当前位置: 仪器信息网 > 行业主题 > >

射线小动物活体成像系统

仪器信息网射线小动物活体成像系统专题为您提供2024年最新射线小动物活体成像系统价格报价、厂家品牌的相关信息, 包括射线小动物活体成像系统参数、型号等,不管是国产,还是进口品牌的射线小动物活体成像系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合射线小动物活体成像系统相关的耗材配件、试剂标物,还有射线小动物活体成像系统相关的最新资讯、资料,以及射线小动物活体成像系统相关的解决方案。

射线小动物活体成像系统相关的论坛

  • 小动物光声成像系统

    [b][url=http://www.f-lab.cn/vivo-imaging/msot.html]小动物光声成像系统[/url][/b]MSOT是全球唯一能够提供[b][url=http://www.f-lab.cn/vivo-imaging/msot.html]小动物全身光声成像[/url][/b]能力的小动物实时光声成像系统,用于临床前小动物成像和临床前研究。小动物光声成像系统能够可帮助生物过程和药理物质作用在体内,在深部组织中高分辨率下实时观察。小动物光声成像系统是全球唯一混合光声超声成像技术,OPUS成像技术的同类仪器,也是世界上第一个交叉断层成像系统,提供非平行的用户独立的图像质量,并且具有实时性,可以获得整个动物的横截面影像。这套小动物光声成像系统包含组织形态基于血红蛋白信息产生的光声层析成像,反射式超声成像的集成(r-uct)能力添加互补的解剖信息,特别是低灌注结构。小动物光声成像系统可以调谐激发激光波长,采集光声信号,执行多个波长的光谱分解,这样内源性色基团以及外在探针可有效被区分。小动物光声成像系统工作MSOT探测器小动物置台可以利用各种手持探测器实现小动物的二维和三维自动成像。动物置台可作为内部图像和EIP MSOT成像系统的附件。主要特点包括:自动数据采集三维阶段控制加热的动物垫激光安全联锁装置动物监控摄像机接入导管或生命体征监测[img=小动物光声成像系统]http://www.f-lab.cn/Upload/MOST-invision-imaging.JPG[/img]小动物光声成像系统混合光声超声成像技术(OPUS成像)小动物光声成像系统是全球唯一混合光声超声成像技术,OPUS成像技术的同类仪器,也是世界上第一个交叉操作断层成像系统,提供非平行的用户独立的图像质量,并且具有实时性,可以获得整个动物的横截面影像。这套小动物光声成像系统包含组织形态基于血红蛋白信息产生的光声层析成像,反射式超声成像的集成(r-uct)能力添加互补的解剖信息,特别是低灌注结构。[img=小动物光声成像系统]http://www.f-lab.cn/Upload/Hybrid-OPUS-IMAGING.jpg[/img]初步实验表明,小动物光声成像系统t的升级版将应用在以下需要可视化的任何结构:肿瘤边缘转移胰腺膀胱小动物光声成像系统技术信息单波长的光声成像在10 Hz帧频高达5赫兹帧频的实时频谱分量可视化公司注册的反射式超声计算机断层扫描(r-uct)MSOT IN VISION 512-ECHO成像穿透深度2-4厘米,适合全身小动物成像。横截面的空间平面分辨率:150μM高功率/快速可调谐激光系统(100兆焦耳/ 10毫秒)具有64/128/256/512元件的断层超声探测器阵列全自动图像采集用于光谱和时间分析的数据后处理套件[b][/b]

  • 小动物脑部活动神经成像仪介绍

    [url=http://www.f-lab.cn/vivo-imaging/nvista.html][b]小动物脑部活动神经成像仪[/b]nVista[/url]是美国inscopix公司新一代细胞级活体实时脑动态成像分析系统,具有细胞级分辨率和实时成像功能。小动物脑部活动神经成像仪采用微型显微镜设计,具有领先的钙动态单光子落射荧光成像技术,适合动态神经活动成像。小动物脑部活动神经成像仪nVista特点成千上万的神经元同时成像单细胞分辨率水平具有细胞类型特异性任何小动物脑区均可成像纵向时间达到数月之久针对于自由活动的动物和鸟类[b][img=小动物脑部活动神经成像仪]http://www.f-lab.cn/Upload/nVista-inscopix.JPG[/img][img=小动物脑部活动神经成像仪]http://www.f-lab.cn/Upload/nVista-calcium-imaging.JPG[/img][/b]小动物脑部活动神经成像仪:[url]http://www.f-lab.cn/vivo-imaging/nvista.html[/url][b][/b]

  • 小动物光声成像系统说明书

    [url=http://www.f-lab.cn/vivo-imaging/msot.html][b]小动物光声成像系统MSOT[/b][/url]是全球唯一能够提供[b]小动物全身光声成像[/b]能力的小动物[b]实时光声成像系统[/b],用于临床前小动物成像和临床前研究。小动物光声成像系统能够可帮助生物过程和药理物质作用在体内,在深部组织中高分辨率下实时观察。小动物光声成像系统是全球唯一[b]混合光声超声成像技术,OPUS成像[/b]技术的同类仪器,也是世界上第一个[b]交叉断层成像系统[/b],提供非平行的用户独立的图像质量,并且具有实时性,可以获得整个动物的横截面影像。[img=小动物光声成像系统]http://www.f-lab.cn/Upload/MOST-invision-imaging.JPG[/img][img=小动物光声成像系统]http://www.f-lab.cn/Upload/Hybrid-OPUS-IMAGING.jpg[/img]小动物光声成像系统:[url]http://www.f-lab.cn/vivo-imaging/msot.html[/url]

  • 小动物体内荧光成像系统应用方向

    [img=小动物体内荧光成像系统]http://www.f-lab.cn/Upload/FluorVivo-system.jpg[/img][b][url=http://www.f-lab.cn/vivo-imaging/fluorvivo.html]小动物体内荧光成像系统fluorvivo[/url]应用[/b]表达荧光标记的小动物荧光筛选;肿瘤转移负担评价;药效试验内化物质的药代动力学;荧光物质的定量测量,如肿瘤负荷;连续或时间推移监测。小动物体内荧光成像系统:[url]http://www.f-lab.cn/vivo-imaging/fluorvivo.html[/url]

  • 小动物荧光发光成像优势特点

    [b][url=http://www.f-lab.cn/vivo-imaging/photonimager.html]小动物荧光发光成像系统photonimager[/url]™ [/b]系统优势: 1.生物荧光与荧光成像操作非常方便 2.无与伦比的性能和精度 3.实时成像能力 4.模块化理念[img=小动物荧光发光成像系统]http://www.f-lab.cn/Upload/Photonimager-IntroRT.jpg[/img]小动物荧光发光成像系统photonimager易于发光荧光成像特点 1.从蓝光到近红外的全波段成像,保证生物发光和荧光成像,连续选择激发波长450nm-1000nm 2.配备高达10带通滤光片 3.自动自发荧光滤除 4.混合像元分解 5.multilabeling能力 6.从全身发光成像到细胞尺寸成像小动物荧光发光成像:[url]http://www.f-lab.cn/vivo-imaging/photonimager.html[/url]

  • 小动物视网膜成像显微镜特点及应用

    [b][url=http://www.f-lab.cn/vivo-imaging/micron-iv.html]小动物视网膜成像显微镜Micron IV[/url]特点: [/b]可用于明场、血管结构和荧光(GFP,YFP,mCherry,CFP标记)成像。定制的最先进低噪音三芯片CCD:高灵敏度捕捉微弱的荧光。 近红外成像(可达700-900nm,最高到900nm)视网膜成像精度:小鼠4 μm,大鼠8 μm位滤光片轮,双回补灯及滤光片配置,更加灵活,包含荧光及近红外滤光片,提供亮场和荧光成像模式
 实验台:可三维翻转及旋转,便于调整大小鼠眼睛角度清晰成像。[img=小动物视网膜成像显微镜]http://www.f-lab.cn/Upload/Micron-retinal-imaging.jpg[/img]小动物视网膜成像显微镜Micron IV可提供分辨率达4 μm的高清晰视网膜影像,且与荧光显微镜类似,可观察明视野和荧光(Ex. CFP, GFP, mCh erry等) 影像。方便的软件设计可直接从明场成像转换至荧光成像。[url=http://www.f-lab.cn/Upload/retinal-imaging-micron.jpg][img=小动物视网膜成像显微镜]http://www.f-lab.cn/Upload/retinal-imaging-micron.jpg[/img][/url][b]小动物视网膜成像显微镜Micron IV应用范围:[/b]荧光血管造影糖尿病视网膜病变视网膜母细胞瘤视网膜黄斑衰退症早产儿视网膜病变脉络膜新生血管小动物视网膜成像显微镜:[url]http://www.f-lab.cn/vivo-imaging/micron-iv.html[/url]

  • 【讲座抢先知】进口教授在线授课!1T场强下小动物成像原理和应用,错过可就没了!

    [align=left][b]推荐讲座:[b][b][b]1T场强下小动物成像原理和应用(Principles of MRI and small animal imaging at 1T field strength)[/b][/b][/b][/b][/align][align=left][b]举行时间:2019年6月12日 15:00[/b][/align][align=left][b]讲师:Peter Bendel[/b][/align][align=left][b]讲师简介:[/b]Aspect Imaging的首席技术官,Aspect Imaging科学顾问委员会的成员。负责领导公司的平台技术计划,带领Aspect的技术团队研发探究新技术,使其在行业内长期明显的竞争优势。他在MRI领域拥有超过30年的经验,曾任魏茨曼科学研究所的高级研究员兼化学研究支持部核磁共振和核磁共振设施主任;曾任Elscint研发物理学家,田纳西大学医学中心访问科学家,并在埃克森美孚公司研究实验室工作。撰写了60多篇科学论文,并在MRI领域获得多项专利。[/align][align=left][b]课程描述:[/b]在以往的认识中,核磁共振研究动物器官、肿瘤、脑部成像、胶质瘤时,动辄需要磁场强度3T及以上的设备,成本大大增加。目前等来自以色列Aspect的1.0T紧凑型小动物核磁共振成像仪,在1.0T的磁场强度下,完美实现组织成像、肿瘤生长研究、脑部成像及胶质瘤研究、三维组织学成像、细胞跟踪研究、多模态成像(如PET-MRI)等。经过前期3个月的筹备,纽迈分析有幸邀请到来自以色列Dr. Peter Bendel分享该设备在动物成像方面的突出应用及最新的研究成果。[/align][align=left][b]现在!立马!报名![/b][/align][align=left][url]https://www.instrument.com.cn/webinar/meeting_5102.html[/url][/align]

  • 小动物核磁共振应用案例分享

    小动物核磁共振应用案例分享案例一:肺部原位肿瘤观察案例二:肥胖鼠脂肪分布观察案例三:大鼠不同器官部位观察使用仪器:[url=http://www.instrument.com.cn/netshow/SH101422/C166279.htm]小动物核磁共振成像仪NM20-060H-I[/url]其他相关应用:[url=http://www.instrument.com.cn/netshow/SH101422/C221935.htm]MiniQMR核磁共振动物体脂定量分析仪_清醒动物体成分分析仪[/url][url=http://www.instrument.com.cn/netshow/SH101422/C261835.htm]核磁共振造影剂分析仪[/url]

  • 小动物脊髓夹立体定向仪

    [url=http://www.f-lab.cn/stereotaxis/sts-7-ht.html][b]小动物脊髓夹立体定向仪[/b]STS-7-HT[/url]用于夹紧基因敲除小鼠或新生大鼠的脊髓,并具有[b]立体定向仪器[/b]的功能。[b]小动物脊髓夹立体定向仪[/b]STS-7-HT[b]特色[/b]其脊髓夹紧装置可以让用户使用指尖感觉到夹紧触感,从而防止对脊髓造成损伤[b],[/b]结合了主要用于显微操作器的精细调节技术,可以对一个目标点准确定位[b],[/b]配置小动物头部夹紧单元(口夹和鼻甲),将小鼠或大鼠的小脑袋固定在正确的位置,提供了有精细调节功能的辅助耳固定杆,辅助耳固定杆的点可用于各种尺寸,并且根据用途替换,替代容易(例如,用来避免鼓膜的破裂或牢固地固定耳朵),自从Narishige的立体定位操作器根据此标准制造后,STS-7-HT配备了一根AP框架杆(18.7mm方形),用来安装如SM-15Narishige立体定位显微操作器这样的配件,需要带显微操作器的版本请访问 STS-7 *用于有发育完全的耳道的小鼠或新生大鼠,[b][b]小动物脊髓夹立体定向仪[/b]STS-7规格[/b][table=505][tr][td][b]配件[/b][/td][td]专用辅助耳固定杆连接环螺丝六角扳手[/td][/tr][tr][td][b]尺寸大小[/b][/td][td](基板):宽400 x 深300 x 高110mm, 9.6kg[/td][/tr][/table]更多定位仪请浏览官网:[url]http://www.f-lab.cn/stereotaxis.html[/url]

  • 小动物视网膜激光光凝仪简介

    [url=http://www.f-lab.cn/vivo-imaging/cnv.html][b]小动物视网膜激光光凝仪[/b][/url]是专业为小鼠和大鼠视网膜研究而设计的精密[b]视网膜光凝仪[/b]和[b]激光光凝系统[/b],它采用图像引导激光系统产生精确易于传送的[b]激光光凝固[/b]效果,以产生[b]脉络膜新生血管CN[/b]V。其用小动物视网膜激光光凝仪户友好的设计使技术人员能够精确可靠地控制产生脉络膜新生血管CNV所需的激光焦点的位置,大小和强度。产生脉络膜新生血管CNV优点准确控制和记录试验样品位置光斑尺寸的精确控制易于使用紧凑、精确的激光传输[img=小动物视网膜激光光凝仪]http://www.f-lab.cn/Upload/CNV-choroidal-neovascularization.jpg[/img]小动物视网膜激光光凝仪:[url]http://www.f-lab.cn/vivo-imaging/cnv.html[/url]

  • 【讲座抢先知】进口教授在线授课!1T场强下小动物成像原理和应用,英语好不好都要来听~

    [align=left][b]推荐讲座:[b][b][b]1T场强下小动物成像原理和应用(Principles of MRI and small animal imaging at 1T field strength)[/b][/b][/b][/b][/align][align=left][b]举行时间:2019年6月12日 15:00[/b][/align][align=left][b][b]讲师:Peter Bendel[/b][/b][/align][align=left][b]讲师简介:[/b]Aspect Imaging的首席技术官,Aspect Imaging科学顾问委员会的成员。负责领导公司的平台技术计划,带领Aspect的技术团队研发探究新技术,使其在行业内长期明显的竞争优势。他在MRI领域拥有超过30年的经验,曾任魏茨曼科学研究所的高级研究员兼化学研究支持部核磁共振和核磁共振设施主任;曾任Elscint研发物理学家,田纳西大学医学中心访问科学家,并在埃克森美孚公司研究实验室工作。撰写了60多篇科学论文,并在MRI领域获得多项专利。[/align][align=left][b]课程描述:[/b]在以往的认识中,核磁共振研究动物器官、肿瘤、脑部成像、胶质瘤时,动辄需要磁场强度3T及以上的设备,成本大大增加。目前等来自以色列Aspect的1.0T紧凑型小动物核磁共振成像仪,在1.0T的磁场强度下,完美实现组织成像、肿瘤生长研究、脑部成像及胶质瘤研究、三维组织学成像、细胞跟踪研究、多模态成像(如PET-MRI)等。经过前期3个月的筹备,纽迈分析有幸邀请到来自以色列Dr. Peter Bendel分享该设备在动物成像方面的突出应用及最新的研究成果。[/align][align=left][b]现在!立马!报名![/b][/align][align=left][url]https://www.instrument.com.cn/webinar/meeting_5102.html[/url][/align]

  • 小动物心电图监测仪特点

    [url=http://www.f-lab.cn/vivo-imaging/ecgenie.html][b]小动物心电图监测仪小动物心电图监测仪[/b]ECGenie[/url]是快速无创记录大鼠心电图,清醒小鼠心电图和豚鼠心电图ECG的动物心电图仪和动物心电图记录仪 ,广泛用于实验鼠类心律失常检测,健康监测以及脆弱的转基因和敲除基因动物监测,包括新生幼犬的药物筛选等。小动物心电图监测仪ECGenie记录2KHZ的心电信号,小鼠心电图的快速提供最佳保真度的时间间隔的持续时间(例如,一个~ 8毫秒QRS间期)。小动物心电图监测仪ECGenie具有专利技术,通过动物的爪子进行非侵入性检测心脏电活动。的大小和可支配的踏板电极间距便于电极和爪子之间的接触提供实验动物的II导联心电图。ezcg分析软件,通过鼠标的细节设置,分析信号来评估动物的健康,心脏疾病,药物毒性。[img=小动物心电图监测仪]http://www.f-lab.cn/Upload/ECGenie-ECGs.jpg[/img]小动物心电图监测仪ECGenie特点:新型铅板信号• 小鼠和较大啮齿类动物的“快速连接”可互换平台• 一次性踏板电极• 高通和低通滤波• SCSI和USB接口连接Windows和MacOS计算机无麻醉-无植入物-无手术ezcg分析软件的特点:ezcg规范PDF下载• 解释心电图从意识活动的小鼠,大鼠,豚鼠公布的心率和血压持续时间的算法• 自定义包含客户特定的算法,包括QT间期• 用于多个电子表格应用程序的HTML和文本格式输出[img=小动物心电图监测仪]http://www.f-lab.cn/Upload/ECGenie-ECGs-signal.jpg[/img]小动物心电图监测仪:[url]http://www.f-lab.cn/vivo-imaging/ecgenie.html[/url]

  • 近红外活体荧光成像系统介绍

    [url=http://www.f-lab.cn/vivo-imaging/fluobeam-imaging.html][b]近红外活体荧光成像系统[/b][/url]是开放式[b]活体荧光成像系统[/b]和[b]体内荧光成像系统[/b],是非侵入性[b]活体荧光成像系统品牌[/b]中具有适中的[b]活体荧光成像系统价格[/b],也可用于术中荧光成像.[b]近红外活体荧光成像系统[/b]fluobeam提供各种活体动物实时荧光图像和荧光成像视频,适合各种大小活体动物无创荧光成像,也可用于及手术或切除手术术中荧光成像.[b]近红外活体荧光成像系统[/b]fluobeam超级小巧而紧凑,适用于各种实验室研究,广泛兼容各种荧光探针,适用于不同的活体研究领域。[b]近红外活体荧光成像系统[/b]应用领域包括:• 肿瘤学淋巴结定位• 的分布和发展• 靶向探针• 心血管研究• 免疫学和传染病 [img=近红外活体荧光成像系统]http://www.f-lab.cn/Upload/fluoptics_system_imaging.jpg[/img][b]近红外活体荧光成像系统[/b]fluobeam不同波长选择:• fluobeam800• fluobeam700• fluobeam650• fluobeam600• fluobeam500[img=近红外活体荧光成像系统]http://www.f-lab.cn/Upload/fluobeam-results.png[/img]近红外活体荧光成像系统:[url]http://www.f-lab.cn/vivo-imaging/fluobeam-imaging.html[/url]

  • 【推荐讲座】:9月26日 小动物手术解决方案新进展

    【网络讲座】:小动物手术解决方案新进展【讲座时间】:2016年09月26日 14:00【主讲人】:殷亮,2009年毕业于华东师范大学,生理学专业硕士研究生。研究方向为学习与记忆。有多年动物手术实验,电生理与行为学实验经验,现任哈佛仪器动物研究仪器-亚洲渠道经理。【会议简介】小动物手术过程中,研究人员会遇到小动物死亡或手术失败的困境。经过我们大量实验研究,发现完整的术前准备工作、流畅的术中操作步骤、以及精确的手术器械和监测仪器,是小动物手术成败与否的至关重要的因素。特别是完整而齐全的实验设备是保证实验顺利进行,实验数据准确可靠的基础。随着技术的发展,小动物手术实验设备向着高效,简易,集成度高的方向在发展。借此机会,我们特地开设一堂小动物手术解决方案新进展的讲课!希望能够帮助广大研究人员,顺利完成手术过程、得到理想的监测指标。希望对此有兴趣的广大研究人员,踊跃报名!-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名截止时间:2016年09月26日 13:304、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/21275、报名及参会咨询:QQ群—290101720,扫码入群“大课堂”http://ng1.17img.cn/bbsfiles/images/2017/01/201701191702_673961_2507958_3.gif

  • 双波长活体荧光成像系统特点

    [url=http://www.f-lab.cn/vivo-imaging/lab-flare.html][b]双波长活体荧光成像系统[/b][/url]是最先进的开放空间[b]近红外荧光成像系统[/b],能够真正同时获得彩色视频和两种不同波长的[b]近红外荧光图像,[/b]广泛用于[b]体外近红外荧光成像分析,活体近红外荧光成像分析,荧光造影剂研发,低温荧光层析成像[/b]等应用。双波长活体荧光成像系统是实验室近红外荧光成像研究的理想仪器,它提供A/D、D/A、TTL输入和输出,使复杂的重复实验自动化完成双波长活体荧光成像系统采用2个紧凑荧光成像头通过长距离六自由度运动支架和电磁制动臂连接到可移动的小车上,方便移动使用,并具有多种无菌操作和减少反射伪影的附件也可供使用。双波长活体荧光成像系统应用体外近红外荧光成像分析活体近红外荧光成像分析新型近红外荧光造影剂的研制低温荧光层析成像[img=双波长活体荧光成像系统]http://www.f-lab.cn/Upload/flare-open-imaging-R1.JPG[/img]双波长活体荧光成像系统规格参数视场 从0.9厘米到25.3厘米不等。工作距离 从12"到18"[b]不等[/b]分辨率 从50微米到500微米光照波段 3(彩色视频,近红外通道# 1、近红外通道# 2)同时成像通道 3通道(彩色视频,近红外通道# 1、近红外通道# 2)无菌使用 通过专有的悬垂/盾牌组合。见附件标签。可移植性好 4医用个人脚轮刹车运输 可重复使用,防水,防火,防震运输箱声明 仅用于实验室研究使用。不用于人类或动物诊断。[img=双波长活体荧光成像系统]http://www.f-lab.cn/Upload/FLARE-OPEN-imagin_300x239.png[/img][img=双波长活体荧光成像系统]http://www.f-lab.cn/Upload/FLARE-OPEN-imagin_300x239.png[/img]双波长活体荧光成像系统:[url]http://www.f-lab.cn/vivo-imaging/lab-flare.html[/url]

  • 新荧光成像技术可清晰呈现血管脉动

    中国科技网讯 据物理学家组织网近日报道,美国斯坦福大学的科学家开发出一种荧光成像技术,能够使活体动物血管脉动以前所未有的清晰度呈现。与传统的影像技术相比,其增加的清晰度类似于擦拭掉眼镜前的迷雾一般。该研究结果发表在最新一期的《自然医学》杂志在线版上。 该技术被称为近红外-Ⅱ成像,或NIR-Ⅱ。研究人员首先将水溶性碳纳米管注射到活体的血液中,然后用激光照射要观察的对象,如小白鼠。激光的波长在近红外范围内,约为0.8微米,可导致专门设计的碳纳米管发出1微米至1.4微米的波长更长的荧光,用于检测确定血管的结构。 碳纳米管发出的荧光波长要比传统成像技术更长,这是实现令人惊叹的微小血管清晰图像的关键。由于更长波长光散射较少,因此形成了更清晰的血管图像。此外,这种技术使图像呈现更精致的细节,允许研究人员能够获得一个快速的图像采集速度,近乎实时地测量血流量。 同时获得血流信息和看到清晰血管对于动脉疾病动物模型的研究将特别有用,如血流是如何受到动脉阻塞和收缩诱发的影响,还有其他事项如中风和心脏病发作的影响。 研究人员说:“对于医学研究而言,这是一个非常好的观察小动物特征的工具。其将有助于我们更好地理解一些血管疾病,以及其对于治疗的反应和如何可以设计出更好的治疗。” 由于NIR-Ⅱ至多只能穿透身体1厘米,所以它不会取代其他成像技术,而是X射线、CT、MRI和激光多普勒技术的补充。不过,它却是一个用于研究动物模型的强大方法。 研究人员说,下一步将使这项技术在人体内更容易接受应用,并探索可替代的荧光分子。他们希望找到小于碳纳米管又能够发出同样波长光的物质,以便使其可以很容易地从体内排出,消除任何毒性的担忧。(华凌) 《科技日报》(2012-12-11 二版)

  • 活体显微镜

    [url=http://www.leica-microsystems.com/cn/%E4%BA%A7%E5%93%81/%E5%85%89%E5%AD%A6%E6%98%BE%E5%BE%AE%E9%95%9C/%E7%94%9F%E5%91%BD%E7%A7%91%E5%AD%A6%E7%A0%94%E7%A9%B6/%E5%80%92%E7%BD%AE%E6%98%BE%E5%BE%AE%E9%95%9C/the-leica-dmi8]活体显微镜[/url]用于对小动物活体进行观察,其可对小动物活体进行细胞级的研究。该显微镜可以将探头以满足微创的方式插入到动物体内任何部位进行观察,有些甚至可以在动物清醒的时候进行实验。该显微镜避免了做解剖切片的繁琐步骤,可以一直对同一动物进行研究,免除了因不同动物个体差异给实验带来的误差,简化并优化了实验步骤。目前该显微镜已应用于肿瘤,周围和中枢神经系统,心血管,干细胞,消化道以及药物研究等多个领域,很多著名高校和知名研究院所已经配备了这种高级显微镜。

  • 三维光声层析成像系统介绍

    [b][url=http://www.f-lab.cn/vivo-imaging/lois-3d.html]三维光声层析成像系统[/url][/b]是全球首个[b]体积光声层析成像仪[/b]器,提供[b]三维的组织模拟幻影[/b],包括小动物以及其他在成像模块中的组织图像。三维光声层析成像系统lois-3d是最早根据[b]体积光声层析成像技[/b]术描绘吸收的光能生产综合信息(血液分布及其氧)的系统,提供极其丰富的互补解剖和功能的三维光声图像。[img=三维光声层析成像系统]http://www.f-lab.cn/Upload/LOIS-3D-optoacoustic-tomography.JPG[/img]该三维光声层析成像系统的成像模块被设计成三度扫描,通过研究对象(在临床前研究系统)或模块本身(在临床乳房成像系统)的360度旋转。视频在左边绘制显示成像模块设计的基础激光光声成像系统,lois-3d。它无探针准线快速扫描最佳,而且提供了一个用于小动物活动的灵活的小控制台。三维光声层析成像系统:[url]http://www.f-lab.cn/vivo-imaging/lois-3d.html[/url]

  • 活体光学成像技术专栏| 光学活体成像前动物脱毛的必要性与操作

    活体光学成像技术专栏| 光学活体成像前动物脱毛的必要性与操作

    [font=宋体]在[/font][font='Times New Roman'][font=宋体]上[/font][/font][font=宋体]几期的[/font][font='Times New Roman'][font=宋体]文章中,[/font][/font][font=宋体]我们[/font][font=宋体]分别[/font][font=宋体]介绍[/font][font=宋体]了荧光成像与生物发光成像的比较、荧光蛋白、荧光染料的挑选方法。当大家选择了合适的标记方法并建立成像模型(药物注射、肿瘤注射等)后,需要对实验动物进行活体成像观察。[/font][b][font=宋体][color=#ff0000]在成像前,对实验动物进行完全脱毛是非常重要的步骤,直接关系能否获得高质量的成像数据。[/color][/font][/b][font=宋体]今天将为大家详细介绍成像前动物脱毛处理的方法与注意事项。[/font][align=center][b][font=宋体]脱毛的必要性[/font][/b][/align][font=宋体]1[font=宋体]、[/font][/font][font=宋体][color=#ff0000]毛发会阻挡、吸收和散射光线。[/color][/font][font=宋体][font=宋体]特别是黑色毛发比其他颜色的毛发会吸收更多的光,即使是白色毛发也会吸收光线,导致很难检测到荧光信号。近红外波段([/font]NIR spectrum[font=宋体])的染料在组织中有最小的散射和吸收,但依然会被毛发显著的吸收和散射 [/font][font=Times New Roman][1-2][/font][font=宋体]。研究表明,毛发的存在使皮下注射部位的荧光强度降低了[/font][font=Times New Roman]50% [3][/font][font=宋体]。因此在使用活体成像系统检测前,有必要将实验动物进行完全脱毛以减少对成像信号的干扰。[/font][/font][font='Times New Roman']2[font=宋体]、[/font][/font][font=宋体][color=#ff0000]毛发会产生强烈的自发荧光。[/color][/font][font='Times New Roman'][font=宋体]动物组织特别是毛发和皮肤中存在内源性分子如弹性蛋白([/font][/font][font='Times New Roman']elastin[/font][font='Times New Roman'][font=宋体])、胶原蛋白([/font][/font][font='Times New Roman']collagen[/font][font='Times New Roman'][font=宋体])、色氨酸([/font][/font][font='Times New Roman']tryptophan[/font][font='Times New Roman'][font=宋体])、[/font][/font][font='Times New Roman']NADH[font=宋体]、[/font][/font][font='Times New Roman'][color=#333333][font=宋体]卟啉类化合物([/font][/color][/font][font='Times New Roman']porphyrins[font=宋体])[/font][/font][font='Times New Roman'][color=#333333][font=宋体]、[/font][/color][/font][font='Times New Roman'][color=#333333][font=宋体]黄素类([/font][/color][/font][font='Times New Roman']flavins[/font][font='Times New Roman'][color=#333333][font=宋体])[/font][/color][/font][font=宋体][color=#333333][font=宋体]在波长<[/font]600 nm[font=宋体]的激发光下会产生强烈的自发荧光[/font][font=Times New Roman][4][/font][font=宋体]。这些自发荧光物质非特异性地被激发光源激发,导致在成像时产生很强的背景信号,将毛发完全脱掉可以有效降低背景信号。[/font][/color][/font][align=center][b][font=宋体]脱毛的材料准备[/font][/b][/align][font=宋体]可以说,对实验动物完全脱毛是活体成像实验的必要步骤之一。首先我们需要准备以下材料备用:[/font][table][tr][td][font=宋体]物品[/font][/td][td][font=宋体]作用[/font][/td][/tr][tr][td][font=宋体]理发推剪[/font][/td][td][font=宋体]将大部分毛发进行去除[/font][/td][/tr][tr][td][font=宋体]脱毛膏[/font][/td][td][font=宋体]去除剩下的绒毛以完全脱毛[/font][/td][/tr][tr][td][font=宋体]棉签[/font][/td][td][font=宋体]用于涂抹和去除脱毛膏[/font][/td][/tr][tr][td][font=宋体]温水[/font][/td][td][font=宋体]用于清洗脱毛膏与绒毛[/font][/td][/tr][tr][td][font=宋体]纸巾或棉球[/font][/td][td][font=宋体]用于清洗脱毛膏和擦拭酒精[/font][/td][/tr][tr][td][font=宋体]75%[font=宋体]酒精[/font][/font][/td][td][font=宋体]用于皮肤消毒、消除脱毛膏的味道防止动物啃咬[/font][/td][/tr][tr][td][font=宋体]抗生素软膏(备选)[/font][/td][td][font=宋体]用于脱毛过程中偶尔的皮肤损伤消炎[/font][/td][/tr][/table][font=宋体][font=宋体]备注:脱毛膏可选进口品牌如[/font]Nair depilatory cream [font=宋体]、国产品牌如贞采源脱毛膏等均可。抗生素软膏可选进口的[/font][font=Times New Roman]Taro Pharmaceuticals[/font][font=宋体]三联抗生素、国产品牌如红霉素软膏均可。[/font][/font][align=center][b][font=宋体]脱毛的步骤[/font][/b][/align][font=宋体]在准备好材料后,按照以下步骤对实验动物进行完全的脱毛:[/font][font=宋体]1、[/font][font=宋体]动物麻醉,将实验动物使用麻醉机进行完全麻醉[/font][font=宋体]。[/font][font=宋体]2、[/font][font=宋体]理发推剪脱毛,将完全麻醉的动物使用理发推剪对感兴趣的成像区域进行脱毛,剔除大部分毛发。[/font][font=宋体]3、[/font][font=宋体][font=宋体]用棉签蘸取脱毛膏覆盖在脱毛区域,均匀涂抹后轻轻按摩数秒,等待[/font]30[font=宋体]秒[/font][font=Times New Roman]-1 [/font][font=宋体]分钟。[/font][/font][font=宋体]4、[/font][font=宋体][font=宋体]用纸巾或棉球用温水沾湿,将脱毛膏顺着毛发的生长方向进行清洗,完全去除绒毛。若此时仍有少量毛发残留,可重新蘸取少量脱毛膏涂抹在毛发上,等待[/font]30[font=宋体]秒后再清洗脱毛膏。[/font][/font][font=宋体]5、[/font][font=宋体][font=宋体]用纸巾或棉球蘸取[/font]75%[font=宋体]消毒酒精,对脱毛区域进行再次清洁,消除脱毛膏的味道。[/font][/font][font=宋体]6、[/font][font=宋体]若皮肤有受伤的部位,涂抹上抗生素软膏,将动物放置在加热垫上等待苏醒。[/font][align=center][b][font=宋体]其他注意事项[/font][/b][/align][font=宋体]1、[/font][font=宋体][font=宋体]脱毛膏已被证明是有效的、无创伤、无毒的,但是使用时依然需要注意时间,过长的涂抹时间会导致皮肤损伤。用[/font]75%[font=宋体]消毒酒精完全清洗脱毛膏的味道可以防止动物对脱毛部位的啃咬。[/font][/font][font=宋体]2、[/font][font=宋体]皮肤损伤会到导致成像时出现强烈的背景荧光,理发推剪要小心操作,尽量防止大面积的皮肤损伤。[/font][font=宋体]3、[/font][font=宋体]C57BL/6[font=宋体]小鼠[/font][font=宋体]脱毛后会扰乱正常的毛发生长周期,引起皮肤色素沉着,即皮肤变黑,导致成像信号被极大的衰减(可达到[/font]90%[font=宋体])[/font][font=Times New Roman][3][/font][font=宋体],因此脱毛步骤选择在成像前[/font][font=Times New Roman]1~2[/font][font=宋体]天进行最佳。此外,如果前期已经对[/font][font=Times New Roman]C57BL/6[/font][font=宋体]小鼠进行脱毛操作,则在成像前需要观察皮肤色素的沉着情况。[/font][/font][font=宋体]4[font=宋体]、可以用剃须刀片代替脱毛膏进行完全脱毛,但是需要练习和小心使用,否则容易割伤实验动物和实验人员。[/font][/font][font=宋体] [/font][font='Times New Roman'] [/font][align=center][b][font=宋体]毛发对成像质量的影响[/font][/b][/align][img]https://ng1.17img.cn/bbsfiles/images/2020/11/202011100939207430_3462_1887_3.png!w690x517.jpg[/img][font=宋体][font=宋体]如图所示,[/font]C57BL/6[font=宋体]小鼠通过尾静脉注射[/font][font=Times New Roman]ICG[/font][font=宋体]染料后使用理发推剪进行脱毛[/font][/font][font=宋体][font=宋体]。黄色框为剃毛较为干净的区域,蓝色框为残留有绒毛的区域,成像结果清楚显示:[/font]1[font=宋体]、脱毛更加干净的区域信号更强(平均荧光强度[/font][font=Times New Roman]5060[/font][font=宋体]);[/font][font=Times New Roman]2[/font][font=宋体]、残留绒毛的区域荧光信号由于被大量吸收,信号更低(平均荧光强度[/font][font=Times New Roman]1050.82[/font][font=宋体]);[/font][font=Times New Roman]3[/font][font=宋体]、颈部未脱毛区域,基本无无荧光信号(平均荧光强度[/font][font=Times New Roman]27.99[/font][font=宋体])【FOBI整体荧光成像系统拍摄】。[/font][/font][font=宋体]以上简单的例子即可表明毛发对成像质量的影响!以对腹腔中各脏器进行活体成像为例,标准的脱毛应该如下所示:完全去除绒毛并且脱毛范围需要稍大且不损伤小鼠皮肤。[/font][font=宋体][img]https://ng1.17img.cn/bbsfiles/images/2020/11/202011100939496128_1485_1887_3.png!w232x173.jpg[/img][/font][align=center][b][font=宋体]参考文献[/font][/b][/align][font='AdvTTe0754e31 \. B'][color=#131413]1[font=AdvTTe0754e31 . B]、[/font][/color][/font][font='Times New Roman'][color=#131413]Temporal Variations of Skin Pigmentation in C57Bl/6 Mice Affect Optical Bioluminescence[/color][/font][font='AdvTTe0754e31 \. B'][color=#131413] [/color][/font][font='Times New Roman'][color=#131413]Quantitation[/color][/font][font='AdvTTe0754e31 \. B'][color=#131413]. [/color][/font][font='Times New Roman'][color=#131413]Allison Curtis[/color][/font][font='AdvTTe0754e31 \. B'][color=#131413] [/color][/font][i][font='AdvTTe0754e31 . B'][color=#131413]et.al[/color][/font][/i][font='AdvTTe0754e31 \. B'][color=#131413]. [/color][/font][font='Times New Roman'][color=#131413]Mol Imaging Biol 13:1114Y1123[/color][/font][font='AdvTTe0754e31 \. B'][color=#131413].2011.[/color][/font][font='AdvTTe0754e31 \. B'][color=#131413]2[font=AdvTTe0754e31 . B]、[/font][/color][/font][font='Times New Roman'][color=#131413]Simple generation of hairless mice for in vivo imaging[/color][/font][font='AdvTTe0754e31 \. B'][color=#131413]. [/color][/font][font='Times New Roman'][color=#131413]Yoshikazu Hoshino[/color][/font][font='AdvTTe0754e31 \. B'][color=#131413].[/color][/font][font='Times New Roman'][color=#131413]Exp. Anim. 66(4), 437–445, 2017[/color][/font][font='AdvTTe0754e31 \. B'][color=#131413].[/color][/font][font='AdvTTe0754e31 \. B'][color=#131413]3[font=AdvTTe0754e31 . B]、[/font][/color][/font][font='Times New Roman'][color=#131413]Optical Imaging on the IVIS SpectrumCT System: General and Technical Considerations[/color][/font][font='AdvTTe0754e31 \. B'][color=#131413] [/color][/font][font='Times New Roman'][color=#131413]for 2D and 3D Imaging[/color][/font][font='AdvTTe0754e31 \. B'][color=#131413]. [/color][/font][font='Times New Roman'][color=#131413]Jen-Chieh Tseng[/color][/font][font='AdvTTe0754e31 \. B'][color=#131413]. [/color][/font][i][font='AdvTTe0754e31 . B'][color=#131413]et.al.[/color][/font][/i][font='AdvTTe0754e31 \. B'][color=#131413]4[font=AdvTTe0754e31 . B]、[/font][/color][/font][font='Times New Roman'][color=#131413]Hair Removal on Rodents[/color][/font][font='AdvTTe0754e31 \. B'][color=#131413]. [/color][/font][font='Times New Roman'][color=#131413]Johns Hopkins University Animal Care and Use Committee[/color][/font][font='AdvTTe0754e31 \. B'][color=#131413].[/color][/font]

  • 中科院磁共振成像仪“点亮肺部”

    2013年08月01日 来源: 科技日报 作者: 金立旺http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130802/00241dd2ff151365563311.jpg这是成功获得的国内首幅小动物活体肺部的MRI影像(8月1日摄)。新华社记者 金立旺 摄 中科院武汉物理与数学研究所周欣研究员领衔的研究团队是目前国内唯一开展超极化气体肺部磁共振(MRI)成像的研究组,他们的研究目的是“点亮肺部”,不仅获得目前胸透、CT和PET等肺部成像手段可以获得的肺部结构信息,还将对肺部气体交换功能进行可视化研究,从而开展人体肺部重大疾病的诊断前研究。目前,该团队已成功获得国内首幅小动物活体肺部的MRI影像,预计四年左右以后可以开展临床研究。 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130802/00241dd2ff151365563c12.jpg 8月1日,在中科院武汉物理与数学研究所实验室,周欣研究员正在将试验设备放进仪器中。新华社记者 金立旺 摄http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130802/00241dd2ff151365564013.jpg 8月1日,在中科院武汉物理与数学研究所实验室,周欣研究员(后)正在和团队成员研究获得的国内首幅小动物活体肺部磁共振成像。新华社记者 金立旺 摄

  • 深圳先进院碳纳米X射线成像技术取得进展

    中国科学院深圳先进技术研究院承担的国家科技支撑计划“基于碳纳米X射线发射源的CT系统研发”课题团队利用自主研发的碳纳米管薄膜成功地获取首张X射线二维成像图。1月17日,科技部组织的专家组在先进院听取了团队工作汇报并现场考察了该成像装置,对该技术表示了充分肯定,这是我国在碳纳米管X射线源成像研究方面取得的突破性进展和成果。 碳纳米管X射线源是最近几年发展起来的被认为是具有革命性的新型X射线源。具有一百年历史的传统X射线源基于热电子发射阴极,而碳纳米管X射线源创新性的用碳纳米管场发射阴极取代热阴极,从而使该X射线源具有可控发射、高时间分辨、低功耗且易于集成等诸多优势。这些优势将给X射线CT带来结构上的突破。其中,最具潜力的方向之一即基于碳纳米管X射线源阵列的静态扫描CT。该CT以电子式的扫描取代传统的机械转动来获取不同角度的图像,可消除机械转动带来的成像伪影,缩短扫描时间,从而减少病人的辐射剂量,有望提高CT扫描的图像精度。 先进院医工所劳特伯医学成像中心研究团队,经近2年的技术攻关,制备出性能优异的碳纳米管薄膜并研制了基于新光源的X射线成像系统。自主研发的碳纳米管薄膜发射电流密度已达到国际先进水平,研制的X射线源成像系统获得了首张X射线二维成像图。团队目前正在进一步提高阴极稳定性、优化射线源结构,以期开展CT的三维成像。 据悉,作为该课题承担单位的深圳先进院在注重自主研发的同时,也重视与国际前沿单位的密切合作。项目团队所在研究影像中心及国家地方联合高端影像工程实验室在CT系统研制方面具有重要的经验和基础,曾成功研发了高分辨显微CT和低剂量口腔CT,显微CT已经成功应用到中国科学院动物研究所,口腔CT已经进入产业化阶段。正在研发的碳纳米管X射线CT作为一项前瞻性的科学研究,为开发新一代的CT系统储备技术,形成自主知识产权。http://www.cas.cn/ky/kyjz/201301/W020130122537020414424.png左:成像装置图              右:成像图

  • X射线成像仪简介

    本视频简单的向大家介绍了什么是X射线成像仪,以及它的主要组成部分即X射线源、高精度样品台、光学物镜耦合的CCD探测器、计算机图形控制系统:同时介绍了X射线成像仪的工作流程、应用范围

  • 苏州纳米所等在硫化银近红外量子点活体成像研究中获进展

    随着生物医学影像技术的不断发展,近红外荧光成像技术在生物医学研究领域得到了越来越多的关注和应用。其中,近红外二区(1000 nm-1400 nm)荧光对生物组织穿透能力强,成像信噪比高,该区域荧光成像技术在生物活体成像领域已展现出巨大潜力。量子点(Quantum dots, QDs)作为一种新型的纳米荧光探针,具有亮度高、光稳定性强、光谱可调等传统荧光染料不可比拟的优势,在生物标记、成像与传感等方面得到了广泛应用,而开发具有近红外二区荧光发射、生物相容性好、量子产率高的QDs是当前其用于活体荧光成像所面临的重要挑战。 中科院苏州纳米技术与纳米仿生研究所王强斌研究员课题组在“单源前驱体制备Ag2S近红外量子点”(J. Am. Chem. Soc. 2010, 132, 1470–1471)的基础上,进一步优化制得了量子产率更高、生物相容性更好、尺寸均匀可控的Ag2S近红外QDs。通过与美国斯坦福大学戴宏杰教授课题组合作,利用Ag2S QDs进行了细胞成像与毒性研究。结果表明,在水溶性Ag2S QDs表面修饰不同的生物识别分子,可实现对不同细胞系的特异性标记,并且该Ag2S QDs几乎没有细胞毒性(ACS Nano 2012, 6, 3695–3702)。 在上述工作基础上,王强斌课题组与戴宏杰教授课题组继续合作,进一步将Ag2S QDs用于动物活体成像研究。结果表明,因肿瘤组织对大分子的高通透性和滞留效应(简称EPR效应),肿瘤对QDs具有很高的摄取(图2),该现象为肿瘤早期诊断以及手术的可视化提供了重要的技术基础。同时,他们对导入小鼠体内QDs的命运进行了追踪,发现除了富集于肿瘤部位的QDs外,其它QDs大部分在注射24小时后不断的随粪便和尿液排出;一周后,体内各个器官(肝和脾除外)的QDs均已基本排出(图3)。 该工作已在国际著名杂志Angewandte Chemie International Edition上发表。对Ag2S QDs的长期体内代谢、分布和毒理研究正在进行之中。 此项工作得到中科院“百人计划”、中科院先导专项、国家自然科学基金委和科技部等的大力支持。 原文链接http://www.cas.cn/ky/kyjz/201209/W020120921399246236683.gif 图1:(a)Ag2S QDs成像示意图,(b)和(c)分别为Ag2S QDs的实物和暗场中的荧光照片,(d)和(e)分别为吸收和荧光光谱,(f)为Ag2S QDs的TEM照片。http://www.cas.cn/ky/kyjz/201209/W020120921399246247360.gif图2:4T1肿瘤对Ag2S QDs的高效摄取http://www.cas.cn/ky/kyjz/201209/W020120921399246242640.gif图3:Ag2S QDs的活体滞留和排泄情况

  • 活体光学成像技术专栏| 荧光成像与生物发光成像技术的比较

    [i][font='Times New Roman'][font=宋体]引言[/font][/font][/i][font='Times New Roman'][font=宋体]在上一期的专栏里[/font][/font][font=宋体],我们对荧光成像和生物发光的基本原理进行了对比。同时也留下了几个问题:[/font][font='Times New Roman'][font=宋体]针对我的课题[/font][/font][font=宋体],生物发光和荧光成像哪个好?什么情况下选择生物发光,什么情况下选择荧光成像。别急,今天将为大家解答关键问题:[/font][b][font=宋体][color=#ff0000]荧光成像和生物发光成像的优缺点是什么?[/color][/font][/b][align=center][font='Times New Roman']一、 [/font][b][font=宋体]荧光成像技术的优点[/font][/b][/align][font='Times New Roman'][font=宋体]相比生物发光成像[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]荧光成像技术的优势主要表现在[/font][/font][font=宋体]:[/font][font='Times New Roman']1. [/font][b][font='Times New Roman'][font=宋体]荧光蛋白及荧光染料的标记能力更强[/font][/font][font=宋体]。[/font][/b][font=宋体]荧光标记分子种类繁多,包括荧光蛋白、荧光染料、量子点标记等,可以对基因、蛋白、抗体、化合药物等进行标记。[/font][font=宋体][color=#ff0000]应用范围极广[/color][/font][font=宋体],可以对样本进行[/font][font=宋体][color=#ff0000]多色标记[/color][/font][font=宋体],一个样本同时获得多种细胞或药物的分布[/font][font=宋体]。[/font][font='Times New Roman']2. [/font][b][font='Times New Roman'][font=宋体]信号强度[/font][/font][font=宋体]高[/font][/b][font=宋体]由于荧光成像的[/font][font=宋体][color=#ff0000]光子强度较生物发光更强[/color][/font][font=宋体][font=宋体],持续时间长,对[/font]C[/font][font='Times New Roman']CD[/font][font=宋体]的灵敏度要求相对较低,不需要必须配备低温冷[/font][font='Times New Roman']CCD[font=宋体]即可获得清晰的成像结果,节省实验成本和购置成本。[/font][/font][font='Times New Roman']3. [/font][b][font='Times New Roman'][font=宋体]实验成本低[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]成像过程简单[/font][/font][/b][font='Times New Roman'][font=宋体]相比生物发光成像,成像前无需注射荧光素酶底物。有合适的激发光源照射就可以发出特定波长的发射光[/font][/font][font=宋体]。[/font][font='Times New Roman'][font=宋体]只要荧光基团稳定,就可实现[/font][/font][font='Times New Roman'][color=#ff0000][font=宋体]随时激发随时发光随时检测[/font][/color][/font][font='Times New Roman'][font=宋体]。[/font][/font][font='Times New Roman']4. [/font][b][font=宋体]从活体到离体均可成像[/font][/b][font=宋体][font=宋体]相比生物发光只能在活细胞内才会产生发光。荧光蛋白或荧光染料只需要保持荧光基团稳定即可稳定发光。可以在活体或离体组织器官进行观察,在实验前期荧光材料制备阶段,可以直接在[/font]E[/font][font='Times New Roman']P[font=宋体]管中进行成像观察[/font][/font][font=宋体]。[/font][font='Times New Roman']5. [/font][b][font=宋体]应用范围广[/font][/b][font=宋体]相比生物发光成像,荧光成像技术应用范围极广。在肿瘤生长与转移、药物的分布与代谢、纳米颗粒的靶向性与代谢、植物基因的表达、生物相容性材料开发、新型标记技术的开发等多个研究中均可用到荧光成像技术。([/font][font=宋体][color=#ff0000][font=宋体]点击了解[/font]FOBI[font=宋体]整体荧光成像在上述领域的应用[/font][/color][/font][font=宋体])[/font][align=center][font='Times New Roman']二、 [b][font=宋体]生物发光技术的优点[/font][/b][/font][/align][font='Times New Roman'][font=宋体]相比荧光成像[/font][/font][font=宋体],生物发光成像的主要优势表现在:[/font][b][font=宋体]1[font=宋体]、特异性强,无自发荧光[/font][/font][/b][font=宋体]以荧光素酶作为体内报告源的生物发光方法,特异性极强。由于动物本身没有任何自发光,使得生物发光具有极低的背景和极高的信噪比。[/font][b][font=宋体]2[font=宋体]、[/font][/font][font='Times New Roman'][font=宋体]高灵敏度[/font][/font][/b][font='Times New Roman'][font=宋体]由于生物体内很多物质在激发光的照射[/font][/font][font=宋体]下[/font][font='Times New Roman'][font=宋体]也会发出荧光[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]这些非特异性荧光背景会影响检测灵敏度[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]荧光成像的灵敏度最高可在动物体内检测到约[/font]10[/font][sup][font='Times New Roman']4[/font][/sup][font='Times New Roman'][font=宋体]细胞,而生物发光具有在动物体内监测[/font]10[/font][sup][font='Times New Roman']2[/font][/sup][font='Times New Roman'][font=宋体]数量级细胞的灵敏度。[/font][/font][b][font=宋体]3[font=宋体]、检测深度更高[/font][/font][/b][font='Times New Roman'][font=宋体]对于需要在深部[/font][/font][font=宋体]组织[/font][font='Times New Roman'][font=宋体]下进行的研究(检测的深度在[/font]3~4cm[font=宋体])[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]应用生物发光是最佳的选择[/font][/font][font=宋体]。[/font][b][font=宋体]4[font=宋体]、[/font][/font][font='Times New Roman'][font=宋体]精确定量[/font][/font][/b][font=宋体]由于荧光素酶基因是插入细胞染色体中稳定表达的,单位细胞的发光数量、发光条件相对稳定。即使标记细胞在动物体内有复杂的定位,亦可从动物体表的信号水平测量出发光细胞的相对数量。[/font][font='Times New Roman'][color=#ff0000][font=宋体]荧光成像和生物发光技术[/font][/color][/font][font=宋体][color=#ff0000],[/color][/font][font='Times New Roman'][color=#ff0000][font=宋体]是互为补充[/font][/color][/font][font=宋体][color=#ff0000],[/color][/font][font='Times New Roman'][color=#ff0000][font=宋体]分别满足不同的研究领域[/font][/color][/font][font=宋体][color=#ff0000]。对于不同的研究,可根据两者的特定及实验要求,选择合适的方法。[/color][/font][table][tr][td][font='Times New Roman'] [/font][/td][td][align=center][font='Times New Roman']优点[/font][/align][/td][td][align=center][font=宋体]缺点[/font][/align][/td][/tr][tr][td][align=center][font=宋体]荧光成像技术[/font][/align][/td][td][font=Wingdings][color=#333333]2 [/color][/font][font=Verdana][color=#333333]荧光染料、蛋白标记能力强,可用于多重标记[/color][/font][font=宋体][color=#333333],[/color][/font][font=Verdana][color=#333333]信号强度大,成像速度快[/color][/font][font=宋体][color=#333333]。[/color][/font][font=Wingdings][color=#333333]2 [/color][/font][font=Verdana][color=#333333]实验成本低[/color][/font][font=宋体][color=#333333]。[/color][/font][font=Wingdings][color=#333333]2 [/color][/font][font=宋体][color=#333333]体内、体外,器官、活体均可成像。[/color][/font][font=Verdana][color=#333333] [/color][/font][font=Wingdings][color=#333333]2 [/color][/font][font=Verdana][color=#333333]应用范围极广[/color][/font][/td][td][font=Wingdings][color=#333333]n [/color][/font][font=Verdana][color=#333333]非特异性荧光限制了灵敏度,体内检测最低约[font=Verdana]104[/font][font=宋体]细胞[/font][/color][/font][font=宋体][color=#333333]。[/color][/font][font=Wingdings][color=#333333]n [/color][/font][font=Verdana][color=#333333]检测深度受限制[/color][/font][font=宋体][color=#333333],[/color][/font][font=Verdana][color=#333333]较难精确体内定量[font=Verdana] [/font][/color][/font][font=宋体][color=#333333]。[/color][/font][/td][/tr][tr][td][align=center][font=宋体]生物发光技术[/font][/align][/td][td][font=Wingdings][color=#333333]2 [/color][/font][font=Verdana][color=#333333]特异性强,无自发荧光[/color][/font][font=宋体][color=#333333],[/color][/font][font=Verdana][color=#333333]背景低[/color][/font][font=宋体][color=#333333]。[/color][/font][font=Wingdings][color=#333333]2 [/color][/font][font=Verdana][color=#333333]高灵敏度,在体内可检测到几百个细胞[/color][/font][font=Wingdings][color=#333333]2 [/color][/font][font=Verdana][color=#333333]可精确定量[/color][/font][font=宋体][color=#333333]。[/color][/font][/td][td][font=Wingdings][color=#333333]n [/color][/font][font=Verdana][color=#333333]信号较弱,检测时间较长,需要灵敏的[font=Verdana]CCD[/font][font=宋体]镜头,仪器价格贵[/font][/color][/font][font=宋体][color=#333333]。[/color][/font][font=Wingdings][color=#333333]n [/color][/font][font=Verdana][color=#333333]要求高[/color][/font][font=宋体][color=#333333],[/color][/font][font=Verdana][color=#333333]需要注入荧光素,实验成本高[/color][/font][font=宋体][color=#333333]。[/color][/font][font=Wingdings][color=#333333]n [/color][/font][font=宋体][color=#333333]只能用于细胞标记,应用范围窄。[/color][/font][/td][/tr][/table][i][font=宋体]结束语[/font][/i][font=宋体]随着活体成像技术的发展特别是荧光标记技术的发展,越来越多的生物学研究需要用到活体光学成像的方法。无论大家是选择生物发光或者荧光成像技术,苦恼总是随之而来,例如:[/font][font=宋体][color=#ff0000]生物素在体内可以维持多长时间?荧光蛋白和染料种类繁多,我该怎样选择呀?[/color][/font][font=宋体][font=宋体]别急,下期我们继续为大家介绍关于活体成像技术应用与选择的问题与难点。[/font][/font][font=宋体][font=宋体][url=http://dwz.date/cwes]点击了解更多活体成像技术的应用与仪器信息![/url][/font][/font][align=center][font='Times New Roman'][font=宋体]参考文献[/font][/font][/align][font='Segoe UI'][color=#222222]1. [/color][/font][font='Segoe UI'][color=#222222]Su, Y., Walker, J.R., Park, Y. [/color][/font][i][font='Segoe UI'][color=#222222]et al.[/color][/font][/i][font='Segoe UI'][color=#222222] Novel NanoLuc substrates enable bright two-population bioluminescence imaging in animals. [/color][/font][i][font='Segoe UI'][color=#222222]Nat Methods[/color][/font][/i][font='Segoe UI'][color=#222222] [/color][/font][b][font='Segoe UI'][color=#222222]17, [/color][/font][/b][font='Segoe UI'][color=#222222]852–860 (2020). [/color][/font][font='Segoe UI'][color=#222222]2. [/color][/font][url=#!][font='Segoe UI'][color=#222222]M.Keyaerts[/color][/font][/url][url=#!][font='Segoe UI'][color=#222222]V.Caveliers[/color][/font][/url][url=#!][font='Segoe UI'][color=#222222]T.Lahoutte[/color][/font][/url][font='Segoe UI'][color=#222222] [/color][/font][url=https://www.sciencedirect.com/science/referenceworks/9780444536334][font='Segoe UI'][color=#222222]Comprehensive Biomedical Physics[/color][/font][/url][font=等线][color=#222222] [/color][/font][url=https://www.sciencedirect.com/science/referenceworks/9780128012383][font='Segoe UI'][color=#222222]Volume 4[/color][/font][/url][font='Segoe UI'][color=#222222], 2014, Pages 245-256.[/color][/font]

  • 活体光学成像技术专栏| 活体成像中荧光蛋白的挑选指南

    活体光学成像技术专栏| 活体成像中荧光蛋白的挑选指南

    [font='Times New Roman'][font=宋体]引言[/font][/font][i][font='Times New Roman'][font=宋体]无数科学家的努力下,蛰居在水母的绿色荧光蛋白已经被导入到病毒、放线菌、酵母、植物、果蝇、线虫、小鼠、大鼠、人类细胞等几乎所有的模式生物,荧光蛋白的发现与应用被认为是点亮了生命科学,让黑暗中的生命活动被可视化的展示在科学家眼前。[/font][/font][/i][font='Times New Roman'][font=宋体]上期文章中,我们对比了活体光学成像的两种技术,生物发光和荧光成像的不同点。随着荧光标记技术的进一步发展,荧光成像的应用范围已经大大超过了生物发光,荧光成像已经可以满足绝大多数情况下的实验需求。[/font][/font][font='Times New Roman'][color=#ff0000][font=宋体]荧光成像需要对检测的细胞或分子进行荧光标记[/font][/color][/font][font='Times New Roman'][font=宋体]。目前,主要有两种标记方法,第一种利用[/font][/font][font='Times New Roman'][color=#191919][font=Arial]内源荧光信号[/font][/color][/font][font='Times New Roman'][color=#191919][font=宋体],在细胞中表达荧光蛋白进行标记。第二种利用荧光分子对细胞、药物或纳米颗粒等分子进行标记。[/font][/color][/font][font='Times New Roman'][font=宋体]本期将为大家介绍荧光蛋白[/font][/font][font=宋体][font=宋体]的[/font][/font][font='Times New Roman'][font=宋体]选择方法![/font][/font][align=center][img=,581,228]https://ng1.17img.cn/bbsfiles/images/2020/09/202009271417587236_9957_1887_3.png!w581x228.jpg[/img][font='Times New Roman'][color=#191919] [/color][/font][/align][align=center][font='Times New Roman'][color=#191919]Rainbow of fluorescent proteins [Tsien lab][/color][/font][/align][align=center][font='Times New Roman'][color=#191919][font=Arial]选择荧光蛋白建议考虑的参数[/font][/color][/font][/align][font='Times New Roman'][color=#191919]1. [/color][/font][font='Times New Roman'][color=#191919][font=Arial]激发波长[/font]/[font=Arial]发射波长[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]:每一种荧光蛋白都有其独特的激发波长和发射波长,因此,选择的荧光蛋白必须是使用的[/font][/color][/font][font='Times New Roman'][color=#191919][font=宋体]成像[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]系统能够激发和检测到的。比如,使用的[/font][/color][/font][font='Times New Roman'][color=#191919][font=宋体]成像系统只有两个激发光源:[/font][/color][/font][font='Times New Roman'][color=#191919]488 nm[font=Arial]和[/font][font=Times New Roman]561 nm[/font][/color][/font][font='Times New Roman'][color=#191919][font=宋体]。[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]那就不能够选择远红外荧光蛋白。[/font][/color][/font][font='Times New Roman'][color=#191919][font=宋体]同时[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]使用超过一个荧光蛋白时,必须确保发射波长没有重叠。[/font][/color][/font][font='Times New Roman'][color=#ff0000][font=宋体]荧光蛋白应用于活体成像实验时,尽量选择红色或近红外的荧光蛋白,这类荧光蛋白的发射波长较长,具有更好的[/font][/color][/font][font=宋体][color=#ff0000][font=宋体]组织[/font][/color][/font][font='Times New Roman'][color=#ff0000][font=宋体]穿透[/font][/color][/font][font=宋体][color=#ff0000][font=宋体]能力。[/font][/color][/font][font='Times New Roman'][color=#191919]2. [font=Arial]寡聚反应[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]:[/font][/color][/font][font='Times New Roman'][color=#191919][font=宋体]早期开发的[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]荧光蛋白易于寡聚化,[/font][/color][/font][font='Times New Roman'][color=#191919][font=宋体]与[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]目的基因融合表达时可能会影响目的基因蛋白的生物学功能。[/font][/color][/font][font='Times New Roman'][color=#ff0000][font=宋体]因此[/font][/color][/font][font='Times New Roman'][color=#ff0000][font=Arial]建议使用单体的荧光蛋白,比如[/font]mCherry[font=Arial]。[/font][/color][/font][font='Times New Roman'][color=#191919]3[/color][/font][font='Times New Roman'][color=#191919]. [font=Arial]亮度[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]:荧光蛋白的亮度值由消光系数与量子产率的乘积计算得出。在许多情况下,将荧光蛋白的亮度与[/font]EGFP([font=Arial]设定为[/font][font=Times New Roman]1)[/font][font=Arial]进行比较,有一些荧光蛋白非常暗淡(例如[/font][font=Times New Roman]TagRFP657[/font][font=Arial],其具有亮度只有[/font][font=Times New Roman]0.1[/font][font=Arial])[/font][/color][/font][font='Times New Roman'][color=#191919][font=宋体]。[/font][/color][/font][font='Times New Roman'][color=#ff0000][font=Arial]因此[/font][/color][/font][font='Times New Roman'][color=#ff0000][font=宋体]活体成像实验时,[/font][/color][/font][font='Times New Roman'][color=#ff0000][font=Arial]亮度也需要考虑。[/font][/color][/font][font='Times New Roman'][color=#191919]4[/color][/font][font='Times New Roman'][color=#191919]. pH[font=Arial]稳定性[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]:如果计划在酸性环境中表达荧光蛋白,则此参数非常重要,一些荧光蛋白具有不同的[/font][/color][/font][font='Times New Roman'][color=#191919][font=宋体]激发[/font]/[font=宋体]发射[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]光谱(例如[/font]mKeima[font=Arial])或在[/font][font=Times New Roman]pH[/font][font=Arial]变化时荧光强度会发生改变(例如[/font][font=Times New Roman]pHluorin[/font][font=Arial],[/font][font=Times New Roman]pHTomato[/font][font=Arial])。[/font][/color][/font][font=宋体][color=#191919]5.[font=宋体]避免自发荧光:[/font][/color][/font][font=宋体][color=#191919][font=宋体]生物体自身的很多物质具有较强的自发荧光,如指甲、毛发具有强烈的绿色背景信号,因此活体成像时需要对动物进行完全的脱毛处理或尽量避免绿色荧光蛋白,可选[/font][/color][/font][font='Times New Roman'][color=#191919]RFP[font=宋体]、[/font][font=Times New Roman]dsRed, mCherry, mTomato[/font][/color][/font][font=宋体][color=#191919][font=宋体]等荧光蛋白。[/font][/color][/font][b][font='Times New Roman'][color=#ff0000] [/color][/font][font='Times New Roman'][font=Arial]在选择好了荧光蛋白后,后续就是做实验、拿数据、发文章了![/font][/font][/b][font='Times New Roman'][font=Arial]可[/font][/font][font='Times New Roman'][color=#191919][font=Arial]是选用什么成像[/font][/color][/font][font=Arial][color=#191919][font=Arial]设备[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]好呢?[url=http://dwz.date/cwes]点击了解更多详情![/url][/font][/color][/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制