当前位置: 仪器信息网 > 行业主题 > >

独立式布鲁斯特角显微镜

仪器信息网独立式布鲁斯特角显微镜专题为您提供2024年最新独立式布鲁斯特角显微镜价格报价、厂家品牌的相关信息, 包括独立式布鲁斯特角显微镜参数、型号等,不管是国产,还是进口品牌的独立式布鲁斯特角显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合独立式布鲁斯特角显微镜相关的耗材配件、试剂标物,还有独立式布鲁斯特角显微镜相关的最新资讯、资料,以及独立式布鲁斯特角显微镜相关的解决方案。

独立式布鲁斯特角显微镜相关的论坛

  • 独立式出射狭缝的原理和产品

    请问,独立式出射狭缝的意义是为了提高通过出射狭缝的光通量吗?还有其他的意义吗?出射狭缝如何进行装配校准?国内外有哪些公司的产品是独立式出射狭缝结构,麻烦懂的给予指导一下!

  • 正立式显微镜与倒置式显微镜

    显微镜分为正立式和倒置式两种 正立式显微镜的特点: 1 便于维护保养 2 找多个视场方便,特别是找最恶劣视场方便 3 成像较比倒置式好些,因为光路短。 4 试样要求高些,大小 倒置式显微镜的特点: 1 试样大小形状无要求 2 容易被污染 3 找多个视场不方便。总之,正立式倒置式显微镜,各有有缺点,根据企业自己的实际情况和产品,选择适合自己的显微镜,正常情况应该正立式倒置式各一台。这只是我的一个建议。如有不对请大家指正。谢谢!

  • 【分享】正立式显微镜和倒置式显微镜的区别

    [align=left]正立式显微镜:光路设计简单,光损少,样品高度有要求,方便多视场观察,镜头不易落灰易维护,适用于研究单位。[/align][align=left]倒置式显微镜:光路长,光损较大,光路设计较复杂,对样品高低无要求,检测方便快速,不适合多视场分析,同等配置下倒置显微镜的价格要高于正立式显微镜。[/align]

  • 奥林巴斯显微镜

    追溯“显微镜”的历史,可知显微镜起源于荷兰的眼镜制作师父子的发明。之后,显微镜在英国和德国经过不断地改良得到了进一步的发展。在19世纪后期的日本,显微镜是作为“放大镜”来制造和销售的。在性能上,它根本无法与欧洲的显微镜相比,因此,当时研究细菌学的学者们不得不依赖于价格昂贵的进口显微镜。奥林巴斯的创始人——山下长抱着“无论如何都要制造出日本的国产显微镜”这一梦想,于1919年成立了公司,开始了实现梦想的挑战。与此同时,山下长也走上了“艰苦奋斗的13年”的征途。 作为一种仪器。奥林巴斯显微镜它运用最先进的UIS2光学系统(无限远校正系统),同时运用了照明装置,可以在夜间可见度较低的情况下进行作业。照明装置采用了内置透射光柯勒照明,6V20W卤素灯 100-240V 50/60Hz通用。调焦系统是载物台垂直运动,粗调行程每一圈为20mm,微调最小距离2.5微米。换镜转盘用的是固定4孔物镜转盘,观察筒是双目观察筒,镜筒倾角为30°,瞳间距48-75mm,载物台明装置是钢丝传动,尺寸为120mm × 132mm,活动范围为X轴向76mm × Y轴向30mm,单片标本夹。聚光镜则是阿贝聚光镜,数值孔径1.25(浸油时),内装式孔径光阑。

  • 【分享】鲁克发布原子力显微镜号称世界最快

    美国加利福尼亚州当地时间2011年5月2日,布鲁克(Bruker)发布了一款具有创新性和独特外形的原子力显微镜新品——DimensionFastScanTM,该产品在不牺牲纳米级分辨率的前提下提高显微镜成像速度方面取得了重大突破。DimensionFastScanTM比其他AFM扫描速度提高了数百倍,能够在数秒或数分钟内,而不是数小时或数天内得出结果,是世界上扫描速度最快的高分辨原子力显微镜。 鉴于在纳米尺度上观察与了解材料的需求在不断增加,作为世界上使用最广泛的原子力显微平台的最新成员,DimensionFastScan采用了数项创新技术,使快速扫描速度、图像的高分辨率与精度达成完美平衡。基于成功设计的原子力显微镜架构,DimensionFastScan是一个尖端扫描系统(tip-scanning),能够提供空气或液体中的大、小样品的测量。 “DimensionFastScan实现了布鲁克在原子力显微镜技术上的目标之一,该仪器将使我们的用户能更有效率地工作,同时又不会丢失图像的分辨率与精度。在这样短的时间内完成高质量的图像,这是一项突破。”布鲁克纳米表面部总裁MarkR.Munch博士说到,“采用38项专利技术,DimensionFastScan具备了以往研究级原子力显微镜不能达到的更高的扫描速度,这是它的独特之处。” “通过提供更有效获得纳米级信息的途径,DimensionFastScan表示了布鲁克对科学界的承诺。”布鲁克的原子力显微镜业务副总裁与总经理DavidV.Rossi补充到,“我们全新的DimensionFastScan,其与ScanAsyst、PeakForceQNM等其他的布鲁克旗下的原子力显微镜产品结合起来,显著提高工作效率,同时也提供纳米级的新的定量信息。这将使布鲁克的原子力显微镜系列产品更易于被学术界和工业界使用。”http://simg.instrument.com.cn/bbs/images/brow/em09505.gif

  • 【分享】趣谈显微镜历史

    无式镜  在从未被文字记录下来的那段历史中的某一天,一个腰上挂着树叶串、头上长发飘飘的人一脚飞起一块石子。他用类似于尖叫的语言说:“咦,这是什么东西亮闪闪在地下?”他捡起这块大致像颗棋子的透明石头瞅瞅,“石子对面的世界放大啦~”他的同类还试着用透明圆石头在炎炎烈日下长时间凝视地上一些烂草棍,结果草棍呼的一下烧着了!对大自然打磨的奇妙石头的记忆一直延续到公元1世纪初,在罗马哲学家的笔记中,它们被称为“放大器”(magnifier)或“点火石”(burningglasses);直到13世纪,这些石头终于从脚下一路登鼻子上脸,被赐名透镜(lense),因为它们长得好像一颗小扁豆(lentil)。  随后,“小扁豆”又被人们粘进一根细长筒里。人们就像看万花筒一样,举着这个小筒偷看跳蚤打架,所以这只筒名叫“跳蚤镜”(fleaglasses)。它就像眼镜的衍生物,然而已从人脸向前迈出一大步,是未来单式显微镜的雏形。谓之“单式”,因为它不同于你生物课上用过的显微镜,没有目镜、物镜之分,放大多少只由一颗“小扁豆”决定。  单式镜 http://www.microimage.com.cn/uploadfile/xwjs/uploadfile/201007/20100702052337407.jpg 现代实验室显微镜即使配以“雕梁画栋”,也未必可以卖得更贵,因为雕梁画栋违背了现代人讲究目的和实用的原则。因此我们常常难以理解为什么历史上许多划时代的发明刚刚出现的时候,人们想不到用这些发明改变世界,却只把它们当成丰富视觉享受、甚至象征贵族生活的道具。当我看到十七世纪初那做工精美的“单式镜”,真想搞一个来摆在家里——纯装饰。当时,人们却可以用它来观察桔子表皮,具体做法是:取一只桔子,噗地一声扎在针尖一样的“载物台”上,从直立的单片镜片背后即可观看一只疼痛的桔子。前后移动桔子可以改变放大倍率,只是她挺沉的,晃晃悠悠地不太稳当。(图一)  单式显微镜达到登峰造极的水平是在列文虎克。如果我没有记错,中学的生物是从列文虎克发明显微镜开始的。其实,不论“单式”还是今天普遍应用的“复式”(即多个镜片前后排列,如目镜+物镜),发明者都不是他。只是这一点损失对于列文虎克作出的贡献无伤大雅。前边提到,单式显微镜的放大本领只能依靠一颗“小扁豆”来实现,要想让镜片放大率增大,镜片焦距必须很短,扁豆必须很小,这就需要很高的打磨工艺——如果你是用打磨的方法。一般人能磨出放大率几十倍的镜片已经很了不起,于是列文虎克来了。

  • 【讨论】你用过AFM吗?--布鲁克发布原子力显微镜新品 号称世界最快

    美国加利福尼亚州当地时间2011年5月2日,布鲁克(Bruker)发布了一款具有创新性和独特外形的原子力显微镜新品——Dimension FastScanTM,该产品在不牺牲纳米级分辨率的前提下提高显微镜成像速度方面取得了重大突破。Dimension FastScanTM比其他AFM扫描速度提高了数百倍,能够在数秒或数分钟内,而不是数小时或数天内得出结果,是世界上扫描速度最快的高分辨原子力显微镜。  鉴于在纳米尺度上观察与了解材料的需求在不断增加,作为世界上使用最广泛的原子力显微平台的最新成员,Dimension FastScan采用了数项创新技术,使快速扫描速度、图像的高分辨率与精度达成完美平衡。基于成功设计的原子力显微镜架构,Dimension FastScan是一个尖端扫描系统(tip-scanning),能够提供空气或液体中的大、小样品的测量。  “Dimension FastScan实现了布鲁克在原子力显微镜技术上的目标之一,该仪器将使我们的用户能更有效率地工作,同时又不会丢失图像的分辨率与精度。在这样短的时间内完成高质量的图像,这是一项突破。”布鲁克纳米表面部总裁Mark R. Munch博士说到,“采用38项专利技术,Dimension FastScan具备了以往研究级原子力显微镜不能达到的更高的扫描速度,这是它的独特之处。” “通过提供更有效获得纳米级信息的途径,Dimension FastScan 表示了布鲁克对科学界的承诺。”布鲁克的原子力显微镜业务副总裁与总经理David V. Rossi补充到,“我们全新的Dimension FastScan,其与ScanAsyst、PeakForce QNM等其他的布鲁克旗下的原子力显微镜产品结合起来,显著提高工作效率,同时也提供纳米级的新的定量信息。这将使布鲁克的原子力显微镜系列产品更易于被学术界和工业界使用。”

  • 显微镜的发展

    显微镜是一种借助物理方法产生物体放大影像的仪器。最早发明于16世纪晚期,至今已有四百多年的历史。现在,它已经成为了一种极为重要的科学仪器,广泛地用于生物、化学、物理、冶金、酿造、医学等各种科研活动,对人类的发展做出了巨大而卓越的贡献。随着现代光电子技术和计算机的高速发展,显微测量技术在上业、国防、科技均得到了广泛应用。本文就对显微镜的发展及分类作个概述。一、显微镜的历史光学是研究光波传播规律的科学。而显微镜的发展是在对光学的研究基础上发展起来的。我国春秋时的《墨经》和古希腊学者欧几里德的《反射光学》都对光学的研究有所记载,后来经过伽利略、牛顿、惠更斯、菲涅耳、夫琅和费、麦克斯韦、爱因斯坦等科学家的努力,光学已发展成为物理学中一门极为重要的基础学科,形成了严格的数学理论方法及实验方法。研究光的一个分支便是光学仪器——显微镜。最初的显微镜产生于十六世纪末期。十七世纪发明了光学显微镜,后来被用来发现细菌及细胞。二十世纪三十年代,Lebdeff(莱比戴卫)设计出第一架干涉显微镜,随后Zemicke(卓尼克)发明了相位差显微镜。二十世纪五十年代,Nomarski(诺乌斯基)发明了干涉相位差光学系统,并以此设计出诺马斯基显微镜。二十世纪束期,产生了共轭焦显微镜,并得到了广泛应用。在光学快速发展的同时,电子学也得以迅速发展。二十世纪三十年代,德国的Bruche和Johannson制造出了第一宋菲君型传头式电子显微镜,随后Ruaka发明了第一部磁场型传头式电子显微镜(TEM)。扫描式电子显微镜(SEM)在二十世纪六十年代才出现。二、显微镜的分类显微镜主要是由物镜和目镜组成,物镜的焦距很短,目镜的焦距很长。物镜的作用是得到物体放大实像,目镜的作用是将物镜所成的实像作为物体进一步放大为虚像。显微镜中通过聚光镜照亮标本,再通过物镜成像,经过目镜放大,最后通过眼睛的晶状体投影到视网膜。显徽镜按工作原理和它的组成结构可分为光学显微镜和电子显微镜。1. 光学显微镜光学显徽镜的成像原理是以光为介质,利用可见光照射在物体的表面。造成了局部散射或反射来形成不同的对比,然后再对被物体调制了的信息进行解调便可得物体的空间信息。光学显微镜又分为传统的光学显微镜和近场显微镜。传统的光学显微镜(远场光学显微镜)的光路原理如图1: http://www.biomart.cn//upload/userfiles/image/2011/11/1321511297.png图1 光学显微镜的光路原理由图1可以看出光学显微镜主要光学系统(接物镜、目镜、聚光器、光源)和机械系统组成。2. 近场光学显微镜

  • 【基础知识】光学显微镜的历史及基础知识

    光学显微镜 optical microscope 利用光学原理把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。 简史 早在公元前 1世纪,人们就已发现通过球形透明物体去观察微小物体时可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的J.开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。17世纪中叶,英国的R.胡克和荷兰的 A.van列文胡克都对显微镜的发展作出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部件经过不断改进,成为现代显微镜的基本组成部分。1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中9台保存至今。胡克和列文胡克利用自制的显微镜在动、植物机体微观结构的研究方面取得了杰出的成就。19世纪,高质量消色差浸液物镜的出现使显微镜观察微细结构的能力大为提高。1827年G.B.阿米奇第一个采用浸液物镜。19世纪70年代,德国人E.阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括R.科赫、L.巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。 在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术,1893年出现了干涉显微术,1935年荷兰物理学家F.泽尔尼克创造了相衬显微术,他为此在1953年被授予诺贝尔物理学奖金。 古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。现代又普遍采用光电元件、电视摄象管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图象信息采集和处理系统。 工作原理 表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像。光学显微镜就是利用这一原理把微小物体放大到人眼足以观察的尺寸。近代的光学显微镜通常采用两级放大,分别由物镜和目镜完成。被观察物体AB位于物镜的前方,被物镜作第一级放大后成一倒立的实象A1B1。然后此实像再被目镜作第二级放大,成一虚象A2B2,人眼看到的就是虚像A2B2。 显微镜的总放大倍率为 显微镜总放大倍率=物镜放大倍率×目镜放大倍率 放大倍率是指直线尺寸的放大比而不是面积比。在用人眼直接观察的显微镜中,可以在实像面A1B1处放置一块薄型平板玻璃片,其上刻有某种图案的线条,例如十字线。当实像A1B1和这些刻线叠合在一起时,利用这些刻线就能对物体进行瞄准定位或尺寸测量。这种放置在实像面处的薄型平板玻璃片通称分划板。在新型的以光电元件作为接收器的光学显微镜中,电视摄象管的靶面或其他光电元件的接收面就设置在实像面上。 组成 光学显微镜由载物台、聚光照明系统、物镜、目镜和调焦机构组成。 载物台 用于承放被观察的物体。利用调焦旋钮可以驱动调焦机构使载物台作粗调和微调的升降运动,使被观察物体调焦清晰成象。它的上层可以在水平面内沿、方向作精密移动和在水平面内转动,把被观察的部位调放到视场中心。 聚光照明系统 由灯源和聚光镜构成。当被观察物体本身不发光时,由外界光源给以照明。照明灯的光谱特性必须与显微镜的接收器的工作波段相适应。聚光镜的功能是使更多的光能集中到被观察的部位。 物镜 位于被观察物体附近实现第一级放大的镜头。在物镜转换器上同时装着几个不同放大倍率的物镜。转动转换器可让不同倍率的物镜进入工作光路。物镜放大倍率通常为5~100倍。物方视场直径(即通过显微镜能看到的图像范围)约为 11-20毫米。物镜放大倍率越高则视场越小。 物镜是显微镜中对成象质量优劣起决定性作用的光学元件。常用的有:①能对两种颜色的光线校正色差的消色差物镜;②质量更高的能对三种色光校正色差的复消色差物镜;③能保证物镜的整个像面为平面以提高视场边缘成像质量的平像场物镜。为了提高显微观察的分辨率,在高倍物镜中采用浸液物镜,即在物镜的下表面和标本片的上表面之间填充折射率为1.5左右的液体。 目镜 位于人眼附近实现第二级放大的镜头。目镜放大倍率通常为5~20倍,按能否放置分划板,可分成两类:①不宜放置分划板的,如惠更斯型目镜。这是现代显微镜中常用的型式,优点是结构简单、价格低廉;缺点是由于成像质量的原因,不宜放置供瞄准定位或尺寸测量用的分划板。②能放置分划板的,如凯尔纳型和对称型目镜,它们能克服上述目镜的缺点。按照能看到的视场大小,目镜又分为视场较小的普通目镜和视场较大的大视场目镜(或称广角目镜)两类。 调焦机构 载物台和物镜两者必须能沿物镜光轴方向作相对运动以实现调焦,获得清晰的图像。用高倍物镜工作时,容许的调焦范围往往小于微米,所以显微镜必须具备极为精密的微动调焦机构。 显微镜放大倍率的极限 显微镜放大倍率的极限即有效放大倍率。仪器的分辨率是指仪器提供被测对像微细结构信息的能力。分辨率越高则提供的信息越细致。显微镜的分辨率是指能被显微镜清晰区分的两个物点的最小间距。根据衍射理论,显微物镜的分辨率为 sigma=0.61lamda/N.sinU ~1式中lamda为所用光波的波长;N 为物体所在空间的折射率,物体在空气中时N=1;U为孔径角,即从物点发出能进入物镜成像的光线锥的锥顶角的半角 NsinU 称为数值孔径。 当波长λ一定时, 分辨率取决于数值孔径的大小。数值孔径越大则能分辨的结构越细,即分辨率越高。数值孔径是显微物镜的一个重要性能指标,通常与放大倍率一起标注在物镜镜筒外壳上,例如40×0.65表示物镜的放大倍率为40倍,数值孔径为0.65。 分辨率和放大倍率是两个不同的但又互有联系的概念。当选用的物镜数值孔径不够大,即分辨率不够高时,显微镜不能分清物体的微细结构,此时即使过度地增大放大倍率,得到的也只能是一个轮廓虽大但细节不清的图像。这种过度的放大倍率称为无效放大倍率。反之如果分辨率已满足要求而放大倍率不足,则显微镜虽已具备分辨的潜在能力,但因图像太小而仍然不能被人眼清晰视见。为了充分发挥显微镜的分辨能力,应使数值孔径与显微镜总放大倍率合理匹配,以满足下列条件: 500NsinU<显微镜总放大倍率<1000NsinU ~2 在此范围内的放大倍率称为有效放大倍率。由于sinU永远小于1,物方空间折射率N最高约为1.5,NsinU不可能大于1.5,故光学显微镜的分辨率受(1)式限制,具有一定的极限。有效放大倍率受上式限制,一般不超过1500倍。显微镜使用者应由所需分辨的最小尺寸按(1)式确定所需的数值孔径,选定物镜,然后按(2)式选定总放大倍率和目镜放大倍率。 提高分辨率的途径是:采用较短波长的光波或增大孔径角U值,或是提高物体所在空间的折射率N,例如在物体所在空间填充折射率为 1.5的液体。以这种方式工作的物镜称为浸液物镜。而电子显微镜正是利用波长极短的特性,在提高分辨率方面取得重大突破的。 聚光照明系统对显微观察的影响 聚光照明系统是对显微镜成像性能有较大影响但又易于被使用者忽视的环节。它的功能是提供亮度足够且均匀的物面照明。聚光镜发来的光束应能保证充满物镜孔径角,否则就不能充分利用物镜所能达到的最高分辨率。为此目的,在聚光镜中设有类似照相物镜中的可以调节开孔大小的可变孔径光阑,用来调节照明光束孔径,以与物镜孔径角匹配。观察高反差物体时,宜使照明光束充满物镜的全孔径;对于低反差物体,宜使照明光束充满物镜的2/3孔径。在较完善的柯勒照明系统中,除可变孔径光阑外,还装有控制被照明视场大小的可变视场光阑,以保证被照明的物面范围与物镜所需的视场匹配。物面被照明的范围太小固然不行,过大则不仅多余,甚至有害,因为有效视场以外的多余的光线会在光学零件表面和镜筒内壁多次反射,最后作为杂散光到达像面,使图像的反差下降。

  • 【分享】共聚焦显微镜与普通光学显微镜的比较

    共聚焦显微镜与普通光学显微镜的比较显微镜是观察细胞的主要工具。根据光源不同,可分为光学显微镜和电子显微镜两大类。前者以可见光(紫外线显微镜以紫外光)为光源,后者则以电子束为光源。普通光学显微镜与激光共聚焦显微镜同属于光学显微镜。  一、普通光学显微镜  普通生物显微镜由3部分构成,即:①照明系统,包括光源和聚光器;②光学放大系统,由物镜和目镜组成,是显微镜的主体,为了消除球差和色差,目镜和物镜都由复杂的透镜组构成;③机械装置,用于固定材料和观察方便。  显微镜物象是否清楚不仅决定于放大倍数,还与显微镜的分辨力(resolution)有关,分辨力是指显微镜(或人的眼睛距目标25cm处)能分辨物体最小间隔的能力,分辨力的大小决定于光的波长和镜口率以及介质的折射率,用公式表示为:  R=0.61λ /N.A. N.A.=nsinα/2  式中:n=介质折射率;α=镜口角(标本对物镜镜口的张角),N.A.=镜口率(numeric aperture)。镜口角总是要小于180?,所以sina/2的最大值必然小于1。  制作光学镜头所用的玻璃折射率为1.65~1.78,所用介质的折射率越接近玻璃的越好。对于干燥物镜来说,介质为空气,镜口率一般为0.05~0.95;油镜头用香柏油为介质,镜口率可接近1.5。  普通光线的波长为400~700nm,因此显微镜分辨力数值不会小于0.2μm,人眼的分辨力是0.2mm,所以一般显微镜设计的最大放大倍数通常为1000X。

  • LEICA显微镜-思贝舒专业销售LEICA显微镜

    Leica拥有160年显微镜生产历史,以高质量光学系统而闻名。Leica一贯注重产品研发和最新技术应用,其产品质量一直走在显微镜技术前列。Leica显微镜拥有多项专利和世界首创技术。作为显微系统领域的开拓者和先驱,Leica光学系统赢得多项荣誉。一、LEICA显微镜的应用领域作为显微系统的高端产品,Leica一直牢牢占据高校、研究所、科研机构、大型企业、跨国公司等市场,服务于钢铁、冶金、机械、航空航天、汽车、轮船、、仪器仪表、电力、地质、石油、石化、陶瓷、医院、生命科学等领域。二、LEICA立体显微镜有如下5大特点:1.双目镜筒中的左右两光束不是平行,而是具有一定的夹角——体视角(一般为12度---15度),因此成像具有三维立体感;2.像是直立的,便于操作和解剖,这是由于在目镜下方的棱镜把像倒转过来的缘故;3.虽然放大率不如常规显微镜,但其工作距离很长4.焦深大,便于观察被检物体的全层。5.视场直径大。三、LEICA显微镜的机械维护使用防尘罩是保证显微镜处于良好机械和物理状态的最重要的因素。显微镜的外壳如有污迹,能用乙醇或肥皂水来清洁(无用其他有机溶剂来清洁),但切勿让这些清洗液渗入显微镜内部,造成显微镜内部电子部件的短路或烧毁。保持显微镜使用场地的干燥,尽管每台徕卡系列显微镜均采用了特殊的防霉处理工艺,但当显微镜长期工作在湿度较大的环境中,还是容易增加霉变的几率,因此如显微镜不得不工作在这些湿度较大的环境中,建议使用除湿机。四、使用LEICA显微镜的建议采取下列措施,或许能更好的延长您的显微镜使用时间并使之保持良好的工作状态。(1)每次关闭显微镜电源前,请将显微镜灯光调至最暗。(2)关闭显微镜电源后,请等灯箱完全冷却后(约15分钟后),再罩上显微镜防尘罩。(3)开启显微镜电源后,若暂时不使用,可以将显微镜灯光调至最暗,而无需频繁开关显微镜电源。显微镜工作一年后,宜每年至少做一次专业的维护保养。本文转自:***

  • 2013年布鲁克原子力显微镜测量技术系列讲座之四、之五

    http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647083_2507958_3.gif2013年布鲁克原子力显微镜测量技术系列讲座之四、之五活动时间:2013年6月25日 、7月9日http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647083_2507958_3.gif 现代科学技术中,观察、测量、分析以及操纵纳米大小的物体是一个热门的研究领域。原子力显微镜的诞生为研究者们提供了分析和操作纳米世界的“眼”和“手”。因此,自诞生以来AFM已经被广泛用于科研和工业界各领域,涵盖了聚合物材料表征,集成光路测量,材料力学性能表征,细胞表面形态观察,生物大分子的结构及性质,生物传感器,分子自组装结构等领域的监测等各类科研和生产工作。 为让用户更好的了解AFM发展的进展及其应用,帮助AFM用户掌握获得高品质图像,获取实验数据的技巧,布鲁克特安排了原子力显微镜测量技术系列讲座,欢迎大家积极参与学习及交流。【讲座安排】 1、第四讲-利用AFM-Raman集成成像系统进行材料性能表征| 时间:2013年6月25日 10:00 我要报名》》》》2、第五讲-SPM在材料电学性能表征方面的应用进展 时间:2013年7月9日 10:00 我要报名》》》》【注意事项】1、报名条件:只要您是仪器网注册用户均可报名参加。2、参加及审核人数限制:限制报名人数为120人,审核人数100人。3、参与互动:每次会议从提问的用户中随机抽取出一名幸运之星,奖励一个价值150元的耳机。4、环境配置:只要您有电脑、外加一个耳麦就能参加。建议使用IE浏览器进入会场。5、提问时间:现在就可以在此帖提问啦6、会议进入:会议室将在会议正式开始前30分钟打开,审核通过的用户可以进入会议室7、特别说明:报名并通过审核将会收到1 封电子邮件通知函(您已注册培训课程),请注意查收,并按提示进入会议室!为了使您的报名申请顺利通过,请填写完整而正确的信息哦~http://simg.instrument.com.cn/webinar/20110223/images/zb_11.gif注意:由于参会名额有限,如您通过审核,请您珍惜宝贵的学习交流机会,按时参加会议。如您临时有事无法参会,请您进入报名页面请假。无故不参会将会影响您下一次的参会报名。快来参加吧:我要报名》》》

  • 奥林巴斯显微镜各型号汇总对比

    奥林巴斯显微镜各型号汇总对比本文是在汇集各个常规的奥林巴斯推出的型号和参数,旨在帮助实验室观察研究人员对于奥林巴斯显微镜有个更加深入的了解: 产品名称详细参数奥林巴斯显微镜CX22显微镜类型:教学级显微镜;观察头:双目观察筒, 镜筒倾角为30度, 瞳间距48-75mm;目镜:10×, 视场数F.N. 18(防霉处理);物镜:平场消色差;4×N.A.0.10 W.D. 22.0mm;10×N.A.0.25 W.D. 10.5mm;40.. 奥林巴斯显微镜CX31显微镜类型:教学级显微镜;观察头:三目, 视场数20, 镜筒倾角为30度, 瞳间距48-75mm, 光路选择(50双目/50摄像);调焦:载物台垂直运动由滚柱(齿条—小齿轮)机构导向, 采用粗微同轴旋钮, 粗调行程每一圈为36.8mm,奥林巴斯显微镜BX53显微镜类型:研究级显微镜;观察头:宽视野(视野数为22): 宽视野双目镜筒,倾角为30度 宽视野可倾斜式双目镜筒,倾角为5度-35度 宽视野三目镜筒,倾角为30度 宽视野人机工程(倾斜/伸缩式)双目镜筒,倾角为0度-25. 奥林巴斯显微镜BX51显微镜类型:研究级显微镜(正置);观察头:宽视野(视野数为22):·宽视野双目镜筒, 倾角为30度·宽视野可倾斜式双目镜筒, 倾角为5度-35度·宽视野三目镜筒, 倾角为30度·宽视野人机工程(倾斜/.. 奥林巴斯显微镜BX43显微镜类型:临床用的万能研究级显微镜;观察头:宽视野(视场数22): 宽视场三目观察筒, 倾角30度; 宽视场人机工程学双目观察筒, 倾角0~25度. 超宽视野(视场数26.5): 超宽视场三目观察筒, 倾角24度;调焦:聚焦: .. 奥林巴斯显微镜SZ51显微镜类型:体视显微镜(解剖镜);观察头:观察筒倾角: 45度;目镜:"ComfortView"WHSZ系列, 无铅;物镜:辅助物镜: 用螺丝在框架底部固定(M48螺纹×0.75);调焦:调焦旋钮: 左/右单轴水平旋钮, 结合瞳间距高低放.. 奥林巴斯显微镜SZ61显微镜类型:体视显微镜(解剖镜);观察头:观察筒倾角: 45度;目镜:"ComfortView"WHSZ系列, 无铅;物镜:辅助物镜: 用螺丝在框架底部固定(M48螺纹×0.75);调焦:调焦旋钮: 左/右单轴水平旋钮, 结合瞳间距高低放.. 奥林巴斯显微镜CX41显微镜类型:教学级显微镜;观察头:U-CBI30-2, 双目; U-CTR30-2, 三目, 视场数: 20, 镜筒倾角为30度, 瞳间距48-75mm, 光路选择(50双目/50摄像);物镜:平场消色差物镜, 4x、0.10、22.0mm; 10x、0.25、10.5mm; 40... 奥林巴斯显微镜CkX41(临床级)显微镜类型:倒置显微镜;观察头:双目镜筒:U-CBI30-2: 倾斜30度双目观察筒, 瞳间距在48~75mm, 左目筒可进行屈光度调节(F.N.20);U-CBI30-2: 倾斜30度双目观察筒, 瞳间距在48~75mm, 左目筒可进行屈光... OLYMPUS显微镜SZ61TRC显微镜类型:体视显微镜(解剖镜);观察头:观察筒倾角: 45度;目镜:"ComfortView"WHSZ系列, 无铅;物镜:辅助物镜: 用螺丝在框架底部固定(M48螺纹×0.75);调焦:调焦旋钮: 左/右单轴水平旋钮, 结合瞳间距高低放 奥林巴斯显微镜BX41(临床用 显微镜类型:临床用的万能研究级显微镜;观察头:宽视野(视场数22): 宽视场双目观察筒, 倾角30度;宽视场可变倾角双目观察筒, 倾角5~35度.超宽视野(视场数26.5): 超宽视场三目观察筒, 倾角24度.;调焦...奥林巴斯显微镜CKX31(临床级)显微镜类型:倒置显微镜;观察头:双目镜筒: 固定式双目镜筒, 镜筒倾角为45度. 瞳距可在48-75mm范围内进行调节, 右筒备有螺旋面, 可调节屈光度.;目镜:10×(F.N.20);调焦:通过物镜转盘的上下移动进行调焦(载物..奥林巴斯显微镜BX51(临床级 显微镜类型:临床用的万能研究级显微镜;观察头:宽视野(视场数22): 宽视场三目观察筒, 倾角30度; 宽视场人机工程学双目观察筒, 倾角0~25度.超宽视野(视场数26.5): 超宽视场三目观察筒, 倾角24度.;调焦:.. 奥林巴斯显微镜BX51IX51 显微镜类型:研究级显微镜(倒置);观察头:可倾斜式双目: U-TBI90: 35度-85度连续可调倾角(眼点高度406-471mm), 瞳间距调节范围50-76mm, 屈光度调节功能, 正立像, F.N.22双目: U-BI90CT: 内置对中望远镜, 瞳... 通过对比不难发现,不同的型号所对应的产品的参数性能

  • 显微镜的历史

    随着科学技术的进步,人们越来越需要观察微观世界,显微镜正是这样的设备,它突破了人类的视觉极限,使之延伸到肉眼无法看清的细微结构。显微镜是从十五世纪开始发展起来。从简单的放大镜的基础上设计出来的单透镜显微镜,到1847年德国蔡司研制的结构复杂的复式显微镜,以及相差,荧光,偏光,显微观察方式的出现,使之更广范地应用于金属材料,生物学,化工等领域。

  • 快来看呀~~显微镜的发展历史

    早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。  1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。  17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展作出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部件经过不断改进,成为现代显微镜的基本组成部分。  1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出成就。  19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。1827年阿米奇第一个采用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。  在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。  古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。现代又普遍采用光电元件、电视摄像管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图像信息采集和处理系统。[em44]

  • 中国电子显微镜学会 举办的透射电子显微镜(TEM)短期课程计划感觉很好,有想一起去的不

    中国电子显微镜学会 举办的透射电子显微镜(TEM)短期课程计划感觉比较系统,我想去,不过他们说要报名凑够6人以上开班,我在这边分享下,看看大家有没有想一起去的。要是有想去的联系 李宁春老师(中国电子显微镜学会;电话:010-82671519)下面附上他们的通知Ⅰ. TEM基本课程:对象与目的:初学人员或希望从新学习者,经此课程学习透射电镜原理并达到可独立操作的基本要求。授课内容:⑴ 透射电子显微主讲结构与电子光学系统。⑵ 电子与薄晶体的相互作用——运动学成像理论。⑶ 原子分辨的高分辨像基本原理(动力学散射)。⑷ 扫描透射原理与EDS扫描分析。实验安排:⑴ TEM(FEI 200 kV场发射)基本操作方法(电镜的启动,样品的安装和更换,条件的设定及观察图像)。⑵ HR-TEM原子像的获得与相应电子衍射谱。⑶ STEM模式成像与扫描分析(一维线扫与二维面扫EDS谱与像的获得)。[/

  • 新课发布!激光共聚焦显微镜技术应用!

    新课发布!激光共聚焦显微镜技术应用!

    [img=,550,310]https://ng1.17img.cn/bbsfiles/images/2023/10/202310171819522461_4148_5659437_3.png!w550x310.jpg[/img][size=14px]课程兼顾理论与实践的结合,由吴老师[/size][size=14px][color=#3daad6][b]根据自己多年的教学及科研经验[/b][/color][/size][size=14px],组织和整理本次课程内容从共聚焦显微镜的背景、结构、基本操作及注意事项、各类扫描模式及应用等方面展开详细讲解,让我们拒绝做一名只会机械操作,不懂原理的实验工具人![/size][size=14px][img=,128,128]https://ng1.17img.cn/bbsfiles/images/2023/10/202310171820520008_9055_5659437_3.png!w128x128.jpg[/img]原价:[/size][size=14px][b]599[/b][/size][size=14px][b]元[/b][/size][size=14px]课程[b]限时:39元[/b][/size][b][size=16px]讲师介绍[/size][/b][img=,690,812]https://ng1.17img.cn/bbsfiles/images/2023/10/202310171821243917_661_5659437_3.png!w690x812.jpg[/img][color=#3daad6][b][size=14px]吴晶,北京大学医药卫生分析中心教师,助理研究员[/size][/b][/color][size=14px]2013-2015年北京大学神经科学研究所从事博士后研究工作,出站后加入北京大学医药卫生分析中心生物成像与分析实验室,致力于成像技术的研发和创新,掌握多种成像技术如双光子、超高分辨、单分子检测等,支持发表高水平文章如Cell Research, Advanced Materials等多篇。[/size][size=14px]参与多项基金,近5年以一作身份发表SCI文章6篇,专利2项。[/size][size=14px]多次获北京大学实验技术成果奖,中国分析测试协会科学技术奖。撰写的“激光扫描共聚焦显微镜的检测模式及其在生物医学领域的应用”获第十五届科学仪器网络原创作品大赛三等奖,并收录于《科研仪器案例库》。[/size][size=14px]多次获北京大学实验技术成果奖,中国分析测试协会科学技术奖,及第一届“信立方杯”高校分析测试技术培训微课大赛最受欢迎主讲老师。[/size][b][size=16px]课程预览[/size][/b] [size=14px]详细介绍了激光扫描共聚焦显微镜的结构、原理、功能及应用,基本操作流程与日常操作中的注意事项等,可帮助初学者快速掌握全面的掌握仪器基本知识。详细介绍了激光扫描共聚焦显微镜的结构、原理、功能及应用,基本操作流程与日常操作中的注意事项等,可帮助初学者快速掌握全面的掌握仪器基本知识。[/size][b][size=16px]这门课,你将获得什么?[/size][/b][size=14px]激光共聚焦显微镜背景、结构、原理介绍[/size][size=14px]激光共聚焦显微镜基本操作及注意事项[/size][size=14px]激[/size][size=14px]光共聚焦显微镜的扫描模式[/size][color=#3daad6][b][size=14px][/size][/b][/color][size=14px]激[/size][size=14px]光共聚焦显微镜的实际应用[/size][size=16px][b]课程获取[img=,128,128]https://ng1.17img.cn/bbsfiles/images/2023/10/202310171820520008_9055_5659437_3.png!w128x128.jpg[/img][/b][/size][size=14px]原价:[/size][size=14px][b]599[/b][/size][size=14px][b]元[/b][/size][size=14px]课程[/size][size=14px][color=#ff4c00][b]限时:69元[/b][/color][/size][size=16px][b]报名须知[/b][/size]1、本课程为精品课程,无考试无证书,课程有效期内全部学习完可以在线申请培训证明。2、课程为虚拟产品,购买后不支持退换。3、购买时可申请增值税电子普通发票,如需专票请联系客服。4、课程有效期为购买后的360天内,课程有效期内可不限次数学习观看。

  • 红外设备 独立式的和非独立式的差别

    有3款设备。1.岛津IR tracer-100+AIM8800 2.布鲁克 Lumos 3.赛默飞 Nicolet iN10 MX 因为我们公司测的样品很小,主要考虑用显微。希望可以参考下大家的意见,关于这3款设备,包括性能、潜在问题、售后什么的都行,想到什么说什么吧。

  • 【原创】奥林巴斯品牌激光共聚焦显微镜你们了解多少?

    共聚焦显微系统(LSCM)诞生至今,短短二十多年里,已经成为了科学研究的重要工具。在我国生命科学研究领域,也发挥着巨大的作用。如何更好利用激光共聚焦技术,推动生命科学研究,受到了学术界的广泛关注。 激光共聚焦显微镜作为光学显微镜的重大改进,与传统场式(widefield)照明显微镜相比有许多独特的优点, 它可以控制焦深、照明强度,降低非焦平面光线噪音干扰,从一定厚度标本中获取光学切片。可以在不改变普通荧光显微镜的制片方法的前提下,观察到非常清晰的高质量图像,并且通过共聚焦显微镜可以十分方便的观察活的细胞或组织。 它的诞生,大大提高了科学研究的效率。目前共聚焦显微镜在国内的应用已经相当广泛,在越来越多的国家级科研院所与高校实验室,都能看到科研工作者忙碌在共聚焦显微镜前的身影。以下为奥林巴斯品牌类显微镜:智能激光扫描共聚焦显微镜——FV10iFV1000MPE:只关注多光子荧光成像FluoView™ FV1000共聚焦显微镜DSU转盘扫描显微镜奥林巴斯FluoView™ FV300(已停产)大家了解多少?欢迎讨论用后感想。

  • 【原创】耻辱的显微镜历史

    奥林巴斯公司所生产的最早的显微镜是“旭号”显微镜。“旭号”显微镜于1920年3月开始销售。它是由奥林巴斯的前身——株式会社高千穗制作所制作的。开始销售时,该显微镜的价格为125日元,大约相当于现在的125万日元。可以说该显微镜在当时有着工业产品所应有的名副其实的价值。另外,“旭号”显微镜还是奥林巴斯产品中唯一使用了用于制作大炮炮身的金属——“炮金”(铜和锡的合金,为青铜的一种)的产品。“旭号”显微镜开始销售时的品牌名称不是“奥林巴斯”,而是“TOKIWA”。“TOKIWA”这个名称由来于公司创始人山下长曾经工作过的公司“常盤(TOKIWA)商会”。当时,常盤商会向株式会社高千穗制作所出资,并负责产品的销售工作。顺便值得一提的是,奥林巴斯是在“旭号”显微镜发表后的第二年,将品牌名称改为“奥林巴斯”的。 上述资料摘自奥林巴斯自己的网站http://www.olympus-global.com/cn/corc/history/micro/asahi.cfm,“制作大炮炮身的金属”来制作显微镜的确是好创意,但同志们也应该知道,距“旭号”销售十八年后,日本帝国主义同样用“金属制作的大炮”打开我们中国的国门!

  • 金相显微镜的运用规程

    首先将金相显微镜的光源插头插到变压器上,颠末低压变压器接通电源。根据扩展倍数选用所需的物镜和目镜,分别安装在物镜座上及目镜筒内,并将转换器转至固定方位。将试样放在试样台中心,将查询面朝下并用弹簧片压住。转变粗调手轮先将载物台下落,一重用眼睛查询,使物镜尽可能的靠近试样表面(可是不要相碰),然后相反方向转变粗调手轮,使载物台逐步上升以调度焦距,当视场亮度增强时,再改用微调手轮调度,直到物像变清楚。恰当调度孔径光栏和视场光栏,以获得最佳质量的物像。规划和操作金相显微镜的种类和类型许多,最常见的是台式、立式和卧式三大类。普通由光学系统、照明系统和机械系统三大部分组成,有的显微镜还附有拍照设备。金相显微镜是一种精密的光学仪器,运用时央求细心稳重。在运用显微镜使命之前首先要打听其布局特征以及各个首要部件的互相方位和作用,然后按照显微的运用规程进行操作。

  • 光学显微镜简史

    早在公元前一世纪,大家就已发现颠末球形通明物体去调查细小物体时,可以使其扩大成像。后来逐步对球形玻璃外表能使物体扩大成像的规则有了知道。 1590年,荷兰和意大利的眼镜制作者现已造出相似显微镜的扩大仪器。1610年前后,意大利的伽利略和德国的开普勒在研讨望远镜的一起,改动物镜和目镜之间的间隔,得出合理的显微镜光路布局,其时的光学工匠遂纷繁从事显微镜的制作、推行和改善。   17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的开展作出了杰出的奉献。1665年前后,胡克在显微镜中参加粗动和微动调焦组织、照明体系和承载标本片的工作台。这些部件颠末不断改善,成为现代显微镜的根本组成部分。 1673~1677年时间,列文胡抑制成单组元扩大镜式的高倍显微镜,其间九台保管至今。胡克和列文胡克使用便宜的显微镜,在动、植物机体微观布局的研讨方面取得了杰出成就。 19世纪,高质量消色差浸液物镜的呈现,使显微镜调查微细布局的才能大为进步。1827年阿米奇第一个选用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制作和显微调查技能的迅速开展,并为19世纪后半叶包罗科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物供给了有力的东西。 在显微镜自身布局开展的一起,显微调查技能也在不断创新:1850年呈现了偏光显微术;1893年呈现了干与显微术;1935年荷兰物理学家泽尔尼克发明了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。 古典的光学显微镜仅仅光学元件和精密机械元件的组合,它以人眼作为接收器来调查扩大的像。后来在显微镜中参加了拍摄设备,以感光胶片作为可以记载和存储的接收器。现代又遍及选用光电元件、电视摄像管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完好的图画信息收集和处理体系。

  • 【分享】真实色共聚焦显微镜(new!)

    [size=3]1台真实色共聚焦扫描显微镜综合了以下6种设备的功能:[U]高分辨率光学显微镜SEM扫描电镜ROUGHNESS TESTER表面粗糙度仪3-D PROFILER 三维表面形貌轮廓仪STEP TESTER 台阶仪R.G.B不同波长单色激光共聚焦显微镜[/U]特点:1.真实颜色、形状同时准确的立体观察成像,避免同色异像,同像异色现象的产生;2.根据样品选择最合适R.G.B三原色进行单波长测定;3.高精度彩色图像输出1280*1024;4.图像拼接实现高放大、高分辨、大视场;5.每秒85桢的高速图像读取;6.高度差、粗糙度、三维尺寸等的直接测量。产品应用:MEMS、半导体、液晶相关产品、金属材料、化学材料、其他各种应用领域。[/size][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=64576]真实色共聚焦显微镜材料观测图片[/url]

  • 脑切片共聚焦显微镜

    [url=http://www.f-lab.cn/microscopes-system/rs-g4.html][b]脑切片共聚焦显微镜[/b][/url]是专业为大脑研究设计的[b]脑切片共聚焦成像显微镜[/b],非常适合大面积[b]脑切片共聚焦成像[/b],具有[b]共聚焦反射成像[/b]CRM和[b]共聚焦荧光成像[/b]CFM模式,[color=#333333][color=#333333]方便获得活体组织共聚焦图像.[/color][/color]脑切片共聚焦显微镜采用全球领先的图像缝合技术和条带图像镶嵌技术,快速创建亚像素精度的细胞尺度图像,并能够快速从脑切片图像中定位某个区域.脑切片共聚焦显微镜还可以用于动物研究,得益于其较大的成像视场,能够快速获得动物各个生长阶段的共聚焦图像和荧光细胞突出的图像,成像面积覆盖微米分辨率到30x30mm,实现微观成像和宏观成像.脑切片共聚焦显微镜还提供785nm和830nm激光,用于动物活体成像,成像传统深度高达250微米.脑切片共聚焦显微镜可广泛用于病理学研究,提供共聚焦反射成像CRM和共聚焦荧光成像CFM,有效获得活体组织图像.[img=脑切片共聚焦显微镜]http://www.f-lab.cn/Upload/RS-G4.jpg[/img][img=脑切片共聚焦显微镜]http://www.f-lab.cn/Upload/rsg4brain-section-.JPG[/img]脑切片共聚焦显微镜:[url=http://www.f-lab.cn/microscopes-system/rs-g4.html][b]http://www.f-lab.cn/microscopes-system/rs-g4.html[/b][/url]

  • 46个电子显微镜知识点,拿走不谢~

    [align=left]01、光学显微镜以可见光为介质,电子显微镜以电子束为介质,由于电子束波长远较可见光小,故电子显微镜分辨率远比光学显微镜高。光学显微镜放大倍率最高只有约1500倍,扫描式显微镜可放大到10000倍以上。[/align]02、根据de Broglie波动理论,电子的波长仅与加速电压有关:λe=h / mv= h / (2qmV)1/2=12.2 / (V)1/2 (Å )在 10 KV 的加速电压之下,电子的波长仅为0.12Å ,远低于可见光的4000 - 7000Å ,所以电子显微镜分辨率自然比光学显微镜优越许多,但是扫描式电子显微镜的电子束直径大多在50-100Å 之间,电子与原子核的弹性散射 (Elastic Scattering) 与非弹性散射 (Inelastic Scattering) 的反应体积又会比原有的电子束直径增大,因此一般穿透式电子显微镜的分辨率比扫描式电子显微镜高。03、扫描式显微镜有一重要特色是具有超大的景深(depth of field),约为光学显微镜的300倍,使得扫描式显微镜比光学显微镜更适合观察表面起伏程度较大的样品。04、扫描式电子显微镜,其系统设计由上而下,由电子枪 (Electron Gun) 发射电子束,经过一组磁透镜聚焦 (Condenser Lens) 聚焦后,用遮蔽孔径 (Condenser Aperture) 选择电子束的尺寸(Beam Size)后,通过一组控制电子束的扫描线圈,再透过物镜 (Objective Lens) 聚焦,打在样品上,在样品的上侧装有讯号接收器,用以择取二次电子 (Secondary Electron) 或背向散射电子 (Backscattered Electron) 成像。05、电子枪的必要特性是亮度要高、电子能量散布 (Energy Spread) 要小,目前常用的种类计有三种,钨(W)灯丝、六硼化镧(LaB6)灯丝、场发射 (Field Emission),不同的灯丝在电子源大小、电流量、电流稳定度及电子源寿命等均有差异。06、热游离方式电子枪有钨(W)灯丝及六硼化镧(LaB6)灯丝两种,它是利用高温使电子具有足够的能量去克服电子枪材料的功函数(work function)能障而逃离。对发射电流密度有重大影响的变量是温度和功函数,但因操作电子枪时均希望能以最低的温度来操作,以减少材料的挥发,所以在操作温度不提高的状况下,就需采用低功函数的材料来提高发射电流密度。07、价钱最便宜使用最普遍的是钨灯丝,以热游离 (Thermionization) 式来发射电子,电子能量散布为 2 eV,钨的功函数约为4.5eV,钨灯丝系一直径约100μm,弯曲成V形的细线,操作温度约2700K,电流密度为1.75A/cm2,在使用中灯丝的直径随着钨丝的蒸发变小,使用寿命约为40~80小时。08、六硼化镧(LaB6)灯丝的功函数为2.4eV,较钨丝为低,因此同样的电流密度,使用LaB6只要在1500K即可达到,而且亮度更高,因此使用寿命便比钨丝高出许多,电子能量散布为 1 eV,比钨丝要好。但因LaB6在加热时活性很强,所以必须在较好的真空环境下操作,因此仪器的购置费用较高。09、场发射式电子枪则比钨灯丝和六硼化镧灯丝的亮度又分别高出 10 - 100 倍,同时电子能量散布仅为 0.2 - 0.3 eV,所以目前市售的高分辨率扫描式电子显微镜都采用场发射式电子枪,其分辨率可高达 1nm 以下。10、场发射电子枪可细分成三种:冷场发射式(cold field emission , FE),热场发射式(thermal field emission ,TF),及肖基发射式(Schottky emission ,SE)11、当在真空中的金属表面受到108V/cm大小的电子加速电场时,会有可观数量的电子发射出来,此过程叫做场发射,其原理是高电场使电子的电位障碍产生Schottky效应,亦即使能障宽度变窄,高度变低,因此电子可直接"穿隧"通过此狭窄能障并离开阴极。场发射电子系从很尖锐的阴极尖端所发射出来,因此可得极细而又具高电流密度的电子束,其亮度可达热游离电子枪的数百倍,或甚至千倍。12、场发射电子枪所选用的阴极材料必需是高强度材料,以能承受高电场所加诸在阴极尖端的高机械应力,钨即因高强度而成为较佳的阴极材料。场发射枪通常以上下一组阳极来产生吸取电子、聚焦、及加速电子等功能。利用阳极的特殊外形所产生的静电场,能对电子产生聚焦效果,所以不再需要韦氏罩或栅极。第一(上)阳极主要是改变场发射的拔出电压(extraction voltage),以控制针尖场发射的电流强度,而第二(下)阳极主要是决定加速电压,以将电子加速至所需要的能量。13、要从极细的钨针尖场发射电子,金属表面必需完全干净,无任何外来材料的原子或分子在其表面,即使只有一个外来原子落在表面亦会降低电子的场发射,所以场发射电子枪必需保持超高真空度,来防止钨阴极表面累积原子。由于超高真空设备价格极为高昂,所以一般除非需要高分辨率SEM,否则较少采用场发射电子枪。14、冷场发射式最大的优点为电子束直径最小,亮度最高,因此影像分辨率最优。能量散布最小,故能改善在低电压操作的效果。为避免针尖被外来气体吸附,而降低场发射电流,并使发射电流不稳定,冷场发射式电子枪必需在10-10 torr的真空度下操作,虽然如此,还是需要定时短暂加热针尖至2500K(此过程叫做flashing),以去除所吸附的气体原子。它的另一缺点是发射的总电流最小。15、热场发式电子枪是在1800K温度下操作,避免了大部份的气体分子吸附在针尖表面,所以免除了针尖flashing的需要。热式能维持较佳的发射电流稳定度,并能在较差的真空度下(10-9 torr)操作。虽然亮度与冷式相类似,但其电子能量散布却比冷式大3~5倍,影像分辨率较差,通常较不常使用。16、肖基发射式的操作温度为1800K,它系在钨(100)单晶上镀ZrO覆盖层,ZrO将功函数从纯钨的4.5eV降至2.8eV,而外加高电场更使电位障壁变窄变低,使得电子很容易以热能的方式跳过能障(并非穿隧效应),逃出针尖表面,所需真空度约10-8~10-9torr。其发射电流稳定度佳,而且发射的总电流也大。而其电子能量散布很小,仅稍逊于冷场发射式电子枪。其电子源直径比冷式大,所以影像分辨率也比冷场发射式稍差一点。17、场发射放大倍率由25倍到650000倍,在使用加速电压15kV时,分辨率可达到1nm,加速电压1kV时,分辨率可达到2.2nm。一般钨丝型的扫描式电子显微镜仪器上的放大倍率可到200000倍,实际操作时,大部份均在20000倍时影像便不清楚了,但如果样品的表面形貌及导电度合适,最大倍率650000倍是可以达成的。18、由于对真空的要求较高,有些仪器在电子枪及磁透镜部份配备了3组离子泵(ion pump),在样品室中,配置了2组扩散泵(diffusion pump),在机体外,以1组机械泵负责粗抽,所以有6组大小不同的真空泵来达成超高真空的要求,另外在样品另有以液态氮冷却的冷阱(cold trap),协助保持样品室的真空度。19、平时操作,若要将样品室真空亦保持在10-8pa(10-10torr),则抽真空的时间将变长而降低仪器的便利性,更增加仪器购置成本,因此一些仪器设计了阶段式真空(step vacuum),亦即使电子枪、磁透镜及样品室的真空度依序降低,并分成三个部份来读取真空计读数,如此可将样品保持在真空度10-5pa的环境下即可操作。平时待机或更换样品时,为防止电子枪污染,皆使用真空阀(gun valve)将电子枪及磁透镜部份与样品室隔离,实际观察时再打开使电子束通过而打击到样品。20、场发射式电子枪的电子产生率与真空度有密切的关系,其使用寿命也随真空度变差而急剧缩短,因此在样品制备上必须非常注意水气,或固定用的碳胶或银胶是否烤干,以免在观察的过程中,真空陡然变差而影响灯丝寿命,甚至系统当机。21、在电子显微镜中须考虑到的像差(aberration)包括:衍射像差(diffraction aberration)、球面像差(spherical aberration)、散光像差(astigmatism)及波长散布像差(即色散像差,chromatic aberration)。22、面像差为物镜中主要缺陷,不易校正,因偏离透镜光轴之电子束偏折较大,其成像点较沿轴电子束成像之高斯成像平面(Gauss image plane)距透镜为近。23、散光像差由透镜磁场不对称而来,使电子束在二互相垂直平面之聚焦落在不同点上。散光像差一般用散光像差补偿器(stigmator)产生与散光像差大小相同、方向相反的像差校正,目前电子显微镜其聚光镜及物镜各有一组散光像差补偿器。24、光圈衍射像差(Aperture diffraction):由于电子束通过小光圈电子束产生衍射现象,使用大光圈可以改善。25、色散像差(Chromatic aberration):因通过透镜电子束能量差异,使得电子束聚焦后并不在同一点上。26、电子束和样品作用体积(interaction volume),作用体积约有数个微米(μm)深,其深度大过宽度而形状类似梨子。此形状乃源于弹性和非弹性碰撞的结果。低原子量的材料,非弹性碰撞较可能,电子较易穿进材料内部,较少向边侧碰撞,而形成梨子的颈部,当穿透的电子丧失能量变成较低能量时,弹性碰撞较可能,结果电子行进方向偏向侧边而形成较大的梨形区域。27、在固定电子能量时,作用体积和原子序成反比,乃因弹性碰撞之截面积和原子序成正比,以致电子较易偏离原来途径而不能深入样品。28、电子束能量越大,弹性碰撞截面积越小,电子行走路径倾向直线而可深入样品,作用体积变大。29、电子束和样品的作用有两类,一为弹性碰撞,几乎没有损失能量,另一为非弹性碰撞,入射电子束会将部份能量传给样品,而产生二次电子、背向散射电子、俄歇电子、X光、长波电磁放射、电子-空位对等。这些信号可供SEM运用者有二次电子、背向散射电子、X光、阴极发光、吸收电子及电子束引起电流(EBIC)等。30、二次电子(Secondary Electrons):电子束和样品作用,可将传导能带(conduction band)的电子击出,此即为二次电子,其能量约 50eV。由于是低能量电子,所以只有在距离样品表面约50~500?深度范围内所产生之二次电子,才有机会逃离样品表面而被侦测到。由于二次电子产生的数量,会受到样品表面起伏状况影响,所以二次电子影像可以观察出样品表面之形貌特征。31、背向散射电子(Backscattered Electrons):入射电子与样品子发生弹性碰撞,而逃离样品表面的高能量电子,其动能等于或略小于入射电子的能量。背向散射电子产生的数量,会因样品元素种类不同而有差异,样品中平均原子序越高的区域,释放出来的背向散射电子越多,背向散射电子影像也就越亮,因此背向散射电子影像有时又称为原子序对比影像。由于背向散射电子产生于距样品表面约5000?的深度范围内,由于入射电子进入样品内部较深,电子束已被散射开来,因此背向散射电子影像分辨率不及二次电子影像。32、X光:入射电子和样品进行非弹性碰撞可产生连续X光和特征X光,前者系入射电子减速所放出的连续光谱,形成背景决定最少分析之量,后者系特定能阶间之能量差,可藉以分析成分元素。33、电子束引致电流(Electron-beam induced Current , EBIC):当一个p-n接面(Junction )经电子束照射后,会产生过多的电子-空位对,这些载子扩散时被p-n接面的电场收集,外加线路时即会产生电流。34、阴极发光(Cathodoluminescence):当电子束产生之电子-空位对再结合时,会放出各种波长电磁波,此为阴极发光(CL),不同材料发出不同颜色之光。35、样品电流(Specimen Current):电子束射到样品上时,一部份产生二次电子及背向散射电子,另一部份则留在样品里,当样品接地时即产生样品电流。36、电子侦测器有两种,一种是闪烁计数器侦测器(Scintillator),常用于侦测能量较低的二次电子,另一种是固态侦测器(solid state detector),则用于侦测能量较高的反射电子。37、影响电子显微镜影像品质的因素:A. 电子枪的种类:使用场发射、LaB6或钨丝的电子枪。B. 电磁透镜的完美度。C. 电磁透镜的型式: In-lens ,semi in-lens, off-lensD. 样品室的洁净度: 避免粉尘、水气、油气等污染。E. 操作条件: 加速电压、工作电流、仪器调整、样品处理、真空度。F. 环境因素: 振动、磁场、噪音、接地。38、如何做好SEM的影像,一般由样品的种类和所要的结果来决定观察条件,调整适当的加速电压、工作距离 (WD)、适当的样品倾斜,选择适当的侦测器、调整合适的电子束电流。39、一般来说,加速电压提高,电子束波长越短,理论上,只考虑电子束直径的大小,加速电压愈大,可得到愈小的聚焦电子束,因而提高分辨率,然而提高加速电压却有一些不可忽视的缺点:A. 无法看到样品表面的微细结构。B. 会出现不寻常的边缘效应。C. 电荷累积的可能性增高。D. 样品损伤的可能性增高。因此适当的加速电压调整,才可获得最清晰的影像。40、适当的工作距离的选择,可以得到最好的影像。较短的工作距离,电子讯号接收较佳,可以得到较高的分辨率,但是景深缩短。较长的工作距离,分辨率较差,但是影像景深较长,表面起伏较大的样品可得到较均匀清晰的影像。41、SEM样品若为金属或导电性良好,则表面不需任何处理,可直接观察。若为非导体,则需镀上一层金属膜或碳膜协助样品导电,膜层应均匀无明显特征,以避免干扰样品表面。金属膜较碳膜容易镀,适用于SEM影像观察,通常为Au或Au-Pd合金或Pt。而碳膜较适于X光微区分析,主要是因为碳的原子序低,可以减少X光吸收。42、SEM样品制备一般原则为: A. 显露出所欲分析的位置。 B. 表面导电性良好,需能排除电荷。 C. 不得有松动的粉末或碎屑(以避免抽真空时粉末飞扬污染镜柱体)。 D. 需耐热,不得有熔融蒸发的现象。 E. 不能含液状或胶状物质,以免挥发。 F. 非导体表面需镀金(影像观察)或镀碳(成份分析)。43、镀导电膜的选择,在放大倍率低于1000倍时,可以镀一层较厚的Au,以提高导电度。 放大倍率低于10000倍时,可以镀一层Au来增加导电度。放大倍率低于100000倍时,可以镀一层Pt或Au-Pd合金,在超过100000时,以镀一层超薄的Pt或Cr膜较佳。44、电子束与样品作用,当内层电子被击出后,外层电子掉入原子内层电子轨道而放出X光,不同原子序,不同能阶电子所产生的X光各不相同,称为特征X光,分析特征X光,可分析样品元素成份。45、分析特征X光的方式,可分析特征X光的能量分布,称为EDS,或分析特征X光的波长,称为WDS。X光能谱的分辨率,在EDS中约有100~200eV的分辨率,在WDS中则有5~ 10eV的分辨率。由于EDS的分辨率较WDS差,因此在能谱的解析上,较易产生重迭的情形。46、由于电子束与样品作用的作用体积(interaction volume)的关系,特征X光的产生和作用体积的大小有关,因此在平面的样品中,EDS或WDS的空间分辨率,受限于作用体积的大小。

  • 【原创】真实色共聚焦显微镜对比激光共聚焦显微镜的优势!

    [center]真实色共焦显微镜与激光扫描共焦显微镜主要特点对比[/center]真实色共焦显微镜与激光扫描共焦显微镜,二者在成像原理上基本是一样的,最大不同之处是照明光源不同。1、激光扫描共焦显微镜激光扫描共焦显微镜的照明光源是激光,即单色光。其实际成像过程是根据被观察物体对该单色激光的反射光的强弱来成像的。由于是单色光照明,不能分辨颜色,对于在同一试样的同一视场内,颜色不同,但对该单色激光反射光强度相同的不同组织或成分不能分辨。容易产生同相异色,同色异相的现象,不利于对微观组织和成分的正确分辨。2、真实色共焦显微镜真实色共焦显微镜的光源是氙光源,即白光。其实际成像过程是在白光照明的条件下,对物体形貌(包括颜色)进行综合的成像。 由于是多色光照明和成像,真实色共焦显微镜能够更真实的反应物体的颜色和形貌,避免了激光扫描共焦显微镜产生的同相异色,同色异相的现象发生,观察者可以通过颜色,分辨和判断试样的成分和组织。在这方面,其分辨率远强于激光扫描共焦显微镜 综合分析:在有颜色差异的试样的观察条件下,真实色共焦显微镜避免了激光扫描共焦显微镜产生的同相异色,同色异相的现象发生,观察者可以通过颜色,分辨和判断试样的成分和组织。在这种条件下,真实色共焦显微镜的分辨率高于激光扫描共焦显微镜。在单色试样的观察条件下,分辨率才接近各自的技术指标。然而,在实际观察的试样中,绝大多数不同的组织和成分都是有颜色差异的。对应于没有颜色差异或颜色差异小的试样,可以通过人为的染色(例如腐蚀处理),提高图像的分辨能力。在这一方面,激光扫描共焦显微镜是无能为力的。 另外,分辨率是在特定条件下所能达到的一项技术指标,当在实际使用中,不满足该技术条件时(实际是常常不能满足),其分辨率是达不到所给出的数值。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制