当前位置: 仪器信息网 > 行业主题 > >

气相色谱实验报告内标法

仪器信息网气相色谱实验报告内标法专题为您提供2024年最新气相色谱实验报告内标法价格报价、厂家品牌的相关信息, 包括气相色谱实验报告内标法参数、型号等,不管是国产,还是进口品牌的气相色谱实验报告内标法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气相色谱实验报告内标法相关的耗材配件、试剂标物,还有气相色谱实验报告内标法相关的最新资讯、资料,以及气相色谱实验报告内标法相关的解决方案。

气相色谱实验报告内标法相关的资讯

  • 做了这么多年的实验,真的搞清楚内标法与外标法了吗
    在实验室埋头苦干多年,也做了无数次定量分析实验,你常用的是内标法还是外标法?您了解两者的区别吗?各自有什么优缺点?  其实,内标与外标都是定量的一种方法而已,至于哪一种方法好与不好不能一概而论,做不同的分析,面对着不同的要求,再加上分析成本分析效率等等问题,简单而有效的进行定量分析来满足要求才是最重要的。  那么,定量分析中怎样选择内标法或外标法?  一、内标法  什么叫内标法?怎样选择内标物?  内标法是一种间接或相对的校准方法。在分析测定样品中某组分含量时,加入一种内标物质以校谁和消除出于操作条件的波动而对分析结果产生的影响,以提高分析结果的准确度。  内标法在气相色谱定量分析中是一种重要的技术。使用内标法时,在样品中加入一定量的标准物质,它可被色谱拄所分离,又不受试样中其它组分峰的干扰,只要测定内标物和待测组分的峰面积与相对响应值,即可求出待测组分在样品中的百分含量。  采用内标法定量时,内标物的选择是一项十分重要的工作。理想地说,内标物应当是一个能得到纯样的己知化合物,这样它能以准确、已知的量加到样品中去,它应当和被分析的样品组分有基本相同或尽可能一致的物理化学性质(如化学结构、极性、挥发度及在溶剂中的溶解度等)、色谱行为和响应特征,最好是被分析物质的一个同系物。当然,在色谱分析条什下,内标物必须能与样品中各组分充分分离。需要指出的是,在少数情况下,分析人员可能比较关心化台物在一个复杂过程中所得到的回收率,此时,他可以使用一种在这种过程中很容易被完全回收的化台物作内标,来测定感兴趣化合物的百分回收率,而不必遵循以上所说的选择原则。  在使用内标法定量时,有哪些因素会影响内标和被测组分的峰高或峰面积的比值?  影响内标和被测组分峰高或峰面积比值的因素主要有化学方面的、色谱方面的和仪器方面的三类。  由化学方面的原因产生的面积比的变化常常在分析重复样品时出现。  化学方面的因素包括:  1、内标物在样品里混合不好   2、内标物和样品组分之间发生反应,  3、内标物纯度可变等。  对于一个比较成熟的方法来说,色谱方面的问题发生的可能性更大一些,色谱上常见的一些问题(如渗漏)对绝对面积的影响比较大,对面积比的影响则要小一些,但如果绝对面积的变化已大到足以使面积比发生显著变化的程度,那么一定有某个重要的色谱问题存在,比如进样量改变太大,样品组分浓度和内标浓度之间有很大的差别,检测器非线性等。进样量应足够小并保持不变,这样才不致于造成检测器和积分装置饱和。如果认为方法比较可靠,而色谱固看来也是正常的话,应着重检查积分装置和设置、斜率和峰宽定位。对积分装置发生怀疑的最有力的证据是:面积比可变,而峰高比保持相对恒定,  在制作内标标准曲线时应注意什么?  在用内标法做色话定量分析时,先配制一定重量比的被测组分和内标样品的混合物做色谱分析,测量峰面积,做重量比和面积比的关系曲线,此曲线即为标准曲线。在实际样品分析时所采用的色谱条件应尽可能与制作标准曲线时所用的条件一致,因此,在制作标准曲线时,不仅要注明色谱条件(如固定相、柱温、载气流速等),还应注明进样体积和内标物浓度。在制作内标标准曲线时,各点并不完全落在直线上,此时应求出面积比和重量比的比值与其平均位的标准偏差,在使用过程中应定期进行单点校正,若所得值与平均值的偏差小于2,曲线仍可使用,若大于2,则应重作曲线,如果曲线在铰短时期内即产生变动,则不宜使用内标法定量。  二、外标法  什么是外标法?  用待测组分的纯品作对照物质,以对照物质和样品中待测组分的响应信号相比较进行定量的方法称为外标法。此法可分为工作曲线法及外标一点法等。工作曲线法是用对照物质配制一系列浓度的对照品溶液确定工作曲线,求出斜率、截距。在完全相同的条件下,准确进样与对照品溶液相同体积的样品溶液,根据待测组分的信号,从标准曲线上查出其浓度,或用回归方程计算,工作曲线法也可以用外标二点法代替。通常截距应为零,若不等于零说明存在系统误差。工作曲线的截距为零时,可用外标一点法(直接比较法)定量。    外标一点法是用一种浓度的对照品溶液对比测定样品溶液中i组分的含量。将对照品溶液与样品溶液在相同条件下多次进样,测得峰面积的平均值,用下式计算样品中i组分的量: W=A(W)/(A)           式中W与A分别代表在样品溶液进样体积中所含i组分的重量及相应的峰面积。(W)及(A)分别代表在对照品溶液进样体积中含纯品i组分的重量及相应峰面积。外标法方法简便,不需用校正因子,不论样品中其他组分是否出峰,均可对待测组分定量。但此法的准确性受进样重复性和实验条件稳定性的影响。此外,为了降低外标一点法的实验误差,应尽量使配制的对照品溶液的浓度与样品中组分的浓度相近。  外标法 external standard method 色谱分析中的一种定量方法,它不是把标准物质加入到被测样品中,而是在与被测样品相同的色谱条件下单独测定,把得到的色谱峰面积与被测组分的色谱峰面积进行比较求得被测组分的含量。外标物与被测组分同为一种物质但要求它有一定的纯度,分析时外标物的浓度应与被测物浓度相接近,以利于定量分析的准确性。  外标法误差的来源,除了分离条件的变化之外,就是进样的重复性。使用注射器进样,外标法的误差大约在0.5%以内。但是,使用定量进样阀可获得1%的精密度 若同时小心控制分离参数,分析精密度可达± 0.25%。外标要求仪器重复性很严格,适于大量的分析样品,因为仪器随着使用会有所变化,因此需要定期进行曲线校正。此法的特点是操作简单,计算方便,不需测量校正因子,适于自动分析。但仪器的重现性和操作条件的稳定性必须保证,否则,会影响实验结果。  三、定量分析中怎样选择内标法或外标法  选一与欲测组分相近但能完全分离的组分做内标物(当然是样品中没有的组分),然后配制欲测组分和内标物的混合标准溶液,进样得相对校正因子。再将内标物加入欲测组分的样品中,进样后测得欲测组分和内标物的定量参数。用内标法公式计算即可。  内标法是将一定量的纯物质作内标物,加入到准确称量的试样中,根据被测试样和内标物的质量比及其相应的色谱峰面积之比,来计算被测组分的含量。选择内标物有4个要求:  1.内标物应是该试样中不存在的纯物质   2.它必须完全溶于试样中,并与试样中各组分的色谱峰能完全分离   3.加入内标物的量应接近于被测组分   4.色谱峰的位置应与被测组分的色谱峰的位置相近,或在几个被测组分色谱峰中间。  内标法的优点是测定的结果较为准确,由于通过测量内标物及被测组分的峰面积的相对值来进行计算的,因而在一定程度上消除了操作条件等的变化所引起的误差。内标法的缺点是操作程序较为麻烦,每次分析时内标物和试样都要准确称量,有时寻找合适的内标物也有困难。外标法简便,但进样量要求十分准确,要严格控制在与标准物相同的操作条件下进行,否则造成分析误差,得不到准确的测量结果。  内标与外标都是定量的一种方法而已,至于哪一种方法好与不好不能一概而论,做不同的分析,面对着不同的要求,再加上分析成本分析效率等等问题,我想简单而有效进行定量分析来满足要求才是最重要的。  1、以前做过很多医药、农药中间体的芳香族卤代化合物的常量定量分析,没有自动进样器,用外标法定量,确实重现性与稳定性非常差,结果经常受到搞合成同事的质疑。其实,仔细分析原因不一定就是外标法不适合这种定量分析,首先我们的实验室仪器和手段是否调整到一种稳定而合理的状态了,比如,衬管是否洁净,玻璃棉的位置是否合适恰当(能否使样品尽可能的汽化)、汽化温度是否合适、色谱峰形是否对称(也就是样品与色谱柱健合相是否匹配)、附近有没有其它色谱峰的干扰、选用什么进样方式(如快速进样还是热针进样)等等因素的影响都需要考虑,如果这些因素都考虑了,按照GMP方法验证对于精密度的要求,同一样品进6针以上的RSD和配制6个样品的定量结果RSD都能满足小于1.5%的要求,那么这个方法用外标法就是完全适用的,但是前面的影响因素是一定要都考虑到的,否则谈论这个方法是否适用就有失偏颇了。在做过的许多出口产品的定量分析方法当中有许多是一些医药公司提供的比较完善而验证过的方法,内标与外标都有(他们用的都是自动进样)精密度都能满足RSD小于1.5%的要求,当一个方法能够满足测试要求的时候,无论内标外标,都是可行的,当然有一个分析成本和分析时间的问题,内标的成本和控制溶液、样品溶液的配制当然要比外标要高和麻烦一些了。而有些时候,可能受你实验室现有仪器和附属设备的影响,达不到一定的要求,而还必须进行定量分析,有时外标的结果可能就要差一些,这时,你可能就要考虑用内标法了,可以排除手动进样的误差、分流歧视的影响、包括一些未知因素平行误差的影响,这时内标可能就显示出它的优势来了。  2、上面已经提到当做方法验证的时候,当同一样品配制6个样品溶液用所选用的外标法进行定量的时候,RSD都满足1.5%的要求时,也分为两种情况,小于1%和大于1%小于1.5%。如果RSD的结果小于1%,那这个方法就没有什么可以怀疑的了 如果RSD的结果大于1%而在1.5%略低一些的范围活动时,这个方法的可行性就将受到质疑,毕竟这是方法验证,你就要考虑上面1所提到的影响因素的影响了,如果排除掉以上的影响因素,RSD还是在1.5%附近,就要尝试内标了,如果内标结果的RSD很好,就证明你的这个方法受实验条件的影响很大,只能用内标了,或者干脆将原方法做大的变动,再尝试用外标法测试。  3、而对于微量分析,比如农药和兽药残留的分析、环境分析等,根据不同的限量标准要求对于精密度的要求也比常量分析的要求要宽松的多,RSD有时可以允许达到10%甚至更高,这时可能外标法有更大的应用空间。  4、单从精密度方面去考虑,排除其它成本和效率的因素,个人认为还是内标优于外标。曾经做过一个中间体二氨基丙醇的常量定量分析,以二乙醇胺为内标,RTX-5 amine(碱改性) 15m*0.32mm*1.0um色谱柱分析,将配制好的控制溶液(含有内标物)自动进样器进6针,目的物(二氨基丙醇)与内标物(二乙醇胺)峰面积比率的RSD为0.18%,而只对这六针样品的目的物峰(二氨基丙醇)面积求RSD,结果为0.71%,通过这一实例的结果大家就会发现到底哪个方法精密度更好了,当然是内标更好了。当然这个化合物的检测方法最后根据上面的验证数据用内标和外标定量都是可以的,实验室可以自由选择。但内标与外标精密度结果的差异是显然存在的事实。  结论:应用外标法能够满足要求,首选还是外标法了,毕竟简单而省事。对于精密度要求比较高、结果准确度会产生重大影响、实验室条件不是很理想的等等条件下,用内标法还是必要的。无论应用那种方法,方法的验证和确认都是很重要的,只要是按照程序经过验证和确认的方法,都有其应用的空间的。  另峰面积归一法:如果被分析样品的组分是同系物,校正因子相近可直接用峰面积求出组分的百分含量。如果被分析样品的组分不是同系物,则要知道每种组分的相对校正因子。优点:不必准确知道进样量,操作条件略为变动对结果影响较小,计算方便,适合多组分的工厂例行分析。主要分析对象为任意。  测量各杂质峰的面积和色谱图上除溶剂峰以外的总色谱峰面积,计算各杂质峰面积及其之和占总峰面积的百分率。由于峰面积归一化法误差较大。因此,通常用于粗略考察供试品中的杂质含量。除另外规定外,不宜用于微量杂质的检查。
  • 气相色谱-高分辨双聚焦磁质谱法检测,让血清无所遁形
    同位素内标-气相色谱-高分辨双聚焦磁质谱法检测血清中多溴联苯醚背景介绍  多溴联苯醚(PBDEs),是一种持久性有机污染物(POPs),根据苯环上溴原子的取代个数和位置的不同,共有10类209种同系物。由于其阻燃性能良好,被广泛应用于纺织品、玩具、建筑材料和电子设备等产品中。PBDEs的化学结构稳定,亲脂性强,容易释放到环境中,并通过食物链对生物体产生生物蓄积与生物放大作用,产生甲状腺毒性、神经毒性、内分泌毒性、生殖毒性、肝脏毒性、细胞毒性、致癌性等。  PBDEs对人体健康的影响已成为世界范围内高度关注的问题,目前针对多溴联苯醚人群暴露情况的研究,分析样本主要为血液、母乳和各种组织(脂肪、胎盘等)。由于多溴联苯醚是脂溶性化合物,在尿液中含量较低且多以羟基化代谢物的形式存在,脂肪组织的采样具有侵害性,且母乳和胎盘的采样仅限于一部分特殊人群,而血液样本相对较易获得,所以血液样本的测定是研究多溴联苯醚对人群健康影响的主要途径。  人体血清基质复杂,PBDEs含量较低,因此需提高富集效率并尽可能降低基质干扰,提高检测灵敏度。目前,液液萃取法、固相萃取法和加速溶剂萃取法是样品提取时较常使用的方法,样品净化主要使用凝胶色谱法和固相萃取柱净化法,检测方法主要有液相色谱-质谱法(LC-MS)、气相色谱-串联质谱法(GC-MS/MS)、气相色谱-负化学源质谱法(GC-NCI/MS)和气相色谱-高分辨双聚焦磁质谱法(GC-HRMS)。  LC-MS前处理步骤相对简便,但对PBDEs分辨能力较弱、灵敏度较低,更适合易热降解的高溴代多溴联苯醚的测定;GC-MS/MS、GC-NCI/MS选择性、灵敏度较高,对复杂基质抗干扰能力强,适用于痕量PBDEs的测定,但样本需求量较大,需采集2~5 mL血清样本;GC-HRMS同时备有静电场离子分析器和磁场质量分析器,因而使仪器同时具有能量聚焦和方向聚焦的双聚焦功能,灵敏度高、检出限低,适用于小体积样本中痕量和超痕量PBDEs的测定。  目前常用的GC-HRMS样品前处理步骤中主要采用凝胶色谱和酸性硅胶柱对样品进行净化,其中凝胶色谱法样本需求量较大(2 mL),酸性硅胶柱对实验人员填装操作要求较高,且无法同时测定多种PBDEs组分(如BDE-209等),批量样品检测时效率较低。  本方法探索使用少量血清(0.5 mL),采用GC-HRMS结合液液萃取和硅胶柱净化的方法,建立了人血清中14种PBDEs的测定方法,并用该方法对某地区15份青少年人群血样进行了检测,以期了解该地区青少年人群PBDEs的暴露水平。  样品前处理  血清样品解冻后移取0.5 mL于12 mL玻璃离心管中,分别加入200 μL硫酸、0.5 mL甲醇和20 μL内标使用溶液后混匀。先加入6 mL正己烷充分摇振后,以3500 r/min离心10 min,收集上层有机相;再加入6 mL甲基叔丁基醚,重复萃取,合并两次萃取液,于40 ℃、5 Pa氮吹25 min至0.5 mL。依次用2 mL甲醇和2 mL正己烷活化硅胶固相萃取柱,将浓缩液转移到硅胶柱上,先收集流出液,再用10 mL二氯甲烷-正己烷(1:1, v/v)溶液洗脱,合并流出液与洗脱液,40 ℃氮吹30 min至近干。向试管中加入10 μL正己烷复溶,振荡混匀,转移至棕色进样小瓶中,待测。  色谱条件  色谱柱:Rtx-1614毛细管柱(30 m×0.25 mm×0.1 μm);进样方式:不分流进样;进样口温度:290 ℃;传输线温度:320 ℃;升温程序:初始温度150 ℃,保持2 min,以15 ℃/min升温至250 ℃,保持1 min,再以25 ℃/min升温至290 ℃,保持3 min,然后以25 ℃/min升温至320 ℃,保持12.5 min;载气:氦气,恒定流量1.0 mL/min;进样量为1 μL。  质谱条件  电子轰击(EI)离子源,源温:280 ℃;电子能量:35 eV;电压选择离子检测(VSIR);分辨率:10000。14种PBDEs及其同位素内标的质谱参数见原文表1。  质量控制  样品前处理环境应在每次实验开始前和结束后进行清理,避免有目标物残留。实验过程中所用玻璃离心管、试剂、进样小瓶、固相萃取柱、枪头均做空白对照实验,未检出14种待测PBDEs。  文章信息  色谱, 2022, 40(4): 354-363  DOI: 10.3724/SP.J.1123.2021.10017  王梦梦, 谢琳娜, 朱英*, 陆一夫*  中国疾病预防控制中心环境与人群健康重点实验室, 中国疾病预防控制中心环境与健康相关产品安全所, 北京 100021
  • 《中国气相色谱仪市场调研报告(2023版)》已发布
    气相色谱法是仪器分析领域的重要组成部分,是分离分析科学的重要手段之一。气相色谱法最早于20世纪50年代提出,因其分离能力强、样品用量少、检测器灵敏度高、分离速度快及运行成本低等诸多优势而快速发展并普及。目前气相色谱法已经成为各类大学、科研院所、各类工矿企业生产单位的必不可少的重要分离分析工具,同时也逐渐成为化学类、生物类、食品类和环境类等学科领域必不可少的重要分析方法。为更好地支撑气相色谱相关厂商精准把握产业发展趋势,合理制定市场规划、销售策略、把握技术发展趋势,信立方结合自身科学仪器产业大数据、科学仪器招中标大数据、桌面研究等多种研究方法,对气相色谱仪市场进行深入研究并撰写《中国气相色谱仪市场研究报告(2023版)》。信立方研究发现,国内气相色谱仪市场广阔,2022年销量达*台,销售额*亿元,从招中标大数据来看,同比2021年,科研院所在气相色谱仪采购数量和仪器中标金额上都是增长率最大的,所采购的仪器应用也不再局限于环保、食品等传统领域。2022年不同单位气相色谱仪采购数量及平均单价如下图所示:图. 2022年不同单位气相色谱仪采购数量及平均单价数据来源:信立方科学仪器招中标大数据,2023年5月注:1、数据统计从2022年1月1日至2022年12月31日;2、采购数据来源于互联网公开发布的相关招中标信息,此处仅统计中标结果,废标和谈判中数据未列入。更多内容欢迎订阅《中国气相色谱仪市场调研报告(2023版)》。【服务热线】: 400-637-7886【电子信箱】: survey@instrument.com.cn报告目录:第一章 气相色谱仪概述.................................................................................................. 41.1气相色谱法的基本原理............................................................................................................. 41.2气相色谱仪的组成..................................................................................................................... 51.2.1进样系统.......................................................................................................................... 51.2.2载气系统.......................................................................................................................... 51.2.3 色谱柱和柱箱................................................................................................................ 61.2.4 检测系统和记录系统................................................................................................... 61.2.5 温控系统......................................................................................................................... 61.3气相色谱仪的分类..................................................................................................................... 61.3.1按固定相分类................................................................................................................. 61.3.2按分离机理分类............................................................................................................. 71.3.3按色谱柱分类................................................................................................................. 71.3.4按进样方式分类............................................................................................................. 71.4气相色谱仪的应用进展............................................................................................................. 71.4.1气相色谱仪在食品/饮料领域的应用........................................................................ 71.4.2 气相色谱仪在环保/水工业领域的应用................................................................. 101.4.3 气相色谱仪在石油/化工领域的应用..................................................................... 111.4.4 气相色谱仪在生物制药领域的应用....................................................................... 12第二章 气相色谱仪市场综合分析................................................................................. 132.1气相色谱仪市场概况............................................................................................................... 132.2气相色谱仪主要品牌市场占比情况..................................................................................... 132.2.1 2022年气相色谱仪主要品牌销量占比................................................................ 132.3 2022年气相色谱仪部分新品统计...................................................................................... 15第三章 气相色谱仪中标数据分析................................................................................. 183.1 近两年气相色谱仪中标总量趋势分析............................................................................... 183.2 2022年气相色谱仪采购省份分布情况............................................................................. 203.3 2022年气相色谱仪采购单位分布情况............................................................................. 223.4 2022年气相色谱仪品牌分布情况...................................................................................... 24第四章 气相色谱仪用户市场抽样统计分析.................................................................... 294.1气相色谱仪用户单位性质分布............................................................................................. 294.2气相色谱仪用户单位地域分布............................................................................................. 294.3气相色谱仪应用领域分布...................................................................................................... 304.4气相色谱仪用途分布............................................................................................................... 324.5气相色谱仪检测器类型.......................................................................................................... 324.6气相色谱柱类型分布............................................................................................................... 344.7气相色谱仪流量控制方式分布............................................................................................. 364.8气相色谱仪附加装置分布...................................................................................................... 364.9气相色谱仪更新周期分布...................................................................................................... 384.10气相色谱仪采购预算变化分布........................................................................................... 384.11气相色谱仪常见问题/故障................................................................................................. 394.12用户单位气相色谱仪采购关注因素.................................................................................. 40第五章 气相色谱仪专场访问数据分析........................................................................... 425.1近两年气相色谱仪专场PV、UV........................................................................................ 425.2 2022年气相色谱仪专场热门品牌...................................................................................... 435.3 2022年气相色谱仪专场PV、UV热门仪器................................................................... 43第六章 气相色谱仪海关数据分析................................................................................. 466.1 2022年气相色谱仪进口总量........................................................................... 466.2 2022年气相色谱仪进口来源地数据分析.......................................................... 466.3 2022年气相色谱仪收货人注册地.................................................................... 47第七章 气相色谱仪市场规模预测................................................................................. 497.1 未来五年国内气相色谱仪增长趋势................................................................... 497.2气相色谱仪相关产业政策...................................................................................................... 50第八章 国内气相色谱仪行业上市企业分析.................................................................... 52第九章 总结................................................................................................................. 56 扫二维码加我为好友 及时了解更多市场动态
  • 脂肪酸气相色谱分析的故事
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势第二讲:傅若农:从三家公司GC产品更迭看气相技术发展第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状第四讲:傅若农:气相色谱固定液的前世今生第五讲:傅若农:气-固色谱的魅力第六讲:傅若农:PLOT气相色谱柱的诱惑力第七讲:傅若农:酒驾判官——顶空气相色谱的前世今生第八讲:傅若农:一扫而光——吹扫捕集-气相色谱的发展第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)第十讲:傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用第十一讲:傅若农:扭转乾坤——神奇的反应顶空气相色谱分析第十二讲:擒魔序曲——脂质组学研究中的样品处理第十三讲:离子液体柱——脂质组学中分离脂肪酸的气相色谱柱 上一讲我们主要介绍了在脂质组学中对脂肪酸的分析所用的离子液体毛细管色谱柱,但是用气相色谱分析脂肪酸源远流长,有许多故事,了解一些过去的故事对现在的发展理解有好处,温故才可以知新。  先讲一下脂质组学中常常要研究的血浆分析,其中一个重要的项目是分析其中的脂肪酸,下面一个例子,概要介绍了血浆中脂肪酸的主要成分:  “虽然游离脂肪酸只占血浆中脂肪酸的一小部分,但它代表一类高度代谢活性的脂质,脂肪组织是血浆游离脂肪酸的主要来源,其分布与食物的脂肪酸组成密切相关。在正常情况下从脂肪组织中释放脂肪酸与组织对能量的需要紧密相连。但是当代谢失调时,这种平衡被打乱,导致脂解增加,会释放出多于组织所需要脂肪酸的量。健康人经过一夜禁食后血浆中含有214 nmol/ml游离脂肪酸,油酸(18:1)的含量最高,其次是棕榈酸(16:0)和硬脂酸(18:0),这三种酸占全部游离脂肪酸的78%。亚油酸(18:2)和花生四酸(20:4) 是主要的多不饱和脂肪酸(约占8%)。但是有营养作用的α-亚麻酸(18:3ω-3),二十碳五烯酸(20:5, EPA)和二十二碳六烯酸(22:6, DHA)也占有一定比例,约为全部游离脂肪酸的1%。”1 脂肪酸气相色谱分析的历史故事  气相色谱被认为是分析复杂混合物中脂肪酸的可靠方法,这一方法可追述到上世纪50年代,气相色谱的出现于脂肪酸的分析有密切的关系,1952年气相色谱发明人A. T. James 和 A. J. P. Martin就用最为原始的自制气相色谱仪分析小分子脂肪酸(Biochem J,1952,50:679),他们首次阐明气-液分配气相色谱的原理,设计了自动滴定检测脂肪酸的气相色谱仪。实验过程中使用的色谱柱为玻璃柱,其内径为4mm,长度为5英尺,固定相是把DC 550硅油涂渍在硅藻土Celite 545上。分离小分子脂肪酸的色谱如图1所示。 图1 用自动滴定计气相色谱仪分析小分子脂肪酸的色谱图  分离从乙酸到戊酸的色谱如图2所示:图 2 分离从乙酸到戊酸的色谱  此后分析脂肪酸的一个重大进步是把脂肪酸进行甲酯化,1956年James和Martin使用气体密度检测器,并把脂肪酸进行甲酯化,使用阿皮松类高温润滑脂作固定相,可以分离分子量大的脂肪酸。图3 是分离C5-C13直链和支链脂肪酸甲酯的色谱图。图 3 用高沸点润滑脂分离C5-C13直链和支链脂肪酸甲酯的色谱图色谱柱:在硅藻土载体上涂渍高沸点润滑脂;柱温:197℃;载气:氮气 14.1mL/min 色谱峰: (1) 空气, (2) n-戊酸甲酯,(3) n-己酸甲酯, (4) 4-甲基己酸甲酯,(5) 6-甲基庚酸甲酯, (6) n-辛酸甲酯, (7) 6-甲基辛酸甲酯, (8) n-壬酸甲酯,(9) 8-甲基壬酸酯, (10) n-癸酸酯, (11) 8-甲基癸酸酯, (12) 10-甲基十一酸酯 ,(13) n-十二酸酯, (14) 10-甲基十二酸酯2 脂肪酸气相色谱分析的发展  脂肪酸的气相色谱分析由于它的极性和挥发性不好而带来麻烦,所以首先要把它的极性羰基转化成易于挥发的非极性衍生物。有多种烷基化试剂可以进行羰基的衍生化,使用最多的是进行甲基化,特别是使用氢火焰离子化监测器(FID)气相色谱时,尤为方便普及。但是使用FID也有一些不足之处。绝对的定量要依靠内标物的信号强度,经常使用的内标物是十七酸(而不是使用化学和物理性质与所测定脂肪酸相近的同位素标记脂肪酸混合物作内标)。人类体内不能合成奇数碳链的脂肪酸(包括碳17酸),但是人们可以通过食物摄取它们,它们存在于血液的血浆中,增加内标物十七酸的量,从而扰乱定量分析。  进一步讲,FID不能提供分子质量或其他结构特征信息,以便区分不同的脂肪酸,所以色谱和FID只是解决把所有要研究的脂肪酸分子完全分离开,用质谱解决脂肪酸的结构信息。大家应该知道使用电子轰击电离脂肪酸分子很容易被打成碎片,通过这些碎片可以进行脂肪酸的结构分析,但是灵敏度受到限制。弱电离技术比如负化学电离(NCI)可以改善检测限。使用卤代衍生化试剂可以进一步提高检测灵敏度,这种试剂增加了电子亲和力,可改善NCI-MS的灵敏度。Kawahara 使用五氟基苄(PFB) 作衍生化试剂来衍生化有机羧酸,这样的含氟衍生物电子很容易被俘获。此后这一方法扩展到脂肪酸的衍生化为脂肪酸酯,与脂肪酸甲酯相比,它很容易被NCI-MS检测。所以使用五氟基苄进行衍生化有利于提高检测灵敏度。许多研究者使用PFB做衍生化试剂进行脂质组学中的脂肪酸分析,例如Quehenberger等就是用这一方法分析巨噬细胞中的各种脂肪酸(Prostaglandins, Leukotrienesand Essential Fatty Acids,2008,79:123–129)。下图4 是分析巨噬细胞中的各种脂肪酸的色谱图。图 4 巨噬细胞中的各种脂肪酸的色谱图图中色谱峰的脂肪酸如下:(1)12:0 (2)14:0 (3)15:0 (4)16:1 (5)16:0 (6)17:1 (7)17:0 (8) a18:3 (9) 18:4 (10) g18:3 (11)18:2 (12)18:1 (13)18:0 (14)20:4 (15)20:5 (16)11,14,17–20:3 (17)bishomo-20:3 (18)20:2 (19)5,8,11–20:3 (20)20:0 (21)22:6 (22)22:4 (23)22:5 (24)22:2 (25)22:3 (26)22:1 (27)22:0 (28) 23:0 (29)24:1 (30)24:0 3 国内外进行气相色谱分析脂肪酸的一些例证   为了进一步了解进行气相色谱分析脂肪酸的具体情况,下面表1列出近50例分析各种样品中脂肪酸的色谱柱和分离对象。表2列出国外文献中分析人体组织中脂肪酸的例证。表 1 国内气相色谱分析脂肪酸的色谱柱和分析对象 表 2 国外文献中有关分析人体组织中脂肪酸的衍生化方法和所用色谱柱4 脂肪酸气相色谱分析所用色谱柱  从已发表的文献看分析整体脂肪酸需用非极性的聚硅氧烷毛细管色谱柱,如聚二甲基硅氧烷,分离多不饱和脂肪酸需用极性强的色谱柱,如OV-275,OV-275(这是聚硅氧烷固定相中极性最强的色谱柱)和CP-Sil 88(HP-88)。 据安捷伦公司一份研究报告(5989-3760 EN),他们对最重要的一些脂肪酸(甲酯)(见表3)进行研究,研究总结认为:聚乙二醇柱对不太复杂的样品可以得到很好的分离 而中等极性的氰丙基聚硅氧烷柱(DB 23)对复杂的 FAMEs 样品可以得到很好的分离,对一些顺反异构体也可以得到分离 要使顺反异构体分离的更好,就要使用更高极性的 HP-88 氰丙基色谱柱。表3 重要的一些脂肪酸  三种主要色谱柱分离脂肪酸的特点如下:  使用DB-Wax柱,DB-23 柱和HP-88 柱上分离37种脂肪酸混合物的色谱见图5-图7.图 5 FAMEs在30 m 0.25 mm ID, 0.25 μm DB-Wax 色谱柱上的色谱图 6 FAMEs混合物在 60 m 0.25 mm ID, 0.15 μm DB-23 柱上的色谱图 7 FAMEs 混合物 在 100 m 0.25 mm ID, 0.2 μm HP-88 柱上 的色谱  其中HP-88 柱的极性最强,是含88%氰丙基甲基聚硅氧烷,其结构如下图8:图8 HP-88 的分子结构  HP-88 对一些异构体的分离能力由于DB-23如下图9所示  图 8 HP-88和HP-23分离能力的差别  (此图来自Walter Jennings博士2008年在北京大学作报告时的ppt文稿)  吴惠勤等使用P-88毛细管色谱柱分离了39种脂肪酸得到的质谱基峰离子和特征离子如表4中的数据。表4 39种脂肪酸在HP-88毛细管色谱柱上出峰次序( 吴惠勤等,分析化学,2007,35(7):998-1003)
  • 《固定污染源废气VOCs的测定气相色谱-质谱法》地标发布(附全文)
    p  日前,重庆市环保局发布《固定污染源废气VOCs的测定气相色谱-质谱法》。全文如下:/pp style="text-align: center "img title="1.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/insimg/06055e9a-e5bd-4f16-84eb-3264f8978689.jpg"//pp style="text-align: center "img title="2.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/insimg/6fe66004-5e87-46b1-9ae6-d4f3281d295e.jpg"//pp  前言为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》等法律、法规,保护和改善生活环境、生态环境,保障人体健康,规范固定污染源废气中挥发性有机污染物的监测方法,制定本标准。/pp  本标准规定了固定污染源废气中挥发性有机物的气相色谱-质谱测定法。本标准为首次发布。本标准由重庆市环境保护局提出并归口。/pp  本标准起草单位:重庆市环境监测中心。/pp  本标准主要起草人:邓力,罗财红,邹家素,朱明吉,郭志顺,龚玲,余轶松。/pp  本标准于2016年7月20日发布,自2016年10月1日起实施。/pp style="text-align: center "strong固定污染源废气VOCs的测定气相色谱-质谱法/strong/pp  警告:本方法所使用的部分化学药品对人体健康有害,操作时应按规定要求佩带防护器具,避免接触皮肤和衣服。所有药品均应完全密封独立储放,并放置于低温阴凉处,以免外漏污染。/pp  1 适用范围/pp  本标准规定了固定污染源有组织和无组织排放废气中19种挥发性有机物的气相色谱-质谱法。本方法适用于固定污染源有组织和无组织排放废气中19种挥发性有机物的测定,包括苯,甲苯,乙苯,间-二甲苯,对-二甲苯,邻-二甲苯,1,2,4-三甲苯,1,3,5-三甲苯,1,2,3-三甲苯,苯乙烯,丙酮,丁酮,环己酮,乙酸乙酯,乙酸丁酯,正丁醇,异丁醇,甲基异丁酮,乙酸异丁酯。其他污染源排放的挥发性有机物通过验证也适用于本标准。本方法在进样量为100.0ml时,19种物质其检出限范围为0.0008mg/m3~0.03mg/m3,测定下限为0.0032mg/m3~0.12mg/m3。详见附录A。/pp  2 规范性引用文件/pp  本标准内容引用了下列文件中的条款。凡是不注明日期的引用文件,其有效版本适用于本标准。GB/T16157固定污染源排气中颗粒物测定与气态污染物采样方法HJ/T37/pp  3 固定污染源监测质量保证与质量控制技术规范(试行)HJ/T397固定源废气监测技术规范HJ/T55大气污染物无组织排放检测技术导则3方法原理废气中的挥发性有机物由惰性化处理过的不锈钢罐直接采样,经过进样预浓缩系统浓缩后进入气相色谱-质谱联用仪分析,采用保留时间和定性离子定性,内标法定量。/pp  4 试剂和材料4.1VOC标准气体:浓度为100.0mg/m3。高压钢瓶保存。可根据实际工作需要,购买有证标准气体或在有资质单位定制合适的混合标准气体。/pp  4.2内标标准气体:组分为1,4-二氟苯、氯苯-d5。各组分浓度为100.0mg/m3。/pp  4.3 4-溴氟苯(BFB):浓度为50μg/ml。用于GC-MS性能检验。取适量色谱纯的4-溴氟苯(BFB)配制于一定体积的甲醇(4.7)中。/pp  4.4 高纯氦气( 99.999%)。/pp  4.5 高纯氮气( 99.999%)。/pp  4.6 液氮。/pp  4.7 甲醇:农残级或者等效级。/pp  5 仪器和设备/pp  5.1 气相色谱-质谱联用仪:气相部分具有电子流量控制器,柱温箱具有程序升温功能,可配备柱温箱冷却装置。质谱部分具有70eV电子轰击(EI)离子源,有全扫描/选择离子(SIM)扫描、自动/手动调谐、谱库检索等功能。/pp  5.2 毛细管色谱柱:60m× 0.25mm,1.4μm膜厚(6%腈丙基苯基-94%二甲基聚硅氧烷固定液),或其他等效毛细管色谱柱。/pp  5.3 气体冷阱浓缩仪:具有自动定量取样及自动添加标准气体、内标的功能。至少具有二级冷阱:其中第一级冷阱能冷却到-180℃,第二级冷阱能冷却到-50℃:若具有冷冻聚焦功能的第三级冷阱(能冷却到-180℃),效果更好。气体浓缩仪与气相色谱-质谱联用仪连接管路均使用惰性化材质,并能在50℃~150℃范围加热。/pp  5.4 浓缩仪自动进样器:可实现采样罐样品自动进样。/pp  5.5 罐清洗装置:能将采样罐抽至真空( 10Pa),具有加温、加湿、加压清洗功能。/pp  5.6 气体稀释装置:最大稀释倍数可达1000倍。/pp  5.7 采样罐:内壁惰性化处理的不锈钢采样罐,容积3.2L、6L等规格。耐压值 241kPa。/pp  5.8 液氮罐:不锈钢材质,容积为100L~200L。/pp  5.9 流量控制器:与采样罐配套使用,使用前用标准流量计校准。/pp  5.10 校准流量计:在0.5ml/min~10.0ml/min或10ml/min~500ml/min范围精确测定流量。/pp  5.11 真空压力表:精确要求≤7kPa(1psi),压力范围:-101kPa~202kPa。/pp  5.12 抽气泵:双通道无油采样泵,双通道能独立调节流量。/pp  5.13 采样管:足够长度的聚四氟乙烯管。5.14过滤器或玻璃棉过滤头:过滤器孔径≤10μm,或直接将实验用玻璃棉加装在采样管前端,过滤排气中颗粒物。/pp  6 样品/pp  6.1 采样前准备罐清洗:使用罐清洗装置对采样罐进行清洗,清洗过程可按罐清洗装置说明书进行操作。清洗过程中可对采样罐进行加湿,降低罐体活性吸附。必要时可对采样罐在50℃~80℃进行加温清洗。清洗完毕后,将采样罐抽至真空( 10Pa),待用。每清洗20只采样罐,应至少取一只清洗后的罐注入高纯氮气,分析氮气样品,以确定清洗后的采样罐是否清洁。每个采集高浓度样品的真空罐在使用后应标识,清洗后放置1天以上,使用前进行本底污染的分析,确认无污染残留后使用。/pp  6.2 预调查在测试固定污染源废气中挥发性有机物排气前,需事先调查污染源相关信息,包括企业生产使用的有机溶剂名称及用量、生产负荷、生产工艺、废气治理工艺等情况。/pp  6.3 采样/pp  6.3.1 有组织采样按照GB/T16157、HJ/T373、HJ/T397的相关规定和采样要求,确定采样位置、采样频次和采样时间,进行样品采集。/pp  6.3.1.1 采样管路连接。如图1管路连接。洗涤瓶和吸附剂用于排放废气的吸收处理。/pp style="text-align: center "img title="3.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/f0a97bce-a009-40e9-af91-b8898aa8989a.jpg"//pp /pp   系统漏气检查:关上采样管出口三通阀,打开抽气泵抽气,使真空压力表负压上升到13kPa,关闭抽气泵一侧阀门,如压力计压力在1min内下降不超过0.15kPa,则视为系统不漏气。如发现漏气,要重新检查、安装,再次检漏,确认系统不漏气后方可采样。当排放口排气压力为正压或常压时,可直接用聚四氟乙烯采样管连接不锈钢罐进行采样,在采样管前端加塞玻璃棉过滤头。连接管路应尽可能短,内径应大于6mm。不锈钢罐安装流量控制器,根据排气中VOCs浓度的高低,调节流量控制器来控制采样时间,一般采集样品20min~60min。当排放口排气压力为负压时,应按照图1所示不锈钢罐采样系统连接。在聚四氟乙烯采样管后连接一个三通阀门,分别连接不锈钢罐和抽气泵。采样前,开启连接抽气泵一侧的阀门,以1L/min流量抽气约5min,置换采样系统的空气。然后切换至不锈钢罐的气路,开启阀门使气体进入不锈钢罐。连接管路应尽可能短,内径应大于6mm。不锈钢罐安装流量控制器,根据排气中VOCs浓度的高低,调节流量控制器来控制采样时间,一般采集样品20min~60min。流量控制器采样流量对应的采样时间见表1。/pp style="text-align: center "img title="4.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/1ed36cb3-6d07-41e9-828a-e6574e1f5699.jpg"/ /pp /pp  6.3.1.2 同步测定并记录排气管道内废气温度、流量和含湿量等参数。/pp  6.3.1.3 由于质控等特殊要求,需要采集平行样品时,可将三通阀更换为四通阀,将负压相同的两个不锈钢罐并联,同时开启,同步采集。/pp  6.3.2 无组织采样按照HJ/T55的相关规定和采样要求,确定采样点位、采样频次和采样时间,进行样品采集。/pp  6.3.2.1 开启不锈钢罐控制阀门。当采集瞬时样品时,只需开启不锈钢罐阀门,使无组织气体被吸入不锈钢罐内,达到压力平衡后关闭不锈钢罐。当需要采集累积时段样品时,不锈钢罐安装流量控制器,根据无组织中VOCs含量大小调整持续采样时间。不同恒定流量对应的采样时间见表1。/pp  6.3.2.2 同步测定并记录大气压力、风速风向、环境温度等气象参数。/pp  6.4 全程序空白采样将高纯氮气(4.5)注入预先清洗好并抽至真空的采样罐(5.7)带至采样现场,与同批次采集样品后的采样罐一起送回实验室分析。/pp  6.5 样品保存不锈钢罐采样后,立即将阀门拧紧密封。样品在常温下保存,采样后尽快分析,14天内分析完毕。/pp  7 分析/pp  7.1 仪器参考条件/pp  7.1.1 预浓缩仪进样装置条件一级冷阱:捕集温度:-150℃ 解析温度:10℃ 阀温:100℃ 烘烤温度:150℃ 烘烤时间:5min 二级冷阱:捕集温度:-30℃ 解析温度:180℃ 烘烤温度:180℃ 烘烤时间:2.5min 三级聚焦:聚焦温度:-160℃ 解析时间:2.5min。7.1.2气相色谱仪参考条件柱温:50℃(5min)??℃/min?℃(2min)??℃/min?℃(1min) 载气流量:1.0ml/min 进样口温度:140℃ 溶剂延迟时间:2min 载气流量:1.0ml/min 分流比:10:1。/pp  7.1.3 质谱仪参考条件扫描方式:全扫描或选择离子扫描,选择离子扫描参数参考表2 扫描范围:30aum~200aum 离子化能量:70eV。/pp style="text-align: center "img title="5.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/0633fc24-82db-45f5-bb5e-47e0f33318a1.jpg"//pp  7.2 仪器性能检查在分析样品前,需要检查GC/MS仪器性能。将4-溴氟苯(BFB)(4.3)1μL(50ng)进样,得到的BFB关键离子丰度必须符合表3中的标准。/pp style="text-align: center "img title="6.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/f81001d2-5d95-49dc-8f72-4288bf0ac3ae.jpg"/  /pp  7.3 校准/pp  7.3.1 标准系列配制将VOC标准气体(4.1)的钢瓶和高纯氮气(4.5)钢瓶与气体稀释装置(5.6)连接,设定稀释倍数,打开钢瓶阀门调节两种气体的流速,待流速稳定后取预先清洗好并抽至真空的采样罐(5.7)连在气体稀释装置(5.6)上,打开采样罐阀门开始配气。配制1.0mg/m3、2.0mg/m3、5.0mg/m3、10.0mg/m3、20.0mg/m3(可根据实际样品情况调整)的标准系列。/pp  7.3.2 内标使用气体配制内标使用气体浓度为5.0mg/m3。将内标标准气体(4.2)按7.3.1步骤配制而成。/pp  7.3.2 校准曲线绘制通过浓缩仪自动进样器(5.4)分别抽取1.0mg/m3、2.0mg/m3、5.0mg/m3、10.0mg/m3、20.0mg/m3标准系列气体400ml,同时加入5.0mg/m3内标使用气体100ml,按照仪器参考条件,依次从低浓度到高浓度进行测定。根据目标化合物/内标化合物质量比和目标化合物/内标化合物特征质量离子峰面积比,用相对响应因子(RRF)绘制校准曲线。按照公式(1)计算目标化合物的相对响应因子(RRF)。/pp style="text-align: center "img title="7.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/467c1605-df2c-47d8-857f-366254063acf.jpg"/  /pp /pp  7.3.3 标准色谱图目标化合物参考色谱图见图2。/pp style="text-align: center "img title="8.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/e33d0bdb-4eb7-4761-a50d-fb5b6548ce04.jpg"/  /pp  7.3.4 目标化合物出峰时间详见附录B,附表B-1。7.4样品测定通过浓缩仪自动进样器(5.4)抽取样品400ml,同时加入5.0mg/m3内标使用气体100ml,按照仪器参考条件进行测定。/pp  7.5 全程序空白样品测定按照与样品测定相同的操作步骤进行全程序空白样品的测定。/pp  8 结果计算与表示/pp  8.1 定性以全扫描方式进行测定,根据样品中目标化合物的相对保留时间、定量离子和辅助定性离子间的丰度比与标准中目标化合物对比来定性。样品中目标化合物的相对保留时间(RRT)与校准系列中该化合物的相对保留时间的偏差应在?3.0%内。校准系列目标化合物的相对离子丰度高于10%以上的所有离子在样品中要存在。标准和样品谱图之间上述特定离子的相对强度要在20%之内。按照公式(2)计算相对保留时间。/pp style="text-align: center "img title="9.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/1dcedb09-0915-4232-ade5-fa45c4d8f3ad.jpg"/  /pp  8.2 定量/pp  8.2.1 目标化合物的浓度计算采用平均相对响应因子(RRF)进行定量计算,平均相对响应因子按照公式(3)计算,样品中目标化合物的浓度按照公式(4)进行计算。/pp style="text-align: center "img title="10.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/96c92845-3949-481d-8186-22de4ae11916.jpg"/  /pp   8.2.2 总挥发性有机化合物(TVOC)的浓度计算/pp   空气样品中TVOC的浓度按公式(5)进行计算。??/pp style="text-align: center "img title="11.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/8d14fb5b-e6c7-4d7d-b302-8122c6649f01.jpg"/  /pp  8.3 结果表示列出所有目标化合物的浓度。当目标化合物的浓度小于1mg/m3时,分析结果保留至小数点后3位,当目标化合物的浓度大于等于1mg/m3时,保留3位有效数字。/pp  9 精密度和准确度配制挥发性有机物含量为5.0mg/m3标准样品,连续进样5次,精密度由相对标准偏差表示,结果小于10% 准确度由相对误差表示,结果小于15%。结果详见附录C。/pp  10 质量保证和质量控制/pp  10.1 全程序空白每批样品应至少做一个全程序空白样品,目标化合物浓度均应低于方法测定下限。否则应查找原因,并采取相应措施,消除干扰或污染。/pp  10.2 空白加标每批样品应至少做一个空白加标,回收率应在80%~120%。/pp  10.3 平行样品分析每10个样品或每批样品(少于10个)采样采集平行样品,平行样品分析相对偏差小于30%。10.4每批样品应分析一个校准曲线中间浓度点的样品,其相对误差要在20%以内。若超出允许范围,应重新配制中间浓度点,若还不能满足要求,应重新绘制校准曲线。10.5系统处理要求试验中用到的不锈钢罐及其配气系统、清洗系统和预浓缩进样系统,管路内壁都需要硅烷化处理,减少对目标化合物的吸附。/pp  11 注意事项/pp  11.1 采样时,应根据实际情况注意温度、湿度及颗粒物等因素对采样效率的影响。/pp  11.2 实验室环境应远离有机溶剂,降低、消除有机溶剂和其它挥发性有机物的本底干扰。/pp  11.3 进样系统、冷阱浓缩系统中气路连接材料挥发出的挥发性有机物会对分析造成干扰。适当升高、延长烘烤时间,将干扰降至最低。/pp  11.4 所有样品经过的管路和接头均需进行惰性化处理,并保温以消除样品吸附、冷凝和交叉污染。/pp  11.5 易挥发性有机物在运输保存过程中可能会经阀门等部件扩散进入采样罐中污染样品。样品采集结束后,须确认阀门完全关闭,并用密封帽密封采样罐采样口,隔绝外界气体,可有效降低此类干扰。/pp  11.6 分析高浓度样品后,须增加空白分析,如发现分析系统有残留,可启用气体冷阱浓缩仪的烘烤程序,去除残留。/pp style="text-align: center "img title="12.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/noimg/e7de60aa-8ae0-4901-9782-72e6e2947b07.jpg"//pp style="text-align: center "img title="13.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/noimg/a9853489-4702-497f-bcf4-5e103b8aa972.jpg"//pp style="text-align: center "img title="14.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/noimg/721fae4c-d91f-4ef5-ba55-962ea8c9682d.jpg"//pp/p
  • 珀金埃尔默Torion助力新国标《水中挥发性有机物的测定便携式顶空/气相色谱质谱法》
    近期,生态环境部办公厅发布了《水质挥发性有机物的测定 便携式顶空/气相色谱质谱法(征求意见稿)》,该标准规定了地表水、地下水、生活污水、工业废水和海水中挥发性有机物的现场快速定性和56种目标化合物的定量分析。珀金埃尔默Torion T-9仅需80秒即可完成标准中56种VOCs的定性定量分析,可从容应对环境突发事件的应急监测需求。减少了样品运输和保存过程中待测物质的变化,具有实验室分析方法不可替代的优势。随着我国经济的增长,工业发展迅猛,在化工品生产、运输和储存过程中导致的挥发性有机物(VOCs)污染事故频发,严重影响了当地的人民生活、社会稳定和经济发展。VOCs并非单一的化合物种类众多,具有迁移性、持久性和毒性是一类重要的环境污染物。VOCs会对空气、水、土壤等造成严重伤害和污染,其中水与我们的生活息息相关。目前,国内外针对水中VOCs的检测标准主要是顶空气相色谱法、顶空气相色谱质谱法、吹扫捕集气相色谱质谱法等均为实验室检测标准。珀金埃尔默Torion T-9便携式气质配合SPS-3顶空工作站可以在突发应急现场分析水中VOCs,样品分析速度快,检测56种VOCs仅需80秒,同时峰形尖锐分离效果好。在满足新标准的同时可在突发性环境应急事件中快速提供检测结果,指导应急策略。Torion T-9便携式气质技术优势:SPME/CME/顶空/热脱附等多种样品前处理方式创新的环状离子阱比常规离子阱离子容量高400倍开机5分钟做样3分钟升温速率高达2.5℃/s无基础用户一天培训可独立操作隔膜泵/涡轮分子泵的真空系统非耗材省心省成本图1 56种VOCs与2种内标总离子流图1-氯乙烯;2-1,1-二氯乙烯;3-二氯甲烷;4-反-1,2-二氯乙烯;5-1,1-二氯乙烷;6-氯丁二烯;7-顺-1,2-二氯乙烯;8-2,2-二氯丙烷;9-溴氯甲烷;10-氯仿;11-1,1,1-三氯乙烷;12-1,2-二氯乙烷;13-1,1-二氯丙烯;14-苯;15-四氯化碳;16-1,2-二氯丙烷;IS1-氟苯(内标);17-三氯乙烯;18-二溴甲烷;19-一溴二氯甲烷;20-顺-1,3-二氯丙烯;21-反-1,3-二氯丙烯;22-1,1,2-三氯乙烷;23-甲苯;24-1,3-二氯丙烷;25-二溴氯甲烷;26-1,2-二溴乙烷;27-四氯乙烯;28-氯苯;29-1,1,1,2-四氯乙烷;30-乙苯;31/32-对/间-二甲苯;33-溴仿;34-苯乙烯;35-邻-二甲苯;36-1,1,2,2-四氯乙烷;37-1,2,3-三氯丙烷;38-异丙苯;39-溴苯;40-正丙苯;41-2-氯甲苯;42-4-氯甲苯;43-1,3,5-三甲基苯;44-叔丁基苯;45-1,2,4-三甲基苯;46-1,4-二氯苯;IS2-1,4-二氯苯-d4(内标);47-仲丁基苯;48-1,3-二氯苯;49-4-异丙基甲苯;50-1,2-二氯苯;51-正丁基苯;52-1,2-二溴-3-氯丙烷;53-1,2,4-三氯苯;54-萘;55-六氯丁二烯;56-1,2,3-三氯苯;图2 1,2-二氯丙烷、三氯乙烯、二溴甲烷和一溴二氯甲烷共流出解卷积谱图在突发应急事件中,由于便携质谱检测结果是制定应急决策的重要依据,不但要快而且要准。Torion T-9内置强大的谱库的同时还具备独特的解卷积功能,可以轻松鉴定极为复杂的化合物,即使有化合物共流出也可以实现准确定性和定量。如图2所示1,2-二氯丙烷、三氯乙烯、二溴甲烷和一溴二氯甲烷共流出通过Torion T-9的内置谱库和解卷积功能可以准确识别出这4种物质。Torion T-9便携式气质为突发应急保障而设计,总重量仅14.5公斤,仪器从启动到样品分析仅需5分钟,样品分析时间3分钟以内,在福建泉港C9泄露、江苏海安工业园泄露、青岛上合峰会、武汉军运会等突发事件和重大会议保障上起到了关键的作用。
  • 权威发布!药物临床试验报告造假可判5年,9月1日起施行
    p style="text-align: center "img title="TUYUDU4W6MFJ({N5XG3ZG`H.png" src="http://img1.17img.cn/17img/images/201708/insimg/d4f401b5-ff12-4d81-bc8e-521d914593dd.jpg"//pp  《最高人民法院、最高人民检察院关于办理药品、医疗器械注册申请材料造假刑事案件适用法律若干问题的解释》已于2017年4月10日由最高人民法院审判委员会第1714次会议、2017年6月8日由最高人民检察院第十二届检察委员会第65次会议通过,现予公布,自2017年9月1日起施行。/pp style="text-align: right "  最高人民法院 最高人民检察院/pp style="text-align: right "  2017年8月14日/pp style="text-align: center "strong  法释〔2017〕15号/strong/pp style="text-align: center "strong  最高人民法院最高人民检察院/strong/pp style="text-align: center "strong  关于办理药品、医疗器械注册申请材料造假刑事案件/strong/pp style="text-align: center "strong  适用法律若干问题的解释/strong/pp  (2017年4月10日最高人民法院审判委员会第1714次会议、2017年6月8日最高人民检察院第十二届检察委员会第65次会议通过,自2017年9月1日起施行)/pp  为依法惩治药品、医疗器械注册申请材料造假的犯罪行为,维护人民群众生命健康权益,根据《中华人民共和国刑法》《中华人民共和国刑事诉讼法》的有关规定,现就办理此类刑事案件适用法律的若干问题解释如下:/pp  strong第一条/strong药物非临床研究机构、药物临床试验机构、合同研究组织的工作人员,故意提供虚假的药物非临床研究报告、药物临床试验报告及相关材料的,应当认定为刑法第二百二十九条规定的“故意提供虚假证明文件”。/pp  实施前款规定的行为,具有下列情形之一的,应当认定为刑法第二百二十九条规定的“情节严重”,以提供虚假证明文件罪处五年以下有期徒刑或者拘役,并处罚金:/pp  (一)在药物非临床研究或者药物临床试验过程中故意使用虚假试验用药品的 /pp  (二)瞒报与药物临床试验用药品相关的严重不良事件的 /pp  (三)故意损毁原始药物非临床研究数据或者药物临床试验数据的 /pp  (四)编造受试动物信息、受试者信息、主要试验过程记录、研究数据、检测数据等药物非临床研究数据或者药物临床试验数据,影响药品安全性、有效性评价结果的 /pp  (五)曾因在申请药品、医疗器械注册过程中提供虚假证明材料受过刑事处罚或者二年内受过行政处罚,又提供虚假证明材料的 /pp  (六)其他情节严重的情形。/pp  strong第二条/strong实施本解释第一条规定的行为,索取或者非法收受他人财物的,应当依照刑法第二百二十九条第二款规定,以提供虚假证明文件罪处五年以上十年以下有期徒刑,并处罚金 同时构成提供虚假证明文件罪和受贿罪、非国家工作人员受贿罪的,依照处罚较重的规定定罪处罚。/pp  strong第三条/strong药品注册申请单位的工作人员,故意使用符合本解释第一条第二款规定的虚假药物非临床研究报告、药物临床试验报告及相关材料,骗取药品批准证明文件生产、销售药品的,应当依照刑法第一百四十一条规定,以生产、销售假药罪定罪处罚。/pp strong 第四条/strong药品注册申请单位的工作人员指使药物非临床研究机构、药物临床试验机构、合同研究组织的工作人员提供本解释第一条第二款规定的虚假药物非临床研究报告、药物临床试验报告及相关材料的,以提供虚假证明文件罪的共同犯罪论处。/pp  具有下列情形之一的,可以认定为前款规定的“指使”,但有相反证据的除外:/pp  (一)明知有关机构、组织不具备相应条件或者能力,仍委托其进行药物非临床研究、药物临床试验的 /pp  (二)支付的价款明显异于正常费用的。/pp  药品注册申请单位的工作人员和药物非临床研究机构、药物临床试验机构、合同研究组织的工作人员共同实施第一款规定的行为,骗取药品批准证明文件生产、销售药品,同时构成提供虚假证明文件罪和生产、销售假药罪的,依照处罚较重的规定定罪处罚。/pp strong 第五条/strong在医疗器械注册申请中,故意提供、使用虚假的医疗器械临床试验报告及相关材料的,参照适用本解释第一条至第四条规定。/pp  strong第六条/strong单位犯本解释第一条至第五条规定之罪的,对单位判处罚金,并依照本解释规定的相应自然人犯罪的定罪量刑标准对直接负责的主管人员和其他直接责任人员定罪处罚。/pp  strong第七条/strong对药品、医疗器械注册申请负有核查职责的国家机关工作人员,滥用职权或者玩忽职守,导致使用虚假证明材料的药品、医疗器械获得注册,致使公共财产、国家和人民利益遭受重大损失的,应当依照刑法第三百九十七条规定,以滥用职权罪或者玩忽职守罪追究刑事责任。/pp strong 第八条/strong对是否属于虚假的药物非临床研究报告、药物或者医疗器械临床试验报告及相关材料,是否影响药品或者医疗器械安全性、有效性评价结果,以及是否属于严重不良事件等专门性问题难以确定的,可以根据国家药品监督管理部门设置或者指定的药品、医疗器械审评等机构出具的意见,结合其他证据作出认定。/pp  strong第九条/strong本解释所称“合同研究组织”,是指受药品或者医疗器械注册申请单位、药物非临床研究机构、药物或者医疗器械临床试验机构的委托,从事试验方案设计、数据统计、分析测试、监查稽查等与非临床研究或者临床试验相关活动的单位。/pp  strong第十条/strong本解释自2017年9月1日起施行。/pp /p
  • 世界杯莫贪杯!血液中乙醇含量的测定 顶空气相色谱法
    连续降温挡不住世界杯持续升温,球迷们迎来四年一度的足球盛宴,相约观赛、举杯欢呼,酒驾醉驾风险上升。据报道,在中国,每年有将近10万人被车祸夺去宝贵的生命,其中60%的车祸都是由于酒后驾车引起的。自2011年5月1日醉驾入刑以来,人们越来越重视酒后驾驶行为。此外,酒类饮料的主要成分是乙醇,大量饮用高浓度酒可能会造成酒精中毒甚至是死亡,过量饮酒同时也会使行为异常,从而发生意外甚至犯罪,比如酒后闹事、醉酒死亡等。因此,在发生某些自杀、凶杀的案件时,执法部门也要首先确定是否有酒精作用因素,所以从这方面来看,测定血液中乙醇的含量也有着至关重大的意义。仪器和耗材1仪器AP 500全自动样品处理工作站气相色谱仪(带火焰离子化检测器)顶空自动进样器2 试剂乙醇、叔丁醇均为色谱纯试剂血液中乙醇标准样品样品提取与前处理1 样品前处理本次方法验证参考GA/T842—2019《血液酒精含量的检验方法》的要求。分别移取100μL血液中乙醇样品,加入20mL顶空瓶中,然后加入500μL叔丁醇内标工作液,作顶空进样分析。将顶空瓶及装有血液中乙醇标准样品的采血管放入AP 500样品架中,使用AP 500全自动样品处理工作站,由工作站全自动完成采血管的抓取与转移,采血管信息的扫码录入,血样混匀,采血管开盖与关盖,血液样品的抽取与精准分推,顶空瓶的抓取与转移,顶空瓶的开盖与钳盖密封,顶空瓶内样品添加与稀释操作。2 标准曲线绘制分别移取100μL系列浓度乙醇标准溶液(5、10、20、50、80、200、300 mg/100 mL),加入20 mL顶空瓶中,然后均加入500 μL叔丁醇内标工作液,每个浓度点的标准溶液独立重复测定2次。3 样品分析将AP500全自动样品处理工作站处理完成的样品,进行顶空进样分析。检测条件气相色谱条件色谱条件:柱温:50℃;检测器:火焰离子化检测器;检测器温度:200℃;进样口温度:250℃。顶空自动进样器,顶空炉温:65℃;取样针温度:90℃;传输线温度:110℃;样品瓶加热平衡时间10 min。回收率与精密度取同一空白血样,分别添加乙醇标准溶液,使血液中乙醇的质量浓度分别为120mg / 100mL,平行6份,乙醇平均加标回收率为101%,RSD为1.35。结果与讨论本次方法验证满足GA/T 842—2019《血液酒精含量的检验方法》的要求。AP 500全自动样品处理工作站的设计从如何提高样品前处理效率的角度考虑,将样品处理全过程自动化,智能的计算系统帮助实现各种浓度液体的制备,同时设备上集成混匀,扫码等模块,可对顶空瓶进行转移和钳盖密封操作,有效地解决了实验员在血液样品配制过程中耗时长、操作繁琐等问题,更重要的是全过程无需实验员值守,尽可能地减少实验员与血液、高毒性化学品的接触,保障实验员的健康,打造高效安全的实验室。
  • Mars-400 Plus便携式气相色谱-质谱联用仪检测土壤中挥发性有机物
    1 土壤中挥发性有机物的检测分析1.1 方法概述  按照世界卫生组织(WHO)的定义,挥发性有机化合物(Volatile Organic Compounds,VOCs)是指沸点范围在50~260 ℃之间,室温下饱和蒸汽压超过133.3 Pa,常温下以蒸气形式存在于空气中的一大类有机物。按化学结构,可进一步分为烷烃、芳香烃、烯烃、卤代烃、酯类、醛类、酮类和其他化合物等8类。不同的VOCs对人体具有不同的毒害作用,有些物质甚至具有强烈的“三致”作用(致病、致癌、致突变)。VOCs大体的危害如下:影响中枢神经系统,出现头晕、头痛、无力、胸闷等症状;感觉性刺激,嗅味不舒适,刺激上呼吸道及皮肤;影响消化系统,出现食欲不振、恶心等;怀疑性危害:局部组织炎症反应、过敏反应、神经毒性作用。能引起机体免疫水平失调,严重时可损伤肝脏和造血系统,出现变态反应等。  土壤中天然有机质主要是有腐殖质和部分分解的动植物残体组成,其对疏水性有机化合物的吸附起着重要的作用。土壤的污染是世界范围的一个环境问题,挥发性有机物通过大气沉降、废水排放、雨水淋溶与冲刷进入水体,最后沉积到土壤中,在土壤中逐步富集,使土壤造成严重污染,因此监测和控制土壤中的挥发性有机物意义重大。1.2 主要仪器与试剂(1)仪器Mars-400 Plus便携式气相色谱质谱联用仪(聚光科技);LTM DB-5ms 快速气相色谱柱(5 m×0.1 mm×0.4 μm);顶空/吹扫捕集进样系统;涡旋混匀仪分析天平(0.0001g)。(2)试剂和耗材微量移液器(100 μL);微量移液器(1000 μL);注射器(50 mL)氦气,纯度99.999%,用作载气;25种VOCs(浓度为100 μg/mL,其中环氧氯丙烷为500 μg/mL);甲醇(色谱纯)、4-溴氟苯(色谱纯)、氟苯(色谱纯)、1,4-二氯苯-D4(色谱纯)。石英砂、干净土壤。1.3 标准样品配制1.3.1 标准样品储备液配制(1)标准样品溶液  以甲醇为溶剂,配制25种挥发性有机物的混合标准溶液,浓度为10 μg/mL。具体做法是:在10 mL的容量瓶中,加约7 mL的甲醇。打开装有标准物质的安瓿瓶,使用微量移液器,移取1 mL的标准样品,用甲醇定容至10 mL,得到标准样品使用液。(2)内标标准溶液  以甲醇为溶剂,配制氟苯、1,4-二氯苯-D4的溶液,浓度为10 mg/mL,作为内标贮备液(表1)。具体做法是:在10 mL的容量瓶中,加约7 mL的甲醇,使用微量移液器移取氟苯(色谱纯)97 μL,使用分析天平精确称取0.100 g的1,4-二氯苯-D4,用甲醇定容至10 mL,得到浓度为10 mg/mL内标贮备液。再次用甲醇稀释至10 μg/mL,得到氟苯、1,4-二氯苯-D4的内标标准使用液。(3)替代物标准溶液  以甲醇为溶剂,配制4-溴氟苯的溶液,浓度为10 mg/mL,作为替代物贮备液(表1)。具体做法是:在10 mL的容量瓶中,加约7 mL的甲醇,使用微量移液器移取4-溴氟苯(色谱纯)63 μL,用甲醇定容至10 mL,得到浓度为10 mg/mL替代物贮备液。再次用甲醇稀释至10 μg/mL,得到替代物的标准使用溶液。(4)基体改性剂  如果使用的方法是吹扫捕集处理方法,选用二次蒸馏水作为基体改性剂(参考国家环境标准(HJ 605-2011))。如果使用的方法是静态顶空处理方法,选用pH≤2的磷酸氯化钠水溶液作为基体改性剂。本次分析的土壤VOCs浓度都较低,适合使用吹扫捕集作为预处理方法,因此本方法选用水作为基体改性剂。(5)空白样品  向40 mL样品瓶中,加入5 g石英砂和20 mL纯净水,密封,得到空白试剂样品。1.3.2 标准系列样品溶液的配制  向15支40 mL的样品瓶中依次加入5 g石英砂和20 mL基体改性剂(水)。再向各瓶中分别加入一定量的标准使用液,配制成目标化合物浓度分别为5 ng/mL、10 ng/mL、20 ng/mL、60 ng/mL、100 ng/mL,每组浓度平行3份。在配制标准样品的同时,向每个顶空瓶分别加入一定量的替代物使用液,一定量的内标使用液,立即密封(表2)。将配制好的标准系列样品在涡旋振荡仪上振荡约5 min,由低浓度到高浓度依次进样分析,绘制校准曲线。1.4 样品采集和保存1.4.1 样品采集  土壤样品的采集和保存参照国家环境标准HJ/T 166的相关规定。采集的样品工具应用金属制品,用前应经过净化处理。可在采样现场使用Mars-400便携式气质联用对样品进行目标物含量高低的初筛,当样品中挥发性有机物浓度大于1000 μg/kg,则视为高含量样品。所有样品均应至少采集3份平行样品。1.4.2 含量高低初筛(1)在40 mL的样品瓶中加入约60 g的干净土壤(通过检测无高浓度的VOCs)。(2)模拟高浓度的土壤样品:向60g土壤中加入6 mL的标准样品溶液(10 μg/mL),配制得到1000 μg/kg的模拟高浓度的土壤样品。(3)使用Mars-400便携式气质联用仪,采用“气体样品分析方法”,首先将“高浓度土壤样品”的上层顶空气体分析一遍。得到该气体的TIC总离子流图。(4)继续使用Mars-400便携式气质联用仪,采集被分析土壤上层气体,得到相应的TIC图。如果被分析土壤的上层气体TIC响应值大于模拟土壤的TIC图,判断被分析土壤为高含量土壤,否则按低含量土壤处理。1.4.3 样品保存(1)在现场保存:采用样品收集装置,加入大约5 g 的土壤到含有10 mL 甲醇的样品瓶中。快速地擦掉瓶子螺纹上粘附的土壤,然后立刻用螺旋帽和隔垫密封住瓶子。用冰存储样品于4 ℃。可以采用其它的样品质量或者甲醇的体积,分析人员需要能够证明整个分析过程的灵敏度对于当前的应用是适当的。(2)不在现场保存:收集不带保存液的高浓度的土壤样品,就是样品既不含有保存溶液,也不含有甲醇。当不采用在现场保存的方法时,尽可能地填充满整个样品容器,使顶空体积最小。1.5 样品分析1.5.1 样品分析条件1.5.2 样品分析步骤1.5.2.1 标准样品分析步骤(1)准备章节3.2的标准系列样品。打开仪器,并调试稳定。(2)设定好分析条件,激活方法,待所有分析条件达到设定值,将样品空白放入吹扫捕集装置的样品池中,等待平衡5 min,将吹扫捕集插针插入样品瓶中,点击主机界面的“运行方法”,仪器开始自动吹扫捕集-气质联用分析。(3)空白样品应该满足待测化合物浓度低于检出限,或者分析结果的5%。(4)按照步骤(2)从低到高分析标准系列样品。(5)样品高低浓度交叉分析时,需在中间插入空白样品分析,以防高浓度样品的残留影响低浓度样品分析。1.5.2.2 土壤样品分析步骤Mars-400便携式气质联用仪是一款适用于现场分析的仪器。本方法开发了一套现场分析的方法和步骤(图1)。(1)现场开机预热,同时开启和预处理设备,如涡旋振荡仪,简易天平等。(2)调试主机和吹扫捕集系统,激活“土壤分析”方法,或者按照章节5.1设置分析方法。(3)分析空白样品,空白样品分析结果应该满足待测化合物浓度低于检出限,或者分析结果的5%。(4)接下来分析质控样品,质控样品指的是浓度在校准曲线中间浓度点附近的标准溶液,本实验选取20 ng/mL标准样品作为质控样品。计算标准样品和替代物的回收率,回收率应在80% ~ 120%之间。图1 样品分析流程图(5)进行土壤样品的现场分析。通过章节4.2的浓度初筛,如果为低浓度的样品,称取5 g,直接加入20 mL基体改性剂,加入40 μL的内标贮备液、40 μL的替代物贮备液,使用涡旋混匀仪混匀,待测。如果为高浓度样品,称取5 g土壤,加入10 mL甲醇,先涡旋振荡提取10 min。将提取液稀释成水溶液,加入5 g石英砂,加入内标和替代品,涡旋混匀,待测。(6)将待测样品通过Mars-400 便携式气质联用仪进行分析,现场进行定性定量,并输出报告。1.6 结果与讨论1.6.1 标准曲线的制作  按照章节5.2.1的方法,从浓度低到浓度高分析标准系列样品,每组浓度平行分析3组。本试验采用特征离子定量法进行定量。以样品浓度与内标浓度的比值作为横坐标,以样品特征离子峰面积与内标特征离子峰面积作为纵坐标,绘制内标标准曲线(图2,表4)。图2 25种VOCs的总离子流图  图2是石英砂加标的25种VOCs的总离子流图,采用对溴氟苯作为替代物(第22号色谱峰),氟苯、1,4-二氯苯-D4作为内标。从表4可以得到,25种VOCs和对溴氟苯的线性相关系数都在0.99以上。1.6.2 精密度和准确度  在5 g石英砂中加入400 ng的标准样品,配制成80 μg/kg的土壤加标样品,按照低浓度土壤样品的方法进行吹扫捕集-便携式气质联用分析,样品连续分析7遍,计算标准偏差S,从而得到分析的精密度,然后通过计算平均回收率得到分析方法的准确度(表5)。  从表5可以得到,连续7次分析的相对标准偏差在20%以内。5 g石英砂中加标浓度为80 μg/kg,平均加标回收率在80%~120%之间。1.6.3 方法检出限  根据方法检出限的实验方法,取5 g石英砂,加入5 ng/mL标准样品,得到20μg/kg的空白加标土壤(计算检出限的3~5倍浓度),连续进样7遍,剔除异常值,计算标准偏差S,在99%的置信区间里,取MDL=3.143×S,如表6。从表5中可以看到,本方法的检出限在2.62 μg/kg ~ 12.06 μg/kg之间,可以用来检测泄露到土壤中的挥发性有机物。
  • 《中国气相色谱仪市场数据分析报告(2019年~2020年H1)》正式发布
    气相色谱法至今已有50多年的发展历史,现在已成为一种成熟且应用广泛的分离复杂混合物的分析技术。其中,气相色谱仪由于适用性、分离能力及样品回收率等方面的优势,更是受到广大分析测试领域人员的欢迎。近年来,我国对气相色谱仪的需求有增无减,整个气相色谱市场迎来发展的最佳时机。尽管2020年新冠疫情肆虐,但气相色谱仪市场并未受到影响。为了更系统的了解近年来我国气相色谱仪的市场情况,仪器信息网特别对相关网站气相色谱仪中标信息以及海关总署“气相色谱仪”的进出口数据进行了统计分析,并整理成了《中国气相色谱仪市场数据分析报告(2019年~2020年H1)》。《中国气相色谱仪市场数据分析报告(2019年~2020年H1)》介绍了气相色谱仪技术发展情况,同时详细分析了近两年我国气相色谱各领域、各地区中标情况以及各品牌中标情况,并详细分析了气相色谱仪进出口情况。报告链接 报告节选:仪器信息网将政府部门进行了分类,从这些单位采购情况来看,其中****部门采购率最高,占比为****;其次为****和****,占比分别为****和****;****紧随其后,占比****;****和****占比比较接近,分别为****和****。根据2020年上半年中标统计数据显示,2020上半年公开发布的国内气相色谱仪中标总金额为****亿元人民币,相较于2019年上半年的****亿元同比增长****;上半年中标数量为****台,相较于2019上半年的****台同比增长****。由数据可以看出。。。。。。2020年上半年,我国共进口气相色谱仪****台,与同期相比,数量增长****;进口额共****亿元,与同期相比增长约****。整体来看。。。。。。 。。。。。。报告目录:第一章 气相色谱仪概况….11.1气相色谱仪……11.2气相色谱技术进展及未来发展趋势……11.3 近三年气相色谱仪新品……21.4气相色谱技术应用进展……91.5 气相色谱市场基本情况……10第二章 气相色谱仪招中标分析……122.1 2019年气相色谱仪中标情况分析……122.1.1 2019年气相色谱仪各季度中标情况分析……122.1.2 2019年气相色谱仪采购单位地域情况分析……132.1.3 2019年气相色谱仪采购单位性质情况分析……142.1.4 2019年气相色谱仪各品牌中标情况分析……152.2 2020上半年气相色谱仪中标情况分析……182.2.1 2020上半年气相色谱仪各月份中标情况分析……192.2.2 2020上半年气相色谱仪采购单位地域情况分析……192.2.3 2020上半年气相色谱仪采购单位性质情况分析……202.2.4 2020上半年各品牌气相色谱仪中标情况分析……20第三章 气相色谱仪进出口分析……223.1中国气相色谱仪进口规模及情况分析……223.1.1 2019年及2020上半年气相色谱仪各月份进口情况分析……223.1.2 2019年及2020上半年气相色谱仪进口企业注册地情况分析……233.1.3 2019年及2020上半年进口气相色谱仪货源地情况分析……243.2 中国气相色谱仪出口规模及情况分析……253.2.1 2019年及2020上半年气相色谱仪各月份出口情况分析……253.2.2 2019年及2020上半年气相色谱仪出口发货地情况分析……263.2.3 2019年及2020上半年气相色谱仪出口国情况分析……27第四章 总结……29如对本报告感兴趣,可通过以下邮箱zhangyy@instrument.com.cn 联系我司相关人员,咨询报告相关细节!!
  • 中国气相色谱质谱联用仪市场调研报告(2016版)“新鲜出炉”
    为了解近年来气相色谱质谱联用仪的技术发展趋势、市场发展行情、气相色谱质谱联用仪各品牌在市场中的占有率以及重点应用领域等内容,同时,为各气相色谱质谱联用仪厂商在制定仪器销售和市场推广策略时提供参考,仪器信息网特组织了“中国气相色谱质谱联用仪市场调研”活动。此次调研,面对的调研对象包括仪器信息网相关注册用户、气相色谱质谱联用仪制造、应用领域专家以及部分气相色谱质谱联用仪生产厂商等。  在此基础上完成的《中国气相色谱质谱联用仪市场调研报告》内容包含了气相色谱质谱联用仪产业概述、气相色谱质谱联用仪器新品盘点、近些年技术发展回顾与主要制造商地区分布、销量与份额分析(地区、品牌)、价格分析、营销渠道分析、市场发展趋势、产业研究总结等。  《中国气相色谱质谱联用仪市场调研报告》的完成得到了广大用户、企业以及业内专家的大力支持。在前期调研过程中,咨询了业内相关专家20余位,近2500家实验室用户参与了此次气相色谱质谱联用仪调研。  由于2016年度刚刚结束,相关数据尚不完整,故本报告中所引数据主要为2015年度的数据。  报告链接:中国气质联用仪市场调研报告(2016版)  节选第一章 气相色谱质谱联用仪产业概述  1.1 气相色谱质谱联用仪定义  气质联用仪是分析仪器中较早实现联用技术的仪器,自1957年J.C.Holmes和F.A.Morrell首次实现气相色谱和质谱联用以后,这一技术得到了长足的发展。在所有联用技术中气质联用,即GC/MS发展最完善,应用最广泛。目前从事有机物分析的实验室几乎都把GC/MS作为主要的定性确认手段之一,同时GC/MS也被用于定量分析。另一方面,目前市售的有机质谱仪,不论是磁质谱、四极杆质谱、离子阱质谱还是飞行时间质谱(TOF),傅立叶变换质谱(FTMS)等均能和气相色谱联用。还有一些其他的气相色谱和质谱连接的方式,如气相色谱-燃烧炉-同位素比质谱等。GC/MS已经成为分析复杂混合物最为有效的手段之一。  气质联用法是将气相色谱和质谱的特点结合起来的一种用于确定测试样品中不同物质的定性定量分析方法,其具有GC的高分辨率和质谱的高灵敏度。气相色谱将混合物中的组分按时间分离开来,而质谱则提供确认每个组分结构的信息。气相色谱和质谱由接口相连。气质联用法广泛应用于药品检测、环境分析、火灾调查、炸药成分研究、生物样品中药物与代谢产物定性定量分析及未知样品成分的确定。气质联用法也被用于机场安检中,用于行李中或随身携带物品的检测。  本报告仅包含单四极杆、三重四极杆、单TOF、QTOF和离子阱类型的实验室气质联用仪。 第二章 气相色谱质谱联用仪新品盘点  小结:2015年至2016年这两年,中国市场上的主流企业共推出了12款实验室用气质联用仪产品:5款单四极杆,3款三重四极杆,1款orbitrap,3款飞行时间。总体的发展趋势包括:进一步提高离子化和离子传输效率 进一步提高检测器灵敏度 在保证仪器性能的同时,实现节能、降耗、减排 使操作维护更加简便 开发专属性谱图的数据库,以提供有针对性的解决方案 进一步提高质谱扫描及数据采集处理的能力等等。 第五章 气相色谱质谱联用仪销量与份额分析(品牌)  5.1主要品牌气相色谱质谱联用仪销量及市场份额    图5.1 2015年主流企业销量市场份额(台)  来源:抽样统计,2016年12月  2015年中国气相色谱质谱联用仪市场规模**~**台,销售总额为20亿人民币左右。总的来说,国内气相色谱质谱联用仪市场现在的格局是完全被国外厂商垄断,并且从长期来看,这种局面很难打破。  2015年中国市场上的主流气相色谱质谱联用仪厂商包括安捷伦、岛津、赛默飞、珀金埃尔默、布鲁克、天瑞仪器、东西分析、天美、普析通用、舜宇恒平、力可、日本电子等。 第七章 气相色谱质谱联用仪市场发展趋势    图7.1 2014-2016年质谱联用仪进口量(台)及增长趋势  来源:中国海关,2016年12月  图7.1显示的进口量包括气质和液质,液质商品化时间相对较短,且价格是气质的2~3倍,所以占比非常小,大约占到1/4。所以总体上看气质联用仪市场增长迅速,2012~2016年复合增长率约*.*%。   正文目录  第一章 气相色谱质谱联用仪产业概述... 1  1.1 气相色谱质谱联用仪定义... 1  1.2 气相色谱质谱联用仪使用单位分布... 3  1.3 气相色谱质谱联用仪产业链结构... 5  1.4 气相色谱质谱联用仪产业概述... 5  第二章 气相色谱质谱联用仪新品盘点... 7  2.1 安捷伦... 7  2.2 岛津... 11  2.3 赛默飞... 14  2.4 力可... 15  2.5 日本电子... 17  2.6 天瑞... 20  2.7 东西分析... 21  2.8 舜宇恒平... 22  第三章 气相色谱质谱联用仪产品发展回顾和主要制造商地区分布及技术进展... 24  3.1主要生产企业气相色谱质谱联用仪生产基地分布... 24  3.2主要生产企业气相色谱质谱联用仪技术进展... 25  3.2.1 近些年国外气质联用仪技术进展... 25  3.2.2 近些年国内气质联用仪技术进展... 26  第四章 气相色谱质谱联用仪销量与份额分析(地区)... 28  4.1 2015分地区销量分析(台)... 28  4.2 2010-2015售价分析... 29  第五章 气相色谱质谱联用仪销量与份额分析(品牌)... 31  5.1主要品牌气相色谱质谱联用仪销量及市场份额... 31  第六章 气相色谱质谱联用仪营销渠道分析... 33  6.1 气相色谱质谱联用仪营销渠道现状分析... 33  6.2 气相色谱质谱联用仪营销渠道特点及其发展趋势... 34  第七章 气相色谱质谱联用仪市场发展趋势... 35  7.1 2014-2016年质谱联用仪进口量及增长趋势... 35  7.2 气相色谱质谱联用仪未来市场预测... 36  第八章 气相色谱质谱联用仪产业研究总结... 39
  • 《水质 半挥发性有机物的测定 气相色谱-质谱法》征求意见
    半挥发性有机物是一大类较挥发性有机物挥发性较慢的有机物,它们更容易在水、土壤、空气、生物等介质中迁移转化,长期存在于水、土壤中,通过生物富集而危害人体健康。这类有机物的共性是脂溶性、易溶于有机溶剂,可在有机溶剂中分配,同时可进行气相色谱分析。按照萃取条件的不同还可将这一大类有机化合物分为碱-中性可萃取有机物和酸性可萃取有机物。半挥发性有机化合物种类较多,包括多环芳烃、氯苯类、硝基苯类、硝基甲苯类、邻苯二甲酸酯类、亚硝基胺类、苯胺类、氯代苯胺类、氯代烃类、氯代醚类、联苯胺类、氯代联苯胺类、氯代酚类和硝基酚类等。通常,有机氯农药、有机磷农药、其它除草剂等有机物都可归入这类有机物范围内。由于半挥发性有机物的毒性高,对环境的危害较大,有多种化合物被我国、美国等国家列入水中优先控制的污染物。我国的《地表水环境质量标准》(GB 3838-2002)、《生活饮用水卫生标准》(GB 5749-2006)、《石油化学工业污染物排放标准》(GB 31571-2015)、《城镇污水处理厂污染物排放标准》(GB 18918-2002)、《污水综合排放标准》(GB 8978-1996)、《渔业水质标准》(GB 11607-1989)等均规定了部分半挥发性有机物的标准值。目前国内个别半挥发性有机物的测定主要以气相色谱法、液相色谱法为主。《水质 酚类化合物的测定 液液萃取/气相色谱法》(HJ 676-2013)、《水质 氯苯类化合物的测定 气相色谱法》(HJ 621-2011)、《水质 硝基苯类化合物的测定 液液萃取-气相色谱法》(HJ 648-2013)、《水质 多环芳烃的测定 液液萃取高效液相色谱法》(HJ 478-2009),另外我国已发布了《土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法》(HJ834-2017)和《固体废物 半挥发性有机物的测定 气相色谱-质谱法》(HJ 951-2018)2 个标准。国际上对水中半挥发性有机化合物测定的标准方法所采用的主流技术是气相色谱质谱测定方法,以 US EPA 方法以及相关文献涉及较多。国外气相色谱法质谱联机测定半挥发性有机物的方法主要有 EPA 8270D、EPA 3510C 和 EPA 625 方法,其中 3510 方法使用液液萃取方法,8270 和 625 方法是采用液液萃取的方法,在碱中性和酸性的条件下,用二氯甲烷分别对水样进行萃取,合并有机相,经无水硫酸钠脱水后浓缩,用气相色谱-质谱法来分析水样中的半挥发性有机物。当然随着各种新型前处理技术的不断丰富更新和发展,现有的液液萃取方法将逐步被更加高效先进的固相萃取、固相微萃取以及膜萃取取代,这也是当前前处理技术发展的必然趋势。《水质 半挥发性有机物的测定 气相色谱-质谱法》用二氯甲烷分别在 pH11 和 pH2 的条件下,萃取样品中的半挥发性有机物。萃取液经脱水、浓缩和定容后,经气相色谱-质谱法(GC/MS)分离检测,根据保留时间和目标化合物的特征离子定性,内标法定量。本标准适用于地表水、地下水、工业废水和生活污水中 64 种半挥发性有机物的筛查鉴定和定量分析,对于特定类别的化合物,应在此筛选基础上选用专属的分析方法测定。当取样体积为 1000 ml,试样体积为 1.0 ml,采用全扫描方式测定时,方法检出限为 0.1μg/L~2 μg/L,测定下限为 0.4 μg/L~8 μg/L。征求意见稿:《水质 半挥发性有机物的测定 气相色谱-质谱法》(征求意见稿)
  • 固定污染源废气中的挥发性有机物现场测试方案-便携式气相色谱柱质谱法(上)-北京博赛德
    前言:大气污染治理重要的一环是控制污染源,通过对污染源废气的监测,分析废气的组成,为污染治理工作提供数据依据。和环境空气中挥发性有机物的分析不同,污染源中挥发性有机物的种类繁多,且浓度普遍偏高,对质谱定性能力和耐污染能力要求较高;污染源的现场环境条件复杂,高温、高湿和粉尘等会对挥发性有机物的分析产生巨大的影响。北京博赛德公司除提供完备的实验室分析方案,详见《真空瓶采样-热脱附气相色谱-质谱法测定固定污染源废气中挥发性有机物方案》,还推出现场分析检测方案。结合2020年3月25日生态环境部推出的《固定污染源废气 挥发性有机物的测定 便携式气相色谱-质谱法(征求意见稿)》,以及污染源废气高湿、高浓度等因素,推荐通过气袋(或真空瓶)采集固定污染源废气样品,稀释后使用HAPSITE便携式气质联用仪经吸附管富集、热脱附后分析检测。相比小体积定量环采样分析,此方案采样量更具代表性,且通过稀释,降低了样品浓度和湿度,从而减小对仪器的污染。本文将介绍气袋采样、HAPSITE分析检测固定污染源废气中的挥发性有机物的操作流程,分别从前期准备、样品采集与稀释、空白测试、样品分析、结果计算和附件来详细介绍。前期准备1.1配件(1)满电的内置电池或SuperPower便携式电池及连接线缆;(2)满瓶内置载气和内标气;(3)高纯氮气:纯度≥99.999%,用于空白测试、样品稀释;(4)无本底的干净气袋;(5)气袋采样系统:符合HJ732的相关规定;(6)注射器:用于样品稀释,玻璃材质;(7)标准气体:质控或现场单点校准。1.2预制校准曲线预先制作校准曲线,分别制作低浓度系列和高浓度系列校准曲线,参考如下:低浓度系列为 2.0 nmol/mol、5.0 nmol/mol、10.0 nmol/mol、25.0 nmol/mol、50.0 nmol/mol;高浓度系列为 50.0 nmol/mol、100 nmol/mol、200 nmol/mol、400 nmol/mol、600 nmol/mol。依次从低浓度到高浓度进行测定,绘制校准曲线。未完待续
  • 崂应CO干扰试验报告的诞生过程
    co干扰试验简介首先co干扰试验需要根据用户所需量程范围,确认需要标定的点数。然后用对应浓度的混合标准气体,分别进行标定,来完成系列co浓度干扰下so2浓度的测定。如下图所示,在so2校准量程范围内,如果co浓度在20000μmol/mol以下需要标定96个点(用户可根据需要选择co浓度干扰范围)! 混合标准气体的选择目前根据新标准,做co干扰试验使用的混合标准气体可以从以下两种渠道获得:① 使用带有国家标准物质证书的混合标准气体(以下简称“混合标准气体”)。 ② 使用稀释配气装置动态配制不同浓度的混合气体 由于混合标准气体的准确度比用稀释配气装置动态配制出的混合气体的准确度更高,所以崂应坚持一贯的严谨作风,全部使用混合标准气体来进行co干扰试验,尽可能的保证试验报告的准确。 co干扰试验操作步骤co干扰试验需要标定的点非常多,每个点都需要标定和验证两个步骤,下面仅以一个点为例做演示说明。以上仅是其中一个点的标定工作,就需要约12分钟的工时。如每台仪器需要标定96个点,也就是说完成一台仪器的标定工作就需要12*96=1152分钟,即19.2小时。 崂应服务说明co干扰试验费时费力,且混合标准气体成本高昂,崂应为客户免费升级程序的基础上,可提供co干扰试验服务(有偿)。 如有其他疑问,欢迎拨打服务热线:400-676-5892咨询,最终解释权归青岛崂应所有。
  • 吹扫捕集-气相色谱冷原子荧光光谱法 测定水中烷基汞解决方案
    吹扫捕集-气相色谱冷原子荧光光谱法测定水中烷基汞解决方案北分瑞利水质与土壤等环境中烷基汞由于生物富集的作用,其毒性远远高于无机汞,为了人类的身体健康,准确检测环境中的烷基汞含量就显得十分重要,然而由于环境中烷基汞的含量一般为超痕量,使得一般的分析仪器难以满足检测要求。吹扫捕集-气相色谱-冷原子荧光光谱法(PT-GC-AFD)由于进样量小、检出限低、灵敏度高、分析速度快及环境污染小等优点特别适合分析环境中超痕量的烷基汞。在《HJ 977-2018水质烷基汞的测定吹扫捕集-气相色谱-冷原子荧光光谱法》标准条件下测定样品中甲基汞、乙基汞的含量,使用峰面积进行计算。该方法在0.1-4ng/L的浓度范围内标准曲线的线性相关系数R在0.999以上,甲基汞的检出限为0.11pg,乙基汞检出限为0.16pg,具有较好的方法回收率和重复性。1 标准依据及测试原理测试结果符合2019年3月1日起实施的《HJ 977-2018水质烷基汞的测定吹扫捕集-气相色谱-冷原子荧光光谱法》。水样蒸馏后馏出液中的烷基汞经四丙基硼化钠衍生,生成挥发性的甲基丙基汞和乙基丙基汞,吹扫后被Tenax管捕集,热脱附出来的组分经气相色谱分离,再高温裂解为汞蒸气,用冷原子荧光检测器检测。2 仪器设备与测试条件仪器配置仪器品牌型 号气相色谱仪北分瑞利SP-3530配毛细注样器和小型冷原子荧光检测器吹扫捕集北分瑞利BFRL-APT30S北分瑞利小型冷原子荧光检测器专利证书测试条件吹扫捕集测试条件吹扫温度:常温;吹扫气体:氩气(99.999%);吹扫时间:30min;吹扫流量:80mL/min;干吹时间:5min;捕集管解析温度:250℃;解析时间:1min;解析流量:15mL/min;烘烤温度:280℃;烘烤时间:10min;烘烤流量:300mL/min。气相色谱仪测试条件载气:氩气(99.999%),流量15mL/min,恒流模式;柱温箱升温程序:起始温度90℃,保持1min,以5℃/min升至100℃,保持2min;进样口温度220℃;进样方式:不分流模式;AFD设置:灯电流25mA,负高压630V,裂解温度800℃,补充气流量65mL/min。3 测试结果测试谱图图 1 烷基汞测试谱图序号中文名称保留时间min检出限/pg1甲基丙基汞2.0330.112乙基丙基汞3.3680.163丙基丙基汞4.630——甲基汞乙基汞结论吹扫捕集-气相色谱-冷原子荧光光谱法(PT-GC-AFD)测定环境中烷基汞的分析方法,符合《HJ 977-2018水质烷基汞的测定吹扫捕集-气相色谱-冷原子荧光光谱法》。甲基汞和乙基汞的检出限分别为0.11pg和0.16pg,达到国际先进水平。PT-GC-AFD在安装AFD的同时还可以加装FID、ECD、TCD等多种气相色谱仪检测器,增加了仪器的通用性和适用范围,使仪器除了测量烷基汞之外,还可以轻松扩项进行多种样品的分析。北分瑞利公司拥有原子吸收分光光度计、原子荧光光谱仪、原子发射光谱仪、紫外/可见分光光度计、傅立叶变换红外光谱仪、气相色谱仪、液相色谱仪等光谱与色谱分析仪器,为各行业提供全套应用解决方案。
  • 盘点!常用气相色谱分析方法
    1.归一化法  把所有出峰的组分含量之和按100%计的定量方法,称为归一化法。  各成分校正因子一致时可用该法,该法简便、准确,特别是进样量不容易准确控制时,进样浓度及进样量的变化的影响很小。  其他操作条件,如流速、柱温等变化对定量结果的影响也很小。GC应用广于HPLC。2.外标法(标准曲线法、直接比较法)  首先用欲测组分的标准样品绘制标准工作曲线。具体作法是:用标准样品配制成不同浓度的标准系列,在与欲测组分相同的色谱条件下,等体积准确量进样,测量各峰的峰面积或峰高,用峰面积或峰高对样品浓度绘制标准工作曲线,此标准工作曲线应是通过原点的直线。若标准工作曲线不通过原点,说明测定方法存在系统误差。标准工作曲线的斜率即为绝对校正因子。  当欲测组分含量变化不大,并已知这一组分的大概含量时,也可以不必绘制标准工作曲线,而用单点校正法,即直接比较法定量。单点校正法实际上是利用原点作为标准工作曲线上的另一个点。因此,当方法存在系统误差时(即标准工作曲线不通过原点),单点校正法的误差较大。因此规定,y=ax+b 。b的绝对值应不大于100%响应值是y的2%。  标准曲线法的优点:绘制好标准工作曲线后测定工作就很简单了,计算时可直接从标准工作曲线上读出含量,这对大量样品分析十分合适。特别是标准工作曲线绘制后可以使用一段时间,在此段时间内可经常用一个标准样品对标准工作曲线进行单点校正,以确定该标准工作曲线是否还可使用.  标准曲线法的缺点:每次样品分析的色谱条件(检测器的响应性能,柱温度,流动相流速及组成,进样量,柱效等)很难完全相同,因此容易出现较大误差。另外,标准工作曲线绘制时,一般使用欲测组分的标准样品(或已知准确含量的样品),因此对样品前处理过程中欲测组分的变化无法进行补偿。3.内标法  选择适宜的物质作为欲测组分的参比物,定量加到样品中去,依据欲测组分和参比物在检测器上的响应值(峰面积或峰高)之比和参比物加入的量进行定量分析的方法称为内标法。  内标法的关键是选择合适的内标物。内标物应是原样品中不存在的纯物质,该物质的性质应尽可能与欲测组分相近,不与被测样品起化学反应,同时要能完全溶于被测样品中。内标物的峰应尽可能接近欲测组分的峰,或位于几个欲测组分的峰中间,但必须与样品中的所有峰不重叠,即完全分开。一般会选择标准物质的同位素物质作为内标物。  内标法的优点:进样量的变化,色谱条件的微小变化对内标法定量结果的影响不大,特别是在样品前处理(如浓缩、萃取,衍生化等)前加入内标物,然后再进行前处理时,可部分补偿欲测组分在样品前处理时的损失。若要获得很高精度的结果时,可以加入数种内标物,以提高定量分析的精度。  内标法的缺点:选择合适的内标物比较困难,内标物的称量要准确,操作较麻烦。使用内标法定量时要测量欲测组分和内标物的两个峰的峰面积(或峰高),根据误差叠加原理,内标法定量的误差中,由于峰面积测量引起的误差是标准曲线法定量,但是由于进样量的变化和色谱条件变化引起的误差,内标法比标准曲线法要小很多,所以总的来说,内标法定量比标准曲线法定量的准确度和精密度都要好。4.标准加入法  标准加入法实质上是一种特殊的内标法,是在选择不到合适的内标物时,以欲测组分的纯物质为内标物,加入到待测样品中,然后在相同的色谱条件下,测定加入欲测组分纯物质前后欲测组分的峰面积(或峰高),从而计算欲测组分在样品中的含量的方法。  标准加入法的优点:不需要另外的标准物质作内标物,只需欲测组分的纯物质,进样量不必十分准确,操作简单。若在样品的前处理之前就加入已知准确量的欲测组分,则可以完全补偿欲测组分在前处理过程中的损失,是色谱分析中较常用的定量分析方法。  标准加入法的缺点:要求加入欲测组分前后两次色谱测定的色谱条件完全相同,以保证两次测定时的校正因子完全相等,否则将引起分析测定的误差。
  • 色谱前处理技术专题|岛津:以特色前处理附件不断满足气相色谱多样化分析需求
    近年来,为了提升色谱分析的效率和准确度,满足实验室对实验流程自动化等方面的需求,色谱前处理技术不断发展,新型前处理技术应运而生,同时高自动化、智能化前处理设备也逐渐推出并普及。为了展示当下色谱前处理技术及产品的应用现状,探讨未来前处理技术的发展方向,仪器信息网特别策划了“色谱前处理技术发展专题”,并面向广大色谱前处理技术企业、色谱前处理领域专家学者及业内相关从业人员广泛约稿。以下为岛津的供稿,分享了岛津围绕气相色谱技术,推出的各种特色前处理附件产品,以及如何通过这些创新技术,满足广大分析人员的多样化需求。--------------------------------以特色前处理附件不断满足气相色谱多样化分析需求岛津制作所自1957年推出岛津第一台商用气相色谱仪GC-1A以来,到今年已经65年了。在这跨越一个甲子的发展历程中,岛津始终秉承以用户为本的理念,努力践行“匠人精神”。在这个创新过程中,围绕气相色谱主机,岛津不断推出各种特色前处理附件产品来满足广大分析人员的多样化需求。前处理附件可谓是气相色谱分析的第一道关口,对于分析的重要性不言而喻,没有合适和质量过硬的前处理附件,分析的准确性将无从谈起,可以说前处理附件是高质量气相色谱分析的前提和必要条件。岛津围绕气相色谱进样技术开发了非常完善的前处理附件,包含液体自动进样、顶空自动进样、固相微萃取进样、热脱附进样、热裂解进样、气袋自动进样等。同时,围绕各个领域分析人员的具体需求,创新开发了系列特色技术并将其融入产品设计中,这些技术已经广泛服务于石油化工、环境监测、医药卫生、食品安全、教育科研等众多领域的实验室中。液体自动进样液体自动进样是气相色谱最常用的进样方式之一,广泛用于食品安全、教育科研、医药卫生等领域。岛津液体自动进样技术最早可以追溯到1970年专为GC-5A气相色谱仪所开发的AOC-5液体自动进样器,采用了竖直进样方式,这也是首台亮相中国的岛津液体自动进样器。随后不断创新,又陆续推出了水平进样方式的AOC-6, 以及搭配了方形样品盘的AOC-14等多个明星产品型号。在多年技术积淀的基础上,岛津于1996年正式推出AOC-20经典型号,在不断发展创新的过程中,AOC-20系列已经畅销超过25年了,成为气相色谱历史上非常受欢迎的代表性进样产品之一,为全球各地气相色谱仪用户所熟知。2021年,岛津重磅发布了AOC-30系列,这是岛津最新一代高端液体自动进样器型号。图1. 岛津AOC液体自动进样技术创新之路针对液体进样的使用场景,分析人员常常会关注三个方面的核心性能:交叉污染、样品通量和使用体验,岛津AOC-30的开发人员在广泛调研的基础上,重点围绕这三个方面进行了研发和创新。以交叉污染为例,一些特定分析项目中的化合物非常容易产生残留,比如毒品中甲基苯丙胺分析,甲基苯丙胺响应值很高,非常容易造成下一针的残留,对分析人员造成困扰。AOC-30支持多达4种溶剂来洗针,且可自由设置这4种溶剂交互的洗针程序,实现低交叉污染性能,可以很好的满足此类的分析需求。这一性能特点在化工、科研、工业制造等领域得到广泛欢迎。图2. AOC-30可支持多达4种溶剂的交互洗针程序以样品通量为例,对于一些分析任务比较重的实验室,比如第三方检测机构来说,由于样品量大和仪器长时间连续分析,以往可能会出现批处理分析中,洗针溶剂意外耗尽的风险。针对此问题,AOC-30实现了支持多达12个4mL溶剂瓶的溶剂量,这样超大容量的溶剂使得分析人员再也无须担心溶剂意外耗尽的问题,有助于大量样品长期稳定可靠的连续分析,再加上双塔进样,分析效率翻倍。图3. AOC-30支持双塔进样模式以分析体验为例,针对各个领域中的多样化进样需求,为了不断提升操作体验,AOC-30围绕“Analytical Intelligence”理念,特别设计了【进样助手】功能——基于多年积累的专业分析经验,将适于典型特性样品的六种进样参数预先内置在系统中,分析时仅需设置进样体积和洗针溶剂类型,然后“一键选择”预置的方法参数,即可创建适合的进样方法。比如针对乙二醇,白油,硅氧烷、甘油、润滑油和柠檬油等高粘度样品分析需求,特别预置有【粘性样品模式】;针对内标法进样分析的需求,特别预置有【多层进样模式】,实现自动加内标。图4. AOC-30进样助手功能操作过程针对样品量大和追求完全自动化的法规类型实验室,AOC-30还开发了样品盘读码器功能。可读取样品瓶上的条形码或二维码,自动在工作站中录入样品信息,如分析日期,样品ID,客户信息等内容。此模块读码准确度高,因此能够避免手工录入错误信息的风险,目前已经支持国际通用的13种条形码规格和7种二维码规格。此功能受到医药CRO、临床检验等领域用户的广泛欢迎。图5. AOC-30样品盘读码器模块作为岛津高端液体自动进样器,AOC-30设计了一系列能够满足当下和未来实验室所需的自动化和远程操作等多方面的功能,为现代实验室赋能。正是基于多方面的创新设计,AOC-30斩获了2022年德国红点设计大奖(Red Dot Design Award 2022)和iF设计大奖(iF Design Award 2022 )。图6. AOC-30高端液体自动进样器气袋自动进样气体进样在石油化工,教育科研和环境保护等领域中应用非常广泛,传统上,很多分析人员使用气密针进样或者手挤压气袋进样,此时由于气体的扩散性,这两种操作方式都非常容易造成分析结果的不稳定,重现性差。针对这个现状,岛津开发了cGBS-2030气袋进样器,使得分析作业从原本危险的环境转移到干净的实验室中进行,同时很好解决了硫化物吸附和操作体验不佳这两方面的问题。在石油化工领域中,气体中硫化物的分析通常是一个难点,其原因在于常常会出现由于硫化物吸附现象而导致分析数据不稳定的问题。cGBS-2030气袋进样器采用了惰性化流路设计,从而很好的支持硫化物及其他活性组分的分析,可以得到良好的分析效果。图7. cGBS-2030气袋进样器的分析效果当多个气袋样品等待分析时,由于气袋的体积和形状方面的原因,常常存在连接和操作的诸多不便,cGBS-2030气袋进样器采用可旋转式设计,大幅提升了连接气袋及气瓶的便利性,同时进样指示灯即时掌握进样状态。专门设计的3COsolution 辅助软件,可非常便捷直观的设定和显示气袋安装、分析、拔除、吹扫时间、平衡时间、进样时间等操作,并支持LabSolution软件。大幅改善传统气袋进样器的硬件和软件操作体验问题。正是基于多方面的创新设计,cGBS-2030气袋进样器斩获了2022年德国红点设计大奖(Red Dot Design Award 2022)和iF设计大奖(iF Design Award 2022 )。图7. cGBS-2030气袋进样器顶空自动进样顶空自动进样技术在环境分析、食品安全、医药CRO、公安司法等领域应用非常广泛。岛津顶空进样技术最早可以追溯到1985年研发和生产的HSS-2A(搭配GC-9A),可支持多达40位样品量,随后又推出了HSS-4A(搭配GC-17A),进样针和样品瓶温度均可设置到150℃,且支持顶空自动进样和手动进样之间的便捷切换。在多年技术积累的基础上,岛津陆续发布了HS-10,HS-20,HS-20 NX等产品。图9. 岛津顶空和热脱附进样技术创新之路顶空自动进样技术除了通量之外,大家经常关注的就是高沸点残留和操作体验这两个问题。岛津研发人员在HS-20 NX产品设计之初,就重点探讨和解决了这两个分析痛点。HS-20 NX继承并提高了HS-20在挥发性有机物分析中的优异性能,同时兼容用户友好型设计,是科学研究和质量控制工作的好助手。图10. 岛津Nexis GC-2030加强版搭配顶空自动进样器HS-20 NX在残留性能上,HS-20 NX一方面采用了创新的隔离流路设计,与传统顶空相比,隔离流路可有效减小排空阀中残留物质向定量环的扩散,有效降低交叉污染;另一方面在GC和HS之间采用内置的超短惰性流路设计,可支持高温设定,满足高灵敏度分析要求,一定程度上避免了高沸点物质的残留。研发人员曾测试树脂脱气中环硅氧烷的分析,即使300℃下高沸点物质可以获得高的回收率。图11. HS-20 NX隔离流路设计和短传输线设计在操作体验方面,HS-20 NX可嵌入气相色谱仪的LabSolution软件中实现完全控制,同时引入了在气相色谱仪中应用非常成熟的ClickTek 技术,实现免工具安装色谱柱,简化色谱柱更换及日常维护。对于顶空分析灵敏度要求更高的分析项目,为了进一步提高顶空方法的灵敏度,岛津开发人员专门设计了Trap型号(包括一个电子冷阱),可对宽沸点范围内的物质进行富集,这相比于传统方式,灵敏度再提高10~100倍。这三个前处理技术是岛津众多特色前处理附件的一个缩影,反映了岛津围绕气相色谱主机,不断在前处理相关产品上开拓创新,满足各个领域广大分析人员的多样化需求。岛津在气相色谱领域深耕六十余年,是世界上气相色谱历史最悠久的品牌之一,一直致力于气相色谱仪相关技术的创新。近年来岛津气相色谱研发团队一个很重要的理念就是“与家电相媲美的易用性”,研发时完全以用户的立场作为出发点,以此来开发真正能诠释气相色谱分析技术的内涵和潜能的创新产品,而这样的理念也同样适用于气相色谱相关前处理附件的开发工作。面向未来,针对石油化工、环境监测、医药卫生、食品安全、教育科研等广泛领域用户在分析操作中实际需求,希望通过更多岛津特色附件的导入,不断扩充气相色谱的使用场景,不断改善用户的操作体验和分析效果,不断满足气相色谱多样化的分析需求。
  • 安捷伦推出新型气相色谱自动进样器
    安捷伦科技公司推出新型气相色谱自动进样器  具有新的速度、样品制备功能和灵活性  2009年3月20日,北京—安捷伦科技公司(NYSE:A)今天推出了Agilent 7693A系列自动液体进样器,适用于安捷伦全线的台式气相色谱仪,并且极大地提升了液体自动进样器分析通量、灵活性、自动样品前处理能力。  “分析实验室需要在不影响分析质量的前提下,在更短的时间分析更多的样品,安捷伦不断地以GC设计上的重大突破对此做出了响应,比较典型的实例是安捷伦的微板流路控制技术以及低热容气相色谱技术,这些技术都带来了分析效率的提高”安捷伦副总裁、气相色谱系统和流程自动化总经理Shanya Kane说,“我们今天的发布的新一代气相色谱液体自动进样器,就是安捷伦长期以来帮助气相色谱用户,使其仪器投资价值最大化的最新实例。”  Agilent 7693A以全新的设计取代了行业领先的7683B,将帮助用户更快处理样品,并得到更好的数据。新ALS是模块式的,让用户可以配置其最需要的自动进样器—— 从一个带16位样品塔的基本进样器开始,可以根据需求的扩展不断增添新的功能。可选件包括,第二个进样塔、150位样品盘和样品管加热器/条码阅读器,适用于长时间无人执守操作。自校准的“即插即用”式进样器不用工具即可快速安装,可以从一个进样口移到另一个进样口,甚至可以在不同气相色谱仪之间交互使用,以适应工作量的变化,并方便进样口维护。  速度和性能  安捷伦独有的快速进样技术,速度是其它品牌液体自动进样器的两倍。进样时间不到100毫秒,最大限度地减少了样品降解和针头歧视效应。推杆的速度可以精确控制,真正实现大体积样品进样或复杂分析进样的优化。Agilent 7693A 针对气相色谱获得良好峰形和高度准确的数据进行了专门化设计。新进样器支持三明治进样,可以在进样前加入一定体积的内标和/或溶剂,全新的进样针的设计上能够将交叉污染降到最小,并延长了进样针的使用寿命。  双进样器配置能够实现安捷伦独特的双通道同时进样功能,与单进样器ALS相比,样品通量提高了2倍,从而节省了大量时间。  每个进样塔能放置最多16个样品,还可以容纳两个溶剂瓶和一个废液瓶。在使用样品瓶盘时,进样塔可以放置10个溶剂瓶和5个废液瓶,外加三个样品瓶转移位置。从而给样品处理带来了无可比拟的灵活性。  新的样品盘上样品瓶放置系统有三排50个样品瓶的架子,共能容纳150个样品,比过去增加了50个。这些架子适合放入冰箱冷藏,并且非常节约空间。安捷伦还为7693A提供了全进样盘加热/冷却选件。  自动化样品前处理  为了使许多高通量分析流程(如环境分析、食品安全检测或药物质量控制等)效率更高,安捷伦提供了一个可选件加热器/混合器/条码阅读器,可以自动进行各种样品前处理,如制备高粘度或微溶样品。用户可通过简便易用的软件让仪器进行样品前处理操作,如添加衍生化试剂、加热样品瓶、加入第二种试剂,混合,然后将处理后的样品注入气相色谱系统。  新的自动进样器的样品处理功能能够大量节省时间和人力,也消除了不同操作者之间可变因素的影响,消除因为样品前处理不同带来的重复操作。可以把溶剂消耗和废液减少90%,也减少了人员和溶剂的接触。  如需了解有关新型Agilent 7693A系列ALS的其它信息,可访问www.agilent.com/chem/7693A。  安捷伦长期致力于GC和GC/MS的创新开发,在制造耐用的仪器方面享有盛誉。安捷伦的前身,惠普公司,于1958年进入气相色谱市场,从那时起就一直是GC和GC/MS产品的领导者。1973年第一次引入微处理器控制,1975年推出世界第一台台式GC/MS系统。1996年,HP 5973推出石英镀金双曲面四极杆质量分析器,实现了仪器稳定性和性能上的突破。1999年安捷伦从惠普分离出来,直至今日,仍在GC和GC/MS的硬件和软件方面不断开拓创新。  # # #  关于安捷伦科技  安捷伦科技(NYSE: A)是全球领先的测量公司,是通信、电子、生命科学和化学分析领域的技术领导者,公司的19,000名员工在110多个国家为客户服务。在2008财政年度,安捷伦的业务净收入为58亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn http://agilent.instrument.com.cn/ 。
  • 气相色谱-串联质谱法测定葡萄中78种农药残留的定量校准方法评估
    以柠檬酸盐缓冲体系的QuEChERS方法为前处理方法,气相色谱-串联质谱联用仪为检测仪器,建立了葡萄中78种农药残留的检测方法。以添加回收法评估了葡萄中4种基质匹配校准方法的定量结果,评估了4种校准方法的线性回归系数,回收率和精密度。结果表明:在添加回收试验中,添加水平为0.01 mg/kg时,4种校准方法在0.005~0.1 mg/L范围内,78种农药的质量浓度与对应的峰面积间线性关系良好,R2均大于0.99,大部分农药的精密度均可满足农药残留检测的要求。然而,在使用空白基质溶液配制的标准工作溶液进行校准时,无论是外标法还是内标法,回收率均无法兼顾所有分析对象。使用基质匹配标准溶液得到的基质标准曲线表现更好,其外标法和内标法的回收率范围分别为82%~114%和81%~110%,相对标准偏差范围分别为2.3%~18%和1.2%~17%,符合食品理化检测的质量控制要求,适合实验室日常监测采用。 气相色谱_串联质谱法测定葡萄中78种农药残留的定量校准方法评估_余巍.pdf
  • 禾信推出重磅新品便携式气相色谱-质谱联用仪GCMS 2000
    近日,禾信质谱推出新品便携式气相色谱-质谱联用仪GCMS 2000,这款新品具有多功能、易操作、体积小的特点,是禾信仪器在小型化质谱技术上的新突破。  当前,环境污染事故应急监测、流域/区域性污染调查、环境恶劣现场勘查、以及重大的国际/国内活动等,都需要现场分析。而传统的实验室离线或在线设备,均无法满足现场分析要求,严重制约应急反应速度和事故处理能力!  因此,一种能够在应对复杂现场环境,无需存储和运输样品,能够快速获得结果,分析结果准确的技术尤为重要。在此情况下,国家发布了一系列相关标准政策《便携式气相色谱-质谱联用仪技术要求及试验方法》(GB/T 32210-2015)、《固定污染源废气 挥发性有机物的测定便携式气相色谱-质谱法(征求意见稿)》、《环境空气 挥发性有机物的测定 便携式气相色谱-质谱法(征求意见稿)》… …   雀小脏全,多领域、多场景的分析利器  便携式气相色谱-质谱联用仪GCMS 2000具有单质谱快速进样、吸附热解吸进样、定量环进样、固相微萃取进样(SPME)等多种灵活的进样功能,可满足现场的大气、水体和土壤中挥发性有机化学污染物(VOCs)和半挥发性有机化学污染物(SVOCs)的快速定性定量分析,具备体积小、重量轻、操作简便和“向导式”图形化界面等优点,可放置于监测车、采用肩背等方式到达现场进行检测,是环境监测、食品安全、公共安全和刑侦科学等领域的分析利器。  技术突破  ▲ 强抗污染性的外部电子轰击电离源  外部电子轰击电离源具有独立的电离室,可承受300℃的烘烤温度,背景噪声低。  ▲ 高灵敏度的质量分析器  具有宽动态范围和高灵敏度的优点。  ▲ 单质谱和气-质联用双检测模式  单质谱分析可实现秒级快速响应检测 气质联用检测分析可实现对复杂未知物的精准定性、定量分析。  ▲ 高精准、全自动数据处理功能  软件集成了自动解卷积和智能谱库匹配等算法,可自动、高效、准确地对复杂的多组分目标物进行定性定量分析。  优势特点  ▲ 快启  冷启动15min进入检测状态,单次分析时间小于4min,现场直接得到定性定量结果。  ▲ 持久  连续监测达2小时以上 支持在线更换电池,无需关机。  ▲ 精准  双检测模式,内标校正,可实现固液气多种基质、浓度从ppt至ppm的样品检测,准确分析上百种挥发性有机物。  ▲ 便携  可单人携带,无需外部电气供给,移动性强。  环境空气挥发性有机物检测  ▲ 预浓缩进样,采样流速100mL/min   ▲ 色谱柱:DB-1,7m ×0.1mm ×0.4um   ▲ 升温程序:初始温度50℃保持1min,然后以35℃/min升温到120℃,再以120℃/min升温到260℃保持0.5min。  在近日的三部委权威发布《国家鼓励发展的重大环保技术装备目录(2020年版)》(以下简称《目录》)中, GCMS 2000成功入选。  同时,1月25日工业和信息化部节能与综合利用司组织编制了《目录》的供需对接指南,列举了《目录》中各项技术装备的主要支撑单位。
  • 嗨,这里有你要的HJ 1183 同位素内标
    上周小编和大家共同学习了《HJ 1189-2021水质 28种有机磷农药的测定 气相色谱-质谱法》; 该标准覆盖了大部分的有机磷农药,但是对于沸点低,热稳定性差的农药,是不适合气相色谱法分析的;因此,生态环境部发布了《HJ 1183-2021 水质 氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷的测定 液相色谱-三重四级杆质谱法》,该标准为首次发布,并将于2021年12月15日起实施 氧化乐果、乙酰甲胺磷、辛硫磷是有机磷农药生产行业的特征污染物控制指标,乙酰甲胺磷在自然条件下易降解为甲胺磷,这4种有机磷农药均具有较强的生物毒性,其进入环境后对于生态环境和人体健康具有较大的危害。HJ 1183标准的出台,规定了地表水、地下水、生活污水和工业废水中氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷的测定方法,将有效支撑《农药工业水污染物排放标准》的执行工作,满足我国氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷水质监测和排放控制工作的需要,也是今后开展水体中这几种有机磷农药环境调查与排放监控的技术基础,对于保障水环境质量及人民群众的身体健康具有重要意义。 试剂与材料:章节类别试剂与材料要求用途5.1试剂乙腈(CH3CN)色谱纯溶剂5.2甲醇(CH3OH)色谱纯溶剂5.3乙酸乙酯(CH3COOCH2CH3)色谱纯溶剂5.4盐酸:ρ = 1.19 g/ml优级纯调节样品 pH 值5.5氢氧化钠(NaOH)。分析纯调节样品 pH 值5.6甲酸铵(HCOONH4)。分析纯流动相5.9溶液乙腈溶液φ( CH3CN )=50%标准稀释液5.10乙腈-乙酸乙酯混合溶液φ( CH3CN )=50%固相萃取洗脱液5.11甲醇溶液φ( CH3OH) =80%固相萃取洗脱液5.12盐酸溶液φ=50%调节样品 pH 值5.13氢氧化钠溶液c(NaOH) = 0.1mol/L调节样品 pH 值5.14甲酸铵溶液c(HCOONH4) = 5.0 mmol/L流动相5.15甲酸铵-乙腈溶液c = 5.0 mmol/L流动相5.16有证标准溶液氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷混合标准贮备液ρ=1000 μg/ml待测目标,坛墨编号:81426b5.18乙腈中甲胺磷-D6同位素ρ=100 μg/ml内标物,坛墨编号:92684a乙腈中氧化乐果-D6同位素ρ=100 μg/ml内标物,坛墨编号:92685a乙腈中辛硫磷-D5同位素ρ=100 μg/ml替代物,坛墨编号: 92686a5.20固相萃取柱Ⅰ填料为十八烷基键合硅胶,或同等柱效的萃取柱,规格为500 mg/6 ml。5.21固相萃取柱Ⅰ填料为二乙烯苯和N-乙烯基吡咯烷酮共聚物,或同等柱效的萃取柱,规格为500 mg/6 ml。 实验与分析:章节实验步骤实验过程7.17.1样品采集与保存按照HJ/T 91、HJ 91.1和HJ 164的相关规定进行样品的采集。用棕色采样瓶(6.4)采集样品,样品满瓶采集。如果采集的样品pH不在2~8之间,用盐酸溶液(5.12)或氢氧化钠溶液(5.13)调节pH至2~8,4℃以下冷藏避光运输和保存,3天内完成样品分析工作。7.2试样的制备A:地表水、地下水经滤膜(5.22)过滤,弃去2 ml初滤液后,移取1.0 ml过滤后的样品于棕色样品瓶(6.5)中,加入10.0 μl内标使用液(5.19),混匀待测。 B: 基体复杂的样品(生活污水和有机磷生产废水)经固相萃取净化后再进样。取5.0 ml样品,以约3 ml/min(约1滴/秒)的流速通过固相萃取柱。甲胺磷、氧化乐果和乙酰甲胺磷用固相萃取柱Ⅰ净化,10 ml乙腈-乙酸乙酯混合溶液洗脱;辛硫磷用固相萃取柱Ⅱ净化,10 ml甲醇洗脱。合并洗脱液,经浓缩装置浓缩至近干,用乙腈溶液定容至5.0 ml.经滤膜过滤后,取1.0 ml滤液于棕色样品瓶中,加入10.0 μl内标使用液,混匀待测。 7.3空白试样的制备以实验用水代替水样,按照与试样的制备(7.2)相同的步骤,制备空白试样。8.1仪器条件仪器:液相色谱-串联质谱联用仪流动相A:甲酸铵溶液;流动相B:甲酸铵-乙腈溶液;梯度洗脱;流速:0.3 ml/min;进样体积:5.0 μl;柱温:40℃。 质谱条件:正离子模式;离子化电压:5 500 V;离子源温度:550℃;喷雾气压力:380 kPa;辅助加热气压力:410 kPa;气帘气压力:210 kPa;多离子反应监测方式(MRM)。8.2标准曲线移取适量的氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷混合标准使用液,逐级稀释,配制至少5个浓度点的标准系列,各组分质量浓度分别为0.00 μg/L、2.00 μg/L、5.00 μg/L、10.0 μg/L、50.0 μg/L、100 μg/L(此为参考浓度)。移取1.0 ml配制好的标准系列溶液于棕色样品瓶(6.5)中,加入10.0 μl内标使用液(5.19),混匀待测。 按照仪器参考条件,由低浓度到高浓度依次对标准系列溶液进行测定。以标准系列溶液中目标组分的质量浓度(μg/L)为横坐标,以其对应的峰面积(或峰高)与内标物峰面积(或峰高)的比值和内标物浓度的乘积为纵坐标,建立标准曲线。可用平均相对响应因子法或标准曲线法进行标准曲线绘制。8.3试样的测定按照与标准曲线的建立(8.2)相同的仪器条件进行试样(7.2)的测定8.4空白试验按照与试样测定(8.3)相同的仪器条件进行空白试样(7.3)的测定。 分析结果表述:根据样品中目标化合物与标准系列中目标化合物的保留时间和特征离子定性,内标法定量。 坛墨质检秉持一直以来对环境安全的高度关注,依据该标准推出如下混标产品方案, 欢迎垂询!针对该标准,坛墨推出如下配套的产品方案:商城编码名 称浓 度说 明81426b乙腈中4种有机磷混标1000μg/mL标准储备液92684a乙腈中甲胺磷-D6同位素100μg/mL内标储备液92685a乙腈中氧化乐果-D6同位素100μg/mL内标储备液92686a乙腈中辛硫磷-D5同位素100μg/mL内标储备液欢迎大家到坛墨商城选购,有任何疑问,随时与我们交流。 原文章链接:https://www.gbw-china.com/ns_detail/1106.html
  • 《橄榄油中脂肪酸乙酯含量的测定 气相色谱-质谱法》征求意见
    近日,由 TC270(全国粮油标准化技术委员会)归口,南京海关动植物与食品检测中心起草的国家标准计划《橄榄油中脂肪酸乙酯含量的测定 气相色谱-质谱法》已完成征求意见稿编制,现公开征求意见。  橄榄油(Olive Oil)是以油橄榄树的果实为原料制取的油脂。根据加工工艺不同,可以分为初榨橄榄油和果渣油,初榨橄榄油又可根据品质分为不同等级,其中以特级初榨橄榄油营养价值最高。我国是食用油大国,随着经济发展,我国对橄榄油的需求量不断增加,仅 2017 年总消费量约为 60 万吨,其中 80%依赖进口。  然而,我国消费者对橄榄油系列产品认识有限,且特级初榨橄榄油产量少,价格高。经销商为了推销产品和谋取暴利,对橄榄油进行夸大宣传或以劣充好的现象屡见不鲜。尤其进口的橄榄油几乎一律标称“特级初榨橄榄油”,这种以次充好的橄榄油不仅严重侵害了消费者的权益,还可能影响消费者的身体健康。因此,建立一套能对橄榄油等级进行准确鉴定,尤其是对特级初榨橄榄油等级进行准确鉴定的方法,对保障消费者权益、打击不法行为和更好地把关国门,均具有重要的意义。 本文件规定了脂肪酸乙酯含量的气相色谱-质谱联用测定方法。本文件适用于特级初榨橄榄油中脂肪酸乙酯含量的测定。  方法提要:  试样中脂肪酸乙酯用正己烷溶解,经硅胶固相萃取柱净化,气相色谱-质谱联用仪分析,内标法定量。  仪器和设备:  1.气相色谱-质谱仪,配置有电子轰击(EI)源。  2.分析天平:感量 0.0001 g、0.00001 g。  3.固相萃取装置。  4.涡旋振荡器。  5.旋转蒸发仪。  色谱条件: 1.载气流速:1 mL/min。  2.进样口温度:300 ℃。  3.进样模式:不分流进样,分流阀打开时间为 1.00 min。  4.载气:氦气(纯度≥99.999 %)。  5.柱温:初始温度 150 ℃,以 20 ℃/min 升至 200 ℃,以 2.5 ℃/min 升至 240 ℃,保持 1.5 min,以 35 ℃/min 升至 310 ℃,保持 2 min。  6.进样量:1 μL。  质谱条件:  1.电离方式:电子轰击电离源(EI 源,电子能量 70 eV)。  2.离子源温度:230 ℃。  3.接口温度:280 ℃。 4.溶剂延迟时间:5 min。  5.数据采集方式:选择离子检测(SIM)模式。定量离子、定性离子和保留时间参考值详见表 1。  检测方法的灵敏度、准确度和精密度:  1.灵敏度  本文件的检出限,棕榈酸乙酯为 0.4 mg/kg,亚油酸乙酯为 0.5 mg/kg,油酸乙酯为 0.5 mg/kg,硬脂酸乙酯为 0.4 mg/kg。  本文件的定量限,棕榈酸乙酯为 1.2 mg/kg,亚油酸乙酯为 1.7 mg/kg,油酸乙酯为 1.6 mg/kg,硬脂酸乙酯为 1.3 mg/kg。  2.准确度  本文件在添加水平为 4.00 mg/kg~20.00 mg/kg 时,回收率范围为 90.7 %~106.6 %,参见附录 C。  3.精密度  在重复性条件下获得的 2 次独立测定结果的绝对差值不得超过算术平均值的 10%。  更多详情请见附件。 征求意见稿.pdf 编制说明.pdf
  • 安捷伦科技公司推出气相色谱低气压报警器、彩色标记注射器
    安捷伦科技公司推出为减少分析过程中的意外停机和为提高 分析效率而设计的气相色谱低气压报警器、彩色标记注射器 2009年3月20日,北京&mdash 安捷伦科技公司(NYSE:A)今天推出了新设计的附件,这些附件是针对一般分析过程中因气相色谱(GC)载气耗尽,或花时间寻找合适规格的注射器而造成的计划外停机和效率低下而设计的。 安捷伦新的低气压报警和气体管理系统是一种简单、安全、可靠而经济的设备,它将在气体钢瓶耗空和仪器停机之前通知气相色谱仪操作人员。钢瓶耗空不仅能造成计划外停机,而且还会损坏色谱柱、损失样品(以及相关的样品制备时间),并需要额外维修。 该系统在仪器气体耗尽之前(用户预先设置的压力点),以可闻和可视两种形式对低气压状态报警。 在2009匹茨堡会议上安捷伦通用实验室注射器也首次亮相。该注射器适用于稀释、内标添加、提取样品的转移和其它分析工作,体积有彩色标记,让操作者使用时一目了然。 安捷伦提供体积范围1 L 到 50 mL的100多种通用注射器。其包装是注射器体积两倍的可反复使用的容器,为找到合适的注射器提供了便利。 如需了解更多信息,请访问www.chem.agilent.com 并点击&ldquo 消耗品和备件&rdquo 表。 关于安捷伦科技 安捷伦科技(NYSE: A)是全球领先的测量公司,是通信、电子、生命科学和化学分析领域的技术领导者,公司的19,000名员工在110多个国家为客户服务。在2008财政年度,安捷伦的业务净收入为58亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn http://agilent.instrument.com.cn/
  • 华洋科仪2012便携式气相色谱仪培训通知
    随着便携式气相色谱仪在水流域、食药局、环保局、质监局、矿井救护队及石油化工等应急监测部门的广泛应用,使便携式气相色谱仪使用操作与行业应用显得尤为重要。华洋科仪结合多年便携式气相色谱仪售后服务经验,应广大便携式气相色谱仪用户及色谱同行的强烈要求,为帮助便携GC使用者提高仪器使用效率,充分发挥仪器和软件的作用,提高分析技术人员的专业素质和技术水平,掌握仪器基本操作和故障处理,提高工作效率,特在大连市举办2012年举办便携式气相色谱分析技术与应用培训班,并配备相关仪器供学员在培训现场操作。培训结束后通过考核者将为其颁发合格证书。 具体安排如下: 一. 培训时间: 序号 行业 培训时间 报名截止时间 1 科研院所 4月16日-4月18日 3月10日前 2 矿井救护 5月21日-5月23日 4月25日前 3 环保局 6月11日-6月13日 5月20日前 4 食药局和质监局 7月9日-7月11日 6月10日前 5 公安系统 7月23日7-月25日 6月20日前 6 石油化工 8月6日-8月8日 7月5日前 7 水流域 8月20日-8月22日 7月30日前二. 培训班举办地点:大连市中山区丰汇园5号(大连老虎滩公园旁丰源海景山庄内) 三. 授课内容:1.便携式气相色谱仪结构、检测器(16种)原理及构造。2.便携式气相色谱仪操作和日常维护。3.便携式气相色谱仪常见故障的判断及排除技巧。4.便携式气相色谱柱原理、种类及如何选择色谱柱,担体及固定液。5.便携式气相色谱条件的选择与建立,使用时对分析结果的准备性进行判断。6.便携式气相色谱仪色谱工作站使用方法,归一法、外标法、内标法的操作。7.便携式气相色谱仪各行业应用实例。8.便携式气相色谱仪远程控制方法。四. 培训费用:1、授课费,色谱资料,场地费,证书费,文具免费。2、学员差旅费、食宿费自理。 报名方式:请各部门在规定的日期内填写好的《培训报名表》传真、邮寄或电子邮件至本公司以便安排会务事宜。注:《培训报名表》请参见本网站资料中心的链接http://www.instrument.com.cn/netshow/SH100335/down_194317.htm 联系方式:地址:大连市中山区丰汇园5号 邮 编:116013联系电话:0411-82364123/5/6/8     传 真:0411-82364006联系人:贾祥娟 13998650592      E-mail:jeanys@dhsi.com.cn
  • 华洋科仪2010年暑期便携式气相色谱仪培训班将举办
    随着便携式气相色谱仪在石油、化工、能源、环境、食品、农药等应急监测领域的广泛应用,使便携式气相色谱仪理论与操作显得尤为重要。华洋科仪结合多年便携式气相色谱仪售后服务经验,应广大便携式气相色谱仪用户及色谱同行的强烈要求,为提高广大应急监测领域工作者的色谱技术水平,特在大连市举办2010年暑期便携式气相色谱分析技术与应用培训班。  培训目标:通过讲解、现场操作等方式,重点解决学员在工作中遇到的各种疑难问题,掌握便携式气相色谱分析理论及便携式气相色谱仪的操作、日常维护与常规故障排除等技能。培训结束后通过考核者将颁发合格证书。  具体安排如下:  一、 培训时间:2010年08月18日到20日(共3天),请学员于2010年08月17日报到。  二、 培训班举办地点:大连市中山区丰汇园5号(大连老虎滩公园旁丰源海景山庄内)  三、 授课内容:  1.便携式气相色谱仪结构、检测器(16种)原理及构造。  2.便携式气相色谱仪操作和日常维护。  3.便携式气相色谱仪常见故障的判断及排除技巧。  4.便携式气相色谱柱原理、种类及如何选择色谱柱,担体及固定液。  5.便携式气相色谱条件的选择与建立,使用时对分析结果的准备性进行判断。  6.便携式气相色谱仪色谱工作站使用方法,归一法、外标法、内标法的操作。  四、培训费用:  1、授课费,色谱资料,场地费,证书费,文具免费。  2、学员差旅费、食宿费自理。  报名方式:请于2010年07月31前将填写好的《报名回执表》传真、邮寄或电子邮件至本公司以便安排会务事宜。  单位名称:  参会人数:  单位地址:   邮 编:  联系电话:   传 真:   联系人(手机):  姓 名:   备 注:  报名回执表  大连华洋分析仪器有限公司  2010年7月12日  联系方式:  地址:大连市中山区丰汇园5号 邮 编:116013  联系电话:0411-82364123/5/6/8          传 真:0411-82364006  联系人:贾祥娟 13998650592           E-mail:jeanys@dhsi.com.cn
  • 深消委公布《2019年口红比较试验报告》,检测仪器显身手
    p  深圳消委会公布《2019年口红比较试验报告》,此次试验从重金属、香料致敏原、口红色调喜好度、滋润度和不粘杯性等感官指标对口红进行质量评价,包括客观项目和感官评价项目。其中,客观检测项目如下表所列:/pp style="text-align: center "strong客观检测项目总览/strong/ptable border="0" cellpadding="0" cellspacing="0" style="box-sizing: border-box border-spacing: 0px "colgroupcol width="72" span="2" style="width:72px"/col width="142" style=" width:143px"/col width="189" style=" width:189px"/col width="110" style=" width:111px"/col width="72" style="width:72px"//colgrouptbodytr height="40" style="height:40px box-sizing: border-box" class="firstRow"td height="40" width="19" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"span style="box-sizing: border-box"序号/span/tdtd width="65" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px "span style="box-sizing: border-box"类别/span/tdtd width="143" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px "span style="box-sizing: border-box"项目/span/tdtd width="138" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px "span style="box-sizing: border-box"标准/法律法规/span/tdtd colspan="2" width="194" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px "span style="box-sizing: border-box"标准要求限量/span/td/trtr height="22" style="height:22px box-sizing: border-box"td height="22" width="38" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"span style="box-sizing: border-box"1/span/tdtd rowspan="7" width="65" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px "span style="box-sizing: border-box"8类重金属/span/tdtd width="143" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px "span style="box-sizing: border-box"铅(Pb)/span/tdtd rowspan="6" width="138" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px "span style="box-sizing: border-box"德国联邦消费者保护和食品安全局(BVL)关于可避免杂质重金属限值的调研报告/span/tdtd width="93" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px "span style="box-sizing: border-box"5mg/kg*/span/tdtd rowspan="6" width="44" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px "span style="box-sizing: border-box"德国标准/span/td/trtr height="22" style="height:22px box-sizing: border-box"td height="22" width="38" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"span style="box-sizing: border-box"2/span/tdtd width="136" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px "span style="box-sizing: border-box"砷(As)/span/tdtd width="111" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px "span style="box-sizing: border-box"0.5mg/kg/span/td/trtr height="44" style="height:44px box-sizing: border-box"td height="44" width="38" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"span style="box-sizing: border-box"3/span/tdtd width="136" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px "span style="box-sizing: border-box"汞(Hg)/span/tdtd width="111" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px "span style="box-sizing: border-box"0.1mg/kg/span/td/trtr height="22" style="height:22px box-sizing: border-box"td height="22" width="38" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"span style="box-sizing: border-box"4/span/tdtd width="136" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px "span style="box-sizing: border-box"镉(Cd)/span/tdtd width="111" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px "span style="box-sizing: border-box"0.1mg/kg/span/td/trtr height="22" style="height:22px box-sizing: border-box"td height="22" width="38" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"span style="box-sizing: border-box"5/span/tdtd width="136" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px "span style="box-sizing: border-box"锑(Sb)/span/tdtd width="111" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px "span style="box-sizing: border-box"0.5mg/kg/span/td/trtr height="44" style="height:44px box-sizing: border-box"td height="44" width="38" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"span style="box-sizing: border-box"6/span/tdtd width="136" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px "span style="box-sizing: border-box"镍(Ni)(参考可溶镍)/span/tdtd width="111" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px "span style="box-sizing: border-box"10mg/kg/span/td/trtr height="44" style="height:44px box-sizing: border-box"td height="44" width="38" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"span style="box-sizing: border-box"7/span/tdtd width="136" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px "span style="box-sizing: border-box"span style="box-sizing: border-box"铬(Cr)、六价铬(Crspan style=""6+/spanspan style="")、钕(Nd)/span/span/span/tdtd width="189" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px "span style="box-sizing: border-box"《化妆品安全技术规范》(2015版)/span/tdtd width="77" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px "span style="box-sizing: border-box"禁用物质/span/tdtd width="21" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px "span style="box-sizing: border-box"国家标准/span/td/trtr height="330" style="height:330px box-sizing: border-box"td height="330" width="38" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"span style="box-sizing: border-box"8/span/tdtd width="66" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px "span style="box-sizing: border-box"26类香料致敏原/span/tdtd width="143" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px "span style="box-sizing: border-box"戊基肉桂醛、戊基肉桂醇、大茴香醇、苯甲醇、苯甲酸苄酯、肉桂酸苄酯、水杨酸苄酯、铃兰醛、肉桂醛、肉桂醇、柠檬醛、香茅醇、香豆素、丁香酚、金合欢醇、香叶醇、己基肉桂醛、羟基香茅醛、新铃兰醛、异丁香酚、柠檬烯、芳樟醇、辛炔酸甲酯、α-异甲基紫罗兰酮、树苔、橡苔/span/tdtd width="138" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px "span style="box-sizing: border-box"欧盟化妆品法规EC 1223/2009及其相关修订文件/span/tdtd width="96" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px "span style="box-sizing: border-box"在驻留类化妆品中含量≥0.001%,在淋洗类化妆品中含量≥0.01%时,化妆品香料中26种致敏原必须在化妆品标签上予以标注(自2021年8月23日起,含有新铃兰醛的化妆品将禁止在欧盟市场销售)/span/tdtd width="44" style="box-sizing: border-box border: 1px solid rgb(0, 0, 0) padding: 5px "span style="box-sizing: border-box"欧盟标准/span/td/trtr height="22" style="height:22px"td height="22" colspan="6" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="600"span style="box-sizing: border-box"“*”:表示化妆粉、口红、眼影、眼线笔、眼线膏以及剧院、粉丝或狂欢节所用化妆品,铅的限值为5mg/kg;在普通化妆品中技术上可避免的重金属限值2mg/kg。/span/td/tr/tbody/tablepspan  /span根据测试结果,共有7款符合本次比较试验制定的更高更严标准要求且感官性能指标表现卓越的品质领跑口红,分别是:HOLD LIVE白玉小唇膏 514、玛丽黛佳佳国风涂鸦唇膏 S818、卡姿兰胶原美芯唇膏 07、GUERLAIN/娇兰臻彩宝石哑光唇膏 27、LANCOME/兰蔻菁纯柔润丝缎唇膏 132、ARMANI/阿玛尼挚爱哑光唇膏 400、TOM FORD/汤姆福特激情幻魅唇膏 07。前三款为国产品牌,后四款为进口品牌,进口平均售价(约373元/支)比国产平均售价(约81元/支)贵约360%,国产品牌性价比超高。/pp style="text-align: center "  strong2019年口红比较试验总评表/strong/pp style="text-align: center "strong  (安全+感官综合评价)/strongimg src="https://img1.17img.cn/17img/images/201907/uepic/e8b7f520-2749-46e9-bede-73ea18c17da2.jpg" title="5star 600.jpg"//pp style="text-align: center"img style="" src="https://img1.17img.cn/17img/images/201907/uepic/758b5f07-eca1-46e3-8693-2614ad6aded3.jpg" title="4star 600.png"//pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/dac1de63-f829-42cc-a105-6f3385ddc984.jpg" title="3star 600.jpg" alt="3star 600.jpg"//pp  如此全面细致的检测一定离不开仪器的帮助,那么,检测口红都可能会用到哪些仪器呢?/pp  像本次口红中重金属含量的检测方法,目前就有火焰原子吸收分光光度法、电位溶出法、电感耦合等离子体发射光谱法、电感耦合等离子体质谱法、X射线荧光光谱法、酶抑制法、免疫分析法等。涉及到的仪器包括原子吸收分光光度计、电感耦合等离子体发射光谱仪、电感耦合等离子体质谱仪、X射线荧光光谱仪等仪器。而在此之前,往往还需要对检测样品进行前处理操作,常用的方法有干灰化法、湿法消解、湿式催化消解法、浸提法、压力罐消解法、微波消解法等,其中涉及的仪器包括电炉、水浴锅、电热板、微波消解仪等。而香料致敏原的检测会用到的仪器包括气相色谱质谱联用仪、气相色谱仪和固相萃取仪等仪器。/pp  目前市场上口红产品众多,各家产品均有不同特点,购买时很容易“乱花渐欲迷人眼”,但产品质量还是应该成为我们选择一款产品的重要标准,而通过科学仪器检测客观呈现各产品的质量情况,可以尽可能保证大家买到的产品称心如意的同时也安全可靠。/p
  • 仪器小讲堂(二)—气相色谱仪样品的前处理技术
    导读气相色谱分析已经成为当今分析化学领域应用广泛的一种分析测试手段,其常常用于各种复杂的基体以及低含量组分的分析,因此,消除基体干扰、提高分析灵敏度、延长仪器寿命是一个普遍需要解决的问题,对样品进行色谱分析前处理变得尤为重要。样品前处理方法很多,本质上可以分为两大类:一类是对检测器响应弱(或无信号)的样品,通过衍生技术使之成为可被检测的化合物即衍生化技术;另一类是通过对复杂基体样品中低含量组分进行分离、纯化和富集以获得同样效果,这主要包裹萃取法、顶空法、吹扫捕集等方法,本文主要讨论后者。样品类型气体(吸附解析)液体(萃取、固相萃取)固体(索氏提取、微波萃取、超声)样品前处理方法样品的前处理方法包括萃取法(溶剂萃取、索氏提取、微波、超声)、顶空法、吹扫捕集、吸附浓缩/热脱附法、固相萃取技术和固相微萃取技术等。01顶空分析顶空进样器主要用于固体、半固体、液体样品基质中挥发性有机化合物的分析,如水中的挥发性有机物(VOCs)、茶叶中香气成分、合成高分子材料中残留单体的分析等。其原理如下图:02吹扫捕集法向样品中连续通入惰性气体(一般为高纯氮气),液体或者固体样品挥发性组分即随该萃取气体从样品中“吹扫”出来,然后通过一个吸附装置(捕集器)将样品浓缩,最后再将样品解析进入气相色谱分析。这是一种连续的气相萃取,直到样品中的挥发性组分完全萃取出来,又被称为动态顶空分析。一般适用于固体、半固体、液体样品基质中挥发性有机化合物的富集和直接进入气相色谱仪进行分析。影响吹扫捕集测定结果的因素基本有两个,一是吹扫-捕集进样器本身,二是GC条件。前者包括解吸温度、吹扫气流速度(易出现穿透现象),吹扫时间和解吸条件等,这些条件都应严格控制其重现性。而后者与普通GC相同,推荐使用内标法或标准加入法进行定量,以减少操作条件波动对结果的影响。03吸附浓缩/热脱附法热脱附又称热解析,其原理是:先用吸附管(内装活性炭、TENAX、分子筛等吸附剂)吸附空气中的有机挥发物,然后将吸附管放到热解析进样器上瞬间加热至高温将挥发性组分脱附并随载气引入到GC或GCMS分析。04固相萃取法固相萃取技术利用固体吸附剂,将液体样品中的目标化合物吸附,在用洗脱液洗脱或加热解吸,达到分离和富集目标化合物的目的。固相微萃取(SPME)可用于萃取液体或气体基质中的有机物,萃取的样品直接注入气相色谱仪的汽化室进行热解析汽化,然后进色谱柱分析,这一技术特别适用于水中有机物或其他样品中的一些挥发成分的分析。结语样品前处理是色谱分析中耗时最多、最容易引起误差的关键步骤,直接影响色谱分析的结果。近年来有关色谱分析的前处理技术受到了分析工作者的广泛重视,一些新的前处理技术不断出现,一些新型材料也快速地应用到样品前处理技术中,样品前处理技术的不断发展,必将大幅度提高色谱分析方法的准确度、精密度和分析速度,推进色谱技术在食品、生物、环境、医药等诸多领域中的应用。敬请关注下一节小课堂关于我们北京东西分析仪器有限公司,拥有二十多年分析仪器研发、制造、服务的历史,系北京市高新技术企业,分析仪器制造行业国际化企业。行业内率先通过ISO9001国际质量体系认证,ISO14001环境管理体系认证,多个产品取得欧盟CE认证,系中华预防医学会卫检专用委员会产品信得过单位。“完美分析,辉映东西”。公司以科研技术实力为后盾,以质量管理为保证,以完善的售后服务为支撑,为用户提供高品质的分析仪器产品。
  • 赴德国进行流量计﹑气相色谱仪型式评价现场试验总结
    受国家质检总局委托,2009年4月13日~ 4月23日由总局计量司工业计量处高丽调研员任团长、上海市计量测试技术研究院教授级高工任淑贞、姚新红工程师、张波工程师、以及上海工业自动化仪表研究所防爆安全监督检验站杨德双工程师等五人组成的型式评价现场试验工作组,赴德国RMG Messtechnik GmbH 的生产现场对该公司生产的流量计﹑气相色谱仪的样机进行了型式评价试验以及这些仪器的防爆性能的技术审核。现将相关试验情况报告如下:  一、 试验概况  型式评价试验依据OIML R6国际建议《气体容积式流量计的一般规定》、JJG 633–2005《气体容积式流量计》国家计量检定规程、《气体腰轮流量计(德国RMG)型式评价大纲》、JJG 1030–2007《超声流量计》国家计量检定规程、《超声流量计(德国RMG)型式评价大纲》、《过程气相色谱仪(德国RMG)型式评价大纲》﹑GB3836《爆炸性气体环境用电器设备》等以及相关产品技术文件,在生产现场对RMG申请的腰轮流量计、超声流量计两种原理的流量计﹑气相色谱仪等两类仪器进行了全面的测试及其技术资料审查。  二、 试验样机  本次型式评价试验中,德国RMG公司共申请了两种原理、三个系列流量计,其中包括腰轮流量计两个系列十四种型号规格、超声流量计一个系列八种型号规格 两种型号过程气相色谱仪。  依据JJF 1015-2000《计量器具型式评价和型式批准通用规范》中关于“申请单位应提供自己生产的样机。申请单位可以按单一产品提出申请,也可按系列产品提出申请。凡按单一产品提出申请的,一般情况下应提供三台样机 大型或价值昂贵的产品,提供两台或一台样机。按系列产品申请的,每个系列产品中抽取三分之一有代表性的规格产品 每种规格提供试验样机的数量,按申请单一产品的原则执行 按以上原则,数量太多的,可适当减少样机数量。具有代表性的规格,由受理申请政府计量行政部门与承担试验的技术机构根据申请单位提供的技术文件确定”的试验样机提供原则。  根据此次试验中申请单位试验样机的具体情况,抽取腰轮流量计两个系列四种型号规格、超声流量计一个系列两种型号规格共六台流量计以及过程气相色谱仪两种型号规格两台色谱仪作为现场试验样机。  本次型式评价试验现场共抽取八台样机,并对全部抽取样机进行了试验。  三、 试验过程与资料审查  试验工作期间,型式评价工作组对RMG公司生产现场的计量标准、检测设备进行了溯源认定。依据型式评价大纲中所制定的试验方案,对德国RMG公司申请的RMG 132-A(两台)、DKZ-04(两台)腰轮流量计,USZ 08(两台)超声流量计、PGC6000和PGC9000型过程气相色谱仪样机进行了全面的性能测试,并按照其技术指标要求对试验数据进行了审定。  按照试验工作程序,要求申请单位对以上样机做了先期校准试验,并在试验现场对其试验数据做了审核。  同时对德国RMG公司的腰轮流量计两个系列十四种型号规格、超声流量计一个系列八种型号规格共二十二种型号规格的流量计、两种型号的过程气相色谱仪技术资料中的技术指标以及对涉及到所申请的仪器防爆等级进行了全面详尽的审核与确认。  按大纲要求,还将USZ 08系列超声流量计的电子部分USE 09带回上海市计量测试技术研究院进行电磁兼容试验。  四、试验考察与技术交流  试验期间,型式评价工作组考察了德国RMG公司的气体流量计量性能试验、耐压强度和密封性试验、过程气相色谱仪试验装置、环境试验等多项试验设备及测试过程,并进行了溯源认定。与主管计量管理测试的主要工作人员就双方共同关心的计量校准项目等问题进行了交流。  工作组还参观了德国RMG公司的流量计和色谱仪生产线,听取了公司产品研发经理、计量测试经理、质量管理经理等负责人关于公司及其流量计和色谱仪等产品的介绍并进行了技术交流,对生产厂流量计和色谱仪的生产过程及计量校准测试有了较为详细的了解,为今后的共同合作打下了一定基础。  考察期间,工作组前往PTB流量实验室进行参观和技术交流。流量计量专家Toebben博士和Mickan博士带领工作组参观了液体流量标准装置(Urel=0.02%,k=2)、气体钟罩流量标准装置(Urel=0.08%,k=2)、低温气体流量标准装置(Urel=0.25%,k=2 最低-60℃)、微流量气体流量标准装置(qmin=5ml/h,而且正在研究更低流量的标准装置)和激光多普勒风速标准装置并就相关问题进行了交流。通过参观和交流,了解了流量计量的国际先进技术和发展水平,为我国在流量计量领域收集第一手材料和发展动态,有利于缩短我国流量计量与国际先进水平的差距。  五、试验特点  这次型式评价工作的特点是流量计的口径大、流量大、量程宽 过程气相色谱仪主要应用于工业现场过程气体含量分析测试,现行气相色谱仪检定规程不适用于过程气相色谱仪。对于此次型式评价工作,国家质检总局计量司和上海市计量测试技术研究院高度重视,赴生产现场前,上海计量院热工所、化学所和质量管理处领导参加制定、审阅了型式评价大纲并部署具体工作程序安排,制定了总体技术方案,并多次与德国RMG公司商讨,对试验工作程序及试验样机的选择等问题做了周密的安排和认真细致的准备,对所申请的各种型号规格流量计和色谱仪的技术指标反复审核与确认,以确保现场试验工作万无一失。质量管理处吴建英处长亲自审阅了《腰轮流量计(德国RMG)型式评价大纲》、《超声流量计(德国RMG)型式评价大纲》、《过程气相色谱仪(德国RMG)型式评价大纲》,并提出了重要意见,多次强调计量器具质量监督的重要性,从量值传递的角度对此次型式评价工作提出了重要的指导性意见和要求。双方工作人员认真负责,默契配合,获得了大量非常重要、可靠、有效的技术数据,所抽取现场试验的全部样机各项技术指标符合型式评价大纲要求,使型式评价工作圆满完成。  此次德国RMG流量计和过程气相色谱仪型式评价工作由于领导重视,技术准备工作充分,双方密切合作,试验取得了圆满的结果,顺利完成工作任务,为今后的计量器具产品型式评价工作积累了宝贵的经验。  六、建议  1、目前国内计量技术机构对大口径宽量程的流量计以及对高压气体流量计进行型式评价试验的条件有待完善。上海市计量测试技术研究院正在考虑高压气体相关校准检测项目,建议尽快建立高压试验校准平台,以满足型式评价试验及日常校准检测工作的需要,进一步提高我国质量监督和计量技术在国际计量领域的地位。  2、我国缺乏高不确定度的气体流量标准装置,尤其在气体流量计检定规程修订后我国各级计量机构的标准装置无法进行高精度等级气体流量计的检定及型式评价工作。上海市计量测试技术研究院和德国PTB合作建立一套Urel=0.06%(k=2)的气体钟罩标准流量标准装置,该装置将成为目前国际上不确定度最高的气体流量标准装置,但后续的研究仍需要大量的工作,建议国家总局和上海相关部门加大对该项目的财力、物力的支持力度,将该装置建成国际上最好的气体钟罩标准装置,增强我国在国际计量领域的发言权。  3、在微流量计量方面我国远落后与国际先进水平,这将制约我国广泛领域的发展,建议国家总局增加该领域的支持力度,支持国家计量院或者上海市计量测试技术研究院在该领域的技术引进和研究,尽快缩小与国际先进水平的差距,支持我国相关领域的发展。  4、根据我国的规划,在接下来的几年中,我国将建设约四万千米的天然气管线,这将使用大量的流量计以及其他仪表,建议在管线设计时能够考虑流量计和其他仪表的周期检定问题。同时加大对流量计在线检测的支持力度,尽快提出指导流量计在线检测的可行性方案,解决现有和将来要面临的流量计在线检测问题。  5、我国现行气相色谱仪检定规程适用于实验室用气相色谱仪,而目前气相色谱仪应用于工业过程气体含量分析越来越普遍,由于测量系统涉及到气体的采样系统、流量的控制系统等,因此检测结果不仅与气相色谱仪的性能有关,还与采样、流量系统有关,而且采样和流量系统还是很大的误差来源,所以过程气相色谱仪和试验室气相色谱仪在技术指标上的描述存在很大差异 同时由于该类仪器的使用场合以及涉及易燃易爆气体,因此还必须考虑防爆等级。我国正在讨论起草在线气相色谱仪的检定规程,建议应在充分了解国际上先进生产企业的技术水平,广泛听取生产企业(公司)的意见,尽早完成该规程的制定,有利于指导该产品引进后的后续检定工作,对促进我国同类产品的开发与研究有积极作用。  我们整个团组成员在外期间明确外事纪律,遵守外事出国管理条例。保守国家秘密,顺利完成在外期间工作任务。  国家质检总局计量司 :高丽  上海市计量测试技术研究院:任淑贞、姚新红、张波  上海工业自动化仪表研究所防爆安全监督检验站: 杨德双  二〇〇九年五月七日
  • 傅若农:酒驾判官—顶空气相色谱的前世今生
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。  第一讲:傅若农讲述气相色谱技术发展历史及趋势  第二讲:傅若农:从三家公司GC产品更迭看气相技术发展  第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状  第四讲:傅若农:气相色谱固定液的前世今生  第五讲:傅若农:气-固色谱的魅力  第六讲:傅若农:PLOT气相色谱柱的诱惑力  很多人是通过酒驾司机血液中酒精含量检测知道&ldquo 顶空进样气相色谱&rdquo 这一名称的。可能顶空进样气相色谱这一方法应用较多之一也是检测酒驾人员血液中的酒精含量(使用公安部的法定标准GA/T842-2009 进行检测)。  其实顶空进样气相色谱现在是应用非常广泛的一种分析方法,如果你用&ldquo 顶空进样&rdquo 这一关键词检索&ldquo 知网&rdquo 就会有两千多篇文章 在仪器信息网上的仪器展播中有关顶空进样的仪器有50多种,再看下面一张从1990年到2001年发表的有关顶空气相色谱文章的增长趋势图,12年里发表文章的总数达到4000篇,可见这一方法的应用有多么广阔。图 1 1990-2001年顶空进样气相色谱文献增长趋势HS-GC 全部顶空气相色谱 Dynamic 动态顶空气相色谱,SPME 固相微萃取顶空气相色谱( TrAC 2002, 21:608)  1 顶空进样气相色谱的起源  这里我简要地讲述一些顶空进样气相色谱的故事。  其实顶空进样气相色谱由来已久,先給大家讲一个故事:在 1958&ndash 1959 冬季 Leslie S. Ettre (国际知名色谱学家,匈牙利人,当时在Perkin-Elmer 公司作应用研究工程师),有一个马铃薯片公司的化学家要求他给这个公司设计一个用 GC 分析马铃薯片在贮存过程中变质后产生特有怪味的方法,用以检测马铃薯片变质的程度。几天后 Ettre 收到马铃薯片公司给他发来的一个大箱子样品,箱子里面有 144 个马铃薯片的袋子,这是他们可以运输的最少数量了,Ettre 把一些马铃薯片袋存放在室温下,另外一些马铃薯片袋存放在热的屋子里。几天以后 Ettre 打开常温和高温屋子存放的马铃薯片袋子,发现它们有很不同的气味。但是问题是如何把袋子里的气体注入到色谱仪里,当时气体进样常规的方法是使用气体进样阀,但是进样阀需要有正压才行。Ettre 就使用了一个医用注射器(0.5&ndash 1 mL),当时还没有微量注射器,用注射器针刺穿马铃薯片袋子吸取其中的0.5&ndash 1 mL 气体,注射到气相色谱仪中。的确,不同的马铃薯片袋子中的气体得到的色谱是不一样的。自然这一方法就是顶空气相色谱的方法了。据 Ettre 称 GC 中顶空进样的第一篇论文是在 1960 年一月份的 Food Technology 上由 Stahl 等人发表的,( W.H. Stahl, W.A. Voelker, and J.H. Sullivan, Food Technol. 1960,14 :14&ndash 16 ),文章的标题是&ldquo 罐头顶空气体(主要是氧气)的测定&rdquo 。  第一篇有关顶空进样的应用文章是在 1939年发表的,是 R.N.Harger 等人(印第安纳大学生物化学和药物学系)在一篇美国生物化学家学会的33届年会的报告(J. Biol. Chem.1939, 128:xxxviii&ndash xxxix )中叙述的,他们叫做&ldquo 气体测量法&rdquo (aerometric method),用来快速测定水和体液中的乙醇。这一方法,把动态和静态方法结合起来,把液体样品上面的气体通过一个硫酸-高锰酸盐试剂(进行氧化还原测定),用以定量测定乙醇的含量。作者们还用这一方法测定了空气-水体系在 0&ndash 40 ° C 的温度范围内的分配系数。  把顶空进样和气相色谱结合起来的分析开始于 1958 年的 Amsterdam 国际会议上,是 比利时 Schelle 电站的 Bovijn 等人用这一方法分析高压锅炉水中微量( 1-ppb 数据级)的烃类,取一部分平衡下的气相样品到气相色谱仪中,用热导池进行检测。据作者说这一装置在文章发表前在电厂已经运转了一年多。  Stahl 等人发表的标题为&ldquo 罐头顶空气体(主要是氧气)的测定&rdquo 文章中,他们是把罐头顶部刺一个孔,用注射器抽取 0.5&ndash 1 mL 顶空的气体注入气相色谱仪进行分析。显然 Stahl 的工作推动了 Beckman 公司开发出一种设备用于罐头顶空气体或其他密闭空间气体的测定(&ldquo Beckman Headspace Sampler, bulletin number 7012,&rdquo Beckman Scientific and Process Instruments Division (Fullerton, California,September 1962).)。  这一装置有一个带有刺孔针的抽取样品气的密闭容器,刺入要分析的罐头罐时可以把顶部气体吸入此密闭容器中,这一装置所用的原理是测定罐中存在的氧气,为了测定这一装置连接到一个极谱测定氧的传感器,并连接到直接读数的显示器上。(值得一提的是这一氧传感器也用于探测水星计划的空间舱中)。此外,气体样品可以通过这一容器侧面的橡胶隔垫用注射器抽出来,用于气相色谱分析,图 2 就是这一装置的照片图。这一仪器几乎被人们遗忘了。图 2 顶空取样容器照片  2 顶空进样气相色谱的基本原理和类型  顶空气相色谱(GC headspace Analysis,GC-HS analysis ) 是指对液体或固体中的挥发性成分进行气相色谱分析的一种间接测定法,它是在热力学平衡的蒸气相与被分析样品同时存在于一个密闭系统中进行的。例如测定血液中的乙醇,把血样置于一个密闭恒温的样品瓶中,测定恒温后样品瓶蒸气相中的乙醇浓度,通过校准曲线计算血样中的乙醇含量。这一方法从气相色谱仪角度讲,是一种进样系统,即&ldquo 顶空进样系统&rdquo 。有不少仪器公司有商品的顶空进样系统。有关顶空气相色谱分析的名称,美国称为:GC headspace Analysis,前苏联的文献称为: Equilibrium Vapour Analysis,德国叫做 Dampfraumanalyse ( 英文为:Vapour Volume Analysis ) 。我国一般称为:顶空气相色谱分析,但早期有人称为: &ldquo 液上气相色谱分析&rdquo ,这样的名称不全面,因为有不少样品是固体。所以现在统一名称还是用&ldquo 顶空气相色谱分析&rdquo 。  有关顶空进样气相色谱原理详细的描述由于篇幅的关系这里就不讲解了,需要了解的读者可以读读早期出版的书,在国内全面介绍顶空进样气相色谱分析的书有 Hachenberg等1977年出版的 Gas chromatographic headspace Analysis(气相色谱顶空分析),翻译本为&ldquo 液上气相色谱分析&rdquo (见下图3)。图4是1984年出版的原苏联列宁格勒国立大学(现名圣彼得堡大学)的 Ioffe 撰写的&ldquo 气相色谱中的顶空分析及相关方法&rdquo 和1997年出版(修订版是2006年)的Kolb 等撰写的&ldquo 静态顶空气相色谱分析&rdquo 封面,。图3 1977年(中译本1981年)出版的顶空气相色谱书图4气相色谱中的顶空分析及相关方法(Ioffe等)和 静态顶空气相色谱(B. Kolb 等)  顶空进样气相色谱的类型有:  (1)静态顶空气相色谱:所谓静态顶空气相色谱是在一个密闭恒温体系中,液汽或固汽达到平衡时用气相色谱法分析蒸气相中的被测组分 。如下图5图5 静态顶空气相色谱示意图1&mdash 注射器 2&mdash 密封隔垫 3&mdash 螺帽 4&mdash 容器 5&mdash 样品 6&mdash 恒温浴 7&mdash 温度计  (2)动态顶空气相色谱:也叫做吹扫-捕集(Purge-Tranp)分析法,这一方法是用惰性气体通入液体样品(或固体表面),把要分析的组分吹扫出来,使之通过一个吸附剂进行富集,然后再把吸附剂加热,使被吸附的组分脱附,用载气带到气相色谱仪中进行分析。如图6的示意图。图 6 动态顶空气相色谱示意图1&mdash 捕集管 2&mdash 冷却水 3&mdash 样品管 4&mdash 水浴 5&mdash 洗气瓶  (3)固相微萃取(SPME)顶空气相色谱:这种方法是在静态顶空瓶顶空蒸汽中装一支固相微萃取头,在一定温度下吸附顶空重的蒸汽分子一定时间,然后把固相微萃取头取出,插入气相色谱仪的进样口中,进行气相色谱分析。如下图7所示:图7 固相微萃取(SPME)顶空气相色谱示意图(Forensic Sci Intern 2000,107:129)左图4ml 顶空瓶,内装10mg头发,内标和1mL 4%的NaOH,0.5gNa2SO4,使头发消化预热30min。中间图:顶空吸附30min。右图:在气相色谱仪进样口脱附。  固相微萃取(SPME)装置如下图8所示:图8 固相微萃取装置示意图  (4)一滴溶剂顶空进样气相色谱:这种进样方式类似于SPME顶空进样,只是把固相微萃取进样装置换成一支注射器,在注射器针头处悬一滴萃取用溶剂液滴,如下图9所示:图 9 一滴溶剂顶空萃取示意图(J Chromatgr A 2007,1152:184)  3 静态顶空气相色谱的方法  静态顶空最简单的方式是在一个 恒温系统(空气浴、水浴、甘油浴或金属块加热,. 样品瓶多为玻璃样品瓶,加可穿刺的密封盖,瓶体积为十至数十毫升,. 注射器宜用气体注射器或气密性较好的医用注射器。样品在恒温器中于一定温度下加热一定时间,取蒸汽样注入气相色谱仪进行分析,当然在转移中由于温度降低会出现误差。所以现在多用各种顶空进样器连接在气相色谱仪上,通过保温管线转移到气相色谱仪中。  顶空气相色谱进样必须从密闭的样品瓶的顶空取样到气相色谱仪中,要控制取样的重复性是至关重要的,常使用压力平衡进样。所谓平衡压力进样就是使用惰性气体往恒温的密闭样品瓶中加压,然后让受压的顶空气体在一定的时间里膨胀到色谱柱中。依靠控制压力和时间可以很精确地从样品瓶中吸取一定容积的顶空气体样品。这一方法叫做&ldquo 平衡压力进样&rdquo ,平衡压力进样的过程如图 10所示。(a)恒温样品瓶和进样针是分开的,(b) 通入气体加压,(3)关闭载气,顶空瓶中的气体膨胀到色谱柱中。图 10 平衡压力进样的过程  根据上述原理P-E公司开发了顶空气相色谱自动进样器F-40,于1967年在德国法兰克福举行的化工展览会上展出,见图11。近年有大量各种各样的顶空进样器出现。图 11 F-40自动顶空进样器(L.S. Ettre, LC-GC,2002, 20(12), 1121)  4 静态顶空进样方法的应用  静态顶空的应用极为广泛,遍及各个领域,如食品、医药、环境、农业等,表1列举了近年利用顶空气相色谱进行分析检测的文章,同时也看出大多使用各种顶空进样器完成分析。  自动顶空进样器有很多种,在仪器信息网上展播的就有50多种,那些是使用比较多的呢,表1列举了60篇国内期刊上发表有关顶空进样气相色谱文章。从表中可以看出顶空进样气相色谱用于各种各样的分析中。第60篇是最新一期色谱杂志上的文章,他们使用Agilent 7697 自动顶空进样器和Agilent 7000气相色谱-三重四极杆质谱仪分析了化妆品中常见及禁用的36种有机溶剂,使用双柱(极性的VF-1301柱和非极性的DB-5ms柱,利用NIST MS search 2.0作检索工具,研究了36种挥发性有机溶剂的分析方法。表 1 顶空进样气相色谱论文所使用的顶空进样器序号题名使用顶空进样器文献1测定尿中三氯乙酸的自动顶空气相色谱法Agilent 7694E 自动顶空进样器李添娣等,职业与健康,2012,28(6):1982-19832顶空-毛细管气相色谱法测定葡萄酒中的甲醇TurboMatrix 40自动顶空进样器曾游等,现代食品科技,2013,29(2):405-4083顶空-气相色谱法测定水产品中一氧化碳TurboMatrix HS 40 Trap 顶空自动进样器王萍亚等,浙江海洋学院学报(自然科学版),2012,31(6):518-520,5354顶空- 气相色谱同时测定比卡鲁胺原料药中6 种有机溶剂残留量HP7694E 顶空进样器许瑞征等,现代仪器,2004,(3):15-165顶空萃取-气相色谱-质谱法分析芝麻油中的挥发性成分Agilent 7694E 自动顶空进样器陈俊卿等,质谱学报,2005,26(1):49-516顶空进样一毛细管气相色谱法侧定啤酒的香味组分Agilent 7694E 自动顶空进样器王莉娜等,啤酒科技,2001,(1):9-117顶空进样-气相色谱法测定大气中吡啶的研究DANI HSS 86.50 顶空进样器王艳丽等,中国环境监测,2013,29(2):62-648顶空进样器在快速检测食品美拉德反应风味物质中的新应用TurboMatrix HS 40 Trap 顶空自动进样器钟罗宝等,现代食品科技,2009,25(9):1091-10959顶空气相色谱-质谱联用法分析粪便中挥发性脂肪酸瑞士CTC CombiPAL 顶空进样器江振作等,分析化学,2014,42(3):429-43510顶空气相色谱法测定生物柴油中的微量甲醇Agilent 7694E 自动顶空进样器李长秀等,石油化工,2012,41(10):1196-120011顶空气相色谱法测定食品包装中残留乙烯TurboMatrix HS 40 Trap 顶空自动进样器周相娟等,食品工程,2012,(6):128-12912顶空气相色谱法测定药品中残留溶剂的影响因素考察Agilent 7694E 自动顶空进样器秦立等,药物分析杂志,2005,25(7):823-82613顶空气相色谱法快速检测卫生纸中的细菌含量Agilent 7694E 自动顶空进样器田迎新等,造纸科学与技术,2012,31 (2):59-6214顶空气相色谱内标法测定血液中乙醇含量Agilent 7694E 自动顶空进样器邹黎,检验医学与临床,2011,8(2):2761-276215顶空气相色谱.质谱法测定玩具中的10种挥发性有机物Agilent 7694E 自动顶空进样器吕庆等,色谱,2010,28(8):800-80416顶空气相色谱一质谱法测定婴幼儿食品中的呋喃Agilent 7694E 自动顶空进样器刘平等,色谱,2008,26(1):35-3817纺织品中挥发性有机物(VOCs) 的检测-静态顶空气相色谱质谱法Agilent G1888自动顶空进样器:涂貌贞,中国纤检,2009,(9):66-6819基于HS-GC-MS 的棉织物鱼腥味检测Agilent 7694E 自动顶空进样器王晓宁等,纺织学报,2011,32(2):68-7220利用气相色谱顶空装置测定红磷储存过程中生成的磷化氢Agilent 7694E 自动顶空进样器陈海群等,色谱,2004,22(4):442- 44421两种轻烃分析方法(&ldquo PTV切割反吹&rdquo 和&ldquo 顶空&rdquo )的对比研究意大利 FISONS 8500 气相色谱仪, HS800 顶空自动进样装置肖廷荣等,色谱,2001,19(4):304-30822啤酒中挥发性风味物质的分析及风味评价TurboMatrix 40自动顶空进样器王志沛等,酿酒科技,2001,21,(4):59-6123使用自动顶空进样器测定梨中代森锰锌残留量的电子捕获气相色谱法HT2000 自动顶空进样器(意大利)聂春林等,精细化工中间体,2010,40(6):63-6624水中12种卤代有机物的自动顶空- 气相色谱测定方法研究Agilent 7694E 自动顶空进样器张燕等,中国卫生检验杂志,2010,20(11):2716-271825水中54种挥发性有机物的顶空- 气相色谱法研究自动顶空进样器, 成都科林公司高玲等,中国卫生检验杂志,2010,20(7):1645-164826水中三氯甲烷、四氯化碳的QHSS-40 自动进样顶空气相色谱测定法QHSS-40 全自动顶空进样器(QUMA Elektronik & Analytik GmbH)罗黎明,职业与健康,2012,28(14): 1722-172327血中乙醇的顶空气相色谱分析安捷伦1888型自动顶空进样器刘兆等,中国人民公安大学学报(自然科学版),2008,(4):18-1928衍生- 顶空气相色谱法测定化妆品中游离甲醛Agilent 7694E 自动顶空进样器环境与职业医学,2012,29(7):459-46129液液萃取- 顶空气相色谱法测定饮用水中卤乙酸Tekmar7000自动顶空进样器中国卫生检验杂志,2011,21(6):1338-134030乙基纤维素乙氧基含量的顶空气相色谱法测定HS86-50型自动顶空进样器,意大利DANI公司付时雨等,华南理工大学学报(自然科学版),2011,39(11):17-2131用顶空进样法分析烯烃废碱液中硫化物TurboMatrix HS 40 Trap 顶空自动进样器高巍等,齐鲁石油化工,2013 ,41 ( 3 ) :252 - 25432蒸气顶空富集装置- 自动顶空气相色谱法在海水中痕量苯系物检测中的应用顶空自动进样器( 瑞士CTC Analysis AG 公司)孙秀梅等,山东化工,2014,43(7):73-7633柱前衍生化顶空气相色谱法同时检测非布司他原料药中3 种微量有机酸G1888 型自动顶空进样器(美国安捷伦科技公司朱圣亮等,中国药房,2012,23(25) :2372-237334自动顶空-毛细管气相色谱法测定水中苯系物德国MS6多功能自动进样器刘俩燕,中国卫生检验杂志,2010,20 (8):1918-192035自动顶空-毛细管气相色谱法测定饮用水中11 种挥发性有机物Agilent G1888 顶空自动进样器、刘兰侠等,上海预防医学,2014,26(1):27-28,4836自动顶空-气相色谱法测定地表水中乙醛的方法研究Agilent 7694E 自动顶空进样器邢志贤等,河北工业科技,2010,27(3):143-145,17337自动顶空- 气相色谱法测定食品包装材料中残留氯乙烯单体Agilent G1888 顶空自动进样器、戴华等,中国卫生检验杂志,2011,21(1):36-3738自动顶空- 气相色谱法测定水质中苯系物的研究Agilent G1888 顶空自动进样器刘保献等,现代仪器,201,18(3):30-3339自动顶空- 气相色谱法测定水中甲醇的方法优化Agilent G1888 顶空自动进样器付翠轻等,中国环境监测,2012,28(4):61-6440自动顶空- 气相色谱法测定水中四乙基铅方法研究DANI HSS 86.50 顶空进样器王玲玲等,环境科学与技术,2014,37(5):99-10141自动顶空-气相色谱法检测食品包装材料中挥发性有机物TurboMatrix HS 40 Trap 顶空自动进样器方 益等,食品科技,2013,38(2):291-29542自动顶空-气相色谱法同时测定水中7种挥发性卤代烃TurboMatrix HS 40 Trap 顶空自动进样器王建蓉等,供水技术,2012,6(4):62-6443自动顶空- 气相色谱质谱联用技术测定化工原料中1,2-二氯乙烷TurboMatrix HS 40 Trap 顶空自动蔡志斌等,中国卫生检验杂志, 2013,23(3):622-624,62744自动顶空GC /MS测定血液中乙醇含量不确定度评定DANI HSS 86.50 顶空进样器周枝凤,中国法医学杂志,2010,25(1):43-4645自动顶空进样-气相色谱法测定柠檬酸中溶剂残留AutoHS自动顶空进样器(成都科林)李锋格,检验检疫学刊,2011,21(1):6-1046自动顶空毛细管柱气相色谱法测定食品包装中残留丙烯腈单体PE Turbo Matrix 40 Trap 自动顶空进样器周相娟等,食品科技,2008,(10):240-24247自动顶空毛细管柱气相色谱法同时检测生活饮用水中7 种挥发性卤代烃Tekmar 7000 自动顶空进样器周闰等,中国卫生检验杂志,2013,23(6):1417-141948自动顶空气相色谱法测定番茄酱中二硫代氨基甲酸酯的残留量AutoHS自动顶空进样器(成都科林)姚伟琴等,中国卫生检验杂志,2009,19(1):52- 5348自动顶空气相色谱法测定番茄酱中二硫代氨基甲酸酯的残留量AutoHS自动顶空进样器(成都科林)姚伟琴等,中国卫生检验杂志,2009,19(1):52- 5349自动顶空气相色谱法测定番茄酱中乙烯利的残留量AutoHS自动顶空进样器(成都科林)姚伟琴等,中国卫生检验杂志,2008,18(8):1537- 153850自动顶空气相色谱法测定化妆品中的甲醇Agilent 7694E 自动顶空进样器高建民等, 化学分析计量,2003,12(3):7-1051自动顶空气相色谱法测定食品包装材料中残留丙烯腈单体AutoHS自动顶空进样器(成都科林)刘俊等,中国卫生检验杂志,2008,18(10):2021-202252自动顶空气相色谱法测定水中苯系物的研究AOC - 5000 液体自动进样、顶空、固相微萃取三合一自动进样器王臻等,中国热带医学2008,8(1):128-12953自动顶空气相色谱法测定血液中的乙醇Tekmar 7000 自动顶空进样器刘文卫等,1502 中国卫生检验杂志 2012,22(7):1502-1503 ,150654自动顶空气相色谱法测定液体餐具洗涤剂中的甲醇PE Turbo Matrix 40 Trap 自动顶空进样器王禄等,日用化学品科学2013,36(12):21-2455自动顶空气相色谱法测定饮用水中三氯甲烷和四氯化碳Combi PAL 自动顶空进样器杨志国等,中国卫生检验杂志 2013,23(3):589-59156自动顶空气相色谱法间接测定水中的苦味酸顶空自动进样器( 瑞士CTC Analysis AG 公司)邵国健等,中国卫生检验杂志, 2012,22(6):1275-1276.128057自动顶空气相色谱法快速测定饮用水中多种挥发性卤代烃Agilent 7694E 自动顶空进样器叶金伟等,工业用水与废水,2010,41(2): 90-9158自动顶空气相色谱法同时测定服装中残留丙烯腈和氯乙烯单体Agilent G1888 顶空自动进样器、刘俊等,中国卫生检验杂志2010,20(9):2164-216659自动顶空气相色谱法同时测定水中的甲醇乙醇丙酮和苯系物Agilent 7697 自动顶空进样器 邵红艳等,污染防治技术,2013,26(5):66-68,71 60化妆品中挥发性有机溶剂的通用检测方法Agilent 7697 自动顶空进样器 达晶等,色谱,2014,32(11):1251-1259  看看他们使用了那些自动顶空进样器。从表中可以看出使用较多的有Agilent 7694E 自动顶空进样器,Agilent G1888 顶空自动进样器,PE Turbo Matrix 40 Trap 自动顶空进样器,意大利DANI HSS 86.50 顶空进样器和国产成都科林公司的AutoHS自动顶空进样器。有关这些公司的进样器资料网上可以找到。图12是安捷伦公司的 7694E自动顶空进样器。图 12 7694E自动顶空进样器图 13 AutoHS自动顶空进样器(成都科林)图 14 PE Turbo Matrix 40 Trap 自动顶空进样器  由于篇幅的关系,有关吹扫捕集顶空进样、固相微萃取顶空进样、反应顶空进样,在下一讲继续讨论。
  • TSQ Quantum GC气相色谱质谱仪新到货及实验应用
    2021年7月23日,谱标实验室新到货TSQ Quantum GC气相色谱质谱仪,品牌:Fhermofisher,安装完好,成色9成新(见下图),TSQ Quantum GC气相色谱质谱仪器兼有色谱对混合物的快速分离,又有质谱对分子结构的鉴定功能,采用不同的扫描方式,可有效的去除干扰。关键价格优惠,欢迎来电咨询。TSQ Quantum GC气相色谱质谱仪,对于台式GC/MS联用仪系统一般由五个部分组成,分别为:1.进样部分 2.离子源(对样品进行离子化,使其能被质量分析器所检测到) 3.质量分析器: 4.质量检测器 5.数据分析系统。实验应用:1)TSQ Quantum GC气质联用仪结合负化学电离源GC-MS/MS技术测定血浆中雌二醇雌二醇是一种内源性的激素,已被发现影响男女的许多生理功能。在疾病诊断以及监控病情发展的过程中,检测血浆和尿液等生物体液中的雌二醇,具有重要的临床应用价值。LC-MS/MS液质联用和GC-MS气质联用这两种方法已经被广泛应用于测定生物体液中的雌二醇,但内源性基质的干扰经常对测量结果有影响,二者各有利弊。LC-MS/MS液质联用的方法,避免了柱上衍生,可测定至 pg 级;GC-MS/MS气质联用的方法,灵敏度更高,可测定至 fg 级。GC-MS/MS气质联用技术的三重四极杆质谱 TSQ QuantumGC,并在负化学电离源(NCI)模式下测定了血浆样品中的雌二醇。雌二醇从血浆中提取出后,用五氟代苯甲酰氯和MSTFA(N甲基-N-三甲基硅烷基三氟乙酰胺)进行衍生。结果在柱上能够检测到55 fg的量(相当于血浆中2.5 pg/mL的浓度)。2)气相色谱/三重四极杆质谱(TSQ Quantum GC)用于18种有机磷杀虫剂的快速检测分析20世纪30年代,德国G.Schradev首先发现有机磷杀虫剂。此类化合物具有药效较高、使用方便等特点,但同时也存在高毒、高残留等缺点。有机磷多为极性较大的农药,易受到基质的影响,检测灵敏度较差。采用三重四极杆质谱的选择性反应监测技术(SRM)对复杂基质(韭菜)中的18种农药同时进行了分析。通过SRM扫描排除基质的干扰,同时凭借三重四极杆质谱高灵敏度的特点,大多数有机磷农药的检测下限可低于1 ppb。3)气相色谱/三重四极杆质谱TSQ Quantum GC用于复杂基质中154种农药残留量的分析目前用于农药残留分析的主要技术为气相色谱/单四杆质谱的选择离子扫描技术( SIM) 离子阱质谱多选择反应监测技术( MRM ) 和全扫描的计算机辅助技术。单四极杆的选择离子技术采集的质谱信息少,选择性较差,结果存在很大的不确定性。离子阱质谱二级质谱技术为时间上的串联,因此对于多组份化合物同时分析存在扫描速度受限的问题。采用Thermo推出的zui新一代气相色谱/三重四极杆串接质谱( TSQ Quantum GC),通过其高通量 离子传输的性能, 碰撞室零串扰技术和高选择性反应监测技术( H-SRM),实现了一针进样对154种化合物的同时分析,整个分析过程可在在22分钟内完成,保证结果准确的同时大幅度提高了分析效率。4)TSQ Quantum GC串联气质在 EI源模式分析亚硝胺类化合物亚硝胺是一类强致癌化合物,例如N-亚硝基二甲胺(NDMA)是其中一种极具代表性的物质,其是水处理领域新近发现的一种氯化消毒副产物。亚硝胺可以通过亚硝酸盐与仲胺类反应生成。近年来这类物质在水环境中的检出率较高,因为其的强致癌性,对水体中的亚硝胺物质进行检测就显得尤为必要。美国环境保护署在2004年出台了亚硝胺的检测方法:USEPAMETHOD 521, 该方法是结合固相微萃取,大体积进样和正化学源进行样品检测。方法中我们开发了在串联气质上用EI源和常规进样体积进行亚硝胺的分析方法,该方法的进样体积是EPA521中的1/10, 低进样量可以避免了在进行大通量样品分析中引入了过多的背景介质,提高仪器的耐脏性。同时EI源是一般实验室中常用的离子源,大部分的分析都是在EI源上完成,这样用EI源分析亚硝胺,可以避免EI和CI的频繁切换,便有利于实验室的整体工作安排。5)TSQ Quantum GC用于甲胺磷,氧乐果和久效磷三种农药分析有机磷农药是农药残留分析中的重点,此类农药药效高,使用方便,被广泛的应用于农业生产中。相比于有机氯类农药的分析,有机磷农药由于极性大,分解较快,分析难度相对较大,尤其是其中的甲胺磷,氧乐果,久效磷等农药,其色谱行为较差,在新的柱效情况下,峰型较好。但是,一旦进过实际基质样品后,其峰型就变的极差,出现严重的拖尾,使得低浓度得样品分析变得非常困难。因此,很多实验室把这类的有机磷农药归类到LC/MS/MS上进行分析,但是,在液质联用上这类农药的出峰往往很早,这对分析也并不有利。实验用TSQ Quantum GC结合带有预柱的TR-Pesticide II气相色谱柱分析甲胺磷,氧乐果,久效磷,得到了非常出色的结果,1pg/ul样品有很好的色谱分离,在1pg/ul-200pg/ul的范围有良好的线性,且在1pg/ul低浓度下连续6针进样的RSD%在1.96%-3.07%。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制