当前位置: 仪器信息网 > 行业主题 > >

对流热源明火性能测试仪

仪器信息网对流热源明火性能测试仪专题为您提供2024年最新对流热源明火性能测试仪价格报价、厂家品牌的相关信息, 包括对流热源明火性能测试仪参数、型号等,不管是国产,还是进口品牌的对流热源明火性能测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合对流热源明火性能测试仪相关的耗材配件、试剂标物,还有对流热源明火性能测试仪相关的最新资讯、资料,以及对流热源明火性能测试仪相关的解决方案。

对流热源明火性能测试仪相关的仪器

  • TPP对流热源(明火)性能测试仪 DIN EN 367 Convective heat resistance tester DINEN 367 TPP对流热源(明火)性能测试仪 DIN EN 367符合标准:ISO 9151/EN 367 TPP对流热源(明火)性能测试仪 DIN EN 367用途:用于评估防护服装、防护手套上暴露于火焰时的防护特性。 TPP对流热源(明火)性能测试仪 DIN EN 367原理:将水平放置的试样部分固定,样品下面气体燃烧器火焰产生80kw/m2入射热通量。用一个放在试样顶上并与之接触的小型铜热量计测量通过试样的热量。热量计中的温升(24±0.2)℃的时间用S记录。三个试样的平均值作为“热传递指数(火焰)。 TPP对流热源(明火)性能测试仪 DIN EN 367仪器组成:1. 气体燃烧器2. 铜盘热量计3. 气动控制装置4. 热屏蔽试样支加5. 测试评估软件6. 计算机
    留言咨询
  • 对流热源(明火)性能分析仪TPP DIN EN 367符合标准ISO 9151/EN 367产品描述将防护材料暴露在火焰上检测通过的热量。用于测定纺织品、消防用品及其他材料的防火性能。水平固定的样品暴露于冲击热流密度为80千瓦/米2的丙烷燃烧器火焰,用热量计测量通过试样的热量。分别量热器中上升12°C和24°C所需的时间。传热指数为三个试样结果的平均值。该装置由燃烧器、盖板以及带有试样夹持器的热量计组成。设备是由软件控制的气动装置进行控制的。软件包含了标准规定的计算和评估方法。此软件还可控制丙烷气体的输送开关。安全起见,燃烧器还配备了电子引火保险。在计算机WINDOWS平台下可以控制整个试验过程,包括校准、启动试验、任意时间终止试验以及更改软件设置,试验过程中温度以图表形式实时显示 试验结束后,可进行数据分析,并保存试验和打印报告。技术参数样品: 纺织物测试标准: DIN EN 367传感器: 温度(量热计)电源: 230 VAC / 30 VA气源: 压缩空气尺寸: 500 x 500 x 500 mm (W x D x H)重量: 50 kg
    留言咨询
  • XG-69 热防护性能测试仪一、主要用途根据GB 8965.1-2009生产,主要用于A级阻燃服、消防服等阻燃防护服装面料暴露于辐射热源和对流热源的隔热性能等测试,广泛用于特种劳动防护用品检验站、安全生产科学研究院所、产品质检院所、阻燃服生产企业。二、主要特征1、辐射热源有9个T-150红外石英灯管组成。2、对流热源有两个美克等组成,倾角45°。4、对流热源火焰强度可通过玻璃转子流量计调节。5、可开启和关闭防护栅,用来控制实验接受和屏蔽热源产生的热量。6、热辐射通量显示表实时显示热通量值。7、主要组成部件包括热源、防护栅、试样支架及安装板、样品夹持板、间隔装置、铜热量计、热量计安装模块、记录仪、气体流量计等。8、采用计算机控制,专用测试软件,自动进行相关实验及数据的处理分析。三、主要指标1、试样尺寸:(150 mm±2mm)×(150 mm±2mm)2、总热通量:50kw/m2~100kw/m2可调节,标准要求83 kw/m2±2 kw/m2。3、热源精度:2 kw/m2。4、燃气流量:0.2-2L/min,精度0.05 L/min。5、燃烧气源:甲烷、天然气、石油液化气。6、工作电源:AC220V 50HZ 四、适用标准GB 8965.1-2009《防护服装 阻燃防护 第1部分:阻燃服》GA 10-2014《消防员灭火防护服》
    留言咨询
  • TPP 热防护性能测试仪 400-860-5168转3842
    TPP 热防护性能测试仪TPP 热防护性能测试仪用以检测防护服、安全鞋、手套、头盔外表面等的热防护性能,通过在既定的热辐射热源作用下,检测材料的热防护性能。样品暴露在指定热辐射能量的热源下,通过传感器信号高速采集,由软件计算出材料的热防护性能指数TPP值,并以Excel或者Word的的形式提供报表。产品特征● 测试仪器应包括试样座组件、试样座组件的支架、热源、防护罩、传感器组件、记录器和垫圈,也应具备气源、气体流量计、燃烧器和传感器;● 可移动式不锈钢保护板,可遮挡火焰,减少测试误差;● 2个45度放置Meker燃烧器,配合9根石英管提供标准对流热源;● Meker燃烧器口径为38mm,内孔直径为5/16英寸,可提供800-1200 BUT 热量输出,燃烧器口为金属网状结构,燃烧器下部风阀可调节,可调节空气和可燃气气体混合比例;● 9个T150石英红外管阵列,可提供热辐射通量为13-40 kW/m2 ± 4 kW/m2;● 在石英红外管热辐射下,通过调节供给 Meker 燃烧器的燃气,可将总的热通量设置为 83kW/m2 ± 2 kW/m2;● 校准热流计为水冷型,工作范围为0-100KW/m2,最大使用范围为150%;● 热流计响应时间小于200ms,辐射率大于0.95,工作范围内输出信号大于5mv;● 铜盘量热计装置,可用于检测对流热和辐射热,同时可探测试样背面温度;● 配备热辐射通量显示仪表,可即使显示热通量数值;● 提供追溯至美国NIST的校准报告;● 转子流量计可调节燃烧气体流量,精度为±2%,量程大于3L/min;● 指针式压力表,进气压力可通过减压阀调节,减压阀量程为0-15psi;● 四分之一旋转塞,可手动切断可燃性气体;● 温度采集系统的分辨率为0.1C°、精度为 ±0.75°C;● 该自动化数据采集系统的数据采集速度为次/0.05秒,并对热电偶的测量数据提供冷端补偿;● 配备电脑及打印机,附带标准测试软件,提供标准测试曲线。符合标准NFPA 1971、NFPA 2112/ASTM D4018、GB 8965.1-2009、ISO 12749、ISO 17492、GB 8695.1等测试标准。
    留言咨询
  • TPP热防护性能测试仪 400-860-5168转1567
    一、TPP热防护性能测试仪简介:TPP 热防护性能测试仪用以检测防护服、安全鞋、手套、头盔外表面等的热防护性能,通过在既定的热辐射热源作用下,检测材料的热防护性能。符合NFPA 1971、ASTM D4018、GB 8965.1-2009、ISO 12749等测试标准 二、TPP热防护性能测试仪技术参数:1、测试仪器应包括试样座组件、试样座组件的支架、热源、防护罩、传感器组件、记录器和垫圈,也应具备气源、气体流量计、燃烧器和传感器。;2、可移动式不锈钢保护板,可遮挡火焰,减少测试误差;3、2个45度放置Meker燃烧器,配合9根石英管提供标准对流热源;4、Meker燃烧器口径为38mm,内孔直径为5/16英寸,可提供800-1200 BUT 热量输出,燃烧器口为金属网状结构,燃烧器下部风阀可调节,可调节空气和可燃气气体混合比例;5、9个T150石英红外管阵列,可提供热辐射通量为13-40 kW/m2 ± 4 kW/m2;6、在石英红外管热辐射下,通过调节供给 Meker 燃烧器的燃气,可将总的热通量设置为 83kW/m2 ± 2 kW/m2;7、校准热流计为水冷型,工作范围为0-100KW/m2,最大使用范围为150%;8、热流计响应时间小于200ms,辐射率大于0.95,工作范围内输出信号大于5mv;9、铜盘量热计装置,可用于检测对流热和辐射热,同时可探测试样背面温度;9、配备热辐射通量显示仪表,可即使显示热通量数值;10、提供追溯至美国NIST的校准报告;11、转子流量计可调节燃烧气体流量,精度为± 2%,量程大于3L/min;12、指针式压力表,进气压力可通过减压阀调节,减压阀量程为0-15psi;13、四分之一旋转塞,可手动切断可燃性气体;14、温度采集系统的分辨率为0.1C° 、精度为 ± 0.75° C;15、该自动化数据采集系统的数据采集速度为次/0.05秒,并对热电偶的测量数据提供冷端补偿;16、配备电脑及打印机,附带标准测试软件,提供标准测试曲线。 .cn
    留言咨询
  • SD510-N凝点测定仪是按照中华人民共和国标准GB/T510和GB/T3535规定的要求设计制造的,适用于按上述两标准规定的方法测定试样产品的凝点和倾点。手动凝点仪 SD510石油低温性能测试仪二、仪器使用的工作条件 1、仪器应放置在平整牢固的工作台上,环境中应尽可能减小空气对流。2、本产品涉及到易燃的材料,操作时周围不允许有明火(或产生火星的装置)靠近。3、仪器不用时应放置在干燥通风处。4、供电电源为单相三线制,必须有良好的接地端。三、主要技术规格及参数1、工作电源: AC220V±10%;50Hz。2、冷槽控温: 室温~-45℃3、制冷系统: 新型致冷压缩机。4、环境温度: ≤30℃。 5、相对湿度: ≤85%。6、功耗: 不大于1000W需要自备消耗品:酒精。山东盛泰仪器有限公司对出售给贵方的仪器提供如下质量保证:----提供的仪器材料是全新的、符合国家质量标准和具有生产厂家合格证的货物;----提供的材料、主要元器件符合技术资料中规定的技术要求;----设备整机质量保证期为一年(不含易损件正常磨损)。----在质量保证期内出现的仪器质量问题,我方负责免费维修。由于使用方责任造成设备故障,我方负责维修,合理收费。 ----设备终生优惠供应零部件,整机终生维护维修。 ----保质期满后,使用方需要维修及技术服务时,我方仅收成本费。 装箱清单 序 号名 称数 量单 位备 注1主机1台2凝点玻璃试管2套包含内管和外管3凝点温度计2只4电源线1条5保险丝管1个6使用说明书1份7装箱单1份8合格证保修卡1 份
    留言咨询
  • 产品介绍:泰思泰克热辐射着火性能测试仪根据GB/T14523-2007的规定并利用TESTech锥形量热仪的加热锥技术结合GB/T14523的具体要求整合设计而成。 设备主要包含辐射锥、点火系统、供气系统、校验系统、温度控制系统等。 标准:GB/T14523-2007型号: TTech-GBT14523特点:1、 辐射锥有全403不锈钢制成;2、 箱体钣金喷漆,美观大方3、 所有内部夹具均有不锈钢制成;4、 试样支撑架:壁厚 1.5mm,5、 标定板 由密度200±50KG/m3的陶瓷纤维板制成 边长165mm,厚度不小于20mm6、 锥形加热器额定功率3000W,热输出量0~70 kW/m2;分辨率0.5 kW/m27、 进口品牌热电偶;据有自动冷节点补偿;8、 美国进口Metherm热电堆式热流计;并配有水冷却系统,安全保护热流计。精度±3%,重现性偏差0.5%;9、 点火装置为自动点火;10、 进口气体流量计,精确控制燃气流量;11、 丙烷气路中安装过滤器;防止污染试验气路系统;12、 止回阀防止危险发生;13、 PLC加触摸屏自动控制系统;14、 温度监控仪 0℃~1000℃;控制加热器温度分辨率±2℃;15、 天平标称量程 5000g,精度0.1g;16、 试验数据自动记录、自动保存;17、 单独控制箱及试样装置屏蔽罩;18、 集烟罩为选配;
    留言咨询
  • 产品介绍泰思泰克热辐射着火性能测试仪根据GB/T14523-2007的规定并利用TESTech锥形量热仪的加热锥技术结合GB/T14523的具体要求整合设计而成。 设备主要包含辐射锥、点火系统、供气系统、校验系统、温度控制系统等。标准 ? GB/T14523-2007型号: TTech-GBT14523特点1、辐射锥有全403不锈钢制成;2、箱体钣金喷漆,美观大方3、所有内部夹具均有不锈钢制成;4、试样支撑架:壁厚 1.5mm,5、标定板 由密度200±50KG/m3的陶瓷纤维板制成 边长165mm,厚度不小于20mm6、锥形加热器额定功率3000W,热输出量0~70 kW/m2;分辨率0.5 kW/m27、进口品牌热电偶;据有自动冷节点补偿;8、美国进口Metherm热电堆式热流计;并配有水冷却系统,安全保护热流计。精度±3%,重现性偏差0.5%;9、点火装置为自动点火;10、进口气体流量计,精确控制燃气流量;11、丙烷气路中安装过滤器;防止污染试验气路系统;12、止回阀防止危险发生;13、PLC加触摸屏自动控制系统;14、温度监控仪 0℃~1000℃;控制加热器温度分辨率±2℃15、天平标称量程 5000g,精度0.1g16、试验数据自动记录、自动保存;17、单独控制箱及试样装置屏蔽罩;18、集烟罩为选配;
    留言咨询
  • 仪器简介:MOTIS 船用水管耐火测试仪针对于船舶上所使用的水管耐火性能测试,符合标准IMO A.753 测试标准,通过对水管施加高强度测试火焰,通过水压进行测试,查看水管是否有漏水现象。符合标准:ISO 19921&2,ISO 10497,FTP II Res A 753:阀门、连接软管、塑料管耐火性能测试主要特点:1、试样平台可前进和后退移动,以及上下升降2、配备标准燃烧器对测试试样进行高温燃烧3、水压可调节,调节范围为0-20BAR4、配备热辐射通量传感器,检测火焰热辐射值5、配备水冷却循环装置,自动冷却热流计6、配备2支热电偶,实时观测火焰温度7、配备电脑和标准测试软件,软件显示数值为温度曲线、热辐射通量数值、水压曲线等
    留言咨询
  • 德国WAZAU TPP织物防火性能测试仪 DIN/EN 367 产品描述:将防护材料暴露在火焰上检测通过的热量。用于测定纺织品、消防用品及其他材料的防火性能。水平固定的样品暴露于冲击热流密度为80千瓦/米2的丙烷燃烧器火焰,用热量计测量通过试样的热量。分别量热器中上升12°C和24°C所需的时间。传热指数为三个试样结果的平均值。该装置由燃烧器、盖板以及带有试样夹持器的热量计组成。设备是由软件控制的气动装置进行控制的。软件包含了标准规定的计算和评估方法。此软件还可控制丙烷气体的输送开关。安全起见,燃烧器还配备了电子引火保险。在计算机WINDOWS平台下可以控制整个试验过程,包括校准、启动试验、任意时间终止试验以及更改软件设置,试验过程中温度以图表形式实时显示;试验结束后,可进行数据分析,并保存试验和打印报告。 技术参数:样品: 织物测试标准:DIN EN 367传感器:温度(量热计)电源: 230 VAC / 30 VA 气源: 压缩空气尺寸: 500 x 500 x 500 mm (W x D x H)重量: 50 kg 佰汇兴业(北京)科技有限公司 联系人:郑先生 电话:Email:
    留言咨询
  • TPP热防护性能测试仪 400-860-5168转2555
    TPP热防护测试仪(TPP Thermal Protective Performance)TPP热防护测试仪(TPP Thermal Protective Performance)用途L用于评估潜在的皮肤烧伤等级以及材料阻隔热对流和热辐射渗透的能力,符合GB 8965.1-2009,GA434,ISO 17492,ASTM F2700,ASTM F2703,NFPA 1971和NFPA 2112等防护服等标准要求TPP热防护测试仪(TPP Thermal Protective Performance)的产品技术规格A. 配置包含试样夹、辐射热源、标准燃烧器、防护罩等测试配件;B. 美国Meker燃烧器,可提供800-1200 BUT 热量输出,可调节空气和可燃气气体混合比例;C. 电火花点火方式,增加测试安全性;D. 9个T150石英红外管阵列 E. 总的热通量可设置为 83kW/m2 ± 2 kW/m2;F. 铜盘量热计中心焊接三支热电偶,安装孔径为1.2 mm,深度 0.13 mm;G. 校准用热辐射通量传感器为SB型水冷方式,工作范围为0-100KW/m2;H. 校准用热辐射通量传感器提供追溯至美国NIST的校准报告;I. 电脑显示热辐射通量校准曲线,并显示当前测试数值;J. 质量流量计可调节燃烧气体流量,精度为±2%,量程大于3L/min;K. 自动上样及气动移动保护罩,最大程度保证测试精度;L. 软件可提供一级烧伤及二级烧伤曲线,供客户测试使用;M. 配备电脑及打印机(用户自备),附带标准测试软件,提供标准测试曲线;N. 软件设计为可自行校准商用热流计及热电偶的准确性;TPP热防护测试仪(TPP Thermal Protective Performance)的产品配置A. 品牌计算机一台B. 试样夹、辐射热源、美国meker燃烧器、防护罩各一套;C. 9个T150石英红外管阵列一套;D. 美国热辐射通量传感器一台F. 专业软件测试包:一级烧伤及二级烧伤曲线;G.产品说明书一套,热辐射通量传感器校准报告书一份;H. 维护工具一套;I. 燃气用户自备。
    留言咨询
  • 仪器简介:FESTEC NEK606 电线电缆耐火性能测试仪是用来测试海岸、船舶及炼油厂等场所用电线电缆因油气等燃烧产生高温的耐火性能。技术参数:NEK 606 海上电缆无卤和/或抗泥测试主要特点:测试箱体:尺寸:1,220(W) x 1,045(D) x 1,100(H) mm;外形尺寸:1,300(W) x 1,125(D) x 950(H) mm;方管:50 x 50 x t3 mm;材料:304#不锈钢;燃烧器组件:材料:t2,304#不锈钢;燃烧器尺寸:304#不锈钢,内径Ø 36mm;Venturi混合器:空气和丙烷混合;质量流量计(MFC):-空气质量流量计,流量77.7± 4.8 SLPM,流速180升/分钟;-丙烷质量流量计,15 SLPM (13.5± 0.5 L/min);火焰温度热电偶:K-型热电偶(&phi 8.0 mm),测量箱体温度;R-型热电偶(&phi 8.0 mm)。机架与控制尺寸:730(W) x 650(D) x 1,600(H)mm;材料:铝合金数据采集系统(DAQ)传送试验数据到PC上;蓝牙:包括一对天线进行数据传输;使用DAQ系统,对供给空气和丙烷控制流量,满足标准温度曲线的供气要求。方便控制燃烧器的开/关;出于安全和操作方便设计自动点火系统。
    留言咨询
  • 本仪器适用于国标GB8965.1-2009(GB8965.1-2020)《防护服装 阻燃防护》GB/T38302-2019《防护服装,热防护性能测试方法》及GA10、NFPA 2112、ISO17492、ASTM F2703等测试方法的要求,可以广泛用于测定阻燃服装面料的热防护性能。适用于纺织服装、石油化工、劳动安全防护以及质量监督检验等行业和机构对防护服热防护性能测试的不同要求,为阻燃防护服的开发、生产过程中的质量控制以及阻燃防护服使用中热防护性能的检测提供科学可靠的依据。本仪器以美国同类原装仪器的基本结构为参照,严格按照测试标准规定的各项技术指标设计制造;其操作功能和测试性能完全达到或超过同类进口仪器水平,TPP测试结果与国际专业检测机构保持一致,是替代进口仪器的选择。1.热源组成:1组辐射热源和2个对流热源。辐射热源由9个红外石英灯管组成。对流热源由两个美克灯组成。2.热源热通量范围:≤100kw/m23.铜热量计测量范围:0℃~150℃4.试样尺寸:150×150mm5.燃气介质:丙烷6.工作电源:AC220V/50Hz 功率:≤4.5kW7.外形尺寸:1500mm×850mm×2360mm(含通风橱)适用标准:GB8965-2009 《防护服装 阻燃防护》,GB8965-2020 《防护服装 阻燃防护》,GB/T38302-2019《防护服装 热防护性能测试方法》GA10《消防员灭火服》NFPA 2112 《Standard on Flame-Resistant Garments for Protection of Industrial Personnel Against Flash Fire》ISO17492 《Clothing for protection against heat and flame — Determination of heat transmission on exposure to both flame and radiant heat》ASTM F2703 《Standard Test Method for Unsteady-State Heat Transfer Evaluation of Flame Resistant Materials for Clothing with Burn Injury Prediction》
    留言咨询
  • 产品介绍:DZDR-S导热性能测试仪是南京大展仪器推出一款采用非稳态法的瞬态热源法,具有测量速度快、测量范围广的优势,可测液体、固体、粉末、薄膜、涂层、胶体、膏体等,软件直接计算导热系数,操作便捷。应用范围:DZDR-S导热性能测试仪是一款用于测量材料导热系数的仪器,应用范围广泛,包括:各种工业材料、橡胶轮胎,建筑材料、耐火材料、工艺材料、陶瓷材料、食品等。1、材料科学:可以通过导热系数仪测量新材料的导热性能,以评估其在新产品设计中的可行性和应用价值。2、能源领域:导热系数仪主要用于测量各种保温材料和冷却系统的导热性能。这些设备可以帮助工程师优化系统设计,提高能源利用效率。例如,在空调和冰箱等家用电器中,通过改进材料的导热系数,可以降低能耗,提高产品的环保性能。3、建筑工程:导热系数仪用于测量各种建筑材料的导热性能,以指导建筑的设计和施工。4、环境科学:导热系数仪常被用于测量土壤和建筑材料的导热性能。测量方法:DZDR-S导热性能测试仪测试原理是基于无限大介质中阶跃加热的圆盘形热源产生的瞬态温度响应,利用热阻性材料做成一个平面探头,同时作为热源和温度传感器,通过自然加热功能产生热量,并通过测量电阻的变化来了解热量的损失,从而反应样品的导热性能。性能优势:1.直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;2.无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;3.对样品实行无损检测,意味着样品可以重复使用;4.仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定;5.智能化的人机界面,彩色液晶屏显示,触摸屏控制,操作方便简洁;6.强大的数据处理能力。高度自动化的计算机数据通讯和报告处理系统。技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃(可拓展到-40~300℃)探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套案例分享:厦门大学中国科学技术大学西安交通大学香港城市大学东北电力大学安徽理工大学北京工业大学北京理工大学长安大学盐龙湖先进技术研究所湘潭大学
    留言咨询
  • ISO 12477 焊工手套耐对流热测试仪ISO 12477 protective gloves for welders Convective heat resistance tester ISO 12477 焊工手套耐对流热测试仪符合标准:ISO 12447、AQ6103 ISO 12477 焊工手套耐对流热测试仪用途:用于评估焊工防护手套及相关防护服装暴露于火焰时的防护特性。 ISO 12477 焊工手套耐对流热测试仪原理:将水平放置的试样部分固定,样品下面气体燃烧器火焰产生80kw/m2入射热通量。用一个放在试样顶上并与之接触的小型铜热量计测量通过试样的热量。热量计中的温升(12或24±0.2)℃的时间用S记录。三个试样的平均值作为“热传递指数(火焰)。 ISO 12477 焊工手套耐对流热测试仪仪器组成:1. 气体燃烧器2. 铜盘热量计3. 气动控制装置4. 热屏蔽试样支加5. 测试评估软件6. 计算机
    留言咨询
  • 一、电线电缆耐火试验装置简介:电线电缆耐火试验装置,是用来检测配线或电网用电缆的耐火性,在不低于750℃和950℃的火焰中燃烧,检测线缆保持电路完整性的测试。 二、电线电缆耐火试验装置技术参数:1、全套设备应至少包括符合GB/T19216.11规定的试验设备、综合测量装置等。2、试验设备包括试验装置、燃气控制装置、连续性检查装置以及数据采集系统。3、试样支撑装置,需使得电缆或光缆试样的护套或被保护的端部乘水平地托住,试样的一端用固定夹夹住以防移动,另一端支撑试样,电缆或光缆的中部用两个相距300mm的金属环支撑,金属环和支撑装置的其他金属部分良好接地,金属环内径约为150mm,应用直径10±2mm的圆棒制造。4、点燃源为美国AGF丙烷带状燃烧器,喷嘴长度为500mm,喷嘴标称宽度为15mm,喷嘴有三排错开的标称直径为1.32mm、中心距为3.2mm的钻孔,喷嘴每一边有一排小孔作为引导孔维持火焰燃烧,尺寸公差为±5%。5、进口质量流量控制器调节燃气及空气流量,读数精度不低于1.5%。6、进口减压阀,可提供0.1Mpa±3pa的出口压力。7、进口压力表,可提供0-200kpa压力量程。8、进口Omega热电偶,直径为1.5mm,用于燃烧器温度校准.9、可设定燃烧测试时间,并自动切断燃气。10、标准测试软件,可显示燃烧器校准温度、丙烷流量、空气流量。11、试验适用于为额定电压0.6/1.0 KV及以下电缆12、试验过程中,用做连续性检查的电流应通过电缆全部导体,该电流由一台三相星形的变压器提供,变压器具有足够容量使达到允许泄漏电流时仍可保持要求的试验电压。在试样的另一端,每根导体或每组导体连接指示装置(LED指示灯)使形成电流,通过该数据可以在电脑软件中获取。13、电压设置可以电脑输入值,自动设置电压值。也可以通过面板按钮对电压微调。14、测试回路电流保护采用熔断器,符合GB 13539.5 规定的D II 型。熔断器标准2A。方便更换。并采用进口微型断路器对各测试回路保护。15、测试电缆的电流和电压数据均通过二次仪表,数字化显示,测试电流精度辨率0.001A,实际使用电流为0.25A为最佳测试电流。16、 所有电流及电压的实时测量数据经过电脑采集,并生成电流和电压曲线,显示各根电缆在受火状态下的电流和电压随时间的变化曲线,做出耐火性能的判定。更可以对电缆随受火时间变化的进一步分析。最终数据存入电脑数据库,并生成标准报告,方便查阅。17、测试前火焰温度的校准,进口铠装热电偶校准,校准温度经过电脑至少10min采集,在电脑选着供火模式。电脑根据供火模式,根据采集温度进行稳态取样和差值计算,给出校验报告。保存报告,存入数据库,保证校验的可靠性和权威性。18、测试过程中燃气和辅助空气均采用质量流量控制器,并经过文丘里混合,电脑自动控制流量阀,并把数据实时记录存入数据库,电脑自动合理控制燃气和辅助空气配比,使燃烧充分,产生稳定火焰,稳定火焰温度。 19、回路正常通电时各回路采用进口指示灯显示,在火焰条件下线路出现不完整时,对应回路的指示灯熄灭,电脑自动判定此时状态,控制声光报警器报警。20、软件要求:测试实验室信息和测试条件,线缆规格等信息均可以在测试前输入电脑,21、可以选着测试标准和设置最大测试时间,可对电压值,电流可靠范围等参数设置,界面清晰易懂,操作方便。
    留言咨询
  • 热防护性能测试仪 400-860-5168转1567
    一、热防护性能测试仪简介:TPP 热防护性能测试仪用以检测防护服、安全鞋、手套、头盔外表面等的热防护性能。通过在既定的热辐射热源作用下,检测材料的热防护性能。符合标准:NFPA 1971、ASTM D4018、GB 8965.1-2009二、热防护性能测试仪主要特点:1、测试仪器应包括试样座组件、试样座组件的支架、热源、防护罩、传感器组件、记录器和垫圈,也应具备气源、气体流量计、燃烧器和传感器。2可移动式不锈钢保护板3、2个45度放置Meker燃烧器4、里管口径为38mm,内孔直径为5/16英寸,可提供800-1200 BUT 热量输出,燃烧器口为金属网状结构,燃烧器下部风阀可调节,可调节空气和可燃气气体混合比例5、9个T150石英红外管阵列,可提供热辐射通量为13 kW/m2 ± 4 kW/m26、在石英红外管热辐射下,通过调节供给 Meker 燃烧器的燃气,可将总的热通量设置为 83kW/m2 ± 2 kW/m27、校准热流计为水冷型,工作范围为0-100KW/m2,最大使用范围为150%8、热流计响应时间小于200ms,辐射率大于0.95,工作范围内输出信号大于5mv9、配备热辐射通量显示仪表,可即使显示热通量数值10、提供追溯至美国NIST的校准报告11、转子流量计可调节燃烧气体流量,精度为± 2%,量程大于3L/min12、指针式压力表,进气压力可通过减压阀调节,减压阀量程为0-15psi13、四分之一旋转塞,可手动切断可燃性气体14、传感器的数据采集系统能记录最低 150℃的温度。该温度采集系统的分辨率为0.1C° 、精度为 ± 0.75° C。15、该自动化数据采集系统的数据采集速度至少应为10Hz,并对热电偶的测量数据提供冷端补偿。16、配备电脑及打印机,附带标准测试软件,提供标准测试曲线
    留言咨询
  • 铺地材料热辐射板测试仪Flooring radiant panel test apparatus型号:FRP铺地材料热辐射板测试仪用途:   用于各种铺地材料,如纺织地毯、软木板、木板、橡胶板和塑料地板及地板喷涂材料等,通过一定的热辐射及火焰环境,衡量材料燃烧情况下的临界热辐射值。   欧盟使用该测试方法对所有欧盟成员国铺地材料进行防火等级分类。铺地材料热辐射板测试仪符合标准:GB/T11785铺地材料的燃烧性能测定辐射热源法EN ISO9239-1铺地材料的燃烧性能  第1部分:使用辐射热源测定燃烧性能 EN ISO9239-2铺地材料的燃烧性能  第2部分::在热辐射为 25k W/m“的情况下测量火焰蔓延测试ASTM E648地面材料临界热辐射测试ASTM E970屋顶隔热材料临界辐射通量测试NFPA 253地板覆盖系统的临界热辐射通量测试等.铺地材料热辐射板测试仪技术优势:1、使用鼓风机装置,对辐射板提供空气源,摒弃了以往采用空压机的做法,因为空压机气源为间歇式,无法有效保证其供气的连续性;2、使用美国MEDTHERM水冷热流计,同时提供自动循环的冷却水源,无需用户外接冷却水;3、对校准板进行校准时,可保证所有校准孔均可满足测试标准要求,改变以往,对于远端热辐射通量数值无法满足要求的情况;4、光路校准,增加了自动切换的快门,无需采用关闭光源的做法,相对于国内外同类型机器而言,这个是首创,同时更好的保证了测试结果的稳定性和准确性。铺地材料热辐射板测试仪产品技术规格:1、不锈钢测试箱体采用前开门设计,便于清洁以及更换试样装置2、箱体内壁为硅酸钙板,防高温及耐腐蚀3、配备300mm×450mm 多孔陶瓷热辐射板,30度角度放置4、提供T型多孔燃烧器,对试样施加明火5、光路系统包含光源为2900 ± 100 K色温白炽灯,光源接受为硅光电池,配备光路测试用快门,便于0%及100%校准使用6、测试软件:烟密度DAQ 测试软件,软件可显示热辐射通量数值、烟密度曲线、透过率曲线等试验相关信息7、气体控制部分:使用针阀调节T型燃烧器火焰高度,丙烷质量流量计调节辐射板燃气流量,数字化显示,变频器调节混合气体比例,配备回火阀,保证测试无回火,自带鼓风机提供空气气源,通过文丘里混合气混合测试用燃气8、美国Medtherm水冷热流计,工作范围为0~50 kW/m2,热流计精度±2%,响应时间为0.2 s,提供便携式冷却水源,无需外接水
    留言咨询
  • 织物凉感性能测试仪 400-860-5168转6216
    织物凉感性能测试仪适用范围织物凉感性能测试仪是织物与人体皮肤接触后织物给皮肤的温度刺激在人大脑中形成的关于冷和暖的判断;当织物与皮肤接触瞬间,由于存在温差,织物与皮肤之间会发生热交换,使皮肤的温度升高或降低;织物与皮肤之间的热交换形式主要为热传导,织物内部的热辐射和自然对流影响很小,可忽略不计;通常情况下(除环境温度高于皮肤温度外),皮肤温度高于环境温度,因此织物与皮肤接触后往往使皮肤温度下降。用于测试睡衣、床上用品、布料、内衣的凉爽感。测量案例床垫的冷感评估、退热贴的凉爽感、内衣的热感评估、汽车内饰品的触感评估、化妆品的清凉感评估符合标准GB/T 35263-2017、FZ/T62042-2020、FZ/T73067-2020,CNS15687, L3272 织物瞬间凉感性能试验法JIS L 1927 接触冷感性能的评价方法 仪器特性1、高精度的温度传感器,保证温度测量的准确性。2、开机自动加热板预热功能,节约测试时间。3、测试完成自动保存数据,并可查看报表计算、分析结果,打印测试报表。4、触摸屏控制面板,清晰的图像界面为测试人员提供了更加方便快捷的操作。5、可在主机内自由查阅所有数据及统计结果。6、采用32位ARM处理器,采样频率高,测试精度高。7、红外检测,可以选择手动/自动测试。自动测试免去人为测试造成的误差。 技术参数控制系统:PLC 操作界面:彩色7寸触摸屏,中英文切换;选配台式电脑或者笔记本加Windows系统温度精度:0.01℃测试精度:0.001J/(cm² .s)测试时间:1~99s可设加热温度范围:20~40℃ 热检测板面积为9cm² ,压强0.9±0.09N/cm² 测试台尺寸:长220mm 宽220mm;外形尺寸: 550×590×270mm重 量:30kg电 源:AC220V 50Hz 100W
    留言咨询
  • 一、定义瞬态平面热源技术(TPS)是用于测量导热系数的一种新型的方法,由瑞典Chalmer理工大学的Silas Gustafsson教授在热线法的基础上发展起来的。它测定材料热物性的原理是基于无限大介质中阶跃加热的圆盘形热源产生的瞬态温度响应。利用热阻性材料做成一个平面的探头,同时作为热源和温度传感器。合金的热阻系数一温度和电阻的关系呈线性关系,即通过了解电阻的变化可以知道热量的损失,从而反映了样品的导热性能。该方法的探头即是采用导电合金经刻蚀处理后形成的连续双螺旋结构薄片,外层为双层的绝缘保护层,厚度很薄,它令探头具有一定的机械强度并保持与样品之间的电绝缘性。在测试过程中,探头被放置于样品中间进行测试。电流通过探头时,产生一定的温度上升,产生的热量同时向探头两侧的样品进行扩散,热扩散的速度依赖于材料的热传导特性。通过记录温度与探头的响应时间,由数学模型可以直接得到导热系数。产品特点: 1、测试范围广泛,测试性能稳定; 2、直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;3、不会和静态法一样受到接触热阻的影响;4、无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;5、对样品实行无损检测,意味着样品可以重复使用;6、探头采用双螺旋线的结构进行设计,结合专属数学模型,利用核心算法对探头上采集的数据进行分析7、样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;8、探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;9、主机的控制系统使用了ARM 微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力, 计算结果更加准确;10、仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定;11、智能化的人机界面,彩色液晶屏显示,触摸屏控制,操作方便简洁;二、技术参数测试范围0.005~300W/(m*K)测量温度范围常温~130℃探头直径一号探头 7.5mm;二号探头 15mm精度≤2%重复性误差≤3%测量时间5~160s样品温升<15℃电源220V整机功率<500W 样品规格 一号探头所测单个样品 (15*15*3.75)mm二号探头所测单个样品 (30*30*7.5)mm软件特点: 1、支持仪器系数校准。 2、自动计算导热系数,热扩散系数,相关系数,可以自动判断结果是否符合温升。 3、曲线可以一键自适应,曲线放大,缩小,视图拖动。 4、支持同时打开多条曲线,且数量不受限制。 5、可生成报告,图像,结果,实验信息等,模板可自定义。 6、软件内置试验记录、数据处理和报告格式。 7、可到处数据,支持 xls,tps,cvs,png 等格式导出,并支持对 xls,tps,cvs 等格式的导入。软件具有远程更新功能,可以自动获取到新版本的软件,直接安装。 8、支持数据优化,污点数据去除,智能化进行计算。 9、支持中文,英文, 日语,韩语切换。软件界面复旦大学选购我司导热系数测试仪部分采购高校及机构1、二维石墨材料导热防腐涂层制备及性能优化 大连理工大学2、水稻秸秆砂浆复合材料热工性能研究 沈阳农业大学3、陶瓷废料制备轻质保温泡沫陶瓷的研究 华南理工大学4、碳纳米管-膨胀石墨/环氧树脂复合材料的导热性能 中国科学院过程工程研究所5、高性能钢结构防火涂层制备性能及应用研究 烟台大学6、真空绝热板芯材木粉原料的隔热性能分析 福建农林大学7、水性纳米隔热保温涂料的制备与性能研究 深圳恒固纳米科技有限公司8、氧化亚铜包覆正二十烷相变材料微胶囊的制备及其多功能性研究 北京化工大学9、结构保温膨胀珍珠岩混凝土的试验及性能研究 河北建筑工程学院10、棉纤维对保温材料性能的影响 南通开放大学11、纳米填料改性环氧树脂复合材料性能研究 东北石油大学12、二硫化钼改性酚醛树脂的耐热性及抗氧化性研究 内蒙古农业大学13、气凝胶掺杂玻化微珠砂浆性能的研究 江苏省既有建筑绿色化改造工程技术研究中心部分使用导热系数客户SCI论文1、Hydrogel beads derived from chrome leather scraps for the preparation of lightweight gypsum2、Size-controlled graphite nanoplatelets_ thermal conductivity enhancers for epoxy resin3、Thermal, morphological, and mechanical characteristics of sustainable tannin bio-based foams reinforced with wood cellulosic fibers4、Improved thermal conductivity of epoxy resin by graphene–nickel three-dimensional filler5、A synergistic strategy for fabricating an ultralight and thermal insulating aramid nanofiber/polyimide aerogel 6、Fabrication of Graphene/TiO 2 /Paraffin Composite Phase Change Materials for Enhancement of Solar Energy Efficiency in Photocatalysis and Latent Heat Storage 7、Improved thermal conductivity of styrene acrylic resin with carbon nanotubes, graphene and boron nitride hybrid fillers8、Preparation and characterization of paraffin/expanded graphite composite phase change materials with high thermal conductivity9、Tailoring of bifunctional microencapsulated phase change materials with CdS/SiO2 double-layered shell for solar photocatalysis and solar thermal energy storage10、Functional aerogels with sound absorption and thermal insulation derived from semi-liquefied waste bamboo and gelatin11、Lamellar-structured phase change composites based on biomass-derived carbonaceous sheets and sodium acetate trihydrate for high-efficient solar photothermal energy harvest12、Construction of double cross-linking PEG/h-BN@GO polymeric energy-storage composites with high structural stability and excellent thermal performances13、Gelatin as green adhesive for the preparation of a multifunctional biobased cryogel derived from bamboo industrial waste14、A novel self-thermoregulatory electrode material based on phosphorene-decorated phase-change microcapsules for supercapacitors15、Development of poly(ethylene glycol)/silica phase-change microcapsules with well-defined core-shell structure for reliable and durable heat energy storage16、Experimental and numerical study on heat emission characteristics of ventilated air annular in tunneling roadway17、Construction of polyaniline/carbon nanotubes-functionalized phase-change microcapsules for thermal management application of supercapacitors18、Mechanical, thermal and acoustical characteristics of composite board kneaded by leather fiber and semi-liquefied bamboo19、Tuning the oxidation degree of graphite toward highly thermally conductive graphite/epoxy composites20、Thermal self-regulatory smart biosensor based on horseradish peroxidase-immobilized phase-change microcapsules for enhancing detection of hazardous substances21、Morphology-controlled synthesis of microencapsulated phase change materials with TiO2 shell for thermal energy harvesting and temperature regulation22、Size-tunable CaCO3@n-eicosane phase-change microcapsules for thermal energy storage23、High-Efficiency Preparation of Reduced Graphene Oxide by a Two-Step Reduction Method and Its Synergistic Enhancement of Thermally Conductive and Anticorrosive Performance for Epoxy Coatings24、Temperature and pH dual-stimuli-responsive phase-change microcapsules for multipurpose applications in smart drug delivery25、Development of Renewable Biomass-Derived Carbonaceous Aerogel/Mannitol Phase-Change Composites for High Thermal-Energy-Release Efficiency and Shape Stabilization26、Immobilization of laccase on phase-change microcapsules as self-thermoregulatory enzyme carrier for biocatalytic enhancement27、Microencapsulating n-docosane phase change material into CaCO3/Fe3O4 composites for high-efficient utilization of solar photothermal energy28、Integration of Magnetic Phase-Change Microcapsules with Black Phosphorus Nanosheets for Efficient Harvest of Solar Photothermal Energy29、Surface construction of Ni(OH)2 nanoflowers on phase-change microcapsules for enhancement of heat transfer and thermal response30、Design and fabrication of bifunctional microcapsules for solar thermal energy storage and solar photocatalysis by encapsulating paraffin phase change material into cuprous oxide31、Design and construction of mesoporous silica/n-eicosane phase-change nanocomposites for supercooling depression and heat transfer enhancement32、Development of reversible and durable thermochromic phase-change microcapsules for real-time indication of thermal energy storage and management33、Nanoflaky nickel-hydroxide-decorated phase-change microcapsules as smart electrode materials with thermal self-regulation function for supercapacitor application34、Biodegradable wood plastic composites with phase change microcapsules of honeycomb-BN-layer for photothermal energy conversion and storage35、Hierarchical microencapsulation of phase change material with carbon-nanotubes/polydopamine/silica shell for synergistic enhancement of solar photothermal conversion and storage36、Molecularly Imprinted Phase-Change Microcapsule System for Bifunctional Applications in Waste Heat Recovery and Targeted Pollutant Removal37、Pomegranate-like phase-change microcapsules based on multichambered TiO2 shell engulfing multiple n-docosane cores for enhancing heat transfer and leakage prevention38、Innovative Integration of Phase-Change Microcapsules with Metal–Organic Frameworks into an Intelligent Biosensing System for Enhancing Dopamine Detection39、Morphology-controlled fabrication of magnetic phase-change microcapsules for synchronous efficient recovery of wastewater and waste heat40、Polyimide/phosphorene hybrid aerogel-based composite phase change materials for high-efficient solar energy capture and photothermal conversion
    留言咨询
  • 热防护性能测定仪 400-860-5168转1567
    一、TPP热防护性能测试仪简介:TPP 热防护性能测试仪用以检测防护服、安全鞋、手套、头盔外表面等的热防护性能,通过在既定的热辐射热源作用下,检测材料的热防护性能。符合NFPA 1971、ASTM D4018、GB 8965.1-2009、ISO 12749等测试标准 二、TPP热防护性能测试仪技术参数:1、测试仪器应包括试样座组件、试样座组件的支架、热源、防护罩、传感器组件、记录器和垫圈,也应具备气源、气体流量计、燃烧器和传感器。;2、可移动式不锈钢保护板,可遮挡火焰,减少测试误差;3、2个45度放置Meker燃烧器,配合9根石英管提供标准对流热源;4、Meker燃烧器口径为38mm,内孔直径为5/16英寸,可提供800-1200 BUT 热量输出,燃烧器口为金属网状结构,燃烧器下部风阀可调节,可调节空气和可燃气气体混合比例;5、9个T150石英红外管阵列,可提供热辐射通量为13-40 kW/m2 ± 4 kW/m2;6、在石英红外管热辐射下,通过调节供给 Meker 燃烧器的燃气,可将总的热通量设置为 83kW/m2 ± 2 kW/m2;7、校准热流计为水冷型,工作范围为0-100KW/m2,最大使用范围为150%;8、热流计响应时间小于200ms,辐射率大于0.95,工作范围内输出信号大于5mv;9、铜盘量热计装置,可用于检测对流热和辐射热,同时可探测试样背面温度;9、配备热辐射通量显示仪表,可即使显示热通量数值;10、提供追溯至美国NIST的校准报告;11、转子流量计可调节燃烧气体流量,精度为± 2%,量程大于3L/min;12、指针式压力表,进气压力可通过减压阀调节,减压阀量程为0-15psi;13、四分之一旋转塞,可手动切断可燃性气体;14、温度采集系统的分辨率为0.1C° 、精度为 ± 0.75° C;15、该自动化数据采集系统的数据采集速度为次/0.05秒,并对热电偶的测量数据提供冷端补偿;16、配备电脑及打印机,附带标准测试软件,提供标准测试曲线。 .cn
    留言咨询
  • 隔音隔热绝缘材料火焰蔓延测试仪 Aircraft insulation Radiant Panel tester 隔音隔热绝缘材料火焰蔓延测试仪(Aircraft insulation Radiant Panel tester)产品介绍:美国MarlinEngineering所制造的、为美国联邦航空管理局FAA认可的隔热隔音材料火焰蔓延测试仪。用于检测隔热隔音材料暴露在标准热辐射源下后,通过明火点燃试样,用于测量材料的燃烧性能和火焰蔓延性能。Measures the flame propagation (afterflame and burn distance) of thermal/ acoustic aircraft Insulation. 隔音隔热绝缘材料火焰蔓延测试仪(Aircraft insulation Radiant Panel tester)符合标准:符合FAR Part 25 Appendix F Part Vl、Airbus AITM 2.0053、Boeing BSS 7365等国际标准,以及民用航空MH/T6042-2006等测试方法。 隔音隔热绝缘材料火焰蔓延测试仪(Aircraft insulation Radiant Panel tester)型号:ME1300-3 隔音隔热绝缘材料火焰蔓延测试仪(Aircraft insulation Radiant Panel tester)技术特征:1.辐射板试验箱为的封闭设备,包含内置烟囱等部件。2.辐射热源为400VAC 3相电热板,PID温度控制方式,温度控制精度0.1度。3.辐射热源安装在框架中,电热板有六个76mm宽辐射条,其辐射条垂直于电热板的长边能承受不低于704度的作业温度。4.辐射板应放置于试验箱中,与试样水平面呈30度夹角。5.配备气动滑动抽屉,用户可实现自动控制试样的进出。6.燃烧器为一个轴对称且孔径为0.15mm的丙烷文式点火装置。7.燃烧器移动装置,可使得火焰水平且高于试样平面至少51mm。8.配备为准确测定火焰传播的激光指针,用于监控火焰蔓延距离。9.箱体背面可插入热电偶,该热电偶距离箱体后壁279mm,距离箱壁右侧292mm,并位于辐射板下方51mm处,热电偶温度精度为2度。10.水冷热流计,热辐射通量范围不低于60KW/m2, 配备自循环冷却水源。11.热流计支架为厚度3.2mm的钢板制成,该支架容纳耐火板。12.热流计支架有三个穿过支撑板的25.4mm直径的插孔,第一个插孔的中心到热辐射板表面距离为191±3mm,相邻两个插孔的孔心距离应为51mm。13.配备两种试样夹,2样品支架,一个是标准型,一个为短的用于钩环试验14.配备数据采集系统,电脑及打印机装置1套。15.测试时间自动记录,并自动停止,时间控制精度为0.1s(秒)。
    留言咨询
  • 产品介绍:美国MarlinEngineering所制造的,为美国联邦航空管理局FAA认可的隔热隔音材料火焰蔓延测试仪。用于检测隔热隔音材料暴露在标准热辐射源下后,通过明火点燃试样,用于测量材料的燃烧性能和火焰蔓延性能。隔热隔音材料火焰蔓延测试仪可符合FAR Part 25 Appendix F Part Vl、Airbus AITM 2.0053、Boeing BSS 7365等国际标准,以及民用航空MH/T6042-2006等测试方法。 技术特征:1. 辐射板试验箱为的封闭设备,包含内置烟囱等部件。2. 辐射热源为400VAC 3相电热板,PID温度控制方式,温度控制精度0.1度。3. 辐射热源安装在框架中,电热板有六个76mm宽辐射条,其辐射条垂直于电热板的长边能承受不低于704度的作业温度。4. 辐射板应放置于试验箱中,与试样水平面呈30度夹角。5. 配备气动滑动抽屉,用户可实现自动控制试样的进出。6. 燃烧器为一个轴对称且孔径为0.15mm的丙烷文式点火装置。7. 燃烧器移动装置,可使得火焰水平且高于试样平面至少51mm。8. 配备为准确测定火焰传播的激光指针,用于监控火焰蔓延距离。9. 箱体背面可插入热电偶,该热电偶距离箱体后壁279mm,距离箱壁右侧 292mm,并位于辐射板下方51mm处,热电偶温度精度为2度。10. 水冷热流计,热辐射通量范围不低于60KW/m2, 配备自循环冷却水源。11. 热流计支架为厚度3.2mm的钢板制成,该支架容纳耐火板。12. 热流计支架有三个穿过支撑板的25.4mm直径的插孔,第一个插孔的中心到热辐射板表面距离为191±3mm,相邻两个插孔的孔心距离应为51mm。13. 配备两种试样夹,2样品支架,一个是标准型,一个为短的用于钩环试验14. 配备数据采集系统,电脑及打印机装置1套。15. 测试时间自动记录,并自动停止,时间控制精度为0.1s(秒)。
    留言咨询
  • 产品介绍:瞬态平面热源技术(TPS)开发的导热系数测试仪,可用于各种不同类型、不同形态材料的热传导性能的测试。瞬态平面热源法是研究热传导性能方法中新型的一种,它使测量技术达到了一个全新的水平。性能优势:1.测试范围广泛,测试性能稳定,在国内同类仪器中,处于优先水平;2.直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;3.不会和静态法一样受到接触热阻的影响;4.无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;5.对样品实行无损检测,意味着样品可以重复使用;6.探头采用双螺旋线的结构进行设计,结合专属数学模型,利用核心算法对探头上采集的数据进行分析计算;7.样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;8.探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;9.主机的控制系统使用了ARM微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力,计算结果更加准确;10.仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定。技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套DZDR-S 瞬态热源法导热仪的操作方法:DZDR-S导热系数测试仪测试方法对比:
    留言咨询
  • 产品介绍: DZDR-S 导热系数测试仪是采用了瞬态平面热源法,仪器由南京大展检测仪器研发、生产,采用了一体化的机型设计,能够实现一键测量,同时进口芯片,测量速度快5~160s出结果,操作简单。测量范围: DZDR-S 瞬态平面热源法导热仪测试样品种类较多,包括:金属、陶瓷、合金、矿石、聚合物、复合材料、纸、泡沫和玻璃钢面板复合板材等。测试方法介绍: DZDR-S 瞬态平面热源法导热仪可用于各种不同类型、不同形态材料的热传导性能的测试。瞬态平面热源法是研究热传导性能方法中新型的一种,它使测量技术达到了一个全新的水平。在研究材料时能够快速准确的测量导热系数,为企业质量监控、材料生产以及实验室研究提供了极大的方便,可以选配有粉末测试容器、液体杯。优势特点:1、直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;2、主机的控制系统使用了ARM微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力,计算结果更加准确;3、探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;4、智能化的人机界面,彩色液晶屏显示,触摸屏控制,操作方便简洁;5、仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定;5、强大的数据处理能力。高度自动化的计算机数据通讯和报告处理系统。测试步骤:技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套
    留言咨询
  • 一、定义瞬态平面热源技术(TPS)是用于测量导热系数的一种新型的方法,由瑞典Chalmer理工大学的Silas Gustafsson教授在热线法的基础上发展起来的。它测定材料热物性的原理是基于无限大介质中阶跃加热的圆盘形热源产生的瞬态温度响应。利用热阻性材料做成一个平面的探头,同时作为热源和温度传感器。合金的热阻系数一温度和电阻的关系呈线性关系,即通过了解电阻的变化可以知道热量的损失,从而反映了样品的导热性能。该方法的探头即是采用导电合金经刻蚀处理后形成的连续双螺旋结构薄片,外层为双层的绝缘保护层,厚度很薄,它令探头具有一定的机械强度并保持与样品之间的电绝缘性。在测试过程中,探头被放置于样品中间进行测试。电流通过探头时,产生一定的温度上升,产生的热量同时向探头两侧的样品进行扩散,热扩散的速度依赖于材料的热传导特性。通过记录温度与探头的响应时间,由数学模型可以直接得到导热系数。产品特点: 1、测试范围广泛,测试性能稳定; 2、直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;3、不会和静态法一样受到接触热阻的影响;4、无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;5、对样品实行无损检测,意味着样品可以重复使用;6、探头采用双螺旋线的结构进行设计,结合专属数学模型,利用核心算法对探头上采集的数据进行分析7、样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;8、探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;9、主机的控制系统使用了ARM 微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力, 计算结果更加准确;10、仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定;11、智能化的人机界面,彩色液晶屏显示,触摸屏控制,操作方便简洁;二、技术参数测试范围0.005~300W/(m*K)测量温度范围常温~130℃探头直径一号探头 7.5mm;二号探头 15mm精度≤2%重复性误差≤3%测量时间5~160s样品温升<15℃电源220V整机功率<500W 样品规格 一号探头所测单个样品 (15*15*3.75)mm二号探头所测单个样品 (30*30*7.5)mm软件特点: 1、支持仪器系数校准。 2、自动计算导热系数,热扩散系数,相关系数,可以自动判断结果是否符合温升。 3、曲线可以一键自适应,曲线放大,缩小,视图拖动。 4、支持同时打开多条曲线,且数量不受限制。 5、可生成报告,图像,结果,实验信息等,模板可自定义。 6、软件内置试验记录、数据处理和报告格式。 7、可到处数据,支持 xls,tps,cvs,png 等格式导出,并支持对 xls,tps,cvs 等格式的导入。软件具有远程更新功能,可以自动获取到新版本的软件,直接安装。 8、支持数据优化,污点数据去除,智能化进行计算。 9、支持中文,英文, 日语,韩语切换。软件界面复旦大学选购我司导热系数测试仪部分采购高校及机构1、二维石墨材料导热防腐涂层制备及性能优化 大连理工大学2、水稻秸秆砂浆复合材料热工性能研究 沈阳农业大学3、陶瓷废料制备轻质保温泡沫陶瓷的研究 华南理工大学4、碳纳米管-膨胀石墨/环氧树脂复合材料的导热性能 中国科学院过程工程研究所5、高性能钢结构防火涂层制备性能及应用研究 烟台大学6、真空绝热板芯材木粉原料的隔热性能分析 福建农林大学7、水性纳米隔热保温涂料的制备与性能研究 深圳恒固纳米科技有限公司8、氧化亚铜包覆正二十烷相变材料微胶囊的制备及其多功能性研究 北京化工大学9、结构保温膨胀珍珠岩混凝土的试验及性能研究 河北建筑工程学院10、棉纤维对保温材料性能的影响 南通开放大学11、纳米填料改性环氧树脂复合材料性能研究 东北石油大学12、二硫化钼改性酚醛树脂的耐热性及抗氧化性研究 内蒙古农业大学13、气凝胶掺杂玻化微珠砂浆性能的研究 江苏省既有建筑绿色化改造工程技术研究中心部分使用导热系数客户SCI论文1、Hydrogel beads derived from chrome leather scraps for the preparation of lightweight gypsum2、Size-controlled graphite nanoplatelets_ thermal conductivity enhancers for epoxy resin3、Thermal, morphological, and mechanical characteristics of sustainable tannin bio-based foams reinforced with wood cellulosic fibers4、Improved thermal conductivity of epoxy resin by graphene–nickel three-dimensional filler5、A synergistic strategy for fabricating an ultralight and thermal insulating aramid nanofiber/polyimide aerogel 6、Fabrication of Graphene/TiO 2 /Paraffin Composite Phase Change Materials for Enhancement of Solar Energy Efficiency in Photocatalysis and Latent Heat Storage 7、Improved thermal conductivity of styrene acrylic resin with carbon nanotubes, graphene and boron nitride hybrid fillers8、Preparation and characterization of paraffin/expanded graphite composite phase change materials with high thermal conductivity9、Tailoring of bifunctional microencapsulated phase change materials with CdS/SiO2 double-layered shell for solar photocatalysis and solar thermal energy storage10、Functional aerogels with sound absorption and thermal insulation derived from semi-liquefied waste bamboo and gelatin11、Lamellar-structured phase change composites based on biomass-derived carbonaceous sheets and sodium acetate trihydrate for high-efficient solar photothermal energy harvest12、Construction of double cross-linking PEG/h-BN@GO polymeric energy-storage composites with high structural stability and excellent thermal performances13、Gelatin as green adhesive for the preparation of a multifunctional biobased cryogel derived from bamboo industrial waste14、A novel self-thermoregulatory electrode material based on phosphorene-decorated phase-change microcapsules for supercapacitors15、Development of poly(ethylene glycol)/silica phase-change microcapsules with well-defined core-shell structure for reliable and durable heat energy storage16、Experimental and numerical study on heat emission characteristics of ventilated air annular in tunneling roadway17、Construction of polyaniline/carbon nanotubes-functionalized phase-change microcapsules for thermal management application of supercapacitors18、Mechanical, thermal and acoustical characteristics of composite board kneaded by leather fiber and semi-liquefied bamboo19、Tuning the oxidation degree of graphite toward highly thermally conductive graphite/epoxy composites20、Thermal self-regulatory smart biosensor based on horseradish peroxidase-immobilized phase-change microcapsules for enhancing detection of hazardous substances21、Morphology-controlled synthesis of microencapsulated phase change materials with TiO2 shell for thermal energy harvesting and temperature regulation22、Size-tunable CaCO3@n-eicosane phase-change microcapsules for thermal energy storage23、High-Efficiency Preparation of Reduced Graphene Oxide by a Two-Step Reduction Method and Its Synergistic Enhancement of Thermally Conductive and Anticorrosive Performance for Epoxy Coatings24、Temperature and pH dual-stimuli-responsive phase-change microcapsules for multipurpose applications in smart drug delivery25、Development of Renewable Biomass-Derived Carbonaceous Aerogel/Mannitol Phase-Change Composites for High Thermal-Energy-Release Efficiency and Shape Stabilization26、Immobilization of laccase on phase-change microcapsules as self-thermoregulatory enzyme carrier for biocatalytic enhancement27、Microencapsulating n-docosane phase change material into CaCO3/Fe3O4 composites for high-efficient utilization of solar photothermal energy28、Integration of Magnetic Phase-Change Microcapsules with Black Phosphorus Nanosheets for Efficient Harvest of Solar Photothermal Energy29、Surface construction of Ni(OH)2 nanoflowers on phase-change microcapsules for enhancement of heat transfer and thermal response30、Design and fabrication of bifunctional microcapsules for solar thermal energy storage and solar photocatalysis by encapsulating paraffin phase change material into cuprous oxide31、Design and construction of mesoporous silica/n-eicosane phase-change nanocomposites for supercooling depression and heat transfer enhancement32、Development of reversible and durable thermochromic phase-change microcapsules for real-time indication of thermal energy storage and management33、Nanoflaky nickel-hydroxide-decorated phase-change microcapsules as smart electrode materials with thermal self-regulation function for supercapacitor application34、Biodegradable wood plastic composites with phase change microcapsules of honeycomb-BN-layer for photothermal energy conversion and storage35、Hierarchical microencapsulation of phase change material with carbon-nanotubes/polydopamine/silica shell for synergistic enhancement of solar photothermal conversion and storage36、Molecularly Imprinted Phase-Change Microcapsule System for Bifunctional Applications in Waste Heat Recovery and Targeted Pollutant Removal37、Pomegranate-like phase-change microcapsules based on multichambered TiO2 shell engulfing multiple n-docosane cores for enhancing heat transfer and leakage prevention38、Innovative Integration of Phase-Change Microcapsules with Metal–Organic Frameworks into an Intelligent Biosensing System for Enhancing Dopamine Detection39、Morphology-controlled fabrication of magnetic phase-change microcapsules for synchronous efficient recovery of wastewater and waste heat40、Polyimide/phosphorene hybrid aerogel-based composite phase change materials for high-efficient solar energy capture and photothermal conversion
    留言咨询
  • 产品介绍:DZDR-S是南京大展检测仪器生产一款瞬态平面热源法导热仪,采用一体化的机型设计,小巧轻便,同时测量速度快,一键计算导热系数,准确度高等优势。测试范围:DZDR-S 瞬态平面热源法导热仪可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定。测试方法:瞬态平面热源技术(TPS)开发的导热系数测试仪,可用于各种不同类型、不同形态材料的热传导性能的测试。瞬态平面热源法是研究热传导性能方法中新型的一种,它使测量技术达到了一个新的水平。性能优势:1.直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;2.不会和静态法一样受到接触热阻的影响;3.无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;4对样品实行无损检测,意味着样品可以重复使用;5.探头采用双螺旋线的结构进行设计,结合属数学模型,利用核心算法对探头上采集的数据进行分析计算;6.样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;7.探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;8.主机的控制系统使用了ARM微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力,计算结果更加准确;9.仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定;10.智能化的人机界面,彩色液晶屏显示,触摸屏控制,操作方便简洁。技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套
    留言咨询
  • 垂直水平燃烧性能测试仪技术指标1.本生灯灯头:内径9.5mm±0.3mm从空气入口处向上长度约100mm±10mm;2.燃烧器角度:0~45°(手动调节,带刻度);3.引燃铺垫板:标准医用棉花;4.施燃气体:98%甲烷标准气或者37MJ/m3±1MJ/m3天然气或丙烷(气体自备);5.燃气焰温梯度:从100℃±5℃~700℃±3℃用时44s±2.0s或54s±2.0s或者按照定制标准要求(需用温度校准装置验证);6.温度校准验证装置 :进口仪表自动控制,配φ5.5mm,1.76±0.01g或φ9mm,10.00±0.05g标准铜头(选购件);7.温度校准验证用热电偶:Ø 0.5mm,K型,进口绝缘式耐高温铠装热电偶(选购件);8.试验时间和持燃时间:1s~999.9s(数显可预置);9.重复施燃次数:1~9999次(数显可预置);10.采用自动打火装置,方便试验自动进行;11.箱体内部容积:0.75m3(可选0.5M3和1M3) ;12.外形尺寸:宽1330*深730mm*高1500mm;13.箱体材料:铁板喷涂;14.排气孔:Ø 100mm;15.输入电源:AC 220V 50HZ 5A。16.产品全系标配燃气泄露报警装置,安全可靠。垂直水平燃烧性能测试仪大规模试验large scale test规模超过共型实验室试验台的试验。[GB/T 5169.1--2007,定义3.53]烟的质量光密度mass optical density of smoke光密度与因数V/(LX△m)的乘积,V是试验箱的容积,Am是试样的质量损失,L是光程。[GB/T 5169.1-2007,定义3.61]3.1.14(烟的)阻光度optical of smoke在规定的试验条件下,入射光通量(1)和穿过烟的透射光通量(T)之比(I/T)。[GB/T 5169.1-2007,定义3.67]3.1.15(烟的)光密度optical deasity (of smoke)[lg (1/T)]烟的阻光度的常用对数[lg(I/T)](参见炳的"比光密度”),[GB/T 5169.1--2007,定义3.68]3.1.16实际规模试验real-scale test在尺寸和周围环境隅方面模拟最终使用状况的试验。[GB/T 5169.1-2007,定义3.73]3.1.17小规模试验small-scale test可以在典型的试验台上进行的试验。[GB/T 5169.1-2007,定义3.77]3.1.18烟smoke由燃烧成热解产生的气体中的固体和(或)液体可见悬浮微粒。[GB/T 5169.1-2007,定义3.79]3.1.19烟模糊smoke obscuration烟的产生使能见度降低,[GB/T 5169.1--2007,定义3.80]3.1.20烟产生速率smoke production rate在规定试验条件下,单位时间内材料燃烧产生的烟的消光面积。3.1.21烟释放速率smoke release rate参见“烟产生速率”。3.1.22烟的比消光面积specific extinction area of smoke烟的消光面积除以试验样品的质量损失。[GB/T5169.1-2007,定义3.83]垂直水平燃烧性能测试仪可以从表中推导出来。着火伴随着一系列复杂的化学和物理现象。因此,很难在一台小型设备中模拟真实着火的各个方面。着火模型的有效性问题对于所有的着火测试可能是一个最复杂的技术同题。GB/T 5169.2给出了电工电子产品的着火危险评定总则。起燃后,环境条件和易燃材料的布置方式可能会导致火势按照不同的方式发展。然而,在室内可以确定火势发展的一般模式,即温度-时间曲线上有三个着火阶段和一个衰退阶段。(见图1)阶段1为出现连续火焰之前的初始阶段,着火室中温度仅有少量升高。这个阶段的主要危害是产生的火花和烟,阶段2(燃烧渐强)起始于起燃,终止于着火室温度呈现指数上升。这个阶段的主要危害除了烟之外,还包括火焰蔓延和热释放。阶段3(充分燃烧)开始于室内所有易燃物的表面分解至火势蔓延整个室内,伴随着温度的快速升高(轰燃)。阶段3的末期,消耗了大量的易燃物和/或氧气,因此温度受系统的通风条件、传热和传质性质影响按一定速率下降,也就是衰退。每个阶段会形成不同的分解产物混合物,反之,这些混合物又影响到各个阶段产生的烟密度。此外,需要得到相关火情的信息,尤其是热通量,氧气供给量和排烟设施情况。垂直水平燃烧性能测试仪4.2影响烟产生的因素4.2.1综述影响烟的产生和烟的特性因素有很多,虽然不可能对这些特性进行全面的描述,但可了解其中几种重要变量的影响。4.2.2分解模式烟是燃烧的结果,燃烧可以是有焰或无焰,包括闷烧,这些不同的燃烧模式可能产生不同类型的烟。无焰燃烧时,温度的升高促使挥发物的形成。当挥发物与冷空气混合时,会形成球状小滴,呈现明亮的烟气溶胶。有焰燃烧会产生富含碳黑的烟,这种烟中的粒子为不规则形状。有焰燃烧的粒子是在气相中形成的,并且是在氧气含量非常低的区域导致不完全燃烧形成的。烟中的含碳颗粒释放辐射能量(黑体辐射)使烟看起来为黄色。无焰燃烧产生的球状颗粒大小通常为1μm,有焰燃烧的那些不规则的含碳颗粒尺寸虽然更大,但却更难测定,并取决于其测量技术,通常燃烧木材时有焰燃烧比无焰燃烧产生的烟量要少,然而对于塑料则不能一概而论:有焰燃烧产生的烟量可能少于也可能多于无焰燃烧产生的烟量。因此,测试烟时,必须记录测试样品是否点燃以及点燃和熄灭的次数。另外,复合物的背面可能会产生冷烟,与暴露着的表面产生的烟在颜色和成分上完全不同。试验样品上的热通量影响着材料的燃烧方式 在低水平人射辐照度(15 kW *m-'~25 kW・ m’)和高水平人射辐照度(40 kW * m-'~50 kW *m’)下评估样品产生的烟量是一个良好的常用方法。这样可以评估在火焰发展阶段材料产生烟倾向的影响。4.2.3通风和燃烧环境产生的烟不仅和燃烧材料种类有关,还和火情有关。众所周知,对于某些材料,有限的通风可显著地增加烟量。测量燃烧中的烟量时,要考虑燃烧速率和燃烧面积。由于火在大面积上蔓廷速度很快,单位面积产生少量烟的物质可能释放出大量的烟。4.2.4时间和温度烟气溶胶颗粒的大小分布与时间有关并随时间变化会凝结。有些特性也会随温度变化而改变,所以时间长的烟或者是冷烟,它们的性质可能与产生不久的烟或者热烟的特性不同。这些因素对消防人员考虑在大型建筑物中烟的潜在移动趋势很重要。这些因素在设计烟测试时也要考虑到。4.2.5去除烟粒子的方法有些方法可以去除大的烟粒子。在含有辐射热源可燃气体的累积测试程序中,由于烟雾粒子循环流通,大的烟粒子可能会发生二次热分解。其他去除大颗粒烟粒子的方法包括烟粒子在试验箱内表面上的沉积和风扇吹除。在实际燃烧中,当烟在着火房间内循环流通时,这样的现象也会发生。因为在累积烟测试中可能会有这些影响,所以暴露的早期阶段(例如开头10min)被公认为是测量烟的速率的最好时期。5 烟的测量原理烟由气溶胶颗粒组成。烟可通过它的重量特性函数(烟雾粒子的质量)、光模糊特性函数,或者两种特性函数来测量[1]。本部分贝考虑模糊度,不考虑重量法。模糊性是光路中粒子的数量、大小和性质的函数。若认为这些粒子是不透明的,则模糊光中的烟含量与光路中粒子的横截面积总和有关。测量结果的单位为面积,例如平方米(m'),垂直水平燃烧性能测试仪这些测量方法可应用于小规模或大规模或实际规模的着火测试。采用密闭系统的称为累积法或静卖法.采用流动系统的测试方法称为动态法。5.1 布格(Bouguer)定律光学烟测试源于布格(Bouguer)定律,该定律钱述了单色光在吸收媒介中的衰减,I/T=e-=--. =.= .== .=. ... ..= ==.===*…-( ])(1/L)I(/T)*----. =-+---…+ … +…---+-----( 2 )(的单位为长度的创数,如m)式中 T一透射光强度 1一一人射光强度 L--一穿过烟的光程k一一线性内皮尔(Napierian)吸收系数(或消光系数)(见图2),图2的方框内容可作参考。图2光在烟中传播的衰减5.2消光面积烟量的一个有效测量方法为计算所有熠粒于的有效横截面积总和,这个面积即为消光面积5。这个清光面积可以看作是烟粒子在光束中投下的总阴影面积(見图3)。清光面积与烟的消光系敷和烟的体积有关,方程如下:S-kV.......…- -- ==- -----------( 3)式中V--容纳烟的试验箱容量该方程仪适用于均匀的烟
    留言咨询
  • KES-FB4-AUTO-A自动表面性能测试仪 本测试仪可自动测试布和纸张、无纺布、薄膜试样的表面性能。 通过测试可获得表面平均摩擦系数、摩擦系数的变动以及表面平整性的数据。 将试样放置于安装位置后按启动开关,本测试仪即自动地将摩擦指测头和粗糙度接触式测头设置在 规定的位置上开始测试。测试可变更位置连续进行3 次。 特点:设计时使用了低通滤波器, 所以在摩擦性能上与指尖具有极高的相关性。 布和纸张、无纺布等的光滑感、粗糙感、挺爽感测试广泛使用本测试仪。 规格 ※规格书内记载的规格内容有可能会在不经预告的情况下变更。请予以谅解。尺寸/重量(估算)装置主体:W550 × D520 × H420(mm)/40kg 电子放大器:W180 × D400 × H400(mm)/10kg电源AC100V、最大消费电力 100W测试环境温度、湿度20 ~ 30℃/50 ~ 70%RH无结露。在测试中需保持一定的温度和湿度。(标准温度和湿度条件:20℃/65%RH)※需设置在受到风和振动影响少的场所摩擦力测试测试仪:差动变压器(环形测力计)负荷(满量程):200gf(标准测试时)精度:满量程±0.5% 以下表面粗糙度测试测试仪:差动变压器变位(满量程):0.4mm精度:满量程±1.0% 以下表面测量移动量测试测试仪:电位器最大移动距离:30mm(有效测试距离范围20mm)精度:满量程±0.5% 以下滤波器性能活性2次滤波器、μ=0.6 ω0=1cps传感器尺寸摩擦指测头:10mm × 10mm粗糙度接触式测头:使用0.5mm的钢丝、接触面宽为5mm试样移动速度1mm/sec (标准)试样尺寸尺寸:20cm×20cm(标准) 厚度:2mm以下
    留言咨询
  • FB4-A表面性能测试仪FB4-A表面性能测试仪对评估布料的风格手感时工匠和专业人士采取的“抚摸”的手部动作进行分析及机械化,并可将结果替换为客观数值数据。可以获取全部纤维、布料、纸张/无纺布、膜状样品等的摩擦系数、摩擦系数的变动、表面粗糙度的数据。表面摩擦和粗糙度特性数据将影响风格手感的“蓬松”“光滑”和“挺度”。特点●模拟指尖感觉的传感器模拟指尖设计传感器部的负载和表面处理,可将接近人类指尖的感觉数值化。规格:规格书内记载的规格内容有可能会在不经预告的情况下变更。请予以谅解。尺寸/重量装置主体:W550 × D520 × H420(mm)/50kg电子放大器:W180 × D400 × H400(mm)/10kg电源AC100V、最大消费电力 50W(空气压缩机:300W)测试环境温度、湿度20 ~ 30℃/50 ~ 70%RH无结露。在测试中需保持一定的温度和湿度。(标准温度和湿度条件:20℃/65%RH)※需设置在受到风和振动影响少的场所摩擦力测试测试仪:差动变压器(环形测力计)负荷(满量程):200gf(标准测试时)精度:满量程±0.5% 以下表面粗糙度测试测试仪:差动变压器变位(满量程):0.4mm精度:满量程±1.0% 以下表面测量移动量测试测试仪:电位器最大移动距离:30mm(有效测试距离范围20mm)精度:满量程±0.5% 以下滤波器性能活性2 次滤波器、μ=0.6 ω0=1cps传感器尺寸摩擦指测头:10mm × 10mm粗糙度接触式测头:使用0.5mm 的钢丝、接触面宽为5mm试样移动速度1mm/sec (标准)试样尺寸尺寸:20cm×20cm(标准) 厚度:2mm 以下
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制