当前位置: 仪器信息网 > 行业主题 > >

壁挂式八通道气体控制器

仪器信息网壁挂式八通道气体控制器专题为您提供2024年最新壁挂式八通道气体控制器价格报价、厂家品牌的相关信息, 包括壁挂式八通道气体控制器参数、型号等,不管是国产,还是进口品牌的壁挂式八通道气体控制器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合壁挂式八通道气体控制器相关的耗材配件、试剂标物,还有壁挂式八通道气体控制器相关的最新资讯、资料,以及壁挂式八通道气体控制器相关的解决方案。

壁挂式八通道气体控制器相关的论坛

  • 用于微流控芯片的多通道正负压力控制器解决方案

    用于微流控芯片的多通道正负压力控制器解决方案

    [color=#000099]摘要:在微流控芯片进样、化学反应进样和长时间药物注射领域,都需要能提供正负气压可精密控制的压力控制器。本文特别针对微流控芯片进样对多通道压力控制器的技术要求,提出了相应的解决方案,并详细介绍了方案中多通道气路结构、控制方法、气体流量调节阀、压力传感器和PID控制器等内容和技术指标。通过此解决方案,完全能够满足各种微流体控制对多通道压力控制器的要求。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#000099]一、背景介绍[/color][/size]在微流控芯片进样、化学反应进样和长时间药物注射领域,都需要能提供正负气压可精密控制的多通道压力控制器,并且通过气体压力来控制流体的流量或流速。图1所示为这种压力控制器在微流控芯片进样中的典型应用。[align=center][img=微流控芯片用压力控制器,690,318]https://ng1.17img.cn/bbsfiles/images/2022/06/202206271559098143_8354_3384_3.png!w690x318.jpg[/img][/align][align=center]图1 多通道压力控制器在微流控芯片进样中的典型应用[/align]在微流控芯片进样中,要求压力控制器需具备以下几方面的功能:(1)多通道,每个通道可独立控制和操作。(2)每个通道都可按照编程设定输出相应的正负压力。(3)正负压力控制范围:绝对压力1Pa~0.5MPa(表压-101kPa~0.6MPa)。(4)压力控制精度:0.1%~1%。 针对上述微流控芯片进样对压力控制器要求,本文提出了相应的解决方案,并详细介绍了方案中多通道气路结构、控制方法、气体流量调节阀、压力传感器和PID控制器等内容和技术指标。通过此解决方案,完全能够满足各种微流体控制对多通道压力控制器的要求。[size=18px][color=#000099]二、解决方案[/color][/size]本文所提出的解决方案是实现在1Pa~0.7MPa绝对压力范围内的精密控制,控制精度极限可达到0.1%。即提供一个可控气压源解决方案,采用双向控制模式的动态平衡法,结合高精度步进电机和微小流量电动针阀、高精度压力传感器和多通道PID控制器,气压源可进行高精度的各种真空压力的可编程输出,同时也可用于控制不同的流体流量。本文所涉及的解决方案,主要针对用于微流控芯片进样用多通道正负压力控制器,这主要是因为微流控芯片所用压力基本在一个标准大气压附近变化,相应的多通道压力控制器相对比较简单。而对于更低压力,如气压小于1kPa绝对压力的多通道控制,要实现精密控制则整个压力控制器将十分复杂。微流控芯片进样用多通道压力控制器工作原理如图2所示。[align=center][img=微流控芯片用压力控制器,690,350]https://ng1.17img.cn/bbsfiles/images/2022/06/202206271559436818_6219_3384_3.png!w690x350.jpg[/img][/align][align=center]图2 微流控芯片进样用多通道压力控制器工作原理图[/align]微流控芯片进样用多通道压力控制器的工作原理为:(1)多通道压力控制包括多个控制通道,每个控制通道包括正压气源、进气调节阀、出气调节阀、抽气泵和PID控制器单元。其中的正压气源和抽气泵提供足够的负压和正压能力,并且可以多通道公用。同样,多通道压力控制器也公用一个进气调节阀。需要注意的是,由于微流控进样所需的负压气压值较大并接近一个标准大气压,对于微流控芯片进样的压力控制,只需固定进气调节阀的开度,近靠调节出气阀开度极可实现正负压的精密控制,因此可以公用一个进气调节阀。如果要进行较低负压气压值(较高真空度)的精密控制,配置恰恰相反,每一通道配置的进气阀进行调节,但可以公用一个抽气阀。(2)精密压力控制原理基于密闭空腔进气和出气的动态平衡法。多通道压力控制器的每一个通道都是典型闭环控制回路,其中PID控制器的每一通道采集相应通道的真空压力传感器信号并与此通道的设定值进行比较,然后调节相应通道的进气和抽气调节阀开度,最终使此通道传感器测量值与设定值相等而实现该通道真空压力的准确控制。(3)为了覆盖负压到正压的所要求的真空压力范围,需要配置一个测试量程覆盖要求范围内的高精度绝对压力传感器,如果一个压力传感器无法覆盖全量程,则需要增加压力传感器数量来分段覆盖。采用绝对压力传感器的优势是不受各地大气气压变化的影响,无需采取气压修正,更能保证测试的准确性和重复性。(4)绝对压力传感器对应所覆盖的真空压力范围输出数值从小到大变化的直流模拟信号(如0~10VDC)。此模拟信号输入给PID控制器,由PID控制器调节进气阀和排气阀的开度而实现压力精确控制。(5)当控制是从负压到正压进行变化时,一开始的进气调节阀开度(进气流量)要远小于抽气调节阀开度(抽气流量),通过自动调节进出气流量达到不同的平衡状态来实现不同的负压控制,最终进气调节阀开度逐渐要远大于抽气调节阀开度,由此实现负压到正压范围内一系列设定点或斜线的连续精密控制。对于从正压到负压压的变化控制,上述过程正好相反。[size=18px][color=#000099]三、方案具体内容[/color][/size]解决方案中所涉及的正负压力控制器的具体结构如图3所示,主要包括正压气源、电动针阀、密闭空腔、压力传感器、高精度PID控制器和抽气泵。[align=center][img=微流控芯片用压力控制器,690,393]https://ng1.17img.cn/bbsfiles/images/2022/06/202206271602023624_9954_3384_3.png!w690x393.jpg[/img][/align][align=center]图3 微流控芯片进样用多通道正负压力控制器结构示意图[/align]在图3所示的正负压力控制器中,每个通道都对应一密闭空腔,每个密闭空腔上的外接接口作为此通道的压力输出口。密闭空腔左右安装两个NCNV系列的步进电机驱动的微型电动针阀,电动针阀本身就是正负压两用调节阀,其绝对真空压力范围为0.0001mbar~7bar,最大流量为40mL/min,步进电机单步长为12.7微米,完全能满足小空腔的正负压精密控制。由此,压力控制器中的每个通道可实现正负压任意设定点的精确控制,也可以从正压到负压的压力线性变化控制,也可以从负压到正压的压力线性变化控制。微流控芯片进样过程中一般要求微小正负压控制,要求是在标准大气压附近的真空压力精确控制,如控制精度为±0.5%甚至更小,一般都需要采用调节抽气阀的双向动态模式,即通过控制器使得进气口处电动针阀的开度基本不变,同时根据PID算法来调节排气口处的电动针阀开度。由于进气阀的开度基本处于固定状态,使得微流控芯片进样所用的多通道压力控制器可以公用一个调节进气流量的电动针阀。另外,所有通道都需要具备抽气功能,抽速也是一固定值,因此多通道压力控制器也可以公用一个抽气泵。在微流控芯片进样过程中压力控制,除了上述恒定进气流量调节抽气流量的控制方法之外,决定压力控制精度的因素还有压力传感器、PID控制器和电动针阀的精度。本方案中的PID控制器采用的是24位AD和16位的DA,电动针阀则是高精度步进电机,因此本解决方案的测试精度主要取决于压力传感器精度,一般至少要选择0.1%精度的压力传感器。在微流控芯片进样过程中,往往会要求密闭容器在正负压范围内进行多次往复变化和按照设定曲线进行控制,因此本方案采用了可存储多个编辑程序的PID控制器,每个设定程度是一条多个折线段构成的曲线,由此可实现正负压往复变化的自动程序控制。在本文所述的解决方案中,为实现正负压的精密控制,如图3所示,针对负压的形成配置了抽气泵。抽气泵相当于一个负压源,但采用真空发生器同样可以达到负压源的效果,负压源采用真空发生器的优点是整个系统只需配备一个正压气源,减少了整个系统的造价、体积和重量,真空发生器连接正压气源即可达到相同的抽气效果。[size=18px][color=#000099]四、总结[/color][/size]本文所述解决方案,完全可以实现微流控芯片进样系统中压力的任意设定点和连续程序形式的精密控制,并且可以达到很高的控制精度和速度,全程自动化。本方案除了自动精密控制之外,另外一个特点是系统简单,正负压控制范围也可以比较宽泛,整个系统小巧和集成化,便于形成小型化的检测仪器。本文解决方案的技术成熟度很高,方案中所涉及的电动针阀和PID控制器,都是目前特有的标准产品,其他的压力传感器、抽气泵、真空发生器和正压气源等也是目前市场上常见的标准产品。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 电动针阀和双通道控制器在真空冷冻干燥高精度压力控制中的应用

    电动针阀和双通道控制器在真空冷冻干燥高精度压力控制中的应用

    [color=#990000]摘要:目前真空冷冻干燥过程中已普遍使用了电容压力计,使得与电容压力计相配套的压力控制器和电动进气调节阀这两个影响压力控制精度和重复性的主要环节显着尤为突出。为解决控制精度问题,本文介绍了国产最新型的2通道24位高精度PID压力控制器和步进电机驱动电动针阀的功能、技术指标及其应用。经试验验证,上游控制模式中使用电动针阀和高精度控制器可将压力精确控制在±1%以内,并且此控制器还可以同时用于冷冻干燥过程中皮拉尼真空计的监控,以进行初次冻干终点的自动判断。[/color][size=18px][color=#990000]一、问题的提出[/color][/size] 压力控制是真空冻干过程中的一个重要工艺过程,其控制精度严重影响产品质量,对于一些敏感产品的冷冻干燥尤为重要。因此,为使冷冻干燥过程可靠且可重复地进行,必须在干燥室内准确、重复地测量和控制压力,这是考察冷冻干燥硬件设备能力的重要指标之一。同时因为一次干燥时的压力或真空度,直接影响产品升华界面温度,因此准确平稳的控制压力,对于一次干燥过程至关重要。但在实际真空冷冻干燥过程中,在准确压力控制方面目前国内还存在以下问题: (1)压力控制器不匹配问题:尽管冷冻干燥工艺和设备都配备了精度较高的电容压力计,其精度可达到满量程的0.2%~0.5%,但目前国内大多配套采用PLC进行电容压力计直流电压信号的测量和控制,PLC的A/D和D/A转换精度明显不够,严重影响压力测量和控制精度。A/D和D/A转换精度至少要达到16位才能满足冷冻干燥过程的需要。 (2)进气控制阀不匹配问题:对于冷冻干燥中的真空压力控制,其压力恒定基本都在几帕量级,因此一般都采用上游进气控制模式,即在真空泵抽速一定的情况下,通过电动调节阀增加进气流量以降低压力,减少进气流量以增加压力。但目前国内普遍还在使用磁滞很大的电磁阀来进行调节,严重影响压力控制精度和重复性,而目前国际上很多已经开始使用步进电机驱动的低磁滞电动调节阀。 为解决上述冷冻干燥过程中压力控制存在的问题,本文将介绍国产最新型的2通道24位高精度PID压力控制器、电动针阀的功能、技术指标及其应用。经试验考核和具体应用的验证,上游控制模式中使用电动针阀和高精度PID压力控制器可将压力精确控制在±1%以内,并且2通道PID控制器还可以同时用于冷冻干燥过程中皮拉尼真空计的监控和记录。[size=18px][color=#990000]二、国产2通道24位高精度PID压力控制器[/color][/size] 为充分利用电容压力计的测量精度,控制器的数据采集和控制至少需要16位以上的模数和数模转化器。目前我们已经开发出VPC-2021系列高精度24位通用性PID控制器,如图1所示。此系列PID控制器功能强大远超国外产品,但价格只有国外产品的八分之一。[align=center][img=冷冻干燥压力控制,550,286]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211608584555_3735_3384_3.png!w650x338.jpg[/img][/align][align=center][color=#990000]图1 国产VPC-2021系列温度/压力控制器[/color][/align] 压力控制器其主要性能指标如下: (1)精度:24位A/D,16位D/A。 (2)多通道:独立1通道或2通道。2通道可实现双传感器同时测量及控制。 (3)多种输出参数:47种(热电偶、热电阻、直流电压)输入信号,可实现不同参量的同时测试、显示和控制。 (4)多功能:正向、反向、正反双向控制。 (5)PID程序控制:改进型PID算法,支持PV微分和微分先行控制。可存储20组分组PID,支持20条程序曲线(每条50段)。 (6)通讯:两线制RS485,标准MODBUSRTU 通讯协议。 在冷冻干燥的初级冻干终点判断中,VPC-2021系列中的2通道控制器可同时接入电容压力计和皮拉尼压力计,其中电容压力计用作真空压力控制,皮拉尼计用来监视冻干过程中水汽的变化,当两个真空计的差值消失时则认为初级冻干过程结束。整个过程的典型变化曲线如图2所示。[align=center][color=#990000][img=冷冻干燥压力控制,586,392]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211609304857_1459_3384_3.png!w586x392.jpg[/img][/color][/align][align=center][color=#990000]图2. 初级干燥过程中的典型电容压力计和皮拉尼压力计的测量曲线[/color][/align][size=18px][color=#990000]三、国产步进电机驱动电子针阀[/color][/size] 为实现进气阀的高精度调节,我们在针阀基础上采用数控步进电机开发了一系列不同流量的电子针阀,其磁滞远小于电磁阀,如图3所示,价格只有国外产品的三分之一,详细技术指标如图4所示。[align=center][img=冷冻干燥压力控制,400,342]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211609435684_1917_3384_3.png!w599x513.jpg[/img][/align][align=center][color=#990000]图3 国产NCNV系列电子针阀[/color][/align][align=center][color=#990000][img=冷冻干燥压力控制,690,452]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211610002292_1250_3384_3.png!w690x452.jpg[/img][/color][/align][align=center][color=#990000]图4 国产NCNV系列电子针阀技术指标[/color][/align][size=18px][color=#990000]四、国产PID控制器和电子针阀考核试验[/color][/size] 考核试验采用了1Torr量程的电容压力计,电子针阀作为进气阀以上游模式进行控制试验。首先开启真空泵后使其全速抽气,然后在68Pa左右对PID控制器进行 PID参数自整定。自整定完成后,分别对12、27、40、53、67、80、93和 107Pa 共 8 个设定点进行了控制,整个控制过程中真空度的变化如图 5所示。 [align=center][color=#990000][img=冷冻干燥压力控制,690,418]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211610175473_9598_3384_3.png!w690x418.jpg[/img][/color][/align][align=center][color=#990000]图5 多点压力控制考核试验曲线[/color][/align] 将图5曲线的控制效果以波动率来表达,则得到如图6所示的不同真空压力下的波动率。从图6可以看出,整个压力范围内只有在12Pa控制时波动率大于1%,显然将68Pa下自整定得到的PID参数应用于12Pa压力控制并不太合适,还需要进行单独的PID 参数自整定。[align=center][color=#990000][img=冷冻干燥压力控制,690,388]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211610294377_3818_3384_3.png!w690x388.jpg[/img][/color][/align][align=center][color=#990000]图6. 多点压力恒定控制波动率[/color][/align][align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 英福康(Inficon)VDE016和普发(Pfeiffer)EVR116气体控制阀及其控制器的国产化替代

    英福康(Inficon)VDE016和普发(Pfeiffer)EVR116气体控制阀及其控制器的国产化替代

    [color=#990000]摘要:对标英福康公司VDE 016和普发公司EVR 116气体控制阀,对标英福康公司VCC500和普发公司RVC 300控制器,介绍了相应的国产化替代产品电子针型阀和多功能高精度PID控制器,并介绍了国产化替代产品的相应特点和技术指标。[/color][size=18px][color=#990000]1、概述[/color][/size]英福康(Inficon)公司VDE 016和普发(Pfeiffer)公司EVR 116的气体控制阀实际上是完全相同的一款控制阀,只是贴牌不同。如图1所示,这款气体控制阀是一种步进电机驱动的针型阀,可将外部控制信号转换为规定的阀针位置,由此调节阀的开度大小实现气体流量控制。外部控制信号可以是以下三种形式:(1)直流模拟电压(0~10VDC);(2)接口模块;(3)RS232接口。[align=center][color=#990000][img=电子针阀,600,373]https://ng1.17img.cn/bbsfiles/images/2021/12/202112171652414248_9888_3384_3.png!w690x429.jpg[/img][/color][/align][align=center][color=#990000]图1 英福康和普发公司气体控制阀[/color][/align]针对这款气体控制阀,英福康和普发提供了配套的控制器,如图2所示,型号分别是:英福康:VCC500-Z;普发:RVC 300。[align=center][img=电子针阀,600,253]https://ng1.17img.cn/bbsfiles/images/2021/12/202112171652576341_4251_3384_3.png!w690x292.jpg[/img][/align][align=center][color=#990000]图2 英福康和普发公司控制器[/color][/align]本文将针对上述控制阀和控制器,介绍相应的技术指标,并介绍相应的国产化替代产品及其技术指标,为国产化替代提供高性价比产品。[size=18px][color=#990000]2、国外产品技术指标[/color][/size][size=16px][color=#990000]2.1 气体控制阀技术指标[/color][/size]英福康和普发公司控制阀性能参数如表1所示,技术指标如表2所示。[align=center][color=#990000]表1 控制阀性能参数[/color][/align][align=center][color=#990000][img=电子针阀,500,247]https://ng1.17img.cn/bbsfiles/images/2021/12/202112171653364812_6367_3384_3.png!w690x341.jpg[/img][/color][/align][align=center][color=#990000]表2 控制阀技术指标[/color][/align][align=center][color=#990000][img=电子针阀,500,384]https://ng1.17img.cn/bbsfiles/images/2021/12/202112171653497154_1569_3384_3.png!w690x531.jpg[/img][/color][/align][size=16px][color=#990000]2.2 控制器技术指标[/color][/size]英福康和普发公司控制器性能技术指标如表3所示。[align=center][color=#990000]表3 英福康和普发公司控制器技术指标[/color][/align][align=center][color=#990000][img=电子针阀,550,468]https://ng1.17img.cn/bbsfiles/images/2021/12/202112171654083264_9223_3384_3.png!w690x588.jpg[/img][/color][/align]从上述控制器技术指标以及实际应用经验,可以发现英福康和普发控制器有以下几点不足:(1)单通道测量和控制:即只能采集一路真空计信号,并控制一路调节阀,尽管有多个模拟和数字输入输出通道,但还是只能进行一路闭环控制。当在需要使用两个真空计才能覆盖的宽量程范围内,这种单通道控制器将无能为力。(2)无PID自整定功能:英福康和普发控制器的最大不足是缺少PID参数自整定功能,这在实际应用中带了非常大的不便,需要用户自己寻找合适的PID参数,很多时候往往最终还是不能获得最优的PID参数,严重影响控制效果。(3)控制精度差:控制精度为传感器满量程的±5%,这基本说明控制器中采集和控制电路使用的是12位A/D和D/A转换器,这是决定控制精度的关键。[size=18px][color=#990000]3、国产电子针阀代替英福康和普发控制阀[/color][/size]英福康公司和普发公司的控制阀是一种典型的步进电机驱动的电子针型阀,性能指标非常优越,唯一不足就是针阀开度较小,造成流量较小。当然,还有就是价格太贵。为了实现气体流量控制阀的替代并提高性价比,我们在针阀技术上也采用了数控步进电机进行了国产化,并开发了一些列不同流量的电子针阀,如图3所示,完全实现了替代,并且价格只有国外产品的三分之一,详细技术指标如图4所示。[align=center][color=#990000][img=电子针阀,500,428]https://ng1.17img.cn/bbsfiles/images/2021/12/202112171654539729_4020_3384_3.gif!w599x513.jpg[/img][/color][/align][align=center][color=#990000]图3 国产NCNV系列电子针阀[/color][/align][align=center][color=#990000][img=电子针阀,690,452]https://ng1.17img.cn/bbsfiles/images/2021/12/202112171655179642_9510_3384_3.png!w690x452.jpg[/img][/color][/align][align=center][color=#990000]图4 国产NCNV系列电子针阀技术指标[/color][/align][size=18px][color=#990000]4、国产高精度双通道PID控制器代替英福康和普发控制器[/color][/size]为充分利用真空计(如电容薄膜压力计)的测量精度,控制器的数据采集和控制至少需要16位以上的模数和数模转化器。目前我们已经开发出VPC-2021系列高精度24位通用性PID控制器,如图5所示。[align=center][color=#990000][img=电子针阀,600,311]https://ng1.17img.cn/bbsfiles/images/2021/12/202112171655401332_5967_3384_3.png!w690x358.jpg[/img][/color][/align][align=center][color=#990000]图5 国产VPC-2021系列温度/真空度控制器[/color][/align]此系列PID控制器功能强大远超国外产品,但价格只有国外产品的八分之一。其主要性能指标如下:(1)精度:24位A/D,16位D/A。(2)多通道:独立的1通道或2通道。2通道可实现温度和压强的同时测量及控制。(3)多种输出参数:47种(热电偶、热电阻、直流电压)输入信号,可实现不同参量的同时测试、显示和控制。(4)多功能:正向、反向、正反双向控制。(5)PID控制:改进型PID算法,支持PV微分和微分先行控制。20组分组PID。(6)双传感器切换:每一个通道都可支持温度高低温和高低真空度的双传感器切换,两通道可形成总共接入四只传感器的控制组合。(7)程序控制:可自行建立和存储最多20种浓缩程序,进行浓缩时只需选择调用即可开始(程序控制模式)。在真空度控制中,下游控制模式比较适合真空度接近大气压,但对小于10mbar的真空度控制需采用上游进气控制模式。由此,为满足全量程真空度的准确控制,可以采用如图6所示的双传感器和双向控制模式。[align=center][img=电子针阀,550,434]https://ng1.17img.cn/bbsfiles/images/2021/12/202112171656050545_4479_3384_3.png!w690x545.jpg[/img][/align][align=center][color=#990000]图6 双向控制和双传感器自动切换模式示意图[/color][/align]在图6所示的控制模式中,就需要用到上述VPC-2021系列双通道控制器的正反向控制和双传感器自动切换功能,即在不同气压控制过程中,控制器自动切换相应量程的真空计,并选择相应的电子针阀和高速电动球阀进行控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【国产好仪器讨论】之北京莱伯泰科仪器股份有限公司的莱伯泰科MultiVap八通道平行浓缩仪(MultiVap-8)

    http://www.instrument.com.cn/show/Breviary.asp?FileName=C181131%2Ejpg&iwidth=200&iHeight=200 北京莱伯泰科仪器股份有限公司 的 莱伯泰科MultiVap八通道平行浓缩仪(MultiVap-8)已参加“国产好仪器”活动并通过初审。自上市以来,这款产品已经被多家单位采用,如果您使用过此仪器设备或者对其有所了解,欢迎一起聊聊它各方面的情况。您还可以通过投票抽奖、参与调研等方式参与活动,并获得手机电子充值卡。【点击参与活动】 仪器简介: MultiVap-8八通道平行浓缩仪是一种快速便捷的样品浓缩仪。它在节省实验室宝贵通风橱资源的同时,操作方便、不需连续监视,并且蒸发时间短,完全可取代传统的浓缩装置。性能指标: MultiVap定量平行浓缩仪八个样品通道可以同时或分别操作可配用200ml及50ml浓缩杯,且200ml浓缩杯和50ml浓缩杯可同时使用不须更换任何配置涡流氮吹,依据浓缩杯规格,及杯内样品量多少,氮吹位置及角度可以方便的调节,以便达到最大浓缩速度浓缩仪前部开窗,浓缩过程可视,避免像其他同类产品需要拿出杯子后观察是否浓缩到期待体积的繁琐操作仪器密闭环保,无须安装在通风橱中可自动检测浓缩终点,稳定可靠水浴加热 室温---99.9摄氏度水位超限报警,压力超限报警,方便安全人机交互界面采用触摸屏,界面友好,易于操控【了解更多此仪器设备的信息】

  • 真空浓缩过程中新型PID控制器和高速电动阀门对温度和压强的精确控制

    真空浓缩过程中新型PID控制器和高速电动阀门对温度和压强的精确控制

    [color=#990000]摘要:真空浓缩过程中,浓缩温度和压强是核心控制参数。本文针对目前浓缩仪器和设备中压强控制存在精度差、波动性大等问题,提出了详细解决方案,并提出采用新型双通道超高精度多功能PID控制器和高速电动阀门来实现浓缩过程中温度和压强的同时准确测量和控制。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000]1、问题提出[/color][/size] 真空浓缩的工作原理是将样品在冷冻干燥、离心浓缩和旋转蒸发等状态下,同时采用真空和加热技术使样品中的溶剂快速蒸发、样品体系得到快速浓缩或干燥。由于不同样品对温度有不同的敏感性,同时压强与温度之间存在强相关性,所以在真空浓缩过程中,如何准确控制浓缩温度和压强,就成了使用者最关心的问题。在目前各种常用的真空浓缩设备中,普遍还存在以下几方面问题: (1)压强测量和控制精度普遍不高,特别是低压情况下更是如此,这主要是所采用的传感器和控制器精度不够。压强控制精度不高同时会对温度带来严重影响。 (2)浓缩仪器和设备普遍采用的是下游压强控制方式,即在容器和真空泵之间安装调节阀来实时调控容器的排气速率。这种下游方式适用于较高压强的准确控制,但对10mbar以下的低压则很难实现控制的稳定准确。 (3)目前绝大多数电动调节阀采用的是电动执行机构,从闭合到全开的时间基本都在10秒以上,这种严重滞后的阀门调节速度也很难保证控制精度和稳定性。 (4)由于浓缩过程中有水汽两相介质排出,很多时候介质还带有腐蚀性,这就对下游调节阀耐腐蚀性提出了很高的要求。[size=18px][color=#990000]2、解决方案[/color][/size][color=#990000]2.1 采用高精度压强传感器[/color] 对于真空浓缩过程,压强传感器是保证整个浓缩过程可控性的核心,强烈建议采用高精度压强传感器以保证真空度的测量和控制准确性。一般真空浓缩过程基本都采用机械式真空泵,低压压强(绝压)不会超过0.01mbar,高压压强接近一个大气压,因此高精度压强传感器建议采用电容薄膜规,如图1所示,其绝对测量精度可以达到±0.2%。 如果浓缩仪器和设备使用的压强范围比较宽,建议采用两只不同量程的传感器进行覆盖,如10Torr和1000Torr。[align=center][color=#990000][img=真空浓缩,600,450]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041456355439_1975_3384_3.png!w600x450.jpg[/img][/color][/align][align=center][color=#990000]图1 电容薄膜式真空压力计[/color][/align] 如果采用其他类型的真空度传感器,也需要达到一定的精度要求。[color=#990000]2.2 采用高精度双通道PID控制器[/color] 在真空压力测量和控制中,为了充分利用上述电容薄膜压力计的测量精度,控制器的数据采集和控制至少需要16位的模数和数模转化器。目前已经推出了测控精度为24位的通用性PID控制器,如图2所示。[align=center][color=#990000][img=真空浓缩,690,358]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457090941_3284_3384_3.png!w690x358.jpg[/img][/color][/align][align=center][color=#990000]图2 国产VPC-2021系列温度/压力控制器[/color][/align] 对于真空浓缩的过程控制,此系列PID控制器具有以下特点: (1)高精度:24位A/D采集,16位D/A输出。 (2)多通道:独立的1通道和2通道。2通道可实现温度和压强的同时测量及控制。 (3)多功能:47种(热电偶、热电阻、直流电压)输入信号,可实现不同参量的同时测试、显示和控制,可进行正反向控制(双向控制模式)。 (4)PID控制:改进型PID算法,支持PV微分和微分先行控制。20组分组PID。 (5)双传感器切换:每一个通道都可支持温度高低温和高低真空度的双传感器切换,两通道可形成总共接入四只传感器的控制组合。 (6)程序控制:可自行建立和存储最多20种浓缩程序,进行浓缩时只需选择调用即可开始(程序控制模式)。[color=#990000]2.3 增加上游进气控制和双向控制模式[/color] 目前普遍采用的下游控制模式比较适合压强接近大气压的浓缩过程,但对10mbar以下的低压浓缩过程,就需要引入上游进气控制模式,即在浓缩容器上增加进气通道,通过电子针阀控制进气通道的进气流量来实现压强的准确控制。 如图3所示,目前已有各种流量的国产电子针阀可供选择,结合下游的真空泵抽气,通过上游模式可实现高真空(低压)的精确控制。[align=center][color=#990000][img=真空浓缩,599,513]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457210338_3059_3384_3.png!w599x513.jpg[/img][/color][/align][align=center][color=#990000]图3 国产NCNV系列电子针阀[/color][/align] 为同时满足低压和高压全量程准确控制,可以采用如图4所示的双传感器和双向控制模式。 在图4所示的控制模式中,就需要用到上述VPC-2021系列双通道控制器的正反向控制和双传感器自动切换功能,即在不同气压控制过程中,控制器自动切换相应量程的真空计,并选择相应的电子针阀和高速电动球阀进行控制。[align=center][img=真空浓缩,690,548]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457335020_3012_3384_3.png!w690x548.jpg[/img][/align][align=center][color=#990000]图4 双向控制和双传感器自动切换模式示意图[/color][/align][color=#990000][/color][color=#990000]2.4 采用高速电动球阀[/color] 所谓高速阀门一般是指阀门从全闭到全开的动作时间小于1s,这对于气体流量和压力控制非常重要。特别是对于真空浓缩过程,气压控制的快速响应可保证浓缩的准确性、安全性和提高蒸发速率。 目前已经开发出国产高速电动球阀,如图5所示。NCBV系列微型化的高速电动球阀和蝶阀,是目前常用慢速电动阀门的升级产品,与VPC2021系列温度/压力控制器相结合,可构成快速准确的真空压力闭环控制系统。[align=center][img=真空浓缩,377,500]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457527127_514_3384_3.png!w377x500.jpg[/img][/align][align=center][color=#990000]图5 国产NCBV系列高速电动球阀[/color][/align][color=#990000][/color][color=#990000]2.5 采用真空控压型调节器[/color] 在目前的真空浓缩仪器和设备中,浓缩是在密闭容器中发生,通过加热和真空手段将蒸发气体冷凝和排出,真空泵是对一个密闭容器进行抽气,并通过抽气流量调节来实现密闭容器内的气压恒定在设定值,这是一个典型的流量控制型恒压模式。这种控流型调压方式相当于一个开环控制方式,容器内部自生气体,且自生气体并没有很明显的规律(如线性变化),这非常不利于容器内部压强的准确控制。对于这种控流型调压方式,如图2所示,会在浓缩容器的前端增加一个进气通道,并对进气流量进行调节以使容器内部真空度控制在稳定的设定值。 对于有些真空浓缩仪器和设备,并不允许增加额外的进气通道,这里就可以用到如图6所示的控压型调节器。[align=center][img=真空浓缩,690,372]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041458102995_3900_3384_3.png!w690x372.jpg[/img][/align][align=center][color=#990000]图6 控压型调节器在浓缩过程真空度控制中的应用[/color][/align] 控压型真空压力调节器实际上一个内置真空压力传感器、微控制器、空腔和两个电动阀门的集成式装置。在真空压力控制过程中,内置传感器测量空腔内压力,如果压力小于设定值,则进气口处阀门打开直到等于设定值,如果压力大于设定值则抽气口处阀门打开直到等于设定值,从而始终保证空腔内压力始终保持在设定值上,而调节器空腔与浓缩容器连通,即调节器空腔压力始终等于浓缩容器压力。 由此可见,控压型调节器是一个自带进气阀的独立真空压力调节装置。如图6所示,控压型调压器也可以外接传感器,设定值可以手动设置,也可以通过PID控制器设置。[align=center]=======================================================================[/align]

  • CVD和MPCVD法钻石生长过程中采用双通道PID控制器控制真空度(气压)和温度

    CVD和MPCVD法钻石生长过程中采用双通道PID控制器控制真空度(气压)和温度

    [size=14px][color=#ff0000]摘要:本文将针对CVD和MPCVD工艺设备中存在的问题,介绍一种国产的两通道24位高精度多变量PID控制器,此一台控制器可对温度和真空度同时进行控制,大大缩小了仪表占用空间和造价。两通道可一次共接入4个传感器,每个通道可以连接备用的温度和真空度传感器,由此可保障长时间钻石生长的安全性又可满足宽量程测控的需要,同时还可用来进行差值和平均值监测。[/color][/size][align=center][size=14px][color=#ff0000][img=CVD工艺生长宝石,450,295]https://ng1.17img.cn/bbsfiles/images/2021/07/202107291558344977_8369_3384_3.png!w690x453.jpg[/img][/color][/size][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000]1. 问题的提出[/color][/size][size=14px]  目前,高等级钻石生长的首选工艺是采用化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积(CVD)和微波等离子体CVD(MPCVD)技术,另外CVD和MPCVD工艺还可用于在钻石以外的基材上进行钻石沉积,这为许多行业带来了技术上的进步,如光学、计算机科学和工具生产。在CVD工艺中,通过采用气体原料(氢气、甲烷)在低于1个大气压和800~1200℃的温度下,采用外延生长的方式获得完全透明无色大尺寸金刚石单晶,其成分、硬度和密度等与天然钻石基本一致,而价格远远低于天然钻石。[/size][size=14px]  在采用CVD和MPCVD工艺进行钻石生长过程中,需要严格调节和控制CVD工艺的温度、真空压力和气体成分,这三个变量中的任何一个变化或波动都会影响钻石的生长速度、纯度和颜色。这三个变量在实际工艺中分别代表了温度、真空压力和工作气体的质量流量,即在CVD工艺中一般是在进气口处采用气体质量流量计控制氢气和甲烷以达到设定的混合气体成分,通过温度传感器和加热装置来调节和控制工作腔室内的温度,最后在出气口处通过真空计和电动阀门来调节和控制工作腔室内的真空压力。[/size][size=14px]  目前这三个变量的同时控制,在国内的CVD工艺设备上还存在以下几方面问题:[/size][size=14px]  (1)在气体质量流量和温度这两个变量的测控方面,国内仪表已经非常成熟和可靠,但在真空压力的测控方面,普遍还在使用测量精度较差的皮拉尼真空计及相应的控制器,这会严重影响腔室内工作气压的测控精度,而对钻石质量带来影响。[/size][size=14px]  (2)在CVD工艺设备中,上述三个变量都需要独立的传感器和控制器进行独立操作和控制,由此造成一方面的所占空间比较大,另一方面是设计操作复杂且成本无法进一步降低。[/size][size=14px]  (3)部分CVD工艺设备在真空度测控中采用了成熟的国外产品,但价格昂贵且功能单一,只能进行真空度的测控,同时还需要准确的控制算法来适应温度突变情况下的真空度稳定控制,而且还需配套国产的气体质量流量计和温度控制仪表。[/size][size=14px]  总之,国内的钻石生长市场在近几年发展快速,据统计,2018年,国内自主生产供应的宝石级培育钻石约37.5亿元,相比2016年的0.4亿元,呈现了几何级的增长。然而国内掌握CVD技术,特别是MPCVD技术的厂家并不多,目前依旧是欧美厂家占主导,国内很多大厂家都已经涉足该领域,但量产一直是难点,而量产这一难点的根源在于CVD和MPCVD在真空环境下的控制很难。[/size][size=14px]  本文将针对CVD和MPCVD工艺设备中存在的问题,介绍一种国产的2通道24位高精度多变量PID控制器,此一台控制器可对温度和真空度同时进行控制,大大缩小了所占空间和造价。2通道可一次共接入4个传感器,每个通道可以连接备份用的温度和真空度传感器,由此可保障长时间钻石生长的安全性又可满足宽量程测控的需要,同时还可用来进行差值和平均值监测。[/size][size=18px][color=#ff0000]2. 真空压力上游和下游控制模式的选择[/color][/size][size=14px]  在如图2-1所示的工作腔体内部真空压力控制过程中,一般有上游和下游两种控制模式。上游控制是一中保持下游真空泵抽速恒定而调节上游进气流量的方式,下游控制是一种保持上游进气流量恒定而调节下游真空泵抽速的方式。[/size][align=center][img=典型CVD工艺设备框图,690,366]https://ng1.17img.cn/bbsfiles/images/2021/07/202107291600257733_6411_3384_3.png!w690x366.jpg[/img][/align][size=14px][/size][align=center][color=#ff0000]图2-1 CVD工艺设备典型结构示意图[/color][/align][size=14px]  针对CVD和MPCVD工艺设备中的真空压力控制,国内外普遍都采用下游控制模式,也有个别国外公司推荐使用上游控制模式,这里将详细分析上下游两种控制模式的特点和选择依据:[/size][size=16px][color=#ff0000]2.1. 下游控制模式[/color][/size][size=14px]  (1)在采用CVD和MPCVD工艺进行宝石生长过程中,对气体成分有严格的规定并需要精确控制。因此在CVD和MPCVD工艺设备中,通常会在工作腔体进气端采用气体质量流量控制器对充入腔体内的每种工作气体流量进行准确控制,也就是说对进气端调节控制的是气体流量,而且至少是两种工作气体。[/size][size=14px]  (2)在进气端实现对工作气体成分准确控制后,还需要对工作腔体内的真空压力进行控制。下游控制可通过调节真空泵的抽速快速实现真空压力的准确控制,而且在控制过程中并不会影响工作腔室内的气体成分比例。[/size][size=14px]  (3)在CVD和MPCVD工艺过程中,温度变化会对腔体内的真空压力会给真空压力带来很大影响,由此要求真空压力控制具有较快的响应速度,使腔体内的真空压力随温度变化始终恒定控制在设定值上,因此采用下游控制模式会快速消除温度变化对真空压力恒定控制的影响。[/size][size=14px]  (4)在CVD和MPCVD工艺过程中,工作腔体内的真空压力一般在几千帕左右这样低真空的范围内进行定点控制。对于这种低真空(接近一个大气压)范围内的真空压力控制,较快速有效和经济环保的控制方式是下游控制,在进气流量恒定的前提下,只需较小的抽速就能快速实现真空压力的准确控制,排出的工作气体较少。[/size][size=16px][color=#ff0000]2.2. 上游控制模式[/color][/size][size=14px]  (1)上游控制模式普遍适用于高真空(真空压力小于100Pa)控制,即真空泵需要全速抽气,通过调节上游进气的微小变化,即可实现高真空准确控制。[/size][size=14px]  (2)采用上游控制模式对低真空进行控制,在真空泵全速抽气条件下,就需要增大上游进气量,增大进气量一方面会造成恒定控制精度差和响应速度慢之外,另一方面会带来大量的废气排出。因此,在这种低真空的上游控制模式中,一般还需在下游端增加手动节流阀来减小真空泵的抽速。[/size][size=14px]  (3)在真空压力控制中,一般在流量和压力之间选择其中一个参量进行独立控制,也就是说控制了流量则不能保证压力恒定,而控制了压力则不能保证流量恒定,因此在一般真空压力控制中,上游控制模式在一定范围内比较适用。但在CVD和MPCVD工艺过程中,如果在进气端进行流量调节来实现进气成分比例和真空压力的同时恒定,而且还要针对温度变化做出相应的调整,这种上游控制方式的难度非常大,如果不在下游增加节流阀调节,这种上游控制方式几乎完全不能满足工艺过程要求。[/size][size=14px]  (4)有些国外机构推荐在CVD和MPCVD工艺设备中使用上游控制模式,一方面是这些机构本身就是气体质量流量控制器生产厂家,并不生产下游控制的各种电动阀门,因此他们在气体质量流量控制器中集成了真空传感器,这种集成真空计的气体质量流量控制器确实是能够用来独立控制进气流量或腔室内的真空压力,但要同时控制流量和压力则几乎不太可能,还需下游节流阀的配合才行。另一方面,这些生产气体质量流量控制器的机构,选择使用上游控制模式的重要理由是下游控制模式中采用电动阀门的成本较高,情况也确实如此,国外主要电动阀门的成本几乎是气体质量流量控制器的好几倍,但目前国产的电动阀门的价格已经只是气体质量流量控制器的四分之一左右。[/size][size=18px][color=#ff0000]3. 成分、温度和真空压力三参量同时控制方案[/color][/size][size=14px]  在宝石生长专用的CVD和MPCVD工艺设备中,针对气体成分、温度和真空压力这三个控制参数,本文推荐一种全新的控制方案,方案如图3-1所示。[/size][align=center][img=双通道控制器同时控制温度和真空压力示意图,690,348]https://ng1.17img.cn/bbsfiles/images/2021/07/202107291601353557_9929_3384_3.png!w690x348.jpg[/img][/align][size=14px][/size][align=center][color=#ff0000]图3-1 CVD工艺设备中三变量控制结构示意图[/color][/align][size=14px]  控制方案主要包括以下几方面的内容:[/size][size=14px]  (1)进气端采用气体质量流量控制器进行控制,每一路进气配备一个质量流量控制器,由此实现进气成分的精确控制。[/size][size=14px]  (2)采用双通道24位高精度PID控制器对温度和真空压力控制进行同步控制,其中一个通道用于温度控制,另一个通道用于真空压力控制,由此在保证精度的前提下,可大幅度减小控制装置的空间占用和降低成本。[/size][size=14px]  (3)温度控制通道连接温度传感器输入信号和固态继电器或可控硅执行机构,可按照设定点或设定程序曲线进行温度控制,PID控制参数可通过自整定方式进行优化。[/size][size=14px]  (4)真空压力控制通道连接真空计输入信号和电动阀门,同样可按照设定点或设定程序曲线进行真空压力控制,PID控制参数可通过自整定方式进行优化。为了保证真空度测控的准确性,强烈建议采用薄膜电容式真空计,其精度一般为0.25%,远高于皮拉尼计。最重要的是薄膜电容式真空计内部不带电加热装置,在氢气环境下更具有安全性。[/size][size=14px]  (5)双通道控制器除了具有两路控制信号主输入端之外,还有两路配套的辅助输入端,这两路配套的辅助输入端可用来连接温度或真空压力测控的备用传感器,在主输入端传感器发生故障时能自动切换到辅助输入端传感器继续进行测量和控制,这对较长时间的CVD和MPCVD工艺过程尤为重要。[/size][size=14px]  (6)双通道控制器可连接4个外部信号源,在进行两路独立变量的控制过程中,4个外部信号源的组态形式可为控制和监测带来极大的便利,除上述备用传感器功能之外,还可以用来进行差值和平均值的监测等。[/size][align=center]=======================================================================[/align] [align=center][img=CVD和MPCVD工艺生长钻石,690,269]https://ng1.17img.cn/bbsfiles/images/2021/07/202107291602272138_6714_3384_3.jpg!w690x269.jpg[/img][/align]

  • 美国MKS公司上游流量控制阀及其控制器的国产化替代

    美国MKS公司上游流量控制阀及其控制器的国产化替代

    [color=#990000]摘要:对标美国MKS公司的148J、248A和154A 系列上游流量控制阀以及244、250、946和651系列控制器,介绍了相应的国产化替代产品电子针阀和多功能高精度控制器,并介绍了国产化替代产品的相应特点和技术指标 。[/color][color=#990000][/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]一、MKS公司上游流量控制阀[/color][/size] MKS上游流量控制阀是一类真空型电磁比例阀,如图1所示,主要有以下三个系列产品: (1)148J全金属流量控制阀:金属密封,流量范围0.01~20L/mim。 (2)154B大流量控制阀:橡胶密封,流量范围20~200L/mim。 (3)248D通用型流量控制阀:橡胶密封,流量范围0.01~50L/mim。[align=center][color=#990000][img=MKS上游气体流量控制阀,690,259]https://ng1.17img.cn/bbsfiles/images/2021/12/202112012251024178_4191_3384_3.png!w690x259.jpg[/img][/color][/align][align=center][color=#990000]图1 MKS公司上游流量控制阀[/color][/align][size=18px][color=#990000]二、MKS公司流量/压力控制器[/color][/size] MKS公司的流量/压力控制器是一类PID控制器,如图2所示,主要有以下4个系列产品: (1)244系列:手动PID控制,单通道控制,适配多种传感器,0~10VDC输入信号,手动/自动/外部控制模式,精度为满量程的0.25%,多个设定点(3或4),控制偏差指针显示。此型号系列控制器现已停产。 (2)250系列:手动PID控制,单通道控制,适配多种真空传感器,0~10VDC输入信号 ,手动/自动/外部控制模式,精度为满量程的0.25%,最多4个设定点,外部编程设定,数码显示测量值和控制偏差值。此型号系列控制器现已停产。[align=center][color=#990000][img=MKS流量压力控制器,690,102]https://ng1.17img.cn/bbsfiles/images/2021/12/202112012251398451_7424_3384_3.png!w690x102.jpg[/img][/color][/align][align=center][color=#990000]图2 MKS公司流量/压力控制器[/color][/align] (3)946系列:自动PID控制,16位A/D采集,6通道控制,适配多种真空传感器,最多可同时监测6路传感器信号,0~10VDC输入/输出信号 , 手动/自动/外部控制模式,内部编程设定,数字显示测量值和控制偏差值,12路继电器输出,RS232/485通讯。 (4)651系列:自调节快速PID控制,16位A/D采集,单通道控制,适配多种真空传感器,0~10VDC输入/ 输出信号 , 手动/自动/外部控制模式,重复性为满量程的±0.1%,外部编程设定,数字显示测量值, 多路I/O接口,RS232/485通讯。[size=18px][color=#990000]三、国产化电子针阀替代MKS电磁控制阀[/color][/size] MKS公司的上游流量控制阀是一种传统的电磁阀,电磁阀最大的问题是磁滞比较大,会明显的影响线性度和控制精度。这些控制阀的整体价格较高,也没有相应的国产品牌。 为了实现上游流量控制阀的国产化替代并提高性价比,我们在针阀技术上采用数控步进电机来代替电磁阀,开发了一些列不同流量的电子针阀,如图3和图4所示,完全实现了国产化替代。[align=center][color=#990000][img=电子针阀,500,428]https://ng1.17img.cn/bbsfiles/images/2021/12/202112012252026101_430_3384_3.gif!w599x513.jpg[/img][/color][/align][align=center][color=#990000]图3 国产NCNV系列电子针阀[/color][/align][align=center][img=电子针型阀技术指标,690,452]https://ng1.17img.cn/bbsfiles/images/2021/12/202112012252322209_7636_3384_3.png!w690x452.jpg[/img][/align][align=center][color=#990000]图4 国产NCNV系列电子针阀技术参数[/color][/align][align=left][size=18px][color=#990000]四、国产化高精度PID控制器替代MKS控制器[/color][/size][/align] MKS公司的气体流量/压力控制属于专用控制器,只能满足真空领域内的气体流量和压力控制,尽管功能十分强大,但价格较贵。国产化替代的PID控制器,采用了更高精度的24位A/D采集器,控制器更趋于通用性,可实现温度和真空压力的同时控制,如图5所示。[align=center][color=#990000][img=VPC-2021系列控制器,690,358]https://ng1.17img.cn/bbsfiles/images/2021/12/202112012252599268_5639_3384_3.png!w690x358.jpg[/img][/color][/align][align=center][color=#990000]图5 国产VPC-2021系列温度/压力控制器[/color][/align] 国产高精度多功能PID控制器主要特点如下: (1)高精度:±0.05%满量程,24位A/D采集,16位D/A输出。 (2)多通道:独立的1通道和2通道。 (3)多功能:47种(热电偶、热电阻、直流电压)输入信号,可实现不同参量的同时测试、显示和控制,可进行正反向控制(双向控制模式)。 (4)PID控制:改进型PID算法,支持PV微分和微分先行控制。20组分组PID,分组输出限幅功能。 (5)双传感器切换:每一个通道都可支持温度高低温和高低真空度的双传感器切换,两通道可形成总共接入四只传感器的控制组合。 (6)程序控制:支持20条工艺曲线,每条50段,支持段内循环和曲线循环。[hr/]

  • 国产化替代艾默生ER5000系列电子压力控制器及其功能扩展

    国产化替代艾默生ER5000系列电子压力控制器及其功能扩展

    [color=#990000]摘要:本文主要介绍了国产化替代方面所做的工作,替代产品为艾默生TESCOM ER5000系列电子压力控制器及其背压阀。本文介绍了进口产品的性能特点和不足,提出了国产化替代技术路线,描述了国产化替代产品的性能指标,介绍了国产化替代产品的功能扩展和技术创新,使国产化替代产品具有了更高的性价比和使用灵活性。[/color][align=center][img=国产化替代,690,408]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182018432207_7188_3384_3.jpg!w690x408.jpg[/img][/align][size=18px][color=#990000]1. 艾默生ER5000系列压力控制器[/color][/size][size=16px][color=#990000]1.1. 压力控制器结构和原理[/color][/size]艾默生最新一代TESCOM ER5000系列电子压力控制器,是一种多功能集成式的压力控制器,集成了压力传感器、PID(比例-积分-微分)控制器和电动比例阀三个部件,集传感器、控制器和电子阀门于一体构成一个完整的控制机构。TESCOM ER5000电子压力控制器及其基本结构如图1-1所示。[align=center][color=#990000][img=国产化替代,690,249]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182025069214_3530_3384_3.png!w690x249.jpg[/img][/color][/align][align=center][color=#990000]图1-1 TESCOM ER5000电子压力控制器结构示意图[/color][/align]从图1-1可以看出,ER5000电子压力控制器的功能就是控制底部出口处的压力,将进气压力降低并控制在设定压力上,使底部出口处的压力始终与设定压力一致。ER5000电子压力控制器实际上是一款电子式的减压阀,其工作原理如图1-2所示。外部气源向ER5000供给压力,供给压力通过打开的进气阀成为出口处的输出压力,同时此输出压力通过压力传感器反馈至PID控制器。如果反馈值低于压力设定值,控制器继续控制进气阀处于开启状态直到反馈值与设定值相等。等到上述两个值相等,进气阀将关闭,此时出口处持续输出恒定的设定值压力。如果反馈值高于设定值,则控制器将启动排气阀,从而排放过量的出口压力直到反馈信号等于设定值。等到上述两个值相等,排气阀将关闭,此时出口处同样持续输出恒定的设定值压力。[align=center][img=国产化替代,690,284]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182025348584_2251_3384_3.png!w690x284.jpg[/img][/align][color=#990000][/color][align=center][color=#990000]图1-2 TESCOM ER5000电子压力控制器原理图[/color][/align][size=16px][color=#990000]1.2. 典型应用[/color][/size]ER5000压力控制器主要有两类应用方向,一是单机应用,二是与其他特殊阀门的配合应用,以达到不同范围内的压力调节和控制。(1)单机应用:从上述结构和原理可知,TESCOM ER5000电子压力控制器是一款非常典型的电子式减压阀,在单机使用情况下,控制器本身可对压力8.2bar以下的气源进行减压并准确控制,甚至可以实现对粗真空的控制。另外,在单机应用中,可分别采用内部和外部反馈两种控制模式,如图1-3和图1-4所示。[align=center][img=国产化替代,690,244]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182025483237_8169_3384_3.png!w690x244.jpg[/img][/align][align=center][color=#990000]图1-3 艾默生ER5000电子压力控制器内部反馈控制模式单机应用[/color][/align][color=#990000][/color][align=center][img=国产化替代,690,266]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182025582943_2239_3384_3.png!w690x266.jpg[/img][/align][align=center][color=#990000]图1-4 艾默生ER5000电子压力控制器外部反馈控制模式单机应用[/color][/align](2)配合使用:ER5000电子压力控制器的一个重要应用是作为先导阀与其他调节阀配合使用,以调控更大的压力范围。更大压力减压应用如图1-5所示,与背压阀配合应用如图1-6所示[align=center][color=#990000][img=ER5000国产化替代,690,301]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182026370215_476_3384_3.png!w690x301.jpg[/img][/color][/align][align=center][color=#990000]图1-5 艾默生ER5000电子压力控制器典型减压应用[/color][/align][color=#990000][/color][align=center][img=ER5000国产化替代,690,450]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182026463023_179_3384_3.png!w690x450.jpg[/img][/align][align=center][color=#990000]图1-6 艾默生ER5000电子压力控制器典型背压应用[/color][/align][size=16px][color=#990000]1.3. 性能指标[/color][/size]由于TESCOM ER5000系列电子压力控制器是由压力传感器、PID控制器和双阀结构压力调节器三部分的集成,每部分的技术指标则代表了控制器的整体性能,相关技术指标和功能分列如下:(1) 压力控制原理:双电磁阀三通控压。(2) 介质类型:清洁、干燥的惰性气体或仪表级空气。(3) 进气口压力(绝对压力):最小(真空泵压力),最大8.2bar(820kPa)(4) 出气口压力(绝对压力):最小0.07bar(7kPa),最大8.2bar(820kPa)(5) 输入信号:USB、RS485、4~20mA、1~5V或0~10V。(6) 外部传感器反馈信号:4~20mA、1~5V或0~10V。(7) 内部压力传感器测量精度:±0.10%(FSO),其中包括了±0.05%(FSO)线性度和±0.05%(FSO)迟滞。(8) 控制器A/D转换:16位。(9) 控制器重复性:±0.05%(FSO)。(10) 控制器分辨率灵敏度:±0.03%(FSO)。(11) 控制方式:PID(需结合专用软件ERTune进行PID参数调试和优化)。(12) 控制模式:内部反馈、外部反馈和双环三种模式。这里特别介绍ER5000压力控制器的三种控制模式,这是此控制器的一个技术亮点:(1)内部反馈模式:该模式仅使用内部传感器。内部反馈模式使用ER5000内部压力传感器以监控控制器内部1~100psig/0.07~6.9bar范围内的绝对压力。(2)外部反馈模式:该模式仅使用外部传感器。外部反馈模式利用用户提供的外部传感器以监控系统压力,该传感器安装于过程管线中并向ER5000提供直接反馈。(3)双环模式:该模式是在“循环内循环”配置中同时使用内部和外部传感器。双环模式在一个PID循环中执行另一个PID循环。内部回路使用控制器的内部传感器,外部回路使用外部传感器。[size=16px][color=#990000]1.4. 功能和特点[/color][/size]从上述介绍,可归纳出ER5000压力控制器的以下几方面功能和特点:(1) ER5000压力控制器最主要功能是可进行气体压力(不是流量)控制,即可实现密闭型容器和管道内压力的准确控制。(2) 整体集成式结构,集成了压力传感器、PID控制器和双阀调节器执行结构,使得整体结构小巧,并便于安装使用和多台并行使用。(3) 作为一种典型的压力控制器,即可直接对最大8.2bar的气源压力进行减压并准确恒压控制(进气口为正压),也可用来控制低压(粗真空,进气口为真空),最低压力可达0.07bar(7kPa)。(4) ER5000压力控制器可作为先导阀来驱动各种大量程的减压阀和背压阀,控制器的出口与其他背压阀的先导口连接,可实现更大量程范围内压力调节和控制。(5) 压力传感器±0.1%的测量精度和16位的A/D转换,属于中高端技术指标,可满足大多数应用场合。(6) 数字PID控制方式可实现压力的快速和准确控制。(7) 内部反馈、外部反馈和双环三种控制模式,使ER5000压力控制器具有较大的使用灵活性,可根据实际使用要求选择最佳控制模式。[size=16px][color=#990000]1.5. 压力控制器存在的不足[/color][/size]尽管ER5000压力控制器有上述诸多功能和特点,但在实际应用中还存在以下多方面的限制和不足。(1) ER5000压力控制器集成了真空压力控制领域中三种最常用部件,但由于是集成式结构而不是模块化积木式结构,这反而限制了ER5000压力控制器应用。如ER5000压力控制器中集成了两个电磁阀,但仅能进行气体压力控制,而无法进行只需单电磁阀的气体流量控制。(2) ER5000压力控制器更侧重于正压控制,也可进行部分的负压控制,这主要是由于所用阀门的漏率太高造成,从而并未发挥传感器(特别是外置传感器)和PID控制的强大功能。如果能降低控制器内部阀门的气体漏率,则控制器完全可覆盖整个真空度范围的控制,将目前的7kPa的真空度扩展到1Pa左右。(3) 在驱动各种大量程减压阀和背压阀应用方面,使用价格较高的ER5000压力控制器作为先导阀其性价比非常低,完全可以使用高性价比的国产替代产品。(4) ER5000压力控制器16位的A/D转换,属于中高端技术指标,如果采用外置高精度的压力传感器则需要24位的A/D转换器,这使得ER5000压力控制器无法满足一些测量控制精度要求较高的场合。(5) 尽管ER5000压力控制器采用了PID控制方式,但PID参数的调节都需要使用专用软件,控制器自身缺乏PID参数自整定功能,还需连接计算机,现场操作非常繁复。(6) ER5000压力控制器自身缺乏显示功能,还需连接计算机和使用配套软件才能进行调试和显示控制过程和结果。(7) ER5000压力控制器的整体价格偏高,而且操作复杂,对操作人员有较高的要求。再结合控制器上述不足,这使得ER5000压力控制器的性价比并不高,很多场合下使用显着非常的奢侈和浪费。[size=18px][color=#990000]2. 国产化替代技术路线[/color][/size]对艾默生公司最新一代TESCOM ER5000系列电子压力控制器的国产化替代,技术路线是首先实现ER5000压力控制器的测控功能,提供高性价比国产压力控制器。然后采用模块结构技术路线,将真空压力传感器、PID控制器和电子阀门分离为各自独立模块,每一类模块由一系列不同技术指标的部件组成,通过这些不同性能指标模块的组合来实现不同控制功能和精度要求,拓展控制器功能,满足不同需求,并具有高性价比。[size=16px][color=#990000]2.1. 实现ER5000压力控制器功能[/color][/size](1) 国产化替代产品要达到ER5000电子压力控制器绝大部分功能,即实现ER5000压力控制器自身的减压和控压功能。(2) 国产化替代产品同时与ER5000压力控制器一样,可作用先导阀来对大量程高压范围的气体进行减压和控压。(3) 国产化替代产品具有设定值输入和显示功能,无需软件和连接计算机进行操作。(4) 国产化替代产品价格低,具有高性价比。[size=16px][color=#990000]2.2. 模块化结构和功能拓展[/color][/size](1) 模块化结构分为传感器、PID控制器和电子阀门三个模块。(2) PID控制器模块是所有模块的核心器件,决定了测控精度,决定了可配合使用的传感器和电子阀门的种类,决定了控制方式和控制模式。PID控制器模块将采用24位A/D转换器提高测控精度,集成两个独立控制通道可同时控制2路真空压力或1路真空压力和1路温度,可连接多种真空压力和温度传感器,2通道结合可进行正反双向控制以满足真空压力的上下游控制模式,2通道结合可具备双传感器自动切换功能以覆盖宽泛测控量程,PID控制器带程序设定功能可输入多条控制工艺曲线,可输入和存储多组PID参数,PID参数调整带自整定功能,控制器带彩色液晶屏显示全过程参数和结果。(3) 电子阀门模块由多种规格型号的电子阀门构成,主要有流量调节阀和压力调节阀两大类。流量调节阀主要有小流量电动针阀和大流量大口径电动球阀蝶阀,这些流量调节阀都属于高速调节阀,开闭速度都在1s以内。压力调节阀主要有真空型背压阀和高压型背压阀,两种背压阀都可以在水气两相介质下工作。(4) 传感器模块主要是外协配套件,由多种规格型号的压力传感器和温度传感器构成,主要分为高压传感器、低压(真空)传感器、热电偶、铂电阻、热敏电阻、红外测温仪和直流电压信号,由此可覆盖几乎所有压力和温度范围内的测量。[size=18px][color=#990000]3. 国产化替代产品[/color][/size]根据上述的国产化替代技术路线,上海依阳实业有限公司研制了相应的产品,现分别介绍如下。[size=16px][color=#990000]3.1. 数显压力控制器[/color][/size]国产化的数显式压力控制器包括正压型和真空型两种规格,其压力控制原理和基本结构与艾默生TESCOM ER5000系列电子压力控制器一样,如图3-1所示。[align=center][color=#990000][img=ER5000国产化替代,690,390]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182027032534_5519_3384_3.png!w690x390.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图3-1 国产化电子压力控制器及其结构原理[/color][/align]国产化的数显式压力控制器同样是压力传感器、控制器和双阀结构压力调节器三部分的集成结构,相关技术指标和功能分列如下:(1) 压力控制原理:双电磁阀三通控压。(2) 介质类型:清洁、干燥的惰性气体或仪表级空气。(3) 进气口压力(绝对压力):最小(真空泵压力),最大50bar(5MPa)(4) 出气口压力(绝对压力):最小0.21bar(21kPa),最大30bar(3M Pa)(5) 输入信号:4~20mA、0~5V或0~10V。(6) 外部传感器反馈信号:4~20mA、0~5V或0~10V。(7) 内部压力传感器测量精度:±1.0%(FSO),其中包括了±0.5%(FSO)线性度和±0.5%(FSO)迟滞。(8) 控制器A/D转换:12位。(9) 控制器重复性:±0.5%(FSO)。(10) 控制器分辨率灵敏度:±0.2%(FSO)。(11) 控制方式:内置PID自动控制,无需人工干预。(12) 控制模式:内部反馈和外部反馈。从上述技术指标可以看出,国产化压力控制器的有些技术指标进行了降低,如12位的A/D转换和±1.0%测量精度,但拓宽了使用压力范围,增加了显示和输入功能,压力控制器可独立使用无需外接计算机和软件调试,降低了操作难度,提高了性价比,基本上能满足绝大多数领域的应用。[size=16px][color=#990000]3.2. 背压阀(高压型和真空型)[/color][/size]国产化的新型背压阀模块单独分为高压型和真空型背压阀,两种背压阀都采用上述数显压力控制器做先导阀进行控制,但新型背压阀对艾默生TESCOM等传统背压阀做了重大改进。传统的背压阀,都具有一个固定在阀体上的阀座,此阀座与阀芯紧密贴合,来达到密封效果。它可以为大多数简单过程提供基本的压力控制,在这种设计中,通过弹簧或其他的方式提供一个预设加载力,这个加载力使得阀芯与阀座密封。当管路压力作用到阀芯上的力,与加载力相同时,则背压阀在预设的压力状态下正常工作;当阀门的入口端压力升高,使作用在阀芯上的力超过预设的加载力时,阀芯和阀座分离,释放入口端多余的压力,直至恢复预设的压力。传统背压阀结构,在瞬时流量变化较大、或入口压力波动频繁的情况下,控制压力的精度较低,原因如下:(1) 由于大多数控制压力超过20bar的传统背压阀,采用了活塞的方式作为阀芯的负载机构,活塞中的O形密封圈增加了动作摩擦,从而使阀芯动作卡滞;(2) 传统背压阀的进出口流道,多为单一且固定截面积的通路,当阀门入口的流量迅速增加或降低时,阀门的Cv值(流通能力)却没有变化,这样会使入口压力产生剧烈波动;(3) 传统背压阀阀芯和阀座,因密封需要,贴合时存在应力或摩擦,频繁的开合,会使其彼此互相磨损和消耗,破坏初始的形状,使Cv值发生不可预知的改变。新型背压阀是上向下相连接的阀盖和阀体结构,如图3-2所示。阀盖和阀体之间连接有膜片,阀盖顶部开设先导气孔,先导气孔通过阀盖内部开设的气源通道连通至阀盖底部开设的供膜片中部起伏运动的活动槽,形成上下贯通的通路,阀体侧壁上分别开设相对设置的介质入口和介质出口,介质入口与阀体上表面开设的多个入口小孔相连通,介质出口与阀体上表面开设的多个出口小孔相连通。新型背压阀的突出特点是整个动作无摩擦,不会产生压力滞后,入口压力稳定性高,具备更大的流通能力。[align=center][color=#990000][img=ER5000国产化替代,690,259]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182027186867_2208_3384_3.png!w690x259.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图3-2多孔式结构新型背压阀[/color][/align][size=16px][color=#990000]3.3. 双通道高精度PID控制器[/color][/size]针对PID控制模块,为满足广泛的真空压力控制要求,上海依阳实业有限公司出品了VPC2021系列PID控制器,此系列控制器可进行真空、压力和温度的测量、显示和控制。采用了24位数据采集和人工智能PID控制技术,可接入各种型号的真空、压力和温度传感器,可控制多种型号的电动针阀、电动阀门和加热器等执行结构,可实现高精度真空、压力和温度等参量的定点和程序控制,是替代国外高端控制器产品的高性能和高性价比控制器。如图3-3所示,VPC2021系列PID控制器具有双通道独立测控功能,可对不同通道上的参数同时进行测量、显示和控制。如果两个通道接入相同类型但量程不同传感器,如图3-4所示,可以根据测试值实现两个传感器之间自动切换,由此可覆盖宽量程的测量和控制。[align=center][img=ER5000国产化替代,690,348]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182027332455_2803_3384_3.png!w690x348.jpg[/img][/align][align=center][color=#990000]图3-3 VPC2021系列双通道高精度PID控制器及其应用[/color][/align][color=#990000][/color][align=center][img=ER5000国产化替代,690,369]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182027510730_967_3384_3.png!w690x369.jpg[/img][/align][align=center][color=#990000]图3-4 双通道高精度PID控制器的双传感器自动切换[/color][/align]VPC2021系列双通道高精度PID控制器主要技术指标如下:(1) 测量精度:±0.05%FS(24位A/D)。(2) 输入信号:可连接众多真空压力传感器,32种信号输入类型(电压、电流、热电偶、热电阻)。(3) 控制输出:4种控制输出类型(模拟信号、固态继电器、继电器、可控硅),可连接众多电动调节阀。(4) 控制算法:PID控制和自整定(可存储和调用20组PID参数)。(5) 控制方式:定点和程序控制,最大可支持9条控制曲线,每条可设定24段程序曲线。(6) 通道:双通道,双通道传感器自动切换。(7) 通讯方式:RS 485和以太网通讯。(8) 供电电源:交流(86-260V)或直流24V。(9)外形尺寸: 96×96×136.5mm (开孔尺寸92×92mm)[size=16px][color=#990000]3.4. 高速电动流量调节阀[/color][/size]针对电子阀门模块,为满足不同大小流量的高速调控,上海依阳实业有限公司推出了两个系列的电子阀门,一个系列是电动针阀用于小流量调控,另一个系列是电动球阀和蝶阀用于大流量调控。这两个系列电子阀门的最大特点是可电控,并具有1s以内的高速闭合时间,是国内非常罕见的快速电子阀门。如图3-5所示,电动针阀NCNV系列是将步进电机的精度和可重复性优势与针阀的线性和分辨率相结合,其结果是具有小于2%滞后、2%线性、1%重复性和0.2%分辨率的可调流量控制,是目前常用电磁比例阀的升级产品。与依阳公司VPC2021系列真空压力控制器相结合,可构成快速准确的真空压力闭环控制系统。[align=center][color=#990000][img=ER5000国产化替代,599,513]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182028158401_6212_3384_3.png!w599x513.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图3-5 NCNV系列电子针阀[/color][/align]NCNV系列电动针阀主要技术指标和特点如下:(1) 多规格节流面积:从低流量的直径0.9mm(0~50L/min气体)到高流量的直径4.10mm(0到660 L/min气体)的多种规格针阀节流面积,可满足不同的应用需要。(2) 高度线性:小于2%的线性度,简化了查表或外部控制硬件和软件的配套,简化了命令输入和流量输出之间的关系。(3) 高重复性:通过每次达到0.1%的相同流量,NCNV系列电动针阀可提供长期稳定的一致性。(4) 宽压力范围:通过5或7bar巴的真空,取决于孔的大小,入口环境可覆盖宽泛的压力范围。电机的刚度和功率确保阀门在相同的输入指令下打开,与压力无关。(5) 低迟滞:小于2%的迟滞使积分和编程变得简单,在增加和减少达到设定点时能提供一致的流量。(6) 高分辨率:0.2%的分辨率允许NCNV系列电动针阀根据调节指令的微小变化进行最小流量调整,提供了出色的可控性。(7) 快速响应:整个行程时间小于1秒,由此可提供及时快速的流量调节和控制。(8) 工作电压:VDC 24V。(9) 输入信号:4~20mA、0~5V和0~10V。如图3-6所示,电动球阀NCBV系列是将高速电动执行器及高品质V型球阀组成,是目前常用慢速电动球阀的升级产品。与依阳公司VPC2021系列真空压力控制器相结合,可构成快速准确的真空压力闭环控制系统。[align=center][color=#990000][img=ER5000国产化替代,377,500]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182029196473_3852_3384_3.png!w377x500.jpg[/img][/color][/align][align=center][color=#990000]图3-6 NCBV系列电动球阀[/color][/align]NCBV系列电动球阀主要技术指标和特点如下:(1) 最大扭力:2N.m。(2) 阀球转动角度:90°。(3) 开关阀时间:小于1秒。(4) 工作电压:VDC 24V(5) 输入信号:4~20mA、0~5V和0~10V(6) 防护等级:IP67。(7) 环境温度\湿度:-20℃至45℃;≤85%(不凝露)。(8) 介质温度和压力:0~100℃;≤1.0MPa [size=18px][color=#990000]4. 总结[/color][/size]综上所述,通过一系列国产化替代产品的开发,基本可以完全替代艾默生最新一代TESCOM ER5000系列电子压力控制器及其背压阀,且性价比大幅度提高。重要的是,在国产化替代基础上,设计了更灵活易用的模块化结构,对单项模块产品进行了功能扩展和技术创新,开发了新型背压阀和高速电动流量调节阀,新开发的PID控制器具有更强大的功能和测量精度,整个系列的国产化替代产品具有较高的性价比。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 具有双传感器自动切换功能的双通道24位高精度PID控制器

    具有双传感器自动切换功能的双通道24位高精度PID控制器

    [align=center][size=14px][img=双传感器自动切换PID控制器,690,426]https://ng1.17img.cn/bbsfiles/images/2021/07/202107281550092924_2978_3384_3.png!w690x426.jpg[/img][/size][/align][color=#990000]摘要:为了解决PID过程控制器中双传感器自动切换的难题,降低成本提高性价比,替代昂贵的英国欧陆公司2704系列产品,上海依阳实业有限公司推出了单通道和双通道系列的24位高精度PID过程控制器,每个通道都可以实现双传感器自动切换。采用双通道控制器还可以实现温度和真空度的同时测量和控制,温度和真空度测控都可以实现双通道自动切换。另外双传感器自动切换功能还可使备份传感器成为可能,可有效保证过程控制的连续性和安全性。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=24px][color=#990000]1. 问题的提出[/color][/size][size=14px][/size]  在许多工业控制领域中,如真空热处理、冷冻干燥机、高压釜、半导体加热炉、空间环境模拟室等,被控参数的量程往往会很宽泛,为了覆盖全量程范围内的准确测量和控制,往往需要两只不同量程的传感器。[size=14px][/size]  如在温度测控过程中,往往在低温段采用热电偶温度传感器,在高温段采用红外测温仪,有时也会采用两种不同类型的热电偶温度传感器来覆盖宽的温度区间。[size=14px][/size]  如在真空度测控过程中,往往会采用10Torr和1000Torr两只薄膜电容真空计来完成0.1~760Torr全量程范围的真空度准确测量和控制。[size=14px][/size]  对于这种需要双传感器测量和控制的场合,目前普遍还是采用人工判断切换方式,这给实际应用带来很大不便。[size=14px][/size]  国外著名厂商欧陆(EUROTHERM)公司针对上述应用,专门推出了2704系列PID过程控制器,但价格较贵。[size=14px][/size]  为了解决PID过程控制器中双传感器自动切换的难题,降低成本提高性价比,替代昂贵的国外产品,上海依阳实业有限公司推出了单通道和双通道系列的24位高精度PID过程控制器,每个通道都可以实现双传感器自动切换,采用双通道控制器还可以实现温度和真空度的同时测量和控制,温度和真空度测控都可以实现双通道自动切换。另外双传感器自动切换功能还可以使备份传感器成为可能,有利于控制过程中若一只传感器出现故障而自动切换到第二只备份传感器,保证过程控制的连续性和安全性。[size=24px][color=#990000]2. 基本原理[/color][/size][size=14px][/size]  双传感器自动切换的基本原理是在控制器主输入接口的基础上引入了一个辅助输入接口,如图2-1所示为两只传感器切换的情况。以温度传感器为例,高切换点(2-3)是第一只传感器工作的高点,低切换点(1-2)是第二只传感器工作的低点,在这两点之间控制器进行平滑计算。当主输入PV1和辅助输入PV2的测量值连续采样低于下切换点,切换到低温传感器。当主输入PV1和辅助输入PV2的测量值连续采样高于上切换点,则切换到高温传感器。[align=center][color=#990000][img=双传感器自动切换原理,690,452]https://ng1.17img.cn/bbsfiles/images/2021/07/202107281552543835_2273_3384_3.png!w690x452.jpg[/img][/color][/align][size=14px][/size][align=center][color=#990000]图2-1 双传感器自动切换原理图[/color][/align][size=24px][color=#990000]3. 控制器参数设置[/color][/size][size=14px][/size]  双传感器高低量程的切换点数值判断以辅助输入测量值为判断依据,因此当系统采用双传感器测量和控制时,辅助输入接口做为高端量程传感器的信号输入源。[size=18px][color=#990000]3.1. 双传感器切换功能时,输入类型分辨率的设置[/color][/size][size=14px][/size]  (1)主输入接口输入类型为热电偶或热电阻时[size=14px][/size]  此时的温度单位“摄氏度”和“开尔文”设置为0.1度分辨率,温度单位“华氏度”为1度分辨率。即,主输入类型为热电偶或热电阻,温度单位为摄氏度或开尔文时,辅助输入通道小数点设置为1位小数。温度单位为华氏度时,小数点设置为0位小数。[size=14px][/size]  (2)主输入通道的输入类型为模拟信号时(真空度测控情况)[size=14px][/size]  根据小数点设定分辨率,两通道必须相同分辨率,即主输入和辅助输入保持相同小数位数,但相应的量程要根据传感器的实际量程进行设置。如对于10Torr和1000Torr两只真空计,其对应的模拟信号都是0~10V,但显示量程分别要设置为10和1000。[size=18px][color=#990000]3.2. 双传感器切换功能中的上下限切换点设置[/color][/size][size=14px][/size]  在使用双传感器切换功能时,还需在控制器上进行相应子菜单设置,分别设置上限切换点和下限切换点,具体内容详见控制器使用说明书。[size=24px][color=#990000]4. 双传感器自动切换功能的应用[/color][/size][size=14px][/size]  具有双传感器自动切换功能的PID过程控制器可应用于多种场合:[size=14px][/size]  (1)由于双传感器功能能够同时从两个独立的传感器接收输入信号,这就使得控制器可用于测量两传感器之间的差值和平均值,如温差、平均温度、真空压力差和真空压力平均值。[size=14px][/size]  (2)双传感器自动切换功能也可作为备份传感器切换功能使用,即在控制器上连接两只完全一样的传感器,当第一只传感器开路时,当前测量自动切换到第二只传感器测量值进行控制,由此对测量和控制起到保护和保险作用。[size=14px][/size]  (3)由于上海依阳公司的VPC2021-2系列PID过程控制器具有双通道同时测控能力,而每一通道都配备了辅助输入端口,这样就可以同时连接4只传感器。这种4只传感器的接入能力,能带来非常多的组态形式,如同时进行两路不同变量(如温度和真空度)的测量和控制,其中2只传感器同时测控温度和真空度,其他2只传感器用来同时监测其他两个测量点处的测量值变化情况。[size=14px][/size]  (4)在高真空工艺过程中,最常见的是使用扩散泵,并将扩散泵放置在真空炉膛和机械泵(粗真空)之间,而扩散泵和机械泵之间的区域称为前级室。机械泵将前级室气压降低到扩散泵的最大吸入压力以下,扩散泵才能开始正常运行。在典型的单室真空系统中,一般会配备三个真空计:在主真空室(或炉膛)中将安装两个真空计,一个用于低真空(皮拉尼真空计10-3 mbar),另一个用于高真空(有源倒磁控管AIM)仪表10-8mbar。而另一个皮拉真空计被视为单独的输入用来监控前级室气压。在实际应用中需要两个主真空室上的真空计进行自动切换,同时外加一个真空计监测前级室气压和一个温度传感器进行腔室温度测控。两种类型的真空计(每种都需要24V直流电源)提供2~10V直流对数输出,涵盖不同的真空范围。在实际控制过程中,两通道控制器将前级室与主真空室隔离并打开前级泵,当前级室达到设定的真空度时,控制器将改变其联锁装置,使扩散泵能够将炉子抽真空。同样,当炉子达到设定的真空度时,两通道控制器将控制执行设定的温度曲线,同时继续监测是否保持必要的真空度。[align=center]=======================================================================[/align][align=center][img=,690,349]https://ng1.17img.cn/bbsfiles/images/2021/07/202107281553360737_7536_3384_3.jpg!w690x349.jpg[/img][/align][size=14px][/size]

  • 壁挂炉膨胀罐有什么作用

    壁挂炉膨胀罐用于系统中起缓冲压力波动及部分给水的作用,在热力系统中主要是用来吸收工作介质因温度变化增加的那部分体积;在供水系统中主要用来吸收系统因阀门、水泵等开和关所引起的水锤冲击,以及夜间少量补水使供水系统主泵休眠从而减少用电,延长水泵使用寿命。壁挂炉膨胀罐作用: 壁挂炉膨胀罐被广泛应用于中央空调、锅炉、热水器、变频、恒压供水设备中,其缓冲系统压力波动,消除水锤起到稳压卸荷的作用,在系统内水压轻微变化时,壁挂炉膨胀罐气囊的自动膨胀收缩会对水压的变化有一定缓冲作用,能保证系统的水压稳定,水泵不会因压力的改变而频繁的开启。壁挂炉膨胀罐工作原理: 当壁挂炉膨胀罐用于系统中时,由于系统压力比预充气体的压力,所以会有一部分工作介质进入气囊内(对隔膜式来讲是进入罐体内),直到达到新的平衡,当系统压力再度升高,系统压力再次大于预充气体的压力,又会有一部分介质进入囊内,压缩囊和罐体间的气体,气体被压缩压力升高,当升高到跟系统压力一致时,介质停止进入,反之,当系统压力下降,系统内介质压力低于囊和罐体间的气体压力,气囊内的水会被气体挤出补充到系统内,使系统压力升高,直到系统工作介质压力跟囊和罐体间的气体压力相等,囊内的水不再外系统补给,维持动态的平衡。

  • chermo洗板机八通道洗头

    求购thermo洗板机八通道洗头,拆机,全新都可以,有的麻烦联系我,谢谢![img]https://ng1.17img.cn/bbsfiles/images/2020/12/202012292319579800_4942_4234229_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2020/12/202012292319582368_8293_4234229_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2020/12/202012292319581069_1988_4234229_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2020/12/202012292319582407_2039_4234229_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2020/12/202012292319581086_801_4234229_3.png[/img]

  • 壁挂炉膨胀罐有什么作用

    壁挂炉膨胀罐用于系统中起缓冲压力波动及部分给水的作用,在热力系统中主要是用来吸收工作介质因温度变化增加的那部分体积;在供水系统中主要用来吸收系统因阀门、水泵等开和关所引起的水锤冲击,以及夜间少量补水使供水系统主泵休眠从而减少用电,延长水泵使用寿命。壁挂炉膨胀罐作用:壁挂炉膨胀罐被广泛应用于中央空调、锅炉、热水器、变频、恒压供水设备中,其缓冲系统压力波动,消除水锤起到稳压卸荷的作用,在系统内水压轻微变化时,壁挂炉膨胀罐气囊的自动膨胀收缩会对水压的变化有一定缓冲作用,能保证系统的水压稳定,水泵不会因压力的改变而频繁的开启。壁挂炉膨胀罐工作原理:当壁挂炉膨胀罐用于系统中时,由于系统压力比预充气体的压力,所以会有一部分工作介质进入气囊内(对隔膜式来讲是进入罐体内),直到达到新的平衡,当系统压力再度升高,系统压力再次大于预充气体的压力,又会有一部分介质进入囊内,压缩囊和罐体间的气体,气体被压缩压力升高,当升高到跟系统压力一致时,介质停止进入,反之,当系统压力下降,系统内介质压力低于囊和罐体间的气体压力,气囊内的水会被气体挤出补充到系统内,使系统压力升高,直到系统工作介质压力跟囊和罐体间的气体压力相等,囊内的水不再外系统补给,维持动态的平衡。南京捷登专业销售壁挂炉膨胀罐,意大利原装进口Aquafill壁挂炉膨胀罐以及国内组装wozi壁挂炉膨胀罐。两大品牌,从质到价,给您超高性价比的性价比。

  • 求助微型电子气体流量控制器

    我的朋友要做试验,需要求助微型电子气体流量控制器,不知道那位朋友能够提供帮助。(类似进口[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]用气体流量控制器)谢谢大家

  • 【求助】气体流量控制器在哪里?

    这几天elementar varioEL III 软件面板上显示气体流量只有12ml/min,但机器面板上显示氦气流量很大,进行了检漏,但可以通过测试,工程师说是气体流量控制器坏了,价格极贵。 我想请教一下,气体流量控制器在机器的哪个部位?就是在机器前面板氦气和氧气流量计的后面的一个盒子里吗?

  • 双通道PID控制器对真空压力和温度的同时控制:在热离子发电转换器中的应用

    双通道PID控制器对真空压力和温度的同时控制:在热离子发电转换器中的应用

    [size=14px][color=#ff0000]摘要:本文针对真空型热离子能量转换器(发电装置)中真空压力和温度的关联性复杂控制,提出一个简便的控制方式和控制系统的解决方案,控制系统仅采用一个双通道高精度PID调节器。方案的核心技术思路是将一个可调参量转换为两个,即将阴极加热电源替换为两个串联形式的小功率电源,分别调节这两个电源的功率即可实现真空室气压和阴极温度的同时控制,由此可大幅减小设备造价且无需使用任何软件。[/color][/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000][b]一、问题的提出[/b][/color][/size][size=14px] 热离子能量转换器(TEC)是一种将热能直接转化为电能的静态装置,是一种基于热离子发射的转换方法。TEC可分为真空、带有正离子的铯离子和由辅助放电产生的惰性气体(如氩气)等形式。[/size][size=14px] 真空型TEC的简化示意图如图1所示,电极被放置在高真空环境中。阴极与热源热连接,阳极与热沉连接。电极颜色反映了它们温度之间的关系。[/size][align=center][size=14px][color=#ff0000][img=01.真空热离子能量转换器结构示意图,500,373]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230931128921_2824_3221506_3.jpg!w690x515.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#ff0000]图1 真空热离子能量转换器结构示意图[/color][/align][size=14px] 一般情况下,最常见的商用温度控制器都能控制TEC阴极的温度,但如果使用了钡钨分压器阴极,因其氧化性问题则对加热过程有特殊的要求并不可忽视。在使用前,阴极必须烘烤并激活。为了保护阴极免受来自周围结构或焙烤过程中产品的氧化和污染,在真空室中必须保持必要的超高真空水平。此外,为了防止阴极可能被水分永久性污染而造成发射能力降低和钨阴极表面损伤,阴极必须允许浸泡在200~400℃足够长的时间,以允许完全的水蒸气出气。[/size][size=14px] 为了防止上述情况出现,最佳控制指标就是真空压力,即真空室中的压力必须始终小于1.33E-04Pa。因此,在TEC运行过程中,当给阴极加热器通电时,由于出气,温度会升高,真空室压力会增加。如果压力超过1.33E-04Pa,则需要关闭加热器电源,直到压力降到这个水平以下。真空室排气和焙烧后的活化是通过将钨基体中的氧化钡转化为阴极表面的游离钡来实现的。活化速率是真空室清洁度、阴极污染、时间和温度的函数。一般来说,阴极在工作温度或略高于工作温度时被激活。阴极温度不应超过1473K。[/size][size=14px][/size][size=14px] 由此可见,在TEC运行过程中,一个重要前提条件是供电加热和温度控制应确保整个过程的真空压力水平不应超过设定的超高真空度,即在运行过程中,除了温度控制之外,还需控制真空室内的真空度始终不超过额定值,但只有加热功率一个可调装置。[/size][size=14px] 从上述真空型TEC的运行要求可以看出,阴极的加热过程是通过调节一个可控变量(加热功率)来实现两个参数(气压和温度)的同时控制。[/size][size=14px] 为了实现这个特殊的控制过程,文献1采用一种复杂的控制机构,此控制机构基于类似的串级控制方法,使用了一个典型的PID控制器结合一个PXI单元,并编制了专用程序进行整体控制,其控制框图如图2所示。[/size][align=center][size=14px][color=#ff0000][img=02.文献1中使用的控制框图,600,356]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230931510435_9811_3221506_3.jpg!w690x410.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#ff0000]图2 文献1中使用的控制框图[/color][/align][size=14px] 从图2所示的控制框图可以看出,整个控制装置结构较复杂,还需编制控制软件,整体造价也高。为了实现更简便的控制,本文提出一个更简便的控制方式和控制系统的解决方案,控制系统中仅采用一个双通道高精度PID调节器。方案的核心技术思路是将一个调节参量转换为两个,即将阴极加热电源替换为两个串联形式的小功率电源,分别调节这两个调节小功率电源来实现真空室气压和阴极温度的控制。[/size][size=18px][color=#ff0000][b]二、解决方案[/b][/color][/size][size=14px] 由于在真空型TEC运行过程中只能调节阴极加热温度而同时不能使真空室内的气压超过设定值,这使得整个工作过程只有阴极加热功率一个可调节变量。为了实现阴极温度和腔室真空度的同时控制,解决方案采用了两个串联电源的新型结构,如图3所示。[/size][align=center][size=14px][color=#ff0000][img=03.新型真空压力和温度同时控制系统结构示意图,600,276]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230932179007_2110_3221506_3.jpg!w690x318.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#ff0000]图3 新型真空压力和温度同时控制系统结构示意图[/color][/align][size=14px] 如图3所示,解决方案中采用了一个高精度的两通道PID控制器,此控制器具有两个独立的PID控制通道。第一通道与真空计和电源1组成第一闭环控制回路,第二通道与安装在阴极上的热电偶温度传感器(TC)和电源2组成第二闭环控制回路。这里的第一控制回路提供阴极的基础温度,其主要用于较低温度段的烘烤,并同时起到控制腔室真空度的作用。第二控制回路是在阴极温度达到一定温度后(如600℃)才开始起作用,其主要作用是将阴极温度最终恒定控制在设定的高温温度上。整个过程的真空压力和温度的控制效果基本与文献1所述的图4和图5所示相同。[/size][align=center][color=#ff0000][size=14px][img=04.全温域的真空压力和阴极温度的变化,690,449]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230932441901_8566_3221506_3.jpg!w690x449.jpg[/img][/size][/color][/align][color=#ff0000][/color][align=center]图4 全温域的真空压力和阴极温度的变化[/align][align=center][size=14px][/size][/align][align=center][size=14px][img=05.加热初期的真空压力和阴极温度的变化,690,449]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230933014212_1816_3221506_3.jpg!w690x449.jpg[/img][/size][/align][size=14px][/size][align=center][color=#ff0000]图5 加热初期的真空压力和阴极温度的变化[/color][/align][size=14px] 在实际运行过程中的控制步骤如下:[/size][size=14px] (1)首先抽取腔室真空,使其达到2E-06Pa的超高真空水平。然后运行第一控制回路,真空计采集腔室压力,然后自动调节电源1的加热功率使得阴极温度从室温逐渐升高,其中的压力控制设定值为5E-06Pa。在此控制期间腔室压力始终不会超过设定值,但温度则会逐渐快速升高,且电源1始终有一定的输出功率。[/size][size=14px] (2)当第一控制回路控制中阴极温度达到初级设定温度(如600℃)后,第二控制回路自动开始运行,这使得电源2开始输出加热功率,此时电源1和电源2同时输出,使得阴极温度进一步升高,最终恒定在第二控制回路的温度设定值上。[/size][size=14px] (3)在第二回路工作期间,阴极温度进一步上升,势必会造成腔室气压升高而超出设定值5E-06Pa水平,此时第一回路会自动减小电源1的输出功率,使得阴极温度变化速度放缓。在第二回路运行过程中,第二回路相当于一个正向调节作用,第一回路实际上则是一个反向调节作用,这样既能保证腔室气压不会超出设定值,又能保证阴极温度逐步升高而达到设定的高温温度。[/size][size=14px] 总之,通过上述解决方案及其自动控制,可很便捷的实现热离子能量转换器中真空压力和温度的同时控制,压力水平和阴极恒定温度可根据阴极材料要求任意设定。而且整个控制装置得到了大幅度的简化,且无需进行采用任何软件。[/size][size=18px][b][color=#ff0000][/color][color=#ff0000]三、参考文献[/color][/b][/size][size=14px][1] Kania B, Ku? D, Warda P, et al. Intelligent Temperature and Vacuum Pressure Control System for a Thermionic Energy Converter[M]//Advanced, Contemporary Control. Springer, Cham, 2020: 253-263.[/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size][size=14px][/size][size=14px][/size]

  • 关于气体流量控制器的选型问题

    现需要气体流量控制器,实现以下简单功能:流量的设定值动态可控。比如在非稳态测量中,进口流量第一个10s设为10L/min, 根据其他实验数据的同步分析,发现在第二个10s流量要控制在15L/min或其他值。这个功能可以实现吗?

  • TEC温控器:半导体制冷片新型超高精度温度程序PID控制器

    TEC温控器:半导体制冷片新型超高精度温度程序PID控制器

    [align=center][size=18px][color=#990000]TEC温控器:半导体制冷片新型超高精度温度程序PID控制器[/color][/size][/align][align=center][color=#666666]TEC Thermostat: A New Type of Ultra-high Precision Temperature Program PID Controller for Semiconductor Refrigerator[/color][/align][color=#990000]摘要:针对目前国内外市场上TEC温控器控温精度差、无法进行程序控温、电流换向模块体积大以及造价高的现状,本文介绍了低成本的超高精度PID控制器。24位模数采集保证了数据采集的超高精度,正反双向控制功能及其小体积大功率电流换向模块可用于半导体制冷、液体加热制冷循环器和真空压力的正反向控制,程序控制功能可实现按照设定曲线进行准确控制,可进行PID参数自整定并可存储多组PID参数。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000]一、TEC温控器国内外现状[/color][/size]半导体致冷片(Thermo Electric Cooler)是利用半导体材料的珀尔帖效应制成的一种片状器件,可通过改变电流方向来实现加热和制冷,在室温附近的温度范围内可作为冷源和热源使用,是目前温度控制精度最高的一种温控器件。在采用半导体制冷片进行控温时,需配合温度传感器、控制器和驱动电源一起使用,它们的选择决定了控温效果和成本。温度传感器可根据精度要求选择热电偶和热电阻传感器,控制器也是如此,但在高精度控制和电源换向模块方面,国内外TEC温控器普遍存在以下问题:(1)目前市场上二千元人民币以下的国内外温控器,普遍特征是数据采集精度不高,大多是12位模数转换,无法充分发挥TEC的加热制冷优势,无法满足高精度温度控制要求。(2)绝大多数低价的TEC温控器基本都没有程序控制功能,只能用于定点控制,无法进行程序升温。(3)极个别厂家具有高精度24位采集精度的TEC温控器,但没有相应的配套软件,用户只能手动面板操作,复杂操作要求的计算机通讯需要用户自己编程,使用门槛较高,而且价格普遍很高。(4)目前国内外在TEC控温上的另一个严重问题是电源驱动模块。在具有加热制冷功能的高档温控器中,TEC控温是配套使用了4个固态继电器进行电流换向,如果再考虑用于固态继电器的散热组件,这使得仅一个电流换向模块往往就会占用较大体积,且同时增加成本。[size=18px][color=#990000]二、国产24位高精度可编程TEC温控器[/color][/size]为充分发挥TEC制冷片的强大功能,并解决上述TEC温控器中存在的问题,控制器的数据采集至少需要16位以上的模数转换器,而且具有编程功能。目前我们已经开发出VPC-2021系列24位高精度可编程通用性PID控制器,如图1所示。此系列PID控制器功能十分强大,配套小体积大功率的电流换向器,可以完全可以满足TEC制冷片的各种应用场合,且性价比非常高。[align=center][color=#990000][img=TEC温控器,650,338]https://ng1.17img.cn/bbsfiles/images/2021/12/202112232210356263_6759_3384_3.png!w650x338.jpg[/img][/color][/align][align=center][color=#990000]图1 国产VPC-2021系列可编程PID温度控制器[/color][/align]VPC-2021系列控制器主要性能指标如下:(1)精度:24位A/D,16位D/A。(2)多通道:独立1通道或2通道。可实现双传感器同时测量及控制。(3)多种输出参数:47种(热电偶、热电阻、直流电压)输入信号,可实现不同参量的同时测试、显示和控制。(4)多功能:正向、反向、正反双向控制、加热/制冷控制。(5)PID程序控制:改进型PID算法,支持PV微分和微分先行控制。可存储20组分组PID,支持20条程序曲线(每条50段)。(6)通讯:两线制RS485,标准MODBUSRTU 通讯协议。(7)软件:通过软件计算机可实现对控制器的操作和数据采集存储。可选各种功率大小的集成式电流换向模块,只需一个模块就可以完成控制电流的自动换向,减小体积和降低成本。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代

    超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代

    [align=center][color=#990000][b]超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代[/b][/color][/align][align=center][color=#990000]Unwind Tension Controller for Dancer Input with Tension Indication—— Domestic Substitution of Montalvo Tension Controller[/color][/align][align=center][img=超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代,690,542]https://ng1.17img.cn/bbsfiles/images/2022/10/202210092010572560_1350_3221506_3.jpg!w690x542.jpg[/img][/align][color=#990000]摘要:针对目前市场上张力控制器普遍存在的测控精度较差、功能单一、适用传感器类型少和PID参数无法自整定等问题,本文分析了国外浮辊和张力双通道控制器的技术特点。对标国外高端张力控制器产品,本文重点介绍了国产替代产品的性能,国产张力控制器同样具有浮辊和张力双回路控制功能,但由于每个通道都采用了24位AD、16位DA和双精度浮点运算,可以实现超高精度的张力控制,而所具有的PID自整定功能则使得操作更为快捷方便。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000][b]一、问题的提出[/b][/color][/size]张力控制器主要应用于冶金,造纸,薄膜,染整,织布,塑胶,线材等设备上,是一种实现恒张力或者锥度张力控制的自动控制仪表,其作用主要是实现辊间的同步,收卷和放卷的均匀控制。一套典型的张力控制系统主要由张力控制器,张力读出器,张力检测器,制动器和离合器构成。根据环路可分为开环,闭环或自由环张力控制系统;根据对不同卷材的监测方式又可分为超声波式,浮辊式,跟踪臂式等。典型的张力控制器主要由AD,DA转换器和高性能微处理器等组成,张力控制器与张力传感器和电气比例阀组成典型的张力控制系统。在具体张力控制过程中,张力控制器是根据张力传感器和A/D模式转换器测量到的张力与设定的目标张力相比较后,经微处理器PID运算自动调整D/A输出从而改变电气比例阀的输出压力来实现卷料的张力调节,可广泛用于各种需对张力进行精密测控的场合,具有使用灵活和广泛的适用性。目前市场上有各种张力控制器,但在高精度张力控制过程中,普遍存在以下不足:(1)测量精度较低:普遍采用12位AD模数转换器,个别国外产品用了16位AD模数转换器,对于一些高精度的张力传感器输出显然无法准确测量,测量精度无法满足高精度控制要求。(2)输出精度较差:普遍采用12位DA数模转换器,个别国外产品用了14位DA数模转换器,对于一些高精度的张力控制显然无法实现。(3)浮点运算精度较差:目前市场上商品化张力控制器的PID运算基本都是采用单浮点方式进行,运算精度较差,从而使得输出百分比的最小调节量也只能为0.1%,根本无法进行电气比例阀输出压力的精细调节,进而无法实现超高精度的张力控制。(4)单通道控制:绝大多数张力控制器尽管可以实现如收放卷的扭矩控制,过程张力中的速度控制以及浮辊张力控制,但只能选择其中的一种控制模式。而个别国外的张力控制器产品,如Montalvo的Z4UI双回路控制器则能实现放卷扭矩和浮辊位置的同时控制。(5)传感器输入信号类型少:在各种张力控制中会采用到多种不同的传感器,如超声波探头,浮辊,电位器和激光等,这些不同传感器所输出的信号类型和量程有多种形式,但目前绝大多数张力控制器的输入型号类型非常有限。(6)PID参数无法自整定:在有些张力控制过程中,需要准确无超调的PID控制,快速且自动的选择合适PID则显着尤为重要,但目前很多张力控制器并没有这项PID参数自整定功能。针对上述目前张力控制器中普遍存在的问题,特别是为了实现超高精度张力控制以及相关控制器的国产替代,本文将对国外高端张力控制器技术特点进行分析,并对标国外产品介绍研发的新型浮辊和张力双回路超高精度控制器产品。[b][size=18px][color=#990000]二、Montalvo公司 Z4UI 双回路张力控制器技术特点分析[/color][/size][size=18px][color=#990000][/color][/size][/b]蒙特福Montalvo公司是国外著名的张力控制相关产品生产厂商,其最具特点的控制器产品是Z4UI浮辊和张力双回路控制器,我们将对标此张力控制器进行分析。蒙特福Z4UI浮辊和张力双回路控制系统结构如图1所示,控制器内置了张力指示器,能够同时检测浮辊电位计信号和张力检测器的张力信号,从而提供高精度的张力控制。它集合了浮辊吸收缓冲张力波动的功能和张力检测器精确、稳定的检测优势,通过渐进式“Progressive“ PID 控制电路调节放卷制动器的转矩输出,保持浮辊臂的位置不变来实现张力控制。模拟式张力表显示卷材的张力大小,操作员可直接监视张力稳定性,并根据张力表显示的实际卷材张力,来调节浮辊臂上的载荷从而保持理想张力。[align=center][color=#990000][img=01.Z4UI浮辊和张力双回路控制.jpg,690,275]https://ng1.17img.cn/bbsfiles/images/2022/10/202210092013010509_6406_3221506_3.jpg!w690x275.jpg[/img][/color][/align][align=center][color=#990000]图1 Z4UI双回路控制器在浮辊和张力控制系统中应用的结构示意图[/color][/align]由此可以看出,蒙特福Z4UI控制器是个典型的双回路闭环控制器。其中,一个回路是通过检测浮辊位置信号(DPS-1位置传感器或浮辊电位器)来控制第一个电气比例阀(I/P转换器)压力输出,由此来调整气缸位置将气压转换成扭矩输出达到张力调节。另一个回路通过检测卷径信号(接近开关或超声波探头)来控制第二个电气比例阀(I/P转换器)压力输出,由此来调整放卷位置达到张力调节。由此可见,蒙特福Z4UI双回路控制器是通过同时对两个变量的检测和控制来实现高精度的放卷调节。蒙特福Z4UI控制器的另外一个特点是采用RS-232与上位机(PLC或PC)进行通讯,采用控制软件进行所有操作,减少了人工界面操作的复杂程度。[b][size=18px][color=#990000]三、国产双回路超高精度张力控制器[/color][/size][/b]从上述蒙特福Z4UI双回路张力控制器技术特点可以看出,双回路张力控制器的核心技术内容就是一个非常典型的双通道PID控制器,张力的控制则是采用外置传感器实现电气比例阀的串级形式的PID控制,因此,双回路张力控制器的技术特征就是双通道的电气比例阀串级PID控制。基于此分析,结合我们在真空压力方面进行电气比例阀超高精度串级PID控制的成功经验,我们可以将通用型的VPC-2021系列PID调节器(单通道和双通道)应用于张力控制中,由此可完全实现蒙特福Z4UI双回路张力控制器的替代。VPC-2021-2系列双通道PID调节器是标准形式的工业用控制器,具有96×96mm、96×48mm和48×96mm三种规格,但其最大优点是具有超高精度检测和控制能力,其中具有24位AD模数转换、16位DA数模转换和双精度浮点运算能力,具备0.01%的最小输出百分比。用于张力控制的双通道超高精度PID控制器如图2所示,电气接线如图3所示,主要技术指标如下:[align=center][color=#990000][img=VPC 2021-2超高精度PID控制器,600,266]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101508335313_3719_3221506_3.jpg!w690x307.jpg[/img][/color][/align][align=center][color=#990000]图2 VPC 2021-2系列双通道张力控制器[/color][/align](1)真彩色IPS TFT长寿命LED背光、全视角液晶显示。(2)独立双回路控制,每路控制输出刷新率50ms,双通道独立的输入和输出,双回路报警功能可以多功能应用,每通道都具备独立的PID控制功能,每个通道都可进行独立的手动和自动控制切换。(3)万能型信号检测能力,即每通道都具备47种输入信号形式,仅需通过设置极可完成信号类型和量程选择,由此可满足各种规格和形式的张力探测器的引入。除了能测量各种张力传感器、位置传感器给出的模拟电压、电流和电阻信号之外,还可以测量各种温度传感器和压力传感器等各种信号,传感器输出端直接接入控制器并在控制器上进行选择即可使用。(4)双通道独立控制输出,输出信号有线性电流、线性电压、继电器输出、固态继电器输出和可控硅输出五种形式,可用于直接驱动电气比例阀(或电子压力转换器)进行张力控制,也可以驱动各种阀门和加热器等执行机构进行真空度、压力和温度等参数的控制。(5)支持数字和模拟远程操作功能,支持标准MODBUS RTU 通讯协议。(6)采用自主改进型PID算法,支持对PV微分和无超调控制算法。5组PID存储和调用,10组输出限幅等实用功能。每个通道采用独立的PID参数,且可独立的进行PID参数自整定。(7)带传感器馈电供电功能(24V,50mA)。(8)支持一路过程变量变送功能,变送的过程变量可选PV测量值、SV设定值、控制输出值和偏差值,变送输出类型有4-20mA, 0-10mA, 0-20mA, 0-10V, 2-10V, 0-5V, 1-5V七种。(9)两组开关量光隔输入端,可以实现各种应用功能的灵活应用切换。(10)随机配备强大的控制软件,可通过软件进行控制参数设置、运行控制、过程曲线显示和存储,非常便于过程控制的调试。[align=center][img=,690,276]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101726466183_8818_3221506_3.png!w690x276.jpg[/img][/align][align=center][color=#990000]图3 VPC 2021-2系列双通道控制器电气连接图[/color][/align]从上述国产控制器技术指标可以看出,国产VPC 2021-2系列双通道控制器的性能和功能要远优于蒙特福Z4UI控制器,并具有强大的拓展能力,完全可以实现对蒙特福Z4UI控制器的替代。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][/align][align=center][/align][align=center][/align]

  • 为什么色谱柱流量是用柱头压控制,用差压式体积流量控制器不是同样也可以搞定吗?

    目前,我看到Alicat Scientific公司的体积流量控制器是一个差压式流量计+比例阀来实现流量控制,我们知道,对于色谱柱最终目的是得到我们要的流量,按我的理解,体积流量控制器应该是可以得到与EPC同样的效果的,请各位大虾指教!以下是Alicat Scientific公司的体积流量控制器介绍:ALICAT气体质量流量控制器和体积流量控制器采用一个比例调节阀与流量计相连,用户可以通过内置的PID控制软件来定位阀门位置以设定所需流量值。气体体积流量控制器仅用来设定和测量气体的体积流量,而气体质量流量控制器可以设定和测量气体的质量流量、体积流量和绝对压力,同时可以测量气体的温度。ALICAT气体质量流量控制器内置气体密度变化的补偿功能。标准结构的流量控制器比例调节阀在上游,但用户可选阀门在下游且无需付费,所有的标准产品具有动态显示屏。同时为了节省用户的时间,ALICAT工程师为用户提供了“配件和可选项”以及“ALICAT用户定制特殊功能”,请详见后面说明。

  • 高精度可编程真空压力控制器(压强控制器和温度控制器)

    高精度可编程真空压力控制器(压强控制器和温度控制器)

    [align=center][img=,599,441]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200929562418_9505_3384_3.png!w599x441.jpg[/img][/align][size=18px][color=#990000]一、简介[/color][/size] 真空压力控制器是指以气体管道或容器中的真空度(压力或压强)作为被控制量的反馈控制仪器,其整个控制回路是闭环的,控制回路由真空度传感器、真空压力控制器和电动调节阀组成。 依阳公司的VPC2021系列控制器是一种强大的多功能高度智能化的真空压力测量和过程控制仪器,采用了24位数据采集和人工智能PID控制技术,可与各种型号的真空压力传感器(真空计)、流量计、温度传感器、电动调节阀门和加热器等连接,可实现高精度真空压力(压强)、流量和温度等参量的定点和程序控制,是一种替代国外高端产品的高性能和高性价比控制器。[size=18px][color=#990000]二、主要技术指标[/color][/size] (1)测量精度:±0.05%FS(24位A/D)。 (2)输入信号:32种信号输入类型(电压、电流、热电偶、热电阻),可连接众多真空压力传感器。 (3)控制输出:4种控制输出类型(模拟信号、固态继电器、继电器、可控硅),可连接众多电动调节阀。 (4)控制算法:PID控制和自整定(可存储和调用20组PID参数)。 (5)控制方式:定点和程序控制,最大可支持9条控制曲线,每条可设定24段程序曲线。 (6)控制周期:50ms。 (7)通讯方式:RS 485和以太网通讯。 (8)供电电源:交流(86-260V)或直流24V。 (9)外形尺寸: 96×96×136.5mm (开孔尺寸92×92mm)。[size=18px][color=#990000]三、特点和优势[/color][/size] (1)高精度24位数据采集,使得此系列控制器具有高精度的控制能力。 (2)具有各种不同类型信号的输入功能,可覆盖多种测量传感器,既可连接真空计用来控制真空压力和压强,也可用来控制其它变量,如连接流量计用来控制流量、连接温度传感器用来进行温度控制等。 (3)可连接和控制几乎所有的电动调节阀和数字控制阀门,也可连接控制各种加热装置,结合传感器由此组成可靠的闭环控制系统。 (4)控制器体积小巧和使用灵活,即可独立做为面板型控制器使用,也可集成在测试系统整机中使用。 (5)采用了标准的MODBUS通讯协议,便于控制器与上位机通讯和进行二次开发。 (6)具有2路输出功能,可实现真空压力的两种控制模式,一种是可变气流量(上游控制)压强控制模式,另一种是可变通导(下游控制)流量调节模式。[align=center][color=#990000][img=,300,253]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932222782_1134_3384_3.png!w300x253.jpg[/img][/color][/align][align=center][color=#990000]上游控制压强模式[/color][/align][align=center][color=#990000][img=,300,252]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932370447_2503_3384_3.png!w300x252.jpg[/img][/color][/align][align=center][color=#990000]下游控制压强模式[/color][/align][align=center][color=#990000][img=,300,249]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932454481_7140_3384_3.png!w300x249.jpg[/img][/color][/align][align=center][color=#990000]上游和下游同时控制的双向模式[/color][/align][size=18px][color=#990000]四、外形和开孔尺寸[/color][/size][align=center][img=,690,317]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932536698_9309_3384_3.png!w690x317.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 旋转蒸发仪:真空、温度和旋转的集成式控制器及其耐腐蚀数控调节阀

    旋转蒸发仪:真空、温度和旋转的集成式控制器及其耐腐蚀数控调节阀

    [color=#990000]摘要:目前各实验室有众多各种渠道购置和自行搭建的旋转蒸发仪,在蒸发仪真空度控制方面,国内客户普遍要求能替代价格较贵的国外真空控制系统、提高真空控制的程序化和自动化水平、改进真空控制的精度和稳定性、解决控制阀门的耐腐蚀性问题,甚至要求采用一个控制器对温度、真空度和旋转同时进行程序控制。本文针对用户提出的改进要求,提出了相应的解决方案,并介绍专门用于蒸发仪温度、真空度和旋转电机控制的相关产品。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]一、用户要求[/color][/size]旋转蒸发仪(旋转蒸发器)是实验室一种常用设备,通过蒸发仪中的电子控制,使烧瓶中的溶剂在合适的旋转速度、温度和真空度下快速蒸发。一般旋转蒸发器的工作真空度范围为 1~760毫米汞柱(绝对真空度),具体应用中会根据不同混合物要求来设定和控制真空度。作为一种简单的实验室常用设备,旋转蒸发仪即可以实验室自行搭建,市场上也有多种规格可供选择订购。针对目前有些用户实验室在用的旋转蒸发仪,用户提出以下几方面的明确要求:(1)有些实验室配备了进口旋转蒸发仪,但还需单独配备价格较高的真空控制器,希望能用国内产品进行替换。(2)国产和自行搭建的旋转蒸发仪,希望配备多功能高精度的真空控制器,以实现试验过程计算机控制的程序化和自动化,希望能存储多组控制过程设定曲线便于直接调用,希望能计算机设定试验程序和显示整个控制过程的变化。(3)目前国内外旋转蒸发仪真空控制过程,普遍都采用阀门通断或真空泵停启方式,控制精度和稳定性较差,希望采用开度可连续可调的高速数字阀门。(4)目前国内外旋转蒸发仪真空控制装置中的控制阀门,普遍缺乏抗腐蚀性,希望采用可耐腐蚀气体和液体的真空调节阀门。(5)对于一些自行搭建的旋转蒸发仪,希望能将温度控制、真空控制和旋转控制集成在一起,减小仪器及其操作的复杂程度,提高集成化和自动化水平。本文将针对上述要求,提出相应的解决方案,介绍了专门用于蒸发器的集成式温度、真空度和旋转控制器以及步进电机驱动的耐腐蚀数控针阀,可满足不同用户旋转蒸发器的试验需求。[size=18px][color=#990000]二、国产24位高精度多功能控制器[/color][/size]为实现旋转蒸发仪的温度、真空度和旋转的测试和程序控制,目前我们已经开发出VPC-2021系列24位高精度可编程PID通用控制器,如图1所示。此系列PID控制器功能十分强大,且性价比非常高。[align=center][color=#990000][img=蒸发器真空控制,650,338]https://ng1.17img.cn/bbsfiles/images/2022/02/202202081749460848_7428_3384_3.png!w650x338.jpg[/img][/color][/align][align=center][color=#990000]图1 国产VPC-2021系列高精度PID程序控制器[/color][/align]VPC-2021系列控制器主要性能指标如下:(1)精度:24位A/D,16位D/A。(2)最高采样速度:50ms。(3)多种输入参数:47种(热电偶、热电阻、直流电压)输入信号,可连接各种温度和真空度传感器进行测量、显示和控制。(4)多种输出形式:16BIT模拟信号 、2A (250V AC)继电器、22V/20mA固态继电器、3A/250VAC可控硅。(5)多通道:独立1通道或2通道输出。2通道可实现温度和真空度的同时测控,报警输出通道可用来控制旋转电机启停。(6)多功能:正向、反向、正反双向控制、加热/制冷控制。(7)PID程序控制:改进型PID算法,支持PV微分和微分先行控制。可存储20组分组PID,支持20条程序曲线(每条50段)。(8)通讯:两线制RS485,标准MODBUSRTU 通讯协议。(9)显示方式:数码馆和IPS TFT真彩液晶。(10)软件:通过软件计算机可实现对控制器的操作和数据采集存储。(11)外形尺寸:96×96×87mm(开孔尺寸92×92mm)。[size=18px][color=#990000]三、步进电机驱动耐腐蚀高速数控针阀[/color][/size]为实现真空度控制过程中的高精度调节,我们在针阀基础上采用数控步进电机开发了一系列不同流量的电子针阀,如图2所示。此系列数控针阀的磁滞远小于电磁阀,并具有1秒以内的高速响应,特别是采用了氟橡胶(FKM)密封技术,使阀门具有超强的耐腐蚀性,详细技术指标如图3所示。[align=center][color=#990000][/color][/align][align=center][color=#990000][img=蒸发器真空控制,450,385]https://ng1.17img.cn/bbsfiles/images/2022/02/202202081750301727_9546_3384_3.png!w599x513.jpg[/img][/color][/align][align=center][color=#990000]图2 国产NCNV系列数控针阀[/color][/align][align=center][color=#990000][/color][/align][align=center][img=蒸发器真空控制,690,452]https://ng1.17img.cn/bbsfiles/images/2022/02/202202081750469538_6188_3384_3.png!w690x452.jpg[/img][/align][align=center][color=#990000]图3 国产NCNV系列数控针阀技术指标[/color][/align]NCNV系列数控针阀配备了一个步进电机驱动电路模块,给数控针阀提供了所需电源和控制信号,並以将直流信号转换为双极步进电机的步进控制,同时也可提供 RS485 串口通讯的直接控制,其规格尺寸如图4所示。[align=center][color=#990000][img=蒸发器真空控制,690,219]https://ng1.17img.cn/bbsfiles/images/2022/02/202202081752076651_3769_3384_3.png!w690x219.jpg[/img][/color][/align][align=center][color=#990000]图4 NCNV系列数控针阀驱动模块及其尺寸[/color][/align]旋转蒸发仪在使用数控针阀时,可采用开环控制方式将针阀安装来真空泵前端,通过调节抽气流量来实现真空度的控制,但这种开环控制方式的稳定性差,难达到较高的纯度需求。为解决这一问题,可采用闭环控制方式,即在蒸发器上增加一路进气控制阀,通过调节进气流量和排气流量可实现真空度的精密控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 真空热重分析仪多种气体低气压高精度控制解决方案

    真空热重分析仪多种气体低气压高精度控制解决方案

    [align=center][size=16px] [img=真空热重分析仪多种气体低气压高精度控制解决方案,550,383]https://ng1.17img.cn/bbsfiles/images/2023/11/202311170921522574_4489_3221506_3.jpg!w690x481.jpg[/img][/size][/align][size=16px][color=#339999][b]摘要:针对目前国内外各种真空热重分析仪普遍不具备低压压力精密控制能力,无法进行不同真空气氛环境下材料热重分析的问题,并根据用户提出的热重分析仪真空度精密控制技术改造要求,本文提出了技术改造解决方案。解决方案基于动态平衡法采用了上游和下游控制方式,通过配备的多路进气混合装置、高精度电容真空计、电控针阀和双通道PID真空压力控制器,可实现热重分析仪在10Pa~100kPa范围内多种气体气氛下的真空度精密控制。[/b][/color][/size][align=center][size=16px][color=#339999][b]==========================[/b][/color][/size][/align][size=18px][color=#339999][b]1. 项目背景[/b][/color][/size][size=16px] 热重分析(Thermogravimetric Analysis,TG或TGA)是指在程序控制温度下测量待测样品的质量与温度变化关系的一种热分析技术,用来研究材料的热稳定性和组分。而真空热重分析(Vac-TGA)则是在普通热重分析中增加了真空变量,允许在低至1Pa的绝对压力条件下对样品进行分析,适用于在使用中需要减压条件的客户应用。真空热重分析技术用于解决在工作中遇到低气压的专业化检测分析,Vac-TGA还可以实现更准确地观察薄膜、复合材料、环氧树脂等材料的挥发物、降解和排气等情况。[/size][size=16px] 真空热重分析仪一般都配备真空密闭的炉体和精确控制保护气和吹扫气流量的气体质量流量控制器(MFC),为TG与FTIR或[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]等联用提供了便利。密闭系统的真空度最高可达1Pa(绝对压力),一般都包括两路吹扫气和一路保护气,由此可进行各种气氛环境下的热重分析,如惰性、氧化性、还原性、静态和动态气氛环境。[/size][size=16px] 目前常见的真空热重分析仪只能实现抽真空功能,普遍无法对密闭炉体内的气体压力进行准确控制,只有最先进的磁悬浮热重分析仪具有压力控制功能,但也仅适用于大于一个大气压的高压控制,其结构如图1所示,还是无法对低于一个大气压的低压环境进行调节控制,无法提供低压环境的模拟。[/size][align=center][size=16px][color=#339999][b][img=国外磁悬浮热重分析仪气体流量和压力控制系统结构示意图,450,464]https://ng1.17img.cn/bbsfiles/images/2023/11/202311170923427525_9766_3221506_3.jpg!w690x712.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 国外磁悬浮热重分析仪气体流量和压力控制系统结构示意图[/b][/color][/size][/align][size=16px] 由于现有真空热重分析仪无法提供低压环境的真空控制,客户希望能对现有V-TGA进行技术改造,增加真空度控制功能,以对高原地区低氧、低气压条件下的煤燃烧过程开展研究。[/size][size=16px] 为了彻底真空热重分析仪的真空压力精密控制问题,基于真空压力控制的动态平衡法,即通过自动调节热重分析仪的进气和排气流量,使内部气压快速达到动态平衡状态而恒定在设定真空度上,为热重分析仪提供可任意设定低气压值的精密控制,本文将提出以下技术改造实施方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 首先,根据客户要求以及今后真空热重分析仪的低压应用,本解决方案拟达到的指标如下:[/size][size=16px] (1)真空度控制范围:10Pa~100kPa(绝对压力)。[/size][size=16px] (2)真空度控制精度:±1%(读数)。[/size][size=16px] (3)气氛:真空、单一气体和多种气体混合。[/size][size=16px] 为达到上述技术指标,解决方案设计的热重分析仪真空压力控制系统结构如图2所示。[/size][align=center][size=16px][color=#339999][b][img=真空热重分析仪低气压精密控制系统结构示意图,690,329]https://ng1.17img.cn/bbsfiles/images/2023/11/202311170924200752_5900_3221506_3.jpg!w690x329.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 真空热重分析仪低气压精密控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图2所示,为了实现10Pa~100kPa全量程内的真空度控制,控制系统的具体内容如下:[/size][size=16px] (1)配备了两只电容真空计,量程分别是10Torr和1000Torr,精度都为读数的±0.2%。[/size][size=16px] (2)采用了动态平衡法进行控制,其中在真空度10Pa~1kPa范围内采用上游(进气端)控制模式,而在1kPa~100kPa真空度范围内采用下游(排气端)控制模式。[/size][size=16px] (3)上游控制模式:上游控制模式是固定排气流量(真空泵全开,电动针阀2固定某一开度),通过自动调节电动针阀1开度来改变进气流量,使进气流量与排气流量达到动态平衡而实现某一真空度设定值的恒定控制。实施上游控制模式的闭环控制回路包括10Torr真空计1、电动针阀1和真空压力控制器的第一通道,如图2中的蓝色虚线所示。[/size][size=16px] (4)下游控制模式:下游控制模式是固定进气流量(电动针阀1固定某一开度),通过自动调节电动针阀2开度来改变排气流量,使进气流量与排气流量达到动态平衡而实现某一真空度设定值的恒定控制。实施下游控制模式的闭环控制回路包括1000Torr真空计2、电动针阀2和真空压力控制器的第二通道,如图2中的红色虚线所示。[/size][size=16px] (5)双通道真空压力控制器:所配备的VPC2021-2真空压力控制器具有两路独立的PID控制通道,与相应的真空计和电动针阀配合可组成上游和下游控制回路。在进行上游自动控制过程中,上游控制回路进行自动PID控制,而下游控制回路设置为手动控制并设定固定输出值以使得电控针阀2的开度固定。在进行下游自动控制过程中,下游控制回路进行自动PID控制,而上游控制回路设置为手动控制并设定固定输出值以使得电控针阀1的开度固定。[/size][size=16px] (6)电动针阀:所配备的NCNV系列电动针阀是一种步进电机驱动的高速针型阀,可在一秒时间内完成从关到开的高速线性变化,具有很好的线性度和重复性精度,具有极低的磁滞,可采用模拟信号(0-10V、4-20mA)和RS485进行控制,可对小流量气体流量进行精密调节。[/size][size=16px] (7)进气装置:图2所示的控制系统进气装置可实现多种气体的精密配比混合,每种气体的流量通过气体质量流量控制器进行调节和控制,多路气体在混气罐内进行混合,混合后的气体作为进入真空热重分析仪的进气。[/size][size=16px] (8)控制精度:由于整个控制系统采用了高精度的真空计、电动针阀和PID控制器,可实现全量程的真空度精密控制,考核试验结果证明控制可轻松达到±1%读数的高精度。[/size][size=16px] (9)控制软件:双通道真空压力控制器配备有计算机控制软件,通过控制器上的RS485通讯接口,计算机可远程操作真空压力控制器实现控制运行、参数设置和过程参数的采集、存储和曲线显示。[/size][b][size=18px][color=#339999]3. 总结[/color][/size][/b][size=16px] 本解决方案彻底解决了真空热重分析仪中存在的真空度精密控制问题,在满足用户所提的真空热重分析仪技术改造要求之外,本解决方案还具有以下优势和特点:[/size][size=16px] (1)本解决方案具有很强的实用性,并经过了试验考核和大量应用,按照解决方案可很快完成真空热重分析仪高精度真空压力控制系统的搭建和技术改造,无需对热重分析仪进行改动。[/size][size=16px] (2)本解决方案具有很强的适用性,通过改变其中的相关部件参数指标就可适用于不同范围和不同规格型号真空热重分析仪的真空压力控制,可满足各种真空热重分析仪的多种低气压控制需求。[/size][size=16px] (3)本解决方案可以通过增减高压气源来实现不同气体气氛环境的低压控制,也可进行多种气体混合后的低压控制,具有很大的灵活性。[/size][size=16px] (4)本解决方案还为后续的热重分析仪与其他热分析联用留有接口,如可以通过在排气端增加微小流量可变泄漏阀实现与质谱仪的联用。[/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][b][color=#339999]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 一个带有较低额定输入电压控制器的150V非同步降压解决方案

    在如今的许多应用中,要求的额定输入电压超过许多现有DC/DC控制器的VIN最大额定值。对此,传统的解决办法包括使用昂贵的前端保护或实现低端栅极驱动器件。这意味着采用隔离拓扑,如反激式转换器。隔离拓扑通常需要自定义磁性,且与非隔离方法相比,设计复杂性和成本也有所增加。存在着另一种解决方案,可以通过使用VIN max(最大输入电压)小于系统输入电压的简易降压控制器来解决问题。这是如何实现的呢?降压控制器通常来源于参考电位(0V)的偏置电源(图1a)。偏置电源来自输入电压;因此,器件需要承受全部的VIN电位。然而,因为开通P通道金属氧化物半导体场效应晶体管(MOSFET)所需的栅极驱动电压在VGS低于VIN,P通道降压控制器具有参考VIN(图1b)的栅极驱动电源。关闭P通道MOSFET则仅需简单地将栅极电压变为VIN(0V VGS)(图2)。[align=center][img]https://www.yishangm.com/upload/image/20180427/20180427105529_59985.png[/img][/align][align=center]图1:N通道(a)的VCC偏置生成;和P通道控制器(b)[/align][align=center][img]https://www.yishangm.com/upload/image/20180427/20180427105553_80655.png[/img][/align][align=center]图2:P通道控制器的栅极驱动[/align]非同步P通道控制器导出其偏置电源以驱动P通道栅极,可带来巨大的效益,并且可能实现提供悬浮在0V电位以上的虚拟接地。对于N通道高侧MOSFET,电压来自接地的参考电源。这是使用升压电容器和二极管泵送的电荷,以提供高于VIN源极电位的栅极电压。使用P通道高侧MOSFET可以显著简化该问题。要打开P通道MOSFET,栅极电位需要低于VIN的源极电位。因此,电源仅参考VIN,而非上面提到的VIN和接地。[b]悬浮接地[/b]如何为控制器创建悬浮接地?这很简单,通过使用射极跟随器即可实现。图3所示为这种方案的基本实践。PNP发射极的电位为Vbe(~0.7V),低于齐纳二极管电压电位(Vz)。实质上,您可以将控制器浮动到VIN,并调节控制器的参考值,以限制VIN与器件接地之间的电压。[align=center][img]https://www.yishangm.com/upload/image/20180427/20180427105709_72732.png[/img][/align][align=center]图3:使用简易射极跟踪器方案创建虚拟接地[/align][b]输出电压转换[/b]这里有一项挑战需要克服。由于控制器位于虚拟接地(Vz-Vbe),并产生参考接地(0V)电位的降压输出电压,因此如何才能将输出电压信号转换为位于虚拟接地上方的反馈电压(通常介于0.8V和1.25V之间)?图4说明了具体的挑战。[align=center][img]https://www.yishangm.com/upload/image/20180427/20180427105725_81936.png[/img][/align][align=center]图4:展示VOUT(参考0V接地)与控制器的反馈电压(参考虚拟接地)之间电压电位差的示意图[/align]要关闭环路,您可以使用一对配对晶体管以实践图5所示的电路。一匹配对将反馈信号发送至VIN;另一匹配对产生从VIN到虚拟接地之上电位的电流。[align=center][img]https://www.yishangm.com/upload/image/20180427/20180427105739_91524.png[/img][/align][align=center]图5:非同步控制器和使用配对晶体管的馈电实践的高级原理图[/align][b]输出电压调节[/b]当瞬态电压显著高于LM5085的绝对最大值时,适合应用这一想法。LM5085是一个恒定导通时间(COT)控制器;因此,其导通时间(Ton)与VIN成反比。然而,当将VIN钳位到LM5085时,Ton将不再随着VIN(至功率级)的增加而调整,因为器件将具有由齐纳二极管设置的固定电压,而VIN(至功率级)将不断增大。这将导致频率下降,因为功率级输入电压的增加值超过LM5085的钳位电压;因此调节电压可能会稍微开始增加。因此,为确保以Type 1 纹波注入标准规定纹波注入电压的大小。最终,确保纹波被制定在可接受的范围内,以维持稳定性及最小化当纹波增加时的输出误差。[b]示例原理图[/b]图6所示为绝对最大VIN额定值为150V的48V电源的示意图。示例可以在3A条件下提供12VOUT。[align=center][img]https://www.yishangm.com/upload/image/20180427/20180427105754_43661.png[/img][/align][align=center]图6:使用LM5085在3A设计时为24V至150VIN(最大)/ 12VOUT[/align]图7所示为从原型电路板获得的效率图,图中两大参数为效率(%)和负载电流(A)。[align=center][img]https://www.yishangm.com/upload/image/20180427/20180427105807_58183.png[/img][/align][align=center]图7:不同输入电压下效率(%)与负载电流(A)的关系[/align]图8所示为150VIN时的开关节点电压和电感纹波电流。[align=center][img]https://www.yishangm.com/upload/image/20180427/20180427105818_20270.png[/img][/align][align=center]图8:通道1开关节点电压,通道4电感纹波电流[/align][b]结论[/b]在系统输入电压高于器件最大输入电压额定值的应用中使用P通道非同步降压控制器。该应用的优点在于使用成本较低的控制器,且最大程度地减少了组件数量。

  • 具有分程控制功能的超高精度PID控制器及其应用

    具有分程控制功能的超高精度PID控制器及其应用

    [size=16px][color=#339999]摘要:分程控制作为一种典型的复杂控制方法之一,常用于聚合反应工艺、冷热循环浴、TEC半导体温度控制、动态平衡法的真空和压力控制等领域。为快速和便捷的使用分程控制,避免采用PLC时存在的控制精度差和使用门槛高等问题,本文介绍了具有分程控制功能的超高精度VPC-2021系列PID控制器,以及使用分程控制时的参数设置、接线和具体应用。[/color][/size][align=center][size=16px][img=超高精度PID控制器的特殊功能(4)——分程控制功能及其应用,650,440]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191326452103_3866_3221506_3.jpg!w690x468.jpg[/img][/size][/align][b][size=18px][color=#339999]1. 分程控制简介[/color][/size][/b][size=16px] 分程控制是采用一个输出变量来控制几个不同操作变量之间协调运行的一种复杂控制方式,如单个控制器用于控制两个执行机构(例如两个阀门、加热和制冷器等),控制这两个操作变量将一个受控变量保持在设定点上。分程控制主要包括以下三种不同方式:[/size][size=16px] (1)分程控制(Split Range Control)[/size][size=16px] (2)顺序控制(Sequence Control)[/size][size=16px] (3)正反向动作控制(Opposite Acting Control)[/size][size=16px] 一个典型的分程控制且应用广泛的是密闭容器的真空压力控制,控制回路上有两个控制阀,一个阀负责进气加压,另一个阀负责排气。图1(a)曲线图显示了阀门开度与真空压力的关系。[/size][align=center][size=16px][color=#339999][b][img=01.分程控制的三种形式,690,249]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191329331841_5111_3221506_3.jpg!w690x249.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 分程控制三种形式的操作示意图[/b][/color][/size][/align][size=16px] 如果需要对阀门进行顺序控制,其工作方式如图1(b)所示。在这种顺序阀操作中,当PID控制器输出为0~50%时,阀门A将从0~100%打开。当PID控制器输出达到50%时,阀门A将100%打开,然后阀门B将在PID输出达到50%后开始打开。因此,对于PID控制器输出50%至100%,阀门B将从0%至100%打开。[/size][size=16px] 在正反向动作控制中,对于0~100%的PID控制器输出,阀A将从0~100%开始打开,同时对于相同的PID控制器输出,阀B将从100%到0%关闭。[/size][size=16px] 在上述分程控制的具体实施过程中,普遍需要采用具有PID控制功能的相应装置。目前这种控制装置大多采用PLC形式才能实现,存在使用门槛高和控制精度差等问题。为此本文将介绍一种具有分程控制功能的超高精度PID控制器,以及分程控制时的参数设置、接线和具体应用。[/size][size=18px][color=#339999][b]2. 具有分程控制功能的超高精度PID控制器[/b][/color][/size][size=16px] VPC-2021系列超高精度PID控制器的内核是一款双通道控制器,其中VPC2021-1系列是具有分程控制功能的PID控制器,而VPC2021-2系列则是独立双通道PID控制器。本文将重点介绍具有分程控制功能的VPC2021-1系列PID控制器,此控制器如图2所示。[/size][align=center][size=16px][color=#339999][b][img=02.VPC2021-1控制器及其电气接线图,690,199]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191329550947_4629_3221506_3.jpg!w690x199.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 VPC2021-1控制器及其电气接线图[/b][/color][/size][/align][size=16px] VPC-2021系列PID控制器的主要技术特征如下:[/size][size=16px] (1)尽管VPC-2021系列PID控制器的内核是双通道控制器,具有两路传感器输入和两路控制信号输出,但为了实现分程控制功能,控制器仅配置了一套PID控制模块,所以在实际应用中还是一款单通道PID控制器。[/size][size=16px] (2)具有两路控制信号输出(主控输出1和主控输出2),两路输出可以分别控制相应的阀门、加热和制冷器,适合真空压力和温度的分程控制功能实现。[/size][size=16px] (3)具有一路变送输出通道,可变送输出测量值PV、设定值SV、输出值OP和偏差值DV四个控制参数中的任选一种,这也有助于分程控制功能的实现和拓展。[/size][size=16px] (4)具有两路传感器信号输入通道,可连接相同测量参数(如真空压力或温度)但量程不同的传感器,可实现两个传感器之间的自动切换,由此可进行宽量程范围内的PID控制。[/size][size=16px] (5)所具有的两路输入通道,还可实现本地设定和远程设定功能之间的切换,通过远程设定功能,可任意改变设定值(如周期性波形形式的设定曲线),实现周期性复杂波形的控制。[/size][size=16px] (6)具有程序控制功能,支持20条编程曲线,每条50段,支持段内循环和曲线循环。[/size][size=16px] (7)具有超高的测量和控制精度,24位AD、16位DA、双精度浮点运行和0.01%最小输出百分比。控制器是面板安装式的标准工业调节器,最大开孔尺寸为92mm×92mm。[/size][size=18px][color=#339999][b]3. 分程控制功能的具体应用[/b][/color][/size][size=16px] 针对图1所示的三种分程控制形式,采用VPC2021-1控制器的具体实施方法如下。[/size][size=16px][color=#339999][b] (1)分程控制应用[/b][/color][/size][size=16px] 对于典型的分程控制,PID控制器的具体接线如图3(a)所示,将两个被控对象,如常闭型阀门或加热制冷器,直接连接到主控输出1和主控输出2接线端。测量传感器连接到主输入1接线端。[/size][align=center][size=16px][color=#339999][b][img=03.分程控制接线示意图,690,222]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191330182623_478_3221506_3.jpg!w690x222.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 两种分程控制形式的PID控制器接线示意图[/b][/color][/size][/align][size=16px][color=#339999][b] (2)顺序控制应用[/b][/color][/size][size=16px] 对于顺序控制,PID控制器的具体接线如图3(b)所示,将一个被控对象,如常闭型阀门,直接连接到主控输出1接线端,将第二个被动对象,如常闭型阀门,连接到变送输出接线端。测量传感器连接到主输入1接线端。[/size][size=16px][color=#339999][b] (3)正反向控制应用[/b][/color][/size][size=16px] 对于正反向控制,PID控制器的具体接线与图3(a)所示相同,区别只是所连接阀门一个是常闭型,另一个是常开型。[/size][size=16px] 在使用PID控制器进行分程控制之前,还需进行以下几项控制器参数的设置:[/size][size=16px] (1)设置仪表功能的控制方式为“双输出”。[/size][size=16px] (2)在分程控制中,根据实际被控对象设置“死区”范围。[/size][size=16px] (3)如需采用变送功能,还需进行相应的变送参数设置。[/size][size=16px] (4)如需采用双传感器切换功能,还需进行相应的切换参数设置。[/size][size=18px][color=#339999][b]4. 总结[/b][/color][/size][size=16px] 综上所述,本文详细介绍了具有分程控制功能的VPC2021-1系列超高精度PID控制器,采用此控制器可直接用于相应分程控制的实施,且具有很高的控制精度。[/size][size=16px] 分程控制在实践中应用广泛,然而,由于忽视了与之相关的独特挑战,分程控制经常会被误用或滥用。在许多应用中,如上述的顺序控制和正反向动作控制中,采用如VPC2021-2这种独立双通道PID控制器,无论在配置、调试和故障排除上都要简单得多。[/size][align=center][color=#339999]~~~~~~~~~~~~~~~~~~[/color][/align][align=center][color=#339999][/color][/align][align=center][color=#339999][/color][/align][align=center][color=#339999][/color][/align]

  • LLS1000智能线路控制器

    [font=宋体]概述:[/font][font=宋体]LLS1000[/font][font=宋体]智能线路控制器简称线路控制器,由线路切换模块、控制器、液晶显示器、系统软件等几部分组成。设备内置线路切换模块,实现线路自动切换并显示在液晶屏上,便于用户读取数据,触摸屏操作界面简洁大方,方便简捷。[/font][font=宋体]多模块设计模式,可按客户需求定制,多功能自由切换。[/font][font=宋体]技术参数:[/font][font=宋体]1) [/font][font=宋体]通道数量:1-80通道(按需订制);[/font][font=宋体]2) [/font][font=宋体]尺寸:324*350*150;[/font][font=宋体]2) [/font][font=宋体]工作模块:1入多出;多入1出;多入多出;[/font][font=宋体]3) [/font][font=宋体]功能:芯体电阻切换功能;线路切换功能;(以实际要求为准);[/font][font=宋体]4) [/font][font=宋体]阻值:小于30mΩ;[/font][font=宋体]5) [/font][font=宋体]供电:AC220V 1A 保险 2A;[/font][font=宋体]6) [/font][font=宋体]重量约:15 kg;[/font][font=宋体]7) [/font][font=宋体]尺寸:长*宽*高 324*350*150;[/font][font=宋体]8) [/font][font=宋体]工作温度:15 – 45 ℃;[/font][font=宋体]9) [/font][font=宋体]预热时间:15-30分钟;[/font][font=宋体]10)[/font][font=宋体]线路电流:最大5A@ 48V; [/font][font=宋体]11)[/font][font=宋体]寿命:最小20,000,000次;[/font][font=宋体]12)[/font][font=宋体]操作频率:典型10ms/次;[/font][font=宋体]13)[/font][font=宋体]控制:全部支持触摸屏操作;[/font][font=宋体]14[/font][font=宋体])可远程通讯操作,支持:RS232与RS485。[/font]

  • 24位AD和16位DA串级PID控制器在超高精度张力控制中的应用

    24位AD和16位DA串级PID控制器在超高精度张力控制中的应用

    [size=16px][color=#ff0000]摘要:针对目前张力控制器中普遍存在测量控制精度较差和无法实现串级控制这类高级复杂控制的问题,本文介绍了具有超高精度和多功能的新一代张力控制器。这种新一代张力控制器具有24位AD模数转换、16位DA数模转换、双精度浮点运算和0.01%的最小输出百分比,同时还就有远程设定点和变送输出功能,可方便的实现两个参量的串级控制,并可进行手动和自动控制的开关切换,极大提高了张力控制的精密度,更是适合一些特殊应用中的微张力控制,甚至可以进行张力设定程序曲线的精确控制。[/color][/size][align=center][size=16px][img=微张力控制,650,272]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110946105710_7747_3221506_3.jpg!w690x289.jpg[/img][/size][/align][size=18px][color=#ff0000][b]1. 问题的提出[/b][/color][/size][size=16px] 张力控制是一种对在两个加工设备之间作连续运动或静止的被加工材料所受的张力进行自动控制的技术。在各种连续生产线上,各种带材、线材、型材及其再制品,在轧制、拉拔、压花、涂层、印染、清洗以及卷绕等工序中常需要进行张力控制。[/size][size=16px] 张力控制中所用到的张力控制器是一种由单片机或者一些嵌入式器件及外围电路开发而成的系统,主要由A/D和D/A转换器以及高性能单片机等组成。在张力控制过程中,首先直接设定要求控制的张力值,让张力传感器采集的信号(一般为毫伏级别)作为张力反馈值,比较两者的偏差后,经内部智能PID运算处理后,调节执行机构,自动控制材料的放卷、中间引导及收卷的张力,达到系统响应最快的目的。目前的张力控制器普遍还存在以下几方面的问题:[/size][size=16px] (1)测量精度较低:普遍采用12位AD模数转换器,个别国外产品用了16位AD模数转换器,对于一些高精度的张力传感器输出显然无法准确测量,测量精度无法满足高精度控制要求。[/size][size=16px] (2)控制输出精度较差:普遍采用12位DA数模转换器,个别国外产品用了14位DA数模转换器,对于一些高精度的张力控制无能为力。[/size][size=16px] (3)浮点运算精度较低:目前市场上商品化张力控制器的PID运算基本都是采用单浮点方式进行,运算精度较低,输出百分比的最小调节量只有0.1%,无法进行超高精度的张力控制。[/size][size=16px] (4)传感器输入信号类型少:在各种张力控制中会采用到多种不同的传感器,如超声波探头,浮辊,电位器和激光等,这些不同传感器所输出的信号类型和量程有多种形式,但目前绝大多数张力控制器的输入型号类型非常有限,且不能方便的进行测量范围调整。[/size][size=16px] (5)功能简单:绝大多数张力控制器只能进行单变量的控制,如收放卷的扭矩控制,过程张力中的速度控制以及浮辊张力控制,但只能选择其中的一种控制参数,缺乏两个参数同时控制的功能,无法采用更高级的控制形式——串级控制来更好实现准确的张力调节。[/size][size=16px] (6)PID参数无法自整定:在有些张力控制过程中,需要准确无超调的PID控制,快速且自动的选择合适的PID参数则显着尤为重要,而目前大多张力控制器缺乏这种PID参数自整定功能。[/size][size=16px] 针对目前张力控制器中普遍存在的问题,特别是为了实现超高精度张力控制,本文将详细介绍超高精度工业用PID调节器及其在超高精度张力控制过程中的应用,特别还介绍了串级控制功能的具体应用。[/size][size=18px][color=#ff0000][b]2. 超高精度PID控制器[/b][/color][/size][size=16px] VPC-2021系列PID调节器是一种标准形式的工业用控制器,有单通道和双通道两个系列,具有96×96mm、96×48mm 和48×96mm三种尺寸规格,如图1所示。[/size][align=center][size=16px][color=#ff0000][b][img=01.超高精度PID控制器系列,650,223]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110948313448_487_3221506_3.jpg!w690x237.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图1 VPC2021系列超高精度PID控制器[/b][/color][/size][/align][size=16px] VPC2021系列PID控制器的最大优点是具有超高精度检测和控制能力,具有24位AD模数转换、16位DA数模转换和双精度浮点运算能力,0.01%的最小输出百分比。主要技术指标如下:[/size][size=16px] (1)真彩色IPS TFT长寿命LED背光、全视角液晶显示。[/size][size=16px] (2)独立的单回路和双回路控制,每个通道控制输出刷新率50ms,独立的PID控制功能,每个通道都可进行独立的手动和自动控制切换。[/size][size=16px] (3)万能型信号检测能力,即每通道都具备47种输入信号形式,仅需通过设置即可完成信号类型和量程选择,由此可满足各种规格和形式的张力探测器的引入。除了能测量各种张力传感器、位置传感器给出的模拟电压、电流和电阻信号之外,还可以测量各种温度传感器和压力传感器等各种信号,传感器输出端直接接入控制器并在控制器上进行选择即可使用。[/size][size=16px] (4)单、双通道独立控制输出,输出信号有线性电流、线性电压、继电器输出、固态继电器输出和可控硅输出五种形式,可用于直接驱动电气比例阀(或电子压力转换器)进行张力控制,也可以驱动各种阀门和加热器等执行机构进行真空度、压力和温度等参数的控制。[/size][size=16px] (5)具有远程设定点、变送和正反向控制功能,使得串级控制和分程控制成为可能。[/size][size=16px] (6)采用自主改进型PID算法,支持对PV微分和无超调控制算法。5组PID存储和调用,10组输出限幅等实用功能 。每个通道采用独立的PID参数 , 且可独立的进行PID参数自整定。[/size][size=16px] (7)支持数字和模拟远程 操 作 功 能,支持标准MODBUS RTU通讯协议。[/size][size=16px] (8)带传感器馈电供电功能(24V,50mA)。[/size][size=16px] (9)支持一路过程变量变送功能,变送的过程变量可选PV测量值、SV设定值、控制输出值和偏差值,变送输出类型有4-20mA, 0-10mA, 0-20mA, 0-10V, 2-10V, 0-5V, 1-5V七种。[/size][size=16px] (10)两组开关量光隔输入端,可以实现各种应用功能的灵活应用切换。[/size][size=16px] (11)随机配备强大的控制软件,可通过软件进行控制参数设置、运行控制、过程曲线显示和存储,非常便于过程控制的调试。[/size][size=18px][color=#ff0000][b]3. 串级控制在张力控制中的应用[/b][/color][/size][size=16px] 在典型的张力控制中多采用PID控制方式,由人工设定所需运行张力。设定值与张力传感器测量值进行比较计算后,PID控制器调节执行机构实现张力的稳定输出。典型张力控制器结构如图2所示。[/size][align=center][size=16px][color=#ff0000][b][img=02.典型单参数张力PID控制结构示意图,450,119]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110949423425_329_3221506_3.jpg!w690x183.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图2 典型单参数张力控制结构示意图[/b][/color][/size][/align][size=16px] 图2所示的采用单参数进行张力控制的方法在很多实际应用中并不能满足需要,往往需要引入第二个参数进行控制,由此需要PID串级控制方式,其结构如图3所示。[/size][align=center][size=16px][color=#ff0000][b][img=03.双参数串级控制PID张力控制结构示意图,600,165]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110950250802_7112_3221506_3.jpg!w690x190.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图3 双参数串级控制PID张力控制结构示意图[/b][/color][/size][/align][size=16px] 在图3所示的串级控制系统中包含了主和次两个闭环控制回路:[/size][size=16px] (1)次控制回路包括传感器1、执行机构和次PID控制器,其中将进入外围执行机构膜的参量作为次回路的控制参数。[/size][size=16px] (2)主控制回路则包括了传感器2、次控制回路、外围执行机构和主PID控制器,其中将外围执行机构的产出参数作为主回路的控制参数。[/size][size=16px] 由此可见,串级控制的核心是解决主PID控制器输出和次PID控制器的输入问题,采用一般的工业用PID控制器很难实现上述复杂的功能,如果采用PLC控制也需要复杂编程和相应硬件支持。为此,本解决方案采用了两台标准化的,且高精度多功能的PID控制器(VPC2021-1系列),具体接线如图4所示。[/size][align=center][size=16px][color=#ff0000][b][img=04.串级控制系统PID调节器接线示意图,690,193]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110950400632_8989_3221506_3.jpg!w690x193.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图4 串级控制系统PID调节器接线示意图[/b][/color][/size][/align][size=16px] 如图4所示,具有变送功能的主PID控制器,在主输入端口接收传感器2测量信号,然后根据所设置的固定值进行PID自动控制,相应的控制输出信号(输出值或偏差值)经过变送转换为4~20mA, 0~10mA, 0~20mA, 0~10V, 2~10V, 0~5V和1~5V七种模拟信号中的任选一种,并传送给次PID控制器的次输入端。[/size][size=16px] 具有远程设定点功能的次PID控制器,在次输入端口接收主PID控制器的变送信号作为变化的设定值,然后根据主输入端口接收到的传感器信号,进行PID自动控制,控制信号经主输出端口连接执行机构,对外部执行机构进行自动调节。[/size][size=16px] 需要注意的是,如果主PID控制器输出的控制信号能被次PID控制器次输入通道接收,且输入信号类型和量程与主输入通道接入的传感器一致,也可采用普通PID控制器作为主控制器。[/size][size=16px] 另外,从图4可以看出,由于VPC2021-1单通道PID控制器具有远程设定点功能,由此就可以很容易实现外部手动张力调节,而只需增加一个旋转电位器即可。手动调节接线如图5所示。[/size][align=center][size=16px][color=#ff0000][b][img=05.串级控制系统PID调节器手动和自动切换接线示意图,690,193]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110950566532_2083_3221506_3.jpg!w690x193.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图5 串级控制系统PID调节器手动和自动切换接线示意图[/b][/color][/size][/align][size=16px] 如图5所示,通过主PID控制器上连接的纽子开关,可以实现手动和自动功能切换。当切换到手动控制时,则可以通过接在主PID控制器次输入端子上的电压信号发生器,就可以实现手动调节控制。[/size][size=18px][color=#ff0000][b]4. 总结[/b][/color][/size][size=16px] 综上所述,通过采用新一代的超高精度多功能PID控制器,可以实现各种应用场景下的张力控制。与传统的张力控制器相比,新一代的张力控制器主要具有以下优势:[/size][size=16px] (1)超高精度:24位AD模数转换、16位DA数模转换和双精度浮点运算能力,0.01%的最小输出百分比。[/size][size=16px] (2)多功能:最多2通道的张力控制,可实现串级控制,可进行手动和自动功能切换。[/size][size=16px][/size][size=16px][/size][align=center][color=#ff0000]~~~~~~~~~~~~~~~~~~~[/color][/align]

  • 升级试验机的拉伸装置中的控制器

    改造升级方案加热炉的改造将原有的一个固定对开式电阻加热炉,改造升级为两个移动对开式电阻加热炉。具体改造方法是在试验机上增加旋转臂炉架,如所示。旋转臂炉架分前臂和后臂两部分,分别与试验机底座上的立柱和加热炉连接。通过调节旋转臂炉架的位置不仅能相对试验机调整加热炉的高度,而且能方便地将高温炉炉膛和试验机的夹头中心轴线调整到适当的位置。  可旋转的对开式电阻加热炉示意图两个可移动对开式电阻加热炉的主要参数如下:外形尺寸320mm440mm,炉膛尺寸80mm320mm,均热带150mm,加热炉上、中和下三段发热体(镍铬电热合金丝)的直径均为1.0mm,绕制成螺旋体。加热炉上、中和下三段发热体的最大功率分别为1000,2000和1000W,试样上绑扎热电偶(K型热电偶)与加热炉上、中和下三段发热体和各段温度控制器对应。高温拉伸夹具的改造改造前拉杆和试验机保持相对的固定关系,在进行完一次高温拉伸试验后要等待高温拉杆冷却到室温状态(或接近室温)后,才能进行下一次高温拉伸试验的控温过程。为提高工作效率,对试验机的高温拉伸夹具也进行了改造。重新设计了高温拉伸夹具,在夹具的上部分增加隔热板,在隔热板上增加可以调节高度的悬挂固定杆,从而有效地解决了高温拉杆和试验拉棒在高温环境中产生的热膨胀变形问题。悬挂固定杆(根据不同试样的长度调节以保证试样位于加热炉的中央)可以保证高温夹具位置在高温炉中保持相对固定,解决了不同试样造成的在加热炉内的相对位置不同的问题,提高了控温过程中的精度。另外,加入悬挂固定杆后,相当于增加了一个把手,实现了在高温试验过程结束后将已拉断试样快速拿出,将另一支含有高温试样的拉杆装入加热炉内,从而有效地提高了加热炉的利用效率。  同时把以上设计为两个可以移动的加热炉,在试验机后侧两端分别增加一个支柱,可以再次提高一倍的工作效率。最后,将高温夹具设计为上下两部分可以与拉伸试验机分离的结构部件,待保温结束后再与拉伸试验机连接进行高温拉伸试验,其他时间可以利用该试验机进行常温拉伸等试验,从而可以实现试验机的最大利用率。温度控制器的升级该试验机高温装置原温度控制仪表功能很简单,主要存在如下缺点:由于其控制方式为加热、保持和停止三位式控制,存在着温度控制波动大、温度控制精度差和加热功率不可调节等缺点,因而能源浪费大,加热效率低;该温度控制仪表老化严重,存在着温度控制失灵等故障,仪表控制精度难以满足相关高温拉伸试验标准的精度要求,而且此仪表要求日常频繁维护。因此,对试验机高温拉伸装置中的温度控制器进行了升级,优化了控制器的控制参数。通过调研,笔者决定采用国产宇电A1-808P仪表替代原控制仪表,主要增加了程序控制和手动调节等方便试验控制的功能。A1-808P仪表属于智能型控制仪表,在整个温度控制中可以人工干涉控制参数,以保证试验的精度要求。在应用人工智能调节算法功能后,能自动学习系统特性。当自整定完成后,虽然初次控制时效果不太理想,但第二次使用时便能获得非常精确的控制。

  • 采用超高精度PID控制器进行探测器线性化处理的具体方法

    采用超高精度PID控制器进行探测器线性化处理的具体方法

    [color=#339999][b][size=16px]摘要:在测量和控制领域内大量应用的各种传感器普遍存在非线性输出特性,需要进行线性化处理才能准确和可靠使用,而出于技术复杂度、应用需求和成本等因素的考虑,目前还是有很多传感器并未进行完备的线性化处理。为了解决这些传感器在实际应用中由非线性带来的测量和控制误差,本文介绍了具有八点拟合线性化处理功能的超高精度多功能[/size][size=16px]PID[/size][size=16px]控制器,线性化处理操作简单,适用于绝大多数非线性传感器的准确测量以及相应的准确控制。[/size][/b][/color][align=center][size=16px] [img=传感器线性化处理,600,320]https://ng1.17img.cn/bbsfiles/images/2023/08/202308160927474959_4333_3221506_3.jpg!w690x368.jpg[/img][/size][/align][size=16px][/size][size=18px][color=#339999][b]1. 背景介绍[/b][/color][/size][size=16px] 在工农业生产、军事以及科研领域内的众多控制设备中,会使用到各种传感器,例如电容的、电阻的、电感的、阻抗的、电流计的、电化学的、化学/生物场效应晶体管、表面声波等。通常,传感器的响应可以是电压或电流、频率或时间信号。在大多数情况下,传感器的输出信号随着被测参量的变化而非线性变化。此外,在许多情况下,温度、湿度或压力等环境因素也会非线性地影响传感器特性,有时,这些环境因素会改变传感器的输入-输出关系。作为一个典型例子,图1显示了陶瓷湿度传感器的非线性阻抗响应,图中还显示了所需的线性响应。[/size][size=16px] 从图1所示的响应曲线可以看出,此湿度传感器具有29%的非线性度,如果直接将此非线性严重的传感器直接接入用于湿度控制的PID控制器上,势必给线性控制的PID控制器带来很大误差,为此势必要对传感器进行线性化处理。[/size][align=center][size=16px][color=#339999][b][img=陶瓷湿度传感器的非线性阻抗响应,500,256]https://ng1.17img.cn/bbsfiles/images/2023/08/202308160929549200_391_3221506_3.jpg!w690x354.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 陶瓷湿度传感器的非线性阻抗响应[/b][/color][/size][/align][size=16px] 由于不同传感器的非线性千差万别,对传感器是否进行以及如何进行线性化处理的选择取决于传感器的非线性复杂度、处理能力、所需精度、执行速度、应用需求和成本,由此目前还存在大量未经线性化处理的传感器。[/size][size=16px] 在各种应用领域中的PID控制,绝大多数PID控制器或PID调节器往往都是线性控制,如果直接在控制过程中直接使用这些非线性传感器作为测量信号进行闭环控制,这些传感器的非线性势必会给控制过程带来很大误差和影响控制效果。为了解决此问题并保障PID控制精度,而且解决方法还需要满足大多数非线性传感器的需要,就势必需要从PID控制器着手,需要PID控制器需要具备传感器信号的线性化处理功能。[/size][size=16px] 在传感器线性化处理方面,有硬件电路线性化和软件数字线性化两种技术。显然,为了适应众多不同非线性响应的传感器,PID控制器中的非线性功能只能采用软件数字线性化技术,且这种技术已经在绝大多数PID控制器中的温度传感器线性化处理中得到应用,对应用最为广泛且非线性特性严重的各种标准规格的热电偶、热电阻、热敏电阻等温度传感器,PID控制器中已经集成了软件数字线性处理功能,但对其他非线性传感器的软件数字线性化处理还是无能为力。[/size][size=16px] 为了解决上述问题,本文将介绍如图2所示的采用了更高端微处理器的超高精度PID控制器,在实现超高精度24位AD模数转换和16位DA数模转换的同时,还充分发挥了微处理器的速度和数据处理能力,在现有各种温度传感器线性化处理的基础上,增加了八点拟合线性化处理功能,通过相应的面板按键操作或所配软件的设置,可满足绝大多数现有非线性传感器的线性化处理需要,并能保证PID控制精度和可靠性。[/size][align=center][size=16px][color=#339999][b][img=VPC-2021系列超高精度PID控制器,500,264]https://ng1.17img.cn/bbsfiles/images/2023/08/202308160930189941_1562_3221506_3.jpg!w690x365.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 VPC-2021系列超高精度PID控制器[/b][/color][/size][/align][size=18px][color=#339999][b]2. PID控制器8点线性化处理功能[/b][/color][/size][size=16px] PID控制器8点线性化处理功能是通过8组数据组成线性化表,将输入值经过最小二乘法拟合计算产生输出值和显示值。如图3所示,在使用此功能时,所选的输入值(X轴,代表传感器输出的电压或电流值)必须是递增形式,而对应的测量值或显示值则可以是递增或递减关系。[/size][align=center][size=16px][color=#339999][b][img=PID控制器8点线性化处理功能示意图,550,337]https://ng1.17img.cn/bbsfiles/images/2023/08/202308160930437614_4725_3221506_3.jpg!w690x423.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 八点线性化处理功能示意图[/b][/color][/size][/align][size=16px] 自定义传感器非线性输入支持以下三种输入类型和对应量程:[/size][size=16px] (1) 20mV、100mV;(LSB:0.01mV)。[/size][size=16px] (2) 0-10mA、0-20mA、4-20mA;(LSB:0.001mA)。[/size][size=16px] (3) 0-1V、0-2V、0-5V、1-5V、0-10V、2-10V;(LSB:1mV)。[/size][size=16px] 在PID控制器面板上的按键操作以及对应菜单及说明,如图4所示。在计算机软件上的操作以及界面,如图5所示。[/size][align=center][size=16px][color=#339999][b][img=分菜单操作说明,650,332]https://ng1.17img.cn/bbsfiles/images/2023/08/202308160931045609_98_3221506_3.jpg!w690x353.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图4 八点线性化处理面板按键操作说明[/b][/color][/size][/align][align=center][size=16px][color=#339999][b][img=软件操作设置图,650,250]https://ng1.17img.cn/bbsfiles/images/2023/08/202308160931323954_3958_3221506_3.jpg!w690x266.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图5 八点线性化处理计算机软件操作界面[/b][/color][/size][/align][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本文所介绍的超高精度PID控制器,除了具有超高的测量精度和控制精度之外,更具有强大的各种辅助功能,共具备47种信号输入类型,在集成热电偶、热电阻、热敏电阻这些典型常用的温度传感器线性化处理功能的基础上,可对各种其他传感器的非线性输出信号(电压和电流)进行8点拟合处理,可有效保障非线性传感器在各种控制仪器和设备中的准确使用。[/size][size=16px] 本文所介绍的超高精度PID控制器,具有单通道和双通道两个型号,其中双通道PID控制器也同样具有8点线性化处理功能,两个独立控制通道可各自选择是否进行线性化处理并进行相应的设置操作。[/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][b][color=#339999]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制