试和质量控制中发挥着独特的作用:薄膜拉力机:薄膜拉力机用于测量包装材料(如塑料薄膜、复合材料等)的拉伸强度、断裂伸长率、弹性模量等力学性能。这些参数对于评估包装材料的耐用性、抗破损能力和在实际使用中的可靠性至关重要。通过拉力机测试,可以确保包装材料能够承受一定程度的物理冲击和拉伸,从而避免在运输和存储过程中出现破损。摩擦系数仪:摩擦系数仪用于测定包装材料的滑动摩擦系数,这对于评估包装材料在生产线上的运行特性非常重要。低摩擦系数可以减少包装过程中的磨损,提高生产线的效率,同时也可以降低包装材料在储存和运输过程中的粘连问题。适当的摩擦系数有助于确保自动包装机械的顺畅运作,减少停机时间和材料浪费。密封性测试仪:密封性测试仪用于检测包装的完整性和密封强度,这对于食品包装尤为重要,因为密封的可靠性直接关系到食品的保质期和卫生安全。通过密封性测试,可以确保包装无泄漏,防止外界污染物和微生物的侵入,保障食品的质量和安全。密封性测试也有助于检测包装材料的耐压性和耐穿刺性,特别是在包装易碎或易受外界环境影响的食品时。综上所述,薄膜拉力机、摩擦系数仪和密封性测试仪是食品包装企业品控的必备仪器,它们分别从材料的力学性能、生产线的运行效率和产品的安全密封性等方面,为保证食品包装质量提供了强有力的技术支持。通过这些仪器的严格测试和控制,食品包装企业能够提供更加可靠和安全的包装解决方案,满足消费者和法规的要求。更多相关产品信息、解决方案、行业动态可关注山东泉科瑞达仪器官网
  • 安东帕MCR高端智能型模块化流变仪——带您探究知识的海洋
    流变学是研究物质流动与形变的学科,自上世纪三十年代至今,经过流变学家的不懈努力,已经在全球很多领域发展出成熟的流变测试和分析理论。随着工业技术的不断进步,安东帕的流变学家经过三十多年的辛苦耕耘,并不断革新,向广大用户推出了低中高端系列、技术先进的MCR智能型模块化旋转流变仪。 MCR流变仪行业分布广,高校、科学院、石油石化、食品、化工、航空航天、医学、制药等,从日常生活用品制造业到军工科研机构,到处都有MCR流变仪在使用。 MCR流变仪市场占有率高,在国内用户超过1000个 MCR流变仪拥有众多行业先进技术 MCR流变仪功能最全,指标更宽,能满足流变学测试的所有要求 MCR流变仪系列型号:MCR702、MCR302、MCR102、MCR92、MCR72MCR 流变仪的基本功能 稳态流变测试(旋转模式):黏度、黏度曲线、流动曲线、粘温曲线、屈服应力、滞后环面积、3ITT 触变性等; 动态流变测试(振荡模式):粘弹性数据,如储能模量 G‘、 损耗模量 G“、损耗角正切 Tanδ、复数模量 G*、复数黏度 η*等,可以得到频率扫描、振幅扫描、温度扫描等曲线; 瞬态流变测试:起始流、蠕变、应力松弛等;MCR 流变仪的扩展功能模块扩展的材料性能表征方式熔体拉伸流变夹具扭摆DMTA测试夹具拉伸DMTA测试夹具 淀粉糊化测量模块沥青专业模块大颗粒食品及建筑材料测试界面流变学模块摩擦学测试模块粉体流变学模块 附加参数影响测量模块高压密闭测量系统UV固化测量模块磁流变测量模块 电流变测量模块不动点测量模块 流变与结构分析同步测量流变‐显微可视/偏光/荧光同步测量流变‐SALS同步测量流变-NIR/IR同步测量 流变-拉曼同步测量 流变‐SAXS同步测量流变‐SANS同步测量动态光学流变测量PIV粒子成像测速流变‐介电谱同步测量
  • 赛成发布压差法薄膜透气性能测试仪新品
    GPT-01压差法气体渗透仪基于压差法的测试原理,是一款专业用于薄膜试样的气体透过率测试仪,适用于塑料薄膜、复合膜、高阻隔材料、片材、金属箔片、橡胶、轮胎气密性、渗透膜等在各种温度下的气体透过率、溶解度系数、扩散系数、渗透系数的测定。产品应用薄膜 复合膜 共挤膜 镀铝膜 铝箔 PP片材 PVC片材 PVDC片材GPT-01压差法气体渗透仪 技术特征:u 可同时测定试样的气体透过率、溶解度系数、以及扩散系数u 宽范围、高精度温湿度控制,满足各种试验条件下的测试u 提供比例和模糊双重试验过程判断模式u 测试量程可根据需要进行扩展,满足大透过率测试的要求u 可进行任意温度下的数据拟合,轻松获得极端条件下的试验结果u 支持有毒气体及易燃易爆气体的测试(需改制)u 系统采用计算机控制,整个试验过程自动完成u 提供标准膜进行快速校准,保证检测数据的准确性和通用性u 配备USB通用数据接口,方便数据传递测试原理GPT-01采用压差法测试原理,将预先处理好的试样放置在上下测试腔之间,夹紧。首先对低压腔(下腔)进行真空处理,然后对整个系统抽真空;当达到规定的真空度后,关闭测试下腔,向高压腔(上腔)充入一定压力的试验气体,并保证在试样两侧形成一个恒定的压差(可调);这样气体会在压差梯度的作用下,由高压侧向低压侧渗透,通过对低压侧内压强的监测处理,从而得出所测试样的各项阻隔性参数。标准该仪器满足多种国家和国际标准:ISO 15105-1、ISO 2556、GB/T 1038-2000、ASTM D1434、JIS K7126-1、YBB 00082003技术指标指标薄膜测试测试范围0.1~100,000 cm3/m224h0.1MPa(常规)上限不小于600,000 cm3/m224h0.1MPa(扩展体积)试样件数1 件真空分辨率0.1 Pa测试腔真空度<20 Pa控温范围室温~50℃控温精度±0.1℃控湿范围0%RH、2%RH~98.5%RH、***RH(湿度发生装置另购)控湿精度±1%RH试样尺寸Φ97 mm透过面积38.48 cm2试验气体O2、 N2、CO2等气体(气源用户自备)试验压力-0.1 MPa~+0.1 MPa(常规)气源压力0.4 MPa~0.6 MPa接口尺寸Ф6 mm 聚氨酯管外形尺寸460 mm (L) × 475 mm (W) × 450 mm (H)电源AC 220V 50Hz净重75 kg 标准配置:主机、 恒温控制器、计算机、专业软件、专用取样器、真空脂、快速定量滤纸、真空泵(进口) 选购件:取样刀片、真空脂、真空泵油、快速定量滤纸、湿度发生装置创新点:GPT-01采用压差法测试原理,将预先处理好的试样放置在上下测试腔之间,夹紧。首先对低压腔(下腔)进行真空处理,然后对整个系统抽真空;当达到规定的真空度后,关闭测试下腔,向高压腔(上腔)充入一定压力的试验气体,并保证在试样两侧形成一个恒定的压差(可调);这样气体会在压差梯度的作用下,由高压侧向低压侧渗透,通过对低压侧内压强的监测处理,从而得出所测试样的各项阻隔性参数。
  • 合肥研究院研制的智能精确作业模块完成4500米级海试
    近日,中国科学院合肥物质科学研究院智能机械研究所高理富研究团队研制的智能精确作业模块在南海海域完成了4500米级海上试验,并得到了现场专家组的一致好评与肯定。   智能精确作业模块首次将具有自主知识产权的六维力传感器集成到深海机械手上,攻克了深海六维力传感器设计、深海目标识别与定位、深海机械臂设计与自主作业等多项关键技术,研制了深海六维力传感器、双目视觉识别定位系统和七功能机械臂等多个子模块,具备了作业目标识别与定位、作业路径自主规划和目标物自主抓取等功能,破解了深海作业中力或力矩信息缺乏的难题。   此次海试最大深度达到4098米,智能精确作业模块完成了一系列功能与性能验证测试,达到了4500米级深海作业标准,通过了现场海试专家组的考核,完成了试验任务。   本次海试的顺利实施,为深海装备的智能化作业提供了前期探索经验,提升了深海机械手智能化水平,在海洋研究、探测和资源开发方面具有重要应用价值和研究意义。科研人员向专家介绍智能精确作业模块
  • 智能电表让电费“飞”? 市民企盼第三方机构检测
    2月28日,南昌市苑中园小区居民徐先生向本报反映,自从1月份装上智能电表后,他这个月的电费比上个月增加了80%左右,小区内其他居民也有电费猛增的情况。南昌市供电公司当天在上门检测居民电表运转无异常后称,居民电费猛增与天气寒冷等多种因素有关,且智能电表灵敏度较高,市民须养成良好的用电习惯。  40多天用1119度电  2月28日,家住南昌市苑中园小区3栋的居民徐先生向本报反映称,他家在今年1月9日改为智能电表。2月15日他去查看了用电量。“不看不知道,一看吓一跳,一个月用了288度电。”徐先生说,这比原来一个月多了80%。  而比徐先生更为惊讶的是苑中园小区14栋的居民郑先生,2月28日下午郑先生出示的电费单显示,他在1月2日至2月14日共用了1119度电。“以前我每个月电费在180元至200元之间,这个月却增加到了670多元。”  2月28日,记者在苑中园小区走访时,不少居民均表示这次所要缴纳的电费确实比上个月要高。  智能电表推高用电量?  居民反映电费猛增较为普遍,而且电费猛增刚好发生在更换智能电表之后的这个月,“自然而然就怀疑到了智能电表身上。”徐先生的这个怀疑,也是小区内其他部分居民的想法。  2月28日,南昌市供电公司计量中心胡副主任和几名技术工人来到苑中园小区,并在现场检测了最具典型性的郑先生家的电表,检测结果显示电表没有异常。  电表与用电习惯没有异常,电费为何会猛增?对此,南昌市供电公司计量中心胡副主任说,智能电表的灵敏度比原来的机械电表更高,“如果电视机用遥控器关闭,却仍处于待机状态,同样在走电量,所以居民要养成良好的用电习惯。”  盼第三方机构检测  电表运转无异常,仅仅因为电器待机就让电费增了好几倍?居民郑先生对于现场的电表检测以及南昌市供电公司的众多解释都将信将疑,因为夏天他开多台空调时他一个月的电费也就是300多元,1月份他只开了一台小空调,电量却如此惊人。  居民徐先生称,智能电表在保证灵敏度的同时,也要保证准确性,他们希望有第三方机构对智能电表再次检测。
  • 追求用户体验--思克WVTR水蒸气透过率测试仪人工智能产品介绍
    思克WVTR系列水蒸气透过率测试仪 济南思克测试技术有限公司生产的WVTR系列水蒸气透过率测试仪应用范围非常广,小编列举了我们最经常接触的两个行业:一方面是食品包装行业会应用到,比如饼干、薯片,酸奶、纯牛奶等固体液体的包装袋,还有就是盒装酸奶,纯牛奶用的包装盒;另一方面就是药品包装用的铝塑板,泡罩包装等,瓶装药品用的塑料瓶等外包装材料都可以用到思克WVTR系列水蒸气透过率测试仪。 为什么食品要控制水分含量呢?我们大家都知道,像是饼干薯片等食品,如果暴露在空气中的时间久了,空气中充满了大量的水蒸气,空气中的水汽就会进入饼干里面导致饼干发绵发软,吃的时候就会觉得不脆不香了,很影响口感。所以饼干薯片等食品在出厂前都会对其进行水分含量的测定,如果水分含量过高就会影响口感。 为什么要测试食品包装的水蒸气透过率呢?测试水蒸气透过率的目的大概是三方面,一是水蒸气透过率过大的话会影响产品的货架期,直接给厂家带来严重的损失;另一方面就是控制成本,如果一层包装的水蒸气透过量过大,有的工厂会在外面再加一层包装,多层包装的成本就高了。还有最重要的一方面,近年来国家相关部门严查食品安全问题,如果包材水蒸气透过量过大,就会导致食品里面的细菌生长从而导致食品变质,从而直接影响消费者的身体健康 为什么要购买思克WVTR系列水蒸气透过率测试仪呢?首先我们先看一下操作系统,思克WVTR系列水蒸气透过率测试仪将AI人工智能技术应用于水蒸气透过率测试仪等阻隔系列检测仪器,以边缘计算为特点的嵌入式人工智能技术赐予了仪器更高的智能性。在对塑料薄膜、薄片、复合膜等软包装材料进行气体透过率测试时,测试过程高度自动化,无需人工干预,测量结果更准确。 其次我们就来看一下思克WVTR系列水蒸气透过率测试仪的技术参数薄膜测试容器测试(选购)测量范围:0.001~52g/m224h(常规) 0.01~1100 g/m224h(可选)0.0001~0.3g/pkg.d分 辨 率:0.001 g/m224h0.00001g/pkg.d控温范围:5℃~95℃另购控温精度:±0.1℃湿腔湿度:0%RH、35%RH~90%RH、百分之一百RH,标准90%RH (标配)控湿精度:±1%RH 试样数量:1 件测试面积:48cm2/试样尺寸:150 mm×94mm更大:Φ180mm*400mm试样厚度:≤3mm/载 气:99.999%高纯氮气 (气源用户自备)载气压力:≥0.16MPa 控温方式:水浴控温载气流量:0~200ml/min气源接口:1/8英寸金属管电 源:AC 220V 50Hz主机尺寸:330mm(L)×600mm(B)×330mm(H)主机净重:28kg 技术参数是衡量仪器的综合能力的重要指标之一,思克WVTR系列水蒸气透过率测试仪无论是从控温范围上还是从控温方式上,都把测试精度提高了一大截。 经过小编的介绍,大家是不是对思克WVTR水蒸气透过率测试仪有一定的了解了,如果各位老板需要更加深入的了解我们的产品,抓紧联系我们吧
  • 国内首台8英寸PZT压电薄膜设备落户上海智能传感器产业园
    1月19日,国内首台8英寸PZT压电薄膜设备落户上海智能传感器产业园超越摩尔研发中试线,打造基于压电材料的MEMS先进工艺平台。平台将由国家智能传感器创新中心(简称“创新中心”)和上海微技术工业研究院共同建设,持续推进智能传感关键共性技术创新开发能力。PZT薄膜压电MEMS技术是智能传感器领域的重要发展方向,是充满技术多样性和产业机会的蓝海领域。创新中心的量产型PZT压电薄膜沉积设备可以实现8英寸晶圆上单晶体PZT薄膜的高质量生长,成膜温度低(500℃),可以满足CMOS传感控制电路与MEMS兼容集成制造需求,是与Bosch、Silex等国际主流传感器生产厂商保持同步的先进装备。新型压电MEMS光学、声学、惯性、微流控等产品,在自动驾驶、消费电子、光通信、医疗康养、工业控制等AIoT领域具有广泛而重要的应用前景。本次入驻的PZT压电薄膜沉积设备来自ULVAC,以及来自Oxford Instrument的PZT 薄膜刻蚀设备。创新中心持续稳步推进包括设计、仿真、材料、加工、测试等环节的高端MEMS工艺平台能力建设,快速形成一系列相关特色技术模块和工艺能力,将与产业链上下游共同打造基于压电薄膜材料的MEMS新器件开发、新原理探索、新应用验证的技术平台,为国内外相关技术和产品开发提供平台支撑服务,也将为无铅压电材料的薄膜化以及在MEMS方向的应用探索和技术开发提供平台支持。国家智能传感器创新中心致力于先进传感器技术创新,以关键共性技术的研发和中试为目标,联合传感器上下游及产业链龙头企业开展共性技术研发,形成“产学 研 用”协同创新机制,打造世界级智能传感器创新中心。依托中国传感器与物联网产业联盟已有近1000家产业链各领域的代表企业,发挥产学研资源优势,加速我国物联网核心技术的发展,推动智能传感、大数据、人工智能的生态体系建设。
  • 连续在Nature子刊等高水平期刊发表重要成果!超精准可调节温度控制模块邀您免费体验!
    德国INTERHERENCE公司开发的超精准可调节温度控制模块VAHEAT是一款用于光学显微镜的精密温度控制模块,技术来源于德国著名的马克斯-普朗克研究所(MPI),兼容市面上绝大多数的商用显微镜和物镜,可在高清成像的同时快速和精确地调节温度,加热速率可达100℃/s,最高温度可达200℃,稳定性0.01℃,是材料研究领域必备工具。该模块自2021年问世以来,已在《Journal of the American Chemical Society 》、《Small 》、《EMBO Journal 》、《Nature Communications 》、《Nature Methods 》、《Nature Nanotechnology 》等高水平期刊发表数篇文献。图1 VAHEAT实物图 图2 A: VAHEAT各部件名称B: VAHEAT配有容纳液体样品的智能基板,可安装在显微镜上C: VEAHEAT智能基板含有氧化铟锡(ITO)加热元件和温度探头 VAHEAT主要特点:☛ 温度稳定性高:0.01℃☛ 温控范围广:RT-200℃☛ 优越的成像质量☛ 快速且可靠,用于油浸物镜☛ 四种加热模式可根据用户需求进行不同的实验☛ 机械稳定性和设备兼容性☛ 便于携带和安装 VAHEAT兼容多种成像技术:☛ 全内反射显微镜 Total internal reflection microscopy (TIRM)☛ 原子力显微镜 Atomic force microscopy (AFM)☛ 共聚焦显微镜 Confocal microscopy☛ 超分辨显微镜 Super resolution methods (SIM, STORM, PALM, PAINT, STED)☛ 干涉散射显微镜 Interferometric scattering microscopy (iSCAT)☛ 宽场显微镜 Widefield microscopyVAHEAT样机体验:为了更好的为国内科研工作者提供专业技术支持和服务,Quantum Design中国北京样机实验室引进了VAHEAT超精准可调节温度控制模块,为您提供样品测试、样机体验等机会,期待与您的合作! VAHEAT典型案例: ■ 2D材料的光致发光动态相变 犹他大学的Connor Bischak实验室使用超精准可调节温度控制模块VAHEAT获得了从40°C升高到110°C再降低到40°C,速度为0.2°C/s的光致发光(PL)数据。 参考文献:Rand L. Kingsford …& Connor G. Bischakd. (2023) Controlling Phase Transitions in Two-Dimensional Perovskites through Organic Cation Alloying. Journal of the American Chemical Society, 145, 11773&minus 11780. ■ 纳米颗粒的iSCAT成像 马克斯普朗克光科学研究所的Vahid Sandoghdar实验室致力于研究干涉散射(iSCAT)显微技术,他们使用超精准可调节温度控制模块VAHEAT调整30 nm的金纳米颗粒的温度并检测扩散系数,所得测量结果与使用金纳米颗粒的流体力学直径(实线)计算出的扩散系数基本一致。 参考文献:Anna D. Kashkanova …& Vahid Sandoghdar. (2022) Precision size and refractive index analysis of weakly scattering nanoparticles in polydispersions. Nature Methods, 19, 586–593. ■ AlGaN温感发光研究 华东师范大学武鄂教授使用超精准可调节温度控制模块VAHEAT对单光子发射源(SPE)在AlGaN微柱中的温度依赖性进行了研究。文章针对SPE在不同温度下的PL光谱、PL强度、辐射寿命等参数,探究了AlGaN SPE在高温下线宽加宽的可能机制,有助于深入研究如何实现此材料在高温下工作的芯片集成应用。 参考文献:Yingxian Xue …& E Wu. Temperature-dependent photoluminescence properties of single defects in AlGaN micropillars. Nanotechnology, 34, 225201. ■ 高温条件下黑金薄膜的拉曼光谱 德国柏林亥姆霍兹中心(HZB)的Yan Lu教授和波茨坦大学的Sergio Kogikoski教授使用超精准可调节温度控制模块VAHEAT测量了从室温到122°C不同温度下黑金薄膜的拉曼光谱。本实验用低强度激光入射(100 μW)测量拉曼光谱,以通过温度而不是光照射来诱导反应。 参考文献:Radwan M. Sarhan …& Yan Lu. (2023) Colloidal Black Gold with Broadband Absorption for Plasmon-Induced Dimerization of 4-Nitrothiophenol and Cross-Linking of Thiolated Diazonium Compound. Journal of Physical Chemistry C, https://doi.org/10.1021/acs.jpcc.3c00067. VAHEAT部分客户: VAHEAT部分发表文献:1. Rand L. Kingsford …& Connor G. Bischakd. (2023) Controlling Phase Transitions in Two-Dimensional Perovskites through Organic Cation Alloying. Journal of the American Chemical Society, 145, 11773&minus 11780.2. Fan Hong …& Peng Yin. (2023) Thermal-plex: fluidic-free, rapid sequential multiplexed imaging with DNA-encoded thermal channels. Nature Methods, Mai P. Tran …& Kerstin Gö pfrich. (2023) A DNA Segregation Module for Synthetic Cells. Small, 19, 2202711.3. Anna D. Kashkanova …& Vahid Sandoghdar. (2022) Precision size and refractive index analysis of weakly scattering nanoparticles in polydispersions. Nature Methods, 19, 586–593.4. Pierre Stö mmer …& Hendrik Dietz. (2021) A synthetic tubular molecular transport system. NATURE COMMUNICATIONS, 12, 4393.5. Bas W. A. Bö gels …& Tom F. A. de Greef. (2023) DNA storage in thermoresponsive microcapsules for repeated random multiplexed data access. Nature Nanotechnology, 18, 912–921.6. Tugce Oz …& Wolfgang Zachariae. (2022) The Spo13/Meikin pathway confines the onset of gamete differentiation to meiosis II in yeast. EMBO Journal, https://doi.org/10.15252/embj.2021109446.7. Valentina Mengoli …& Wolfgang Zachariae. (2021) Deprotection of centromeric cohesin at meiosis II requires APC/C activity but not kinetochore tension. EMBO Journal, https://doi.org/10.15252/embj.2020106812.8. Mariska Brüls …& Ilja K. Voets. (2023) Investigating the impact of exopolysaccharides on yogurt network mechanics and syneresis through quantitative microstructural analysis. Food Hydrocolloids, https://doi.org/10.1016/j.foodhyd.2023.109629.9. Yingxian Xue …& E Wu. Temperature-dependent photoluminescence properties of single defects in AlGaN micropillars. Nanotechnology, 34, 225201.10. https://doi.org/10.1038/s41592-023-02115-3.11. Radwan M. Sarhan …& Yan Lu. (2023) Colloidal Black Gold with Broadband Absorption for Plasmon-Induced Dimerization of 4-Nitrothiophenol and Cross-Linking of Thiolated Diazonium Compound. Journal of Physical Chemistry C, https://doi.org/10.1021/acs.jpcc.3c00067.12. Maë lle Bénéfice …& Guillaume Baffou. (2023) Dry mass photometry of single bacteria using quantitative wavefront microscopy. Biophysical Journal, https://doi.org/10.1016/j.bpj.2023.06.02013. Jaroslav Icha, Daniel Bö ning, and Pierre Türschmann. (2022) Precise and Dynamic Temperature Control in High-Resolution Microscopy with VAHEAT. Microscopy Today, 30(1), 34–41.14. L. Birchall …& C.J. Tuck. (2022) An inkjet-printable fluorescent thermal sensor based on CdSe/ZnS quantum dots immobilised in a silicone matrix. Sensors and Actuators: A. Physical, 347, 113977.15. Rajyalakshmi Meduri …& David S. Gross. (2022) Phase-separation antagonists potently inhibit transcription and broadly increase nucleosome density. JOURNAL OF BIOLOGICAL CHEMISTRY, 298(10), 102365.16. Marleen van Wolferen …& Sonja-Verena Albers. (2022) Progress and Challenges in Archaeal Cell Biology. Archaea. Methods in Molecular Biology, 2522, 365–371.17. Wei Liu …& Andreas Walther. (2022) Mechanistic Insights into the Phase Separation Behavior and Pathway-Directed Information Exchange in all-DNA Droplets. Angewandte Chemie, 134, e202208951.18. Céline Molinaro …& Guillaume Baffou. (2021) Are bacteria claustrophobic? The problem of micrometric spatial confinement for the culturing of micro-organisms. RSC Advances, 11, 12500–12506.19. SadmanShakib …& GuillaumeBa&fflig ou. (2021) Microscale Thermophoresis in Liquids Induced by Plasmonic Heating and Characterized by Phase and Fluorescence Microscopies. Journal of Physical Chemistry C, 125, 21533&minus 21542.
  • 薄膜拉伸强度测试仪如何区分弹性变形和塑性变形
    在薄膜拉伸强度测试中,准确区分弹性变形和塑性变形对于材料工程师、物理学家以及产品开发者而言,是至关重要的一环。这两种变形类型不仅决定了材料的基本性能,还直接关系到产品的使用寿命和安全性。本文旨在深入探讨薄膜拉伸强度测试中弹性变形与塑性变形的区分方法,以及它们在材料科学领域的应用。一、弹性变形与塑性变形的基本概念弹性变形,指的是材料在外力作用下产生变形,当外力消失时能够恢复到原始形状和尺寸的现象。这种变形是可逆的,不涉及材料的内部结构变化。而塑性变形则是指材料在外力作用下产生变形后,即使外力消失也不能完全恢复到原始形状和尺寸的现象。塑性变形是不可逆的,通常伴随着材料内部结构的改变。二、薄膜拉伸强度测试中的变形观察在薄膜拉伸强度测试中,我们可以通过观察材料的应力-应变曲线来区分弹性变形和塑性变形。在弹性变形阶段,应力与应变之间呈线性关系,即应力增加时,应变也按一定比例增加。当应力达到弹性极限时,材料开始进入塑性变形阶段,此时应力-应变曲线呈非线性关系,应变继续增加但应力增长缓慢或不再增长。三、区分弹性变形与塑性变形的具体方法应力-应变曲线分析:如前所述,通过分析应力-应变曲线的形状和变化,可以判断材料是否进入塑性变形阶段。在弹性变形阶段,曲线呈直线状;而在塑性变形阶段,曲线则呈现弯曲或平坦的趋势。卸载试验:在拉伸测试过程中,当材料达到一定的应力水平时,可以突然卸载并观察材料的恢复情况。如果材料能够迅速恢复到原始长度,则说明之前的变形主要是弹性变形;如果材料不能完全恢复,则说明存在塑性变形。残余应变测量:在拉伸测试结束后,通过测量材料的残余应变可以判断塑性变形的程度。残余应变越大,说明塑性变形越显著。四、弹性变形与塑性变形在材料科学中的应用材料选择:了解材料的弹性变形和塑性变形特性有助于选择合适的材料以满足特定需求。例如,在需要高弹性的场合(如橡胶制品),应选择弹性变形能力强的材料;而在需要承受大变形而不破裂的场合(如金属薄板),则应选择塑性变形能力强的材料。产品设计:在产品设计过程中,考虑到材料的弹性变形和塑性变形特性,可以优化产品结构以提高其性能和安全性。例如,在设计弹性元件时,需要充分利用材料的弹性变形能力;而在设计承力结构时,则需要考虑材料的塑性变形特性以确保结构的稳定性和安全性。质量控制:通过测量材料的弹性模量、屈服强度等力学性能指标,可以评估材料的性能是否满足要求。同时,通过观察材料的变形行为(如弹性变形和塑性变形)可以判断材料是否存在缺陷或质量问题。五、结论在薄膜拉伸强度测试中准确区分弹性变形和塑性变形对于材料科学领域具有重要意义。通过分析应力-应变曲线、进行卸载试验和测量残余应变等方法可以判断材料的变形类型。了解材料的弹性变形和塑性变形特性有助于选择合适的材料、优化产品设计和提高产品质量。未来随着材料科学的发展和技术的进步相信我们将能够更加深入地理解材料的变形行为并开发出更多高性能的材料。
  • 英斯特朗推出软件扩展模块可限制动态载荷下的试样自行发热
    英斯特朗,全球领先的材料和构件物性测试试验机制造商近期宣布,旗下最新研发的试样自行发热控制模块(Specimen Self-Heating Control 简称SSHC)将被添加到具有广泛用途的Instron WaveMatrix&trade 软件包中以对聚合物和复合材料进行动态疲劳测试。它可以把试样的温度保持在一个极小的变动区间内以助于在质量控制测试实验室以及开发和优化复合配方的过程中节省时间、成本和精力。 在循环加载或高温情况下,聚合物和复合材料会显著地产生自行发热效应,因此疲劳试验通常是在相对较低的频率下进行。试样自行发热控制(SSHC)扩展模块利用试样连续记录温度和预先指定的温度目标以最大限度地提高在一个闭环测试中的频率。对于用比较小的载荷加载,所预期的循环到断裂数值大,该系统可以运行在一个较高的频率上以大大减少测试时间。对于大载荷加载,即使在测试后段也能保持一致的试样温度,但以往情况下,自热效应在固定的测试频率中会导致试验温度显著升高。 Peter Bailey博士,英斯特朗英国动态测试系统专家说到:&ldquo 对于复合材料结构,一个5 摄氏度的温度转变通常会比测试频率变化二倍产生的影响还要大,因此严格控制试样温度的好处远远超过在测试频率中的变化。试样自行发热控制允许测试始终运行在最高频率,同时尽可能保持样品温度恒定。通过这种方式,我们可以通过提高产量和最小的能源消耗来提供优化的成本效益。此外,对于以前试验温度无法达到一致的情况,此方法可以为聚合物和复合材料提供更好的一致性。 此温度信号可以通过任何标准的传感器系统提供,例如:通过USB热电偶集成和任何0-10 Volt模拟输入,包括红外传感器。用户指定的温度窗口可以达到的公差的仅有± 0.5 C。试样自行发热控制功能适用于任何只要可以安装试样温度传感器的几何形状测试,并且也兼容高低温试验箱测试。 最后,试样自行加热控制(SSHC)扩展模块可以适用于所有英斯特朗动态测试系统并提供安装8800数字控制器,同时还支持最新版本的WaveMatrix&trade 软件。 值得期待的是,10月16日-18日期间,来自英斯特朗的动态测试系统专家Peter Bailey博士将亲临北京中国国际展览中心(新馆),2013北京国际风能大会暨展览会(英斯特朗 E140号展台)上,为中国用户带来更多英斯特朗在复合材料方面的最新研究成果和介绍,欢迎莅临现场沟通和交流。 Instron WaveMatrix&trade 软件
  • 宏展科技:7~14秒完成40G/100G光模块高低温循环测试
    宏展科技前期推出的”在线式高低温循环试验箱“, 10秒完成温循。在线式高低温循环试验箱,在线长期低温运行试验箱内免除霜,产品不结霜,大型宽广玻璃门带操作孔,长期运行,视窗清晰透视 ,高效的生产效率:以10G SFP+为例,10秒测一个,一个班(8小时)可产2880只模块。 测试温度范围在-40~85度。因为这款产品针对数据中心模块而开发,而数据中心环境温度相对稳定,因此,宏展在开发这款产品时将重点功能放在了温循速度上,进一步帮助客户提升测试效率。这款产品已经获得了国内外主流光模块厂商的批量采购。 宏展科技近期推出的该款超快速冷热冲击热流仪是专门针对40G/100G光模块和芯片测试,可以测试工业温度-55~125度升降温,降温14秒,升温只需7秒即可实现,温度控制对象可以是环境温度亦或是产品的表面温度,且无需氮气作为耗材。且可以直接上报测试数据,根据不同客户需求,可以再增加机械手、传送带,可以完全实现高低温循环试验全自动化。 气体快速升降温箱(热流仪)是一种能够在极短的时间内提供高低温试验环境的测试设备,采用机械制冷、电加热与压缩空气相结合的方式,适用于光电子元器件、机电产品及材料的测温度特性测试,可满足40G、100G等高速器件的测试要求,符合ESD防护要求,无需使用液氮等辅助手段。采用功能强大的触摸屏控制系统,可实时显示、存储试验数据、图表,电脑的通讯等功能。Dragon Air StreamerDragon is a fast and precise air stream temperature cycling system, from –80?C to +250?C, for various applications. An easy way to improve the reliability of electronic components and materials with thermal testing and characterization.EXCEPTIONNAL PERFORMANCES:Temperature from –80?C to +250?CAdjustable airflow from 2.2 to 8.4 l/sFast ramping: -55?C to +125?C = 7s      +125?C to -55?C =14s3 working methods: manual, automatic or programmable.Compatible with automatic test equipment (ATE).Continuous use (24/7).In appliance with the international standard MIL-STD 883 and 750 temperature cycling (method 1010 & 1051) and JEDECThermal test enclosure to fit for any demand.
  • 国产高端测试仪器市场困局何解?产学研模式新探索
    当今时代,科技迅猛发展、芯片量呈几何倍数增长,芯片已经进入融合的时代。从无人驾驶到虚拟现实、从人工智能到云计算、从5G到物联网,一颗芯片上承载的功能越来越多,芯片工艺越来越复杂,新器件类型层出不穷,众多驱动因素的推动对半导体测试技术不断提出新的要求。行业需要更加面向未来需求的测试系统和方案,来打破传统仪器固有的不足和局限。以半导体器件测试来看,在先进器件研究过程中,新材料、新结构与新工艺的应用都可能带来未知的变化。研究者不但要关注精确的静态电流电压特性,更希望观察到细微快速的动态行为。同时随着半导体尺寸不断减小,一些现象需要在极短的时间内才能观察到,例如MOS器件的BTI效应,因此,对包括短脉冲测试(PIV)在内的新技术提出了要求。前不久,概伦电子与北京大学集成电路学院及上海交通大学电子信息与电气工程学院联合研发的新一代高精度快速波形发生与测量套件FS-Pro HP-FWGMK正式发布,填补了其半导体参数测试系统FS-Pro在短脉冲测试的空缺,同时也填补了国内短脉冲测试技术的空缺。高端测试仪器FS-Pro“如虎添翼”据了解,此次发布的最新一代高精度快速波形发生与测量套件FS-Pro HP-FWGMK由黄如院士在北京大学和上海交通大学的团队与概伦电子联合研发。作为短脉冲测试技术的先行者,黄如院士团队经过了十余年的努力,在实践过程中掌握了一整套短脉冲产生、测量以及分析技术。概伦电子基于其提供的包括测试方法、电路原型、方案框架、版图设计及PIV应用在内的指导意见继续精细开发,满足高增益与高带宽的同时,有效抑制放大电路的非线性失真,最终实现了最小脉宽130ns的高精度测量。概伦电子FS-Pro半导体参数测试系统(图源:概伦电子)概伦电子的半导体参数测试系统FS-Pro是一款功能全面、配置灵活的半导体器件电学特性分析设备,在一个系统中实现了电流电压(IV)测试、电容电压(CV)测试、脉冲式IV测试、任意线性波形发生与测量、高速时域信号釆集以及低频噪声测试能力。此次增加短脉冲IV(PIV)技术后,FS-Pro更是如虎添翼,几乎所有半导体器件的低频特性表征都可以在FS-Pro测试系统中完成,可广泛应用于各种半导体器件、LED材料、二维材料器件、金属材料、新型先进材料与器件测试等。其全面而强大的参数测试分析能力极大地加速了半导体器件与工艺的研发和评估进程,并可无缝的与概伦电子低频噪声测试系统9812系列集成。据了解,概伦电子噪声测试系统9812系列是全球半导体行业业内低频噪声测试的“ 黄金标准”,为半导体行业先进工艺研发、器件建模和高端电路设计提供了更加完整而又高效的低频噪声测试及分析解决方案,可以满足各种不同工艺平台下半导体器件和集成电路低频噪声测试的需求。FS-Pro快速的DC测试能力进一步提升了9812系列产品的噪声测试效率和吞吐量,性能相较同类型产品获得大幅度提升,并将在噪声测试的业内领先技术扩展到通用半导体参数测试。基于在产线测试与科研应用方面的优异表现,FS-Pro全面的测试能力在科研学术界受到了广泛关注和认可,已被数十所国内外高校及科研机构所选用,同时也被众多芯片设计公司、代工厂和IDM公司所釆用。国产高端测试仪器新突破纵观行业现状,测试测量仪器属于高端科研仪器设备,需要长时间积累,特别考验一个国家基础技术的厚度。由于国内本土测量仪器行业起步较晚,主营电子测试测量仪器的企业数量少,发展情况也不尽相同,目前我国的产品结构主要集中在中低端,大部分企业仍处于仿制研发的阶段,仅有小部分企业走向应用研发的转型之路。根据数据显示,中国电子测量仪器的市场规模由2016年的28.72亿美元增至2021年的50.39亿美元,预计2022年将进一步达到53.14亿美元。面对国内如此巨大的市场需求,以及受国外隐形技术壁垒等因素制约,国内市场仍被掌握在国外仪器仪表厂商手中,高端产品依赖进口,行业类第一梯队公司主要为是德科技(Keysight)、泰克(Tektronix)、罗德与施瓦茨(R&S)等欧美企业。国内测量仪器与国际水平相比,在产品结构、高端产品的技术水平、市场占有率等方面存在较大差距,亟待国内本土企业填补高端仪器的技术和市场空白。在这种情况下,提高企业的研发力度成为了电子测量仪器行业发展的关键点之一。同时伴随着强烈的自主可控需求,国产高端测试测量仪器市场在近几年迎来高速增长。概伦电子的半导体参数测试系统FS-Pro作为高端测试仪器的代表之一,在先进器件和材料等领域的测试表现非常出色,集 IV、CV、1/f noise及PIV测试等于一体,高精度、低成本、综合的半导体器件表征分析能力灵活满足各种用户的不同测试需求,大大节省了测试设备采购开支。同时,工业标准的PXI模块化硬件结构,通用的软件平台,内置测量软件提供数百个预定义的测试模板和功能,实现即插即用体验,使FS-Pro成为了半导体器件与先进材料研究方面的得力助手,产品性能直接对标是德科技等行业巨头的高端测试仪器。近年来,随着半导体行业的快速发展,对测试测量仪器的需求在逐渐扩大。当前中国的半导体测试测量行业在飞速发展中,可以预见的是,复杂的国际关系背景和市场需求的双重驱动下,关键领域的国产化成为竞争焦点,自上而下的产业政策和企业突围将加速自主可控产业链的成长,国产半导体测量仪器迎风口。随着概伦电子在中高端产品领域取得突破,将会使其成为国内该行业的领头羊,有望引领该领域的国产化替代浪潮。概伦电子产品布局日臻完善半导体器件特性测试是对集成电路器件在不同工作状态和工作环境下的电流、电压、电容、电阻、低频噪声、可靠性等特性进行测量、数据采集和分析,以评估其是否达到设计指标。概伦电子半导体参数测试系统FS-Pro能够支持多种类型的半导体器件,具备精度高、测量速度快和可多任务并行处理等特点,能够满足晶圆厂和集成电路设计企业对测试数据多维度和高精度的要求。半导体器件特性测试仪器采集的数据是器件建模及验证EDA工具所需的数据来源,两者具有较强的协同效应。随着下游晶圆厂客户产能扩张,相关测试需求或将进一步释放。在制造类EDA工具方面,概伦电子的器件建模及验证EDA工具已经取得较高市场地位,被全球大部分领先的晶圆厂所采用和验证,主要客户包括台积电、三星电子、联电、格芯、中芯国际等,在其相关标准制造流程中占据重要地位。使用该EDA工具生成的器件模型通过国际领先的晶圆厂提供给其全球范围内的集成电路设计方客户使用,其全面性、精度和质量已得到业界的长期验证和广泛认可。在此基础上,通过半导体器件特性测试仪器与EDA工具的联动,能够打造以数据为驱动的EDA解决方案,紧密结合并形成业务链条,帮助晶圆厂客户有针对性的优化工艺平台的器件设计和制造工艺,不断拓展产品的覆盖面,进一步为概伦电子打造完整的制造EDA流程丰富了现有技术及解决方案。目前概伦电子主要产品及服务包括制造类EDA工具、设计类EDA工具、半导体器件特性测试仪器和半导体工程服务等。从其产品布局和发展历程来看,概伦电子在具备高价值的落地场景和应用需求的前提下,用相对较短的时间、较小的人员规模和投入,打造了全新的设计方法学和流程,逐渐形成了具有技术竞争力的EDA工具、测试产品和工程服务,并在国际主流市场获得产品验证机会,在多环节和维度上实现了对国际EDA巨头全流程垄断的突破。产学研模式新探索上文提到,此次FS-Pro HP-FWGMK套件的发布是概伦电子与北京大学集成电路学院及上海交通大学电子信息与电气工程学院联合研发的产物,在填补了半导体参数测试系统FS-Pro在短脉冲测试空缺的同时,也代表了国内产学研深度合作的典范。当前,在国产EDA的发展过程中,人才是关键,创新求变正在重塑新的核心竞争力。EDA核心技术的突破没有捷径可走,需要持续吸引各种人才、加强产学研合作和保持高研发投入,长期坚持技术沉淀,通过客户需求引导,才有可能形成新的突破。在当前行业背景和发展现状下,概伦电子正在探索以产教融合方式来培养项目和推动EDA技术和人才发展的新模式,携手各界通力合作,共同应对后摩尔时代技术与市场的双重挑战,构建中国EDA产业命运共同体,致力于突破困局并最终实现超越。
  • 1500万!同济大学非接触式自主配置全息测试子系统—结构表观多维度测试模块采购项目
    一、项目基本情况项目编号:Z20230815(代理机构内部编号:JSHC-2023050436S1)项目名称:同济大学非接触式自主配置全息测试子系统—结构表观多维度测试模块采购项目预算金额:1500.0000000 万元(人民币)最高限价(如有):1500.0000000 万元(人民币)采购需求:非接触式自主配置全息测试子系统—结构表观多维度测试模块1套合同履行期限:签订合同后6个月内完成并验收合格交付使用。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年08月10日 至 2023年08月17日,每天上午9:00至11:30,下午13:30至17:00。(北京时间,法定节假日除外)地点:上海市普陀区中山北路2130号1701室方式:现场获取或通过邮箱获取采购文件。获取采购文件须提供的资料:加盖公章的授权委托书原件或扫描件、加盖公章的被委托人身份证复印件或扫描件,及汇款凭据的截图(转账时请务必备注公司名称+436S1)。获取采购文件电话:025-83609978(南京)/021-52181959(上海) 邮箱:jshc9999@163.com售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:同济大学     地址:上海市杨浦区四平路1239号        联系方式:沈老师 021-65983761      2.采购代理机构信息名 称:江苏省华采招标有限公司            地 址:上海市普陀区中山北路2130号17层            联系方式:刘翠红、胡晓秀 021-52181959            3.项目联系方式项目联系人:刘翠红、胡晓秀电 话:  021-52181959
  • 拉曼智能模块如何解决常规拉曼毒品痕量检测难题?—拉曼光谱仪痕量解决方案
    拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,根据每种分子如人类指纹一样,都有其独特的光谱指纹,可以很好的识别分子物质,当前,随着拉曼光谱技术的发展,各样式拉曼检测仪不断涌现,如便携式科研拉曼检测仪、手持式拉曼检测仪等。它们为拉曼技术的推广提供了条件。  普识纳米在现有常规拉曼技术研究的基础之上,针对不同拉曼检测仪性能不同导致的采集拉曼谱图与比对标准谱图差异大,拉曼检测仪物质识别能力不强、检测限等问题,设计并开发了通用拉曼智能识别模块,解决了拉曼谱图的自适应采集、多维度校准和多核加速技术等问题,提高了谱图识别的准确性和速度。  拉曼智能模块对常规拉曼升级包括以下几点:  (1)针对信号强度不确定性样品,设计了拉曼自动积分控制算法,通过实时评价拉曼信号的信噪比或峰强,自动控制拉曼积分时间、激光功率等参数,使得针对不同的样品,不同性能的拉曼信号采集模块都能自动获得高质量的拉曼谱图数据。  (2)为提高拉曼谱图智能识别算法的通用性和准确度,设计了多维度的拉曼谱图校准算法,在对拉曼谱图进行滤波去噪的基础上,设计了基于多物质的标定的拉曼位移校准方法和相对强度校准方法,改进了不同性能拉曼信号采集模块获得的拉曼谱图的特征信息差异,从而提高了谱图识别的准确性。  (3)基于嵌入式系统,实现了智能识别算法的并行加速。通过采用多核多线程并行处理、哈希表数据库检索方法等,提高了拉曼谱图智能识别算法的计算速度,大幅提高了智能识别模块的性能。  (4)同时还开发了基于串口通讯的通信桥,实现了基于http通讯的前后端程序在串口下的通信。 本文开发设计了微型的拉曼智能识别模块,编写了算法和控制程序,进行了实验分析和算法验证,表明了拉曼智能识别模块能适配不同性能的拉曼光谱检测模块,可以提供离线式和在线式的拉曼谱图快速识别服务。  根据以上四大方面升级,解决了不同厂家常规拉曼的数据匹配问题,结合普识纳米SERS增强技术,完美实现了常规拉曼毒品痕量检测难题。  例如第三代毒品“芬太尼”,常规拉曼是无法检测芬太尼类强荧光干扰和低浓度的两大核心问题,集合普识纳米SERS智能处理器,升级后灵敏度可达ppb级别(可以在毒贩或者吸毒人员摸过的纸币上面采样)。基于拉曼光谱SERS原理,采用独特的便携设计,具有简单、精准、高效、便携等特点。满足现场使用需求,并可根据要求支持扩容升级万条数据库,还可以随时自建谱图库,检测新出现的芬太尼。
  • 2012年上半年仪器新品盘点:表界面及颗粒测试仪器
    新产品和新技术体现了相关行业的技术发展趋势,定期推出一定数量的新产品和新技术是一个仪器企业创新能力的具体表现。仪器信息网“半年新品盘点”旨在将最近半年内推出的新产品和新技术集中展示给广大用户,让大家对于感兴趣的领域有总体性了解,更多创新产品和更详细内容见新品栏目。比表面分析仪  比表面分析仪是用来检测颗粒物质比表面积的专用设备,而比表面积测试方法主要包括动态色谱法和静态容量法,其中动态色谱法是将待测粉体样品装在U型的样品管内,使含有一定比例吸附质的混合气体流过样品,根据吸附前后气体浓度变化来确定被测样品对吸附质分子的吸附量 而静态法根据确定吸附量的方法的不同分为重量法和容量法 重量法是根据吸附前后样品重量变化来确定被测样品对吸附质分子的吸附量,由于分辨率低、准确度差、对设备要求很高等缺陷已很少使用 容量法是将待测粉体样品装在一定体积的一段封闭的试管状样品管内,向样品管内注入一定压力的吸附质气体,根据吸附前后的压力或重量变化来确定被测样品对吸附质分子的吸附量。  现在国际上比表面积分析仪的使用已经非常广泛,在国内也逐步得到了认识,因此涌现出了好多优秀的厂商,然而企业能够持续发展来源于它持续的创造力。下面列举国内外厂家2012年上半年推出的新产品,以飨读者。  2012年上半年的表面分析仪器主要有:北京精微高博科学技术有限公司全自动比表面积及真密度测试仪JW-BK224T、北京金埃谱科技有限公司物理吸附分析仪V-Sorb 4800、贝士德仪器科技(北京)有限公司高精度比表面积和孔隙度测定仪3H-2000PS2、瑞典百欧林科技有限公司上海代表处Theta QC光学接触角仪、威杰(香港)有限公司全自动表面能分析仪SEA、浙江泛泰仪器有限公司全自动微反评价设备4200。  从这些新产品的创新点可以看出未来表界面仪器的发展趋势。  北京精微高博科学技术有限公司全自动比表面积及真密度测试仪产品型号:JW-BK224T  上市时间:2012年6月  北京精微高博科学技术有限公司独自开发设计静态容量法和动态色谱法两大类六种型号比表面仪器,其中静态容量法比表面及孔隙率测定仪是与国外同类产品相同质量和功能的仪器,JW-BK和JW-RB为精微高博独创的静态容量法比表面积及比表面及孔隙率测定仪,性能达到国外同类水平,深受国内用户欢迎。而JW-BK224T是精微高博的创新产品,该产品设有4个样品分析位,4个样品预处理位,测试系统与预处理系统可同时工作,互不干扰 比表面和真密度测试积聚一身的测试仪器!真密度测试:采用新颖独特的集装式管路设计,有效提高了真密度分析仪密封性,减小了基体腔自由体积空间,同时可有效提高整体测试系统的温度均匀性及抗各种外界干扰能力,有利于提高测试结果的重复性。  北京金埃谱科技有限公司物理吸附分析仪产品型号:V-Sorb 4800  上市时间:2012年3月  全自动物理吸附分析仪V-Sorb 4800是金埃谱科技自主研发的全自动智能化比表面积和孔径分析仪器,采用静态容量法测试原理,并参考众多著名科研院所及500强企业应用案例,相比国内同类产品,金埃谱物理吸附分析仪多项独创技术的采用使产品整体性能更加完善, 该仪器采用进口4升大容量金属杜瓦瓶,在无需增加保温盖的条件下可连续进行72小时测试,无需添加液氮,可同时进行4个样品的分析和脱气处理,相比同类产品工作效率提高了一倍。整个测试系统采用模块化结构设计,完全自动化的设计理念,配以功能完善的测试软件,可实现夜间无人值守式自动测试,大大提高测试效率。  贝士德仪器科技(北京)有限公司高精度比表面积和孔隙度测定仪产品型号:3H-2000PS2  上市时间:2012年1月  贝士德公司今年一月份刚刚推出的高精度比表面积和孔隙度测定仪3H-2000PS2增加了国内唯一的分子置换模式,对样品预处理模式进行了改进 该仪器增加了PO测试,PO测试对静态法比表面积和孔隙度测定仪的准确性和重复性有很大的作用.。另外,该仪器还获得了两项国家技术专利:静态法高精度比表面积和孔隙度测定仪的净化预处理装置(专利号:ZL201120136943.9) ,静态法比表面及孔径分析仪的饱和蒸汽压测试装置(专利号:ZL201120136959.X )。  瑞典百欧林科技有限公司上海代表处光学接触角仪产品型号:Theta QC  上市时间:2012年2月  瑞典百欧林科技有限公司拥有Q-Sense, KSV, Attension, Nima, Osstell等品牌,主要产品为基于QCM-D专利技术的石英晶体微天平、LB膜分析仪,浸入成膜仪、表/界面张力仪,光学接触角仪、表面等离子共振仪、表面流变测试仪、表面红外测试仪等。在2012年一月刚刚推出的Theta QC 是一款设计精巧紧致的便携式光学接触角测试仪,可用于精确测试润湿、吸附、均一性、表面自由能、铺展性、吸收、清洁度和印刷适性等,用于快速在线检测和生产过程中的质量控制,可广泛应用于包装、涂料、印刷和材料工程等行业。与同类仪器相比,Theta QC的主要特点:1. 轻巧,灵活便携,适用于在线检测 2. 真正的无线测试:自带电池可连续工作8小时,测试数据可无线传输至远程电脑 3. 内置存储,可存200个数据点 4. 使用方便,软件界面友好。  威杰(香港)有限公司全自动表面能分析仪产品型号:SEA  上市时间:2012年1月  iGC(反气相色谱法)-是一项的针对粉末、颗粒、纤维、薄膜、半固体的表面与体积性质的气相表征技术。iGC 表面能分析仪继续保持了SMS 公司15年来开拓历史的反气相色谱法的世界领导者地位。全自动表面能分析仪SEA代表了iGC技术的巨大进步。SEA创新的核心是其独特的多面注射系统。这个系统生成了具有最大精度和范围的溶剂脉冲,精确地产生样品空前的高和极低的表面覆盖范围的等温线。这使得非均匀分布的表面量的测量更加精准。Cirrus Plus 利用了iGC SEA的实验灵活性,提供广泛的,人性化的数据分析,并可以单击生成报表,帮您最大程度的运用iGC数据。 浙江泛泰仪器有限公司全自动微反评价设备 产品型号:4200  上市时间:2012年3月  浙江泛泰仪器有限公司在2012年3月推出了这款全自动微反评价设备4200,装置采用框架式结构,模块化设计,分为气体减压、进料、反应、产品收集和放空等区域,且该装置反应各部件可以根据用户的具体需求,做相应的调整 该仪器的控制装置能够自动控制气体和液体流量,多段式反应炉的温度 此外,全自动微反评价设备主要用来进行催化剂或其他物质的固定床微反评价,可以实现同时多路气体和多路液体进样,并使用MFC和液体计量泵计量 反应器可以支持1200度或20Mpa的操作压力,能够设计成桌面型、小型立式、DCS控制型、小试装置等。颗粒/粉体流动性测试   随着颗粒技术的发展,颗粒测试技术已经受到广泛的关注与重视. 近年来颗粒测试技术进展很快,表现在以下几个方面:1) 激光粒度测试技术更加成熟2) 图像颗粒分析技术东山再起3) 颗粒计数器不可替代4) 纳米颗粒测试技术有待突破5) 光子相关技术独树一帜6) 颗粒在线测试技术正在兴起。其中,粒度仪是用物理的方法测试固体颗粒的大小和分布的一种仪器。根据测试原理的不同分为沉降式粒度仪、沉降天平、激光粒度仪、光学颗粒计数器、电阻式颗粒计数器、颗粒图像分析仪等。另外,测定粉末流动性的仪器称为粉末流动仪,也叫霍尔流速计。由漏斗、底座和接粉器等部件组成。因为在工业生产中,粉体的颗粒形状、细度、粒度分布和粘聚性,会直接影响产品的质量,所以不管是颗粒度的测试还是粉体流动性的测试在实际的应用中都很为重要,选用仪器分析检测也尤为重要。  2012年上半年的颗粒或者粉体流动性测试仪器的新品主要有:珠海欧美克仪器有限公司生产的激光粒度仪LS-C(III)型干湿二合一和英国Freeman Technology公司(大昌华嘉商业(中国)有限公司代理)生产的FT4多功能粉末流动性测试仪。  从这些新产品的创新点可以看出未来试验机行业的发展趋势。  珠海欧美克仪器有限公司激光粒度仪产品型号:LS-C(III)  上市时间:2012年1月  欧美克是一家专注于粒度检测与控制技术的研发与生产的公司,是中国粒度检测仪器第一大制造企业。刚刚面世的这款激光粒度仪采用独有的大角散射光的球面接收技术(专利号:95223756.3),对透镜后傅立叶变换结构,将大角探测器布置在适当的球面上,以实现大角散射光的精确聚焦 该仪器采用一体化激光发射器(专利号:00228952.0),有效降低了激光管热变形、外界机械振动对仪器稳定性的影响。自动对中系统步进精度达到0.5微米,使用户操作更为方便 湿法进样系统采用增压泵,转速达5000转/分,相较于蠕动泵能有效实现大颗粒的循环 干法进样系统振动电机无极可调,实现遮光比的有效控制 测试窗口材质采用高品质光学材料,窗口构件采用全不锈钢材,耐磨、易清洗,维护方便 光路系统采用全封闭设计,防止灰尘污染及外界光污染。  大昌华嘉商业(中国)有限公司多功能粉末流动性测试仪产品型号:FT4  上市时间:2012年2月  国外高技术仪器公司众多,但是他们中很多公司并不能全面理解中国文化和市场,在拓展中国市场方面“心有余而力不足”,因此急需诸如华嘉这样专注市场拓展的贸易代理公司的帮助。早期,华嘉总是搜寻一些大公司或第一品牌的公司进行合作,而如今,华嘉更加倾向于专业型企业,同时这些企业也必须在他们所专注的领域具有领导地位或者拥有创新的技术。英国Freeman Technology公司就是这样的一家优质公司。今年4月份推出的最新一代FT4多功能粉末流动性测试仪,利用专利的粉末均匀化预处理,通过测量粉末的动力学性质,剪切性质和包含压缩性、透气性和密度在内的粉末整体特性,给出粉末高重复性的流动性质的定量数据,在此之前,没有任何其他仪器可以做到这些。除此以外,一些与加工过程有关的变量,如贮存时间、静电、结团、颗粒偏析、颗粒破碎或湿法制粒时的含水量等也都可以由FT4获得评估,真正实现了粉末在实际应用环境中的定量表征。
  • 6G技术研究开启 通信测试仪器仪表成其中关键一环
    据韩媒11月15日报道,近日,韩国三星电子在美国进行第六代移动通信(6G)试验。三星电子计划通过试验确认是否可以用6G智能手机与基站进行中远程通信。2020年7月,三星电子曾发布6G白皮书,力争比竞争对手更快开发出被认为是新一代移动通信技术的6G技术,并抢占先机。为此,三星研究中心(Samsung Research)新设新一代通信研究中心,探索6G技术。无独有偶,11月16日,工信部发布《“十四五”信息通信行业发展规划》(以下简称《规划》),其中将开展6G基础理论及关键技术研发列为移动通信核心技术演进和产业推进工程,提出要构建6G愿景、典型应用场景和关键能力指标体系,鼓励企业深入开展6G潜在技术研究,形成一批 6G核心研究成果。在6GANA(6G Alliance of Network AI)第二次会议上,中国工程院院士邬贺铨指出,每当新一代移动通信开始商用时,更新一代移动通信的研究就开始启动,它需要十年时间经过需求提出、标准提出、技术准备、试验才能走到商用,因此现在启动6G研究正当时。0.1~1Gbps、1百万/Km2连接数密度、数十Tbps/Km2流量密度、毫秒级端到端时延、500+Km/h移动性是对5G提出的性能指标需求。有专家观点称,上述特征依然是6G需要关注的指标,但6G的需求绝不仅限于此。在5G产业高速发展的今天,测试能力始终是产品研发能力提升的关键一环。我国于2019年正式发放5G商用牌照,目前5G技术正处于逐步转向大规模应用的阶段,在此过程中,通信设备厂商、天线厂商以及模块厂商等都需要加大对测试设备的采购,以确保其生产的产品符合新一代移动通信技术的要求规范。开展6G技术研究也不例外。在6G技术研究过程中,无论是标准制定,或是在研发生产,还是在规模制造,都高度依赖通信测试仪器仪表的及时就位,特别是在标准制定落地环节,通信测试仪器仪表更是起到了决定性的作用。其中,信号发生器可以测量所需的信号;电压测量仪可以用来测量电信号的电压、电流、电平等参量;频率、时间测量仪器可以测量电信号的频率、时间间隔和相位等参量;信号分析仪器可以观测、分析和记录各种电信号的变化;电子元器件测试仪器可以测量各种电子元器件的电参数;电波特性测试仪器可以测量电波传播、干扰强度等参量;网络特性测试仪器可以测量电气网络的频率特性、阻抗特性、功率特性等。通信测试仪器仪表是通信测试产业链中重要的一环,渗透于产业链各个环节。上游主要是各类金属材料、电子元器件、集成电路、显示单元及机电零部件配件;中游主要包括各类测试仪表制造;下游为应用行业,具体包括电信运营商、终端厂商、科研院所、卫星通讯等。在一个成熟的通信产业环境中,通信测试的作用往往不会体现得很明显,作为幕后英雄默默支撑产业发展,但是,当通信产业发展升级时,通信测试将起到不可或缺的作用。2015年我国通信测试仪表市场规模为93.46亿元,2020年我国通信测试仪表市场规模增长至179.34亿元,2015年以来我国通信测试仪表规模复合增速为13.92%。在6G网络中,频谱接入的趋势是以低频段为基础,高频段按需开启,实现低频段、毫米波、太赫兹和可见光多频段共存与融合组网,在覆盖、速率、安全等方面满足不同的用户需求。随着6G技术研究的开启,借助先进的测试测量仪器、屏蔽箱和测试软件,下游厂商设计人员能够探索新的信号、场景和拓扑结构,进一步验证设备与方案的商用能力,因此通信测试变得更为重要,在这之中通信测试仪器仪表将成为其中关键一环,必不可少。未来,运营商、设备商、芯片商以及终端解决方案商都将迎来对通信测试仪器仪表的大规模需求。
  • 创迈思与LUMILEDS和VIAVI合作开发世界上第一个用于智能手机的消费类光谱模块
    德国路德维希港/美国拉斯维加斯/美国亚利桑那州斯科茨代尔,2023年11月30日--创迈思trinamiX,智能手机小型化近红外光谱模块的先驱,开发了一种微型的光谱模块,可以与顶级技术合作伙伴:LUMILEDS(汽车行业LED照明和特殊照明解决方案的领先制造商)和VIAVI(光学滤光片制造领域的全球领导者,在消费电子市场拥有丰富的经验)一起集成到智能手机中。该近红外(NIR)光谱模块运行在高通公司最新的第三代骁龙参考设计上,并在2023年高通骁龙®峰会上首次亮相。未来,消费者将能够使用移动设备看到以前“看不见”的健康指标(即所谓的生物标记物),并随时随地进行无创式的身体检测。基于真实反应的分子测量,智能应用程序将为皮肤健康、营养和未来的许多其他应用提供有根据的个性化建议。在寻找最佳光源的过程中,创迈思找到了LUMILEDS作为理想的合作伙伴。LUMILEDS使用的荧光LED发射长波近红外范围内的宽带光,满足智能手机制造商在尺寸、能耗、寿命和稳定性方面的严格要求。VIAVI Solutions作为创迈思另一个强大的合作伙伴,它们的滤光片能够精确确定相关波长,以从光谱中提取生物标志物信息。其过滤器的卓越品质和精度使该公司成为整个价值链(从原型设计到大规模生产)中的可靠合作伙伴。探测器和读出电子器件由创迈思专门为智能手机兼容尺寸的模块开发。由于采用专利封装,高灵敏度红外探测器体积特别小,但坚固耐用。创迈思还贡献了光谱学和化学计量学专业知识,并开始将消费者光谱学集成到智能手机中。创迈思公司trinamiX GmbH北美和欧洲消费电子总监Wilfried Hermes博士表示:“如果没有LUMILEDS和VIAVI,创迈思个人消费类光谱不可能实现彻底改变我们理解和评估健康、营养等方面的方式。两位合作伙伴都多次突破技术的界限。和他们一起,我们共同创造了一项令人兴奋的技术,它将重新定义智能手机的使用。”Lumileds LED产品营销和管理主管Noman Rangwala表示:“创迈思和Lumileds之间的密切合作使集成在智能手机中的小型光谱仪成为了现实。这项创新在消费者医疗应用中实现的许多应用确实具有影响力。我们很高兴成为这个创新团队的一员。”VIAVI解决方案光学安全和性能产品组产品管理副总裁Adam Scheer表示:“VIAVI很荣幸能够成为行业领先的生态系统合作伙伴团队的一员,共同努力将光谱技术交付给消费者。在过去的十年中,我们已经开发出独特的能力,利用我们专有的磁控溅射镀膜平台,在智能手机规模上开发和制造具有卓越性能特征的光学滤光片。我们期待看到创迈思解决方案能够实现的所有消费光谱应用。”与生态圈伙伴的成功合作证明,创迈思可以为不同的甚至是高度专业化的应用实现量身定制的解决方案:例如可穿戴设备、物联网设备以及其他家用和消费电子产品等。
  • 中科大张斗国教授团队研制出基于光学薄膜的平面型显微成像元件
    近日,中国科学技术大学物理学院光电子科学与技术安徽省重点实验室/合肥微尺度物质科学国家研究中心教授张斗国研究组提出并实现了一种基于光学薄膜的平面型显微成像元件,用作被测样本的载波片,可在常规的明场光学显微镜上实现暗场显微成像和全内反射成像,从而获取高对比度的光学显微图像。研究成果以Planar photonic chips with tailored angular transmission for high-contrast-imaging devices为题,发表在Nature Communications上。光学显微镜利用光学原理,把人眼不能分辨的微小物体放大成像,进而拓宽人类观察物质结构的空间尺度范围。通用的光学显微镜是明视场显微镜(Brightfield Microscopy),它利用光线照明,样本中各点依其光吸收的不同在明亮的背景中成像。但对于一些未经染色处理的生物标本或其他透明样本,由于对光线的吸收少,其明视场显微镜像的对比度差,难以观测。为解决以上问题,科学家们发展出暗视场显微镜(Darkfield Microscopy):其照明光线不直接进入成像物镜,只允许被样品反射和衍射的光线进入物镜。无样品时,视场暗黑,不可能观察到任何物体;有样品时,样品的衍射光与散射光等在暗的背景中明亮可见,因此其成像对比度远高于明场光学显微镜,如图1a所示。另外一个解决方案是,利用光线全反射后在介质另一面产生衰失波(又称表面波)来照明样品,无样本时,衰失波光强在纵向呈指数衰减的特性使得其不会辐射到远场,视场暗黑;有样品时候,衰失波会被散射或衍射到远场,从而在暗背景下形成物体的明亮像,该显微镜被称为全内反射显微镜(Total internal reflection microscopy, TIRM),同样可以提高成像对比度。衰失波光强在纵向呈指数衰减的特性,只有极靠近全反射面的样本区域会被照明,大大降低了背景光噪声干扰观测标本,故此项技术广泛应用于物质表面或界面的动态观察,如图1b所示。然而,上述两种显微镜均需要复杂的光学元件,如暗场显微镜需要特殊的聚光镜来实现照明光以大角度入射到样品;全内反射显微镜需要高折射率棱镜或高数值孔径显微物镜来产生光学表面波;这些元件体积大,不易集成,成像效果严格依赖于光路的精确调节,增加了其操作复杂度。研究提出的基于光学薄膜的平面型显微成像元件可有效弥补上述不足。图1c为该元件结构示意图,主要包含三部分:中间部分是掺杂有高折射率散射纳米颗粒的聚合物薄膜,利用纳米颗粒的无序散射来拓展入射光束的传播角度范围;上部和下部是由高低折射率介质周期性排布形成的光学薄膜,利用其来调控出射光束的角度范围。通过光子带隙设计,下部光学薄膜只允许垂直入射的光束透过,其他角度光束的均被抑制;上部光学薄膜在750 nm波长入射下,只有大角度的光束才能透射;在640 nm波长下任何角度的光均不能透射,只能产生全内反射。图1. 传统暗场照明(a)与全内反射照明(b)光学显微镜,基于光学薄膜结构的显微成像照明元件(c)因此,在正入射下,经过该光学薄膜器件的光束出射角度或大于一定角度(对应750 nm波长),或在薄膜表面产生光学表面波(对应640 nm 波长)。利用一块光学薄膜器件,在常规的明场显微镜上(图2a),可同时实现暗场显微成像与全内反射成像。成像效果如图2b,2c所示,相对于明场光学显微镜像,其成像对比度有大幅提升。该方法不仅适用于空气中的样品,也适用于液体环境中生物活细胞的成像,如图2d所示。进一步实验结果表明,该方法可以实现介质薄膜上的表面波,并可用于金属薄膜表面等离激元,如图3所示,研究利用其作为照明光源,实现了新的表面等离激元共振显微镜架构,相较于目前广泛使用的基于油浸物镜的表面等离激元共振显微镜,基于光学薄膜器件的表面等离激元显微镜结构简单,成本低、操作便利,易于集成。图2. 基于光学薄膜结构的全内反射照明与暗场照明显微成像图3. 利用光学薄膜结构激发表面等离激元实现新型表面波光学显微镜上述实验结果表明,无需改变现有显微镜的主体光路架构,通过设计、制作合适的显微镜载玻片可以有效提升其成像对比度,拓展其成像功能。研究工作得到国家自然科学基金委员会、安徽省科技厅、合肥市科技局等的支持。相关样品制作工艺得到中国科大微纳研究与制造中心的仪器支持与技术支撑。论文链接
  • 钢化玻璃表面平整度测试仪研制
    table border="1" cellspacing="0" cellpadding="0" width="600"tbodytrtd width="123"p style="line-height: 1.75em "成果名称/p/tdtd width="525" colspan="3"p style="line-height: 1.75em "钢化玻璃表面平整度测试仪/p/td/trtrtd width="123"p style="line-height: 1.75em "单位名称/p/tdtd width="525" colspan="3"p style="line-height: 1.75em "中国建材检验认证集团股份有限公司/p/td/trtrtd width="123"p style="line-height: 1.75em "联系人/p/tdtd width="177"p style="line-height: 1.75em "艾福强/p/tdtd width="161"p style="line-height: 1.75em "联系邮箱/p/tdtd width="187"p style="line-height: 1.75em "afq@ctc.ac.cn/p/td/trtrtd width="123"p style="line-height: 1.75em "成果成熟度/p/tdtd width="525" colspan="3"p style="line-height: 1.75em "□正在研发 □已有样机 □通过小试 □通过中试 √可以量产/p/td/trtrtd width="123"p style="line-height: 1.75em "合作方式/p/tdtd width="525" colspan="3"p style="line-height: 1.75em "□技术转让□技术入股□合作开发 √其他/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong成果简介: /strongbr//pp style="text-align:center"img src="http://img1.17img.cn/17img/images/201603/insimg/5680075d-08c7-437e-89ed-292a629e2e36.jpg" title="平整度仪.jpg"//pp style="line-height: 1.75em " 钢化玻璃表面平整度测试仪采用精度为2um的位移传感器可以精确的测量出钢化玻璃表面平整度,仪器表面安装有一液晶显示器与位移传感器通过内部电路相连接,可以实时显示所测得的各个位置的位移差,仪器内部还设有报警提出功能,用户可以根据自身需要设置不同的上下限报警,当仪器测得的数值超过用户所设置的上下限时,仪器内部的蜂鸣器会发出报警声,如果用户有对产品的上下限要求,则可以通过设置上下限报警来代替人为实时观测。仪器设置有零点标定功能,当需要将仪器更换位置或者更换待测物时,可以根据需要选择零点位置,同时也避免了仪器本身的误差。该仪器携带方便,测试结果准确、直观,操作简单方便,非常适合现场检测和快速检测。 br/ 性能指标: br/ 测定单位: 微米 br/ 测量范围:0-3mmbr/ A/D 变换: 16bit 逐次变换方式 br/ 测试精度: ± 0.2%F.S.以下 br/ 再现精度: ± 0.1%F.S.以下 br/ 连续使用时间: 约5小时(使用温度25 ℃) br/ 显示屏 : 16位数字液晶显示屏(模块化LCD) br/ 使用温度: 0~+40 ℃ br/ 计测方式: 最大值.瞬间值 br/ 电源: 4.8V充电电池 br/ 采样频率: 50次/秒 br/ 机体重量:约1Kg/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong应用前景: /strongbr/ 该检测仪特别适用于工厂、建筑工程质量检测站、产品质量检测站、科研院校等钢化玻璃的生产检测、和开发研究等领域。该仪器不仅适用于钢化玻璃表面平整度的检测,还可以用来检测任何可以适用的平整度检测或者位移差检测。/p/td/tr/tbody/tablepbr//p
  • 强信心稳经济促发展|青岛仪器仪表产业进军“高端赛道”
    规上工业企业营收占全省比重超过三分之一,在工业测控、电子测量、环境监测、海洋观测等多个细分领域国内领先青岛仪器仪表产业进军“高端赛道”智能电表自动采集读数,并生成用电量、计算电费;口罩过滤检测仪用于检测口罩过滤效率,被称为口罩安全的“把关员”;烟尘采样器采集分析工业废气中的颗粒物,实时监测空气质量;海洋浮标测量海洋潮位、风速、气压等水文气象要素,为气象预报、海洋开发等提供数据……在这些与科研、生产、生活息息相关的仪器仪表领域,青岛已经涌现出一批产业细分龙头和创新领跑公司。青岛在实体经济振兴发展中将精密仪器仪表列入重点突破的十大新兴产业链之一,集群梯度培育体系初步形成,产业链优势不断完善。前不久首批山东省先进制造业集群名单公示,全省10个集群入选,其中就包括青岛市仪器仪表集群。据统计,青岛仪器仪表产业现有110家规上工业企业,营收占全省比重超过三分之一,在工业测控、电子测量、环境监测、海洋观测等多个细分领域领跑全国,打造了全球最大的三坐标测量机生产基地和国内规模最大的离子色谱产业基地。梯度培育产业集群仪器仪表有着“高端制造业皇冠上的明珠”之称,可分为通用型仪器仪表和专用仪器仪表,广泛应用于工业自动化、电力、轨道交通、导航、测绘、实验分析等领域。青岛仪器仪表产业拥有4个国家级创新载体、22个省级以上创新载体,培育出2家具有生态主导力的“链主”企业以及一大批制造业单项冠军企业、“小巨人”企业、瞪羚企业和隐形冠军企业,形成梯度发展格局。作为“链主”企业,思仪科技实现了高端重大科学仪器和通用电子测量仪器的一系列重大技术突破,微波、毫米波、光电、通信及基础测量等30多项技术达到国际领先水平,太赫兹测试、光波元件分析、光纤传感应用等多项成果填补国内空白。另一家“链主”企业海克斯康同样把关键核心技术攻坚作为突破口。目前,海克斯康拥有全球测量精度最高、测量范围最大和产品线最广的计量产品和方案,以传感器、仪器仪表为支撑,面向汽车、航空航天、机械制造等26个行业领域提供整体解决方案。与此同时,乾程科技、艾普智能、海研电子、众瑞智能等一批小而美的中小企业脱颖而出,在智能电表、电机检测、海洋监测、口罩检测等领域的市场占有率位居全国前列。乾程科技以“小电表”成就“大产业”,在载波电能表领域具备全球领先的设计制造能力,智能电表、水表、气表、热量表等产品已销售到英国、尼日利亚等数十个国家和地区。艾普智能专注电机检测设备,成为家电、新能源汽车、机器人等产业技术链条中不可或缺的一环,微电机检测产品的国内市场占有率高达51%。崂应海纳光电在环境监测领域纵深布局,打通了从核心元器件、终端设备、场景应用、云端监管到综合服务的全产业链条,在全国生态环境监测设备行业占据主要位置……突破高端科学仪器高端科学仪器被称为科学家的“眼睛”,对先进制造业发展、科技创新乃至国家安全都有着战略性意义。尤其是集成电路、航空航天、生物医药等尖端领域,都离不开高端科学仪器的支撑。当前,国内仪器仪表企业大部分产品还局限于中低端市场,在高端产品和核心技术等方面与国际先进水平依旧有差距。据统计,科学仪器已经成为我国第三大进口产品,仅次于石油和电子元器件,部分高端科学仪器进口依赖的现象较为明显。国家“十四五”规划明确提出,要适度超前布局国家重大科技基础设施,加强高端科研仪器设备研发制造。面对国产替代的历史性机遇,青岛仪器仪表产业正以自主创新为核心驱动力,发力高端赛道,拓展应用领域,提升国产仪器自主可控水平,为加快建设制造强国、质量强国、网络强国、数字中国提供支撑。在核电回路水超痕量腐蚀离子检测方面,盛瀚色谱实现完全国产替代,应用在中核、中广核、国电投等多家核电厂。在集成电路测试领域,致真精密仪器研制出中国首台产业级晶圆磁光克尔测量仪,中国磁性芯片量产所需的光学检测设备由此实现自主可控。在生物检测领域,星赛生物开发了一系列单细胞分析仪器产品,助力生物医药领域细胞类型快速判别、生物安全领域系统解决方案开发。值得一提的是,青岛在海洋核心传感器与高端仪器领域拥有硬核的科研优势。山东海仪所是国内最早从事海洋环境监测仪器研究的科研单位之一,完成海洋声学释放器、水声通讯机、系列海洋生态传感器、海洋盐度传感器、大气气溶胶激光雷达等海洋仪器设备的国产化,国内在位业务化运行的10米大型海洋资料浮标系统均由其研制、建造并提供技术保障。做大做强专业园区青岛仪器仪表产业起步较早,中航工业前哨研究所自主研发国内第一台测量机,崂山电子仪器实验所被誉为国产离子色谱仪器厂商摇篮。但相比于北京、上海等国内第一梯队先进城市,青岛仪器仪表产业还存在领军企业少、企业规模小、产业布局分散等短板。在青岛上市公司中,也仅有鼎信通讯、东软载波涉及智能电表等仪器仪表业务,上市公司数量与产业地位并不匹配。近年来,青岛把精密仪器仪表列入重点突破的十大新兴产业,由市领导担任“链长”,市直部门成立专班,出台《青岛市精密仪器仪表产业链高质量发展三年行动方案》《青岛市精密仪器仪表产业园发展若干政策》,以“政策组合拳”推动仪器仪表企业向专业园区集聚,在资金、人才等各方面厚植企业成长沃土。在高新区,青岛规划建设了占地面积约3000亩的青岛市精密仪器仪表产业园,聚焦工业测控、实验分析、传感器三个重点方向,打造北方仪器仪表产业总部基地,助推仪器仪表产业更好地实现集群式发展。今年4月份,青岛市精密仪器仪表产业园正式揭牌,木牛毫米波雷达制造等6个精密仪器仪表产业项目签约。目前,产业园已集聚26家上下游重点企业,包括全球最大的三坐标测量仪器制造商海克斯康、国内单相电能表产量最高的生产企业鼎信通讯、微电机检测系统连续5年国内排名第一的艾普智能等。青岛还面向全国开展园区推介,聘请仪综所、中国仪器仪表学会等行业专家作为全球产业合伙人,加快推进崂应海纳光电环保产业园、中电科数字电磁信息科技园等一批重点项目建设,并连续三年由青岛市财政每年出资1亿元用于园区建设,从项目招引、科技创新、金融支撑等方面给予全方位支持。立足于园区建设,青岛仪器仪表产业集聚力不断提升,影响力不断增强,将塑造“青岛制造”的新优势。
  • 宁波材料所发表文章表明碳基Janus薄膜在柔性智能设备中的应用
    Janus薄膜由于具有不对称的结构和独特的物理或化学性质,在传感、驱动、能源管理和先进分离等方面表现出了巨大的应用潜力。   其中,仿生柔性皮肤由于兼具灵敏感知、驱动和功能集成等特点,已经引起了人们广泛的研究兴趣。为实现这些特定的功能,需要选择合适的活性功能材料并以可控的方式形成不对称的结构。碳纳米材料由于具有优异的导电和导热性能、本征机械柔韧性、高化学和热稳定性、易于加工等优点,是一种极具应用前景的活性材料。   碳纳米材料和功能聚合物以可控方式进行不对称结合可以促进高性能传感、驱动和集成器件的设计,从而推动智能软体机器人的发展。因此,迫切需要对碳基Janus薄膜的设计原则进行全面总结,并深入讨论表面/界面结构和性能之间的关系,以指导其在柔性智能设备中的应用。   中国科学院宁波材料技术与工程研究所智能高分子材料团队陈涛研究员、肖鹏副研究员基于在碳基/高分子Janus薄膜的构筑及其柔性传感和驱动方面的长期研究基础,受邀在Accounts of Materials Research上发表题为“Carbon-based Janus Films Toward Flexible Sensors, Soft Actuators and Their Beyond”的综述文章(Acc. Mater. Res. 2023, DOI: https://doi.org/10.1021/accountsmr.2c00213), 系统总结了碳基Janus薄膜的制备策略、结构与性能关系以及传感和驱动及其一体化集成器件应用方面的研究进展,并对该领域的未来发展进行了展望。   在该综述中,作者首先讨论了几种常见的碳纳米材料(例如,碳纳米管、石墨烯、氧化石墨烯和还原氧化石墨烯、石墨和炭黑等)的基本性质和优缺点,以此来引导人们根据所需的性能和应用场景选择合适的材料。随后介绍了碳基Janus薄膜通用的制备策略,并根据制备过程中基底不同,将其分为固体支撑的物理和化学策略以及液体支撑的界面策略。其中,重点讨论了不同的设计原则和表面或界面结构以及性能之间的关系,以此来指导设计高性能器件。具有不对称功能耦合的碳基Janus薄膜进一步通过构建特殊表面微结构来实现高性能电子皮肤的开发,同时还能以支撑和自支撑构型用于非接触式感知。此外,由于碳纳米材料优异的光热转化以及湿度响应性能和聚合物层的功能可设计性,碳基Janus薄膜在高性能光热驱动、湿度驱动以及多刺激响应驱动器中取得了巨大进展。基于碳材料优异的导电和传感性能,碳基Janus薄膜还可以设计成自感知软体驱动器,极大推动了智能软体机器人的发展。   尽管碳基Janus薄膜在传感、驱动和一体化柔性器件的开发中得到了长足的发展,但仍然存在一些问题和挑战亟需解决。首先,碳纳米材料应用到植入式传感或驱动器件中时,需要考虑和生物相容性材料进行复合或者对器件进行封装来降低毒性风险。其次,为实现稳定的驱动和精确的传感信号反馈,需要进一步提高两相界面的结合强度。同时,赋予碳基Janus薄膜多功能性,例如自愈合、抗腐蚀、耐高温、抗冻等,以增强其在复杂、恶劣环境中的适应性。不仅如此,还需探索高效易得的方法以实现碳基Janus薄膜可控图案化,来构建高精度、定位传感器和可编程的多阶段驱动器。最后,为实现碳基Janus薄膜的大规模生产以及推动其在智能软体机器人中的发展,结合可扩展的界面制备策略和先进的打印以及卷对卷加工等技术似乎是一种不错的选择。   该论文得到了国家自然科学基金(52073295)、国家重点研发计划项目(2022YFC2805204、2022YFC2805202)、国家自然科学基金委中德交流项目(M-0424)、浙江(之江)实验室开放研究项目(No.2022MG0AB01)、中国科学院前沿科学重点研发项目(QYZDB-SSW-SLH036)、王宽诚教育基金(GJTD-2019-13)等项目的支持。基于先进制造技术构建碳基Janus薄膜用于传感、驱动及其一体化智能柔性器件
  • 炫一科技:模块化、集成化和智能化只是第一步——2021色谱新品大盘点
    仪器信息网讯 作为有机物分析利器,色谱是分析实验室中当之无愧的主力军,每年我国各类色谱仪采购额近百亿,在制药、食品、环境、石化、医疗卫生、生命科学等诸多领域的应用持续拓展,已成为如今最重要的分析仪器品类之一。经过长期技术沉淀,色谱仪器日臻成熟。随着技术发展以及应用需求的不断深化,国内外色谱仪器制造商也在不断推陈出新,自动化、智能化、深度定制化成为目前色谱仪器创新的主要方向之一。2021年,在国内市场也涌现了众多色谱新品,包括液相色谱、气相色谱、离子色谱等。为了更好地展示2021年上市的色谱新品,仪器信息网特别策划了“色谱新品大盘点”系列视频报道,让广大用户足不出户就能近距离了解2021年色谱新品的风采。M6物联网气相色谱分析仪是炫一科技于2021年9月推出的全新实验室气相色谱系统,据公司产品研发及应用经理高枝荣介绍,新品具有物联网智能化、模块化的特点,同时,产品具有非常好的可扩展性和通用性。 M6物联网气相色谱分析仪该仪器具有以下核心技术特点:基于浏览器的仪器控制触摸屏。用户可通过仪器内置7"高分辨率触摸屏控制仪器,还可以在任何地方通过专属VPN查看仪器状态,编辑方法,实现真正“万仪互联”。全路高分辨率模块化APC电子气路系统。通过对各APC模块的智能化升级,所有EPC模块都可以独立自行控制并自由加装,打破原有架构的各种限制。检测器模块化。炫一的UniCube专利技术,可以将检测器(FID, TCD, ECD,microFID, microTCD)等常规检测器的机械系统和所有电路系统集成到一个独立模块中,极大提高了仪器的可维护性。无需特殊培训,3分钟更换整个检测器模块。可灵活扩展的独立大阀箱系统。具备8个阀,8根色谱柱的扩展能力。面向未来的辅助系统。高达12个加热区和15路AUX辅助气路,无论是传统应用还是新方案,平台都可以提供足够的资源满足客户要求。多种外设可供选择。如高压液体进样器、多路气体进样器、富集脱附模块等其他色谱辅助部件等。高枝荣表示,炫一科技一直专注于气相色谱核心技术,在工业色谱方面已经积累了丰富经验。公司不仅在常规分析方面有全套方案,在预处理系统的定制和集成、色谱辅助设备的定制和集成、定制化色谱数据处理及智能报告等也都做过很多成功的项目。而对于气相色谱未来的发展方向,高枝荣也表示,气相色谱技术虽然门槛相对较低,但要真正把气相色谱仪做成化工(催化等)研究和工艺研究者们的“眼睛”,还有很多事情要做。随着AI技术的逐步发展和成熟,物联网气相色谱仪将成为真正的“眼睛”,只需“看一眼”(全自动分析),即可获取目标样本的全组成信息。”实际上,我们离这一天还有很远的距离,模块化、集成化和智能化只是第一步,我们还需要把色谱自动分析的结果与工艺控制进行“信息交互”,进而指导工艺过程,把物耗和能耗降到最低,同时把产品收率和收益最大化;而这个过程是不需要人来干预的。”更多关于炫一科技及M6物联网气相色谱分析仪内容,请点击视频查看:
  • 干货:模块化微型光谱仪应用系统全解析
    p  微型光谱仪为什么会获得巨大的成功?不仅是因为光谱仪的小型化,而且是由于模块化概念和光纤的使用。/pp style="TEXT-ALIGN: center"img title="01.jpg" style="HEIGHT: 269px WIDTH: 450px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/b1002693-d88e-4de6-8426-210614b0e78b.jpg" width="450" height="269"//pp style="TEXT-ALIGN: center" 微型光纤光谱仪/pp  所有的光谱应用系统都可以概括为三个组成部分:光谱仪、光源和采样部件。/pp  以前,我们搭建一个光谱应用系统时在在设计光路上要花费很多精力、时间和费用,如何将光照射到样品上,如何收集从样品发出的光,再将光有效地耦合到光谱仪中去?每个不同的应用都需要重新设计。/pp  如果将光源、光谱仪、采样部件都设计成具有标准光纤接口的模块。我们只需要根据应用的需要,譬如工作的波长范围,分辨率,选择适合的光谱仪模块、光源模块和采样部件模块。然后用光纤将光从光源模块引导到采样部件模块,再从采样部件模块的另一端引导到光谱仪(如图所示),光谱仪再将数字信号传输到电脑。不同的应用只不过是更换不同的光源模块、采样模块、光谱仪模块,无需每次都要重新设计应用系统的光路,只需用光纤将这些模块连接起来即可。由此可见光纤的重要作用。这就是为什么通常将微型光谱仪称为微型光纤光谱仪。光纤的“柔韧可弯曲性”,带来的另一个好处是可以将采样探头带到许多难于抵达的或危险的待测点,实现远程测量。/pp  不仅如此,在作为核心的光谱仪模块上,除了有光的接口以外,还有电的通信接口,除了把光谱数据输出到电脑以外,电脑还可以向光谱仪下达各种操作和控制指令,设置光谱仪的工作条件,使光谱测量智能化。像孩子们可以用乐高积木模块搭建出各种东西一样,光纤将光谱仪模块它和其它光源模块,采样模块连接在一起,开启了智能的光谱应用的“乐高”时代。电子工程师都熟知在“面包板”上,将各种电子器件连接成完成具备某种功能的系统,现在,我们可以用光纤将各种光学模块连接成一个完整的光谱应用系统,这将引领一场技术革命。/pp style="TEXT-ALIGN: center"img title="02.jpg" style="HEIGHT: 319px WIDTH: 450px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/ef3affb7-27f5-495d-9355-a65bdd32b584.jpg" width="450" height="319"//pp style="TEXT-ALIGN: center"模块化的微型光谱仪应用系统/pp  strong一、光谱仪模块的选择/strong/pp  光谱仪根据对响应波段、分辨率、灵敏度、信噪比等要求的不同,也会有不同的型号可供选择。/pp  对于主要进行近红外光谱检测的客户来说,可以选择装配有InGaAs探测器的光谱仪,这种类型的探测器,对近红外信号的响应,远高于常规的硅基底探测器。/pp style="TEXT-ALIGN: center"img title="03.jpg" style="HEIGHT: 200px WIDTH: 300px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/9fd16553-bf4d-4d2b-a0f7-a345f4ce61ba.jpg" width="300" height="200"//pp style="TEXT-ALIGN: center" 配有InGaAs探测器的近红外光谱仪/pp  需要检测微弱信号的客户,可以选择面阵探测器的光谱仪,这类探测器,配合相应的光路,可以收集更多的光子,从而提高仪器的灵敏度。/pp style="TEXT-ALIGN: center"img title="04.jpg" style="HEIGHT: 300px WIDTH: 300px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/6da67f6e-c115-45d1-b13e-ba07e35f6e75.jpg" width="300" height="300"//pp style="TEXT-ALIGN: center" 微弱信号检测光谱仪/pp  高分辨光谱仪,通常有着更大的光学平台和较小的狭缝,能够区分临近的光谱峰位。/pp style="TEXT-ALIGN: center"img title="05.jpg" style="HEIGHT: 238px WIDTH: 300px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/392bb941-3a35-4a9c-8b95-cd446e86a858.jpg" width="300" height="238"//pp style="TEXT-ALIGN: center" 高分辨率光谱仪/pp  希望获得更高信噪比的用户,装备有深度制冷型探测器的光谱仪会是一个好的选择。/pp style="TEXT-ALIGN: center"img title="06.jpg" style="HEIGHT: 263px WIDTH: 300px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/e360807d-2a4e-44e5-8537-e1903e84884b.jpg" width="300" height="263"//pp style="TEXT-ALIGN: center"strong /strong高信噪比、制冷光谱仪/ppstrong  二、光源的选择/strong/pp  光谱检测四个字中“光”对于整个检测而言,重要性不言而喻。一个模块化光谱应用系统大体分为三个部分:光谱仪,光源和采样附件,只需选择对应的模块,就可以实现吸光度、荧光、拉曼等检测。/pp  模块化光谱仪的优势在于,减少搭建光谱应用系统的时间和费用,不再需要去考虑对于光路的设计,提高了使用的灵活度(使得测试应用不再局限于实验室,在线工业环境、野外等也都能轻松驾驭),只需要更多其他模块就能实现其他的检测方案。涉及光谱的多种检测方式,如颜色检测、荧光检测、吸光度检测和辐照检测等,都需要在正确光源模块的照射或激发下,通过对样品发散出的光进行收集,并有效耦合到光谱仪中,才能实现一个完整的检测。也就是说,没有稳定光源,整个应用系统的测量是无法完成。光谱仪厂商如何帮助用户挑选到稳定、合适的光源模块满足其检测需求就显得尤为重要。/pp  不同检测方式,决定了不同光源的挑选。根据不同波长,不同测量意图与输出形式作为参考标准,方便使用者进行选择。/pp  按照光源的波长进行分类主要分为UV、VIS、NIR波段,即可以分为紫外、可见、红外波段的光源。这里主要针对测量应用目的:校准、激发和照明,对光源进行介绍。/pp strong 2.1校准光源/strong/pp  使用氘卤钨灯可以实现在紫外-可见-近红外波段为校准光谱仪系统的绝对响应提供最可靠的数据。结合相关的算法软件,可以精准的确定在210-2400nm波长范围内的光谱绝对强度值。而卤钨灯针对可见光与近红外光谱仪,可覆盖光谱范围350-2400nm。/pp style="TEXT-ALIGN: center"img title="07.jpg" src="http://img1.17img.cn/17img/images/201612/noimg/f854cf8e-50f6-403f-a86a-1fd0bcf997b7.jpg"//pp style="TEXT-ALIGN: center" 氘卤钨灯/pp  对于波长校准光源,汞氩灯适用于紫外-可见-近红外区域光谱,可以产生253-922nm的一级汞氩谱线和到1700nm的二级氩透射谱线,从而能够迅速可靠地实施光谱波长校准 氪灯、氙灯和氖灯适用于可见-近红外区域光谱,分别能够产生432-1785nm、452-1984nm、540-754nm范围的透射谱线 氩灯是专为近红外光谱仪设计的波长校准光源,通过产生696-1704nm的低压氩透射谱线,对光谱仪进行波长校准。/pp style="TEXT-ALIGN: center"img title="08.jpg" src="http://img1.17img.cn/17img/images/201612/noimg/cdad1280-a7ed-4521-93ad-344da9fc4033.jpg"//pp style="TEXT-ALIGN: center" 汞氩灯/ppstrong  2.2 激发光源:/strong/pp  使用高闪光频率的脉冲氙灯作为激发光源,波长范围185-2000nm,覆盖了紫外-可见-近红外波段,可应用于比如吸光度检测,通过添加单波长滤光片可实现荧光检测。/pp style="TEXT-ALIGN: center"img title="09.jpg" src="http://img1.17img.cn/17img/images/201612/noimg/d44641a1-6f58-45d4-a0ce-4e92b9b6cca0.jpg"//pp style="TEXT-ALIGN: center" 脉冲氙灯/pp  使用LED光源,可以高效耦合光纤,在连续或外部触发模式下专有电子可提高稳定的高电流操作,波长范围为240-700nm,覆盖了紫外-可见光波段,是荧光检测的理想选择。/pp style="TEXT-ALIGN: center"img title="10.jpg" src="http://img1.17img.cn/17img/images/201612/noimg/251e7fb4-55e7-4ef2-a49c-eb04e23a546c.jpg"//pp style="TEXT-ALIGN: center" LED光源/pp  使用氘卤钨灯是检测不同光谱范围具有多种特征样品的理想选择,可灵活分析不同样品特性,波长范围为210-2400nm,覆盖了紫外-可见-近红外波段,可应用于吸光度检测,透反射检测。/pp style="TEXT-ALIGN: center"img title="11.jpg" style="HEIGHT: 270px WIDTH: 300px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/d45e2ef2-7bc0-413c-9b82-c418e2cbb59c.jpg" width="300" height="270"//pp style="TEXT-ALIGN: center" 氘卤钨灯/pp  使用高功率激光光源,激发波长分为532、638、785和1064nm等多种波长,基于其多模二极管激光器产生窄光谱线,优化了激光驱动器和热电冷却性能,其稳定性和性能大大提升,可应用于拉曼检测的激发光源。/pp style="TEXT-ALIGN: center"img title="12.jpg" style="HEIGHT: 265px WIDTH: 300px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/861ef25d-0a69-46d0-af61-044075017c30.jpg" width="300" height="265"//pp style="TEXT-ALIGN: left"strong   照明光源/strong/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  氘卤钨灯光源,覆盖了紫外-可见-近红外波段,可应用于吸光度检测,荧光检测,透反射检测。/span/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  LED光源,覆盖了紫外-可见光波段,可应用于荧光检测。/span/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  氙灯,可覆盖紫外-可见光波段,可应用于吸光度检测,荧光检测和透反射检测。/span/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  卤钨灯,覆盖了可见-近红外波段,波长范围为360-2400nm,可应用于吸光度检测,荧光检测,透反射检测。/span/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"/span /pp style="TEXT-ALIGN: center"img title="13.jpg" style="HEIGHT: 225px WIDTH: 250px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/f7cc7e1b-867c-4bc8-ad85-bdf9531e0c93.jpg" width="250" height="225"//ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"/span /ppstrong  三、采样附件/strong/pp  采样附件的作用包括:采集光谱信号或者激发能量,传输信号并与样品互相作用。不同的应用,对应的采样附件也有所不同。/pp strong 吸光度测量:/strong/pp  a. 高浓度样品:使用短光程的采样池,提供250um,500um等短光程的比色皿及支架 /pp style="TEXT-ALIGN: center"img title="14.jpg" src="http://img1.17img.cn/17img/images/201612/noimg/56549904-4f7b-4f7a-af6f-c4a88e4ed813.jpg"//pp  b. 低浓度样品:比如针对低浓度的流动样品,我们可以选择使用长光程的采样池,根据不同的样品浓度还可以选配250cm,500cm等的不同光程;/pp style="TEXT-ALIGN: center"img title="15.jpg" style="HEIGHT: 203px WIDTH: 250px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/1e44c862-0b5d-4678-8b5e-fad6fc5d6c3f.jpg" width="250" height="203"//pp   c. 同样针对流动样品的吸光度测试,Z形的样品流通池是比较理想的选择,同时根据测试液体的不同特性(比如腐蚀性较强、酸碱性较强等)、不同的使用环境(工业现场、实验室等),选择不同材质及不同类型的流通池。/pp style="TEXT-ALIGN: center"img title="16.jpg" style="HEIGHT: 226px WIDTH: 152px" src="http://img1.17img.cn/17img/images/201612/noimg/801419c6-0b07-42e9-90fc-75288d750537.jpg" width="478" height="226"/img title="17.jpg" style="HEIGHT: 148px WIDTH: 200px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/4e510bab-b504-4649-8327-cb2c315a0f11.jpg" width="200" height="148"/ img title="18.jpg" style="HEIGHT: 152px WIDTH: 200px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/b437d279-cfc6-4512-aaea-2de148ffc8fc.jpg" width="200" height="152"//pp  d. 如果环境温度对测试样品影像比较大,或者需要了解样品在不同温度下的性能差异,就需要采用控温装置对测量样品进行恒温或者变温测试,那一个简单的控温装置就能帮您解决问题。/pp style="TEXT-ALIGN: center"strongimg title="19.jpg" style="HEIGHT: 214px WIDTH: 250px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/ec6912f2-5fff-44bd-8c28-aeeacdde5c99.jpg" width="250" height="214"//strong/ppstrong  /strongstrong气体吸光度测量/strong:White Cell/pp  针对气体的吸光度测量,可以选择气密性较好、易存储气体的样品池,等等。/pp style="TEXT-ALIGN: center"img title="20.jpg" style="HEIGHT: 200px WIDTH: 200px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/914d2966-3fe2-43d3-be5a-403ff05b4bbc.jpg" width="200" height="200"//pp  strong 反射测量:/strong/pp  a. 被测样品状态?液体?固体?/pp  针对于不同的样品状态,需要选择不同的采样装置.例如:光滑的镜面/平面固体,可以采用标准反射探头和探头支架进行反射率采集(如图) /pp style="TEXT-ALIGN: center"img title="21.jpg" style="HEIGHT: 194px WIDTH: 200px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/f24c6146-e269-4935-bc6f-848ea5bc9075.jpg" width="200" height="194"/ img title="22.jpg" style="HEIGHT: 159px WIDTH: 200px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/d5c2b82d-7197-4ee6-b5b2-b889bceba70d.jpg" width="200" height="159"//pp  粉末状或者颗粒状的样品可以放在托盘中使用旋转方式采集平均反射光谱(如图) /pp style="TEXT-ALIGN: center"img title="23.jpg" style="HEIGHT: 200px WIDTH: 200px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/bcc4d3c2-e2bf-44fd-b618-40b4037ce7c0.jpg" width="200" height="200"//pp  在一些行业标准要求下,也会选择用积分球进行样品采集(如图) 对于液体样品,常用的方法是将探头固定在静止液面的上方。/pp style="TEXT-ALIGN: center"img title="24.jpg" style="HEIGHT: 200px WIDTH: 200px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/d917a63c-ccbf-48d7-a5c8-79b9889cd291.jpg" width="200" height="200"//pp  b. 被测样品是平面还是曲面?/pp  对于平面样品,通用的反射采样装置都可以直接使用,根据测样探头放置角度的不同,可测出漫反射或者镜面反射 对于曲面样品,常用的做法是采用显微镜进行固定单点检测。在曲率不大的情况下,曲面反射率检测也可以用曲面探头支架(图)对探头进行固定,从而进行测量。/pp style="TEXT-ALIGN: center"img title="25.jpg" style="HEIGHT: 200px WIDTH: 200px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/e8f44b57-e8ea-4c59-bcd8-d74bbdff0247.jpg" width="200" height="200"//pp  c. 测量镜面反射还是漫反射?/pp  样品的反射率包括镜面反射和漫反射。如果需要测量漫反射,通用的方法是采用积分球进行样品反射光谱收集。/pp  如果测量镜面反射,可以使用一些固定角度的支架,如45° 固定支架(图)进行反射测量。/pp style="TEXT-ALIGN: center"img title="26.jpg" style="HEIGHT: 200px WIDTH: 200px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/c5ceb3fb-954b-446d-a9d7-73ab553645f5.jpg" width="200" height="200"//pp /pp  d. 是否需要变角度反射率测量?/pp  大多数样品进行反射率检测时,都采用固定角度进行检测,如90° ,45° 等。有一些特殊样品如光子晶体,在不同角度进行测试时,反射光谱(或反射率)有明显的变化,此时需要采用可调角度支架及光纤进行反射率测试。/pp  e. 如何测出稳定/准确的反射率?/pp  测出稳定/准确反射率需要注意三点:/pp  1. 稳定:测量支架稳定,包括装载探头的支架本身是稳定的,探头(或其他采样附件)到样品的距离是稳定的。在实验室检测中,可以选择自重较重、有刻度、或者可以机械调节距离的支架来进行检测(图)/pp style="TEXT-ALIGN: center"img title="27.jpg" style="HEIGHT: 339px WIDTH: 200px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/c7aa85a3-06d7-49f4-b4e7-0f5a6ff9773f.jpg" width="200" height="339"//pp /pp  光源稳定,通常选用卤钨灯光源(图左), 紫外测量选用氘钨灯光源(图右)/pp style="TEXT-ALIGN: center"img title="28.jpg" style="HEIGHT: 200px WIDTH: 220px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/e7150da7-5a0b-46b1-8f21-d49a7d795678.jpg" width="220" height="200"/ img title="29.jpg" style="HEIGHT: 187px WIDTH: 250px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/a0b74519-c47b-4754-88b6-1595d2b1f594.jpg" width="250" height="187"//pp style="TEXT-ALIGN: center" /pp  2. 选择合适的参考标准/pp  不同表面的样品需要选择不同的参考标准,这样测出的反射才会更加准确。例如镜面样品,可选的参考标准为铝镜(左图) 抛光面金属样品或者无机材料,可以选择硅片作为标准(中图) 粉末材料或者粗糙面样品,可以选择PTFE或者硫酸钡作为标准(右图)/pp style="TEXT-ALIGN: center"img title="30.jpg" style="HEIGHT: 220px WIDTH: 200px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/166ef804-8599-4982-818f-7e905fecaf7d.jpg" width="200" height="220"/img title="31.jpg" style="HEIGHT: 200px WIDTH: 200px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/baeddf6a-c80f-43ba-b462-b4ddadc5fd00.jpg" width="200" height="200"/img title="32.jpg" style="HEIGHT: 200px WIDTH: 200px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/3a3de4f3-779a-4faa-a69e-6115e15ba8ec.jpg" width="200" height="200"//pp  更为精确的反射率测量,还可以选择不同范围的经过标定的材料作为反射标准,/pp  strong荧光测量/strong:/pp  a. 什么类型的荧光测量?有机荧光?无机荧光?/pp  对于有机荧光的激发,常用氙灯加滤光片来选择激发波长(图),或者用激光器作为激发波长来源 /ppimg title="33.jpg" style="HEIGHT: 183px WIDTH: 200px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/ee16b033-7e1e-4f86-9057-80f04349c28a.jpg" width="200" height="183"/img title="34.jpg" style="HEIGHT: 200px WIDTH: 200px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/6c82f818-49dd-4084-8b8d-d0ecbd0d0782.jpg" width="200" height="200"/img title="35.jpg" style="HEIGHT: 200px WIDTH: 200px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/6fff5e5c-fef6-4eb7-8a80-afb058b7ce69.jpg" width="200" height="200"//pp style="TEXT-ALIGN: left"  无机荧光可以选用LED光源作为激发光源(图),主要看样品需要的激发波长的能量值高低。/pp style="TEXT-ALIGN: center"img title="36.jpg" style="HEIGHT: 342px WIDTH: 125px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/fe070088-7ee7-4157-8b36-c86fbbdd5393.jpg" width="125" height="342"//pp  b. 样品是液体还是固体?/pp  对于液体样品,可以放置入比色皿内进行检测,常用的方法是激发光与发射光接收呈90° ,以避免激发光干扰(左图) 如果是在线荧光检测,也可以选用荧光测量流通池(右图)/pp style="TEXT-ALIGN: center"img title="37.jpg" style="HEIGHT: 250px WIDTH: 250px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/72cfa1ee-627c-4c0d-80d9-fa4cc890e599.jpg" width="250" height="250"/ img title="38.jpg" style="HEIGHT: 250px WIDTH: 250px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/d91a81eb-ba4e-4d82-813c-cdc69287277b.jpg" width="250" height="250"//pp  对于固体样品,可以采用探头或者积分球的方式进行采样,和测量反射率类似。为避免激发光干扰,可以在探头或积分球连接光谱仪一端加上高通滤光片,将激发光屏蔽,如果是上转换荧光检测,则需要加低通滤光片。/pp  strong辐射度测量:/strong/pp  a. 测量什么东西的辐射度?太阳?LED灯?普通光源?/pp  户外测量太阳辐照度,通常采用余弦校正器接在光纤前端进行测量(图),也有部分用户使用积分球进行检测,目的都是匀化被测光源,降低光纤晃动引起的测量干扰。/pp style="TEXT-ALIGN: center"img title="39.jpg" style="HEIGHT: 105px WIDTH: 200px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/c9ce126e-0c37-4d02-b7bb-d722235e91b5.jpg" width="200" height="105"//pp  b. 检测视场角要求是什么/pp  一般光纤的数值孔径是0.22,视场角大约是25° ,余弦校正器可以接受180° ,积分球通常认为是360° 接收角。/pp  在一些行业内,会有对辐射监测视场角限定的要求。例如在海洋监测领域,对海面反射太阳光/海水辐射的检测会要求限定14° 或其他角度进行监测,此时可以用视场角限定片来固定光纤的接受角度(图)/pp style="TEXT-ALIGN: center"img title="40.jpg" style="HEIGHT: 200px WIDTH: 200px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/noimg/30a6e100-774a-4103-9046-0d663fc1363c.jpg" width="200" height="200"//pp style="TEXT-ALIGN: right" (内容来源:海洋光学)/p
  • 西门子收购eMeter:电表数据管理或将翻开新篇章
    德国西门子公司收购美国加利福尼亚San Mateo的电表数据管理专业公司eMeter。  eMeter是智能电表软件平台服务商,其让电力公司可以透过其系统,精确计算每个用户所使用电量,而用户可以登陆电力公司网页来了解自家的电力使用模式,藉此达成节能效果。  西门子与eMeter公司自2008年建立战略伙伴关系。2011财政年度,西门子环保相关业务组合的收入总额近300亿欧元,这也使西门子公司成为世界上最大的环保技术供应商之一。  西门子表示,eMeter公司的EnergyIP电表数据管理软件将成为其智能电网业务组合中不可分割的一部分。  我们认为eMeter公司本来也许能够上市。但正如我们在讨论银泉网络公司上市那样,最近的市场动荡和人们对以欧洲为代表的地区经济衰退的忧虑抑制了大家对上市的期望。同时,eMeter的风险投资者们对退出耐性不够。eMeter公司现任执行总裁Gary Bloom就是专为筹划公司的出售或上市而招募来的,现在他已顺利完成这一任务。  这一收购事件对于该领域内的其它公司意味着什么呢?许多观察家早前就预言作为一个单独门类的电表数据管理业务将会消失。这个观点很实在。正如它所言,所有的大型计量公司都将自建或购买基础的电表数据管理系统。如果这一预言属实,那么接下来就应该进行生态分析了?Landis+Gyr公司(现归东芝公司所有)目前已经拥有了少数股权了。  那么这对于公用事业公司又有何影响呢?这个问题的答案目前尚不明朗。但也许你会发现很多混搭现象——例如,Itron电表公司与西门子(前身为eMeter公司)的电表数据管理系统和银泉网络公司合作。再或者,公用事业公司会开始购买电表数据管理系统作为计量业务包的一部分
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制