当前位置: 仪器信息网 > 行业主题 > >

短波红外高成像式地物仪

仪器信息网短波红外高成像式地物仪专题为您提供2024年最新短波红外高成像式地物仪价格报价、厂家品牌的相关信息, 包括短波红外高成像式地物仪参数、型号等,不管是国产,还是进口品牌的短波红外高成像式地物仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合短波红外高成像式地物仪相关的耗材配件、试剂标物,还有短波红外高成像式地物仪相关的最新资讯、资料,以及短波红外高成像式地物仪相关的解决方案。

短波红外高成像式地物仪相关的资讯

  • 有望颠覆市场!湖北光谷实验室攻克短波红外成像芯片新技术
    湖北光谷实验室近日宣布,其科研团队研发的胶体量子点成像芯片已实现短波红外成像,面阵规模 30 万、盲元率低于 6‰、波长范围 0.4-1.7 微米、暗电流密度小于 50nA / cm2、外量子效率高于 60%,号称“性能优越”。相关负责人介绍,这一技术的核心优势有:图像分辨率高,理论上像素尺寸仅受限于艾利斑直径;溶液法低温加工,与任何形貌的基底均兼容;探测波段高度可定制化,探测波段不受衬底吸收影响;可大面积加工,兼容 12 寸 CMOS 晶圆制备工艺,“同时成本极低,有望颠覆市场”。光谷实验室表示,在食品检测、半导体检测等工业应用中,基于短波红外成像的机器视觉如同机器的“眼睛”,具有重要意义。成像芯片作为成像系统最核心部件,对成像质量以及相机成本均起着决定性作用。传统铟镓砷短波红外芯片造价极其昂贵,使得短波红外相机均价高达 25 万元,严重制约着市场增长。光谷实验室团队通过 4 年时间,全力攻关量子点技术,通过低温的溶液法制备工艺,实现可与硅基芯片一体化集成的量子点短波红外成像芯片,其探测波段范围远超传统铟镓砷芯片,同时制造成本仅不到百分之一。▲ 产品部分应用领域目前,光谷实验室团队面向手机模组、车载相机等消费级应用场景,已申请十五项发明专利,已获授权七项。产品已应用在车载应用、水果分拣、物质检测、半导体检测、安防监控等领域。IT之家查询获悉,湖北光谷实验室成立于 2017 年,致力于解决制约我国科技发展的关键问题,研究方向涵盖光电子技术、高端装备制造、人工智能等领域,以提升光电领域原始创新能力、突破光电产业发展关键技术瓶颈为使命,以基础研究、应用基础研究和应用研究为任务,打造战略性、前瞻性、基础性科技创新的综合性光电科研平台。
  • 湖北光谷实验室唐江教授团队潜心研制“中国造”短波红外成像芯片
    省第十二次党代会强调,“坚持创新驱动发展,加快建设现代产业体系”“打造全国科技创新高地”。明确提出,加强战略科技力量培育,争创国家实验室或在鄂基地,推进全国重点实验室优化重组,高水平建设汉江实验室、光谷实验室和东湖实验室等湖北实验室,建设重大科技基础设施集群。去年2月至今,我省已有10家湖北实验室陆续正式运行,它们“组团”发力,为推进全省科技创新体系整体效能加装“发动机”,增强新动能。一年多来,湖北实验室科研取得了哪些进展?建设者们有哪些新探索?8月底开始,湖北日报全媒记者先后走进部分湖北实验室,感受这里科研一线创新攻关的风采。 “我们一直在做相关实验,不断提高它的稳定性,争取早日产业化。”8月25日,湖北光谷实验室8楼,华中科技大学武汉光电国家研究中心副教授高亮向湖北日报全媒记者介绍,他所在的唐江教授团队目前研制的量子点短波红外成像芯片进展顺利。 每天“泡”在实验室,不停地实验、检测 红外成像芯片是光传感技术的基础之一,被广泛应用于机器视觉、物质鉴别、生物成像等新兴领域。然而,受加工温度和单晶基板的限制,现有的红外成像芯片主要采用异质集成的方式实现红外光电二极管与硅基互联,面临工艺复杂、分辨率受限、大规模生产困难、成本高等问题。 “电子产品使用的硅基芯片主要工作于可见光波段,成像距离受环境限制,弱光下成像效果差,难以分辨同色的不同物体。可见光与短波红外融合,就能够有更好的成像体验,如图像细节完整,夜晚成像清晰,而且短波红外穿透雨雪雾霾的能力极强,在恶劣天气中还能进行障碍预警。”高亮介绍,基于此,量子点红外探测器经过十几年的发展,其性能(探测波段、响应度、比探测率)已经接近传统材料器件的性能,拥有巨大的成本优势。他们团队正在做的,就是研发量子点短波红外成像芯片量产化技术,为光谷实验室技术孵化落地做出贡献。 研二学生张琳祥两年前加入这个团队,从此每天都“泡”在实验室。“我们要不间断地进行芯片工艺调试,探索适于自动化制备的最佳工艺窗口。”记者看到,在不同的实验室,团队成员分别进行量子点合成、液相配体交换、浆料配制等流程,然后通过喷墨旋涂,制备量子点薄膜。“薄膜是关键,再通过全低温一体化集成,制作成红外探测芯片。”张琳祥介绍,他的工作就是通过不断测试芯片,找到一个更稳定、更合适的器件结构,即便在复杂的环境下,也能够保持器件性能。 团队有二十多人,结束暑期生活返校后,他们已经在实验室工作快一个星期了。“实验中我们碰到的失败数也数不清,就是在失败的基础上一点点摸索,一点点前进。”他们克服材料、结构、集成工艺等重重难题,从970纳米到1.3微米、1.55微米,再到目前的1.9微米,探测范围越来越广。 看着这些可喜的数据,张琳祥和同伴们很开心。“老师教导我们,研发过程中要沉下心,要有定力,把该做的工作做好。” 国内首款!硫化铅胶体量子点红外成像芯片研发成功 今年上半年,唐江教授团队与海思光电子有限公司合作,制备出一种适配硅基读出电路的顶入射结构的光电二极管,实现了30万像素、性能可媲美商用铟镓砷的短波红外芯片。这是国内首款硫化铅胶体量子点红外成像芯片,相关成果已发表在6月份的Nature Electronics期刊。 PbS CQD成像芯片。a) 成像芯片整体示意图;b) 成像芯片横截面示意图;c) 成像芯片的横截面扫描电镜图像;d) 成像芯片的俯视示意图;e) 单个像素的电路图;f) 电路的读出时序 据介绍,红外光电二极管与硅基读出电路单片集成工艺简单、成本可控,且有望极大提升红外成像芯片分辨率。不同于高温外延生长的红外材料,硫化铅胶体量子点采用低温溶液法加工,衬底兼容性好,可与硅基集成电路单片集成。但现有相关器件结构存在不适配难题,其耗尽区远离入射光,导致器件外量子效率低。 唐江教授团队根据硫化铅胶体量子点的特性,设计出了适配硅基读出电路的顶入射结构光电二极管,通过模拟分析和实验优化器件结构,使耗尽区靠近入射光,实现光生载流子的有效分离与收集,从而提高器件外量子效率。 国内首款硫化铅胶体量子点红外成像芯片,具有可与商用铟镓砷芯片媲美的成像效果。同时,在水果检测、溶剂识别、静脉成像等方面,也具有广泛的应用潜力。 高亮说,“目前,高端短波红外成像芯片国外禁运,铟镓砷芯片正处于卡脖子现状。我们想早日做好中国人自己的量子点短波红外成像芯片,助力科技强国建设。” 记者了解到,光谷实验室运行一年多来,聚焦光电子技术与装备,争创国家实验室,瞄准未来智能时代的高端芯片、光电融合、异质异构集成、“感—存—算—通—动—能”一体化复杂巨系统等前沿科学与技术问题,开展长期稳定的基础与应用研究,围绕通信、传感、物联网、高端制造等重点行业发展的卡脖子难点问题,力争实现率先突破和国际引领,助推“武汉中国光谷”走向“世界光谷”,成为国家在光电子领域的战略科技力量。
  • imec集成薄膜固定光电二极管以实现卓越的短波红外成像传感器
    2023年8月14日在比利时鲁汶,imec作为纳米电子学和数字技术领域的全球研发和创新中心宣布成功集成了固定光电二极管结构到薄膜图像传感器中。通过添加固定光电栅和传输栅,薄膜成像器超过一微米波长的吸收质量终于可以被利用,以一种成本效益的方式解锁感知可见光之外光线的潜力。检测可见光范围之外的波长,例如红外光,具有明显的优势。应用包括自动驾驶汽车上的摄像头,以“看穿"烟雾或雾霭,以及用于通过面部识别解锁智能手机的摄像头。虽然可见光可以通过基于硅的成像器检测,但需要其他半导体材料来检测更长的波长,比如短波红外线(SWIR)。使用III-V材料可以克服这一检测局限。然而,制造这些吸收体的成本非常高,限制了它们的使用。相比之下,使用薄膜吸收体(如量子点)的传感器最近出现为一个有前景的替代方案。它们具有良好的吸收特性和与传统CMOS读出电路集成的潜力。尽管如此,这种红外线传感器的噪声性能较差,导致图像质量较差。早在20世纪80年代,固定光电二极管(PPD)结构就在硅CMOS图像传感器中引入。该结构引入了一个额外的晶体管栅极和一个特殊的光检测器结构,通过该结构, charges可以在积分开始前全部排空(允许在没有kTC噪声或前一帧影响的情况下复位)。因此,由于噪声更小、功耗性能更好,PPD主导了基于硅的图像传感器的消费者市场。 在硅成像之外,至今还不可能集成此结构,因为难以混合两种不同的半导体系统。现在,imec在薄膜图像传感器的读出电路中成功集成了PPD结构。 一种SWIR量子点光电检波器与一种氧化铟镓锌(IGZO)薄膜晶体管单片集成成PPD像素。 随后,该阵列被进一步处理在CMOS读出电路上以形成一个完整的薄膜SWIR图像传感器。 imec的“薄膜固定光电二极管"项目负责人Nikolas Papadopoulos 表示:“配备4T像素的原型传感器表现出显着低的读出噪声6.1e-,相比之下,传统的3T传感器超过100e-,证明了其良好的噪声性能。" 因此,红外图像的拍摄噪声、失真或干扰更小,准确性和细节更高。imec像素创新项目经理Pawel Malinowski补充说:“在imec,我们正在红外线和成像器的交汇处处于地位,这要归功于我们在薄膜光电二极管、IGZO、图像传感器和薄膜晶体管方面的综合专业知识。通过实现这一里程碑,我们克服了当前像素架构的局限性,并展示了一种将性能最佳的量子点SWIR像素与经济实用的制造方法相结合的方法。下一步包括优化这项技术在各种类型的薄膜光电二极管中的应用,以及扩大其在硅成像之外的传感器中的应用。我们期待通过与行业伙伴的合作进一步推进这些创新。“研究结果发表在2023年8月《自然电子学》杂志"具有固定光电二极管结构的薄膜图像传感器"。初步结果在2023年国际图像传感器研讨会上呈现。原文: J. Lee et al. Thin-film image sensors with a pinned photodiode structure, Nature Electronics 2023.摘要使用硅互补金属氧化物半导体技术制造的图像传感器广泛应用于各种电子设备,通常依赖固定光电二极管结构。 基于薄膜的光电二极管可以具有比硅器件更高的吸收系数和更宽的波长范围。 但是,它们在图像传感器中的使用受到高kTC噪声、暗电流和图像滞后等因素的限制。 在这里,我们展示了具有固定光电二极管结构的基于薄膜的图像传感器可以具有与硅固定光电二极管像素相当的噪声性能。 我们将一种可见近红外有机光电二极管或短波红外量子点光电二极管与薄膜晶体管和硅读出电路集成在一起。 薄膜固定光电二极管结构表现出低kTC噪声、抑制暗电流、高满量容和高电子电压转换增益,并保留了薄膜材料的优点。 基于有机吸收体的图像传感器在940 nm处的量子效率为54%,读出噪声为6.1e–。
  • “高分五号”可见短波红外高光谱相机使我国高光谱遥感技术再上新台阶
    p  2018年5月9日,北京时间2时28分,我国在山西太原卫星发射中心成功发射“高分五号”高光谱卫星。中国科学院上海技术物理研究所承担研制卫星红外地平仪(已在入轨初期成功捕获地球)和可见短波红外高光谱相机。/pp  作为“高分五号”卫星六大主载荷之一,可见短波红外高光谱相机是国际首台同时兼顾宽覆盖和宽谱段的高光谱相机,对复杂地物、环境具有突出的识别和分类能力。它可同时获取观测对象的几何、辐射和光谱信息,并以足够高的光谱分辨率、空间分辨率和辐射分辨率,定量获取观测目标的构造和成份等信息,同时获取观测路径上大气等相关信息,实现对陆地表面高光谱、高空间、高辐射分辨率成像光谱观测。/pp  可见短波红外高光谱相机以高光谱的方式实现对地优于30米空间分辨率的连续成像,它具有330个光谱通道,比一般成像相机多了近百倍 其光谱覆盖可见光至短波红外的2100纳米范围宽度,比一般相机宽了近9倍 特别是同时实现的60公里高光谱成像幅宽,将极大提高对全球陆地环境生态资源的探测能力。与国际上经典的高光谱相机相比,该载荷幅宽提高8倍,光谱数增加近百个,信噪比提升近4倍 与美国、德国、日本、加拿大等国际上当前发展的高光谱相机比较,其综合性能和主要技术指标可保持5年以上的国际领先水平。/pp  上海技物所创新性地提出基于视场倍增远心成像和凸面光栅大平场度低畸变分光的高光谱成像方案,历经10年时间,突破了小F数大视场低畸变远心成像,大平场度超低畸变精细分光、在轨高精度光谱辐射定标、大规模高帧频红外焦平面探测器等关键技术,完成高光谱相机的原型样机、工程样机、鉴定产品、发射产品的研制。相机入轨后,将有力提升我国在环境、生态、资源、农业、林业等多个领域遥感监测方面的能力,有效服务“美丽中国”建设,使我国高光谱遥感技术再上新台阶,走在国际前列。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201805/insimg/39eacb35-8a94-47c6-87c3-a8a96b880be2.jpg" title="微信图片_20180510094457.jpg"//pp style="text-align: center "卫星发射现场br//ppbr//p
  • SCD推出世界首款基于事件的短波红外探测器
    据麦姆斯咨询报道,以色列非制冷红外探测器和高功率激光二极管制造商Semi Conductor Devices(SCD),近期推出了一种基于事件(event-based)的新型短波红外(SWIR)探测器Swift-El。据SCD称,Swift-El是世界首款集成基于事件成像功能的短波红外探测器,使其成为国防和工业领域的“革命性”补充。Swift-El是一款尺寸、重量、功耗(SWaP)极低且成本低廉的VGA格式10 μm像素间距短波红外探测器。其先进的焦平面阵列(FPA)探测能力,使战术部队能够探测多个激光源、激光点、敌方火力指示(HFI)等。Swift-El具有的读出集成电路(ROIC)成像器技术,使其可在一个传感器中提供两个并行视频通道:一个标准成像短波红外视频通道和一个极高帧事件成像通道。Swift-El提供支持白天和弱光场景的短波红外成像,可实现全天候态势感知、更好的大气穿透能力,以及为战术级应用提供的低成本短波红外图像。此外,其基于事件的成像通道提供了多种先进的功能,如激光事件点检测、多激光点LST功能和基于事件的短波红外成像等,扩大了目标检测和分类的范围。Swift-El还为生产线分拣机、智慧农业等领域的机器视觉应用开辟了新可能,这些应用需要对先进短波红外图像进行分析以实现自动机器决策。Swift-El能够实现超过1200 Hz的全帧率,这对机器视觉和机器AI算法至关重要。Swift-El探测器的分辨率为640×512、像素间距10μm,由该公司位于以色列的晶圆厂生产,目前主要面向国防和工业应用,计划于2024年量产。SCD业务发展与营销副总裁Shai Fishbeing表示:“我们非常注重规模经济,以提高产能和良率,我们拥有世界上最大的热像仪制造厂。”
  • SCD推出世界首款基于事件的短波红外探测器
    据麦姆斯咨询报道,以色列非制冷红外探测器和高功率激光二极管制造商Semi Conductor Devices(SCD),近期推出了一种基于事件(event-based)的新型短波红外(SWIR)探测器Swift-El。Swift-El是一款尺寸、重量、功耗(SWaP)极低且成本低廉的VGA格式10 μm像素间距短波红外探测器。据SCD称,Swift-El是世界首款集成基于事件成像功能的短波红外探测器,使其成为国防和工业领域的“革命性”补充。其先进的焦平面阵列(FPA)探测能力,使战术部队能够探测多个激光源、激光点、敌方火力指示(HFI)等。Swift-El具有的读出集成电路(ROIC)成像器技术,使其可在一个传感器中提供两个并行视频通道:一个标准成像短波红外视频通道和一个极高帧事件成像通道。Swift-El提供支持白天和弱光场景的短波红外成像,可实现全天候态势感知、更好的大气穿透能力,以及为战术级应用提供的低成本短波红外图像。此外,其基于事件的成像通道提供了多种先进的功能,如激光事件点检测、多激光点LST功能和基于事件的短波红外成像等,扩大了目标检测和分类的范围。Swift-El还为生产线分拣机、智慧农业等领域的机器视觉应用开辟了新可能,这些应用需要对先进短波红外图像进行分析以实现自动机器决策。Swift-El能够实现超过1200 Hz的全帧率,这对机器视觉和机器AI算法至关重要。Swift-El探测器的分辨率为640 x 512、像素间距10μm,由该公司位于以色列的晶圆厂生产,目前主要面向国防和工业应用,计划于2024年量产。SCD业务发展与营销副总裁Shai Fishbeing表示:“我们非常注重规模经济,以提高产能和良率,我们拥有世界上最大的热像仪制造厂。”
  • 短波红外相机在海洋监测中的应用
    海洋区域湿度大,昼夜温差大,极易形成雾、霾、水汽等特殊条件。可见光在正常条件下成像良好,但是受天气影响较大,在恶劣天气下会出现对比度变低,轮廓模糊,细节丢失的现象等问题,无法清晰的识别目标。热成像技术虽然透雾能力好,但是当目标和背景温度接近时,热成像细节丢失严重,不利于海洋区域的目标探测。而短波红外在海面恶劣天气下也可以实现远距离船只监测,由于具备对海雾的良好透过性,所以目标几乎很少受到海上雨雾天气的影响,具有较为明显的轮廓和纹理特征。图 1可见光和短波红外雾天成像对比短波红外成像和可见光类似,主要依靠场景物体反射的光信号成像,其波段范围大约在900nm~2300nm之间,因为光在遇到大气中的分子、粒子、气溶胶和大量的悬浮小水滴时都会发生散射,当大气中的散射粒子小于光波长时,可以按照瑞利散射处理,散射系数为式中,S为散射粒子的截面积,N为单位体积的粒子数,λ为光波波长,从公式中可以看出,波长越长,散射越弱,透雾能力越强,所以短波红外穿透雾霾能力比可见光强。如图2所示,分别为可见光和短波红外的成像情况,舰船在短波红外图像中的细节更丰富。图 2 雾中短波红外(左)与可见光成像(右)不仅如此,短波红外在海面微小目标识别方面也有很大的优势,由于海面拍摄距离远,微小目标在探测器上占据的像素小, 而且海面也在不断地变化,当海杂波干扰过大时,微弱目标的信号会被淹没,造成可见光探测困难。但是短波红外则不同,利用海水对短波红外具有强吸收这一特性,可以大大提高微弱目标的识别能力。海水几乎不反射短波红外,而微弱目标发射红外辐射,背景和目标的对比度增大,微弱目标更容易被观测到。所以当对海面浮冰、小船、蛙人、浮标、飞机残骸、海面漂浮物等这些声光电特性不明显的目标探测时,相比可见光,短波红外更适合观测。 此外,短波红外技术还具有在夜间和低光条件下提供高质量监控图像的能力,在海岸港口,夜间航行可能存在风险,而短波红外监控系统可以保证即使在黑暗中,港口和船只的活动也能被及时监测,从而提高港口的安全性。西安立鼎光电提供非制冷、制冷面阵以及线阵多款短波红外相机,现货供应,具体产品如下:01非制冷短波红外相机02宽谱段短波红外相机03制冷型短波红外相机04科研型短波红外相机05线阵短波红外相机06定制短波红外相机立鼎定制型短波红外相机是立鼎团队为保证各类客户的产品性能指标而推出的定制化服务。可根据用户不同需求进行产品定制,将客户重点关注的产品性能进行提升,以满足客户在不同领域的使用。目前,立鼎团队已为多家客户定制适合客户项目应用需求的多款相机,得到了众多用户的认可。更多信息请联系西安立鼎光电400-860-5168转6159西安立鼎光电科技有限公司成立于2016年4月,是一家专业从事短波红外成像系统及光电测试装备的研发生产、系统集成、销售服务为一体的国家级高新技术企业。公司专注于为客户提供从器部组件到全套光电系统产品的完整解决方案。近年来,公司研制的短波红外成像系统在激光光斑检测、半导体检测、激光通信、光谱成像、激光切割、生物医疗、天文观测、安防等领域得到了广泛的应用。多年来,根据用户需求研制的多款光电测试装备为用户产品的性能指标保证发挥了重要作用。
  • 新品上线立鼎光电短波红外相机仪器系列分享
    西安立鼎光电科技有限公司自成立以来,一直致力于短波红外成像技术开发与应用。结合市场需求,立鼎团队不断将产品迭代与优化,推出了一系列经典产品,性能可靠,价格合理,深受国内外行业用户的信赖。立鼎光电短波相机研发历程⏩ 2016年 组建团队,研发短波红外相机。⏩ 2017年 完成非制冷相机的研制并投入市场,反馈良好。⏩ 2018年 640×512(15μm)短波非制冷相机量产;同年,立鼎首版640一级制冷相机亮相深圳光博会,获得客户好评。⏩ 2019年 优化相机功能:增加GigE 、SDI接口,增加可供用户选择的跟踪功能;同年,完成高速短波红外相机的样机设计。⏩ 2020年 成功研发出第一代60Hz高速短波相机样机,并开始研发二级制冷科研级短波红外相机;同年,完成了320短波红外相机及扩展波段相机的研发及量产。⏩ 2021年 推出TE4深度制冷相机,制冷温度最低可达-80℃;同年推出1550nm激光通信专用短波红外相机。⏩ 2022年 研制多级深度制冷短波相机、全国产化短波红外相机、线阵短波红外相机、300/400Hz高速短波相机以及高光谱短波相机。立鼎光电短波红外相机系列分类经济型:采用非制冷铟镓砷探测器,结合专业散热结构,该型相机结构小、重量轻,方便集成在各类光电系统中。可以提供专业的定制化服务,旨在为用户提供小型化、轻量化、定制化产品解决方案。制冷型: 采用热电制冷铟镓砷探测器,能够很好的抑制芯片暗电流,从而提升成像质量,此系列可选配扩展型 InGaAs 焦平面探测器,可将探测范围扩展至1.1μm-2.2μm波段。旨在为用户提供更专业的高性能相机,以满足基础型相机无法达到的性能要求。科研型:采用了高性能的TE + air cool制冷设计,芯片温度最低可降至-80℃,在超长的曝光时间下工作,图像也能具有较高的信噪比。该型产品旨在满足高端用户或科研级用户在各种高要求/高精度场景下的应用。可提供集成多种图像算法的专用软件,为用户提供更好的使用体验。立鼎短波红外相机型号命名规则下图为立鼎短波相机命名规则。通过此规则,可以直观、快捷的了解到一型号产品的重要参数。或在选型中更方便快捷的选择项目所需对应规格的相机。立鼎短波相机的应用硅锭杂质检测液晶面板异型贴合半导体检测全息光学中的应用激光光斑捕获追踪海面观测透雾成像太阳能电池板检测生物成像激光光束质量分析晶圆切割获取更多信息可通过仪器信息网和我们取得联系400-860-5168转6159西安立鼎光电科技有限公司是一家专业从事红外、激光类产品及光电测试仪器设备的研发生产、系统集成、销售服务为一体的高新技术企业。公司专注于为客户提供从元件、组件、部件到全套光电系统产品的完整解决方案。近年来,公司研制的短波红外相机(系统)在激光光斑检测、半导体检测、激光通信、光谱成像、激光切割、生物医疗、天文观测、安防等领域得到了广泛的应用。多年来,根据用户需求定制的多款光电测试仪器设备,为用户产品的性能指标保证发挥了重要作用。
  • 唐江教授团队研制出国内首款PbS量子点短波红外成像芯片
    武汉光电国家研究中心、光电信息学院唐江教授团队与海思光电子有限公司合作,制备出一种适配硅基读出电路(ROIC)的顶入射结构的光电二极管,实现了30万像素、性能可媲美商用铟镓砷(InGaAs)的短波红外芯片,为国内首款硫化铅胶体量子点(PbS CQD)红外成像芯片。6月16日,相关成果以“A near-infrared colloidal quantum dot imager with monolithically integrated readout circuitry”为题发表于最新一期“Nature Electronics”期刊。红外光电二极管与硅基 ROIC 的单片集成工艺简单、成本可控,且有望极大地提升红外成像芯片分辨率。不同于高温外延生长的红外材料,PbS CQD采用低温溶液法加工,衬底兼容性好,可与硅基 ROIC 单片集成。但现有PbS CQD器件结构不能充分适配硅基ROIC,其耗尽区远离入射光,导致器件外量子效率低。国外STmicroelectronics、IMEC等相继报道基于PbS CQD和硅基ROIC单片集成的红外成像芯片,其像素尺寸远小于InGaAs芯片,在分辨率、成像波段方面有着显著优势,但国内机构尚未有相关报道。唐江教授团队根据PbS CQD的特性,设计出了适配硅基ROIC的顶入射结构光电二极管,通过模拟分析和实验优化器件结构,使耗尽区靠近入射光,实现光生载流子的有效分离与收集,从而提高器件外量子效率。针对磁控溅射中高能粒子对PbS CQD界面的损伤,通过引入C60界面钝化层降低界面缺陷,通过驱动级电容和电容-电压测量分析证明了探测器缺陷浓度降低至2.3×1016cm−3,接近广泛研究的PbS CQD光电二极管的最佳值。文中报道的顶入射 PbS CQD 光电二极管的外量子效率达63%,探测率达2.1×1012Jones,−3dB带宽为140kHz,线性动态范围超过100dB。基于最优的PbS CQD光电二极管,团队进一步实现了国内首款PbS CQD成像芯片的制备,其分辨率为640×512,空间分辨率为40 lp/mm(MTF50),具有可与商用InGaAs成像芯片媲美的成像效果,并且其外量子效率高于国外报道的PbS CQD成像芯片。此外,文中展示了PbS CQD红外成像芯片在水果检测、溶剂识别、静脉成像等方面的应用,证明了其在广泛的应用潜力。图1 PbS CQD成像芯片。a) 成像芯片整体示意图;b) 成像芯片横截面示意图;c) 成像芯片的横截面扫描电镜图像;d) 成像芯片的俯视示意图;e) 单个像素的电路图;f) 电路的读出时序。图2 PbS CQD成像芯片的应用。a) 智能手机(硅基成像芯片)和d) PbS CQD成像芯片在自然光照射下拍摄的苹果和水图片;b) PbS CQD成像芯片和e) InGaAs成像芯片在940 nm光照下拍摄的手掌血管的照片;c) 图b中的红色虚线(线1和线2)的灰度变化;f) 图e中的红色虚线(线1和线2)的灰度变化;g) PbS CQD成像芯片和InGaAs成像芯片在940 nm光照下拍摄的水和乙醇照片(S1和S3为水溶液,S2和S4为乙醇溶液);h) 溶液S1-S4 的归一化灰度直方图;i) 不同浓度(25%、50%、75% 和100%)的酒精的归一化灰度直方图。论文第一作者为武汉光电国家研究中心博士生刘婧,通讯作者为高亮副教授和唐江教授。论文第一完成单位为华中科技大学。该研究工作得到了海思光电子有限公司在读出电路方面的大力支持,以及华中科技大学分析测试中心和武汉光电国家研究中心纳米级表征和器件中心的设施支持。该工作获得了国家重点研发计划、国家自然科学基金、湖北光谷实验室和武汉光电国家研究中心创新基金的资助。同时感谢刘冬生教授和李豪博士在电路方面的讨论与支持。
  • 光谷实验室短波红外芯片完成中试,年内预计销售千万元
    一颗黄豆大小的芯片,利用新技术胶体量子点红外探测成像做成“视觉芯片”,装到手机、检测器上,可以“穿透”介质,看到肉眼看不到的“真相”。光谷实验室近日宣布,其联合科研团队(华中科技大学实验室、温州实验室)研发的胶体量子点成像芯片已实现短波红外成像。目前,已完成小试、中试,可大面积加工,兼容12寸CMOS晶圆制备工艺,同时成本极低,有望颠覆市场。成果转化的背后“冷板凳”一坐就是12年多年来,高亮专注于CQD红外探测芯片的基础应用研究,主要贡献体现在CQD芯片材料、器件、集成的核心制备。“不要看这一颗颗小小的芯片,它们价值不低,一颗可以卖到5000元至1万元。”光谷实验室联合创始人、华中科技大学武汉光电国家研究中心教授高亮指着自己团队研发的产品,自豪地介绍。高科技的背后是半导体光电相关的原理,“它是用胶体量子点,把红外光给吸收了,然后把它变成电子,电子再被这个读数电路进行处理,最后得到红外的图像。”胶体量子点(CQD)红外探测芯片技术正在向第三代微型、高性能和低成本的方向发展,是我国实现红外探测芯片技术弯道超车的突破口。胶体量子点成像芯片12寸CMOS晶圆,目前已完成小试、中试,可大面积加工。12年前,高亮是华中科技大学光学与电子信息学院院长唐江教授的博士生,出于自己的喜好和判断,他并没有选择当时半导体国际前沿领域的热门方向。“新的、火热的科研,也许发论文会更容易,但我对半导体新材料电子器件更感兴趣。”高亮称,读书时,他选择了在二维材料半导体、钙矿半导体、硫金属氟化物等领域“坐冷板凳”。兴趣是最强的创新驱动,大三时,高亮做了一个课程设计“用光电的形式测自己的心跳”,读研的时候,高亮觉得“红外光一般人也看不到,但它有那么多功能,我要一直跟下去”。基于量子点材料做红外探测器的方式,他跟随师兄们做了大量的研究实践。“博士期间去了多伦多大学,看到国际最新的发展趋势,也更坚定了自己要在这条路上一直走下去的决心。”回过头来看,高亮的产学研经历,正是一条“以用为导向”的科研成果转化之路。近日,高亮获评2023年“湖北向上向善好青年”。据了解,多年来,高亮专注于CQD红外探测芯片的基础应用研究,主要贡献体现在CQD芯片材料、器件、集成的核心制备。针对CQD芯片材料缺陷多、器件结构不兼容、集成工艺不成熟等瓶颈问题,提出芯片材料液相外延钝化新策略、设计制备新型顶入射器件、开发硅基一体化集成工艺,依托团队联合华为公司研制出国内首款CQD红外探测芯片,与同类CQD芯片比较,外量子效率国际领先。“视觉芯片”突破五大关键环节做出国内首款样机高亮(中)介绍自己团队研发的产品。据了解,量子点成像芯片也称“视觉芯片”。在食品检测、半导体检测等工业应用中,基于短波红外成像的机器视觉如同机器的“眼睛”,具有重要意义。成像芯片作为成像系统最核心部件,对成像质量以及相机成本均起着决定性作用。国外铟镓砷短波红外芯片造价极其昂贵,使得短波红外相机均价高达25万元,严重制约着市场增长。进口一枚短波红外做成的芯片往往需要上万元,而光谷实验室同类产品量产后,只售数百元。利用颠覆性技术胶体量子点红外探测成像做成的“视觉芯片”(右)及芯片封装模组(左)装到手机、检测器上,可以“穿透”介质,看到肉眼看不到的“真相”。高亮称,50人的团队是新一代短波红外成像芯片开拓者,唐江教授任首席科学家,他和华中科技大学光学与电子信息学/武汉光电国家研究中心双聘副教授张建兵是联合创始人,包括华中科技大学参与校内基础研究的学生,团队人员中80%以上为硕博高材生。联合科研团队先后突破了材料—器件—电路—集成—系统5个关键环节,突破传统工艺限制,开拓全新工艺路线,低温一体化集成,开发研制出国内首款量子点红外成像样机,售价将只有国外的1%,成本大大降低。目前,产品订单已遍布全国,南方科技大学、浙江大学、西北工业大学和国内消费级龙头模组企业均向光谷实验室“抛下橄榄枝”。穿云透雾,面向手机模组、车载相机等消费级应用场景,该产品已申请十五项发明专利,已获授权七项。产品已应用在车载应用、水果分拣、物质检测、半导体检测、安防监控等领域。“仅一二个月,我们就销售了50多万元,今年预计将达到1000万元以上。”看可见光之未见,开辟短波红外新时代!高亮和团队对未来充满了期待。
  • 突破!全球最快响应的短波红外量子点探测器
    【背景介绍】短波红外(SWIR,1000 ~ 3000 nm)光由于受空气中颗粒物的散射较弱,使其在恶劣天气或生物组织中也能提供长距离的有效探测,并在成像场景中提供更多物质化学信息,同时对人眼更安全。这使得短波红外在光通信、远程遥感、自动化视觉技术、生物成像、环境监测和光谱技术等领域中发挥着关键作用。然而,目前市场上的短波红外传感器采用异质外延技术,但由于其制备方法繁琐,不适合大规模、低成本的3D成像应用。随着胶体量子点(QDs)的出现,其尺寸可调的光学特性使其成为探测短波红外光的理想选择。虽然近年来短波红外光电二极管结构探测器的响应时间有所缩短,但至今仍未达到纳秒级水平,这成为将胶体量子点应用于短波红外光电探测领域的主要挑战之一。【成果简介】据麦姆斯咨询报道,近日,比利时根特大学的邓玉豪(第一作者兼通讯作者)等人取得了一项突破性进展,成功利用超薄的胶体量子点吸收层,实现了基于胶体量子点的短波红外光电二极管(QDPDs)的纳秒级响应。这一研究成果创造了短波红外领域全球最快响应的胶体量子点光电探测器,相关内容以“Short-Wave Infrared Colloidal QDs Photodetector with Nanosecond Response Times Enabled by Ultrathin Absorber Layers”为题在国际著名期刊《Advanced Materials》上发表,为胶体量子点在超快短波红外探测技术的进一步研究和应用提供了重要参考。【核心创新】1. 作者通过优化超薄结构器件的制备方法,克服了传统方法的不足,得到1600整流比,42%外量子点效率,98%内量子效率的光电二极管器件。2. 作者通过结构优化,实现了超薄结构下量子点层2.5倍的吸收增强,使得超薄层仍然可以获得较高EQE。3. 作者通过厚度与面积优化,平衡了载流子迁移与RC延迟时间,最终得到创纪录的4 ns响应时间。【研究概览】图1 胶体量子点探测器响应时间的数值模拟。计算表明,漂移时间将限制厚度较大的器件的响应,而RC延迟效应将决定较薄器件的响应时间,通过降低器件面积,可以实现纳秒级的响应时间。图2 胶体量子点光电探测器制备流程优化。作者通过浓度梯度的交换法,提高了PN结的质量,得到了整流比1600的器件。图3 胶体量子点光电探测器结构示意图和性能。该器件的胶体量子点层优化为100 nm,器件的EQE达到了42%,利用结构形成法布里-珀罗腔,在超薄结构的基础上将量子点层的吸收增强了2.5倍,器件的内量子效率可以高达98%。图4 不同大小、不同厚度的胶体量子点光电探测器的响应时间。通过降低器件面积、优化器件厚度可以使得器件具有更快的响应,最终实现了4 ns响应时间的世界纪录,也是首次将胶体量子点短波红外探测速度逼近到了纳秒级别。图5 进一步提快胶体量子点光电探测器的响应分析。通过提高胶体量子点层的迁移率,该器件结构还可以继续优化,完全可以实现亚纳秒级的响应时间,这为接下来胶体量子点超快探测器的研究阐明了研究方向。【成果总结】这项研究工作实现了一项重大的突破,首次设计出超薄吸收层的胶体量子点光电探测器,成功在短波红外波段实现了纳秒级的响应时间。通过采用浓度梯度的配体交换方法,制备了具有高质量PN结的薄膜结构器件。该光电探测器在1330 nm处获得了42%的外部量子效率,这得益于在胶体量子点光电二极管内形成的法布里-珀罗腔和高效的光生电荷提取。此外,通过进一步提高载流子迁移率,该器件可以实现亚纳秒级的响应时间。这项研究的成功突破将对短波红外超快光电探测技术的未来发展产生重大的影响。论文链接:https://doi.org/10 . 1002/adma.202402002【作者简介】Yu-Hao Deng(邓玉豪)博士,比利时根特大学BOF博士后研究员,主要研究方向为胶体量子点材料与光电器件,以及钙钛矿材料表征与光电器件。邓博士之前已在Nature、Advanced Materials、Matter、Nano Letters、Physical Review Letters、Advanced Science等国际期刊上发表论文数篇。
  • 上海技物所可见短波红外高光谱相机在轨应用情况良好
    近日,生态环境部在北京举行高光谱观测卫星在轨投入使用仪式。上海技物所研制的可见短波红外高光谱相机(AHSI)经过在轨测试交付用户投入业务应用。AHSI是2021年发射的高光谱观测卫星主载荷之一,可实现2.5到10纳米光谱分辨率、30米空间分辨率、60公里幅宽,能够同时获取地物从0.4到2.5微米波段范围内的高光谱影像信息,是我国首台可在轨动态配置的宽幅宽谱高光谱相机。AHSI获取的武汉市(2022年5月)的可见近红外光谱立方体(左)和短波红外光谱立方体(右)南四湖、太湖、滇池水质叶绿素a浓度反演结果测试结果表明,AHSI获取的图像清晰,光谱和辐射定量准确,空间结构和光谱反映能力强。与国际同类载荷相比,其综合性能达到国际领先水平。相机在河流/水库/湖泊等不同体量内陆水体的各类水质参数提取、矿区周边生态胁迫、植被精细分类和植被指数反演、大宗固体废弃物遥感监测、海洋生态环境监测、点源甲烷探测等生态环境应用方面,以及在矿物信息精细提取、作物种类识别和生长参数反演、区域产草量等行业应用方面,均具备突出的在轨应用能力,为我国水环境监测、自然生态监测、碳排放监测以及生态环境监管等主体业务提供了国产高精度高光谱数据保障。通过矿物识别分层谱系、光谱特征归一化与光谱特征综合法以及光谱分解法进行矿物信息提取。图为测试区高光谱矿物填图。测试区农田土壤类型调查。图(左)为假彩色合成原始影像,图(右)为测试区农田土壤类型遥感监测识别结果图。煤炭工业园区内的煤矿矿井开展甲烷泄漏监测目前,AHSI正与同为上海技物所研制的资源02D、资源02E、高光谱综合观测卫星同类载荷组网协同观测,使我国拥有当前国际上时-空-谱综合观测性能最强的高光谱对地遥感能力,有效服务于我国环境质量监管和自然资源调查等重大需求。
  • 集成有亚波长光栅的台面型InGaAs基短波红外偏振探测器
    红外辐射(760nm-30μm)作为电磁波的一种,蕴含着物体丰富的信息。红外光电探测器在吸收物体的红外辐射后,通过光电转换、电信号处理等手段将携带物体辐射特征的红外信号可视化。其具有全天候观测、抗干扰能力强、穿透烟尘雾霾能力强、高分辨能力的特点,在国防、天文、民用领域扮演着重要的角色,是当今信息化时代发展的核心驱动力之一,是信息领域战略性高技术必争的制高点。众所周知,波长、强度、相位和偏振是构成光的四大基本元素。其中,光的偏振维度可以丰富目标的散射信息,如表面形貌和粗糙度等,使成像更加生动、更接近人眼接收到的图像。因此偏振成像在目标-背景对比度增强、水下成像、恶劣天气下探测、材料分类、表面重建等领域有着重要应用。在短波红外领域,InGaAs/InP材料体系由于其带隙优势,低暗电流,和室温下的高可靠性已经得到了广泛的应用。目前,一些关于短波偏振探测技术的研究已经在平面型InGaAs/InP PIN探测器上开展。然而,平面结构中所必须的扩散工艺导致的电学串扰使得器件难以向更小尺寸发展。同时,平面结构中由对准偏差导致的偏振相关的像差效应也不可避免。与平面结构相比,深台面结构在物理隔离方面具有优势,具有克服上述不足的潜力。中国科学院物理研究所/北京凝聚态物理国家研究中心E03组长期从事化合物半导体材料外延生长与器件制备的研究。E03组很早就开始了对近红外及短波红外探测器材料与器件的研究,曾研制出超低暗电流的硅基肖特基结红外探测器【Photonics Research, 8, 1662(2020)】,研究过短波红外面阵探测器小像元之间的暗电流抑制及串扰问题【Results in Optics, 5, 100181 (2021)】等。最近,E03组研究团队的张珺玚博士生在陈弘研究员,王文新研究员,邓震副研究员地指导下,针对光的偏振成像,并结合亚波长光栅制备技术,片上集成了一种台面型InGaAs/InP基PIN短波红外偏振探测器原型器件。该原型器件具有的深台面结构可以有效地防止电串扰,使其潜在地实现更小尺寸短波红外偏振探测器的制备。图1是利用湿法腐蚀和电子束曝光等微纳加工技术制备红外探测器及亚波长光栅的工艺流程。图2和图3分别是制备完成后的红外探测器光学显微镜图片和不同取向的亚波长光栅结构SEM图片。图1. 集成有亚波长Al光栅的台面型InGaAs PIN基偏振探测器的工艺流程示意图。图2. 两种台面尺寸原型器件的光学显微镜图片 (a) 403 μm×683 μm (P1), (b) 500 μm×780 μm (P0)。图3. 四种角度 (a) 0°, (b) 45°, (c) 90°, (d) 135° Al光栅形貌。图4是不同台面尺寸的P1和P0器件(无光栅)在不同条件下的J-V特性曲线和响应光谱。在1550 nm光激发,-0.1 V偏压下,P1和P0器件的外量子效率分别为 63.2% and 64.8%,比探测率D* 分别达到 6.28×1011 cm?Hz1/2/W 和6.88×1011 cm?Hz1/2/W,表明了原型器件的高性能。图4. InGaAs PIN原型探测器(无光栅)的J-V特性曲线和响应光谱。(a) 无光照下,P1和P0的暗电流密度Jd-V特性曲线;不同入射光功率下,(b) P1和(c) P0的光电流密度Jph-V特性曲线,插图是-0.1V下光电流密度与入射光功率之间的关系曲线; (d) P1和P0的响应光谱曲线。图5表明器件的偏振特性。从图5可以看出,透射率随偏振角度周期性变化,相邻方向间的相位差在π/4附近,服从马吕斯定律。此外, 0°, 45°, 90°和135°亚波长光栅器件的消光比分别为18:1、18:1、18:1和20:1,TM波透过率均超过90%,表明该偏振红外探测器件具有良好的偏振性能。图5. (a) 1550 nm下,无光栅器件和0°, 45°, 90°和135°亚波长光栅器件的电学信号随入射光极化角度的变化关系;(b) 光栅器件透射谱。综上所述,研究团队制备的台面结构InGaAs PIN探测器,其响应范围为900 nm -1700 nm,在1550 nm和-0.1 V (300K) 下的探测率为6.28×1011 cmHz1/2/W。此外,0°,45°,90°和135°光栅的器件均表现出明显的偏振特性,消光比可达18:1,TM波的透射率超过90%。上述的原型器件作为一种具有良好偏振特性的台面结构短波红外偏振探测器,有望在偏振红外探测领域具有潜在的广泛应用前景。近日,相关研究成果以题“Opto-electrical and polarization performance of mesa-structured InGaAs PIN detector integrated with subwavelength aluminum gratings”发表在Optics Letters【47,6173(2022)】上,上述研究工作得到了基金委重大、基金委青年基金、中国科学院青年创新促进会、中国科学院战略性先导科技专项、怀柔研究部的资助。另外,感谢微加工实验室杨海方老师在电子束曝光等方面的细心指导和帮助。物理所E03组博士研究生张珺玚为第一作者。
  • 高光谱观测卫星可见短波红外高光谱相机在轨应用情况良好
    2023年4月4日,生态环境部在北京举行高光谱观测卫星在轨投入使用仪式。上海技物所研制的可见短波红外高光谱相机(AHSI)经过在轨测试交付用户投入业务应用。   AHSI是2021年发射的高光谱观测卫星主载荷之一,可实现2.5到10纳米光谱分辨率、30米空间分辨率、60公里幅宽,能够同时获取地物从0.4到2.5微米波段范围内的高光谱影像信息,是我国首台可在轨动态配置的宽幅宽谱高光谱相机。   测试结果表明,AHSI获取的图像清晰,光谱和辐射定量准确,空间结构和光谱反映能力强。与国际同类载荷相比,其综合性能达到国际领先水平。相机在河流/水库/湖泊等不同体量内陆水体的各类水质参数提取、矿区周边生态胁迫、植被精细分类和植被指数反演、大宗固体废弃物遥感监测、海洋生态环境监测、点源甲烷探测等生态环境应用方面,以及在矿物信息精细提取、作物种类识别和生长参数反演、区域产草量等行业应用方面,均具备突出的在轨应用能力,为我国水环境监测、自然生态监测、碳排放监测以及生态环境监管等主体业务提供了国产高精度高光谱数据保障。   目前,AHSI正与同为上海技物所研制的资源02D、资源02E、高光谱综合观测卫星同类载荷组网协同观测,使我国拥有当前国际上时-空-谱综合观测性能最强的高光谱对地遥感能力,有效服务于我国环境质量监管和自然资源调查等重大需求。AHSI获取的武汉市(2022年5月)的可见近红外光谱立方体(左)和短波红外光谱立方体(右)南四湖、太湖、滇池水质叶绿素a浓度反演结果通过矿物识别分层谱系、光谱特征归一化与光谱特征综合法以及光谱分解法进行矿物信息提取。图为测试区高光谱矿物填图。测试区农田土壤类型调查。图(左)为假彩色合成原始影像,图(右)为测试区农田土壤类型遥感监测识别结果图。煤炭工业园区内的煤矿矿井开展甲烷泄漏监测
  • 中国生物工程学会立项《脐带间充质干细胞检测技术规范》《干细胞体内短波红外活体光学成像试验方法》团体标准
    各会员单位,有关单位:根据《中国生物工程学会团体标准管理办法》的相关规定,学会组织专家对《脐带间充质干细胞检测技术规范》《干细胞体内短波红外活体光学成像试验方法》两项团体标准进行了立项审查,上述两项团体标准符合立项条件,同意立项。中国生物工程学会二〇二三年八月十四日关于《脐带间充质干细胞检测技术规范》《干细胞体内短波红外活体光学成像试验方法》团体标准立项的公告.pdf
  • 知芯外延:聚焦短波红外探测器研发,助力西安走上“追光”路
    陕西知芯外延半导体有限公司(简称:知芯外延)于2022年在秦创原平台支持下成立,基于西安电子科技大学微电子学院的研发团队,企业研究的硅基四族外延晶圆打破了国外的设备、技术封锁,解决了我国的“卡脖子”技术,带动了我国高端光电探测器、硅光集成产业、超高速通讯器件等各个方向产品的升级。知芯外延主要研究具有硅基四族外延晶圆,在不同掺杂、厚度、纳米结构等参数下的成熟生长工艺,同时团队还研发出了基于硅锗外延晶圆的红外探测器芯片。目前企业生产的外延晶圆以硅基四族材料为主,包括硅基锗、硅基硅锗,硅基锗锡等,可应用于红外探测器、激光雷达、光通讯、三四族材料硅基衬底等各个领域。基于硅锗外延片的硅锗短波红外探测器,作为一种全新的短波探测器技术路径,其高集成度、低成本的优势,将能够成为代替传统材料实现短波红外大规模、各领域应用。在世界各国争相发展短波红外探测技术的当下,陕西知芯外延半导体为我国的技术突破持续发力。公司已入选陕西省光电子产业重点项目,并与多所研究院、军工单位达成合作。项目促进光电子产业创新链发展的同时,也为产业链的发展提供了核心技术支撑,助力西安走上“追光”路。
  • ASD | 利用短波红外波段通过干燥过程分割来估计土壤含水量
    利用短波红外波段通过干燥过程分割来估计土壤含水量 土壤水分是直接影响蒸发、入渗和径流等多种环境过程的重要因素。而且,土壤水分在农业蒸散与粮食安全、湿地退化、干旱、陆气界面的能量交换等相关研究领域发挥着重要的作用。地面测量能够提供易于校准和长时间连续获取的数据,但该种方法仅针对单个小区域,难以支持空间变化研究或实地研究。基于水和土壤介电特性的巨大差异,微波遥感被广泛应用于大空间尺度的土壤水分监测,但不适用于精准农业等多种研究。热遥感可以根据地表温度来估算土壤水分,但热遥感信号不单受到土壤含水量(SMC)的影响,湿度、风速、大气条件等其他参数也会影响估计结果。而光学遥感由于其精细的空间分辨率和利用诸如MODIS、Landsat系列和Sentinel任务等卫星数据进行大尺度监测潜力之间的平衡而引起了诸多关注。目前已经提出了许多指标和模型来阐明反射率特征随SMC的变化,并利用实验室、实地、机载和卫星数据从窄带和宽带的反射率来估计SMC。这些方法/指标主要针对从饱和到风干的各级SMC;然而,作者发现饱和到风干的单一关系映射会导致准确估计的错误印象。在整个干燥过程中,光谱反射率特征和SMCs之间的回归关系不一致导致对相对较低的SMCs估计的精度较低。基于此,在本研究中, 来自南京大学、康奈尔大学和河南农业大学的研究团队提出了一种分割方法以更准确的估计SWC。作者监测了代表不同土壤特性的三种土壤样品的整个干燥过程,并通过蒸发速率变化确定其过渡点(如高SWC的阶段1干燥和低SWC的阶段2干燥)。建立了SMC估计指数,即短波归一化指数(SNI),基于辐射传输模型支持干燥过程中的SNI指数趋势。图1 实验装置示意图。利用ASD FieldspecPro光谱仪进行光谱辐射亮度采集。【结果】 图2 a) 三种土壤样品蒸发速率变化与干燥时间的关系,b) 干燥过程中三种土壤在2150 nm处的反射率变化。 c) 三种样品蒸发速率导数的最大值确定干燥阶段分割点。 图3 三种样品砂/土壤含水量与光谱反射率之间的线性和对数回归的R2,a) 石英砂,b) 圬工砂,c) 伊萨卡土壤,d) 模拟大气透射率。在 a)、b) 和 c) 中,黑色虚线标记为1680 nm和2150 nm。图4 a) 显示了SMC估计的验证结果。 b)、c) 和 d) 显示了三种样品的 建模曲线(实线)、回归曲线(虚线)和验证数据集(空心圆圈)。图5 a)SMC估计值和测量值关系图,其中SMC估计值使用SNI2在线性回归中计算,Bwater 在1980 nm处评估。 图 b)、c) 和 d) 显示了三种样品的建模曲线(实线)、回归曲线(虚线)和验证数据集(空心圆圈)。【结论】利用单一回归关系和单一指数估计整个干燥过程的SMC对所有土壤类型并不是有效的。该研究证明了利用现有方法估计SMC结果不准确,以及在分割干燥过程中估计SMC的基本原理。监测整个干燥过程中3种不同土壤样品的光谱反射率和重量,将其分为两个阶段用于训练和验证。此外,基于辐射传输模型研究不同干燥阶段所提出指数和光通过水的路径长度之间的关系,并支持了经验方法建立的回归关系,尤其是对路径长度相对较短的土壤。结果表明,在分割思想下,SMC估计值和测量值之间的相关性明显提高,尤其是在SMC较低的情况下(阶段2干燥过程)。蒸发速率变化决定了干燥过程的分割过渡点,所有的土壤类型并不是一个特定的SMC值;因此,理解蒸发和SMC变化导致的光谱反射率变化之间的关系是极其重要的。例如,在实际使用中,石英砂阶段2干燥可以忽略,但它却是伊萨卡土壤干燥的重要组成部分。SN1/SN2指数结合可以有效估计三种样品的SMC。对于阶段1干燥,利用SNI1指数在1680 nm和2150 nm处的反射率预测SMC是有效的。在阶段2干燥中,尽管使用1930-2150 nm组合的SNI2指数实现了最佳相关性,但作者认为1980 nm比1930 nm更适合实地应用。这种波段选择是为了避免强烈的大气水汽吸收,以确保足够的地面反射辐射到达飞机或卫星传感器。相对于将阶段2干燥视为阶段1干燥延续的指标,相关关系显著改善。作者得到了如下结论:1.干燥过程分割对从光谱反射率数据准确估计SMC是很有必要的,尤其是对于具有较长阶段2干燥过程的土壤。例如本研究中的伊萨卡土壤。对于与伊萨卡土壤相似的土壤,基于整个干燥过程的SMC估计可能会导致阶段1或阶段2干燥的偏差,这取决于哪个阶段有更多的训练集。2. 由于石英砂中光通过水的路径长度相对较长,因此当SMC较高时,SNI具有独特的特征。在圬工砂或伊萨卡土壤中,half-logistic型的SNI曲线不同于线性关系。当光程较长时,拟合关系应由线性回归变为对数回归。3. 在阶段2干燥过程中,利用现有卫星系统常用的光谱波段组合难以准确估计SMC;使用高光谱数据可以获得更高的精度,可以提供近强水吸收波段的数据,如1930 nm。虽然由于大气水汽的吸收,1930 nm不能在实验室外有效地使用,但稍微偏离中心的波长(如1980 nm)仍然比水吸收波段范围外的波长表现更好。
  • 利用短波红外光谱仪 祝融号发现火星近期水活动迹象
    我国科学家发现火星水活动迹象。5月11日,《科学进展》发表一项关于火星水活动的重要研究成果。基于祝融号火星车获取的短波红外光谱和导航地形相机数据,我国科研人员在火星表面发现了一种形貌上类似沉积岩的板状亮色岩石,进一步分析发现,这些板状亮色岩石富含含水硫酸盐等矿物。这标志着祝融号国际首次利用巡视器上的短波红外光谱仪在火星原位探测到含水矿物。(A)“祝融号”着陆点地貌图。(B)“祝融号”巡视路线图。中科院国家空间科学中心供图“祝融号在地质年代较为年轻的着陆区发现水活动的迹象表明,亚马逊纪时期的火星水圈可能比以往认为的更加活跃。这一发现对理解火星的气候环境演化历史具有重要意义。”论文第一作者兼通讯作者、中科院国家空间科学中心研究员刘洋说。我国首次火星探测任务天问一号搭载的祝融号火星车于2021年5月15日成功着陆于乌托邦平原南部区域。截至目前,祝融号火星车已经在火星北部低地的乌托邦平原区域行驶1年,累计行驶近2000米,获得了大量宝贵的科学探测数据。已有的撞击坑定年工作显示,祝融号火星车着陆区位于经过了后期重塑事件的亚马逊纪地层。亚马逊纪时,火星的气候已经从暖湿变为以寒冷干旱为主。轨道遥感数据分析显示,着陆点周围分布的多种地貌特征指示乌托邦平原曾经可能存在大量的挥发分。然而,“受限于空间分辨率和覆盖率,轨道遥感数据并没有在着陆区附近发现含水矿物,这为此类地貌的形成机制和该地区水活动的性质带来了诸多疑问。”刘洋表示。研究团队认为,祝融号发现的板状亮色岩石是一层着陆区本地发育的硬壳。相比美国海盗一号火星着陆器原位观察到的破碎岩石,祝融号着陆区的硬壳似乎更耐侵蚀,同时该硬壳层相对较厚。“形成如此厚的硬壳层,需要大量的液态水,仅靠大气中的水蒸气是形成不了的。”刘洋解释说。同时,研究发现,着陆区不存在明显的地表径流或河道痕迹,而且巡视路线周围并未发现由水体蒸发形成的蓬松的地表和盐霜残留物,从而排除了着陆区表面有大规模水体活动的可能。对此,研究团队提出了一种新的形成机制。该机制认为,火星沉积期前的土壤风化层在富含盐类的地下水上升或渗透期间经历了胶结和岩化作用,形成了观察到的板状岩石。盐类胶结物在毛细孔隙或靠近潜水面的地下水中沉淀,并发生活跃的蒸发和聚集。地下水位的间歇性波动可能会使硬壳进一步增厚,并形成层状结构。随后,覆盖在硬壳上的表土受到侵蚀作用流失,从而使得抗侵蚀的硬壳层暴露了出来。刘洋表示,祝融号火星车的发现表明,火星在亚马逊纪时期的水活动可能比以前认为的更加活跃。祝融号着陆区以及火星北部平原的广泛区域可能含有大量以含水矿物形式存在的可利用水。
  • “短波长X射线体应力无损分析仪”通过鉴定
    p  strong仪器信息网讯/strong 2015年10月17日,由中国工程物理研究院材料研究所、四川艺精科技集团有限公司、中国兵器工业第五九研究所等单位承担的国家科技部重大科学仪器设备开发专项“短波长X射线体应力无损分析仪开发及应用”的研究成果,顺利通过了四川省科技厅、四川省经济和信息化委员会组织的科技成果及新产品鉴定。/pp style="TEXT-ALIGN: center"img title="现场.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/0320ff88-b9a6-43a1-a3b3-8557088232ef.jpg"//pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: 楷体, 楷体_GB2312, SimKai"strong“短波长X射线衍射分析技术暨短波长X射线体应力无损分析仪新产品鉴定会”现场/strong/span/pp  按照鉴定会程序,鉴定委员会听取了研制工作报告、技术报告,观看了技术研发视频,审核了第三方机构检测报告,考察了仪器现场,并进行了充分讨论、质疑。最后,鉴定委员会一致认为“短波长X射线衍射分析技术及短波长X射线体应力无损分析仪新产品”属于国际首创的技术与仪器,获得了多项国际、国内专利授权,对我国重大装备制造业水平的提升具有推动作用。/pp style="TEXT-ALIGN: center"img style="WIDTH: 400px HEIGHT: 455px" title="image002.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201510/insimg/8971472e-bb72-4eae-b3d8-d8216642d878.jpg" width="400" height="455"//pp style="TEXT-ALIGN: center"strongspan style="FONT-FAMILY: 楷体, 楷体_GB2312, SimKai"短波长X射线体应力无损分析仪新产品/span/strong/pp  材料及工件的应力分布特征是影响物理化学性能的重要因素,在国防军工、航空航天等各个领域,由于材料、工件内部应力导致失败的案例很多,给国家和人民造成重大损失。目前,虽然a href="http://www.instrument.com.cn/zc/77.html" target="_self" title=""strongX射线(衍射)应力仪/strong/a已经得到商业化普及,但其功能只可测定试样约10微米深度表层的应力,无法完成体应力的测定。中子衍射和同步辐射高能X射线应力装置能够开展材料体应力测试,但该类仪器都是以反应堆或同步辐射光源等大型装置为基础,这些装置设备庞大、造价昂贵,无法市场化推广。/pp  针对此现状,中国工程物理研究院材料研究所在“国家科技部重大科学仪器设备开发专项”支持下,研制了实验室用短波长X射线体应力无损分析仪,体积相对较小、价格较低,既可测定体应力,又可市场化推广,在一定程度上填补了以上两类装置之间的空白。/pp  “短波长X射线体应力无损分析仪”采用钨靶发出的波长短、穿透性强的特征X射线,测试材料的内部应力、物相、织构等 利用能量法,改善了入射X射线强度的衰减 采用透射式和反射式的光路设计,获取材料内部结构沿深度分布的信息。该仪器高精度的测角仪、欧拉环等部组件,以及自动控制和应力分析软件等皆是项目组自主研发。样品台最大可承重20Kg 测试铝材当量厚度大于40毫米,无应力铁粉测试误差小于正负20兆帕 空间分辨能力可调,最小空间分辨率为0.1× 0.2× 2mmsup3/sup(宽× 高× 厚),对具有一定厚度的样品能够获得三维空间应力分布。/pp  据介绍,项目组实施了边研制边应用、销售的策略,该仪器已在兵器工业、航空航天、交通运输领域及科研院所得到应用 初步实现仪器的销售,可对外提供材料工件体应力检测服务,目前已创造经济效益696万元。/pp style="TEXT-ALIGN: center"img title="专家组.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/9f7dfd71-eb8a-403a-a7bb-26d116d3c3fe.jpg"//pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: 楷体, 楷体_GB2312, SimKai"strong项目负责人与鉴定委员会成员合影/strong/span/pp  此次鉴定会的鉴定委员会成员包括:中科院物理研究所/中国物理学会X射线衍射联合委员会主任麦振洪研究员、清华大学材料学院院长张政军教授、中国工程物理研究院高级顾问/院士武胜研究员、全国无损检测协会副理事长/爱德森(厦门)电子有限公司总经理林俊明研究员、西南交通大学材料学院院长黄楠教授、中国核动力研究设计院二所书记兼副所长/核工业西南无损检测中心主任唐月明研究员、重庆大学材料学院/全国残余应力学术委员会副秘书长叶文海教授、中国东方电气集团有限公司核电设计所所长唐伟研究员、中航工业贵州黎阳航空发动机(集团)有限公司冶金处处长朱明研究员。麦振洪研究员、张政军教授分别为鉴定委员会正、副主任。/pp  此次鉴定会还邀请了中国工程物理研究院科技委前副主任孙颖研究员等12位专家作为见证嘉宾。国家科技部、四川省科技厅、四川省经济和信息化委员会、绵阳市经济和信息化委员会、中国工程物理研究院、中国工程物理研究院材料研究所、四川艺精科技集团有限公司相关领导,该项目负责人中国工程物理研究院材料研究所副总工程师张鹏程研究员及其他项目骨干等出席了本次鉴定会。/pp style="TEXT-ALIGN: right"撰稿:刘丰秋/ppbr//p
  • 我国首台机载热红外高光谱成像仪研制成功
    p  2016年3月31日,科技部在上海组织召开了863计划地球观测与导航技术领域“星载热红外高光谱成像仪工程样机研制”课题验收会。br//pp  相对于可见光和短波红外,在热红外波段进行高光谱遥感研究具有独特优势。通过搭载机载或者卫星平台来获取地物的热辐射精细光谱信息,可以更有效地识别地物、分辨目标,在地质勘察领域发挥重大作用,同时热红外高光谱成像仪也可以广泛地用于地表温度探测、城市热流分析、环境灾害监测及矿蚀岩的识别等领域,我国的业务部门对热红外高光谱数据需求迫切。该课题在国内首次完成了星载红外高光谱成像载荷总体设计,提出并验证了“推扫成像+延伸波长热红外探测器+色散型分光组件+背景抑制模块+机上实时定标”的总体技术路线,关键技术取得突破,成功研制了我国首台具备自主知识产权的机载热红外高光谱成像仪。/pp  上述成果已成功地完成了飞行验证。课题成果对进一步推动高光谱红外成像遥感在国土资源管理、矿产资源调查、污染气体控制、地表温度监测等领域的应用具有重要意义。/ppbr//p
  • 日本研制出世界最短波长X射线激光
    新华网东京6月12日电 日本研究人员近日利用X射线自由电子激光装置成功发射出波长仅0.12纳米的X射线激光,刷新了这种激光最短波长的世界纪录。  根据日本理化研究所和高辉度光科学研究中心联合发布的新闻公报,来自这两家机构的研究人员利用建在兵库县的X射线自由电子激光装置发出了波长仅0.12纳米的X射线激光,打破了美国的直线加速器相干光源于2009年4月创下的0.15纳米的最短波长世界纪录。  公报说,研究人员将X射线自由电子激光装置的监视器、电磁石等硬件,以及精密控制各种仪器的软件都按最佳设计进行了彻底调整,从2月底装置运转开始,仅用了3个多月时间就发射出了世界最短波长的X射线激光。而当年美国的调整过程花费了几年时间。  X射线激光的波长小于1纳米,它被看作能给原子世界照相的“梦幻之光”。在从基础研究到应用开发的广阔领域,比如膜蛋白的结构分析、纳米技术等领域,X射线激光的应用前景都被看好。
  • 可调谐红外双波段光电探测器,助力多光谱探测发展
    红外双波段光电探测器是重要的多光谱探测器件,特别是近红外/短波红外区域,相较于可见光有更强的穿透能力,相较于中波红外可以以较低的损耗识别冷背景的物体,因此广泛应用于民用和军事领域。当前红外双波段探测器主要面临光谱不可调谐,器件结构复杂而不易与读出集成电路相结合的挑战。据麦姆斯咨询报道,近日,合肥工业大学先进半导体器件与光电集成团队在光电子器件领域取得重要进展,研究团队研发了一种光谱可调谐的近红外/短波红外双波段探测器,相关研究成果以“Bias-Selectable Si Nanowires/PbS Nanocrystalline Film n–n Heterojunction for NIR/SWIR Dual-Band Photodetection”为题,发表于《先进功能材料》(Advanced Functional Materials, 2023: 2214996.)。第一作者为许晨镐,通讯作者为罗林保教授,主要从事新型高性能半导体光电子器件及相关光电集成技术方面的研究工作。该研究使用溶液法制备了硅纳米线/硫化铅异质结光电探测器(如图1(a)),工艺简单,成功将硅基探测器的光谱响应拓宽到2000 nm。基于有限元分析法的COMSOL软件分析表明,一方面,有序的硅纳米线阵列具有较大的器件面积,提升了载流子的输运能力,且纳米线阵列具有较好的周期性,入射光可以在纳米线结构之间连续反射,产生典型的陷光效应。另一方面,小尺寸的纳米线阵列可以看作是微型谐振器,可以形成HE₁ₘ谐振模式,增强特定入射光的光吸收。通过调制外加偏压的极性,器件可以实现近红外/短波红外双波段探测、近红外单波段探测、短波红外单波段探测三种探测模式的切换。器件还具有较高的灵敏度,在2000 nm光照下的探测率高达2.4 × 10¹⁰ Jones,高于多数短波红外探测器。图1 双波段红外探测器结构图及相关仿真和实验结果图2 偏压可调的近红外/短波红外双波段探测及探测率随光强的变化曲线此外,该研究还搭建了单像素光电成像系统(如图3(a)),在2000 nm光照下,当施加-0.15 V和0.15 V偏压时,该器件能对一个简单的英文字母实现成像。但是不施加偏压时,缺无法清晰成像。这表明只需要对器件施加一个小的偏置电压时,就可以将成像系统的工作区域从近红外调整到短波红外,具有较高的灵活性。图3 光电成像系统及成像结果这项研究得到了国家自然科学基金、安徽省重点研发计划、中央高校基本科研业务费专项资金等项目的资助。
  • 横河电机发布适用于短波长测量的新型光谱仪
    日本横河电机株式会社近日推出新型光谱分析仪AQ6373,适用于短波长测量,量程范围350nm~1200nm。横河电机自收购安藤公司以来,即在光通信测试领域保持世界领先地位,光谱分析仪是享有传统美誉的拳头产品。  AQ6373使用单色镜技术,拥有出色的光学测量能力,如高精度波长测量、高分辨率、大动态范围等等。它继承了AQ6370B的友好用户界面和出色的测量吞吐量等优点,在很多测试场合将大大提高工作效率。AQ6373可满足医疗、生物、材料加工、电信设备等众多应用领域中对短波长设备的测量需求,尤其适用于短波长激光、光无源器件和LED的研发及生产。它能够代替许多与AQ6315同期的光谱分析仪。
  • 高载流子迁移率胶体量子点红外探测器
    短波红外和中波红外波段是两个重要的大气窗口。在该波段范围内,碲化汞胶体量子点表现出良好的光响应。此外,胶体量子点具有易于液相加工制备以及与硅基工艺兼容等优势,因此有望显著降低红外光电探测器的成本。然而,目前胶体量子点红外光电探测器在比探测率、响应度等核心性能方面与传统块体半导体红外探测器相比仍存在一定差距。有效地调控掺杂和迁移率等输运性质是提升量子点红外光电探测器性能的关键。据麦姆斯咨询报道,近期,北京理工大学光电学院和北京理工大学长三角研究院的科研团队在《光学学报》期刊上发表了以“高载流子迁移率胶体量子点红外探测器”为主题的文章。该文章第一作者为薛晓梦,通讯作者为陈梦璐和郝群。在本项工作中,采用混相配体交换的方法将载流子迁移率提升,并且实现了N型、本征型、P型等多种掺杂类型的调控。在此基础之上,进一步研究了输运性质对探测器性能的影响。与光导型探测器相比,光伏型探测器不需要额外施加偏置电压,没有散粒噪声,拥有更高的理论灵敏度,因此是本项工作的研究重点。同时,使用高载流子迁移率的本征型碲化汞量子点薄膜制备了短波及中波红外光伏型光电探测器。实验过程材料的合成:Te前驱体的制备在氮气环境下,称量1.276 g(1 mmol)碲颗粒置于玻璃瓶中,并加入10 ml的三正辛基膦(TOP)中,均匀搅拌至溶解,得到透明浅黄色的溶液,即为TOP Te溶液。碲化汞胶体量子点的合成在氮气环境下,称量0.1088 g(0.4 mmol,氮气环境下储存)氯化汞粉末置于玻璃瓶中,并加入16 ml油胺(OAM),均匀搅拌并加热至氯化汞粉末全部溶解。本工作中合成短波红外和中波红外碲化汞胶体量子点的反应温度分别为65℃和95℃。使用移液枪取0.4 mL的TOP Te溶液,快速注入到溶于油胺的氯化汞溶液中,反应时间分别为4 min和6 min。反应结束后加入20 ml无水四氯乙烯(TCE)作为淬火溶液。碲化银纳米晶体颗粒的合成在氮气环境下,称量0.068 g(0.4 mmol)硝酸,并加入1 mL油酸(OA)和10 mL油胺(OAM)中,均匀搅拌30 min。溶解后,注入1 mL TOP,快速加热至160℃并持续30-45 min。然后向反应溶液中注入0.2 mL TOP Te(0.2 mmol),反应时间为10 min。碲化汞胶体量子点的混相配体交换混相配体交换过程包括液相配体交换和固相配体交换。选择溴化双十二烷基二甲基铵(DDAB)作为催化剂,将碲化汞胶体量子点溶在正己烷中,取4 ml混合溶液与160 μL β-巯基乙醇(β-ME)和8 mg DDAB在N,N-二甲基甲酰胺(DMF)中混合。之后向溶液中加入异丙醇(IPA)进行离心,倒掉上清液,将沉淀物重新溶解在60μL DMF中。固相配体交换是在制备量子点薄膜后,用1,2-乙二硫醇(EDT)、盐酸(HCL)和IPA(体积比为1:1:20)溶液对已成膜的碲化汞胶体量子点表面进行处理。碲化汞胶体量子点的掺杂调控在调控碲化汞胶体量子点的掺杂方面,Hg²⁺可以通过表面偶极子稳定量子点中的电子,所以选择汞盐(HgCl₂)来调控量子点的掺杂状态。在液相配体交换结束后,向溶于DMF的碲化汞胶体量子点溶液中加入10 mg HgCl₂得到本征型碲化汞胶体量子点,加入20 mg HgCl₂得到N型碲化汞胶体量子点。材料表征采用混相配体交换的方法不仅可以提高载流子迁移率还可以通过表面偶极子调控碲化汞胶体量子点的掺杂密度。液相配体交换前后中波红外碲化汞胶体量子点的TEM图像如图1(a)所示,可以看到,进行液相配体交换后的碲化汞胶体量子点之间的间距明显减小,排列更加紧密。致密的排列可以提高碲化汞胶体量子点对光的吸收率。混相配体交换后的短波红外和中波红外碲化汞胶体量子点的吸收光谱如图1(b)所示,从图1(b)可以看出,短波红外和中波红外碲化汞胶体量子点的吸收峰分别为5250 cm⁻¹和2700 cm⁻¹。利用场效应晶体管(FET)对碲化汞胶体量子点的迁移率和薄膜的掺杂状态进行测量,把碲化汞胶体量子点沉积在表面有一层薄的SiO₂作为绝缘层的Si基底上,基底两侧的金电极分别作为漏极和源极,Si作为栅极,器件结构如图1(c)所示。通过控制栅极的极性和电压大小,可以使场效应晶体管分别处于截止或导通状态。图1(d)是N型、本征型和P型中波红外碲化汞胶体量子点的场效应晶体管转移曲线。利用FET传输曲线的斜率计算了载流子的迁移率μFET。图1 (a)混相配体交换前后碲化汞胶体量子点的透射电镜图;(b)短波红外和中波红外碲化汞胶体量子点的吸收光谱;(c)碲化汞胶体量子点薄膜场效应晶体管测量原理图;(d)在300K时N型、本征型和P型中波红外碲化汞胶体量子点的场效应晶体管转移曲线测试结果。分析与讨论碲化汞胶体量子点光电探测器的制备光伏型探测器不需要施加额外的偏置电压,没有散粒噪声,理论上会具有更好的性能,借鉴之前文献中的报告,器件结构设计为Al₂O₃/ITO/HgTe/Ag₂Te/Au,制备方法如下:第一步,在蓝宝石基底上磁控溅射沉积50 nm ITO,ITO的功函数在4.5~4.7 eV之间。第二步,制备约470 nm的本征型碲化汞胶体量子点薄膜。第三步,取50 μL碲化银纳米晶体溶液以3000 r/min转速旋转30 s,然后用HgCl₂/MEOH(10 mmol/L)溶液静置10 s后以3000 r/min转速旋转30 s,重复上述步骤两次。在这里,Ag⁺作为P型掺杂层,与本征型碲化汞胶体量子点层形成P-I异质结。最后,将器件移至蒸发镀膜机中,在真空环境(5×10⁻⁴ Pa)下蒸镀50 nm Au作为顶层的电极。高迁移率光伏型探测器的结构图和横截面扫描电镜图如图2(a)所示。能级图如图2(b)所示。制备好的探测器的面积为0.2 mm × 0.2 mm。图2 (a)高迁移率碲化汞胶体量子点P-I异质结结构示意图及扫描电镜截面图 (b)碲化汞胶体量子点P-I异质结能带图。器件性能表征为了探究高载流子迁移率短波红外和中波红外光伏型探测器的光电特性,我们测试了器件的I-V曲线以及响应光谱。图3(a)和(b)分别是高迁移率短波红外和中波红外器件的I-V特性曲线,可以看到短波红外和中波红外探测器的开路电压分别为140 mV和80 mV,这表明PI结中形成了较强的内建电场。此外,在零偏置下,高迁移率短波红外和中波红外器件的光电流分别为0.27 μA和5.5 μA。图3(d)和(e)分别为1.9 μm(300 K) ~ 2.03 μm(80 K)的短波红外器件的响应光谱和3.5 μm(300 K) ~ 4.2 μm(80 K)的中波红外器件的响应光谱。比探测率D*和响应度R是表征光电探测器性能的重要参数。R是探测器的响应度,用来描述器件光电转换能力的物理量,即输出信号光电流与输入光信号功率之比。图3 (a)300 K时短波红外I-V曲线;(b)80 K时中波红外I-V曲线;(c)短波红外及中波红外器件的比探测率随温度的变化;(d)短波红外器件在80 K和300 K时的光谱响应;(e)中波红外器件在80 K和300 K时的光谱响应;(f)短波红外和中波红外器件的响应度随温度的变化。图3(e)和(f)给出了探测器的比探测率D*和响应度R随温度的变化。可以看到,短波红外器件在所有被测温度下,D*都可以达到1×10¹¹ Jones以上,中波红外器件在110 K下的D*达到了1.2×10¹¹ Jones。应用此外,本工作验证高载流子迁移率的短波红外和中波红外量子点光电探测器在实际应用,如光谱仪和红外相机。光谱仪实验装置示意图如图4(a)所示,其内部主要是一个迈克尔逊干涉仪。图4(b)和(c)为使用短波红外和中波红外量子点器件探测时有样品和没有样品的光谱响应结果。图4(e)和图4(f)为样品在短波红外和中波红外波段的透过率曲线。对于短波红外波段,选择了CBZ、DDT、BA和TCE这四种样品,它们在可见光下都是透明的,肉眼无法进行区分,但在短波红外的光谱响应和透过率不同。对于中波红外波段,选择了PP和PVC这两个样品。在可见光下它们都是白色的塑料,但在中波红外光谱响应和透过率不同。图4(d)为自制短波红外和中波红外单点相机的扫描成像。,短波相机成像可以给出材质信息。中波红外相机成像则是反应热信息。以烙铁的中波红外成像为例,我们可以清楚地了解烙铁内部的温度分布。在可见光下,硅片呈现不透明的状态使用自制的短波红外相机成像后硅片呈现半透明的状态。图4 (a)利用高载流子迁移率探测器进行响应光谱测量的原理示意图;(b)和(c)分别是在有样品和没有样品两种模式下用自制探测器所探测到的光谱响应;(d)自制短波红外和中波红外光电探测器的单像素扫描成像结果图;(e)TCE、BA、DDT和CBZ在短波红外模式下的透光率,插图为四种样品的可见光图像;(f)PVC和PP在中波红外模式下的透光率,插图为两种样品的可见光图像。结论综上所述,采用混相配体交换的方法,将量子点薄膜中的载流子迁移率提升到了1 cm²/Vs,相较于之前的研究提升了2个量级。并且通过加入汞盐实现了对量子点薄膜的掺杂调控,分别实现了P型、本征型以及N型多种类型的量子点薄膜。同时,基于本征型高迁移率量子点制备了短波红外和中波红外波段的光伏型光电探测器。测试结果表明,提升量子点的输运性质,有效的提升了探测器的响应率、比探测率等核心性能,并且实现了光谱仪和红外相机等应用。本项工作促进了低成本、高性能量子点红外光电探测器的发展。这项研究获得国家自然科学基金(NSFC No.U22A2081、No.62105022)、中国科学技术协会青年托举工程(No.YESS20210142)和北京市科技新星计划(No.Z211100002121069)的资助和支持。论文链接:https://link.cnki.net/urlid/31. 1 252.o4.20230925.0923.016
  • 大连化物所李灿院士团队成功研制短波长手性拉曼光谱仪
    p style="text-align: center "img title="002.jpg" src="http://img1.17img.cn/17img/images/201801/insimg/694a02ea-3cd0-463f-b9ba-a8fa80a93e9d.jpg"//pp  近日,国家自然科学基金委员会主持的国家重大科研仪器设备研制专项项目结题验收会议在北京举行。大连化物所李灿院士、冯兆池研究员团队主持完成的“电场、磁场调制的短波长手性拉曼光谱仪研制”专项通过结题验收,并获得优秀。这个进展也在Applied Spectroscopy(2017,71(9),2211-2217)上发表。成功研制出国际上第一台457nm激光为激发光源的短波长手性拉曼光谱仪。/pp style="text-align: center "img title="002.jpg" src="http://img1.17img.cn/17img/images/201801/insimg/9a1f6b78-2cd3-4bba-b2c0-7ee292355bc0.jpg"//pp  手性是自然界的基本属性之一,手性分子的研究在生命科学、药物合成及不对称催化等领域中具有重要的意义。其中手性分子的绝对构型鉴定是科学界的一个挑战课题。手性拉曼光谱是手性分子结构表征的一种新的光谱学方法,由于该方法不需要样品结晶,可直接对溶液相中手性样品进行绝对构型的鉴定,因而受到学术界和工业界高度关注。然而,手性拉曼光谱的本征信号非常弱,比常规光谱技术信号弱3至7个数量级,因此在实验上检测手性拉曼信号极具挑战。该研究团队在多年紫外拉曼光谱仪器研制的基础上,提出短波长手性拉曼光谱仪器的研制思路,基于躲开电子态吸收和避免荧光干扰两个基本原理分析,优化选取了适合于手性拉曼光谱的457nm激光作为光源,与国内外相关光谱仪器公司合作,成功研制世界上首台短波长手性拉曼光谱仪,也同时填补了我国手性拉曼光谱技术的空白。/pp  仪器研制成功后,在近期举行的第十九届全国光散射学术会议上,还专门举行了457nm短波长手性拉曼光谱学术研讨会。国内分析化学、不对称合成、药物研究领域的6位院士、拉曼光谱领域的相关专家以及华北制药集团等手性药物的企业技术负责人近30位专家出席了会议。与会专家在听取了项目负责人李灿的总结汇报、项目组其他成员的研制工作介绍、以及现场测试专家的汇报后,进行了深入的研讨。最后与会专家认为:该国际上首次成功研制的457nm短波长手性拉曼光谱仪,信噪比大幅度提升,摄谱时间由数小时缩短至几十分钟,待测样品要求从纯化合物到10%,使手性拉曼仪器性能达到了一个新的高度,同时也填补了我国在手性拉曼光谱仪器的技术空白。并建议将短波长手性拉曼光谱仪尽快工程化,该光谱仪预计将在手性分子鉴定、新药合成和鉴定、不对称催化和生物大分子研究领域发挥重要的作用。/pp  文章题目:A Short-Wavelength Raman Optical Activity Spectrometer with Laser Source at 457nm for the Characterization of Chiral Molecules/p
  • 李灿院士:成功研制第一台457nm短波长手性拉曼光谱仪
    p  strong仪器信息网讯/strong 2017年12月2-4日,第十九届全国光散射学术会议(CNCLS19)在广州中山大学召开。CNCLS19是由中国物理学会光散射专业委员会主办、中山大学承办、吉林大学协办。/pp  在CNCLS19的第一天即开幕式上,中国科学院大连化学物理研究所李灿院士为大家带来了题为《短波长手性拉曼及其手性化学和生物分子研究》的精彩报告。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/0b87bef3-e948-4ab4-99ef-1969b86c38d0.jpg" title="李灿院士.jpg"//pp style="text-align: center "中国科学院大连化学物理研究所李灿院士/pp  李灿院士,中国科学院大连化学物理研究所研究员、洁净能源国家实验室主任,2003年当选中国科学院院士。主要从事催化材料、催化反应和催化光谱表征方面的研究。研制了具有自主知识产权的国内第一台用于催化材料研究的紫外共振拉曼光谱仪并开始商品化生产 在国际上最早利用紫外拉曼光谱解决分子筛骨架杂原子配位结构等催化领域的重大问题 发展了纳米孔中的手性催化合成和乳液催化清洁燃料油超深度脱硫技术等。近年来,主要致力于太阳能光催化制氢以及太阳能光伏电池材料研究。/pp  手性是自然界普遍存在的一种现象,手性药物则是手性化合物中非常重要的一个分支(手性药物是指具有左旋或右旋对映体化学结构的单一对映体化合物,包括光学纯药品、光学纯农业化学品及其他光学纯产品与中间体)。手性药物的研究目前已成为国际新药研究的新方向之一,近十多年来国际公布上市的重磅药物中超过70%是手性药物。世界各国对于手性药物上市的手性对映体药效的要求极其严格,因此,手性中间体及手性药物的结果鉴定具有着“非同一般”的重要性。/pp  分子手性的鉴定方法有HPLC、NMR等经验方法,也有XRD以及手性光谱等非经验方法。手性拉曼光谱(ROA)的首次实验报道见于1972年。手性拉曼光谱(ROA)法用于手性结构检定具有立体结构敏感且响应时间短(相对于NMR)、可进行水溶液体系中手性分子构象测定、鉴定手性分子绝对构型而无需结晶、检测对映体过量值而无需手性分离等潜在优势。但是,手性拉曼光谱也尤其弱势的地方,如,拉曼散射的信号非常弱,手性拉曼的信号强度是其千分之一或者更弱。所以,直到2003年,第一台商品化的手性拉曼光谱仪才面世(美国,BioTools公司)。/pp  而李灿院士团队于1997年成功研制出我国第一台具有自主知识产权的紫外拉曼光谱仪,解决了国际拉曼光谱领域长期存在的荧光干扰问题,并在国际上最早将其应用于催化及材料科学的研究。获得了国家科技发明二等奖。通过紫外共振拉曼光谱首次获得了钛硅分子筛(TS-1)中有关骨架钛物种存在的直接证据。建立了鉴定微孔和中孔分子筛骨架中过渡金属杂原子的拉曼光谱研究方法,这一方法已被国际催化界认为是一种最为可靠的杂原子表征方法。2004年李灿院士团队又研制成功紫外可见全波段共振拉曼光谱议,使我国在拉曼光谱的催化表征研究方面继续处于国际先进水平。2008年,李灿研究组与卓立汉光仪器公司合作,开始将紫外拉曼光谱仪产业化。/pp  2012年李灿院士团队承担了基金委国家重大科研仪器设备研制专项“电场、磁场调制的短波长手性拉曼光谱仪研制”。在研制过程中关于短波长的选择,李灿院士报告中介绍到,既要避开有机分子的荧光干扰( 450nm),还要躲开电子态吸收( 300nm),同时,通过实验发现450nm左右的波长可达到实测信号的最大化 这时,市面上正好出现了高质量的457nm激光器,所以,团队选择了457nm短波长。经过几年时间的研制工作,2017年李灿院士团队研制成功了新一代短波长(457nm)手性拉曼光谱仪,灵敏度得到了大幅度提高。/pp  报告的最后,李灿院士介绍了短波长(457nm)手性拉曼光谱技术在氨基酸、蛋白、糖、核酸等的水溶液以及药物中间体、药物分子等的有机溶剂条件下的应用研究,解决了该领域中的一些关键科学问题。/ppbr//p
  • 高光谱成像仪在植被伪装目标识别中的应用
    图1 变色龙软体机器人变色实验图(来源:Nature Communications)近日,韩国首尔大学等团队公开了“仿生变色龙软体机器人”成果,有望在军事等领域应用,基于伪装技术的不断升级,伪装识别系统也同样备受关注!在过去的100年中,伪装在大多数国家和地区的军事行动中扮演了至关重要的角色。在军事中,伪装就是隐真与示假,隐真是通过主题对背景的仿真,从而使主体目标物隐藏在背景目标中,无法或者难以被发现。国防工程中,通过采用伪装网与复合材料等方法,进行仿形和仿颜色遮蔽来实现;例如,迷彩服,就是一种最传统的伪装方法。而示假是通过对真目标的仿真,用假目标迷惑观察者,比如,二战期间,苏联采用大量“木质坦克”来迷惑德军,使得德军不敢轻易急速进军。“仿”易于实现,一般只需外形相仿。“真”是要求性质上的相似。植被环境背景下的作战,是最常见的战场模式,特别是在山区、丘陵、草原等地区的作战;因此植被背景下的伪装,是必须解决的反伪装技术之一。需要用到的仪器图2 真实场景(A 为绿色的目标、B 为浅绿色塑料假草皮、C 为翠绿色塑料假草皮、D 为绿色雨衣、E 为老式伪装目标、F 为草地)图3 可见光波段和短波红外光谱曲线(可由ATP9110-25H测得)图4 左为真实场景下可见光565nm波段的灰度图像;右为真实场景下近红外1320波段的灰度图像(可由ATH9500-4-17测得)对比可见光与近红外高光谱波段伪装目标的伪装效果发现,可见光波段下,即使物体颜色相似,但是材料不同,光谱曲线变化率也会不一样;在近红外波段下,不同物体的光谱反射值存在较大差异,但是光谱曲线变化率相对较小。图5 左是真实树叶,右为高仿绿色伪装网我们采用全波段地物光谱仪(如奥谱天成的ATP9110-25H型全波段地物光谱仪),测得的高仿伪装网的光谱曲线在 400~1300 nm之间与灌木条叶面光谱曲线很相似,而且具有植被“红边”及可见光波段的绿色强反射峰等特征,在此波段区域不易于区分植被和伪装网光谱。这是一款非常优 秀的高仿绿色伪装网。图6 地物光谱仪(可用奥谱天成ATP9110-25测得)采集树叶和纯绿色伪装网光谱曲线图图7 地物光谱仪(可用奥谱天成ATP9110-25)测得树叶和伪装网光谱曲线图(叶绿素吸收、红边区域局部放大图)从图中可以看出,高仿伪装网一样有红边效应,但是与真实的绿叶还是有差别的。另外,树叶有明显的叶绿素反射峰,而高仿伪装网则没有。图8 基于探测与感知的伪装效果评估流程图(可用ATH9500、ATH9500-4-17型无人机高光谱成像仪测得)基于对目标的实时监控、搜索、侦察以提高战场情况的感知能力及提供打击效果评估的需要,美军希望利用高光谱成像具有较高空间分辨率及高光谱分辨率的特点,通过高光谱融合信息探测出可疑目标位置,引导高空间分辨率成像载荷对目标进行详细分类确认,开展了大量的高光谱军事应用研究项目HYMSMO。图9 机载侦查实验图像1994年10月~1995年10月美国先后进行了白沙导弹试验场沙漠辐射 Ⅰ 、 Ⅱ 试验,森林、城市辐射试验,岛屿辐射试验。以沙漠、森林、城市和岛屿等具有典型地貌的场景为背景环境,研究证实了高光谱成像对目标的可探测性。在进行真假目标、隐藏试验时,高光谱谱段数210个,波段范围0.42~5 μ m ,光谱分辨率10nm ,地面像元分辨率范围0. 75~3m 。图9为沙漠背景环境下,机载侦察试验对伪装的“飞毛腿”导弹发射车(图9 ( a )所示)拍摄的全色图(图9 ( b )所示)及高光谱图像(图9( c )所示),全色图像难以确定目标,但是高光谱图像特征明显。图10 奥谱天成ATH9010无人机载高光谱飞行演示随着科学技术的进步,遥感技术也得到了飞速发展,并日趋成熟。其所具有的全方位、多尺度、全天时、全天候及精细化成像等优点,使遥感侦察变得更加直接与准确,对发现疑似目标与揭露隐蔽目标也更为犀利。遥感技术使传统伪装技术方法与装备器材受到了很大制约,对伪装技术的发展提出了更加严峻的挑战,迫使伪装技术另辟蹊径,寻求更为有效的应对措施与技术方法。更多关于“高光谱”的应用,欢迎咨询!
  • 863计划“高光谱红外一致性传递定标技术”项目通过验收
    p  2019年7月23日,科技部高新技术司会同遥感中心在上海组织召开了“十二五”国家863计划“高光谱红外一致性传递定标技术”项目验收会。项目验收专家、项目承担单位科研人员共计40余人参加了此次会议。/pp  该项目面向提高我国高精度红外遥感载荷质量综合检测与定量应用水平的迫切需求,经过四年技术攻关,攻克了高光谱红外载荷高精度、可溯源在轨光谱辐射定标技术中的前沿技术难题,研制了覆盖可见光近红外、短波红外、长波红外谱段的具备自定标功能的地物成像光谱仪和机载成像光谱仪 构建了基于高空作业平台的高光谱红外成像地面测试基准同步获取技术系统,形成了我国自主的高光谱红外一致性传递定标技术体系。/pp  高光谱红外成像技术和定量化信息获取是国际地球观测领域发展的前沿热点之一,通过该项目建立的高光谱红外一致性传递技术体系,实现了实验室标准、场地定标和星上定标的有机衔接,已成功应用于高分、高景、陆地资源卫星等多个国内外卫星的在轨定标或示范验证。该体系对于提升遥感综合定标技术能力、提高我国高质量红外定量遥感技术与应用水平具有重要意义,为我国高光谱红外遥感成像技术定量化应用提供重要的支撑和保障。/ppbr//p
  • 专注于红外量子材料成像芯片领域 中芯热成完成Pre-A轮融资
    近日,中芯热成科技(北京)有限责任公司(以下称“中芯热成”)完成数千万元Pre-A轮融资。此轮融资交易于2023年1月初完成,中芯热成总经理刘雁飞介绍,“募集资金将用于胶体量子点红外探测器8英寸晶圆级芯片及模组生产线的建设及产品的应用研发,可在工业、航天、汽车、消费电子等领域实现应用,为红外成像芯片在多领域提供全新技术架构及解决方案。”据悉,本次投资由深圳一元航天私募股权基金管理有限公司〔原:航天科工股权投资基金管理(深圳)有限公司〕领投,方正和生及泰有基金跟投,一苇资本担任融资顾问。资料显示,中芯热成于2021年在北京成立,专注于低成本、高分辨率胶体量子点短波及中波红外成像芯片解决方案,以期改变我国红外芯片“用不起”、“看不清”且长期依赖进口的产业现状。中芯热成于2022年7月通过科技型中小企业认定,并于同年荣获国家级高新技术企业认定。“公司目前具备材料合成、芯片微纳加工、光电测试、芯片封装、环境试验及系统测试等核心能力。”刘雁飞说。“胶体量子点红外技术的创新与突破,为我国红外芯片领域填补了新体制技术空白,更对众多行业的发展起到推动作用。”在谈及中芯热成的技术优势时,刘雁飞表示,“短波红外与中波红外探测器长期以来存在成本高、产量低的问题。中芯热成依托自研量子点技术路线,将大幅降低芯片成本,解决行业成本痛点,推动工业分选、高光谱成像、半导体叠层封装及气体探测等领域技术升级。”
  • 红外成像光谱仪为嫦娥四号探测与研究保驾护航
    p style="text-align:center"img src="https://img1.17img.cn/17img/images/201901/uepic/f6ecdf60-26f2-46c4-9e49-d11e1e7dc460.jpg" title="201911117400730.jpg" alt="201911117400730.jpg"//pp style="text-indent: 2em text-align: center "嫦娥四号红外成像光谱仪(来源:中科院上海技术物理研究所)/pp style="text-indent: 2em text-align: justify "“嫦娥四号探测器拟着陆于月球背面的艾特肯盆地,在多台科学有效载荷中,红外成像光谱仪是唯一一台服务于月球矿物组成探测与研究的科学仪器,将获取毫米级空间分辨率的月壤高光谱图像及红外光谱数据。” 中科院上海技术物理研究所红外成像光谱仪副主任设计师徐睿说起有效载荷红外成像光谱仪如数家珍。/pp style="text-indent: 2em text-align: justify "嫦娥四号红外成像光谱仪是由中科院上海技术物理研究所研制的一台能够感知人眼无法察觉的红外光谱的成像探测设备,其安装在月球车正前方,就像一只敏锐的眼睛,将仔细察看月面的矿物组成。/pp style="text-indent: 2em text-align: justify "徐睿进一步解释说,红外成像光谱仪光谱范围0.45 ~ 2.40微米,光谱分辨率2 ~12纳米,具备在轨定标及防尘功能,能适应-20~+55º C工作以及-50~+70º C存储的温度环境,重量小于6公斤,是一台高性能、轻小型、高集成的仪器。/pp style="text-indent: 2em text-align: justify "红外成像光谱仪采用新型分光技术——射频驱动声光可调滤光技术,新型电机——超声电机,两者均由嫦娥三号红外成像光谱仪实现在轨首次应用。相对于嫦娥三号,在经历了多年的技术积累后,通过内部软件不断迭代,当前单次获取月表光谱信息的时间周期缩短了一半,探测效能与定量化水平均得到了提高,从而更好地为月球化学演变研究的科学家服务。/pp style="text-indent: 2em text-align: justify "“在巡视器与着陆器分离后,红外成像光谱仪择机工作。” 中科院上海技术物理研究所红外成像光谱仪主任设计师李春来告诉《中国科学报》记者,依靠巡视器的移动能力,到达指定科学考察点时,红外成像光谱仪对月球车前方0.7m的月表进行精细光谱信息获取,为月面巡视区矿物组成分析提供科学探测数据。/pp style="text-indent: 2em text-align: justify "据介绍,红外成像光谱仪由可见近红外的成像光谱仪、短波红外光谱仪及定标防尘组件高度集成而成,具体包括声光调制分光光学系统、超声驱动定标防尘隔热一体化组件、轻型复合结构、数据获取及处理模块,主控系统等。其中定标防尘组件对于红外成像光谱仪就如同相机的镜头盖,在光谱仪不工作的时候,它自动关闭,在对系统隔热保温的同时,保护光学不被月尘污染。需要月面探测时,定标防尘板全部打开,获取月表的光谱图谱科学数据;而定标模式则是将定标防尘板开启至水平位置,以太阳作为定标源,监控仪器状态。/pp style="text-indent: 2em text-align: justify "事实上,上海技术物理研究所在嫦娥四号红外成像光谱仪任务立项之初,基于嫦娥三号的设计与在轨数据成果情况,就提出了保持接口与硬件设计沿用,软件优化升级的产品研制技术路线,尽可能的利用近年来声光调制光谱探测研究的技术积累,提升嫦娥四号产品的在轨探测能力。李春来带领研制团队,严谨了落实每一步优化的技术状态,将飞行件产品性能调整至最佳。/pp style="text-indent: 2em text-align: justify "而承担光谱仪的系统定标工作的徐睿表示,光谱仪的研制过程就好比生产了一把“尺子”,而定标则是为“尺子”刻上精确的刻度,这样产品才能为科学家所用。/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制