激光驱动光源智能控制器

仪器信息网激光驱动光源智能控制器专题为您提供2024年最新激光驱动光源智能控制器价格报价、厂家品牌的相关信息, 包括激光驱动光源智能控制器参数、型号等,不管是国产,还是进口品牌的激光驱动光源智能控制器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光驱动光源智能控制器相关的耗材配件、试剂标物,还有激光驱动光源智能控制器相关的最新资讯、资料,以及激光驱动光源智能控制器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

激光驱动光源智能控制器相关的厂商

  • 北京汉盾四邦科技有限公司是一家创新型高科技公司,专注于半导体激光器系统产品应用。十多年来自主潜心研发了光纤耦合输出半导体激光器系列、激光驱动电源系列、温控电源系列等三大系列产品,产品种类多达300多种,产品覆盖了工业激光加工应用(焊接、切割、烧结、雕刻、打标等)、激光显示投影应用、激光医疗、激光夜视监控、科研应用等领域。产品技术先进,工艺规范,质量可靠,寿命长久,给各行各业、科研院所配套使用多年,享有盛誉。 公司独创的高效率光纤耦合、稳定恒流、高精度温控等技术确保了产品的品质,并独创了将激光器、驱动、温控、散热集成为一体化光源模块的技术,这种光电集成一体化模块采用了多种抗雷击、抗静电、抗浪涌技术以及健全的保护技术,其可靠性大大优于传统产品,采用外部通用的控制方式,便捷的供电输出方式,紧凑的体积,为客户应用提供了诸多便利。 公司生产的光电集成一体化模块已经大量应用于激光加工打标雕刻行业、激光显示行业、激光医疗、激光夜视以及科研领域。 基于公司强大的创新研发能力,公司接受客户特殊定制化产品。 联系我们 北京汉盾四邦科技有限公司HanpTech地址:北京市昌平区沙河高教大楼3-717s 邮编:102206手机/微信: 13810494865 王女士(售前), 17600895768 刘博士(技术)Q Q: 1049493131(售前)、409206388(技术) Email: tech@hanptech.com
    留言咨询
  • 广州三川控制系统工程设备有限公司创建于1993年,20年不懈努力,创造科技硕果累累,获得了2项国际发明**,13项国家发明**,13项实用新型**,5项外观设计**,8项计算机软件著作权,并且有6个系列水文仪器获得了国家质检总局颁发的全国工业产品生产许可证,7项技术(产品)被国家水利部列为全国水利先进实用技术重点推广项目,多项产品的精准度可达到国际领先的水平。我们产品有着成功应用的众多工程案例。主要产品有:超声波雨量计、高精度水位计、投入式水位计、水质监控仪、风速风向仪、大气压力、温度、湿度传感器、数字压力传送器、智能直流操作电源、数据监控e视通、智能电机控制器、智能无功补偿装置、智能zigbee无线通信模块、数据采集器、智能电表。软件系统有:物联网水利智能监控系统、电力系统自动化工程 泵站水闸自动化监控系统、物联网智能楼宇控制系统、水库大坝安全监测、起重设备智能控制系统、山洪灾害防治预警系统、气象智能监控系统、水质监控系统、视频图像监控系统等众多产品。
    留言咨询
  • 深圳市沛城智能控制技术有限公司,是国家级高新技 术企业,也是深圳市高新技术产业协会、企业家协会 会员单位。公司总部位于深圳市南山区科技园,是业 内优秀的锂电池管理系统及动力电池PACK解决方案 服务商。 公司自主设计开发的锂电池管理系统产品系列丰富, 广泛应用于AGV车、机器人、通信基站、数据中心、 UPS后备电源、电动汽车、电动摩托、家庭储能、集 装厢式储能等领域。 同时提供专业的动力电池PACK定制化服务,尤其是 在AGV动力电池PACK的设计和生产方面积累了丰富 的实践经验,已经服务于上汽、京东、美的、佳顺、 海康威视等国内知名企业。
    留言咨询

激光驱动光源智能控制器相关的仪器

  • EQ-99X激光驱动白光光源 Energetiq公司开发的宽带白光光源,采用激光泵浦的方式维持等离子体放电发光,避免了使用电极所带来的种种缺陷。 EQ-99X激光驱动白光光源特点和优势: 连续激光等离子体放电 超高亮度,覆盖波段范围UV-Vis-NIR (170nm - 2100nm) 无需复合灯源(可替代氘灯/钨灯/氙弧光灯),简化光学系统 优异的空间稳定性,适于重复测量 优异的短时和长期功率稳定性,适于重复测量 超净的结构设计,提升稳定性,增长使用寿命 无电极工作,更低维护成本 应用领域: UV-VIS-NIR光谱 单色仪光源 光器件测试 显微照明 原子吸收光谱 材料表征 环境分析 气相测试 需要长灯源寿命的应用 EQ-99X激光驱动白光光源技术参数: 光谱范围: 170nm -2100nm 大接收角 – 数值孔径 (NA): 高至0.47 典型灯泡寿命 9,000 小时. 自由空间输出接口 灯源尺寸82.3 x 85.7 x 76.2 mm (3.2 x 3.4 x3.0 in) ,重量0.7 kg (1.5 lbs) 电源尺寸107 x 111 x 254 mm (4.2 x 4.4 x 10 in) (excl feet),重量1.4kg (3 lbs) 谱分布图:
    留言咨询
  • EQ-77 LDLS™ 激光驱动白光光源 Energetiq公司开发的宽带白光光源,采用激光泵浦的方式维持等离子体放电发光,避免了使用电极所带来的种种缺陷。 EQ-77 LDLS™ 激光驱动白光光源特点和优势: 辐射强度40mW/mm2.sr.nm(波长相关)-最快的测量速度 超低的噪声,优异的空间稳定性-精确的可重复的测量结果 宽波段范围(170-2100nm)的极高亮度光输出 双光束输出,或者单光束输出可选-使用更为灵活 紧凑的水冷灯室设计 超净的结构设计,提升稳定性,增长使用寿命 无电极工作,更低维护成本 电路控制的光输出,降低损耗 应用领域: 半导体检测 UV-VIS-NIR光谱 单色仪光源 光器件测试 PEEM 材料表征 高端成像 薄膜测试 EQ-77 LDLS™ 激光驱动白光光源技术参数: 光谱范围: 170nm -2100nm 大接收角 – 数值孔径 (NA): 高至0.5 典型灯泡寿命 9,000 小时. 灵活的输出接口:单光束或者双光束输出可选 灯源尺寸135.6 x 144.9 x 56 mm ,重量2.7 kg (6.0 lbs) 电源尺寸132.6 x 482.6 x 583.6 mm,重量18.8kg (41.5 lbs) EQ-77 LDLS™ 激光驱动白光光源谱分布图:
    留言咨询
  • 激光驱动光源(LDLS) 400-860-5168转3995
    激光驱动光源 (LDLS) 是美国 Energetiq Technology inc. 开发的创新光源,该公司是滨松光子学株式会社的子公司。 Energetiq生产的光源具有高可靠性,高性能,高亮度,长寿命等特点。其产品具有很宽的光谱范围,谱线包括软远紫外线(EUV),深紫外线(DUV),并覆盖从可见光到红外光区(IR),波长范围从170nm到2100nm以上。Energetiq的光源结构紧凑,使用方便,性价比高的特点,宽谱线并带光纤耦合输出。产品介绍EQ-400-RH-QZ-S 是我们 LDLS 系列中输出功率zui高的型号。灯头和控制器需要强制水制冷以确保稳定运行。激光驱动光源特点和优势:连续激光等离子体提供高辐射照度超高亮度,覆盖波段范围170 nm 至 2500 nm无需复合灯源(可替代氘灯/ 钨灯/氙弧光灯),简化光学系统优异的空间稳定性,适于重复测量使用寿寿命长: 10000小时优异的短时和长期功率稳定性,适于重复测量无电极工作,更低维护成本更高的功率密度 产品参数产品应用光学元件测试和校准应用高性能光谱单色仪光源半导体计量与检测材料特性分析薄膜量测缺陷检测PEEM其他需要长寿命灯的应用
    留言咨询

激光驱动光源智能控制器相关的资讯

  • 激光驱动白光光源|每天使用3小时,至少可用8年的高亮度光源
    众所周知,传统的辐射校准光源,如氘灯、石英窗卤素钨灯、长弧氙灯等无法在200 nm-800 nm范围内保持较高的输出,并且在使用100小时或更短时间后需要进行重新校准,在使用500小时后还需要更换灯泡。图1 LDLS与其他传统光源的性能对比基于此,Hamamatsu集团旗下的Energetiq公司研发出单点激光驱动光源技术,并将其命名为激光驱动白光光源(Laser Driven Light Source, LDLS),该类光源不仅可以在170nm-2500nm的光谱范围内提供超高发光亮度,而且整个光源的发光寿命相比较于传统光源也高出了整整一个数量级。激光驱动白光光源(LDLS)激光驱动白光光源(以下简称,LDLS)由一个特殊设计的灯室、驱动激光光源、激光聚焦光路、光源输出光路、光源控制器等主要部分组成。图2 LDLS发光原理其原理是采用无电极结构,将外置1000 nm左右波长的激光汇聚到光源灯室中,加热氙等离子体至足够高温时发光,灯室发光后系统会自动给灯室断电,发光等离子体的状态就一直由外部激光器所保持。图3 LDLS产品参数与常见的有氘灯、钨灯、氙灯等传统光源相比,LDLS在亮度、稳定性、UV波长覆盖、寿命上都有很大突破。LDLS性能优势1、高亮度LDLS是高亮度光源,可以将光源压缩成一个极小的点,拥有极高的功率密度,超小光点成像(~0.1 mm)变得更容易,也更容易耦合进光纤、光谱仪等各种光学设备。适用于成像应用和测量诸如微芯片、生物细胞等精密测量样本的应用。图3 氙灯光源灯焰与LDLS灯焰比较2. 宽光谱范围LDLS光谱分布涵盖了深紫外—可见光—近红外的光谱范围(170nm-2500nm),光谱分布平坦相比于传统光源在深紫外波段光谱有极高光谱强度(10X)。图4 EQ-99X和卤钨灯光谱分布对比图5 LDLS系列光源光谱强度分布和传统光源对比3. 长寿命LDLS具有超长灯室寿命,超9000小时典型时长(低耗材成本),与传统光源(氙灯、氘灯、卤钨灯)相比校准时间间隔更长、漂移更低。图6 LDLS光源寿命4. 高稳定性LDLS 以每秒200帧的速度收集和存储2500张图像 ,使用ImageJ(图像分析软件)计算每张图像的质心; 发光等离子体质心位置标准差: 水平方向—0.145 µ m;垂直方向—0.094 µ m。产品应用紫外-可见光光谱分析单色仪光源薄膜检测 滤光片/光学元件测试原子吸收光谱材料特征检测环境分析高光谱成像气相分析测量光学传感器检测生命科学与生物成像
  • 这一次我们带来了激光驱动高亮EUV光源!
    我们有幸在此宣布,经过双方密切的交流与探讨,众星已与荷兰 ISTEQ 落实并达成了合作协议。众星联恒将作为中国地区的独家代理,全面负责激光驱动高亮EUV光源 TEUS 系列产品在中国市场的产品售前咨询,销售以及售后业务。ISTEQ 将对众星联恒提供全面、深度的技术培训和支持,以便更好地服务于中国客户。我们将继续为中国广大科研用户及工业用户带来更多创新技术及前沿资讯! ISTEQ 荷兰 ISTEQ 坐落于埃因霍温的高科技园区,在开发和制造各种类型的尖端产品方面拥有广泛的专业技术与丰富的经验。ISTEQ 致力于为各种工业应用尤其是半导体、材料分析和光谱学应用开发广泛的现成解决方案,公司产品包括:激光驱动高亮EUV光源 TEUS、激光等离子体白光光源、用于 X-Ray/EUV/VUV 波段的定制化光谱仪及等离子体诊断设备等。1激光驱动高亮 EUV 光源 TEUS 系列来自荷兰 ISTEQ 的 TEUS,LPP EUV 光源基于快速旋转液态金属靶,这种新型 LPP 光源结合了传统的碎片抑制技术,是清洁极紫外光源的绝佳解决方案。型号EUV收集角(sr)激光平均功率(W)脉宽(ns)重频(kHz)等离子体尺寸(μm)亮度(W/mm2sr)EUV功率(mW)TEUS-S1000.051001.525601105TEUS-S2002005022010TEUS-S40040010045020特征优势高速旋转液态靶,提供了:— 避免液滴类碎片污染— 激光-靶材作用面不受干扰,输出参数(亮度/通量/空间位置)高效稳定— 无需同步的连续靶材多种碎屑抑制技术共同作用,提高收集器镜片预期寿命连续工作时间长,维护间隔长耗时短,自动化程度高的交钥匙工程典型应用掩膜及表面检测图形化掩膜检测掩膜空间像检测材料科学晶圆检测极紫外扫描光刻工艺链中的极紫外光学器件检测2激光等离子体白光光源 XWS 系列ISTEQ 的等离子体白光光源产品可应用于各种应用,包括光谱学,高分辨率显微镜,薄膜测量,表面测量等。多种类型可选基础款XWS-65高亮款XWS-X可调谐Hyperchromator高功率XWS-R紧凑型XWS-30双光束XWS-Dual port主要优点连续激光脉冲放电宽光谱范围: 190 – 2500 nm高光谱亮度: up to 50 mW/(mm2srnm)高时空稳定性: STD0.15%高使用寿命 :10000 小时结构紧凑,设计简洁通过软件扩展控制和监控参数,Windows界面应用领域吸收和荧光光谱学微电子学中的诊断系统-污染和缺陷控制表面测量,椭偏测量和散射测量显微镜,包括共聚焦和荧光光学组件检测色谱检测器,微流体,晶圆实验室,液滴光谱仪,细胞荧光计等3X-Ray/EUV/VUV光谱仪LSP-X 射线校准光谱仪▪ 射谱范围:0.3-1.6nm▪ 光谱分辨率(λ/δλ):100-400▪ 探测器:多种 CCD 可选XUV- VUV光谱仪AGS▪ 可单次测量极宽的光谱范围▪ 掠入射振幅光栅提供高的灵敏度▪ 光谱分辨率(λ/δλ):50▪ 探测器:高量子效率 CCDHD-1射线光谱仪▪ 射谱范围:0.04-1.6nm▪ 光谱分辨率(λ/δλ):100▪ 探测器:多种 CCD 可选VUV-QFF 光谱仪▪ 射谱范围:5-150nm▪ 光谱分辨率(λ/δλ):三光栅配置,分辨率高达500▪ 探测器:CCD/MCP
  • 新品降临——DFB-2000近红外激光驱动器
    简介: 海尔欣科技推出新一代激光器驱动器DFB-2000,多种开箱即用的功能可以帮助用户快速搭建系统光源,实现精密的光学测量。本篇将介绍DFB-2000核心性能参数的测试结果。 • 集成低噪声的电流源和高稳定的TEC温度控制器 • 自带14pin蝶形安装座,更好的便携性和机械稳定性 • 全新的彩色触摸屏,便于激光器工作参数的观察和设置 • 多层级的保护措施确保激光器的安全,延长激光器的使用寿命技术参数:l 电流噪声密度:电流噪声密度是表征驱动器电流源噪音水平的核心指标。对于低噪声的电流源而言,电流的波动比实际电流要小10000甚至100000倍以上。为了测试如此微小的电流波动,我们搭建了图1所示的电路。 图1.电流噪声密度测试电路示意图DFB-2000输出的电流I经过精密电阻R后转换为电压信号Vin,并由增益为G的放大电路放大后输入频谱仪,图2给出了频谱仪测试的结果。图中黄色信号为频谱仪本底频谱响应曲线,绿色信号是放大器(输入端短接)连接频谱仪时的频谱响应曲线,当DFB-2000输出电流后频谱响应为蓝色信号。根据功率噪声密度计算公式以及电路传输特性,可以计算得到电流噪声密度约为2.9 nA√Hz,这与进口驱动器的噪声水平相当。 图2.DFB-2000频谱噪声测试l 控温稳定性:激光器工作温度的变化会导致输出波长的不稳定, 因此精确稳定地控制激光器工作温度至关重要。为了评估DFB-2000的控温性能,在室温条件下,将激光器工作温度设定在0℃,记录24小时内的温度变化,如图3所示。可以看出DFB-2000的温度控制精度在±0.005℃以内,长期温度稳定性优于0.01℃。由于0℃与环境温度相差较大,因此可以预期当激光器工作温度接近室温时,可以现实更优的长期温度稳定性。 图3.激光器工作温度在24小时内的变化l 电流漂移:在典型的应用环境中,一天之内的温度波动往往会超过几摄氏度。如果驱动器达不到要求,微小的温度变化可能意味着激光器的电流会发生显著变化。下图展示了利用DFB-2000驱动的激光器工作在0℃时工作电流的漂移。在24小时内,测试环境的温度变化超过3℃,激光器电流的最大漂移为37 μA。 图4.DFB-2000输出电流24小时的漂移l 3dB带宽:小信号调制时的3dB带宽是衡量驱动器带宽响应特性的关键参数。下图给出了带宽响应测试的电路图。 图5. DFB-2000带宽响应测试电路示意图函数发生器生成的正弦信号Vin通过模拟调制端口输入DFB-2000,电流I经过精密电阻R,测量R两端电压信号Vout,利用公式20log(Vout/Vin)计算得到带宽,如图6所示。在100kHz调制频率以内,驱动器的增益平坦度小于-3dB,因此能够满足绝大多数基于波长调制技术的TDLAS系统的需求。 图6. DFB-2000带宽响应特性l 电流软钳制:DFB-2000集成了多重措施保护激光器的安全,如最大电流软钳制、输出缓启动、过压欠压保护、超温保护、继电器短路输出保护等。其中最大电流软钳制功能可以快速实现电流的钳位,有效规避异常情况下大电流对激光器造成的损伤。用户在使用最大电流软钳制功能时,首先要根据激光器参数设置对应的最大工作电流,当激光器实际电流高于该电流时,DFB-2000会确保电流处于限流值。电流软钳制的测试电路与3dB带宽测试相同。图7(b)显示了最大电流软钳制的实际效果,可以明显的看到,当精密电阻R两端电压(红色信号)超过阈值时,会被固定在该阈值电压上。图中调制信号(蓝色三角波)幅度为1.54V,当激光器工作电流为200mA,设置的最大工作电流为250mA时,测试得到钳制电压为2.42V(DFB-2000模拟调制系数为100mA/V±5%),对应钳制电流为242mA,与实际设定值一致。 图7.(a)电流工作在最大钳制电流以下(b)最大电流软钳制的实际测试效果

激光驱动光源智能控制器相关的方案

激光驱动光源智能控制器相关的资料

激光驱动光源智能控制器相关的论坛

  • 我国聚变激光驱动器世界先进 5纳秒内输出16千焦耳激光能量

    最新发现与创新 中国科技网 四川绵阳7月20日电(记者盛利)记者从中国工程物理研究院激光聚变研究中心获悉,该中心19日进行的大口径高通量激光驱动器实验平台出光试验中,单束出光能量第三次超过16千焦,达到16.523千焦,这标志着我国走独立技术路线、自主设计研制的激光驱动器达到世界先进水平,成为继美国、法国之后第三个迈入“单束万焦耳出光”俱乐部的国家。 在空气洁净度为一万级的中心实验室,记者看到由放大系统、空间滤波器、光束反转器、光传输管道等组成的实验平台,约2米高、近100米长,与神光Ⅲ-原型装置等大型激光装置相比略显紧凑,如同一辆小型货运机车。“别看它麻雀虽小,但五脏俱全,能力很大,单束出光能量是神光Ⅲ原型装置的5倍。”中心三部副主任郑奎兴说,达到世界先进水平的该设备,放大器的小信号增益达到世界领先的每厘米5.28%,瞬间输出功率超出全国发电站发电功率的总和。运行中能量仅为百毫焦耳的“种子”光进入放大器后,将在管道、放大系统、反转器中往返数次,能量放大近8万倍,最终在5纳秒内输出16千焦耳的激光能量。 郑奎兴说,该实验平台研制的一项突出成就在于,通过自主研制的仿真模拟软件设计等,成功实现设备总体构型创新,有效克服了我国单元器件工艺不足的难题,走出了一条以“U型反转器”等系列创新工艺技术为代表的“中国大口径高通量激光驱动器之路”,出光能量、光束质量均达到国际先进水平。 记者了解到,参与该项目的一线科研人员平均年龄在30岁以下。80后科研人员赵普军说,能够投身这项与世界“比肩”的重大项目,感觉“很自豪”“很提气”。 郑奎兴表示,成功实现万焦耳输出,展现了我国高功率固体激光装置建设的设计研制能力,及其关键单元技术发展水平。 《科技日报》(2012-7-21 一版)

  • 一种智能温湿度控制器的设计

    一种智能温湿度控制器的设计蔡昀羲 (上海安科瑞电气有限公司 上海嘉定 201801)摘 要:介绍了一种智能温湿度控制器的设计方法及应用,最多实现三路温湿度的测量与控制;结合RS485总线技术及上位机软件,可实现数据及状态信息远传,满足低压配电智能化及网络化发展的需求。关键字:SHT11,STC89C58RD+,温湿度控制,RS4850  引言  随着电力系统规模越来越大、电压等级越来越高,供电可靠性也要求更加严格。供配电设备环境的温度、湿度是影响设备运行的重要因素。温度过高会加速仪器设备元器件老化,缩短其使用寿命,甚至直接导致设备损坏;低温、潮湿,设备表面产生凝露则有可能发生爬电、闪络等事故。  基于以上考虑,在中高压开关柜、箱变、端子箱等供配电设备中进行温度、湿度控制是十分必要的。本文将介绍一种WHD型智能温湿度控制器的设计方法,最多实现三路温度、湿度的测量与控制;结合RS485总线技术及上位机软件,可实现数据及状态信息远传,满足低压配电智能化及网络化发展的需求。1  硬件电路设计1.1 硬件设计的总体思路  硬件系统以单片机为核心,按功能可划分为:电源供电、温湿度测量、控制输出、人机对话以及通讯五个部分,如图1所示。  电源供电电路将AC220V或其他类型辅助电源转化为系统工作所需的直流电源。单片机将传感器测得的温湿度值进行比较、处理,确定输出控制部分继电器的工作状态,并显示和发送温湿度数值及输出控制部分的工作状态信息。人机对话部分具有按键信息录入功能,用户可根据实际情况,通过按键编程设置系统的工作参数。http://www.acrel.cn/cn/download/common/upload/2011/02/21/93834hw.jpg1.2 硬件的具体电路及原理  核心器件单片机选用STC公司的STC89C58RD+型单片机,它是一款兼容51内核的增强型8位机,片上资源丰富,抗干扰能力突出。STC89C58RD+(D版本)支持6时钟/机器周期,内含32K字节用户程序空间,片上集成1280字节RAM,16K字节EEPROM空间;支持ISP/IAP功能,无须专用编程器;片上还集成了看门狗电路及MAX810专用复位电路。  温湿度的测量选用SENSIRION公司开发的数字式温湿度一体传感器芯片SHT11。该传感器可同时测温度、湿度,并提供全程标定的数据输出,所以使用该传感器既可以降低硬件成本,又方便了整机测试。其技术参数如下表所示:  温度参数:   参数条件典型单位分辨率0.01℃精度0~60±1℃量程范围-40~120℃  湿度参数: 参数条件典型单位分辨率0.03%RH精度20%~80%±3%RH量程范围0~100%RH  该传感器与CPU之间的通讯采用二线制方式,即DATA(数据)线和CLK(同步时钟脉冲)线。测量三路温度、湿度时,CPU与传感器的连接电路如图2所示。CPU通用I/O口中的P1.0和P1.1,P1.2和P1.3,P1.4和P1.5分别与三路温湿度传感器SHT11连接,其中P1.0、P1.2、P1.4分别作为各路通讯的DATA(数据)线,P1.1、P1.3、P1.5分别作为各路通讯的CLK(同步时钟)线,DATA线需外加10KΩ的上拉电阻将信号提高至高电平(详情请参考SHT11数据手册)。实际使用时,传感器与控制器之间(即图中虚线部分)以屏蔽线连接,经验证,CPU与传感器之间的最大通讯距离为10米。如果使用74HC245或其他芯片提高I/O口的驱动能力,可增加通讯距离,但会降低系统的抗干扰性能,因此不予采纳。 http://www.acrel.cn/cn/download/common/upload/2011/02/11/151636j0.jpghttp://www.acrel.cn/cn/download/common/upload/2011/02/11/152021lg.jpg  系统采用LED数码管显示温度、湿度值,界面简洁明了。三路传感器测得的温度、湿度值以循环方式依次显示,显示部分共有7位数码管,其中4位用于显示温度值(显示范围:-40.0~100.0),并在编程状态下显示菜单及参数,2位用于显示湿度值(显示范围:0~99),1位用于显示当前显示或操作对应的传感器的编号(1~3)。数码管显示采用动态扫描方式,其驱动电路由集成电路74HC595及74HC164构成。74HC595是一款带有输出门锁功能的8位串行输入、并行输出(或串行输出)的移位寄存器,用于数码管的段驱动;74HC164的串行输入、并行输出功能用于扫描显示每一位数码管,如图3所示。  系统采用继电器或可控硅作为控制输出,电源部分采用开关电源方案,通讯部分采用RS485接口,具体电路设计请参考相关书籍,此处不予赘述。2  软件设计方法  系统软件设计包括以下四个部分:主程序、测量控制模块、显示模块及通讯模块。  主程序完成上电或复位初始化,复位看门狗,查询按键信息等功能,程序设计流程如图4所示。 http://www.acrel.cn/cn/download/common/upload/2011/02/11/15341zh.jpg  程序初始化包括配置CPU的SFR,设置I/O口初始状态,从EEPROM读取工作参数,设置看门狗定时器的复位时间等。需要注意的是,一般只在主程序中喂狗,看门狗的复位时间时要设置的比测量程序中可能出现的最长等待时间还要长。以下给出主程序的部

  • 一种智能温湿度控制器的设计

    摘 要:介绍了一种智能温湿度控制器的设计方法及应用,最多实现三路温湿度的测量与控制;结合RS485总线技术及上位机软件,可实现数据及状态信息远传,满足低压配电智能化及网络化发展的需求。关键字:SHT11,STC89C58RD+,温湿度控制,RS4850  引言  随着电力系统规模越来越大、电压等级越来越高,供电可靠性也要求更加严格。供配电设备环境的温度、湿度是影响设备运行的重要因素。温度过高会加速仪器设备元器件老化,缩短其使用寿命,甚至直接导致设备损坏;低温、潮湿,设备表面产生凝露则有可能发生爬电、闪络等事故。  基于以上考虑,在中高压开关柜、箱变、端子箱等供配电设备中进行温度、湿度控制是十分必要的。本文将介绍一种WHD型智能温湿度控制器的设计方法,最多实现三路温度、湿度的测量与控制;结合RS485总线技术及上位机软件,可实现数据及状态信息远传,满足低压配电智能化及网络化发展的需求。1  硬件电路设计1.1 硬件设计的总体思路  硬件系统以单片机为核心,按功能可划分为:电源供电、温湿度测量、控制输出、人机对话以及通讯五个部分,如图1所示。  电源供电电路将AC220V或其他类型辅助电源转化为系统工作所需的直流电源。单片机将传感器测得的温湿度值进行比较、处理,确定输出控制部分继电器的工作状态,并显示和发送温湿度数值及输出控制部分的工作状态信息。人机对话部分具有按键信息录入功能,用户可根据实际情况,通过按键编程设置系统的工作参数。1.2 硬件的具体电路及原理  核心器件单片机选用STC公司的STC89C58RD+型单片机,它是一款兼容51内核的增强型8位机,片上资源丰富,抗干扰能力突出。STC89C58RD+(D版本)支持6时钟/机器周期,内含32K字节用户程序空间,片上集成1280字节RAM,16K字节EEPROM空间;支持ISP/IAP功能,无须专用编程器;片上还集成了看门狗电路及MAX810专用复位电路。  温湿度的测量选用SENSIRION公司开发的数字式温湿度一体传感器芯片SHT11。该传感器可同时测温度、湿度,并提供全程标定的数据输出,所以使用该传感器既可以降低硬件成本,又方便了整机测试。其技术参数如下表所示:  温度参数:   参数条件典型单位分辨率0.01℃精度0~60±1℃量程范围-40~120℃  湿度参数: 参数条件典型单位分辨率0.03%RH精度20%~80%±3%RH量程范围0~100%RH  该传感器与CPU之间的通讯采用二线制方式,即DATA(数据)线和CLK(同步时钟脉冲)线。测量三路温度、湿度时,CPU与传感器的连接电路如图2所示。CPU通用I/O口中的P1.0和P1.1,P1.2和P1.3,P1.4和P1.5分别与三路温湿度传感器SHT11连接,其中P1.0、P1.2、P1.4分别作为各路通讯的DATA(数据)线,P1.1、P1.3、P1.5分别作为各路通讯的CLK(同步时钟)线,DATA线需外加10KΩ的上拉电阻将信号提高至高电平(详情请参考SHT11数据手册)。实际使用时,传感器与控制器之间(即图中虚线部分)以屏蔽线连接,经验证,CPU与传感器之间的最大通讯距离为10米。如果使用74HC245或其他芯片提高I/O口的驱动能力,可增加通讯距离,但会降低系统的抗干扰性能,因此不予采纳。  系统采用LED数码管显示温度、湿度值,界面简洁明了。三路传感器测得的温度、湿度值以循环方式依次显示,显示部分共有7位数码管,其中4位用于显示温度值(显示范围:-40.0~100.0),并在编程状态下显示菜单及参数,2位用于显示湿度值(显示范围:0~99),1位用于显示当前显示或操作对应的传感器的编号(1~3)。数码管显示采用动态扫描方式,其驱动电路由集成电路74HC595及74HC164构成。74HC595是一款带有输出门锁功能的8位串行输入、并行输出(或串行输出)的移位寄存器,用于数码管的段驱动;74HC164的串行输入、并行输出功能用于扫描显示每一位数码管,如图3所示。  系统采用继电器或可控硅作为控制输出,电源部分采用开关电源方案,通讯部分采用RS485接口,具体电路设计请参考相关书籍,此处不予赘述。2  软件设计方法  系统软件设计包括以下四个部分:主程序、测量控制模块、显示模块及通讯模块。  主程序完成上电或复位初始化,复位看门狗,查询按键信息等功能,程序设计流程如图4所示。  程序初始化包括配置CPU的SFR,设置I/O口初始状态,从EEPROM读取工作参数,设置看门狗定时器的复位时间等。需要注意的是,一般只在主程序中喂狗,看门狗的复位时间时要设置的比测量程序中可能出现的最长等待时间还要长。以下给出主程序的部分C语言源代码。  void Main ()  {  WDT_CONTR = 0x00;//关闭看门狗  InitialEeprom();//读EEPROM  InitialIO();//初始化I/O状态  InitialSFR();//设置SFR

激光驱动光源智能控制器相关的耗材

  • SOA 激光驱动控制器
    筱晓光子的SOA激光控制器基于先进微处理器的控制系统,结合高精度的ATC和ACC(APC)控制电路实现了激光器高稳定地输出,同时保证了光源在操控上的快捷和直观。我们也可以根据用户的要求提供相应的通信接口及控制软件,实现计算机控制。本光源采用一键恢复功能(Run/Stop按钮),可以有效帮助客户回到先前工作状态。这是一款功能高度集成的模块系统光源,采用PC端软件智能控制,客户可以根据自己的需求设定需要工作的温度以及电流。非常适合于实验科学研究和生产测试。另外我们针对一些应用领域需要对激光器进行调制,我们外接了两个调制端口,分别针对高频与低频更好满足客户一机多用的需求。通用参数产品特点● 支持一键还原功能(无需重新开机预热)● 软件远程操控,智能化控制● 输出功率稳定,连续可调● 结构紧凑小巧● 高精度ACC和ATC控制电路● 自带高低调制带宽BNC接口产品应用● 激光传感● 锁模光纤激光器● 高速光开关● 测试测量技术参数特性MinMax单位注释电源电压100V240VAC功率515W调制低频率201000KHz调制高频率1001000MHZ激光器驱动电流0500mA激光器驱动电压2.5V@80mANTC9.710.3Kohm@25oCTEC电流-11A温度控制范围050oC模拟输入(峰-峰值)05V交流耦合模拟输出02.5V尺寸22.5X15.0X6.5cm3光纤接口2端FC/APC接口
  • QCL激光驱动器MC
    QCL激光驱动器MC是专业为QCL激光而研发阿德多通道控制器,它具有针对每个通道提供独立驱动脉冲的功能,QCL激光驱动器MC可以同时操作8个激光器发射8种不同波长。QCL激光驱动器MC特点该控制单元使用一个自由运行时基,可以同步运行多通道。确保将防故障信号传输一个16mA的接口到驱动器头。这些功能使Q-MACS初级MC控制单元有着卓越灵活性,用于驱动脉冲和连续模式下的半导体激光器。Neoplas 公司的Q-MACS初级SC(单通道)控制单元是专为OEM应用设计的。该产品结合了脉冲发生的最可靠性和小型坚固的外型设计。设备有一个USB接口,该USB接口可以设定脉冲驱动器,任意功能发生器的激光驱动单元的TEC控制器的设置。更多的限制和初始设置可以存储在一个非易失性存储器中,以进行自持的操作。可以与不同特性的激光驱动头一起使用,可以包装所有需求的电子器件满足各种用户需求。该控制单元与驱动头的组合,形成了一个强大多功能的激光驱动系统满足各种红外吸收光谱应用,还可以用于基础和工业研究。配备了专用的控制软件,通过其USB接口配置设备。QCL激光驱动器MC产品概述描述Q-MACS激光驱动器的控制器,包括脉冲发生器和全同步任意信号发生器尺寸160 mm x 240 mm x 140 mm* (SC)255 mm x 240 mm x 150 mm* (MC) *根据信号可能改变大小尺寸重量2kg(SC)5kg*(MC)*根据安装的信道数目重量有所不同温度范围+5 °C 到 + 40 °C功率230 V / 1 A / 50 Hz 115 V / 2 A / 60 Hz** 开关控制QCL激光驱动器MC 脉冲/任意信号发生器重复频率1 mHz 至 5 MHz脉冲宽度 6 ns to 510 ns**提出要求,会有更高脉冲宽度脉冲电压 ≤16 V位深 12位,步高度以10位改变内存大小 4095样品调制输入 叠加±2v * @ 最高100kHz*导致电流水平取决于连接的驱动器头QCL激光驱动器MC 特征接口 驱动器头16mA接口 USB接口 控制电脑安全 联锁时钟外部触发输入进行脉冲同时发生生成与信号发生器输出支持的驱动器头Q-MACS LH8Q-MACS LH3 II 和 LHCW
  • QC激光驱动器Q-MACS LH8
    QC激光驱动器Q-MACS LH8是一种先进的QCL激光器驱动系统 ,它把QCL激光器和驱动电源集成在一体,具有紧凑结构,QC激光驱动器Q-MACS LH8用于吸收光谱应用,全面用于研究和工业用途,驱动QCL激光器和监控应用过程。QC激光驱动器Q-MACS LH8 激光头尺寸 25 mm x 25 mm x 50 mm 重量 62克连接器 ?粘结剂 RD08系列711 ?SMA1 TEC ( - ) 9热敏电阻2 n.c. 10热敏电阻3 n.c. 11 n.c.4 TEC ( + ) 12 n.c.5 LD ( + ) 13 LD ( - )6 LD ( + ) 14 LD ( - )7 LD ( + ) 15 LD ( - )8 LD ( + ) 16 LD ( - )1 TEC(-)2 TEC(+)3热敏电阻4热敏电阻5 LD ( + )6 LD ( - )测试TO-8 QCL 激光组件nanoplusQC激光驱动器Q-MACS LH8 脉冲驱动电源电压 + 9伏QCL电压 0-15 VQCL电流 最大2 A频率 1Hz-1MHz脉冲宽度 10 ns – 1000 nsQC激光驱动器Q-MACS LH8 温度控制器最大TEC电压 1.8 V最大TEC电流 ±1.5量子级联激光器QCL的温度范围 20°C 到+ 30°C热沉 空气或水冷却
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制