当前位置: 仪器信息网 > 行业主题 > >

实时多尺度动态分析模型

仪器信息网实时多尺度动态分析模型专题为您提供2024年最新实时多尺度动态分析模型价格报价、厂家品牌的相关信息, 包括实时多尺度动态分析模型参数、型号等,不管是国产,还是进口品牌的实时多尺度动态分析模型您都可以在这里找到。 除此之外,仪器信息网还免费为您整合实时多尺度动态分析模型相关的耗材配件、试剂标物,还有实时多尺度动态分析模型相关的最新资讯、资料,以及实时多尺度动态分析模型相关的解决方案。

实时多尺度动态分析模型相关的资讯

  • 锂电池安全性多尺度研究策略:实验与模拟方法
    作者:甘露雨 1,2 陈汝颂 1,2潘弘毅 1,2吴思远 1,2禹习谦 1,2 李泓 1,2第一作者:甘露雨(1996—),男,博士研究生,研究方向为锂离子电池安全性,E-mail:ganluyu@qq.com;通讯作者:禹习谦,研究员,研究方向为高比能锂电池关键材料、电池先进表征与失效分析,E-mail:xyu@iphy.ac.cn。单位: 1. 中国科学院物理研究所,北京 100190;2. 中国科学院大学材料科学与光电技术学院, 北京 100049DOI:10.19799/j.cnki.2095-4239.2022.0047摘 要 作为新一代电化学储能体系,锂离子电池在消费电子产品、交通动力系统、电网储能等领域具有重要的应用价值。然而,在锂离子电池的商业化进程中,安全性事故时有发生,影响了锂离子电池的大规模应用。本文从电池安全性的三个研究尺度:材料、电芯、系统,综述了与之对应的重要研究方法,其中每个尺度均包括基于物理样品的实验方法和基于计算机数学模型的模拟方法。本文介绍了这些方法的基本原理,通过典型案例展示了这些方法在安全性研究中的适用场景和作用,并探讨了实验和模拟方法之间的联系,着重介绍了材料热分析、材料加热过程中结构分析、电芯加速度量热分析、电芯安全性数值模拟等方法。基于对多尺度研究策略的系统综述,认为安全性研究需要在各个尺度联合同步开展。最后,展望了下一代锂电池,如固态电池、锂金属电池等,可能面临的电池安全性问题。这些新体系的安全性研究仍处于早期,其材料和验证型电芯的安全性研究是当前阶段值得关注的重要课题。关键词 锂离子电池;安全性;实验方法;数值模拟;固态电池;锂金属电池锂离子电池的研究始于1972年Armand等提出的摇椅式电池概念,商业化始于1991年SONY公司推出的钴酸锂电池,经历超过三十年的迭代升级,已经成熟应用于消费电子产品、电动工具等小容量电池市场,并在电动汽车、储能、通信、国防、航空航天等需要大容量储能设备的领域中展现出了巨大的应用价值。然而,自锂离子电池诞生开始,安全性便一直是限制其使用场景的重要问题。早在1987年,加拿大公司Moli Energy基于金属锂负极和MoS2正极推出了第一款商业化的金属锂电池,该款电池在1989年春末发生了多起爆炸事件,直接导致了公司破产,也促使行业转向发展更稳定地使用插层化合物作为负极的锂离子电池。如图1所示,锂离子电池进入消费电子领域后,多次出现了因电池火灾隐患而开展的大规模召回计划,2016年韩国三星公司的Note7手机在全球发生多起火灾和爆炸事故,除了引起全球性的召回计划外,“锂电池安全性”再次成为广受关注的社会话题。在电动交通领域,动力电池的安全性事故伴随着新能源汽车销售量的提升逐渐增加,据统计,中国在2021年有报道的电动车火灾、燃烧事故超过200起,电动汽车安全性成为消费者和电动车企最关心的问题之一。在储能领域,韩国在2017—2021年期间发生了超过30起储能电站事故,2021年4月16日北京大红门储能电站爆炸事故除导致整个电站烧毁外还造成2名消防员牺牲、1名员工失踪。随着锂离子电池的应用场景日益扩大,其安全性在工业界和学术界均引发了广泛的讨论和研究。图1 锂离子电池近年引起的安全事故在锂电池发展的早期阶段,产业界和学术界更关注锂电池发生安全性事故的本质原因,基于长期的认识积累,锂电池发生安全事故的本质可以总结为:电池在过充、过热、撞击、短路等异常使用条件下温度异常升高,引发内部一系列化学反应,引起电池胀气、冒烟、安全阀打开,同时这些反应会大量释放热量使整个电池温度进一步升高,最终各个化学反应剧烈发生,电池温度不可控地迅速上升,引起燃烧或爆炸,导致严重的安全事故,这一过程也被称为电池的“热失控”。电池从异常升温到热失控过程中存在多个重要的化学反应,它们与温度的对应关系如图2所示。图2 锂离子电池热失控的诱发机制随着锂离子电池的广泛应用,关于锂离子电池安全性的研究逐渐深入,从早期简单的描述现象和定性预测,发展为在多个尺度、采用多种手段研究安全性机理,基于精准测量和数值化模型准确预测电池安全性表现,最终提出应用化解决方案的综合性研究策略。如图3所示,目前对于电池安全性的研究一般从理解锂离子电池电芯的热行为出发,包括利用各类滥用条件测试确定电池的安全使用极限和失效表现,利用绝热量热等手段具体分析电池的热失控行为和特征温度,以及利用热失控数值模拟方法模拟电池的热失控表现;在认识电芯热行为的基础上,需要深入材料本质,利用热分析、物质结构和化学成分分析、理论计算等方法理解电芯发生热失控在材料层面的反应机制,从而为设计制造高安全性的电池提供基础理论的指导;此外,电芯作为电池系统的基础,其热失控行为的精准测量和准确模拟也为在系统层面设计更高安全性的电池系统和管理预警方案提供了理论指导。本文从材料热稳定性、电芯热安全性和大型电池系统热安全性三个尺度介绍安全性研究策略,着重介绍几种实验和模拟方法。基于商用体系锂离子电池的研究策略和成果,进一步探讨了这些方法对于产学研各界研发下一代锂电池所具有的重要意义。图3 锂离子电池安全性研究策略1 材料热稳定性研究锂离子电池发生热失控的根本原因是电池中的材料在特定条件下不稳定,从而发生不可控的放热反应。目前商业化使用的电池材料中,与安全性关系最密切的主要是充电态(脱锂态)过渡金属氧化物正极、充电态(嵌锂态)石墨负极、碳酸酯类电解液和隔膜,其中前三者在高温下均不稳定且会发生相互作用,在短时间内释放大量的热量,而现行常用的聚合物隔膜则会在140~150 ℃熔融皱缩,导致电池中的正负极直接接触,以内短路的形式快速放热。研究人员自20世纪末开始进行了大量材料热稳定性的研究工作,发展了以热分析认识材料热行为,结合形貌、结构、元素成分和价态表征综合研究内在机理的研究方法。近年来计算材料学的发展也为从原子尺度模拟预测材料的稳定性提供了新的方法和手段。1.1 热分析方法热分析是最直接和直观认识材料热行为的方法,指在一定程序控温(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术。对于电池材料来说,一般关注其质量、成分、吸放热行为随温度的变化关系。质量与温度的关系可通过热重分析获得,吸放热与温度的关系可通过差示扫描量热法获得,TG和DSC可以设计在同一台仪器中同步测试,该种方法又被称为同步热分析。TG、DSC、STA等仪器通常采用线性升温程序,通过热天平、热流传感器等记录样品的质量、吸放热变化,由于发展时间较早,测试技术和设备工程化水平较为成熟,已成为认识材料稳定性最重要的测试手段之一。基于热分析结果可以确定材料发生相变、分解或化学反应的起始温度、反应量和放热量,但在锂离子电池中,往往更关心充电态材料在电解液环境下的稳定性和反应热。良好的热稳定性是电池材料进入应用的必要条件,而产热量和产热速度则影响电池热失控的剧烈程度。用于常规热分析样品的坩埚一般为敞口氧化铝材质或开孔的铝金属材质,为了研究材料在易挥发电解液中的热表现,需要使用自制或设备厂商专门提供的密封容器。Maleki等通过STA系统研究了钴酸锂/石墨圆柱电池中各种材料的热分解行为,由于电解液采用高沸点的EC溶剂,所以仅在敞口容器中便可以测试,研究发现全电池截止电压4.15 V时,脱锂态钴酸锂在178 ℃发生分解,产生的氧气和电解液反应释放大量热量,释放的能量达到407 J/g,嵌锂态负极的SEI会优先分解,温度在125 ℃之前,之后会出现持续的放热反应,释放能量为697 J/g,而当负极发生析锂后释放能量会上升到827 J/g,这一结论有力支持了近年来析锂电池安全性下降的报道。Yamada等利用DSC确认了充电态磷酸铁锂(LiFePO4)的稳定性很好,与电解液的反应温度大于250 ℃,放热量仅为147 J/g,显著低于层状氧化物材料。Noh等利用密封容器系统研究了不同Ni含量的三元正极材料Li(NixCoyMnz)O2,比较热分析结果发现脱锂态三元材料的热稳定性与Ni含量呈现负相关性,且在x0.6之后加速下降。材料经过改性后,其稳定性需要通过热分析进行确认,研究人员基于DSC发现核壳浓度、包覆等方法均能不同程度地提高正极材料的热稳定性。需要注意的是,热分析的数据质量与实验条件、样品制备方法密切相关,目前并没有严格一致的测试规范,文献中不同单位之间的测试结果横向对比性很差,很多电池材料的热稳定性尚缺乏准确定量的结论。除了DSC、TG外,还有一类特殊的热分析方法是利用加速度量热仪研究反应的起始温度。与常规热分析采用线性升温不同,ARC使用的升温程序是加热-等待-检索模式,即步进式地在每个温度点保持恒温,如果检索程序发现样品的升温速率超过0.02 K/min,则通过同步样品的升温速率保持样品处于绝热状态,从而跟踪样品的自加热升温过程,否则开始加热至下一个温度点进行恒温、检索。不难发现,ARC获取的是样品近似热力学上的失稳温度,由于检测精度高,获得的失稳温度往往比DSC、TG等方法获得的低很多。Dahn课题组基于ARC测试了大量材料-电解液体系的反应起始温度,基本均低于DSC数据中的放热主峰。事实上,Wang等在低升温速率的DSC测试中也发现充电态材料与电解液的放热起始点远早于剧烈的放热峰。这些信息表明材料失稳到完全失控的过程并不是突变式的,整个体系动态演变的过程仍然缺乏深入的研究认识。图4 (a) DSC基本原理;(b) 脱锂态正极-电解液的DSC测试结果1.2 物相分析技术电池材料在升温过程中发生相变和化学反应,其形貌、结构、成分和元素价态都有可能发生变化,这些变化需要基于对应的方法进行表征分析,如利用扫描电子显微镜观察材料热分解前后的形貌变化,利用X射线衍射和光谱学研究材料结构和元素价态演变。由于材料热分解和热反应存在显著的动力学效应,在加热过程中原位测试可以最大程度地还原物相变化的真实过程。目前较为成熟的原位表征技术主要有两类:一类是与热分析仪器串联使用的质谱、红外光谱等,可以实时监测物质分解产生的气体类型,判断材料加热过程中化学组成的变化;另一类是原位X射线衍射技术,通过特制的样品台,可以在升温过程中实时、原位测定材料的结构变化,目前全球多数同步辐射光源和一些实验室级的X射线衍射仪上都可以实现原位变温XRD测试。Nam等利用变温XRD发现脱锂态LiNi1/3Co1/3Mn1/3O2结构在350 ℃向尖晶石转变,而加入电解液后该转变温度会下降至304 ℃。Yoon等在LiNi0.8Co0.2O2中发现了类似的规律,并发现MgO包覆可以改善脱锂态正极在电解液中的相变。图5展示了变温XRD和MS的联用技术,系统研究了不同Ni含量的脱锂态NCM三元正极在升温过程中的结构和成分变化,研究发现三元正极失稳释放氧气的过程与结构在高温下转化为尖晶石相的行为直接对应,且这一过程的起始温度随镍含量的上升显著下降,NCM523的起始相变温度约为240 ℃,NCM811则小于150 ℃,从体相结构的本征变化解释了高镍正极在电池应用中热安全性差的原因。以上工作都是基于同步辐射光源实现的,由于同步辐射提供的光源质量高、扫谱速度快,更适用于研究与时间相关的动力学问题。除此之外,近年来基于X射线谱学以及拉曼光谱实现同步表征的方法均有所发展。结合通过热分析手段观察得到的材料热行为信息,并对升温过程中材料物相变化的研究,可以更深刻地理解材料演变以及电池体系热失稳的动力学过程,为材料的安全性改良提供理论指导。图5 基于原位XRD和质谱对镍钴锰酸锂结构稳定性的研究1.3 计算材料学基于材料原子结构计算预测材料的全部性质是计算材料学家的终极追求。材料的热力学稳定性可以基于密度泛函理论计算。DFT中判断材料稳定性的依据是反应前后的能量差ΔE是否小于0,如果ΔE小于0,反应能发生,则反应物不稳定,反之同理。Ceder等在1998年就计算了LiCoO2脱锂过程结构相变的过程,计算结果与实验结果吻合良好。然而目前大多数热力学计算不考虑温度效应,且热力学只能作为反应进行方向的判据,无法预测反应速率等动力学问题,考虑温度和动力学计算则需要使用成本较高的分子动力学、蒙特卡洛或者过渡态搜索方法。相对于材料本身的稳定性,计算材料学对于计算预测两种材料间的界面稳定性存在一定优势。Ceder等计算了不同正极和固态电解质之间的稳定性,为选取界面包覆的材料提供理论指导。Cheng等利用AIMD模拟Li6PS5Cl|Li界面,发现界面副反应会持续发生,材料界面之间的副反应是自发发生的,与通常认为的界面钝化效应有所差异。此外,正极材料中的相变析氧、过渡金属迁移等问题的计算模拟也都处于初期开发阶段,仍需持续探索。总的来说,目前阶段材料层级的理论模拟技术与实验技术的差距仍然较远,需要研究人员的持续努力。2 电芯热安全性研究电芯指电池单体,是将化学能与电能进行相互转换的基本单元装置,通常包括电极、隔膜、电解质、外壳和端子。电芯的热安全性特征是电池工业界最关注的内容之一,它是电池材料热稳定性的集中表现,也是制定规模化电池系统安全预警和防护策略的基础。由于电芯内部具有一定的结构,其安全性会呈现一些在纯材料研究中不被讨论的特点,使得电芯安全性具有更广泛的外延和认识角度。工业上一般通过滥用实验来研究和验证电芯产品的安全性,近年来基于扩展体积加速度量热仪(又称EV-ARC)的安全性测试方法有较快发展,此外电芯安全性模拟方法也从早期的定性分析发展到可以准确仿真预测热失控进展的水平。2.1 滥用测试国际电工委员会(IEC)、保险商实验室(UL)和日本蓄电池协会(JSBA)最初定义了消费电子产品电芯的滥用测试,模拟电芯工作可能遇到的极端条件,通常分为热滥用、电滥用和机械滥用。常见的热滥用为热箱实验,电滥用包括过充电和外部短路实验,机械滥用包括针刺、挤压、冲击和振动等。企业和行业标准一般将电池对滥用测试的响应描述为无变化、泄漏、燃烧、爆炸等,也可基于附加的传感器和检测系统记录温度、气体、电压对滥用的响应。电芯通过滥用测试的标准是不燃烧、不爆炸。锂电池应用早期研究人员大量研究了电池对各类滥用测试的响应与使用条件、材料体系、充电电量等的影响,提出了各类滥用机制引发电池热失控的机理。滥用测试中最难通过的项目是针刺测试,近年来关于针刺测试的存废引起了较大争议,但提高电芯的针刺通过率仍是锂电池安全性研究的重要课题之一。由于滥用测试针对的是商用成品电芯和贴近真实的使用条件,目前更多作为电池行业的安全测试标准而非研究手段。2.2 EV-ARC测试早期的ARC只适用于研究少量材料样品的热失控行为,Feng等发展了利用EV-ARC研究大体积电芯绝热热失控行为的方法,研究的方法原理和结论如图6所示,由于EV-ARC的加热腔更大,所以需要更精准的控温技术和更严格的校准方案。基于EV-ARC测试可以定量标定出电芯热失控的特征温度T1、T2和T3,分别对应电芯自放热起始温度、电芯热失控起始温度和电芯最高温度,为评价电芯安全性提供了更精确定量的评价指标,标准化的测试条件可以帮助建立统一可靠的电芯热失控行为数据库,分析了不同体系电芯的热失控机理。Feng等利用EV-ARC首次提出正负极之间的化学串扰会引起电芯在不发生大规模内短路的情况下热失控,说明脱锂正极释氧是现阶段影响电芯安全性的关键因素。Li等研究快充后的电芯发现快充析锂导致T1大幅下降,说明析锂同样是电芯安全监测中需要重点关注的问题。以上这些问题都是在常规的滥用测试中难以定量验证的。图6 基于EV-ARC对电芯热失控的研究相比于普通的加热滥用实验,EV-ARC实验环境的温度由程序精确控制,获得的测试结果重复性更好、数据可解读性更高,近年来已成为评价和研究电芯安全性的重要手段。然而EV-ARC模拟的绝热热失控环境与真实的电池滥用工况仍有所差异,评价电芯的实际安全性仍需大量模拟真实严苛工况的测试手段。2.3 高速成像技术为了更直观地理解热失控过程中电池内部物质、结构的演化,研究人员发展了结合红外测温以及原位针刺等辅助功能的透射X射线显微方法如图7(a)~(c)所示。由于热失控往往是在极短的时间内发生剧烈的反应,同时伴随剧烈的物相、结构变化。这一特点给TXM表征方法提出了相当高的时间分辨率的要求。实验室X光源能够发射出的X射线光电子数量有限,采集一组TXM影像数据需要较长的时间。为了观察剧烈变化的热失控过程,Finegan等在欧洲同步辐射实验室(ESRF)使用同步辐射光源将TXM的曝光时间降低至44 μs,配合针内预埋的热电偶温度传感器,实现了对针刺发生时电池内部形貌与刺入点温度的同步监控。该团队利用这种手段研究了刺针纵向与径向刺入18650商业圆柱电池时电池内部热失控行为的差异。Yokoshima等采用实验室光源进行连续实时的透射X射线照相技术,也得到了软包电池在针刺过程中结构随时间变化的一组透射投影图。该方法以4 ms的时间分辨率较为清晰地观察到了针刺入软包电池后电池内部每一层材料的形变过程,以及针刺深度与热失控程度的对应关系。图7 基于X射线成像技术对电芯热失控的研究由于透射投影图只能反映某一方向上二维的信息,如果要对真实三维空间中物质的分布做精确地定量,需要借助计算机成像技术。如图7(d)所示,Finegan等利用同步辐射光源X射线高亮度的特征,在欧洲同步辐射装置(ESRF)的线站上搭建了一套集合原位红外加热、红外测温与高速CT的装置。使用红外加热,实现在线的18650电池升温,同时进行连续的X射线CT成像。连续扫描的TXM投影图能够反映极高时间分辨率的热失控电池内部情形。基于每500张TXM重构得到1个X射线CT结果能够达到2.5帧每秒,实现了一定时间分辨率的电池内部空间分布成像。通过CT结果能够清晰地看到热失控过程中各个阶段的电池材料变化,如电极活性物质层破损、铜集流体融化再团聚等。结合TXM技术获得的投影图和高速X射线CT结果,可以清晰认识热失控过程中电池内部不同位置各个材料的反应、产气、结构破坏等失效行为。另一方面,配合诸如针刺、红外加热、挤压、拉伸等原位实验,可以帮助研究与理解电池的各类宏观失效行为。2.4 电芯热失控数值模拟电芯安全测试的维度广、涉及的测试项目多,通过实验评价电芯安全性需要大量样品和时间成本。同时,产品级电芯的研发周期长、成本高,安全性评估往往处于电芯研发周期的后端。通过数值模拟方法预测电芯安全性测试表现可以大幅度降低实验成本,且在产品研发的前期便对体系的安全性做出判断,大大提高研发效率。电芯热失控数值模型的核心是准确描述电芯热失控过程中的化学反应及吸放热量,从而基于能量守恒模拟电池温度在不同条件下的动态变化。化学反应的吸放热一般通过Arrhenius公式描述 (1)式中,图片指反应的产热量;图片为反应物的质量;图片为反应单位质量的吸放热;α为反应的归一化反应量;图片为机理函数;图片为反应的指前因子;图片为反应活化能。通过热分析实验可以测定求解以上参数,这也是热分析动力学的基本问题。电芯升温过程中内部会发生多个反应,它们对电芯升温的贡献可以看作线性叠加,通过准确描述所有反应即能较为精准地预测电芯在不同条件下的温度变化行为 (2)上述方程中,图片为电芯密度;图片为等压比热容;图片、图片、图片为电芯中沿各个方向的热导率;图片为对所有化学反应的产热速率求和;图片为电池与环境换热所引起的能量变化。预测温度变化需要求解二阶含时偏微分方程,如果认为电池中的反应和空间无关,电芯温度均匀上升且电芯体系与外界无热交换,也可简化为一阶微分方程 (3)基于该理论,Hatchard等将电池中主要的化学反应总结为SEI分解、负极-电解液反应、正极-电解液反应、电解液分解反应,计算了方形和圆柱电芯在热箱中的热行为。Spotnitz等总结了早期文献中的反应动力学参数,并基于均一电芯模型系统预测了不同材料体系的电芯在各类滥用测试中的表现。通过理论模拟,可以仅基于少量小规模实验数据对实际电芯的安全性表现进行系统预测。Feng等、Ren等基于热分析动力学和非线性优化算法重新标定了电池中关键反应的动力学参数并进行了更准确的热失控模拟,他们的模型利用DSC测试获得的参数准确预测了电池在ARC中的热失控表现,可以进一步用于预测热箱、短路等条件下的安全性。需要指出的是,不同材料体系、配方和工艺的电芯中涉及的反应机制和动力学可能存在差异,如近年来电芯内短路、正极-电解液反应和正负极化学串扰三者是否均在热失控过程中主导发生的问题引起了广泛争论,安全性的数学模拟并非空中楼阁,而是建立在具体实验和对电池内部化学反应深刻理解的基础上。由于算力的限制,早期的安全性仿真工作大多不考虑温度空间分布或只计算一维分布,而空间分布在大容量电池和真实工况中是不可忽略的,Kim等、Guo等较早提出了描述热失控温度分布的三维电池模型。近年来数值计算方法的发展和商业计算软件的成熟大幅降低了安全性模拟仿真的难度,Feng等利用商业化的有限元计算软件Comsol Multiphysics建立了大容量三元方形锂离子电芯的热失控仿真模型,可以模拟电芯在短路状态下热失控过程和温度的分布,与实测有较好地拟合结果。除了电芯的热行为,电滥用和力学失效对安全性也存在一定的影响,目前,通过构建电-热耦合模型研究电池非等温电化学性能和短路热失效表现的方法目前已较成熟[59-60],而力学失效如碰撞、针刺等引起热失控的数值模型仍需要持续地开发。3 系统热安全性研究电池系统的安全性是目前锂电池应用面临的最直接问题,其研究重点是系统中热失控的扩展规律与抑制、预警措施。目前商品化电芯的热失控无法完全避免,在系统层面防止热失控扩展是可能的安全性解决方案。在系统层级开展实验研究的成本较高,但难以避免,在模拟仿真的辅助下可以提前预测优化系统设计,降低实验成本。3.1 热失控扩展和火灾危险性测试电池系统热扩展的实验研究成本和危险性较高,主要方法是通过加热、过充、针刺等方式诱发电芯单体的热失控,并利用接触式热电耦、红外测温等手段研究温度在系统中的分布和变化,这种方式只能获得局部多点的热失控信息。Wang团队在国内首次开发了全尺寸锂离子电池火灾危险性测试平台,用来测量大尺寸动力电池及电池组的燃烧特性,除了可以获得电池温度变化外,还可以获得电池组失控过程中的质量变化、火焰温度等信息,同时基于锥形火焰量热等技术可以测定大型电池系统宏观燃烧所释放的能量。与电芯EV-ARC等方法获得的信息不同,在真实环境下实验得到的电池系统燃烧行为往往更加复杂,包含多个加速失重和喷射火焰的阶段。通过以上测试可以在实用层面评价大型电池组的安全性和失控风险,为安全性改良、预警、消防和灾害处置提供重要信息。3.2 灾害气体研究和预警方案设计电池实际使用和安全失效的过程中,气体的成分与生成规律是重要的研究课题,与电池热失控早期预警、爆炸、火灾蔓延等表现密切相关。从材料本质上看,电池中的有机电解液在高温下气化、活性组分高温副反应均会释放气体,加热条件下产生的混合气体可以通过气相色谱-质谱联用技术、傅里叶变换红外光谱等手段分析成分。目前这些气体检测技术已较为成熟,但在安全性研究过程中,气体的收集和定量仍需要特制的容器或取样器辅助实现。一般来说,电池热失效气体组分中除了惰性的CO2外还包括大量未完全反应的电解液溶剂、CO、H2和有机小分子,兼具可燃性和生物毒性,Ahmed等发现可燃气体的释放是加剧锂电池系统热失控扩散、诱发大规模火灾事故的重要原因。由于气体的扩散速度快,检测手段较成熟,气体监测有望成为电池系统安全预警的关键手段,Cui等利用同位素标记-质谱技术发现充电态电池在加热失控的早期负极的SEI分解会产生H2,促进电池的热失控。Jin等发展了一种通过小型MS监测H2实现模组过充热失控早期预警的手段,在8.8 kWh的磷酸铁锂-石墨电池包中进行了实验验证,发现可以在产生烟雾的10分钟之前发出安全预警。3.3 系统安全性模拟仿真相对于实验研究,模拟仿真消耗的实物资源少,在系统安全性研究中更具优势。系统热安全模拟一般建立在完备准确的电芯热失控数值模型的基础上,在由多个电芯单体构成的复杂电池系统中,每个单体内部温度均独立地遵循前文所述的电芯热失控模型,电芯之间交换热量通过热传导、对流和辐射形式进行,可以分别通过相应的公式进行描述,电芯热失控产热方程和传热方程共同构成了描述整个系统空间的温度场的数学模型。通过求解建立的数学模型,研究人员和工程师可以研究系统大小、空间布局、热管理模式等对电池系统稳定性、安全极限温度、热失控扩散表现等的影响。由于电池系统的结构往往较复杂,系统热安全模型往往需要在成熟的商业模拟仿真软件中进行,常用的软件平台有Comsol Multiphysics、ANSYS、Siemens Star-ccm+等。Feng等利用Comsol Multiphysics构建了由6个标准方形电芯组成的小型模组的热失控规律,研究了不同参数对热失控扩展的影响,提出了4 种抑制热失控扩展的方案,并对增加隔热层的方案进行了实验验证。Zhai等提出了18650锂离子电池模组热失控传播的多米诺预测模型,在Matlab中构建了较为简化的二维模型,预测模组中热失控传播的路径和概率,解释了模组中不同热失控初始位置对热失控传播行为的影响。目前学术界关于大型电池系统热安全性的研究仍然较少,作为一个工业界和学术界共同关心的问题,系统层级的安全性研究需要产学研的深入合作。4 下一代锂电池的安全性研究电池安全的预防、预警、预测依赖对从系统到电芯再到材料热失控构效关系的深刻理解。纵观近年来引起广泛关注的锂电池起火事件,大部分发生在新技术和新材料的初步应用阶段,如近几年多起采用高镍三元电池的电动汽车起火事件,而当大量事故引起广泛关注后,关于该电池体系的安全性研究才随之增多,电池安全研究于电池电化学性能研究的滞后性是电池安全研究中的一个鲜明特点。为了满足电动化浪潮带来的高安全、高能量密度要求,人们期望在锂离子电池中采用不可燃电解质或固态电解质,以彻底解决电池的安全性问题同时达到高能量密度。然而,电池安全性不仅与电池内部材料本身的热稳定性相关,还与材料之间的相互作用、电池内部的复杂环境息息相关。近期中国科学院物理研究所Chen等的工作显示,即使是采用了具有高热稳定性的固态电解质,在与金属锂接触的情况下,高温依然会发生热失控,且金属锂会受到温度的驱动,向固态电解质内部生长,进一步降低热失控的临界温度。清华大学Hou等报道了采用不可燃新型电解液的电池,由于锂盐和嵌锂态负极的剧烈反应,电池在高温下依然会发生热失控。这些结果说明,单维度提升锂电池安全性的设想往往是片面的,新体系的引入很有可能导致电池热失控反应链条的重构,从而使原本的安全预防预警措施不再生效,也很可能是新型锂电池体系容易出现安全事故的深层次原因之一。综上所述,为了在发展高能量密度电池的同时保证电池的安全性,研究者们需要在优化电芯电化学性能的同时,尽快同步地开展前瞻性电池安全性验证和研究。只有清晰全面地认识电池热失效机制和各个维度安全性的影响因素,才能在应用阶段做好电池的有效安全预防。图8给出了电池领域新材料和新技术从基础研究到规模量产的技术成熟周期。可以看出,一个新型技术的大规模应用需要投入巨额的人力物力,花费数十年的时间,才能真正实现量产。然而,电池的安全性验证却往往在电池接近量产的阶段才展开,且往往以通过电池安全测试标准为目的,无法系统深入地了解电池在全生命周期、实际复杂工况下的安全行为和内在机理,为日后的安全事故埋下隐患。对于早期的电池体系,由于能量密度不高,安全性问题并不突出,而最新的锂离子电池电芯能量密度已经可以达到300 Wh/kg以上,产学界广泛关注的锂电池新技术和新体系能量密度更高。这些具有高能量密度特性的新技术和新体系面临着更为严峻的安全性挑战,因此,将电池的安全性研究和验证步骤尽可能提前,在基本确定电芯结构后尽可能早地开展电池安全测试与机理研究工作,才有望在真实量产阶段前期就做好准备,摸清其安全性特征与行为,设计好对应的防护、预警措施。图8 电池领域新技术的成熟周期与高能量密度新体系的安全性研究目前,下一代化学储能电池的材料体系尚未有定论,可能用于新一代锂离子电池的新材料包括富锂材料、无锂高容量正极材料、硅基负极材料、锂金属负极材料、固态电解质等,如果考虑使用锂金属负极,锂电池概念的外延还可进一步扩展。然而从学术报道来看,与新材料热行为和新体系实用安全性相关的内容却鲜有报道,目前对绝大部分新型锂电池体系的安全性认知尚处于未知或初期阶段。本文所综述的研究方法既可以用于研究现有商业化锂离子电池的安全性,也可以从材料层级提前理解新型锂电池材料体系的热稳定性,并基于模拟仿真方法预测其电芯和系统的安全性,这对选定下一代锂电池的技术路线,保障高能量密度锂电池新技术平稳落地,具有重要指导意义。
  • Nature | 我国科学家开发融合蛋白质图像和相互作用的细胞多尺度结构模型
    细胞是跨越了至少四个数量级的、复杂而精妙的模块化系统【1】。对细胞内模块化系统的刻画主要有两种方式,一是蛋白质荧光成像,一是蛋白质生物物理特性,这两种方面的技术可以产生大量的数据,但是这两种方式所产生的数据库具有不同的质量和分辨率,通常需要分别进行处理。那如何将两种方式的优点进行同时整合呢?近日,美国加州大学圣地亚哥分校Trey Ideker研究组(第一作者为博士生秦越)与瑞典皇家理工学院以及斯坦福大学Emma Lundberg研究组合作发文题为A multi-scale map of cell structure fusing protein images and interactions,将来自于人类蛋白质图谱(Human Protein Atlas)【2】的免疫荧光图像与BioPlex数据库【3】中亲和纯化结果进行整合,构建了多维度细胞整合图谱MuSIC1.0(Multi-scale integrated cell),对人类细胞中的结构层次进行了统一化的分析,从而解析出69个亚细胞系统,为整合各种各样不同类型的数据来创建全蛋白细胞模型铺平了道路。真核细胞由多种大的组分组成,比如细胞器、凝聚体或者蛋白质复合体,从而形成一个多维度的结构。人类蛋白图谱系统性地对人类细胞中蛋白质在亚细胞结构中定位进行了全面解析,与此同时质谱与亲和纯化(Mass spectrometry combined with affinity purification, AP-MS)技术将临近标记引入蛋白质组学探究之中,从而能够快速检测蛋白和蛋白之间的相互作用。因此,如果能将蛋白质成像与生物物理之间的关联结合起来,便可以对细胞结果进行更进一步地解析。为此,作者们构建了一种机器学习方法,可以将蛋白质成像与生物物理特性进行关联和集成,从而构建一个亚细胞结构组成组分的统一图谱。图1 蛋白质成像与AP-MS数据库整合策略首先,作者们使用深度神经网络(Deep neural network,DNN)对蛋白质图像与相互作用数据进行整合,确定每个平台中蛋白质的坐标,对蛋白质之间的距离进行校准和组合,从而确认在不同维度下蛋白质复合体的组装方式(图1)。这两个全方位的数据库均来自HEK293细胞。作者们对蛋白质配对之间的相互作用距离进行检测,举例来说,来自蛋白质复合体中的蛋白之间相互作用距离少于20nm,而细胞器中的蛋白质之间距离可能会超过1μm。作者们分析了661个蛋白质之间的所有距离,以识别相互接近的蛋白质组分。随着距离的变化,能够产生一个蛋白质多维度结构层次图谱(图2)。由此,作者们发现所构建的MuSIC系统能够以很广的范围对生物系统内的蛋白质相互作用进行测量和捕捉。图2 结构层次图谱建立和检测的流程在建立起该整合图谱后,作者们希望对MuSIC系统进行一个全局性的评估。MuSIC图谱中有370个蛋白以前未在AP-MS实验中用于亲和标记进行相互作用因子的钓取。因此,作者们对134个猎物蛋白进行标记进行AP-MS实验,从而检测到339个相互作用配对,进而对该整合图谱的准确性进行了全面的验证。在MuSIC发现的全新的亚细胞系统中,有一个由七个蛋白质复合体组成的直径估计为81nm的系统,作者们将此系统命名为前体核糖体RNA加工组装复合体(Pre-ribosomal RNA processing assembly,PRRPA)。为了对PRRPA复合体在前体rRNA加工中的作用进行确认,作者们使用siRNA对每个蛋白进行了敲降,发现所有的敲降都会一定程度上破坏核糖体RNA的成熟。另外,作者们使用RNA免疫共沉淀定量qPCR对这些蛋白结合45S前体rRNA的能力进行检测,再次证明了这些蛋白质在前体rRNA加工过程中的作用。同时作者们发现所建立的MuSIC系统也可以对一些蛋白质的功能进行更为全面的认识,包括发现已知蛋白的全新功能和未知蛋白的潜在功能。总的来说,该工作通过汲取蛋白质荧光成像与蛋白质生物物理特性两方面之长构建了多尺度细胞整合图谱MuSIC 1.0,进一步地提高了现有蛋白质荧光图像中信息的分辨率,也为蛋白质相互作用提供了空间维度的信息,为人类细胞中蛋白质组研究提供了更为全面的认识。原文链接:https://doi.org/10.1038/s41586-021-04115-9
  • 多模态跨尺度生物医学成像设施工程竣工!
    我国生物医学成像领域的大科学工程——多模态跨尺度生物医学成像设施项目工程3日在北京怀柔科学城竣工。未来将对生命体的结构与功能进行跨尺度、可视化地描绘与精确测量,为复杂生命科学问题和重大疾病研究提供成像组学研究手段,助力全景式研究和解析生物医学重大科学问题。11月3日,多模态跨尺度生物医学成像设施工程竣工仪式在北京怀柔科学城举行该项目是《国家重大科技基础设施建设“十三五”规划》确定的10个优先建设项目之一,由北京大学联合中科院生物物理研究所、哈尔滨工业大学、中国科学技术大学等多家单位共同建设,项目总投资为17.17亿元,建设用地100亩,新增建筑面积7.2万平方米,项目预计2023年试运行,2024年验收。成像设施在科研、医疗、教育和产业等方面具有广泛需求。在要求“看得见、看得清、看得早”的重大生物医学问题的研究中,多模态跨尺度成像技术具有重要作用。视频来源:北京大学11月3日,参观者观看介绍多模态跨尺度生物医学成像设施项目的图文展览及设备展示。“如果无法看清发病过程中分子、蛋白、细胞、器官等的变化过程,就无法精准治疗疾病。生物医学成像设施可以多层次、全景式、可视化‘看见’疾病发生的动态过程,便于更好地筛选药物、对症下药。”北京大学国家生物医学成像科学中心副主任陈良怡说。据悉,成像设施项目主要包括多模态医学成像装置、多模态活体细胞成像装置、多模态高分辨分子成像装置、全尺度图像数据整合系统以及模式动物等辅助平台和配套设施等。未来将聚集相关领域优秀团队,建立完备的核心成像设施,形成跨尺度、多模态、自动化和高通量的生物医学成像全功能研究平台。11月3日拍摄的多模态跨尺度生物医学成像设施工程建筑群(无人机照片)。“成像设施将多层次、全景式揭示生命的奥秘。”北京大学国家生物医学成像科学中心主任、成像设施首席科学家程和平院士说,成像设施建成后将对中国生物医学成像的研发起到积极带动作用。
  • 大气监测各路精英云集北大 从观测和模型全方位解读源解析技术
    仪器信息网讯 2016年4月15日,由北京大学环境科学与工程学院主办,美国Sunset公司和美国CES公司协办,河北先河环保科技股份有限公司赞助的“大气细颗粒物多组分在线监测及在线源解析研讨会”在北京大学顺利举行。研讨会吸引了来自环境监测站、科研院所等的相关专家学者约330人。北京大学环境科学与工程学院院长朱彤、河北先河环保科技股份有限公司董事长李玉国、中国环境监测总站副站长李国刚  嘉宾致辞上,北京大学环境科学与工程学院院长朱彤、河北先河环保科技股份有限公司董事长李玉国、中国环境监测总站副站长李国刚纷纷表示对如此多的学者参加此次研讨会表示热烈欢迎。李国刚副站长表示此次研讨是及时且有现实需要的,源解析的需求主要体现在时间、空间和物种三个维度上。时间维度上有突发事件的源解析、重污染天气的源解析和一定时间尺度上的源解析 空间维度上有区域内重点排放源的源解析和区域间传输的源解析 物种维度上有细颗粒物、臭氧等不同污染物的源解析。各研究单位和业务部门应充分利用已有的技术装备、方式方法和专家队伍,协同合作,最大程度上满足现实的需求。捐赠仪式—先河环保向北京大学郑玫教授捐赠两台仪器北京大学郑玫教授  此次研讨会由北京大学郑玫教授组织并主持。郑老师从观测和模型两方面邀请各个领域的专家为大家做有关源解析技术的介绍。郑老师首先介绍了目前的源解析框架,并为我们展示了其团队从事的多项源解析的工作。  多种观测手段 多维度了解污染特性  监测仪器是我们了解污染状况对污染进行分析的基础。本次研讨会邀请了中国科学院遥感所陈良富、美国CES公司John Cooper、美国Sunset公司Bob Cary、澳大利亚Ecotech公司曾鸣、先河环保崔厚欣,为大家分别介绍了卫星遥感、在线重金属分析仪、EC/OC分析仪、浊度仪和网格化监测系统等观测手段。中国科学院遥感所陈良富、美国CES公司John Cooper、美国Sunset公司Bob Cary、澳大利亚Ecotech公司曾鸣、先河环保崔厚欣(自左向右,自上向下)  不同的观测手段可以从不同的角度来解释大气污染的情况,如卫星遥感可以在大尺度上观测大气气溶胶光学厚度以及PM10和PM2.5浓度分布 在线重金属分析仪可以通过特定金属元素浓度变化来识别交通源、典型工业源等重要的污染源 EC/OC分析仪可以很好的指示高温燃烧,如烧烤、森林大火等产生的污染物的来源 浊度仪在沙尘暴观测中有很好的应用。网格化监测系统是以维护量少的传感器为主要监测手段,通过高空间密度和高时间密度来大量采集污染源数据,从而较精准、及时地捕捉污染源,如建筑工地、烧烤摊等。  多种预测模型 满足不同解析与预测需求  数据不代表信息,只有经过数学分析形成具有一定规律的结果才能用来支持决策。中国气象科学研究院龚山陵、清华大学张强和邢佳、北京大学蔡旭辉、宋宇和张霖六位专家为我们介绍了多种模型及其应用实例。中国气象科学研究院龚山陵、清华大学张强和邢佳、北京大学蔡旭辉、宋宇和张霖(自左向右,自上向下)  龚山陵介绍了CUACE雾霾预报系统及其在环境气象模拟预报中的应用 张强介绍了由清华大学开发和维护的中国多尺度排放清单模型,并展示了其应用实例-以2013年为基础通过设置不同的治理措施情景来评估京津冀地区在2030年是否能达成其空气目标 邢佳介绍了排放与环境效应之间的响应曲面模型,用来模拟不同排放水平下的各污染物浓度响应 蔡旭辉介绍了源解析中的印痕分析方法,印痕分析偏重于污染来源的物理和几何空间意义,揭示直观的潜在源区 宋宇介绍了常用源解析模型的优缺点并介绍了如何综合利用多种不同的源解析模型来寻找合理的源解析结果 张霖介绍了大气化学模式在细颗粒物源解析领域中的应用。  实战演练 多地区源解析工作大展示  源解析工作在我国已开展了一段时间,各地区和科研结构也做了很多工作。中国环境科学研究院高健、上海市环境监测中心伏晴艳、北京市环境保护监测中心张大伟、南京大学聂玮向大家展示了他们团队的工作。中国环境科学研究院高健、上海市环境监测中心伏晴艳、北京市环境保护监测中心张大伟、南京大学聂玮(自左向右,自上向下)  高健以“颗粒物动态源解析研究进展与应用实例”为题介绍了其团队基于在线观测和模拟的颗粒物动态源解析工作开展过程,并认为实时源解析技术的发展趋势是发挥不同源解析技术方法的各自优势,融合多种源解析方法分析颗粒物污染源类贡献。伏晴艳和张大伟分别以“上海超级站细颗粒物在线监测与在线源解析方法研究”和“基于多维观测的大气污染成因综合分析”为题为大家介绍了上海和北京的源解析设备、技术路线和现有成果。聂玮以“南京大学SORPES站点细颗粒相关的在线监测”为题为大家介绍了南京大学仙林中心站的建设情况、测量参数和已有的研究成果。研讨会现场
  • 冷冻电镜技术和多尺度分子模拟相结合成效颇丰
    近日,中国科学院大连化学物理研究所分子模拟与设计研究组研究员李国辉团队受邀在Current Opinion in Structural Biology上发表综述文章Multiscale Simulations of Large Complexes in Conjunction with Cryo-EM Analysis,系统介绍冷冻电镜技术和多尺度分子模拟相结合在生物大分子复合体结构和功能调控关系上的突破和方向。  李国辉团队长期致力于理论与计算生物学方法发展与应用等方面的研究,近年来在生物大分子动力学功能机理之间关系的理论计算研究方面取得丰硕成果,引起广泛关注。  该综述在生物大分子复合体研究的复杂性和挑战性背景下,回顾了近两年利用多尺度分子模拟和日趋成熟的单细胞冷冻电镜技术相结合的方法,在蛋白质-RNA/DNA复合体、蛋白质-蛋白质复合体、膜蛋白复合体等复杂生物体系多蛋白组装动态调控机制的相关研究,重点阐述了结合分子模拟和单细胞冷冻电镜方法自身特点和优势在复杂大分子生物体系时间和空间尺度的不断突破的观点,并提出未来挑战与发展趋势。相关研究广泛涉及生物化学、分子生物学、细胞生物学、生物物理学、计算生物学、化学等领域。  相关工作得到国家自然科学基金、中科院战略性先导科技专项等的支持。结合冷冻电镜技术和多尺度模拟分析大型生物复合体动态组装和调控机制
  • 智慧农业团队在多尺度稻叶瘟敏感光谱指数构建及遥感监测方面取得重要进展
    近日,农学院智慧农业团队在国际顶级遥感期刊《Remote Sensing of Environment》发表了题为“A disease-specific spectral index tracks Magnaporthe oryzaeinfection in paddy rice from ground to space”的研究论文,报道了他们在多尺度稻叶瘟敏感光谱指数构建,以及小农户田块稻叶瘟发生时空动态遥感监测方面的重要进展。稻瘟病(Magnaporthe oryzae)是威胁全球水稻生产的最具破坏性的真菌病害。现有的稻叶瘟发病信息主要通过田间调查来获取,这种方法不仅费时费力,而且存在代表性差等弊端,难以满足大范围稻瘟病高时效高精度监测的需求。构建适用于叶片和冠层尺度的稻叶瘟敏感光谱指数,对于遏制病害蔓延、病害定损评估、早期病害预测预警至关重要。现有研究多集中在基于机器学习或统计模型的单一尺度稻叶瘟识别和病情指数估算,缺乏对稻叶瘟高度敏感、可适用于叶片(个体)和冠层尺度(群体)的光谱指数。该研究综合分析了从单叶到冠层尺度稻叶瘟侵染引起的光谱响应(图1),基于单波段可分性和特异性光谱响应规律创建了一对稻叶瘟敏感植被指数(RIce Blast Indices, RIBIs),进一步通过光谱指数波段优化方法确定了三波段具体位置(R665, R753和R1102)。利用叶片、近地面冠层和卫星平台获取的多年多试验点实测数据,系统评价了RIBIs在不同尺度对稻叶瘟病害严重程度的估算能力。结果表明,在叶片尺度RIBIred对感染和健康样本的识别表现出最高的分类精度(图2),而在冠层尺度RIBInir则表现出与病情指数最高的相关性(图3)。图1. 稻叶瘟侵染下不同病害严重程度的水稻光谱反射率。A. 单叶尺度不同接种后天数(Days after inoculation, DAI);B. 近地面冠层尺度不同病情指数(Disease index, DI)。图2. RIBIs与传统光谱植被指数在温室(2018和2019)和自然条件下(2020)对健康与感病叶片分类精度的比较。RBVI:前人研究中对稻叶瘟较敏感的植被指数,SVI:类似RIBI的植被指数,TBVI:传统三波段植被指数,OD:其他类型病害指数,CW:叶绿素及水分敏感植被指数。图3. RIBInir和传统指数NDVI在近地面(A和C)及卫星尺度(B和D)与稻叶瘟病情指数DI的相关性。不同颜色散点代表在不同时期和试验点获取的样本。该研究进一步对Sentinel-2卫星影像提取的RIBInir进行时间序列分析和热点分析发现,在时间维度上,基于RIBInir的时间序列能准确追踪小农户田块中稻叶瘟的爆发与恢复态势,而传统植被指数NDVI对自然条件下稻瘟病发生过程的敏感性更差(图4)。空间维度上,RIBInir对稻叶瘟发生区域的刻画更加准确,稻叶瘟时空动态传播规律的与实地调查一致性更好(图5),卫星影像分析结果中表征病害恢复的绿色像素与呈现恢复趋势的黑色调查点吻合度更高。该研究构建了适用于叶片和冠层尺度的稻叶瘟敏感光谱指数,显著提高了对多尺度稻叶瘟发生的识别精度和对病情指数的估算能力;首次提出了基于光谱指数图的小农户田块稻叶瘟爆发热点识别思路,为基于卫星遥感的稻叶瘟传播概率等级划分和病害流行风险评估奠定基础。图4.试验区(以江苏省淮安市唐曹村为例)Sentinel-2影像植被指数的时间序列结果比较(A. RIBInir B. NDVI)。红色星号表示不同水平下的显著性差异。图5.两个典型研究区卫星影像RIBInir和NDVI的热点分析结果(左:江苏省淮安市唐曹村;右:江苏省淮安市太平村)。黑色点代表实地调查点。该研究由南京农业大学国家信息农业工程技术中心完成,农学院博士研究生田龙为论文第一作者,程涛教授为通讯作者。据了解,智慧农业团队在国家自然科学基金等项目,以及现代作物生产省部共建协同创新中心等平台的资助下,瞄准作物病虫害高时效高精度监测预警难题,持续开展了多年温室与田间试验,近两年连续在Remote Sensing of Environment上发表稻叶瘟光谱监测机理与方法方面的创新成果,对于作物病虫害天空地一体化监测预警和作物绿色智慧生产具有重要价值。
  • 具有不同表面润湿性的微尺度3D打印微流控器件
    作为微纳3D打印的先行者和领导者,在三维复杂结构微加工领域,重庆摩方精密科技有限公司拥有超过二十年的科研及工程实践经验。摩方精密在微流控应用领域,基于微流控的装置,例如流体连接器和基因测序仪阀门,已使用 PµSL 技术成功实现微流控3D打印。 ---阿联酋Khalifa University的T.J. Zhang教授和Hongxia Li博士,近日在知名期刊《Soft Matter》发表了一篇高质量文章“Imaging and Characterizing Fluid Invasion in Micro-3D Printed PorousDevices with Variable Surface Wettability” 。研究人员在实验过程中使用微纳 3D打印设备,该设备具有2μm分辨率,50mm*50mm的加工幅面,加工微流控器件。这台设备来自重庆摩方精密科技有限公司,型号为nanoArch S130。基于微纳3D打印的微流控器件,结合多相流成像技术,研究微尺度多孔介质中的多相流动。 多孔微流控器件制造的工作流程如图(a)所示,第一步是对薄片图像或微CT扫描图像进行处理(红色部分),然后从处理后的图像中,选择一个区域并将其嵌入微模型设计中(蓝色部分),构建三维立体模型。第二步是使用切片软件将三维模型切成一系列图片,最后是通过2μm精度的微立体光固化3D打印机打印出微流控器件;(b)同一岩石模型在2μm和10μm两种不同打印精度下打印出的表面形貌;(c)打印的岩石模型(打印精度2μm)与微CT扫描图像(扫描精度8μm)的对比;多孔介质中的流体渗透广泛存在于许多应用中,例如油气开采、二氧化碳封存,水处理等。流体渗透的动态过程会受到液体表面张力,多孔介质的表面润湿性,空隙拓扑结构以及其他参数的影响。在这项工作中,研究人员使用2μm精度的微立体光固化3D打印机打印出具有相似复杂孔喉特征的微模型。该模型的内部空隙结构来自于天然多孔介质(例如岩石)的薄片图像或微CT扫描图像。将不同的流体注入表面改性后的微模型中,我们可以借助于模型的高透明性直接在光学显微镜下观察和研究了在各种表面润湿性条件下的动态流体渗透行为。此外,我们还结合光学成像和数值模拟,系统地分析了残留液体分布,并揭示了四种不同类型的残留机制。这项工作提供了一种新颖的方法,通过结合微尺度3D打印和多相流成像技术来研究多孔介质中的微尺度下的多相流动。 致谢:阿联酋Khalifa University的T.J. Zhang教授和Hongxia Li博士参考文献:https://pubs.rsc.org/en/content/articlelanding/2019/sm/c9sm01182j/unauth#!divAbstract官网:https://www.bmftec.cn/links/7
  • 具有不同表面润湿性的微尺度3D打印微流控器件
    阿联酋Khalifa University的T.J. Zhang教授和Hongxia Li博士,近日在知名期刊《Soft Matter》发表了一篇高质量文章“Imaging and Characterizing Fluid Invasion in Micro-3D Printed PorousDevices with Variable Surface Wettability” 。研究人员在实验过程中使用微纳 3D打印设备,该设备具有2μm分辨率,50mm*50mm的加工幅面,加工微流控器件。这台设备来自深圳摩方材料公司,型号为nanoArch S130。基于微纳3D打印的微流控器件,结合多相流成像技术,研究微尺度多孔介质中的多相流动。多孔微流控器件制造的工作流程如图(a)所示,第一步是对薄片图像或微CT扫描图像进行处理(红色部分),然后从处理后的图像中,选择一个区域并将其嵌入微模型设计中(蓝色部分),构建三维立体模型。第二步是使用切片软件将三维模型切成一系列图片,最后是通过2μm精度的微立体光固化3D打印机打印出微流控器件;(b)同一岩石模型在2μm和10μm两种不同打印精度下打印出的表面形貌;(c)打印的岩石模型(打印精度2μm)与微CT扫描图像(扫描精度8μm)的对比;多孔介质中的流体渗透广泛存在于许多应用中,例如油气开采、二氧化碳封存,水处理等。流体渗透的动态过程会受到液体表面张力,多孔介质的表面润湿性,空隙拓扑结构以及其他参数的影响。在这项工作中,研究人员使用2μm精度的微立体光固化3D打印机打印出具有相似复杂孔喉特征的微模型。该模型的内部空隙结构来自于天然多孔介质(例如岩石)的薄片图像或微CT扫描图像。将不同的流体注入表面改性后的微模型中,我们可以借助于模型的高透明性直接在光学显微镜下观察和研究了在各种表面润湿性条件下的动态流体渗透行为。此外,我们还结合光学成像和数值模拟,系统地分析了残留液体分布,并揭示了四种不同类型的残留机制。这项工作提供了一种新颖的方法,通过结合微尺度3D打印和多相流成像技术来研究多孔介质中的微尺度下的多相流动。致谢:阿联酋Khalifa University的T.J. Zhang教授和Hongxia Li博士参考文献:https://pubs.rsc.org/en/content/articlelanding/2019/sm/c9sm01182j/unauth#!divAbstract
  • 大气污染小尺度溯源,助力园区智慧化管理
    随着工业化、城镇化的快速推进,工业企业呈现明显的集聚态势,各类工业园区和工业集聚区已成为我国经济社会发展的重要引擎。但许多工业园区存在前期规划不合理、监管措施不到位、污染底数不清、企业有组织/无组织排放成分不明等问题,导致周边民众信访投诉不断,民众对化工园区抵触情绪较大。据统计,在江苏省各类环境信访投诉中,与化工企业和园区污染有关的高达30%。园区的大气污染不仅危害人体健康,影响政府与民众的互信关系,威胁社会稳定,而且极大程度上制约了社会经济的可持续发展。作为园区管理者,受约于大气输送的流动性与复杂性,难以判断污染来源,实现精细化管理。因此摸清园区污染源、大气环境现状与潜在环境风险底数,建立园区全覆盖式大气“污染地图”,实现大气污染实时监管,科学监测追根溯源,化工废气靶向治理,仍然是化工园区废气污染防治的重要工作。聚光科技(杭州)股份有限公司(以下简称“聚光科技”)引入先进自动化、信息化技术与智慧化管理模式,建立了一整套片区化、立体化的大气污染物在线监测预警系统,致力于解决工业园区大气污染小尺度溯源。针对工业园区内污染浓度分布进行实时监测,提供污染源分析报告和污染预警,可有效控制环境污染、降低监管难度、获取排放状况和规律、了解环境质量及变化趋势、预防突发环境污染事件、降低潜在环境风险。同时融合平台运行与日常理工作,实现园区“动态感知——问题发现——原因分析——问题处理 ”的闭环、高效管理目标。聚光科技所推出的大气污染溯源系统核心是一个基于排放和气象场的反算模型。该模型调取了地形参数和监测站数据、运用风场模型和流体力学的方法、基于溯源时段的污染源数据(如位置、高度、点源/线源/面源/体源、有组织/无组织、日常排放强度等),通过先进的技术分析手段快速识别出园区污染企业,对该污染企业进行有效管控,改善园区环境质量,降低恶臭投诉、污染突发事故及社会压力,建立公众与政府之间良好的互信关系,为人居环境安全与城市可持续发展提供科学保障。同时,也可为应对工业园区污染突发事件、工业园区规划、工业园区环境评估等提供技术支撑,具有广泛的应用前景。大气污染小尺度溯源解决方案通过“三步工作法”实现污染溯源,即“摸底布站、建模设值、溯源排查”。(一)摸底布站。首先通过查阅资料、现场勘查和实际检测对园区的污染情况进行摸底,建立园区“一企一档”。其次组织开展调研、考察和专家论证,在园区敏感点或企业边界布设监测站和气象站,确定子站数量和位置,建立园区立体监测网。(二)建模设值。建立溯源模型,通过对监测子站的数据园区地形地貌、企业基础信息等进行匹配和计算,能初判预警数据的排放源。通过仪器的试运行,针对园区内各污染因子设定对应的预警阈值,构建园区多级预警体系,自动触发大气污染溯源系统。(三)溯源排查。当某一站点或某一地区出现超标或投诉时,可触发平台端大气污染溯源系统对园区企业及站点的监测数据进行先进的数据分析,得出可疑企业名单。管理人员可对可疑名单进行现场确认与排查,最终锁定污染来源,要求企业治理整改,形成问题闭环。大气污染小尺度溯源已在江苏如东和安徽东至项目上有了具体应用。江苏如东沿海经济开发区管理平台监管了园区内70多家企业,建立了“自动化、智能化、立体化”的环境监测监控网络,基于监测数据的大数据分析,构建了园区综合决策平台,包括大气污染溯源系统、企业信用评价系统等,全面提升园区了智慧化管理效率,实现了污染靶向治理。
  • 第二届陆地生态系统多尺度/多要素观测技术研讨会第一轮通知
    一、背景陆地生态系统是全球生态系统的重要组成部分,其中以土壤-大气界面、植被-大气界面等为代表的物质能量交换过程在全球气候变化研究中具有重要意义。近些年来,以土壤温室气体监测、稳定同位素、涡动通量、高光谱成像以及无人机为代表的新一代生态系统观测技术迅速成熟,大数据背景下的整合生态学研究针对陆地生态系统实时监测和动态评估的需求,需要运用新的观测技术构建天空地一体化监测系统,为了更好地开展生态系统的长时序动态监测,建立多源、多尺度、多要素的综合监测数据集,推动新技术在生态系统观测中的运用,由北京大学地表过程分析与模拟教育部重点实验室主办、北京理加联合科技有限公司协办的第二届陆地生态系统多尺度/多要素观测技术研讨会定于2020年9月25日以网络会议的形式召开。二、会议目的面向生态观测研究人员,开展以多要素观测中基础理论、仪器组成、设备安装、数据质控、分析应用及研究进展等方面为主的多要素技术与方法交流和培训,培养野外生态观测研究队伍,提升野外台站的观测技术水平。三、会议内容1、 生态系统观测方面前沿的科学问题2、 多要素观测新技术的基础理论与技术方法3、 多要素观测新技术的应用和发展趋势四、会议时间、形式1. 会议时间:2020年9月25日2. 会议形式:网络线上直播五、其他注意事项1、本次研讨会不收取费用。六、组织单位主办单位:北京大学地表过程分析与模拟教育部重点实验室协办单位:北京理加联合科技有限公司七、报名注册扫描二维码,回复“报名”填写表单即可报名截止日期与时间:2020年9月24日12:00时
  • 专题约稿|电池的多尺度分析对储能研究的贡献
    p style="margin-top: auto margin-bottom: auto padding: 0px color: rgb(68, 68, 68) text-align: center " arial="" white-space:="" text-align:=""span style="margin: 0px padding: 0px color: rgb(255, 0, 0) font-size: 18px "i style="margin: 0px padding: 0px "strong style="margin: 0px padding: 0px "专题约稿|/strong/i/spanspan style="color: rgb(255, 0, 0) "istrongspan style="font-family: sans-serif "电池的多尺度分析对储能研究的贡献/span/strong/i/span/pp style="margin-top: auto margin-bottom: auto padding: 0px color: rgb(68, 68, 68) text-align: center " arial="" white-space:="" text-align:=""strong style="margin: 0px padding: 0px "i style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px font-size: 18px color: red "/span/i/strongbr//pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-align: center " arial="" white-space:="" text-align:=""i style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px color: rgb(127, 127, 127) "——“锂电检测技术系列——形貌分析技术”专题征文/span/i/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-align: center " arial="" white-space:="" text-align:=""i style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px color: rgb(127, 127, 127) "(作者:赛默飞世尔科技)/span/i/pp  从我们的手机和笔记本电脑到我们用于建筑和运输的电动交通工具,电池对我们的日常生活至关重要。与此同时,在我们通过引入更高效的电动汽车和替代能源等方式来努力改善地球生活环境时,我们需要更好的新型电池材料来实现性能更高的电池最终目标。这意味着我们需要构建比目前市场上的电池和能量存储设备具备更经济,轻便,紧凑,安全,耐用,易于充电和能量密集的特性电池产品。/pp  利用电子显微镜,X射线断层扫描,拉曼显微镜,X射线衍射,FTIR,,和XPS等技术,研究人员可以从毫米到纳米级别对电池进行多尺度的检测,从而发现电池在充电和放电时性能衰减的原因。他们也正在学习如何设计在设计新电池时, 通过用不同的表征手段来检查从原材料,电池元件到最终产品的各个环节,从而得到能够承受极端温度的更安全的电池。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 401px " src="https://img1.17img.cn/17img/images/201905/uepic/7c6f1795-ad7a-422e-aa9d-a7e09c3b86d5.jpg" title="1.jpg" alt="1.jpg" width="450" height="401" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "图:比较18650 锂电池充放电前后Cu集流器在每个水平切片的形状/span/pp  上图:通过自动的图像处理来确定Cu集流器在每一个水平切片的位置,可以定量的计算出电池中心部分由于充放电导致电极膨胀而变小。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 253px " src="https://img1.17img.cn/17img/images/201905/uepic/7981de91-f38d-4e8e-83e6-97a9ff313f91.jpg" title="2.jpg" alt="2.jpg" width="450" height="253" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "上图:Thermo ScientificTM HeliScan microCT/span/pp  18650型锂电池被广泛应用于手电筒,电动香烟甚至一些电动汽车等各种电池供电设备。通过使用Thermo ScientificTM HeliScan microCT对这种电池在充放电前后进行3D扫描和成像,研究人员可以定量的研究电池在循环时内部的变化。通过对3D数据的定量分析,我们发现在电池充放电后,电池内部的电极片体积膨胀,中心杆周围的区域减小。 这种体积膨胀可以在电池单元中产生压力。 如果在电池设计中没有考虑到这种效果,电池单元中的压力可能会导致电池短路,从而可能导致灾难性后果。 因此在设计电池的过程中, 电池制造商对此进行量化非常重要。/pp  下一代电池的发展对我们的生活影响将是深远的。电动汽车一次充电就可以行驶更长的距离,充电过程需要几分钟而不是几小时。为我们的手机和笔记本电脑供电的电池功能将更强大,使用寿命更长,技术公司也可以将电池使用在更加复杂的应用上,例如虚拟现实。电动工具将持续更长时间并具有更强的输出电流,使工人能够在建筑行业中执行更高能耗的任务。 同时,下一代电池将能够存储更多来自太阳能电池板和风力涡轮机的能量,从而为我们的家庭和办公室提供更高效的电力。/pp  今天的大部分研究都集中在通过了解锂离子电池失效的原因来改善锂离子电池的性能。随着具有液体电解质的锂离子电池接近最高性能,科学家们正在探索能量密度更高的材料以及储能器件,例如固态电池,从而实现能量储存方面的进一步突破。/pp  使用不同的分析技术在多尺度对电池以及材料进行研究将是更好地理解电池衰减机理和帮助设计下一代新电池的关键。/pp  /pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial="" white-space:=""strong style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial=""  /span/strongstrong style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "附:关于锂电系列专题约稿/span/strongbr style="margin: 0px padding: 0px "//pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial="" white-space:=""  近十年间,在能源技术变革以及新兴科技的带动下,全球锂离子电池产量进入飞速增长期,根据公开数据,预计2018年全球锂电池增速维稳,产量达155.82GWH,市场规模达2313.26亿元。中国是锂电池重要的生产国之一,2018年预计全国锂电池产量达121亿只,增速22.86%。/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial="" white-space:=""  锂离子电池产业的蓬勃发展,也为锂离子电池检测领域带来新的机遇。随着锂离子电池基础科学研究仪器水平不断提升,几乎各类先进科学仪器都逐渐在锂离子电池的研究中出现,且针对锂离子电池的研究、制造也开发了许多锂电行业专用的仪器设备。/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial="" white-space:=""  为促进中国锂电检测产业健康发展,仪器信息网结合锂离子电池检测项目品类,将从2018年12月起策划组织系列锂电检测系列专题报道,为专家、仪器设备商、用户搭建在线网上展示及交流平台。span style="margin: 0px padding: 0px color: rgb(0, 176, 240) "锂电检测系列专题内容征集进行中:/spana href="https://www.instrument.com.cn/news/20181204/476436.shtml" target="_blank" style="margin: 0px padding: 0px color: rgb(255, 255, 255) background-color: rgb(192, 0, 0) "span style="margin: 0px padding: 0px "【征集申报链接】/span/a /ptable border="0" cellspacing="0" cellpadding="0" align="center"tbodytr class="firstRow"td width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"strongspan style="font-size:12px font-family:宋体 color:#444444"系列序号/span/strong/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"strongspan style="font-size:12px font-family:宋体 color:#444444"锂电检测技术系列专题主题/span/strong/p/tdtd width="126" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"strongspan style="font-size:12px font-family:宋体 color:#444444"专题上线时间/span/strong/p/td/trtrtd width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"1/span/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:宋体 color:#444444"锂电检测技术系列/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"——/spanspan style="font-size:12px font-family:宋体 color:#444444"电性能检测技术/span/p/tdtd width="126" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family: ' Arial' ,' sans-serif' color:#444444"2019/spanspan style="font-size:12px font-family:宋体 color:#444444"年/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"1/spanspan style="font-size:12px font-family:宋体 color:#444444"月/spanspan style="font-size: 12px font-family:宋体 color:#00B0F0"【/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"a href="https://www.instrument.com.cn/zt/lidian1" target="_blank"span style="font-family: 宋体 color: rgb(0, 176, 240)"span链接】/span/span/a/span/p/td/trtrtd width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"2/span/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:宋体 color:#444444"锂电检测技术系列/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"——/spanspan style="font-size:12px font-family:宋体 color:#444444"成分分析技术/span/p/tdtd width="126" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family: ' Arial' ,' sans-serif' color:#444444"2019/spanspan style="font-size:12px font-family:宋体 color:#444444"年/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"3/spanspan style="font-size:12px font-family:宋体 color:#444444"月/spanspan style="font-size: 12px font-family:宋体 color:#00B0F0"【/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"a href="https://www.instrument.com.cn/zt/lidian2" target="_blank"span style="font-family: 宋体 color: rgb(0, 176, 240)"span链接】/span/span/a/span/p/td/trtrtd width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"3/span/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:宋体 color:#444444"锂电检测技术系列/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"——/spanspan style="font-size:12px font-family:宋体 color:#444444"形貌分析技术/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"2019/spanspan style="font-size:12px font-family:宋体 color:#444444"年/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"5/spanspan style="font-size:12px font-family:宋体 color:#444444"月/spanspan style="font-size:12px font-family:宋体 color:#00B0F0"【/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"a href="https://www.instrument.com.cn/zt/lidian3" target="_blank"span style="font-family: 宋体 color: rgb(0, 176, 240)"span链接】/span/span/a/span/p/td/trtrtd width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"4/span/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:宋体 color:#444444"锂电检测技术系列/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"——/spanspan style="font-size:12px font-family:宋体 color:#444444"晶体结构分析技术/span/p/tdtd rowspan="3" style="border: 1px solid rgb(0, 0, 0) padding: 5px "br//td/trtrtd width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"5/span/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:宋体 color:#444444"锂电检测技术系列/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"——X/spanspan style="font-size:12px font-family:宋体 color:#444444"射线光电子能谱分析技术/span/p/td/trtrtd width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"6/span/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:宋体 color:#444444"锂电检测技术系列/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"——/spanspan style="font-size:12px font-family:宋体 color:#444444"安全性和可靠性分析仪器及设备/span/p/td/tr/tbody/tablepbr//p
  • 蔡司增强在多尺度和多模态图像工作流程方面的效率
    研究人员将实现更快速的FIB-SEM样品制备、获得更精准的3D断层扫描图像和更完整的数据报告德国耶拿,2019年12月2日现在,材料和生命科学领域的研究人员在研究3D样品时,可以更快速便捷地获取样品更深层次研究区域的信息。借助蔡司Crossbeam 350/550和Atlas 5的新功能,用户在对增材制造、电子工程、电池研究、生物材料和树脂生物标本上的生物组织进行多尺度、多模态研究时,将能够体验到更快的速度和更好的数据质量。获得深埋结构的信息并快速制造加工如今,研究人员在利用X射线显微镜数据来确定双束电镜取样位置,进行多尺度、关联研究时,可以进一步提高工作流程的效率。蔡司Crossbeam 350/550上新引入的特有技术LaserFIB,除了可以在大范围内进行快速、无镓引入的结构制造技术外,还能够了解深埋结构的信息。用户可以在专用腔室中进行激光加工,以避免污染电镜。添加到样品交换室中的新一代飞秒激光器可在短时间内进行大规模的材料刻蚀,而且几乎可以避免激光产生的热效应。与使用等离子体源的等效工作流程相比,在移除大量材料时,这一新工具的加工速度提升了50倍。LaserFIB可用于制造悬臂梁、纳米力学测试柱以及蔡司Xradia Ultra X射线显微镜样品等结构。此外,还可用于大截面的EBSD(电子背散射衍射)研究或在整个TEM栅网上确保无镓的引入。蔡司Crossbeam 350Laser —飞秒激光器安装在样品交换室上,可避免在激光加工过程中对腔室造成污染。改善关联工作流程、断层扫描数据质量和交互式数据环境蔡司推出了用于成像、3D断层扫描的蔡司Atlas 5以及用于分析和报告的扩展工具包。当使用X射线显微镜数据指导LaserFIB或FIB-SEM工作流程时,可以轻松找到感兴趣的区域,从而提高了关联工作流程的效率。用户可以更快更精准地定位所感兴趣的区域。定位完成后,便可进入薄而快的断层扫描环节。这种方法利用蔡司“True-Z”特有技术进行断层采集、切片厚度测量、改善可视化和数据处理。“True-Z”依次测量每个切片的厚度,并将其应用于三维重构。这样提高了最终重构的精度,在研究3D结构时,使得3D和4D建模更加准确,而且提高了分割精度。现在,利用强化的Atlas 5工具箱,用户可以更加高效地分析、呈现和共享结果。他们能轻松浏览多模态数据集的相关数据,同时还可以看到多达四个成像或分析模态。蔡司通过基于浏览器的全新查看器导出模块的增强版,可以更加轻松地查看故事板、精心制作的幻灯片,并开展数字培训。今年年初,蔡司在美国波特兰市举办的2019年美国电镜年会(M&M 2019)上推出了这些解决方案,该方案进一步拓展了显微镜技术的新模式,以推进样品制备、断层扫描分析和数据完整性。基于浏览器的查看器导出模块增强版展示了其在地质分析方面的应用。该样品是花岗岩的抛光薄切片,采用多种微观形态进行了研究。样品由美国科罗拉多矿业大学的A. Gysi提供。V
  • “大国重器”多模态跨尺度生物医学成像设施,竣工!
    经过近三年的建设施工,国家重大科技基础设施建设项目——多模态跨尺度生物医学成像设施终于揭开了面纱!▼11月3日,由建筑部承建的多模态跨尺度生物医学成像设施工程竣工仪式在怀柔科学城举行。十一届全国政协副主席王志珍院士,北京大学校长龚旗煌院士,北京大学党委常委、常务副校长乔杰院士,成像设施首席科学家、国家生物医学成像科学中心主任程和平院士,怀柔科学城党工委委员、副主任丁明达,北京建筑设计研究院总建筑师吴晨,集团公司党委书记、董事长陈代华,集团公司党委常委、建筑部总经理张锁全等出席仪式。北京大学副校长、成像设施总指挥张平文院士主持竣工仪式。乔杰表示,从概念成形到蓝图绘就,再到拔地而起,成像设施已经走过十年历程,是新时代伟大变革的生动缩影。成像设施工程顺利竣工,对北大意义深远、责任重大。她希望项目加快设备安装调试,争取早日通过国家验收;引领学科发展,培养杰出人才,产出大成果;发挥辐射带动作用,服务怀柔科学城及北京市的创新发展。程和平表示,大科学设施是国家品牌,是重要的战略科技力量,更是教育、科技、人才的重要有机融合点,建好用好大设施,是机遇、是挑战,更是重重的责任。他说,会以基建竣工为契机,进一步做好科研与人才的统筹规划,当好科技创新和人才培养融合发展的先锋队,打造科技航母,让大设施发挥出国家战略科技力量的应有作用。丁明达向成像设施建设取得的成果表示祝贺。希望进一步加速项目进度,加快设备安装调试,力争项目早建成、早运行、早见效,同时也希望北京大学深度融入怀柔科学城,在创新装置平台建设、管理、运行机制方面探索新路径,为北京国际科技创新中心和科技强国建设做出新的贡献。陈代华表示,北京大学是我国顶尖高校,是国家培养高素质创造性人才的摇篮、科学研究的前沿和知识创新的重要基地、国际交流的重要桥梁。怀柔区是首都“四个中心”功能的重要承载地,怀柔科学城更是激发创新活力、服务国家战略、引领科技前沿的重要集聚区。面向未来,北京城建集团期待能在北京大学建设世界一流大学的过程中,能在“展翅腾飞看怀柔”的壮美篇章中,与北京大学、怀柔区加强全方位的深度合作,用更多优质服务和精品工程回报社会各界。最后,参加仪式的领导嘉宾共同为多模态跨尺度生物医学成像设施揭牌,还一起参观了“看见生命力”成像设施建设专题展览。多模态跨尺度生物医学成像设施是国家“十三五”重大科技基础设施之一,是北京大学科技创新的重要平台,也是北京以“三城一区”建设为抓手,建设全国科技创新中心的标志性工程。该项目于2020年3月启动基建施工,建设用地超6.6万平方米,新增建筑面积7.2万平方米,建设在怀柔科学城的核心区域。设施由四大核心装置和一个辅助平台构成,包括多模态医学成像装置、多模态活体细胞成像装置、多模态高分辨分子成像装置、全尺度图像整合系统以及模式动物等辅助平台和配套设施。项目投用后,可达到对生命体结构与功能的跨尺度可视化描绘与精确测量,破解生命与疾病的奥秘,实现高端生物医学影像仪器装备的“中国创造”。自项目竣工起,随着设备的安装和试运行,北京大学的科研人员、工程技术人员、运营团队以及大批师生将陆续进驻,运用成像设施开展多项重大科学研究。未来,该设施还将与美国、欧盟等地生物医学成像平台建立国际联盟,实行开放、流动、择优的机制,面向全国开放共享。
  • 钢研总院牵头重大专项“双光源全自动大尺度金属构件成分偏析度分析仪”项目启动
    p  strong仪器信息网讯/strong 2017年11月6日,钢铁研究总院组织召开了其牵头承担的国家重点研发计划“重大科学仪器设备开发”专项“双光源全自动大尺度金属构件成分偏析度分析仪”项目启动会。/pp  航空高温合金涡轮盘、核电管道、高铁车轮等大尺度金属构件是重大工程关键核心部件,而米级大尺度金属构件成分偏析与夹杂物是这些行业关键部件失效的重要因素。但是目前国内外还没有直接测量大尺度金属构件成分偏析度与夹杂物的手段,通常使用的酸浸低倍、硫印等传统方法效率低且不能定量表征。钢铁研究总院曾在国际上首创了火花金属原位分析仪,不过其所解决的是小尺寸平面金属样品(小于100mm*100mm)的偏析度及夹杂物测量,仍然无法直接分析米级大尺度金属构件的偏析度及夹杂物。因此,目前如何在米级尺度上快速获得高分辨率成分信息是世界级难题。/pp  面对这一技术现状以及市场需求,由国务院国有资产监督管理委员会推荐、钢铁研究总院牵头承担的“重大科学仪器设备开发”专项“双光源全自动大尺度金属构件成分偏析度分析仪”项目在今天正式启动。/pp style="text-align: center "img title="现场.jpg" src="http://img1.17img.cn/17img/images/201711/insimg/14f45c45-ddc5-4383-b67c-ac3b4e133bd4.jpg"//pp style="text-align: center "项目启动会现场/pp  该项目于2017年7月开始,2021年6月结束 总预算4275万元,其中中央财政专项经费1875万元 项目负责人由钢铁研究总院分析测试研究所所长贾云海教授担任 项目分为“高稳定性连续激发单火花光谱分析技术研究”、“皮秒激光光谱金属构件分析技术研究”、“基于CMOS的高分辨堆叠光栅光学系统研究”、“全自动加工与监测系统研究”、“双光源全自动大尺度金属构件成分偏析度分析仪整机研制”、“双光源全自动大尺度金属构件成分偏析度分析仪工程化和产业化”、“大尺度高速铁路车轮坯件成分偏析度与夹杂物分析方法研究”、“大尺度航空高温合金涡轮盘坯件及核电钢管道成分偏析度与夹杂物分析方法研究”8个课题 项目参与单位有中国科学院沈阳自动化研究所、北京机电院机床有限公司、马鞍山钢铁股份有限公司、北京科技大学、宁波英飞迈材料科技有限公司、钢研纳克检测技术有限公司。/pp  “双光源全自动大尺度金属构件成分偏析度分析仪”项目中的“双光源”为单火花光源和皮秒激光光源。火花光源分析表面接近平面的构件,而激光光源可分析曲面构件 对于火花源,本项目着力解决器件长时间发热对光源参数的影响,实现长时间(大于10小时)的稳定连续激发 对于激光源则以实现光斑最小能达到5um、斑点大小的高速度/高精度自动控制为目的。/pp  与双光源相匹配,除了经典的光电倍增管罗兰圆光学系统外,本项目还将研制基于CMOS的高分辨堆叠光栅光学系统。CMOS探测器与合理组合的20块1800刻线/mm平面光栅相结合,以期实现0.015nm的分辨率、170-670nm的光谱范围。另外,本项目在自动化方面有较大提升,将大尺度金属构件的加工与检测进行整合,在完成构件的加工后自动进行偏析度与夹杂物的测量。/pp style="text-align: center "img title="贾云海.jpg" src="http://img1.17img.cn/17img/images/201711/insimg/7e3b467a-158a-4fc3-a973-679968df0c4c.jpg"//pp style="text-align: center "项目负责人,钢铁研究总院分析测试研究所所长 贾云海教授/pp  据项目负责人贾云海教授介绍,“双光源全自动大尺度金属构件成分偏析度分析仪”项目的主要创新点包括突破小尺寸平面样品到大尺度平面/非平面金属构件偏析度及夹杂物分析技术,首次研制大尺度构件表面加工、精准定位扫描、成分偏析度及夹杂物光谱分析一体化全自动分析系统,首次实现激光/单火花双光源光谱分析系统,研制高精度门控全数字固态激发光源,形成大尺度偏析度及夹杂物表征模型等。/pp  “双光源全自动大尺度金属构件成分偏析度分析仪”项目目标是,在项目中期,研制形成具有一定功能的双光源全自动大尺度金属构件成分偏析度分析仪成套仪器样机 通过在航空高温合金涡轮盘、核电钢管道、高铁车轮等方面的应用开发,形成具有自主知识产权、功能健全、质量稳定可靠的双光源全自动大尺度金属构件成分偏析度分析仪器 项目验收后3年内,达到年产整机50台套的生产能力,实现产值2.5亿元,为航空、核电、高铁等重要行业提供测试技术支撑。/pp  科技部高技术研究发展中心项目主管刘进长研究员、科技部高技术研究发展中心项目主管赵亮、国务院国资委综合局科技处项目主管任檬、中国钢研科技集团有限公司王海舟院士 责任专家北京理工大学邓玉林教授、中国科学院微电子研究所夏洋研究员 技术专家中国分析测试协会吴波尔副理事长、北京市计量科学研究院化学所沈正生研究员、中国地质大学(武汉)胡圣虹教授、北京科技大学刘杰民教授、哈尔滨工业大学刘俭教授、北京机电院高技术股份有限公司黄天石高级工程师 用户委员宝山钢铁股份有限公司分析测试研究中心张毅教授级高工、唐山钢铁集团有限公司生产制造部张希清高级工程师、中国第二重型机械集团德阳万航模锻有限责任公司谢静高级工程师、马鞍山钢铁股份有限公司宋祖峰高级工程师、钢铁研究总院党委副书记刘伟钢及项目参与人员等40余人应邀出席会议。/pp  钢铁研究总院科技处处长张国强主持启动会,科技部高技术研究发展中心刘进长研究员对国家重大科学仪器设备开发专项的管理方针、政策进行了宣贯,对项目实施提出了明确的要求。国务院国资委综合局科技处项目主管任檬、钢铁研究总院党委副书记刘伟钢为会议致辞。中国科学院微电子研究所夏洋研究员作为仪器专项总体专家组组长及本项目责任专家进行了技术管理规范等的讲解,夏洋指出责任专家的职责包括沟通协调、管理、创新服务等工作。/pp  根据专项管理办法的要求,启动会首先成立了“项目总体组”、“项目技术专家组”、“项目用户委员会”,并颁发聘书。项目负责人贾云海教授代表项目组介绍了项目实施方案,项目管理办公室文志旻介绍了项目管理办法,并提请大会审议。/pp  与会领导和专家对项目实施方案和组织管理办法等进行了讨论和交流,为项目提出了许多有意义的建议。如专家指出:应加强和用户的需求对接,加强仪器分辨率、检出限等指标,形成国标、行标等,为用户提供使用参考 光源连续激发十小时对自身稳定性挑战较高 火花、激光两个研发单位的整合,两套光源的分工、集成,其逻辑关系的梳理应不能影响项目进度,应提前设计保证整体任务的完成 项目执行过程中,应充分发挥管理班子的作用,前期进度应能保证产业化、工程化的顺利实施。/pp  项目组还邀请了财务专家对课题负责人、财务人员及科研财务助理进行了财务管理规范培训。/pp style="text-align: center "img title="合影11.jpg" src="http://img1.17img.cn/17img/images/201711/insimg/231b0bb2-02bc-47a6-a26f-c30ae40dd67d.jpg"//pp style="text-align: center "与会者合影/pp /p
  • 精彩纷呈:2017微流控微尺度分析会议进入第二天
    pstrong仪器信息网讯/strong 2017年9月24日,第六届国际微流控学学术论坛(沈阳)、第十一届全国微全分析系统学术会议、第六届全国微纳尺度生物分离分析学术会议在东北大学国际学术交流中心迎来第二天日程。本次大会由中国化学会主办,东北大学承办,南京大学、复旦大学、浙江大学协办。(相关报道:a href="http://www.instrument.com.cn/news/20170924/229891.shtml" target="_self" title=""span style="color: rgb(84, 141, 212) "2017微流控微尺度分析会议:三会联合在沈召开/span/a)/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/4587b335-146e-4c16-be7d-0e844c86faf2.jpg" title="1.jpg"//pp style="text-align: center "strong第二日大会报告现场/strongbr//pp style="text-indent: 2em "本日大会报告由复旦大学杨芃原教授主持,加拿大阿尔伯塔大学乐晓春教授、法国巴黎高等师范学院陈勇教授和中国科学院大连化学物理研究所林炳承研究员分别奉献了精彩报告。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/44259605-1786-4729-8301-5c4eeb1e064d.jpg" title="2.png" width="400" height="400" border="0" hspace="0" vspace="0" style="width: 400px height: 400px "//pp style="text-align: center "strong复旦大学教授 杨芃原/strong/pp style="text-indent: 2em "加拿大皇家科学院院士/加拿大阿尔伯塔大学教授乐晓春主讲了题为《DNA nanomachines designed for the detection and imaging of intracellular targets》的报告。乐晓春介绍,利用DNA和蛋白的某些特异性结合来做信号转导,再结合不同的放大机制,能够对不同的靶标物(microRNA)进行分析,且有很好的灵敏度。基于这个方法,乐晓春向与会者介绍了他们课题组发明的一种DNAzyme纳米装置,该装置能够进入活体细胞内对靶标物进行检测和成像。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/dd1fd523-2d2b-479b-8283-25ee04e69c8b.jpg" title="3.png" width="400" height="400" border="0" hspace="0" vspace="0" style="width: 400px height: 400px "//pp style="text-align: center "strong加拿大皇家科学院院士/加拿大阿尔伯塔大学教授 乐晓春/strong/pp style="text-indent: 2em "法国巴黎高等师范学院教授陈勇主讲了题为《Insight on the Water Transportation in tall trees》的报告。陈勇首先介绍了微纳制造技术、程控设备、微流芯片技术、干细胞器件及器官芯片的技术的应用和他们课题组开展的相关工作。之后他介绍了他们课题组开展的仿生微流控模型的研究,该模型的灵感来自于树木中水的运输现象。树木的微孔状结构可以高效地帮助其将水从根部上升至顶部,相对很高的高度,却消耗极少的能量。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/bcb045a3-f535-4b9d-bc32-cf44a3698545.jpg" title="4.png" width="400" height="400" border="0" hspace="0" vspace="0" style="width: 400px height: 400px "//pp style="text-align: center "strong法国巴黎高等师范学院教授 陈勇/strong/pp style="text-indent: 2em "中国科学院大连化学物理研究所研究员林炳承主讲了题为《Organ chip prepared with both on-chip culture and tailored bio-printing》的报告。林炳承介绍,器官芯片已经成为当今操控哺乳动物细胞及其微环境最重要的技术。之后他向与会者介绍了他们课题组已经开展的肿瘤芯片、单器官芯片、多器官芯片、生物打印的相关工作,如:肾小球微流控芯片病理模型的构建及可行性验证;用实验室自制3D生物打印机和生物墨水打印血管等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/2eef2d64-ce86-44bb-8ae6-317f8d6e5f3b.jpg" title="5.png" width="400" height="400" border="0" hspace="0" vspace="0" style="width: 400px height: 400px "//pp style="text-align: center "strong中国科学院大连化学物理研究所研究员 林炳承/strong/pp style="text-indent: 2em "本次会议还设置了墙报展示厅,本次会议共展示墙报143份,吸引了大批与会者浏览学习。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/08c8eb49-7654-4edd-b358-e96bf405b7d9.jpg" title="7.jpg"//pp style="text-align: center "strong墙报展示/strong/pp style="text-indent: 2em "此外,本次会议十余家国内外知名公司设立展台,向与会者展示最新最热的微流控相关产品、技术和解决方案。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/76d2a4a5-6c49-478c-93d5-33505bc2f5d2.jpg" title="8.jpg"//pp style="text-align: center "strong厂商风采/strong/pp style="text-indent: 2em "本次会议设立了Micro/Nanofluidic Chip-Foundation、Micro/Nanofluidic Chip-Applications、Micro/Nanoscale Separation、Micro/Nano Bioanalysis四个主题分会场,多位著名学者奉献了精彩报告。稍后仪器信息网将为您带来更多会议详情。/p
  • NASA碳监测系统BlueFlux行动——Picarro助力红树林蓝碳通量的多尺度观测
    NASA碳监测系统BlueFlux行动——Picarro助力红树林蓝碳通量的多尺度观测江苏海兰达尔 2023-06-09 12:24 发表于江苏原文链接:https://doi.org/10.1101/2022.09.27.50975301蓝碳和红树林蓝碳是气候缓解战略的关键组成部分,该战略旨在通过沿海和开放海洋碳封存以降低大气二氧化碳浓度。在全球范围内,蓝碳有助于《巴黎协定》目标的达成,将全球平均气温上升幅度控制在远低于2℃以内,并实现温室气体净零排放。从蓝碳的角度来看,红树林生态系统非常有意义,因为它们是地球上最具生产力的生态系统之一,净初级生产力(NPP)在1000~2000gCm-2yr-1。虽然它们只占地球陆地面积的一小部分,但为全球NPP贡献了约210TgCyr-1。这些碳中的大部分储存在生物中或封存在土壤沉积物中,根据最近的激光雷达和雷达测量估计,红树林的总碳储量约为5.03PgC。这些碳储量只集中在几个关键的生物地理区域,例如,有10个国家占总碳储量的70%以上,这就意味着在国家范围内,红树林碳管理可以在国家层面制定的缓解气候变化策略上发挥重要作用。02BlueFlux行动2020年,美国航空航天局碳监测系统(NASA CMS)为建立BlueFlux行动提供了支持,目的是开发原型CO2和CH4产品以了解红树林的修复和保护情况。BlueFlux野外观测行动旨在提供横跨佛罗里达南部和加勒比地区的CO2和CH4通量的综合测量,重点是红树林系统,它们的季节性动态,以及邻近的生态系统,比如广阔的锯草沼泽以及其中的树木“岛屿”。这些通量测量覆盖了从“健康”的红树林到近期受到干扰和濒死的红树林“鬼森林”,来帮助了解在损失和恢复过程中碳通量的任何方向性变化。BlueFlux将有助于量化蓝碳如何减缓气候变化,并帮助减少红树林碳循环时空成分的不确定性。BlueFlux行动的目标示意图现场地面和飞机测量的目标区域在美国境内,在佛罗里达南部的核心地区,对碳储量和通量进行测量,以了解物种、干扰、水文和气候梯度如何解释通量变化。该行动计划在2022~2024年间进行6次现场观测,测量手段包括:1)对生态系统结构、物种以及腔室通量的地面测量,2)高塔通量测量,3)飞机测量,4)卫星遥感。墨西哥湾研究区域03地面测量:土壤和植被通量的腔室测量2022年3月,BlueFlux的第一次现场行动在大沼泽地国家公园进行,分别对两个高度退化和两个完整/再生的森林场地的树木,根系和土壤CO2和CH4通量进行了测量。根据植物的形态以及土壤沉积物成分的不同使用了不同的气室,CO2和CH4浓度的测量使用Picarro G4301 GasScouter 移动气体分析仪,测量频率为1Hz。静态气室法测量生态系统成分通量的示意图以及相应气室设计的照片04地面测量:水化学为了捕捉佛罗里达大沼泽地红树林水域的水-空气温室气体交换及其变化,于2022年3月进行了一项为期3天的空间调查,方法为驾驶一艘游艇从库特湾出发,沿乔河到鲨鱼河再到塔彭湾,然后返回,同时测量pH值,水温,盐度,CO2、CH4和N2O浓度以及CO2和CH4稳定同位素。地表水样从约0.5米深处连续泵送到由“淋浴头”平衡器组成的船载装置,该平衡器通过闭合空气回路连接到两台气体分析仪,Picarro G2201-i和Picarro G2308。使用校准的多参数探测器每分钟测量一次地表水电导率(EC)、溶解氧(DO)、温度、pH和有色可溶性有机物(CDOM)。同时定期收集过滤的无菌离散样品,并在耶鲁大学实验室内用于分光光度计pH、溶解无机碳(DIC)和总碱度(Talk)的测量。05机载涡流协方差通量测量:CARAFE机载涡流协方差(AEC)是一种公认的用于量化痕量气体和能量的地表-大气交换的技术。当与小波变换相结合时,AEC可以表征模型相关尺度(1-100km)下通量的空间梯度,是对地面观测数据很好的一种补充。Blueflux AEC观测采用了动态航空公司驾驶的配备气象和微量气体传感器的Beechcraft King Air A90飞机,并进行了CArbon大气通量实验(CARAFE)。由Aventech公司的AIMMS-20测量系统提供10 Hz的3D风速、空气温度、飞机位置和飞机方位(俯仰/翻转/偏航)观测。该系统包括一个用于气象测量的探测器(安装在左翼下方),该探测器与高分辨率差分GPS和惯性导航系统相结合。环境空气通过安装在右翼下方的进气口进行采样,并通过(机翼中的)聚四氟乙烯管传输到机舱中的两台气体分析仪。其中Picarro G2401-m机载专用气体浓度分析仪提供0.5Hz的CO2、CH4、H2O和CO测量值,而Picarro G2311-f双模式高精度气体分析仪提供10Hz的CO2和CH4测量值。G2401-m包含用于机载操作的专用压力控制系统,因此可对气体摩尔分数进行精准测量,而G2311-f可提供AEC所需的快速时间响应。CO2和CH4的干空气摩尔分数在实验室中使用NOAA WMO的压缩标准气体进行两点校准。下图为2022年4月进行的航测飞行轨迹,这些飞行测量重点关注佛罗里达南部和东部的沿海红树林植被,同时也包括一些内陆森林和湿地。每次飞行时间在2.5~4.5小时,典型的海拔高度为地平面以上100m,偶尔会进入到混合层(200-800m),以确定垂直通量散度和修正。在100米的高度,预计通量足迹大约为5000米宽,对于5~10m s-1的典型表面风速,50%的通量在1000米内,90%在5000米内。CO2的通量范围在0~-40μmol m-2 s-1,CH4的通量范围在0~200μmol m-2 s-1。总的来说,在4月的野外航测中,锯草的甲烷通量似乎更高,红树林的二氧化碳吸收量更大,接下来的飞行测量将继续探索季节和年际变化。BlueFlux AEC航测的飞行路线06预期结果目前“蓝碳”评估的不足之一是,人们考虑了碳存储量,但往往忽略了非二氧化碳温室气体的排放,这可能会极大地影响(积极或消极)这些生态系统的总体净辐射强迫效应。红树林是潮间带生态系统,虽然这些生态系统是净自养的,但小海湾和沉积物通常是大气中CO2和CH4的来源,也可以作为N2O的源或汇。沿着潮汐高度梯度(从小海湾到森林盆地),红树林覆盖率、物种多样性和沉积物结构会发生显著变化,导致温室气体通量的空间变异性很大。红树林温室气体通量的站点间变化会进一步受到各种其他因素的驱动,包括区域气候、水文、地貌、物理化学、生物,生物地球化学和人为因素等。BlueFlux行动旨在收集红树林结构和温室气体通量多尺度测量的详细信息,利用激光雷达或雷达等手段,掌握森林结构和地形信息,捕捉土壤、水文和扰动梯度。网格化碳通量产品将为评估过去二十年温室气体通量的趋势及其空间模式提供基础,以应对不断变化的气候以及极端气候的出现。编辑人:陆文涛审核人:史恒霖
  • 基于光线模型的成像系统标定与三维测量进展
    一、背景介绍:机器视觉可称为人工智能的“慧眼”,成像系统的标定又是机器视觉处理的重要环节之一,其标定精度与稳定性直接影响系统工作效率。在传统机器视觉与摄像测量标定领域,小孔透视模型仍存在高阶透镜畸变无法完备表征和多类复杂特殊成像系统不适用的问题。而基于光线的模型以成像系统聚焦状态下每个像素点均对应空间一条虚拟主光线为前提假设,通过确定所有像素点所对应光线方程的参数即可实现标定与成像表征,可避免对复杂成像系统的结构分析与建模。基于该光线模型,研究院相关课题组发展了各类特殊条纹结构光三维测量方法与系统,实验证明光线模型可通用于多类复杂成像系统的高精度测量,是校准非针孔透视成像系统的有效模型,可作为透视模型的补充。二、光线模型Baker等人最早提出了一种可表征任意成像系统的光线模型[1],认为图像是像素的离散集合,并以一组虚拟的感光元件“光素”表示每个像素与某像素相关联的空间虚拟光线间的完整几何特性、辐射特性和光学特性,如图1所示。因此,光线模型的标定即确定出所有像素点对应的光线方程,无需严格分析和构建成像系统的复杂光学成像模型,具备一定的便携性和通用性,从一定程度上也可避免镜头畸变的多项式近似表征引入的测量误差,为非小孔透视投影模型成像系统的表征提供了一种新的思路。图1 成像系统的光线模型示意图三、基于光线模型的条纹结构光三维测量在条纹结构光投影三维测量领域,光线模型一方面可作为三维重建的光线方案,用于表征大畸变镜头、光场相机、DMD投影机、MEMS投影机等多类特殊结构的成像与投影装置,可发展新的基于光线模型的条纹结构光三维测量方法与系统;另一方面,发掘光线模型在结构光测量中的优势,光线模型对克服投影与相机的非线性响应、大畸变镜头成像下提升三维重建精度具有优异的效果。3.1 Scheimpflug小视场远心结构光测量系统光线模型与三维测量课题组开发了小视场远心结构光测量系统,采用Scheimpflug结构设计确保公共景深覆盖,如图2所示。考虑到远心镜头属平行正交投影、Scheimpflug倾斜结构造成畸变模型非中心对称,因此,提出一种基于光线模型的非参数化广义标定方法[2]。系统中相机与投影机成像过程均采用光线模型表征,标定其像素与空间光线对应关系,计算光线交汇点坐标,实现三维重建。图3展示了系统实物图与五角硬币局部小区域的三维测量结果,测量精度为2 μm。图2 Scheimpflug小视场远心结构光测量系统图3 测量系统实物图与五角硬币局部的三维测量结果3.2光场相机的光线模型标定与主动光场三维测量课题组发展了基于主动条纹结构光照明的光场三维测量方法与系统。光场相机通过在传感平面前放置微透镜阵列,实现光线强度和方向的同时记录,由于存在微透镜加工误差、畸变像差、装配误差等复杂因素影响,光场相机完备表征与精密标定是个难题。课题组提出光线模型表征光场成像过程[3],即将光场相机内部看作黑盒,直接建立像素m与所对应的物空间光线方程l的参数,如图4所示。并通过标定光场所有光线与投影条纹相位的映射关系实现被测为物体的高精度三维测量,考虑光场多角度记录特点,构建基于条纹调制度的数据筛选机制,实现了场景的高动态三维测量,如图5所示,黑色面板与反光金属可同时重建。图4 光场成像模型图5 主动光场高动态三维测量3.3 DMD投影机与双轴MEMS激光扫描投影机的光线模型标定与三维测量基于微机电系统(MEMS)激光扫描的投影机以小型化、大景深的优势被应用于条纹投影测量系统,如图6(a)所示。但由于其依赖激光点的双轴MEMS扫描投影图案,不依赖镜头成像,透视投影模型表征会存在一定误差。此外, DMD等依赖镜头成像的投影机,大光圈设计也会影响小孔透视投影模型的表征精度。对此,课题组采用光线模型表征投影机[4],并提出了一种基于投影机光线模型的条纹投影三维测量系统标定方法,该方法根据双轴MEMS投影的正交相位对光线进行识别追踪,利用投影光线与相机构建的三角测量实现了三维重建。进一步发现:由于投影光线的相位一致性特性,光线模型可显著抑制系统非线性响应引起的测量误差,图6(b)展示了单目系统在3步相移条件下(未额外矫正非线性响应),分别使用透视投影模型与光线模型对石膏雕塑的三维重建结果,可见光线模型对非线性响应影响具有免疫性。图6 双轴MEMS激光扫描投影原理和石膏雕塑三维重建结果(3步相移,左图为透视投影模型,右图为光线模型)3.4单轴MEMS激光扫描投影机光线模型标定与三维测量单轴MEMS投影机将激光点扫描拓展为面扫描大幅提升了投影速率,可应用于动态测量。针对单轴MEMS投影机无透镜结构使得针孔模型不适用、单向投影无法提供正交相位特征点的问题,课题组提出一种基于等相位面模型的系统标定方法[5],推导出了相机反向投影射线与该等相位面交点处的三维坐标值与相位值间新的映射函数,实现了快速三维重建。图7展示了使用高速相机搭建的单目测量系统和重建场景,投影采集速率为1000 frame/s,采用4步相移与雷码图相位展开,三维重建速率为90 frame/s。后续为适应更高速率测量应用,可将单目扩展为双目或多目系统,采用单帧解调相位和多极线约束相位展开等方法减少投影图像数量,提升三维测量速率。图7三维测量系统与动态重建场景3.5大畸变镜头成像的光线模型标定与三维测量针对传统低阶多项式不能完备表征大畸变镜头的问题,课题组采用光线模型表征大畸变镜头相机成像,并提出一种完全脱离对相机和投影机内参依赖(透视模型依赖相机与投影机内参)的光线与条纹相位映射的三维重建方法。通过直接标定相机光线与条纹相位的倒数多项式映射系数,避免了繁琐耗时的对应点搜索与光线插值操作。图8为装配4 mm广角镜头的光线标定结果与标准球三维测量结果,可见由于广角镜头畸变较大,光线模型较透视模型重建质量有所提升。图8 广角镜头光线标定与标准球三维测量数据的拟合误差分布(a)透视投影模型,(b)光线映射模型四、总结光线模型通过确定所有像素点所对应光线方程的参数实现标定与成像表征,从而避免了对复杂成像(投影)系统的结构分析与建模,解决了特殊条纹投影三维测量系统的标定与重建问题,同时在条纹投影三维测量的系统非线性相位误差抑制和精度提升上展示出优异性能。在结构光三维测量的未来发展中,可进一步扩展光线模型三维测量的方法与应用,提升测量精度、效率与通用性,解决各类特殊复杂场景中的应用测量问题。参考文献[1] Baker S, Nayar S K. A theory of catadioptric image formation[C]//Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), January 7, 1998, Bombay, India. New York: IEEE Press, 1998: 35-42.[2] Yin Y K, Wang M, Gao B Z, et al. Fringe projection 3D microscopy with the general imaging model[J]. Optics Express, 2015, 23(5): 6846-6857.[3] Cai Z W, Liu X L, Peng X, et al. Ray calibration and phase mapping for structured-light-field 3D reconstruction[J]. Optics Express, 2018, 26(6): 7598-7613.[4] Yang Y, Miao Y P, Cai Z W, et al. A novel projector ray-model for 3D measurement in fringe projection profilometry[J]. Optics and Lasers in Engineering, 2022, 149: 106818.[5] Miao Y P, Yang Y, Hou Q Y, et al. High-efficiency 3D reconstruction with a uniaxial MEMS-based fringe projection profilometry[J]. Optics Express, 2021, 29(21): 34243-34257.课题组简介:本文作者:刘晓利 ,杨洋 ,喻菁 ,缪裕培 ,张小杰 ,彭翔 ,于起峰 ;深圳大学物理与光电工程学院深圳市智能光测与感知重点实验室。以于起峰院士领衔的深圳大学智能光测图像研究院主要研究方向包括大型结构变形与大尺度运动测量、超常光学测量与智能图像分析、计算成像与三维测量以及多传感器融合感知与控制等。
  • 3i动物活体成像|"多模态活体动物宏微尺度综合成像系统"国重项目启动会在西安顺利召开
    根据哈尔滨工业大学(威海)检测与控制研究中心公众号发布:2024年4月20日,由国家自然科学基金委员会中国21世纪议程管理中心指导,苏州国科医工科技发展(集团)有限公司主办的国家重点研发计划“基础科研条件与重大科学仪器设备研发”重点专项(定向项目)“多模态活体动物宏微尺度综合成像系统”项目启动会暨实施方案论证会在西安顺利召开该项目由苏州国科医工牵头承担,华东光电集成器件研究所、中国科学院上海技术物理研究所、哈尔滨工业大学(威海)、东南大学、中国科学院广州生物医药与健康研究院、苏州国科视清医疗科技有限公司、中国科学院福建物质结构研究所、南京医科大学、工业和信息化部电子第五研究所共同参与,进行协同攻关。哈尔滨工业大学(威海)作为课题承担单位,负责课题三多模态活体动物宏微尺度综合成像系统光声/超声成像模块研制的科研攻关工作。图:参会人员合影现场专家及项目组成员中国21世纪议程管理中心裴志永处长、中国科学院主管业务局相关处室负责同志出席会议并讲话,中国科学院生物物理研究所韩玉刚研究员、中国仪器仪表学会分析仪器分会吴爱华秘书长作为责任专家出席会议,国科大杭州高等研究院王跃明教授、复旦大学他得安教授、哈尔滨工业大学刘绍琴教授、微光夜视技术重点实验室程宏昌研究员、西北大学樊海明教授、中国科学院国家天文台董惠琴高级会计师应邀作为专家参与项目实施方案评审。项目负责人付威威研究员、各课题负责人以及项目技术骨干等30余人参与本次会议。会议由中国科学院苏州生物医学工程技术研究所科技发展部业务主管白启帆主持。图:启动会现场项目负责人付威威研究员首先代表项目组汇报了项目的实施方案、技术路线和研究方法等。华东光电集成器件研究所、中国科学院上海技物所、哈工大(威海)、苏州国科医工、东南大学课题负责人/技术骨干分别汇报了课题的研究内容及具体实施方案图:项目负责人付威威研究员汇报图:各课题汇报专家组认为本项目的立项体现了国家对高端科学仪器的重视,就关键技术攻关、系统集成开发、应用示范、知识产权、财务管理等要点给出了建设性意见。专家组肯定了项目及课题的实施方案,一致认为项目整体实施方案内容详实,覆盖了任务书的技术指标要求,方案合理可行,风险可控,同意通过实施方案评审。图:专家组现场点评和指导中国21世纪议程管理中心裴志永处长对项目的立项获批表示祝贺,并对项目管理、经费执行等提出了要求。付威威研究员表态将认真履行好牵头单位责任,组织、推进、完成好项目任务,为高端科学仪器活体动物科学成像系统的国产替代贡献力量,并再次对各级部门、领导、专家、项目组同仁给予的支持表达了衷心的感谢。图:中国21世纪议程管理中心裴志永处长现场点评和指导哈尔滨工业大学(威海)检测与控制研究中心孙明健教授团队承担了课题三多模态活体动物宏微尺度综合成像系统光声/超声成像模块研制的科研攻关工作,将针对光声/超声高分辨率多模态硬件模块设计与搭建和光声/超声高分辨率多模态成像技术研发两个主要内容开展研究,通过光声/超声成像模块的研发实现高度集成的动物信息可视化功能,为动物成像系统获取实时精确的多模态影像服务。
  • 基于Pμ SL 微尺度3D打印的三维微柱阵列电极
    微芯片电化学检测系统(microchip-based electrochemical detection system, μEDS),是一种基于电化学方法与微流控技术的检测平台,其具有高灵敏度、极少试剂消耗、快速检测、可适性高、自动化等优点,常用于现场实时应用场景,比如床边检测等。此类芯片中核心组件是微电极,其检测性能尤为关键。传统的微电极主要是二维或平面式的结构,如环状、带状、平板式。另一方面,具有三维结构的微电极因其更大的反应面积和优异的检测灵敏度已获得越来越多研究学者的关注。微尺度3D打印技术的出现,使得三维微柱阵列电极的实现变得更加便捷、快速、高效。PμSL(Projection Micro Stereolithography,面投影微立体光刻)是一种面投影微尺度超高精度光固化增材制造技术,使用高精度紫外光刻投影系统,将需要打印的三维模型分层投影至树脂液面,分层光固化成型并逐层累加,最终从数字模型直接加工得到立体样件。该技术具有打印精度高、跨尺度加工、成型效率高、制造成本低等突出优势,被认为是目前最具有前景的三维微细结构加工技术之一。图1:PμSL技术原理示意图通过结合软光刻以及金属沉积技术,PμSL微尺度 3D打印技术近期在电化学检测领域取得系列成果。其中的微电极的制备过程大致为:通过PμSL微尺度3D打印技术打印得到三维微柱阵列模具,然后通过PDMS二次翻模得到PDMS材质的三维微柱阵列,最后再经过磁控溅射等金属沉积方式将金属比如金沉积在三维微柱结构的表面作为导电层以形成最终的微柱电极。此外,还可选择性地在电极表面修饰Pt-Pd/多层碳纳米管等其他改性物质以提高电化学检测性能。研究一:基于微柱阵列电极的生物标记物高灵敏度检测研究摘要:微柱阵列电极因其高质量运输、低检测极限以及微型化的特点被广泛用于电化学检测领域。该研究工作阐述了表面镀金的PDMS基微柱阵列电极的制备、数值仿真、表面改性以及表征。9×10的微柱阵列排布在0.09cm2的区域内,其中微柱的高度分别为100 μm,300 μm 和500 μm。微柱阵列电极是使用PμSL微尺度3D打印技术与软光刻相结合的方法制备而得,通过SEM和循环伏安法进行表征测试。实验结果显示,无论扫描速率的高低,高度值更大的微柱有利于提高电流密度。Pt-Pd/多层碳纳米管材料涂覆可进一步提高微柱阵列电极的电化学检测性能。相较于平板式电极,微柱阵列电极的电化学检测灵敏度是前者的1.5倍。高度500 μm的Pt-Pd/多层碳纳米管改性的微柱阵列电极可用于检测肌氨酸(一种前列腺癌的生物标记物),其线性范围和检测极限分别是5-60 μM 和1.28 μM。这个检测范围覆盖了肌氨酸在人体组织的浓度区间(0-60 μM)。因其更高的微柱高度和更大的比表面积,微柱阵列电极比平板式电极获得了更好的检测性能。该研究工作为高检测灵敏度的微柱阵列电极在低丰度分析物的检测应用提供了有效的指导。图2:微柱阵列电极的制备过程示意图及改性电极和电化学检测中典型的三电极式简易传感装置论文信息:DOI: 10.1039/d0ra07694e.研究二:动态微流体中微柱阵列电极的电化学检测研究摘要:高集成度、高灵敏度、快速分析、极小的试剂消耗等优点促使μEDS备受学术界的关注。微小化的工作电极是μEDS的核心部件,其性能决定了整个μEDS的检测表现。相比于传统的微电极形貌,如带状、环状、圆片状,三维微柱阵列电极因其更大的反应面积,具有更高的响应电流和更低的检测极限。在该研究工作中,采用数值仿真研究了μEDS的检测性能以及三维微柱的形貌和流体的动力学参数,包括微柱的形状、高度以及排列方式和反应溶剂的流速。μEDS的尾端效应在基于预设的电流密度参数下也进行了定量分析。此外,通过结合PμSL微尺度3D打印技术与软刻蚀的方法制备的PDMS基三维微柱阵列电极与微通道集成,用于研究电化学检测。循环伏安法和计时电流法测试的结果表明,实验数据与模拟数据吻合较好。此研究为μEDS的参数设计提供了指导性建议,所使用的方案亦可适用或借鉴于分析和优化基于纳米芯片的电化学检测系统(nanochip-based electrochemical detection system, nEDS)。图3:μEDS和微柱阵列的示意图以及微柱阵列的形貌参数论文信息:DOI:10.3390/mi11090858.上述研究中微柱电极结构模具均采用PμSL微尺度3D打印技术加工,所采用的加工设备均为摩方精密(BMF, Boston Micro Fabrication)公司10 μm光学精度设备P140,其最大打印尺寸为19.2mm (L)×10.8mm (W)×45mm (H),打印层厚为 10~40 μm。图4:BMF公司10微米系列精度设备P140/S140
  • 基于Pμ SL 微尺度3D打印的三维微柱阵列电极
    微芯片电化学检测系统(microchip-based electrochemical detection system, µEDS),是一种基于电化学方法与微流控技术的检测平台,其具有高灵敏度、极少试剂消耗、快速检测、可适性高、自动化等优点,常用于现场实时应用场景,比如床边检测等。此类芯片中核心组件是微电极,其检测性能尤为关键。传统的微电极主要是二维或平面式的结构,如环状、带状、平板式。另一方面,具有三维结构的微电极因其更大的反应面积和优异的检测灵敏度已获得越来越多研究学者的关注。微尺度3D打印技术的出现,使得三维微柱阵列电极的实现变得更加便捷、快速、高效。PμSL(Projection Micro Stereolithography,面投影微立体光刻)是一种面投影微尺度超高精度光固化增材制造技术,使用高精度紫外光刻投影系统,将需要打印的三维模型分层投影至树脂液面,分层光固化成型并逐层累加,最终从数字模型直接加工得到立体样件。该技术具有打印精度高、跨尺度加工、成型效率高、制造成本低等突出优势,被认为是目前最具有前景的三维微细结构加工技术之一。图1:PμSL技术原理示意图通过结合软光刻以及金属沉积技术,PμSL微尺度 3D打印技术近期在电化学检测领域取得系列成果。其中的微电极的制备过程大致为:通过PμSL微尺度3D打印技术打印得到三维微柱阵列模具,然后通过PDMS二次翻模得到PDMS材质的三维微柱阵列,最后再经过磁控溅射等金属沉积方式将金属比如金沉积在三维微柱结构的表面作为导电层以形成最终的微柱电极。此外,还可选择性地在电极表面修饰Pt-Pd/多层碳纳米管等其他改性物质以提高电化学检测性能。研究一:基于微柱阵列电极的生物标记物高灵敏度检测研究摘要:微柱阵列电极因其高质量运输、低检测极限以及微型化的特点被广泛用于电化学检测领域。该研究工作阐述了表面镀金的PDMS基微柱阵列电极的制备、数值仿真、表面改性以及表征。9×10的微柱阵列排布在0.09cm2的区域内,其中微柱的高度分别为100 μm,300 μm 和500 μm。微柱阵列电极是使用PμSL微尺度3D打印技术与软光刻相结合的方法制备而得,通过SEM和循环伏安法进行表征测试。实验结果显示,无论扫描速率的高低,高度值更大的微柱有利于提高电流密度。Pt-Pd/多层碳纳米管材料涂覆可进一步提高微柱阵列电极的电化学检测性能。相较于平板式电极,微柱阵列电极的电化学检测灵敏度是前者的1.5倍。高度500 μm的Pt-Pd/多层碳纳米管改性的微柱阵列电极可用于检测肌氨酸(一种前列腺癌的生物标记物),其线性范围和检测极限分别是5-60 μM 和1.28 μM。这个检测范围覆盖了肌氨酸在人体组织的浓度区间(0-60 μM)。因其更高的微柱高度和更大的比表面积,微柱阵列电极比平板式电极获得了更好的检测性能。该研究工作为高检测灵敏度的微柱阵列电极在低丰度分析物的检测应用提供了有效的指导。图2:微柱阵列电极的制备过程示意图及改性电极和电化学检测中典型的三电极式简易传感装置研究二:动态微流体中微柱阵列电极的电化学检测研究摘要:高集成度、高灵敏度、快速分析、极小的试剂消耗等优点促使µEDS备受学术界的关注。微小化的工作电极是µEDS的核心部件,其性能决定了整个µEDS的检测表现。相比于传统的微电极形貌,如带状、环状、圆片状,三维微柱阵列电极因其更大的反应面积,具有更高的响应电流和更低的检测极限。在该研究工作中,采用数值仿真研究了µEDS的检测性能以及三维微柱的形貌和流体的动力学参数,包括微柱的形状、高度以及排列方式和反应溶剂的流速。µEDS的尾端效应在基于预设的电流密度参数下也进行了定量分析。此外,通过结合PμSL微尺度3D打印技术与软刻蚀的方法制备的PDMS基三维微柱阵列电极与微通道集成,用于研究电化学检测。循环伏安法和计时电流法测试的结果表明,实验数据与模拟数据吻合较好。此研究为µEDS的参数设计提供了指导性建议,所使用的方案亦可适用或借鉴于分析和优化基于纳米芯片的电化学检测系统(nanochip-based electrochemical detection system, nEDS)。图3:μEDS和微柱阵列的示意图以及微柱阵列的形貌参数上述研究中微柱电极结构模具均采用PμSL微尺度3D打印技术加工,所采用的加工设备均为摩方精密(BMF, Boston Micro Fabrication)公司10 μm光学精度设备P140,其最大打印尺寸为19.2mm (L)×10.8mm (W)×45mm (H),打印层厚为 10~40 μm。图4:BMF公司10微米系列精度设备P140/S140官网:https://www.bmftec.cn/links/10
  • 2010年微纳尺度分离和分析技术学术会议召开
    2010年微纳尺度分离和分析技术学术会议暨第六届全国微全分析学术会议召开  仪器信息网讯 由国家自然科学基金委、中国化学会联合主办,复旦大学和上海交通大学联合承办的“2010年微纳尺度分离和分析技术学术会议暨第六届全国微全分析学术会议”于2010年10月18日在上海复旦大学召开。会议主题为“科技让生活更美好,微纳让科技更奇妙”。400余名国内同行和20余名国外专家参加,将讨论交流微/纳尺度分离、微全分析、以及微/纳技术在化学生物学和生物医学领域中的应用等学术问题。会议现场本次学术会议倡议者杨芃原教授致辞  开幕式上,本次学术会议倡议者杨芃原教授致开幕辞。在大会报告环节,张玉奎院士、刘爱群教授、林炳承研究员、刘冲教授、蒋兴宇研究员、庄乾坤教授分别作报告。中国科学院大连化物所 张玉奎院士报告题目:定量蛋白质组分析的挑战  张玉奎院士在其报告中详细阐述了近年来发展的多种蛋白质组分离鉴定新技术新方法:  在高丰度蛋白质去除方面,发展了基于多维阵列液相色谱的通用型高丰度蛋白质去除技术;一次运行可去除58 种高丰度蛋白质,并将样品中蛋白质的鉴定数目提高2倍以上。此外,还发展了基于蛋白质印迹材料的高丰度蛋白质选择性去除技术和基于蛋白质均衡器技术的降低蛋白质丰度分布范围的方法。利用上述策略,均显著提高了低丰度蛋白质的鉴定能力。  在低丰度蛋白质富集方面,研制了多种固载金属亲和色谱材料,包括无机有机杂化整体材料、聚合物颗粒和介孔材料,以及金属氧化物气溶胶和复合金属氧化物微球,实现了磷酸化肽的高选择性富集。此外,还研制了亲水材料和硼酸功能化材料,实现了糖肽的高选择性富集。  在蛋白质分离鉴定平台方面,研制了多种固定化酶反应器,实现了蛋白质组的在线快速酶解。研制了多种色谱柱和毛细管等电聚焦柱,提高了蛋白质和多肽分离的柱效和分辨率。建立了多维液相色谱、多维毛细管电泳和多维芯片毛细管电泳分离方法;通过与样品预处理或在线酶解的集成,不仅提高了系统的分析通量,而且提高了蛋白质鉴定的可靠性。  在液质联用高灵敏度鉴定方面,合成了新型磁性微纳米材料,提高了基体辅助激光解吸离子化质谱对蛋白质鉴定灵敏度。发展了针对磷酸化肽的衍生技术,可不经过富集,直接实现磷酸化肽的高灵敏度鉴定。此外,还建立了多种质谱数据处理新方法。新加坡南洋理工大学 刘爱群教授报告题目:A Breakthrough Tuning Point from Microfluidics to Optofluidics  微流控技术(microfluidics) 是在微流控芯片上实现微量化学或生物样品的合成与分析等操作的技术,微流控光学技术(Optofluidics)则是在微观尺度上通过操控流体,探索微流控系统与光子的相互作用规律,目的是开发具有可调化、集成化和微型化的微流控光学器件与系统。微流控光学技术用于光学器件的研究是可谓是一次全新的突破。中国科学院大连化学物理研究所 林炳承研究员报告题目:功能化微流控芯片实验室的构建  林炳承研究员长期从事毛细管电泳和微流控芯片的研究,并以医学诊断和药物筛选为研究和应用的主要背景,在理论、技术平台、方法发展及重大应用等方面取得了一系列的成就,在国际、国内相关领域产生了重要影响。  许多主要的分析化学操作模式已经在微流控芯片上实现,从原理上讲,几乎所有的分析化学操作模式均可以在微流控芯片及其周边完成。微流控芯片分析化学实验室具有微型、可控的操作单元灵活组合规模集成的本质特征,还可用于复杂体系从而在系统层面上认识事物和解决问题的能力。构建和完善微流控芯片分析化学实验室应当成为未来十年、二十年中分析化学领域发展和研究的主流趋势之一。  以细胞生物学的系统研究为基本目标的微流控芯片细胞实验室正呼之欲出。微流控芯片研究的热点正逐步转向构建各种不同类型的芯片实验室,从化学、生物到信息、光学、材料,林林总总。微流控芯片中流体的流动通常通过通道或液滴实现,通道和液滴是微流控芯片实验室的重要组成部分。  林炳承研究员课题组通过微泵微伐对通道网络中流体的控制,实现了大样本量线虫的衰老研究,显示了环境、营养等因素对线虫寿命的显著影响,对人类衰老的研究具有借鉴作用,有望在此基础上构建微流控芯片衰老研究实验室。借助于大规模液滴操控技术,实现了不同生物材料的液滴内合成,是微流控芯片材料实验室的一种理想模型。大连理工大学微系统研究中心 刘冲教授报告题目:聚合物多层微流控芯片及新型无源仿生微泵的设计与制作  刘冲教授设计与制作了一种集成浓度梯度发生器和细胞培养阵列的多层微流控芯片,利用厚胶光刻工艺和干法刻蚀工艺分别制作了SU-8 胶模具和硅模具,浇注PDMS制得芯片。  该芯片由4 层PDMS 键合而成:第一层可以实现细胞培养及检测,水滴状微结构为细胞培养腔,其一端具有微柱阵列,相邻微柱间隙为5μm,用于拦截细胞;第二层为浓度梯度发生器,从两个入口分别注入含药物和不含药物的培养液,经过混合,在通道末端形成5种不同浓度的药物溶液,经通孔垂直进入第一层的细胞培养腔;第三层为30μm 的微阀薄膜;第四层为气体通道层,与第三层共同构成微阀,用于对浓度梯度发生器和细胞培养腔之间连通与关断的控制。  利用制作的芯片进行了A549肺腺癌细胞的培养实验,该细胞可很好地贴壁生长,为研究不同浓度的抗癌药物对癌细胞的抑制作用提供了条件。  刘冲教授设计与制作了一种新型无源仿生微泵,该泵具有植物通过气孔蒸腾进行水分运输的优势。其蒸腾速率远大于自由水面,可以获得较高液体流速;运输水分是一个被动运输的过程,无需外部能源;可以通过调整参与蒸腾的微孔开度或微孔数量来控制水分流量;可以持续不间断进行水分运输,工作时间长。国家纳米科学中心 蒋兴宇研究员报告题目:微流控芯片生化分析及读出技术  建立在芯片系统中的生化分析具有自动化、即时现场检测、快速等特点,其中很多都应用到了微流控技术。由于微流控芯片分析中所需的样品、试剂量少,集成度高,使其在各类芯片分析中都成为一项重要的技术。但是在芯片分析微型化的进程中,遇到的一个最重要的问题就是信号的读出技术,很多芯片使用本身体积很小,但是由于检测仪器的体积过大而限制了其微型化的相关应用。随着材料科学的快速发展,出现了很多具有优良性能的材料以及基于这类材料的新型检测方法。这些方法与微流控技术的结合,将会使微流控芯片的检测效率更加提高。  利用静电纺丝制备的纳米纤维薄膜具有很高的比表面积,大大提高了生物大分子在表面的吸附,结合微流控芯片,纳米纤维薄膜可以提高固相免疫检测的灵敏度。蒋兴宇研究员课题组建立的新型HIV免疫检测方法可以提高检测的灵敏度、效率。一般需要4小时或更长时间才可以完成的试验减少到8分钟之内,将多种物质之间的相互作用同时加速进行,大大加快了检测物质相互作用的速度,并且减少了疾病检测以及检测物质相互作用试验的时间、降低对于试验条件的要求。  蛋白质免疫印迹分析是分子生物学和细胞生物学研究中的一个重要方法,蛋白质免疫印迹分析能够检测细胞中目标蛋白质的含量,并且可以得到目标蛋白质的近似分子量。但是传统的蛋白质免疫印迹分析技术的缺点是一次实验只能检测到细胞中的一种蛋白质,并且会消耗相对大量的抗体溶液。然而大多数的生物学研究中都需要对细胞中的多种蛋白质含量进行监测,这导致生物学家往往需要收集大量细胞来进行多次免疫印迹分析,并且会消耗较大量的昂贵的抗体溶液。开发新型的蛋白质免疫印迹技术一直备受生物技术产业界和生物学家关注。  蒋兴宇研究员课题组将微流控技术和传统的免疫印迹技术相结合,解决了以上难题。该方法利用SDS-PAGE凝胶电泳将细胞中的蛋白质按分子量大小分离为蛋白质条带,然后将凝胶中的蛋白质条带在电场的作用下转移到PVDF高分子膜上。在传统的免疫印迹分析技术中,后续的免疫检测会将这张PVDF印迹膜直接浸泡在抗体溶液中进行免疫反应。本方法创造性的将印迹了蛋白质条带的PVDF膜作为PDMS微流控芯片的基底,微流控芯片上平行的排列了很多微流管道,微流管道的方向与膜上蛋白质条带方向垂直。这样,通过在不同的微流管道中通入针对不同蛋白质的抗体,可以实现一次实验检测细胞中的多种蛋白质(n10),并且将抗体溶液的用量从原来的大约1毫升降低到小于1微升。实验结果表明,这种新方法的蛋白质检测灵敏度不亚于传统的免疫印迹方法。  这种微流控免疫印迹的新方法可以大大的降低免疫印迹实验中的人力物力消耗。并且所需的微流控芯片成本低廉、操作简单。该方法有望运用于细胞信号通路、蛋白质组学等研究。国家自然科学基金委员会化学科学部主任 庄乾坤教授报告题目:分析化学资助现状与思考  庄乾坤教授介绍了自然科学基金项目系列、各类项目资助侧重点、科学基金最新动向、分析化学进一步发展等内容。国家自然科学基金主要的定位是:引导源头创新、支持基础研究;强调三大战略(源头创新、科技人才和创新环境),资助种类已形成了三大系列(研究项目系列、人才培养系列、科研环境系列)。科学基金的新动向:青年基金纳入到人才基金板块,并降低资助额度(约18~20万/项),扩大青年基金的资助率,希望逐步达到30%;控制面上项目的资助率约为申请面上项目总数的1/5,并增加资助额度,近两年将逐步达到40万/项;更加侧重基础、更加侧重人才、更加侧重前沿。  各类项目资助侧重点分别是:面上项目起到全面协调的作用,强调可持续、创新;重点项目鼓励学科前沿分析发展;重大项目强调集成、力争出重大成果;杰青项目的目标是培养学科带头人;重大研究计划保护创新;国际合作项目注重强强合作、平等互惠、以我为主;仪器专项则是实现创新的手段。  近两年,在基金委的支持下,已培养了一大批创新的团队和人才,比如:国家实验室、国家重点实验室、省部属重点实验室、重点学科、优秀团队和973项目首席科学家。  分析化学进一步发展的问题:据AC统计,1996年-2008年中国分析化学论文数在全球排名已达第二位,仅次于美国;但在引用因子和被引用数目上还低于美国、日本、德国等国家;尤其是每篇论文的被引用次数还低于很多国家。所以中国的分析化学研究还有待再上一个新台阶。  关于如何再上一个新台阶,庄乾坤教授谈到了几点思考。从分析化学的研究目标来说,是要追求“3S+2A”,3S即Sensitivity, Selectivity and Speediness灵敏度、选择性、高速度;2A为Accuracy, Automatics,准确度、自动化。从研究创新方面来说,庄乾坤教授强调3点:1)引入物理学新概念和新技术;2)创建分析仪器装置;3)瞄准国际公认的有影响的重大科学问题。庄乾坤教授还提出了理论基础的学科源头论,认为数学是源头,物理是上游,化学是中游,生命科学、环境等应用领域是下游,而一个学科的发展准则是“下游”离不开“上游”,“上游”可独立于“下游”。  本次会议历时2天,含特邀报告、专题报告、墙报等交流形式,是我国微/纳技术近十年研究成果的一个阶段性总结,也将对未来该技术的发展方向以及对其他学科的影响进行展望。
  • 全国微纳尺度生物分离、微全分析系统及国际微流控分析学术论坛会议报告
    仪器信息网讯 由国家自然科学基金委和中国化学会联合主办, 浙江省自然科学基金委、浙江省化学会协办,浙江大学承办的2012年全国微纳尺度生物分离分析学术会议、第七届全国微全分析系统学术会议暨第三届国际微流控分析(西湖)学术论坛(MICRO 2012)于2012年4月23-25日在杭州浙江大学紫金港校区召开。  本届会议历时3天,分设色谱分析、毛细管电泳、微纳分析、多相微流控、微纳反应器、微纳生化分析、细胞微流控微纳系统应用及微流控青年论坛共8个分会场,共80多个分会报告。来自全国高等院校、科研院所等单位的多位教授、学者分别就各论坛主题在学术研究及相关仪器研制和应用方面进行了报告,与会人员进行了热烈的交流。仪器信息网编辑从80个精彩报告中选取两个进行了重点关注。报告人:东南大学 陆祖宏教授报告题目:一种新的高通量DNA测序芯片的研制及应用研究  陆祖宏教授在报告中从五个方面讲解了“高通量DNA测序芯片的研制及应用研究”:新一代的DNA测序技术、AG100型DNA测序技术、高通量DNA测序芯片、AG100的应用实例、三代DNA测序技术展望。  陆祖宏教授在报告中说到,新一代DNA测序技术是近五年来发展最快、影响最大、竞争最为激烈的高技术研究领域之一,可同时对大量核酸片段进行并行测序,大幅度降了DNA测序的成本,这将会改变生物医学研究的方式,最终使临床医学产生变革。陆教授同时表示新一代DNA测序技术还不能满足生命科学与临床应用的需求,如成本高、测序速度慢、样品需要量大、测序误差较大、读长短等问题。针对这些问题,陆教授从方法和仪器两个方面进行研究,研制出AG100型DNA测序仪,其具有分辨率(高通量)高、荧光信号拍摄速度快、试剂消耗量小等优点。对DNA测序技术的展望,陆教授表示,探索基于分子器件的第三代单分子DNA测序技术将是未来DNA测序技术的研究方向之一。报告人:北京大学 黄岩谊教授报告题目:The application of deformable buttons on-chip  黄岩谊教授介绍了如何把一个小尺度的一个动态微阀结构用到芯片中,主要是研究分子与分子之间的相互作用的测量,以及一些不稳定的相互作用,从已经发表的或即将发表的四个方面研究进行了介绍,包括细胞动态迁移的定量研究等。  本次会议共有50个学者参加了墙报展览,与会人员参观学习并参与评选“方肇伦优秀青年学者报展奖”和“优秀报展奖”,评选结果将在会议闭幕式上宣布。与会人员参观墙报展  附录:大会会议议程及报展目录.pdf
  • 利用微尺度3D打印和矿物涂层技术助力功能性微流控研究
    多孔材料(如岩石)及其与流体的相互作用广泛存在于油气资源开采、地热能提取、二氧化碳封存、甚至行星探测中的地外资源利用(水提取)等应用中,然而,大多数岩石内部孔喉形态不规则,表面物理化学特性如表面润湿性也比较复杂。因此,探索岩石内部液体的流动过程,尤其是微尺度下的流固交互作用,仍然具有挑战性。近年来,高精度3D打印技术的迅速发展使得复现这种复杂的多孔结构变得可能。借助流动可视化手段,3D打印的微流控模型可以用于直接观察流体流动的动态过程。但是,目前打印材料仅限于光固化聚合物及其衍生物,其理化特性包括其矿物化学、晶体结构、表面润湿性等与天然岩石(如碳酸岩)存在显着差异。所有这些特性都对多孔介质中的流体相变和多相流动过程有着重要影响。近日,哈利法大学的张铁军教授团队基于面投影微立体光刻3D打印技术(PμSL,深圳摩方材料科技有限公司nanoArch S130), 通过表面矿物涂层的方法制备出一种岩石微流控模型。这种新颖的制备方法包括三个主要步骤,如图1所示:(i)使用纯光敏树脂(HDDA)打印具有三维岩石孔隙结构的微模型;(ii)在微模型的内表面植入碳酸钙纳米颗粒;(iii)以植入的纳米颗粒为核,在微模型内部原位生长碳酸盐晶体。该模型可以成功复现天然岩石的三维孔隙结构和表面矿物学特性。该成果以“Empowering Microfluidics by Micro-3D Printing and Solution-based Mineral Coating”为题发表在Soft Matter上,第一作者是哈利法大学李红霞博士。图1. 岩石微模型的制备过程在该工作中,张教授的团队利用高精度3D打印技术制备了不同用途的微模型,包括微流控器件和岩石微模型。微流控器件由三个平行通道组成(请参见图2a):每个通道的宽度分别为116±2、174±2和305±2 µm。在图2b中,岩石微模型是根据天然碳酸岩的CT扫描照片打印而成。在扫描电镜下,我们可以看到岩石微模型可以很好的复现真实岩石中狭窄的孔喉结构,并且也可清晰地观测到在微模型表面原位生长的碳酸盐晶体。此外,XRD光谱也证实该微模型表面的矿物成分是碳酸钙晶体,与天然碳酸岩相同。这种碳酸盐涂层厚度大约在2~10微米,仍然使微流控器件保持了一定的透光性,有利于流体的可视化研究。图2. 3D打印的微模型在表面涂层后的形貌 (a,b)扫描电镜下微模型的孔喉结构及表面碳酸盐晶体:(a)在微流控模型内表面以及(b)三维岩石微模型内表面。(c)表面涂层的XRD光谱。图3. 利用微流控模型的流动可视化研究:案例(a)水-油/水-气在岩石微模型内部的驱替过程;案例(b,c)水在孔喉内部的蒸发过程。基于所制备的微模型,该团队通过对水/气和水/油的驱替过程进行直接成像(如图3a), 表征了固体表面润湿性对流体交界面和流动路径的影响等。此外,他们还观测到液体在多孔介质里面的蒸发相变过程(图3b),包括不同大小空隙内蒸发的难易程度、喉部液膜的渐薄和破裂过程等。总之,该工作为制备功能性多孔材料开辟了一条新途径。据我们所知,这是第一次结合高分辨率3D打印和基于溶液的内部涂层方法,制备“真实的”岩石微模型。这种方法也具有很强的通用性:通过更改涂层材料和三维空隙结构,此类功能性微模型也可以很好地推广到生物医学、软体机器人、航空航天和其他新兴应用。论文链接:https://pubs.rsc.org/en/content/articlelanding/2020/sm/d0sm00958j/unauth#!divAbstract(以上相关介绍内容由阿联酋哈利法大学李红霞博士提供) 上述研究工作涉及的微尺度3D打印技术由深圳摩方材料科技有限公司提供,因此摩方公司就这一创新型成果对李红霞博士进行了更进一步的访谈,以下为部分内容:1、BMF:能概括分享一下近期在《Soft Matter》发布的岩心微流控案例吗?(开发过程、应用情况、行业影响等)BMF高精密3D打印在其中发挥了什么样的作用?李博士:在近期发表的这项工作中,我们提出了一种制造功能性微流控器件的新颖方法--通过集成微型3D打印和内表面涂层技术。在这项工作中,我们利用该方法已成功制备出广泛出现在油气研究中的人造岩心。利用高精密的3D打印系统,我们可以很好的复现岩石的孔隙结构,但是打印材料多数是光敏树脂,其物理化学性(包括表面润湿性、矿物学特性等等)能跟真正自然界的岩石差很多。于是,在我们的人造岩心制备过程中,我们首先通过3D打印技术复制由微CT扫描得到的碳酸盐岩的多孔几何结构,然后通过在打印的模型内部空隙表面生长碳酸盐晶体来模拟岩心真实的表面特性。这种功能性碳酸盐涂层只有几个微米,所以很好的保持了模型的光学透明度。所以,我们能够通过流动可视化方法,利用这些透明的模型帮助我们表征油水气等流体与岩石表面的交互作用,包括润湿性、毛细作用等流动和变化过程的影响等。这种利用表面功能性涂层结合微3D打印的制备方法,有利于打破打印材料的局限性,通过调节3D微结构和涂层配方等可以轻松地推广到其他新兴应用如生物医学等。2、BMF:您如何评价我们摩方的3D打印系统?对于您所在的科研领域所取得的科研/工作成果,发挥了多大的助力?李博士:摩方的打印系统可以提供高精度打印的同时实现大幅面打印。微流控器件的整体尺寸能到两厘米,可以很好的嵌入到流动可视化的实验系统当中,实用性很强。高精密3D打印系统可以轻松实现复杂三维结构,给我们提供了很大的设计和研究的自由度。在我们的研究当中,可以加工不同的表面微结构,进而控制流体与固体界面的交互作用。官网:https://www.bmftec.cn/links/7
  • 仿松针多级非对称结构超疏水表面多尺度液滴定向输运
    液滴的自发定向输运在芯片实验室、能源电力系统、油气输运、水收集和除湿等领域具有广泛的应用前景,其主要取决于表面形貌结构和化学组成的非对称性,具体表现为浸润性梯度、各向异性结构和曲率梯度等。液滴输运的速度和距离是判定输运效率的有效指标。合理的设计并制备表面结构是实现快速、长程的液滴自发定向输运的有效方法。然而,传统的加工技术加工精度较低、加工结构单一,很难满足结构性能要求。近日,大连理工大学冯诗乐副教授,受松针表面多级非对称结构启发,使用深圳摩方材料科技有限公司PμSL 3D打印技术(nanoArch S140),制备了仿松针多级非对称结构表面,实现了快速、长程的液滴自发定向输运。该研究以“Tip-inducedflipping of droplets on Janus pillars: from local reconfiguration to globaltransport”为题发表在国际顶级期刊《ScienceAdvances》上,为液滴的定向输运领域的发展提供了新的思路。论文第一作者为大连理工大学冯诗乐副教授,通讯作者为香港城市大学王钻开教授和巴黎高等物理化工学院David Quéré教授。图1 松针和仿松针多级非对称结构表面的形貌结构特征图2 仿松针多级非对称结构表面的形貌结构参数调控要点:研究者借鉴松针表面结构特征,设计并制备包括第一级的倾斜阵列结构、第二级的高度梯度结构和第三级的平面/曲面组合的半锥形结构的仿松针多级非对称结构表面。上述表面(图1)由nanoArch S140微尺度3D打印设备加工,使用材料为HTL耐高温树脂,打印层厚为10微米。阵列间距为300微米,尖锥倾斜角度β为70°,高度梯度α为20°,尖锥顶端大小为10-20微米。在打印过程中,通过精密刮刀刮除细小的气泡,来保障加工质量。同时,研究者还设计了仅包含倾斜阵列结构和半锥形结构的对照样品,与仅包含倾斜阵列结构和高度梯度结构的对照样品。通过nanoArch S140微尺度3D打印技术,实现了包括倾斜、高度梯度及平/曲面组合的复杂三维结构表面参数的精确调控及大规模制备(图2)。图3 仿松针多级非对称结构表面微液滴自发定向输运图4 仿松针多级非对称结构尖端效应要点:在凝结过程中,液滴先随机在表面凝结,然后向尖端汇聚,然后尖端液滴会在合并过程中重新配置,并从半锥形结构的平面旋转到曲面位置,随后合并的液滴会沿着高度增加的方向运动,进而实现从微观到宏观的多尺度液滴的定向输运,其液滴定向输运的速度可以达到10 cm/s。研究者发现液滴在合并过程中重新配置是非对称结构诱导的尖端效应导致的,并通过建立能量变化模型证明,当液滴尺寸大于结构尺寸时,液滴坐落于平面的系统能量大于坐落于曲面上的系统能量,从而揭示了液滴从平面向曲面运动的机理。研究者发现毫米级的液滴在合并过程中依然会从平面运动到弧面上,证明非对称结构诱导的尖端效应普遍适用于各种尺度的液滴。论文链接: https://advances.sciencemag.org/content/6/28/eabb4540/官网:https://www.bmftec.cn/links/10
  • 仿松针多级非对称结构超疏水表面多尺度液滴定向输运
    液滴的自发定向输运在芯片实验室、能源电力系统、油气输运、水收集和除湿等领域具有广泛的应用前景,其主要取决于表面形貌结构和化学组成的非对称性,具体表现为浸润性梯度、各向异性结构和曲率梯度等。液滴输运的速度和距离是判定输运效率的有效指标。合理的设计并制备表面结构是实现快速、长程的液滴自发定向输运的有效方法。然而,传统的加工技术加工精度较低、加工结构单一,很难满足结构性能要求。近日,大连理工大学冯诗乐副教授,受松针表面多级非对称结构启发,使用深圳摩方材料科技有限公司PμSL 3D打印技术(nanoArch S140),制备了仿松针多级非对称结构表面,实现了快速、长程的液滴自发定向输运。该研究以“Tip-inducedflipping of droplets on Janus pillars: from local reconfiguration to globaltransport”为题发表在国际顶级期刊《ScienceAdvances》上,为液滴的定向输运领域的发展提供了新的思路。论文第一作者为大连理工大学冯诗乐副教授,通讯作者为香港城市大学王钻开教授和巴黎高等物理化工学院David Quéré教授。图1 松针和仿松针多级非对称结构表面的形貌结构特征图2 仿松针多级非对称结构表面的形貌结构参数调控要点:研究者借鉴松针表面结构特征,设计并制备包括第一级的倾斜阵列结构、第二级的高度梯度结构和第三级的平面/曲面组合的半锥形结构的仿松针多级非对称结构表面。上述表面(图1)由nanoArch S140微尺度3D打印设备加工,使用材料为HTL耐高温树脂,打印层厚为10微米。阵列间距为300微米,尖锥倾斜角度β为70°,高度梯度α为20°,尖锥顶端大小为10-20微米。在打印过程中,通过精密刮刀刮除细小的气泡,来保障加工质量。同时,研究者还设计了仅包含倾斜阵列结构和半锥形结构的对照样品,与仅包含倾斜阵列结构和高度梯度结构的对照样品。通过nanoArch S140微尺度3D打印技术,实现了包括倾斜、高度梯度及平/曲面组合的复杂三维结构表面参数的精确调控及大规模制备(图2)。图3 仿松针多级非对称结构表面微液滴自发定向输运图4 仿松针多级非对称结构尖端效应要点:在凝结过程中,液滴先随机在表面凝结,然后向尖端汇聚,然后尖端液滴会在合并过程中重新配置,并从半锥形结构的平面旋转到曲面位置,随后合并的液滴会沿着高度增加的方向运动,进而实现从微观到宏观的多尺度液滴的定向输运,其液滴定向输运的速度可以达到10 cm/s。研究者发现液滴在合并过程中重新配置是非对称结构诱导的尖端效应导致的,并通过建立能量变化模型证明,当液滴尺寸大于结构尺寸时,液滴坐落于平面的系统能量大于坐落于曲面上的系统能量,从而揭示了液滴从平面向曲面运动的机理。研究者发现毫米级的液滴在合并过程中依然会从平面运动到弧面上,证明非对称结构诱导的尖端效应普遍适用于各种尺度的液滴。论文链接: https://advances.sciencemag.org/content/6/28/eabb4540/ 官网:http://www.bmftec.cn/smart
  • 时空多尺度神经环路活体成像技术
    成果名称时空多尺度神经环路活体成像技术单位名称北京大学联系人马靖联系邮箱mj@labpku.com成果成熟度□研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产成果简介:光学成像技术是研究系统神经生物学的一个极其重要的手段。其中,通过光学成像技术手段跟踪简单模式生物神经环路中的信息传递来指导研究高等动物神经系统的动力学机制,是破译大脑信息处理功能的最有效途径之一。但是,目前光学显微成像技术的最高时间分辨率处于几十毫秒量级,尚无法捕捉动作电位在神经环路中的快速精细运动。因此,对神经元、神经环路活体光学成像技术开展研究,同时实现高空间分辨率和高时间分辨率的显微成像十分必要。2012年,生命科学学院陶乐天研究员申请的&ldquo 时空多尺度神经环路活体成像技术&rdquo 项目获得了第四期&ldquo 仪器创制与关键技术研发&rdquo 基金的资助。在该基金的资助下,申请人课题组购置了关键配件,开展了相关实验,有力地推动了仪器的研制工作。课题组基于其成员在光学系统研制和成像技术领域的丰富经验,利用高性能sCMOS科学级相机和高速光学调制器件,采用图像分块、分时复用技术和自适应光学波前像差实时校正技术,成功研制了一套时间分辨率达到5毫秒、空间分辨率达到0.5微米的显微成像系统,并将该系统应用于模式生物(线虫)神经环路的活体成像实验研究中。应用前景:目前该项目已经顺利结题,相关成果正在神经科学基础研究中进行推广。这项技术在神经环路的结构、发育、形成、维护研究领域的应用,将为新一代神经精神疾病的诊断、治疗技术提供科学依据和新的思路。
  • “纳米尺度多场测量调控”专项启动 剑指微纳精密仪器
    2016年12月11日,国家重点研发计划“纳米科技”重点专项项目“纳米尺度多场物性与输运性质测量及调控”启动实施工作会议在深圳召开。南京大学祝世宁院士、中国科学技术大学杜江峰院士、上海纳米技术及应用国家工程研究中心何丹农教授等10余位项目咨询专家、科技部高技术研究发展中心代表、以及项目和课题承担单位的负责人和研究骨干参加了会议。  该项目由中国科学院先进技术研究院联合华南师范大学、南京大学和清华大学共同承担。项目旨在揭示光电、热电、磁电材料和器件的微观结构、局域响应和宏观性能的关联,分析铁电极化对光电转换的调控作用,界面和缺陷对热电输运的影响,以及微纳结构和磁电耦合的相互作用,发展基于多功能扫描探针的纳米测量与调控技术,在纳米尺度综合定量测量调控材料电学、光学、磁学、力学和热学多场物理及输运性质,并以此解决先进功能材料与器件的一系列关键科学问题,进而形成一系列原创、具有自主知识产权的新思想(如宏观微观协同调控测试)、新技术(如多功能扫描探针激励和多场原子力显微样品加载)、新方法(如跨尺度实验测试、数据采集、和计算模拟)和新发现(如光电、热电、磁电多场物性和耦合新机制),推动纳米技术、高速低能耗信息处理与存储、微电子器件、高效清洁能源以及精密仪器等产业和领域的发展。  科技部高技术研究发展中心代表对项目的执行和管理提出要求,强调了纳米科技重点专项项目“重立项、重过程、重验收”的基本原则,要求项目承担单位和研究人员增强责任感和使命感,强化项目组织实施,加强课题间的交流,立足学科领域发展前沿,力争在重大科学问题与关键技术问题上取得原创性突破。  项目负责人李江宇教授介绍了项目的整体情况,各课题负责人就课题的具体研究目标、实施方案、研究难点以及如何突破、下一步工作计划等进行了详细介绍。项目咨询专家就项目的研究目标、研究内容和技术方案等给予指导,对项目的执行和管理提出了指导性意见和建议,希望通过研发具有自主知识产权的多功能扫描探针的纳米测量与调控技术,为先进功能材料与器件方面的研究提供强有力的工具。
  • 东华大学朱美芳院士、张耀鹏教授 Adv. Sci.:3D打印仿生高强度、多尺度、高精度的生物活性牙冠
    牙釉质是一种高度钙化的硬组织,具有紧密有序的羟基磷灰石(HAp)纳米晶体排列结构,以满足其所需的力学强度和韧性等性能。目前可通过生物矿化、无机模板合成等方法仿生天然牙釉质的独特结构。然而,上述方法只能在纳米尺度、微米尺度或以粗糙的宏观形状实现单个水平面HAp的有序排列。且天然牙釉质不仅有平行排列的外层结构,还有一定偏转角度的内层结构。更重要的是,其清晰的宏观结构(厚度大于1 cm,尺寸大于1 cm)也进一步增加了制备仿生牙釉质的难度。目前3D打印牙齿从最初的简单材料打印牙齿模型的阶段,到性能优化打印阶段,到进一步混合活性细胞、抗菌材料、生长因子等功能打印阶段,其打印精度和效果在不断地提高,但也并未复刻天然牙齿的各项性能,离临床应用还有较远的距离。 图1. 多尺度、高精度牙冠的3D打印 东华大学纤维材料改性国家重点实验室朱美芳院士、张耀鹏教授受到天然牙齿中牙釉质多阶段生长的启发,基于单分散的“超重力+”HAp基齿科修复树脂材料,采用挤出成型3D打印技术,开发了一种自下而上的逐步组装策略,利用剪切诱导构建了多尺度高度有序HAp结构的高精度仿生牙冠(图1),实现了天然牙的成分(HAp)、结构(紧密有序)以及性能(力学及再矿化)仿生。相关成果以题为3D Printed Strong Dental Crown with Multi-Scale Ordered Architecture, High-Precision, and Bioactivity发表在Advanced Science上,博士生赵梦露为第一作者,北京化工大学博士生杨丹蕾、范苏娜博士、姚响副教授和北京化工大学王洁欣教授为共同作者,张耀鹏教授和朱美芳院士为共同通讯作者。部分实验完成于上海光源BL19U2线站,北京化工大学合作制备“超重力+”羟基磷灰石。 图2. 基于高度有序HAp基复合树脂牙冠的3D打印流程示意图图3. 3D打印牙冠的个性化修复 本工作制备了单分散的“超重力+”HAp基齿科修复树脂材料,使HAp纳米棒均匀且稳定地分散在树脂基体中。根据不同配方浆料的流变学行为,通过理论计算选择了最适合剪切诱导有序的打印墨水配方。并基于此浆料的流变特性,通过计算流体力学设计了具有逐渐收缩通道的定制喷嘴,从而有利于浆料顺利的挤出和稳定的剪切(图1)。以HAp的纳米晶体结构作为基础(原子尺度),到单分散的纳米棒在打印过程中受到剪切诱导而沿着打印方向进行有序的排列(纳米尺度),进一步控制打印路径使其平行排列(微米尺度),在宏观上制备三维高度有序的树脂样品,最后根据牙冠的三维模型,打印出个性化修复的牙冠(图2)。其打印精度可达95%(图3)。由于中断了裂纹扩展,当使用最小直径260 µm的喷嘴进行打印时,取向程度最高,其弯曲强度最高可达138 MPa,压缩强度可达370 MPa,优于传统模具法制备的样品(图4)。其优异的再矿化活性减少了细菌聚集和继发龋齿的机会(图5)。此工作为制备具有独特结构和功能的仿生材料提供了新的思路。图4. HAp基复合树脂的力学性能及断面形貌图 图5. HAp基复合树脂的体外生物活性 此工作得到了国家重点研发计划(2016YFA0201702)及上海市优秀学术带头人项目(20XD1400100)等项目的资助。特别感谢岛津公司宁棉波工程师在Micro-CT测试中提供的帮助。 近年来,张耀鹏教授团队在3D打印仿生生物材料研究方向取得了一系列研究成果(Compos. Sci. Technol., 2021, 213, 108902 Cellulose, 2021, 28, 241-257 Carbohyd. Polym., 2019, 221, 146)。 原文链接:http://doi.org/10.1002/advs.202104001 高分子科技原创文章。欢迎个人转发和分享,刊物或媒体如需转载,请联系邮箱:info@polymer.cn 本文转发自高分子科技公众号本文内容非商业广告,仅供专业人士参考。
  • 《Soft Matter》:利用微尺度3D打印和矿物涂层技术助力功能性微流控研究
    多孔材料(如岩石)及其与流体的相互作用广泛存在于油气资源开采、地热能提取、二氧化碳封存、甚至行星探测中的地外资源利用(水提取)等应用中,然而,大多数岩石内部孔喉形态不规则,表面物理化学特性如表面润湿性也比较复杂。因此,探索岩石内部液体的流动过程,尤其是微尺度下的流固交互作用,仍然具有挑战性。近年来,高精度3D打印技术的迅速发展使得复现这种复杂的多孔结构变得可能。借助流动可视化手段,3D打印的微流控模型可以用于直接观察流体流动的动态过程。但是,目前打印材料仅限于光固化聚合物及其衍生物,其理化特性包括其矿物化学、晶体结构、表面润湿性等与天然岩石(如碳酸岩)存在显着差异。所有这些特性都对多孔介质中的流体相变和多相流动过程有着重要影响。近日,哈利法大学的张铁军教授团队基于面投影微立体光刻3D打印技术(PμSL,深圳摩方材料科技有限公司nanoArch S130), 通过表面矿物涂层的方法制备出一种岩石微流控模型。这种新颖的制备方法包括三个主要步骤,如图1所示:(i)使用纯光敏树脂(HDDA)打印具有三维岩石孔隙结构的微模型;(ii)在微模型的内表面植入碳酸钙纳米颗粒;(iii)以植入的纳米颗粒为核,在微模型内部原位生长碳酸盐晶体。该模型可以成功复现天然岩石的三维孔隙结构和表面矿物学特性。该成果以“Empowering Microfluidics by Micro-3D Printing and Solution-based Mineral Coating”为题发表在Soft Matter上,第一作者是哈利法大学李红霞博士。图1. 岩石微模型的制备过程在该工作中,张教授的团队利用高精度3D打印技术制备了不同用途的微模型,包括微流控器件和岩石微模型。微流控器件由三个平行通道组成(请参见图2a):每个通道的宽度分别为116±2、174±2和305±2 μm。在图2b中,岩石微模型是根据天然碳酸岩的CT扫描照片打印而成。在扫描电镜下,我们可以看到岩石微模型可以很好的复现真实岩石中狭窄的孔喉结构,并且也可清晰地观测到在微模型表面原位生长的碳酸盐晶体。此外,XRD光谱也证实该微模型表面的矿物成分是碳酸钙晶体,与天然碳酸岩相同。这种碳酸盐涂层厚度大约在2~10微米,仍然使微流控器件保持了一定的透光性,有利于流体的可视化研究。图2. 3D打印的微模型在表面涂层后的形貌 (a,b)扫描电镜下微模型的孔喉结构及表面碳酸盐晶体:(a)在微流控模型内表面以及(b)三维岩石微模型内表面。(c)表面涂层的XRD光谱。图3. 利用微流控模型的流动可视化研究:案例(a)水-油/水-气在岩石微模型内部的驱替过程;案例(b,c)水在孔喉内部的蒸发过程。 基于所制备的微模型,该团队通过对水/气和水/油的驱替过程进行直接成像(如图3a), 表征了固体表面润湿性对流体交界面和流动路径的影响等。此外,他们还观测到液体在多孔介质里面的蒸发相变过程(图3b),包括不同大小空隙内蒸发的难易程度、喉部液膜的渐薄和破裂过程等。 总之,该工作为制备功能性多孔材料开辟了一条新途径。据我们所知,这是第一次结合高分辨率3D打印和基于溶液的内部涂层方法,制备“真实的”岩石微模型。这种方法也具有很强的通用性:通过更改涂层材料和三维空隙结构,此类功能性微模型也可以很好地推广到生物医学、软体机器人、航空航天和其他新兴应用。论文链接:https://pubs.rsc.org/en/content/articlelanding/2020/sm/d0sm00958j/unauth#!divAbstract(以上相关介绍内容由阿联酋哈利法大学李红霞博士提供) 上述研究工作涉及的微尺度3D打印技术由深圳摩方材料科技有限公司提供,因此摩方公司就这一创新型成果对李红霞博士进行了更进一步的访谈,以下为部分内容:1、BMF:能概括分享一下近期在《Soft Matter》发布的岩心微流控案例吗?(开发过程、应用情况、行业影响等)BMF高精密3D打印在其中发挥了什么样的作用?李博士:在近期发表的这项工作中,我们提出了一种制造功能性微流控器件的新颖方法--通过集成微型3D打印和内表面涂层技术。在这项工作中,我们利用该方法已成功制备出广泛出现在油气研究中的人造岩心。利用高精密的3D打印系统,我们可以很好的复现岩石的孔隙结构,但是打印材料多数是光敏树脂,其物理化学性(包括表面润湿性、矿物学特性等等)能跟真正自然界的岩石差很多。于是,在我们的人造岩心制备过程中,我们首先通过3D打印技术复制由微CT扫描得到的碳酸盐岩的多孔几何结构,然后通过在打印的模型内部空隙表面生长碳酸盐晶体来模拟岩心真实的表面特性。这种功能性碳酸盐涂层只有几个微米,所以很好的保持了模型的光学透明度。所以,我们能够通过流动可视化方法,利用这些透明的模型帮助我们表征油水气等流体与岩石表面的交互作用,包括润湿性、毛细作用等流动和变化过程的影响等。这种利用表面功能性涂层结合微3D打印的制备方法,有利于打破打印材料的局限性,通过调节3D微结构和涂层配方等可以轻松地推广到其他新兴应用如生物医学等。2、BMF:您如何评价我们摩方的3D打印系统?对于您所在的科研领域所取得的科研/工作成果,发挥了多大的助力?李博士:摩方的打印系统可以提供高精度打印的同时实现大幅面打印。微流控器件的整体尺寸能到两厘米,可以很好的嵌入到流动可视化的实验系统当中,实用性很强。高精密3D打印系统可以轻松实现复杂三维结构,给我们提供了很大的设计和研究的自由度。在我们的研究当中,可以加工不同的表面微结构,进而控制流体与固体界面的交互作用。
  • 3D打印小尺度机器人及其在血栓定位与加速溶栓的应用
    血栓症是一种常见的血管内疾病,具有多种临床表现和并发症,例如心梗、中风及肺栓塞等,严重危害病人的生命健康及生活质量。传统治疗方案常先通过注射溶栓药物或导管介入技术去除血栓,接着使用抗凝药物预防二次堵塞。然而溶栓药物缺乏靶向性,无法主动在血栓部位富集,且高浓度的药物易引发内出血和血压波动,因此难以高效安全地完成去除血栓的任务。导管介入技术则对操作者的经验和判断能力要求较高,操作不当容易损伤血管,甚至造成二次堵塞。近年来,小尺度机器人系统在狭窄闭塞的生物环境中展现出令人瞩目的应用前景,已有研究人员开发出可破坏血栓结构的微型机器人。然而,如何在动态血流环境中实现小尺度机器人的可控靶向递送和实时状态监测仍是一个巨大挑战,这极大地限制了它们在血栓治疗中的进一步应用。近日,香港中文大学张立教授课题组王乾乾博士、杜星洲博士、金东东博士提出一种基于小尺度机器人的血栓定位及加速溶栓方案。螺旋形微机器人采用3D打印工艺制造,采用动态磁场进行自动化递送,同时采用超声成像进行实时的机器人定位及环境监测。机器人能够实时定位血栓位置,并加速血栓的溶解。这项研究有望为血栓症的监测和治疗提供新的思路,同时也为小尺度机器人在生物医学领域的应用开辟道路。相关研究结果以“Real-Time Ultrasound Doppler Tracking and Autonomous Navigation of a Miniature Helical Robot for Accelerating Thrombolysis in Dynamic Blood Flow”为题发表于国际著名期刊《ACS Nano》。该工作使用面投影微立体光刻技术(nanoArch S130, 摩方精密)打印了螺旋形微机器人,并预留磁性物质的嵌入空间。微机器人整体结构采用摩方精密提供的polyethylene glycol diacrylate(PEGDA)材料,机器人尺寸为直径2.15 mm、长度7.30 mm。实验结果显示,螺旋形机器人在血液环境及血流环境中表现出极好的结构稳定性,在溶除血栓任务结束后能保持完成的整体结构并被回收。该打印设计方案可根据需求进行尺寸缩放,以期应用于不同的狭窄生物环境中。在机器人系统搭建完成后,研究人员在测试平台中验证了医学图像引导机器人递送、溶栓方案的可行性。通过实时监测机器人的运动状态以及机器人诱导产生的多普勒超声信号,研究人员在类血管复杂动态环境中成功实现血栓堵塞部位的定位。机器人在磁场驱动下能够产生强对流加速溶栓因子的物质交换,同时对血液-血栓界面施加剪切力促进溶栓产物的去除。实验结果表明,相对于单纯使用溶栓药剂,该方案可大幅提高血管的疏通效率(约4倍),完全溶栓率提高至350%,且不产生明显的血栓碎片,降低了二次堵塞的风险。配合不同尺寸的小尺度机器人,该方案可根据需要应用于不同直径的血管中,有望为外场驱动的小尺度机器人在生物医学领域的应用提供新的思路。图1.螺旋形机器人在动态、类血管环境中的自动化导航整体方案图2.螺旋形机器人在血流环境中的受力分析及磁控。图3. 机器人诱导的多普勒信号的仿真分析及实验验证。图4. 机器人在类血管系统中的自动化导航(逆流而上及顺流而下)及实时定位。图5. 多普勒信号引导的血栓定位及加速溶栓应用。文章链接:https://pubs.acs.org/doi/abs/10.1021/acsnano.1c07830官网:https://www.bmftec.cn/links/10
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制