当前位置: 仪器信息网 > 行业主题 > >

核材料与放射性标准物质

仪器信息网核材料与放射性标准物质专题为您提供2024年最新核材料与放射性标准物质价格报价、厂家品牌的相关信息, 包括核材料与放射性标准物质参数、型号等,不管是国产,还是进口品牌的核材料与放射性标准物质您都可以在这里找到。 除此之外,仪器信息网还免费为您整合核材料与放射性标准物质相关的耗材配件、试剂标物,还有核材料与放射性标准物质相关的最新资讯、资料,以及核材料与放射性标准物质相关的解决方案。

核材料与放射性标准物质相关的资讯

  • 建筑材料放射性限量核素检验新标准发布
    7月1日,由国家质量监督检验检疫总局、国家标准化管理委员会联合发布的《建筑材料放射性核素限量》GB6566-2010正式实施。  此次标准对建筑材料放射性限量的检验标准进行了进一步修订,为国内陶瓷、石材等建材企业的生产销售提出了明确的规范。  新标准严格试验方法  新标准规定了建筑材料放射性核素限量和部分天然放射性核素放射性比活度的试验方法,适用于对放射性核素限量有要求的无机非金属类建筑材料。该标准替代GB6566-2001《建筑材料放射性核素限量》,删除了原标准中“检验规则”部分,新标准中测量不确定度采用了《国际计量学基本和通用术语词汇表》中术语定义。  据悉,室内环境放射性大多来源于装饰过程中大量使用的石材、墙地砖、陶瓷洁具类建材产品,其中最大的辐射隐患来自石材。我国石材按放射性高低被分为A、B、C三类,只有A类可用于室内装修。而陶瓷产品的放射性来自于其原料中的泥土、矿渣、石粉。  花岗石放射性须警惕  目前,消费者对苯、甲醛、PVOC等室内污染已经较为警觉,但对建筑材料辐射性污染的认识尚且不足。  在四惠、八里桥等建材市场调查时记者发现,消费者们在选购瓷砖、石材等具有放射性的建材产品时,也往往更关注其款式和价格,对于是否具有放射性危害一事并未加以足够的重视。多数商家在被问及产品放射性问题时也语焉不详。  相关专家提醒消费者,天然石材中花岗石放射性超标现象严重,尤其是印度红、枫叶红、杜鹃红、英国棕、孔雀绿等,因此应谨慎选择红色、绿色或带有红色大斑点的花岗石品种。同时,天然石材不宜在室内大量使用,尤其不要在卧室、儿童房中使用。
  • 莱伯泰科与中国计量科学研究院启动重要合作项目,共同推进环境放射性标准物质研发
    近日,莱伯泰科公司与中国计量科学研究院签署了两项重要的项目采购合同,启动了环境放射性分析领域的深度合作。中国计量科学研究院采购“核设施液态流出物自动化放射化学分析系统”和“放射性核素分析用电感耦合等离子体质谱仪”,主要涉及莱伯泰科公司生产的超级微波消解仪、自动固相萃取仪、定制化液体处理平台和电感耦合等离子体质谱测量系统。通过采购这些设备,中国计量科学研究院将提升环境放射性核素计量实验室的装备水平,扩展环境放射性分析相关的样品制备和测量能力。莱伯泰科公司与中国计量科学研究院深度合作,将助推计量关键技术研究和成果研发,有利于建立更全面、更精确的放射性核素分析标准体系,促进环境辐射监测准确性的提升,为我国环境保护和辐射防护工作注入新的动力。中国计量科学研究院成立于1955年,隶属国家市场监督管理总局,是国家最高的计量科学研究中心和国家级法定计量技术机构,属社会公益型科研单位。中国计量院瞄准国际计量科学前沿,在国家经济建设、社会发展和科技进步中发挥了重要的支撑作用,主要开展以下工作:(一)开展计量科学基础研究,以及计量技术前沿、测量理论、测量技术、量值传递和溯源方法研究。(二)开展计量管理体系和相关法规的研究、计量发展规划和战略研究,承担国家测量体系、量值传递和溯源体系的研究和建设工作。(三)研究、建立、保存、维护国家计量基准和国家计量标准,研制并保存国家有证标准物质,复现国际单位制。研究、建立、维护国家时间频率体系及中国标准时间。(四)开展相关计量基准、标准和标准物质的国际量值比对和区域比对,负责保持量值国际等效。开展国内量值比对,承担计量技术机构考核、计量标准考核和能力验证的技术工作,开展测量方法和测量结果的可靠性评价工作。(五)开展量值传递和溯源工作,承担国家级重点实验室及相关检验检测技术机构的量值溯源工作。(六)开展高新技术和新发展领域量值传递和溯源体系及应用技术研究工作,开展工程计量测量仪器设备的研究与开发。(七)承担计量器具型式评价试验和产品质量监督抽查技术支撑等相关工作。(八)承担相关国家计量技术规范的制修订工作,承担计量领域相关国际建议、国际标准、国家标准的研究和制修订工作,开展测量数据和方法的分析与验证。(九)开展对法定计量技术机构的技术指导,开展计量知识传播和科学普及工作,承担高级计量专业人才培养工作。(十)开展计量科技成果转化、计量创新企业培育等工作。(十一)开展有关国际合作与交流。
  • 气溶胶中γ 放射性核素的测量γ 能谱法 标准征求意见
    p  气溶胶中γ放射性核素的测量是国家辐射环境监测网(以下简称国控网)常规监测项目,亦是核事故情况下的预警监测项目,测量结果可用于评估空气中的放射性核素对人体直接造成的外照射、以及因吸入空气中的放射性核素而造成的内照射。掌握环境空气气溶胶中γ放射性核素活度浓度的水平,对于评价核与辐射设施向环境排放放射性物质是否遵守剂量限值和剂量约束值,特别是应急情况下,对于判明污染物类型,评价污染范围和可能造成污染程度、决策采取的防护行动均具有重要意义。br/br/  目前,我国环境空气气溶胶γ能谱分析主要依据《空气中放射性核素的γ能谱分析方法》(WST/T 184-2017(WS/T 184-2017 ,自 2018 年 5 月起实施,代替 WS/T 184-1999),方法适用于环境空气、工作场所空气和个人空气中放射性核素的γ能谱分析。但该方法为通用分析方法,对采样设备性能、滤膜截留效率与压降、样品采集过程、样品保存与处理、探测下限、质量保证与质量控制等未作详细规定,作为环境监测依据的标准方法适用性和可操作性不强。br/br/  2017 年 5 月、2018 年 5 月,浙江省辐射环境监测站(辐射环境监测技术中心)签订了制订环境保护标准《环境空气 气溶胶中γ放射性核素的测量 γ能谱法》合同,合同编号为 BZ201760,BZ201801,项目分两年实施。br/br/  标准由浙江省辐射环境监测站负责制订,辽宁省核与辐射监测中心、江苏省核与辐射安全监督管理中心、山东省辐射环境管理站、广东省环境辐射监测中心、四川省辐射环境管理监测中心站、秦山环境应急监测中心、浙江省辐射环境监测站参与验证实验。br/br/  参与方法验证的仪器设备有:/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/ca6fb4ff-bd9e-4749-ae72-f27405d6a0f5.jpg" title="使用仪器情况登记表.jpg" alt="使用仪器情况登记表.jpg"//pp style="text-align: left "br/  近日,《img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style="vertical-align: middle margin-right: 2px "/a href="https://img1.17img.cn/17img/files/201912/attachment/c328b754-0c2d-4428-8ce1-ee7e1cf4d28f.pdf" title="环境空气 气溶胶中γ放射性核素的测量 γ能谱法(征求意见稿).pdf" style="font-size: 12px color: rgb(0, 102, 204) "环境空气 气溶胶中γ放射性核素的测量 γ能谱法(征求意见稿).pdf/a》正式发布。/pp style="text-align: left "br/  本标准规定了测量环境空气气溶胶中γ放射性核素的γ能谱分析方法。br/br/  本标准适用于用大流量或超大流量气溶胶采样器进行环境空气中气溶胶的采集,滤膜经压缩处理后,用高纯锗(高分辨 HPGe)γ能谱仪分析气溶胶中γ射线能量特征谱线能够分辨开的γ 放射性核素组成及其浓度的手工测量方法。br/br/  当环境空气采样体积约为 10000msup3/sup(标准状态),本方法主要γ放射性核素的探测下限为 5μ Bq/msup3/sup~100μBq/msup3/sup。br//p
  • 美国牛奶检测出放射性物质
    3月31日,新华网消息称,美国环境保护署、食品和药物管理局30日联合发表声明说,检验人员在美国西海岸华盛顿州的牛奶样品中检测出极微量放射性物质。但,两家机构同时呼吁消费者不必担忧。  食品和药物管理局说,由于日本福岛第一核电站发生核泄漏,放射性物质沿太平洋到达美国西海岸。在未来数日内,极微量放射性物质将持续存在于诸如牛奶等食品中,但相信这一状况会很快好转。  检验牛奶样本来自华盛顿州斯波坎市,取样时间为3月25日。检验结果显示,样品中含有极微量放射性同位素碘-131。食品和药物管理局解释说,“极微量”可量化至食品放射性物质含量安全标准的五千分之一。  这一食品安全监督机构说,样本中极微量放射性物质的含量同时满足这一机构设定的成人食品安全标准、儿童食品安全标准和婴儿食品安全标准。  “放射性物质在我们的日常生活中无处不在,样本中的这一含量低于我们每天经历的日常吸收量,”食品和药物管理局专家帕特里夏汉森说,“坐飞机、看电视都会接触放射性物质,它甚至存在于我们身边的建筑材料中。”  美国环境保护署表示将持续监测牛奶、饮用水源、雨水中的放射性物质含量。  距美国西海岸480公里的斯波坎市表示将单独发表声明,告知民众不必恐慌。
  • 欧盟研制出高灵敏度放射性物质检测技术
    根据欧委会的要求,欧盟联合研究中心(JRC)的科技人员,在地下深层实验平台(主要为避免宇宙射线的干扰),利用目前最先进的伽马射线探测仪,筛选出所谓高纯度的“近零辐射”(Radiopure)材料获得成功。  自然界的放射性物质无处不在,如人体就包含约6000贝克勒尔(Bq,放射性单位测量符号)的放射性物质。伴随着现代经济社会的发展进步,愈来愈多行业进入需要进行低剂量放射性检测的时代,一般为毫贝克勒尔(mBq)量级,相当于低于自然界人体放射性辐射剂量的100万倍。而传统基本电子元器件(主要为电容、晶体管结构)制作的放射性辐射探测仪,由于自身所含放射性物质的影响,往往很容易淹没需要测量低剂量放射性物质的微弱信号,所测数据的准确性和可靠性受到广泛质疑。  欧盟联合研究中心(JRC)的科技人员再利用基于这些材料的电子元器件“近零辐射电容”(Radiopure Capacitors),制作设计的、在地下实验平台运行的伽马射线探测仪,可在原有基础上,如铀(Uranium)和钍(Thorium),降低自身放射性至少100倍,从而填补了测量低剂量放射性物质所需仪器设备的空白。  欧盟联合研究中心(JRC)自行研制设计的新型低剂量放射性辐射探测仪,已通过欧委会同行专家组的评审验收。可广泛应用于从追踪世界各地来自日本福岛的放射性核素和探测跟踪非法核活动,到开发食品放射性监控参照材料等,犹如开辟了追踪自然界或工业活动放射性物质“指纹认定”的新路径。
  • 日核电站附近食品放射性物质超标
    日本内阁官房长枝野幸男19日说,在福岛第一核电站附近地区的牛奶和菠菜中检测出放射性物质超标,但对人体健康不构成威胁。  据新华社3月20日报道,日本内阁官房长官枝野幸男19日下午在新闻发布会上说,放射性物质超标牛奶在福岛县内取样,取样地点在福岛第一核电站30公里以外 超标菠菜从邻近的茨城县取样。这些食品对人体健康没有影响。  枝野幸男没有公布这些食品的具体超标值,但他指出,即使饮用一年这样的牛奶所受的辐射量也仅相当于接受一次CT检查,吃一年这样的菠菜也就相当于一次CT扫描辐射量的五分之一。根据美国核管理委员会的数据,一次全身CT扫描的辐射量约为10毫西弗。  枝野幸男指出,厚生劳动省将调查这些牛奶和菠菜的具体生产地和销售地。他强调,目前仅在牛奶和菠菜中检测出放射性物质超标,其他产品的检测正在进行中。
  • 烟台筑起国门“核屏障” 放射性检测位于全国前列
    日本地震海啸引发了核电站放射性物质泄漏事件。作为日本的近邻,烟台与日本之间的贸易、交通、人员、货物往来频繁,一直密切关注事件进展。近日,烟台检验检疫局局长昃向君接受YMG记者专访时表示,从烟台口岸监测数据看,均处于以往监测本底值的范围内,未发现异常情况,目前放射性污染物传入烟台口岸的风险很低。因此,检验检疫部门建议口岸公众和出入境人员,要理性对待此次日本核泄漏事件,“谈核色变”大可不必。  放射性检测,是大众眼中陌生的神秘技术领域。同样鲜为人知的,烟台有一支从事不同种类样品的放射性检测和研究工作队伍,早在7年前便进入了“国家队”:2003年,国家质检总局在烟台设立了国家放射性检测重点实验室。  “这台宽能无源效率刻度高纯锗γ谱仪,目前国内仅有10台,借助它,我们可以精确检测到空气中含有几个核辐射分子。”走进国家质检总局国家级放射性检测重点实验室,有关负责人表示。7年来,因拥有目前放射性检测专业领域国际最顶尖的仪器设备,实验室在山东口岸反恐与应急工作中屡立战功,技术研究如虎添翼。  核辐射事件发生后,实验室作用突显:国家质检总局要求国家级放射性检测重点实验室全面协助各口岸单位开展核辐射监测工作。烟台检验检疫局检验检疫技术中心副主任、高级工程师耿金培介绍,3月12日22时许,在接到省市辐射环境监测站的请求后,实验室连夜对检测设备和标准物质进行了充分准备,并于3月13日15时完成了对环保部门采集的烟台、威海两市大气气溶胶和空气碘样品的核素分析。根据检测结果,3月12日到13日所采集样品尚未发现来自核电反应堆的放射性物质。  3月13日至3月20日统计,烟台口岸对来自日本的6艘次船舶、108名交通员工,3架次飞机、486名旅客进行了放射性监测 同时对国际候机厅、候船厅、码头、堆场、集装箱场站等场所进行放射性监测 核监测设备的常规采样工作已由平时的每周一次,增加到一天多次 重点实验室的工作人员每5分钟就会计算一个均值,并在每天9时和15时集中汇总数据上报。根据发布的全省地级市实时连续空气吸收剂量率的监测值,山东辐射环境水平未受到日本核电事故影响。  “人类身体里循环的水、空气其实都具有一定的放射性,这是自宇宙诞生之日起就存在的客观事实,属自然现象。少量辐射不会危及人类健康。”事件发生后,检验检疫部门第一时间在烟台口岸的电子显示屏、电子宣传栏等宣传工具向出入境人员进行防辐射知识的宣传,同时还向社会公布了两部咨询电话。在亲眼目睹了烟台检验检疫人员核污染监测过程后, 一位前来咨询核污染的市民不由说道:“作为一个市民, 看到烟台对监测工作的重视及采取的科学措施,让人放心,你们的安全报告也像一枚‘定心丸’,让我安心。”
  • 日核电站泄漏 多国检测到放射性物质
    日本原子能安全保安院2011年3月23日发布的照片显示了福岛第一核电站内部建筑物受损情况。  日本福岛核电站泄漏的放射性物质目前已扩散至全球。亚洲多国政府和美国都报告了来自日本受损核电站的少量辐射,但它们均表示,辐射量对公共健康没有威胁。  美国官员说,美国南部三州已在大气环境中检测到极微量的放射性物质,这些州份为:南卡莱罗纳、北卡莱罗纳以及佛罗里达州。在这3州的数个核电站监测仪器检测到了微量的放射性碘-131。  消息称,内华达州、加利福尼亚州、华盛顿州、宾夕法尼亚州以及夏威夷州也检测到了极微量的放射性同位素。  韩国国营的核安全研究所表示,包括首尔在内的几个地区监测到了放射性碘。韩国农林水产食品部说,正在监测韩国水域捕捉到的鱼类中是否存在放射性污染。  菲律宾原子能研究所(PNRI)28日首度承认已经监测到极微量的放射性同位素,但同时重申不会对人类健康造成危害。  此外,越南、俄罗斯东部太平洋沿岸地区等地也检测到微量的放射性物质。
  • 核安全与放射性污染防治十二五规划发布 投资达798亿元
    核安全与放射性污染防治“十二五”规划及2020年远景目标  核安全事关核能与核技术利用事业发展,事关环境安全,事关公众利益。党中央、国务院历来高度重视核安全与放射性污染防治工作,有关部门和企事业单位认真贯彻落实国家确定的方针政策,我国核能与核技术利用事业多年来保持了良好的安全业绩。日本福岛核事故发生后,国务院立即做出重要部署,明确要求抓紧编制核安全规划。  本规划结合全国核设施综合安全检查和日常持续开展的安全评价结果,深入分析当前核安全工作中存在的薄弱环节,以确保核安全、环境安全、公众健康为目标,坚持“安全第一、质量第一”的根本方针,遵循“预防为主、纵深防御 新老并重、防治结合 依靠科技、持续改进 坚持法治、严格监管 公开透明、协调发展”的基本原则,统筹规划了9项重点任务、5项重点工程、8项保障措施,力争至“十二五”末我国核能与核技术利用安全水平进一步提高,辐射环境安全风险明显降低 到2020年,核电安全保持国际先进水平,核安全与放射性污染防治水平全面提升,辐射环境质量保持良好,为保障我国核能与核技术利用事业安全、健康、可持续发展提供坚实有力的支撑。  一、现状与形势  半个多世纪以来,我国核能与核技术利用事业稳步发展。目前,我国已经形成较为完整的核工业体系,核能在优化能源结构、保障能源安全、促进污染减排和应对气候变化等方面发挥了重要作用 核技术在工业、农业、国防、医疗和科研等领域得到广泛应用,有力地推动了经济社会发展。  核安全是核能与核技术利用事业发展的生命线。我国核能与核技术利用始终坚持“安全第一、质量第一”的根本方针,贯彻纵深防御等安全理念,采取有效措施,保障了核安全。2011 年3月日本福岛核事故后,进一步保障核安全与防治放射性污染任务更加艰巨和紧迫,相关工作面临新的形势和挑战。  (一)核安全与放射性污染防治取得积极进展。  1。核安全保障体系渐趋完善。在深入总结国内外经验和教训的基础上,参考国际原子能机构和核能先进国家有关安全标准,我国已基本建立了覆盖各类核设施和核活动的核安全法规标准体系。2003年以来,先后颁布并实施了《中华人民共和国放射性污染防治法》、《放射性同位素与射线装置安全和防护条例》、《民用核安全设备监督管理条例》、《放射性物品运输安全管理条例》和《放射性废物安全管理条例》,制定了一系列部门规章、导则和标准等文件,为保障核安全奠定了良好基础。初步形成了以营运单位、集团公司、行业主管部门和核安全监管部门为主的核安全管理体系,以及由国家、省、营运单位构成的核电厂核事故应急三级管理体系。  核安全文化建设不断深入,专业人才队伍配置渐趋齐全,质量保证体系不断完善。核安全监管部门审评和监督能力逐步提高,运行核电厂及周边环境辐射监测网络基本建立。在汶川地震等重特大灾害应急抢险中,我国政府决策果断、行动高效,有效化解了次生自然灾害带来的核安全风险,核安全保障体系发挥了重大作用。  2。核安全水平不断提高。  我国核电厂采用国际通行标准,按照纵深防御的理念进行设计、建造和运行,具有较高的安全水平。截至2011年12月,我国大陆地区运行的15台核电机组安全业绩良好,未发生国际核事件分级表2级及以上事件和事故,气态和液态流出物排放远低于国家标准限值。在建的26台核电机组质量保证体系运转有效,工程建造技术水平与国际保持同步。大型先进压水堆和高温气冷堆核电站科技重大专项工作有序推进。2011年实施的核设施综合安全检查结果表明,我国运行和在建核电机组基本满足我国现行核安全法规和国际原子能机构最新标准的要求,安全和质量是有保障的。  研究堆安全整改活动持续开展,现有研究堆处于安全运行或安全停闭状态。核燃料生产、加工、贮存和后处理设施保持安全运行,未发生过影响环境或公众健康的核临界事故和运输安全事故。核材料管制体系有效。放射源实施全过程管控,辐照装置防卡源专项整治工作取得成效,安全管理水平逐步提高,放射源辐射事故年发生率由上世纪90 年代的每万枚6.2起下降至“十一五”期间的每万枚2.5起。核安全设备的设计、制造、安装和无损检验活动全面纳入核安全监管,设备质量和可靠性不断提高。  3。放射性污染防治稳步推进。近年来,国家不断加大放射性污染防治力度,早期核设施退役和历史遗留放射性废物治理稳步推进。多个微堆及放化实验室的退役已经完成。一批中、低放废物处理设施已建成。2座中、低放废物处置场已投入运行,1座中、低放废物处置场开始建设。完成一批铀矿地质勘探、矿冶设施的退役及环境整治项目,尾矿库垮坝事故风险降低,污染得到控制,环境质量得到改善。废旧放射源得到及时回收,一批老旧辐照装置完成退役。国家废放射源集中贮存库及各省(区、市)放射性废物暂存库基本建成。全国辐射环境质量良好,辐射水平保持在天然本底涨落范围 从业人员平均辐照剂量远低于国家限值。  (二)核安全与放射性污染防治面临挑战。  1。安全形势不容乐观。我国核电多种堆型、多种技术、多类标准并存的局面给安全管理带来一定难度,运行和在建核电厂预防和缓解严重事故的能力仍需进一步提高。部分研究堆和核燃料循环设施抵御外部事件能力较弱。早期核设施退役进程尚待进一步加快,历史遗留放射性废物需要妥善处置。铀矿冶开发过程中环境问题依然存在。放射源和射线装置量大面广,安全管理任务重。  2。科技研发需要加强。核安全科学技术研发缺乏总体规划。现有资源分散、人才匮乏、研发能力不足。法规标准的制(修)订缺少科技支撑,基础科学和应用技术研究与国际先进水平总体差距仍然较大,制约了我国核安全水平的进一步提高。  3。应急体系需要完善。核事故应急管理体系需要进一步完善,核电集团公司在核事故应急工作中的职责需要进一步细化。核电集团公司内部及各核电集团公司之间缺乏有效的应急支援机制,应急资源储备和调配能力不足。地方政府应急指挥、响应、监测和技术支持能力仍需提升。核事故应急预案可实施性仍需提高。  4。监管能力需要提升。核安全监管能力与核能发展的规模和速度不相适应。核安全监管缺乏独立的分析评价、校核计算和实验验证手段,现场监督执法装备不足。全国辐射环境监测体系尚不完善,监测能力需大力提升。核安全公众宣传和教育力量薄弱,核安全国际合作、信息公开工作有待加强,公众参与机制需要完善。核安全监管人才缺乏,能力建设投入不足。  日本福岛核事故的经验教训十分深刻,要进一步提高对核安全的极端重要性和基本规律的认识,提升核安全文化素养和水平 进一步提高核安全标准要求和设施固有安全水平 进一步完善事故应急响应机制,提升应急响应能力 进一步增强营运单位自身的管理、技术能力及资源支撑能力 进一步提升核安全监管部门的独立性、权威性、有效性 进一步加强核安全技术研发,依靠科技创新推动核安全水平持续提高和进步 进一步加强核安全经验和能力的共享 进一步强化公共宣传和信息公开。  二、指导思想、原则和目标  (一)指导思想。  以邓小平理论和“三个代表”重要思想为指导,深入贯彻落实科学发展观,坚持“安全第一、质量第一”的根本方针,以法规标准为准绳,以科技进步为先导,以基础能力为支撑,进一步明确责任、优化机制、严格管理、持续改进、消除隐患,不断提高我国核安全与放射性污染防治水平,确保核安全、环境安全和公众健康,推动核能与核技术利用事业安全、健康、可持续发展。  (二)基本原则。  预防为主,纵深防御。采取所有合理可行的技术和管理手段,确保核设施各种防御措施的有效性和多道屏障的完整性,防止发生核事故,并在一旦发生事故时减轻其后果。  新老并重,防治结合。多还旧账,积极推进早期核设施退役,开展历史遗留放射性污染治理,恢复和改善环境。不欠新账,按照新标准建设各类核设施,从源头防止或减少放射性废物产生,及时处理处置新产生的放射性废物。  依靠科技,持续改进。发挥科技在核安全工作中的支撑和引领作用,注重经验积累和反馈,及时查找和消除安全隐患,不断改进和提升安全水平。坚持法治,严格监管。完善核安全法规标准体系,与国际先进水平保持一致。贯彻“独立、公开、法治、理性、有效”的监管理念,严格依法开展审评、许可、监督和执法,严厉查处违法违规行为。  公开透明,协调发展。完善公众参与机制,保障公众对核安全相关信息的知情权。加强宣传教育,增强公众对核安全的了解和信心。坚持核安全监管与核能、核技术利用事业同步发展,推动核能与核技术利用事业和社会、环境的协调发展。  (三)规划目标。  总体目标:进一步提高核设施与核技术利用装置安全水平,明显降低辐射环境安全风险,基本形成事故防御、污染治理、科技创新、应急响应和安全监管能力,保障核安全、环境安全和公众健康,辐射环境质量保持良好。  具体目标:在核设施安全水平提高方面,运行核电机组安全性能指标保持在良好状态,避免发生2级事件,确保不发生3级及以上事件和事故 新建核电机组具备较完善的严重事故预防和缓解措施,每堆年发生严重堆芯损坏事件的概率低于十万分之一,每堆年发生大量放射性物质释放事件的概率低于百万分之一 消除研究堆、核燃料循环设施重大安全隐患,确保运行安全。  在核技术利用装置安全水平提高方面,放射性同位素和射线装置100%落实许可证管理 放射源辐射事故年发生率低于每万枚2.0 起 有效控制重特大辐射事故的发生。  在辐射环境安全风险降低方面,基本消除历史遗留中、低放废物的安全风险 基本完成铀矿冶环境综合治理。在事故防御方面,完成运行和在建核电厂、研究堆、核燃料循环设施的安全改造,提高核设施抵御外部事件、预防和缓解严重事故的能力。  在污染治理方面,建设与核工业发展水平相适应的、先进高效的放射性污染治理和废物处理体系,基本建成与核工业发展配套的中、低放废物处置场。  在科技创新方面,完善核安全与放射性污染防治科技创新平台,培养一批领军人才,突破一批关键技术。  在应急响应方面,强化各级政府和有关单位的应急指挥、应急响应、应急监测、应急技术支持能力建设,形成统一调度的核事故应急工程抢险力量,充实应急物资及装备配置。  在安全监管方面,基本建成国家核与辐射安全监管技术研发基地,构建监管技术支撑平台,初步具备相对独立、较为完整的安全分析评价、校核计算和实验验证能力 建成全国辐射环境监测网络,国家、省级辐射环境监测能力100%达到能力建设标准。  2020年远景目标:运行和在建核设施安全水平持续提高,“十三五”及以后新建核电机组力争实现从设计上实际消除大量放射性物质释放的可能性。全面开展放射性污染治理,早期核设施退役取得明显成效,基本消除历史遗留放射性废物的安全风险,完成高放废物处理处置顶层设计并建成地下实验室。全面建成国家核与辐射安全监管技术研发基地和全国辐射环境监测体系。形成功能齐全、反应灵敏、运转高效的核与辐射事故应急响应体系。到2020年,核电安全保持国际先进水平,核安全与放射性污染防治水平全面提升,辐射环境质量保持良好。  三、重点任务  坚持以提高核能与核技术利用安全水平、加快放射性污染防治为核心,以加强科技研发、提升应急响应和核安全监管能力为依托,全面加强我国核安全与放射性污染防治工作。  (一)强化纵深防御,确保核电厂运行安全。  运行和在建核电厂营运单位根据核设施综合安全检查的评价结论和改进要求,从技术、管理和工程等方面采取切实有效措施,提升预防和缓解事故及严重事故后果的能力。  对运行核电厂,开展应对事故及严重事故的安全分析、技术评估和工程改造,并制定完善相应的管理规定和应对预案,开展定期安全审查,加强设备维修维护,深化安全文化培育。  专栏1 提升运行核电厂安全水平  近期  1。逐项排查并完成有关门窗、通风口、电缆贯穿和工艺管道贯穿等的防水封堵。  2。综合考虑全厂断电工况下满足反应堆堆芯冷却、乏燃料水池冷却、防止反应堆冷却剂泵发生轴封小破口失水事故和保持必要的事故后监测能力的要求,采取设置移动电源、移动泵和增设相匹配的接口等措施。3。确保核电厂地震监测记录系统的有效性,提高核电厂抗震响应能力。  2013年底前:  4。结合各核电厂可能遭遇水淹情况的评估结果,落实各核电厂防水淹措施 完成秦山核电厂防洪改造工程。  5。完成沿海核电厂地震、海啸影响的复核、评估及必要的改造。  6。制定并实施严重事故管理导则。  7。对在严重事故下用于缓解事故的设备和系统的可用性以及可能发生的氢气爆炸进行评估,并根据评估结果实施相应改进。  8。开展抗外部事件安全裕量分析评估。  9。研究制订核电基地多机组同时进入应急状态后的响应方案。  2015年底前:  10。开展外部事件概率安全分析。  对在建核电厂,依据我国现行核安全法规和国际原子能机构最新标准,完成设计安全水平再评估,修订建造许可证条件。在建核电厂营运单位在首次装料前落实全部许可证条件要求。全过程、全方位控制核电工程建造质量和安全,落实独立第三方监理,执行核电建造队伍准入制度,提高核电工程建造专业化水平,继续完善核电工程建造质量保证体系,加强调试监管,严格执行事件报告制度和不符合项管理制度。  专栏2 提升在建核电厂安全水平  首次装料前:  1。结合各核电厂可能遭遇水淹情况的评估,逐项排查并完成管沟、廊道、门窗和贯穿等的防水封堵。  2。综合考虑全厂断电工况下满足反应堆堆芯冷却、乏燃料水池冷却、防止反应堆冷却剂泵发生轴封小破口失水事故和保持必要的事故后监测能力的要求,采取设置移动电源、移动泵和增设相匹配的接口等措施。  3。增强乏燃料水池的补水和监测能力。  4。制定并实施严重事故管理导则。考虑各类事故工况和多堆厂址共因失效工况,分析评估严重事故下重要设备、监测仪表的可用性和可达性。  5。完善严重事故下安全壳或其他厂房内消氢系统的分析评估,并实施必要的改进。  6。分析评价双机组布置的核电机组缓解严重事故后果的能力和可靠性。  7。进一步加强对环境监测布点的合理性和代表性的分析评估,完善严重事故下应急监测方案,确保在各种事故工况下有可用的应急监测手段。  8。完善应急控制中心功能及可居留性的分析评估,并实施必要的改进。  9。开展抗外部事件安全裕量分析评估。  10。加强与气象、海洋部门之间的实时联系,以及与地震部门间的信息交流,进一步完善防灾预案和相关管理程序,提高外部灾害发生时的预警和应对能力。  11。研究核电基地多机组同时进入应急状态后电厂的应急响应方案,并评估应急指挥能力及应急抢险人员和物资的配备、协调方案。  2015年底前:  12。从设计、验证和故障分析等方面分析评估安全级数字化控制系统的可靠性,查找薄弱环节并实施相应的改进。  13。进一步开展二级概率安全分析、外部事件概率安全分析工作。  14。进一步改进放射性废物处理系统 开展严重事故下废物处理系统的有效性研究。  坚持在确保安全的前提下发展核电,并把握好发展节奏。对于新申请建造许可证的核电项目,按照我国和国际原子能机构最新的核安全法规标准进行选址和设计,采用技术更加成熟和先进的堆型,提高固有安全性。在符合最先进安全指标的核电技术得到充分验证之前,合理控制核电建设规模和速度。通过科学选址和采取更加高效、可靠的工程措施,确保气态和液态流出物在核电机组正常运行和事故情况下对环境和公众均不会造成不可接受的影响。积极发展具有我国自主知识产权的安全性能高的先进核电技术。力争“十三五”及以后新建核电机组从设计上实际消除大量放射性物质释放的可能性。  (二)加强整改,消除研究堆和核燃料循环设施安全隐患。根据核设施综合安全检查结论和改进要求,对存在安全隐患的研究堆和核燃料循环设施实施安全改进,对于无法满足安全标准的,予以限制运行或逐步关停。完成研究堆分类名录,明确管理要求,实施分类管理。完善研究堆许可证管理模式和定期安全审查方法。确定研究堆在停闭状态下的安全保障和管理方法。对大型研究堆实施严重事故管理。开展研究堆概率安全分析和老化评估。完成快中子增殖堆等新堆型技术法规和技术审评原则及其下层技术文件的编制。完成部分研究堆内乏燃料组件向集中贮存设施的转移。  2012年底前:  专栏3 提升研究堆安全水平  1。根据调整后的地震区划图,完成对所涉及研究堆的抗震校核及必要的改造工作,并重新优化其运行管理程序。  2。为大、中型研究堆增设事故后堆芯监测装置。  3。评价研究堆构筑物抵御极端外部事件的能力,根据评估结果完成相应的加固工作。  2013年底前:  4。为研究堆增设可靠电源、移动电源、移动泵、消防车辆和应急水源。对核燃料循环设施的安全重要构筑物、系统和设备进行分级管理。加强核燃料循环设施工艺和安全研究,不断提高固有安全水平。建立核燃料循环设施运行经验反馈体系,强化核临界安全风险管理。规范和完善早期核设施的安全管理,尽快解决历史遗留问题。根据核电发展的方向、规模与速度,配套开展核燃料循环发展顶层设计,加强“三废”处理等配套设施的建设和运行管理,强化流出物监测和环境监测。  专栏4 提升核燃料循环设施安全水平  2012年底前:  1。按照现行标准对核燃料循环设施老旧厂房进行抗震校核,并根据校核结果进行加固或限期退役。  2。根据核燃料循环设施厂址特点,建立外部应急支援接口,完善应急预案,提高抵御极端自然灾害的能力。  2015年底前:  3。开展核燃料循环设施的应急和“三废”等配套建设,确保其与主工艺建设同步。  4。制定贫化六氟化铀的处理规划,加强贫化六氟化铀贮存的安全管理,必要时进行稳定化处理。调查在役放射性物品运输容器的安全状况,完成运输容器安全评价。建设一、二类放射性物品运输的在线实时监控系统。强化放射性物品运输容器制造和运输活动的安全监督。加强实物保护系统建设,对各核设施实物保护系统实施改进和升级。  (三)严格安全管理,规范核技术利用。  2012年底前完成全国核技术利用单位综合安全检查。针对发现的安全隐患,采取有效整改措施。对存在较大安全隐患的高风险核技术利用装置实施强制退役,彻底消除安全隐患。健全核技术利用辐射安全管理信息系统,完善放射源的全过程动态管理。建立高危险移动放射源跟踪监控体系。对辐照加工、科研、医疗等领域Ⅰ类放射源和Ⅰ类射线装置实施在线监控。全面开展对废旧金属回收熔炼的辐射监测,加强进出境口岸放射性物品安全管理。强化核技术利用单位的辐射环境和个人剂量监测。加强从业人员辐射安全培训。  城市放射性废物库配备放射性物质鉴别、分类、处理等配套设施,完成3-5个区域性移动式废旧放射源整备设施的研制和建设。加大闲置、废弃放射源的收贮力度,确保新产生的废旧放射源依法及时送贮,推动已到寿期的Ⅲ类及以上进口放射源返回原出口方。推动废旧放射源的再利用和放射性同位素的循环使用技术研究,倡导并支持废旧放射源回收再利用。  制定和完善核技术利用行业的准入制度,提高核技术利用装置安全水平。鼓励除科研用途外设计活度小于1.11×1016贝可(30万居里)的静态辐照装置关停退役或转型升级。  (四)加强铀矿冶治理,保障环境安全。  “十二五”中期,完成铀矿冶企业尾矿(渣)坝的风险评估,建立尾矿(渣)坝监测与预警系统,采取必要措施降低垮坝风险,关停不符合安全要求的铀矿冶设施。“十二五”末,完成地浸采场地下水去污恢复技术研究。建设事故废水收集池,避免超标废水直接向环境排放。建立铀矿冶退役治理工程长期监护机制。  对历史遗留铀矿地质勘探设施进行调查与评价,在2020年前完成位于社会和环境敏感地区的铀矿地质勘探设施环境整治工程。继续开展退役矿山的环境治理,在2020年前全部完成2010年前关停的铀矿冶设施的退役治理和环境恢复工作。  贯彻清洁生产和循环经济的理念,加大废水处理技术的科研力度,逐步提高水的重复利用率,降低废水产生量并实施达标排放。“十二五”中期,保证水冶工艺废水的重复利用率达到75%以上。  进一步完善铀矿冶辐射防护体系,降低采冶过程中的职业照射水平,保护工作人员健康。到“十二五”末,铀矿冶行业的职业照射水平管理目标值控制在15毫希沃特/年以内。  进一步开展主要伴生放射性矿的辐射水平调查工作,完善伴生放射性矿监管名录和办法,明确管理要求,制定废物处置的相关环境政策,开展污染防治工作。  (五)加快早期设施退役和废物治理,降低安全风险。  加强对已停运核设施的监管和维护,及时实施已关停或已决定关停核设施的退役,推进早期核活动遗留的放射性污确保放射性废物的安全贮存,加快放射性废物处理、处置。对全国放射性废物处理处置能力进行统一布局,推动地方政府及核能相关企业加快放射性废物贮存、处理、处置能力建设。以高风险放射性废物治理为重点,加快放射性废液固化处理进程。  在核设施设计中采用先进的废物处理工艺。鼓励营运单位在核设施运行中采用先进的技术和管理手段减少废物产生量。推动核电厂妥善处置现存废物。建立放射性废物治理管理信息系统。推动高放废物地质处置预选区研究。  专栏5 早期核设施退役及放射性废物治理  “十二五”末:  1。全面推进重点单位的核设施退役活动。2。完善中、低放废物处理、处置手段。3。完成全国放射性污染现状调查与评价,开展放射性污染治理。4。开展核设施退役和放射性废物治理关键技术研究。  至2020年:  5。已停运的核设施全部安全关闭,早期核设施退役和污染治理取得明显成效。6。形成全国中低放固体废物近地表处置场的统一布局。  7。建成高放废物处置地下实验室。  (六)强化质量保证,提高设备可靠性。  完善核安全设备相关法规要求和管理体系,进一步明确营运单位、工程总承包单位和核安全设备许可证持证单位的安全责任。强化核安全设备设计、制造、安装和无损检验单位资质加强核安全设备设计验证和鉴定试验的评价和监督,制定核安全设备验证和鉴定的管理制度。加强核安全设备制造过程的管理和监督,完善驻厂监督制度。完善进口核安全设备的注册登记和安检制度,加强对进口核安全设备的监管。强化核安全设备焊工、焊接操作工和无损检验人员等特种工艺人员考核评价活动的监督和人员资格管理。对在役设备进行有效的老化与寿命管理,确保设备在整个服役期内满足安全要求。建立独立于营运单位和检验单位的无损检验能力验证体系。  (七)推动科技进步,促进安全持续升级。  鼓励企业开展核安全技术创新,加强新技术和新工艺开发和使用,不断提高设施安全水平。支持核安全技术科研单位基础能力建设,充分整合、利用现有科研资源和重大专项渠道,在此基础上建立一批核安全相关技术研发平台。  有针对性地开展核安全技术研发,集中力量突破制约发展的核安全关键技术,提升我国核安全整体水平。积极推进大型压水堆、高温气冷堆和乏燃料后处理重大专项安全技术科学研究和成果应用。重点开展反应堆安全、核电厂厂址安全、核电厂防止和缓解飞行物撞击措施、核安全设备质量可靠性、核燃料循环设施安全、核技术利用安全、放射性物品运输和实物保护、核应急与反恐、辐射环境影响评价及辐射照射控制、放射性废物治理和核设施退役安全等领域的技术  (八)完善应急体系,有效应对突发事件。  根据常备不懈、积极兼容、平战结合原则,完善应急管理体系,建立综合协调、功能齐全、反应灵敏、运转高效的应急准备和响应体系。加强严重事故应急准备和响应的研究,2012年底前,完成各级各类核事故应急计划(预案)的修订及评估工作,完善应急状态终止后恢复行动的内容,加强演练,突出实战,提高各级各类应急计划(预案)的可实施性。  充实核事故监测、预警、信息、后果评价、决策和指挥能力。加强核应急救援体系建设,建立统一指挥、统一调度的核事故应急响应专业队伍,进一步提高核事故应急响应能力,2012年底前,完成国家核与辐射事故应急物资及装备配置需求研究,2013年底前完成相关配备。“十二五”末建成核电机组事故工况下堆芯损伤状况的实时评价专家系统。  合理规范核电厂核事故应急计划区范围。强化地方政府的应急指挥、应急响应、应急监测、应急技术支持能力建设,制定并实施应急能力建设标准,配备必要应急物资及装备,提高地方政府应急水平。明确核电集团公司的应急职责,完善集团公司内部的应急支援制度。建立和完善集团公司应急支援制度。2012年底前完成企业集团公司层面核应急资源储备和调配能力建设。  针对长时间失去电源以及同一厂址多机组发生事故的工况,重新评估各类核设施场内应急能力,完善应急计划,调整和充实核设施营运单位就地应急响应能力,加强场内外应急计划的协调。  (九)夯实基础能力,提升监管水平。  加强核与辐射安全监管基础能力。建设国家核与辐射安全监管技术研发基地,配备必要的研究手段和技术装备,形成相对独立、较为完整的核与辐射安全分析评价、校核计算和实验验证能力。加强相关基础建设,基本具备开展国际合作、公众宣传和人员培训的能力。强化核与辐射安全现场监督执法能力,配齐必要的检查和执法技术装备。  加强全国辐射监测网络建设,完善全国辐射环境质量监测、污染源监督性监测及辐射环境应急监测体系,具备全面掌握全国辐射环境质量水平并开展评价的能力,具备应对核事故的辐射环境应急监测能力。  四、重点工程  为实现规划目标,推动核能与核技术利用的技术升级和进步,进一步消除安全隐患,提高核安全水平,计划实施安全改进、污染治理、科技创新、应急保障和监管能力建设等重点工程。为提高重点工程实施效果,环境保护部会同有关部门建立重点项目库,实行动态管理,由各相关部门按职能分工指导各地区分别在年度计划中予以落实。“十二五”期间重点项目投资需求约798亿元。各级政府按照事权划分,重点对公益性科研教育设施的核安全改进、应急保障和核安全监管能力建设、环境放射性污染治理、核安全科技研发等方面给予支持。  (一)核安全改进工程。  通过技术升级、工程改造、运行经验反馈体系建设等项目的实施,开展安全评价,排除安全隐患,持续提高核电厂、研究堆等核设施的固有安全水平和预防与缓解严重事故的能力,提高核技术利用、铀矿冶安全管理水平,保障核与辐射安全。  专栏6 核能与核技术利用安全改进工程  1。运行核电厂安全改造项目,主要内容包括持续改进核电厂抵御外部自然灾害、缓解严重事故的能力,进一步提高安全水平。  2。在建核电厂安全改造项目,主要内容包括核设施防水淹、抗震、消氢等措施及全厂断电工况下的应急措施的安全改进,事故后堆芯状态监测系统优化、升级。乏燃料水池供水能力改造,应急指挥中心等构筑物安全技术改造,严重事故应对技术改造。  3。研究堆和核燃料循环设施安全改进项目,主要内容包括为大、中型研究堆增设事故后堆芯监测装置。  4。研究堆和核燃料循环设施实物保护系统改造建设项目,主要内容包括改造研究堆和核燃料循环设施的厂区围栏、出入口控制系统、防入侵探测系统、保安通信及监控管理系统等实物保护系统。  5。辐射防护改造工程项目,主要内容包括根据辐射防护最优化原则,实施铀矿冶设施、早期研究堆和核燃料循环设施辐射防护最优化改造工程,开展核技术利用装置辐射防护升级改造。  6。核技术利用安全改造项目,主要内容包括针对核技术利用装置存在的安全隐患,实施安全改造。加强金属熔炼企业辐射监测能力建设。  7。经验反馈体系建设项目,主要内容包括开展核设施、核技术利用装置的建造、运行经验反馈体系建设。  (二)放射性污染治理工程。  大力推进核设施退役及放射性污染和废物治理,加快铀矿地质勘探与矿冶设施、伴生矿退役治理,积极建设区域放射性废物处置场,实施辐照装置退役及废放射源回收,开展铀矿冶、伴生矿尾矿(渣)坝监测预警系统示范等项目,解决影响环境安全、公众健康的突出问题。  专栏7 放射性污染治理工程  1。核设施退役及放射性污染和废物治理项目,主要内容包括历史遗留的核设施退役及放射性污染和废物治理,及其他核设施退役及放射性废物治理等。  2。区域废物处置场建设项目,主要内容包括建设2-3个区域中低放固体废物处置场。  3。铀矿地质勘探与矿冶设施、伴生矿退役及污染治理项目,主要内容包括开展铀矿地质勘探与矿冶设施、伴生矿退役、放射性废物治理及放射性污染环境整治等。  4。铀矿冶、伴生矿尾矿(渣)坝监测预警系统示范项目。  5。辐照装置退役及废放射源回收项目,主要内容包括开展辐照装置退役及污染治理,收贮闲置、废旧放射源等。  (三)科技研发创新工程。  围绕核能与核技术利用安全、核安全设备质量可靠性、铀矿和伴生矿放射性污染治理、放射性废物处理处置等领域基础科学研究落后、技术保障薄弱的突出问题,全面加强核安全技术研发条件建设,改造或建设一批核安全技术研发中心,提高研发能力。组织开展核安全基础科学研究和关键技术攻关,完成一批重大项目,不断提高核安全科技创新水平。  专栏8 核安全科技研发创新工程  1。核安全技术研发能力建设项目,主要内容包括建设核电厂安全设计与分析技术研发中心、核电厂超设计基准事故研发中心、核电厂安全级设备鉴定检验中心、核电厂运行安全与维护技术研发中心、核电厂设备安全与可靠性研发中心、先进燃料元件和核级设备材料研发中心、核设施退役及放射性废物治理工程研发中心。  2。核安全技术研究项目,主要内容包括开展一批为管理决策服务的基础科学和工程技术研究。开展10个方面119项关键技术研究,包括12项反应堆安全技术研究,7项核电厂厂址安全技术研究,10项核安全设备质量可靠性技术研究,10项核燃料循环设施安全技术研究,7项核技术利用安全技术研究,8项放射性物品运输和实物保护技术研究,24项核应急与反恐技术研究,10项辐射环境影响评价及辐射照射控制技术研究,19项放射性废物治理和核设施退役安全技术研究,12项核与辐射安全管理技术和法规标准基础技术研究,制(修)订约150项核安全法律法规文件,完成约250项核电相关标准制(修)订。  (四)事故应急保障工程。  通过环境应急监测能力建设等项目的实施,加强核设施风险分析和预测预警能力建设,为应对核与辐射事故提供决策依据和技术支持,同时保证在任何情况下的核与辐射事故应急均有充足、可用的应急物资储备,并能及时、有效供应。  专栏9 核与辐射事故应急保障工程  1。核与辐射环境应急监测能力建设项目,主要内容包括开展国家级、省级、地市级以及覆盖我国管辖海域及周边海域的核与辐射事故应急监测系统和能力建设 建立航空应急监测能力。  2。核与辐射事故应急及事故后果评价能力建设项目,建设核与辐射事故应急技术支持平台,建设涵盖核电厂、研究堆、核燃料循环设施、放射源、铀矿冶等应急目标的应急数据平台及核与辐射事故预测、后果评价和决策支持系统。建设核设施现场监测数据采集与传输系统,建设应急决策、指挥调度系统。建立或完善6个区域性和31个省级核与辐射安全监控和应急指挥中心。建设反应堆事故工况及堆芯损伤状况的实时评价专家系统。  3。完成重点核基地的应急能力建设项目,主要内容包括建设秦山、大亚湾、连云港等重点区域核应急基地。  4。核应急物资储备和抢险能力建设项目,主要内容包括开展国家、区域、省级的应急物资储备和抢险能力建设 开展核电基地、核设施营运单位的应急物资储备和抢险能力建设。  5。进出境口岸应对核与辐射事故应急放射性检测能力建设项目,主要内容包括增加口岸放射性检测设备,实验室放射性检测仪器及个人防护用品等。  6。事故应急医学保障项目,主要内容包括开展应急救治能力建设,形成覆盖全国的核应急救治网络。  7。世界气象组织和国际原子能机构北京区域环境紧急响应应急能力建设项目,主要内容包括建设一体化的多尺度精细化核应急业务数值模式系统,开展放射性污染物扩散预报以及核事故长期影响评估。  (五)监管能力建设工程。  以国家核与辐射安全监管技术研发基地建设为重点,构建核与辐射安全监管技术支撑平台,全面加强核与辐射安全审评、监督、监测、教育、国际合作等能力,不断提升我国核与辐射安全监管水平。  专栏10 核安全监管能力建设工程  1。国家核与辐射安全监管技术研发基地建设工程。主要内容包括核电厂安全验证能力建设 核安全设备安全性能验证能力建设 核电厂运行安全仿真分析能力建设 放射性废物安全管理及核设施退役安全验证能力建设 辐射环境监测技术能力建设 辐射防护研究能力建设 核与辐射安全监控和应急响应能力建设 核与辐射安全中心综合楼建设 中国核与辐射安全国际联合研究平台建设。  2。全国辐射环境监测体系能力建设工程。主要内容包括国家、省和地市级三级辐射环境监测体系能力建设 全国辐射环境质量监测国控网点建设 国家重点监管的核与辐射设施监督性监测系统建设 全国辐射环境监测信息汇总及发布系统建设。  3。核与辐射安全监督站能力建设工程。主要内容包括6个地区核与辐射安全监督站基本能力建设,配套必要的业务用房、执法仪器及装备。  五、保障措施  (一)健全法规标准,夯实安全基础。  抓紧研究制订原子能法和核安全法,加快制修订核安全行政法规、部门规章和标准,力争到“十二五”末建成比较完整的核与辐射安全法规标准体系。完善核安全监管部门对相关工业标准的认可制度,强化相关工业标准与核安全法规导则的衔接。加强核安全管理和政策研究,适时发布核安全政策。  (二)优化管理机制,提升管控效率。  进一步增强核安全监管部门的独立性、权威性、有效性。明确和强化核行业主管部门、核电行业主管部门的核安全管理责任,加大核行业主管部门对包括科研院校在内的全行业管理力度。完善应急机制,把应急管理与日常监管紧密结合,充分发挥各涉核部门的职能作用和核企业集团公司的专业技术优势,细化涉核企事业单位的主体责任。加强政策引导,形成由国家投入为牵引、企业投入为主体的核安全技术创新机制。加大研究费用的投入力度,纳入国家科技发展管理体系。  行业主管部门将核安全要求作为制定相关产业和行业发展决策的重要依据,确保发展与安全的协调统一。完善核安全监管部门与行业主管部门在制定行业发展战略、规划,项目前期审批和安全监管中的协调机制。建立行业主管部门、核安全监管部门与气象、海洋、地震等部门的自然灾害预警和应急联动机制。优化核安全国际合作体系,实现国际国内工作的协调统一,进一步加强和深化核安全领域与国际组织的交流与合作。  (三)完善政策制度,弥补薄弱环节。  完善核安全许可证制度,进一步明确核电集团公司、业主公司、专业化公司的核安全责任。完善核燃料循环、核设施退役和放射性废物处理处置的管理制度和政策,制定核设施退役费用和放射性废物处理处置费用的提取和管理办法。建立健全相关准入和执业资格制度,建立民用核设施“三废”处置经费筹措和使用制度,制定民用核设施退役管理办法。研究并制定废旧放射源和核技术利用废物处理处置相关管理办法。推动核电集团研究建立核赔偿基金,核设施营运单位购买第三方核责任险。研究建立高危放射源退役保证金制度。落实规划环评制度,依法开展规划环评工作。建立政府、行业组织和企业等各个层面间的经验交流和反馈制度。建立并完善良好核安全实践的激励制度。  (四)培育安全文化,提高责任意识。  建立核安全文化评价体系,开展核安全文化评价活动 强化核能与核技术利用相关企事业单位的安全主体责任 大力培育核安全文化,提高全员责任意识,使各部门和单位的所有核活动相关单位要建立并有效实施质量保证体系,按照核安全重要性对物项、服务或工艺进行分级管理,使所有影响质量和安全的活动得到有效控制。  (五)加快人才培养,促进均衡流动。  制定满足核能与核技术利用需要的人力资源保障规划,加大人才培养力度。搭建由政府、高校、社会培训机构及用人单位共同参与的人才教育和培训体系,加强培训基础条件建设,实现人才培养集约化、规模化。在核安全相关专业领域开展工程教育专业认证工作,加强高校核安全相关专业建设,进一步密切高校与行业、企业的联系,加快急需专业人才培养。完善注册核安全工程师制度,加强核安全关键岗位人员继续教育和培训工作。完善核安全监督和审评人员资格管理制度和培训体系。完善人才激励和考核评价体系,提高核安全从业人员的薪酬待遇,吸引优秀人才进入核安全监管部门和核行业安全关键岗位,促进人才均衡流动,保证核安全监督、评价和科研的智力资源。  (六)加强国际合作,借鉴先进经验。  密切跟踪国际核安全发展趋势,汲取国外先进的核安全管理和监督经验,促进我国核安全管理水平不断提高。加强合作研究、信息共享、经验反馈、培训交流、同行评估、应急响应与援助等领域的国际合作 加强核安全技术引进与合作开发 积极参与统一的国际核安全标准的研究与制定,参照边、多边和区域核安全交流与合作。积极履行《核安全公约》和《乏燃料管理安全和放射性废物管理安全联合公约》等相关国际公约。  (七)深化公众参与,增强社会信心。  构建公开透明的信息交流平台,增加行业透明度。制定核设施信息公开制度,明确政府部门和营运单位信息发布的范围、责任和程序。提高公众在核设施选址、建造、运行和退役等过程中的参与程度。在基础教育中增加核与辐射安全科普知识。建立长效的核安全教育宣传机制,满足公众对核安全相关信息的需求,增强公众对核能与核技术利用安全的了解和信心。完善核安全突发事件公共关系应对体系,及时权威发布相关信息,释疑解惑,消除不实信息的误导,维护社会稳定。  (八)加大经费投入,落实资金保障。  充分发挥政府导向作用,建立有效的经费保障机制,加大对核安全与放射性污染防治的财政投入,推动规划项目落实。落实好相关税收优惠政策,建立多元化投入机制,积极拓展融资渠道。完善核安全管理的资金管控模式,对涉及核应急、核保险与核赔偿、民用核设施放射性污染防治、公益性核安全基础设施建设等需要政府和企业共同承担的费用,明确规定资金来源、出资方式、审批流程、资金用途,严格审查资金流向,确保资金筹集和使用到位。  六、规划实施与评估  加强协调联动。国务院各有关部门要加强沟通协调,按照职责分工,明确责任主体,完善行业主管部门、核安全监管部门之间的合作协调机制,共同推进规划实施。  落实工作责任。各部门、各级地方政府和相关企事业单位要按照职责分工和规划确定的目标要求,将工作任务纳入到年度工作计划中,制定具体实施方案,把任务逐级分解,做到量化目标、分步实施、严格管理、加强考核。  严格督促检查。国务院有关部门要定期对规划实施情况组织督查,及时研究解决规划实施中出现的问题,总结推广好的经验做法 对规划实施效果进行跟踪评价,重大情况及时向国务院报告。
  • 日本首次检测出鱼类体内放射性物质超标
    日本茨城县渔业协会5日宣布,从4日在北茨城市附近海域捕捞的玉筋鱼幼鱼体内检测出放射性铯达到每千克526贝克勒尔,超过食品卫生法放射物暂定标准值设定的每千克500贝克勒尔。这是首次从鱼类体内检测出放射性物质超标。  此外,在这种小鱼体内还检测出每千克1700贝克勒尔的放射性碘。1日,在同一地区捕捞的玉筋鱼体内也检测出每千克4080贝克勒尔的放射性碘。茨城县渔业协会已要求全县渔民不要再捕捞玉筋鱼。  食品卫生法放射物暂定标准值是福岛第一核电站发生事故后,厚生劳动省就放射性物质紧急制定的暂定标准,目前尚未对鱼类和贝类体内的放射性碘作出具体限定。厚生劳动省表示,近期将制定具体数值。
  • 知名进口食品检出放射性物质!小孩子都喜欢吃!
    p  去年年底的时候,一位不愿意透露姓名的神秘粉丝给我发来消息,让我关注一下欧洲那边进口过来的蓝莓酱,可能存在核放射性物质污染的问题。/pp  我的第一反应是,这几年大家都在关注的是日本福岛核辐射泄露事件,欧洲...怎么可能?/pp  不过,我们微信群里的妈妈们倒是经常询问进口食品的安全问题。因为家里很多用的产品、吃的食品都是进口代购海淘来的。于是就让团队随便买了四款蓝莓酱测一下,两款国产的,两款进口的。/pp  这一测,吓了一跳!/pp  还真的有一款进口果酱检出了铯-137,含量为73 贝克/公斤!/pp  铯137可不是天然存在的,是人工合成放射性核素,只有核武器、核电站、核废料中才会出现!/pp  铯-137含量73 Bq/kg的果酱能吃吗?/pp style="text-align: center "img title="01.jpg" src="http://img1.17img.cn/17img/images/201803/insimg/9e3438cb-2812-411e-b271-cc3f9d862be3.jpg"//pp style="text-align: center "▲ 本次检测的4款蓝莓果酱/pp  国产2 款:丘比蓝莓果酱、味好美蓝莓果酱/pp  进口2 款:英雄蓝莓果酱(原产国德国)、D宝蓝莓果酱(原产国奥地利)/pp style="text-align: center "img title="02.gif" src="http://img1.17img.cn/17img/images/201803/insimg/f99977d5-7ab2-4281-b835-3281d589d208.gif"//pp style="text-align: center "样品费+检测费:864.2 + 1520 = 2384.2 元/pp style="text-align: center "img title="03.gif" src="http://img1.17img.cn/17img/images/201803/insimg/254db38a-6d14-4313-b9c5-75f9889839a0.gif"//pp style="text-align: center "▲ 铯 137 要用这种高纯锗γ能谱仪检测,价值约 100 万/pp style="text-align: center "img title="04.gif" src="http://img1.17img.cn/17img/images/201803/insimg/fc0b6ddc-d438-44ef-a442-1b009794c5dd.gif"//pp style="text-align: center "▲ 顶部和四周有厚厚的铅块,隔离射线/pp  检测结果:D宝蓝莓果酱检测出铯-137为 73 Bq/kg,其余三款果酱均未检出。/pp  (请原谅我打的马赛克,这样做是有原因的)/pp style="text-align: center "img title="05.jpg" src="http://img1.17img.cn/17img/images/201803/insimg/7c886172-91eb-466f-a288-bcfc52a17c11.jpg"//pp style="text-align: center "img title="06.jpg" src="http://img1.17img.cn/17img/images/201803/insimg/dddd65f4-4919-467d-be26-9185dd9b6ae7.jpg"//pp style="text-align: center "img title="07.png" src="http://img1.17img.cn/17img/images/201803/insimg/5c1366a2-6d3a-45df-9b3a-0922018f7336.jpg"//pp style="text-align: center "img title="08.png" src="http://img1.17img.cn/17img/images/201803/insimg/28f04494-c4f3-4419-89c3-ff014018329a.jpg"//pp /pp  73 Bq/kg的含量意味着什么?/pp  果酱安全吗?/pp  可以吃吗?/pp  我们来对比下相关标准。/pp  目前我国现行有效的标准是94年颁布的:GB14882-94食品中放射性物质限制浓度标准/pp style="text-align: center "img title="09.png" src="http://img1.17img.cn/17img/images/201803/insimg/c7bd42f5-8616-48b6-8f3a-a7b96fef911c.jpg"//pp style="text-align: center "img title="10.png" src="http://img1.17img.cn/17img/images/201803/insimg/ee2f2919-cb1b-492b-be0e-32c446a681d3.jpg"//pp style="text-align: center "▲ GB 14882-94 国家标准截图/pp  不知道蓝莓酱应该算哪个分类,蔬菜水果?粮食?好像都不对,限值都挺高。/pp  2012年,国家发布了修订此标准的通知。目前还是征求意见稿,没有正式发布取代94版标准。征求意见稿中,我们看到食品中人工放射性核素的调查水平:100 Bq/kg,限制浓度:300 Bq/kg。/pp style="text-align: center "img title="11.png" src="http://img1.17img.cn/17img/images/201803/insimg/737f8fb0-c3f1-4293-abd9-e5ee8ab38048.jpg"//pp style="text-align: center "▲ GB 14882-201X 国家标准征求意见稿截图/pp  限制浓度很好理解,我来解释下调查水平。/pp style="text-align: center "img title="12.png" src="http://img1.17img.cn/17img/images/201803/insimg/5deaee45-bc69-4263-9090-673620ba0a0d.jpg"//pp style="text-align: center "▲ GB 14882-201X 国家标准征求意见稿截图/pp  也就是说,参考这个GB14882征求意见稿,这款进口果酱73Bq/kg的铯-137含量是有检出,但还没达到调查水平。嗯,合格的,“没问题”。/pp  依照国际辐射防护委员会(ICRP)的第103号文件的建议,辐射没有最低安全剂量。到目前为止,科学界也无法给出最低安全剂量。辐射防护的最高原则就是合理抑低(As Low As Reasonably Achieve, ALARA)。/pp style="text-align: center "img title="13.png" src="http://img1.17img.cn/17img/images/201803/insimg/1e5a16de-9031-4968-843c-8999e1cca3d5.jpg"//pp style="text-align: center "▲ 官方文件截图/pp  1 款检出铯-137的果酱,/pp  和另3 款都没检出铯-137的果酱,/pp  你会怎么选?/pp  这答案,应该显而易见吧。/pp  不能盲目迷信进口食品啊!/pp  所以不建议食用/pp  检出铯-137的果酱/pp  科普:人工放射性核素/pp  人工放射性核素是核裂变产物,正常情况下自然界中是不会存在的,属于特殊的物理性污染。它来源于核武器爆炸、核电站泄漏、核反应堆的产物和废料,工业、医疗或科研过程也会产生。核辐射准确一点说应该叫电离辐射,对人体造成伤害的本质原因是能量的转移。它不会给人体造成任何感官上的感受,如果不经专业设备检测,即使身处其中我们也无从感知。/pp  除了受射线直接照射对人体产生危害之外,放射性核素还可以直接沉积在植物上,也可通过大气、土壤或水进入食物链。/pp style="text-align: center "img title="15.png" src="http://img1.17img.cn/17img/images/201803/insimg/816cbd2c-3517-463d-9daa-78229c35da63.jpg"//pp style="text-align: center "▲ 图片来源于网络/pp  一旦吃了核污染食品,就会产生持续性的内辐射伤害,即使低量的放射线也可能导致 DNA 受损,产生突变。虽然 DNA 有自我修复功能,但也有无法修复的风险。若产生异常的无法控制的增生,则会导致癌症或者使细胞、器官的功能失常 若发生在生殖细胞上,则会遗传给下一代。/pp style="text-align: center "img title="16.png" src="http://img1.17img.cn/17img/images/201803/insimg/3edd4b84-08ee-43a0-a885-b533d89ad45b.jpg"//pp style="text-align: center "▲ 图片来源于网络/pp  WHO 对于消费核污染食品做了风险解读。/pp style="text-align: center "img title="17.png" src="http://img1.17img.cn/17img/images/201803/insimg/5822f62e-8ec1-45c4-998e-6969cda2f132.jpg"//pp style="text-align: center "▲ WHO 对于消费核污染食品的风险解读/pp style="text-align: center "img title="18.png" src="http://img1.17img.cn/17img/images/201803/insimg/bae4243a-bb68-4d50-8efe-542b4feee2da.jpg"//pp  总结来说,核泄漏产生的标志性放射性核素主要有以下三种:/pp  注:半衰期指的是,放射性原子衰变至原来数量的一半所需的时间。/pp  碘-131半衰期较短,大约三个月后,几乎所有的放射性碘将完全衰变而消失,在核污染初期可通过服用碘化钾防止碘-131的聚积。/pp  铯-134和铯-137的半衰期较长,尤其是铯-137的半衰期为 30 年。不是说 30 年后就结束了,一般至少要 10 个半衰期,也就是要 300 百年!才认为其安全。所以铯-137会对人体健康构成更大的威胁。/pp style="text-align: center "img title="19.png" src="http://img1.17img.cn/17img/images/201803/insimg/673df145-eab3-4bbe-a436-f0a8556c8d72.jpg"//pp style="text-align: center "▲ 新闻视频截图/pp  纵观历史上影响较大的核事故,前苏联切尔诺贝利和日本福岛的核事故,被国际原子能机构定义为影响最严重的 7 级特大事故。/pp style="text-align: center "img title="20.png" src="http://img1.17img.cn/17img/images/201803/insimg/0cbb9ebf-118f-47b9-b31f-91d27c988aee.jpg"//pp  来源:佘硕,徐晓林.核电站事故对国家食品安全的影响[J].经济研究导刊,2012,150(04):125-128/pp  1986 年切尔诺贝利事故之后,方圆 2800km² 50 年内禁止耕种,北半球所有国家都可测到放射性沉降物,生态恢复要一万年。下图为 2005 年的铯-137调查图,可以看到事件发生近 20 年后,铯-137的放射性沉降物检出量依然很高。/pp style="text-align: center "img title="21.png" src="http://img1.17img.cn/17img/images/201803/insimg/dfcae172-748d-4653-9839-597503b17741.jpg"//pp style="text-align: center "▲ 图片来源于网络/pp  实际上,福岛核事故比切尔诺贝利核事故还要严重。这场灾难是日本二战以来最严重的危机,产生的恶果绝不亚于一场战争,带来的生态和经济损失更是不可估量。/pp  核污染时间取决于其半衰期,从几分钟到几千年不等,人类几乎无法真正治理它,是一道世界性难题。目前最常用的方法就是深埋深埋再深埋,但是一旦发生地震或地质变动而裸露出来??这无疑是一颗定时炸弹。/pp  strong关于核污染食品/strong/pp  2011 年日本核泄漏事故发生后,各国和地区都制定了对日进口食品的放射性浓度限制基准。/pp style="text-align: center "img title="23.png" src="http://img1.17img.cn/17img/images/201803/insimg/4415cfa0-f9e7-4bf9-a152-025b700eb434.jpg"//pp  来源:徐金龙,黄武,孙良娟等.各国食品中放射性核素限量比较[J].食品安全质量检测学报,2016,7(04):1731-1737/pp  不同国家和地区考虑到各种因素(你懂的),其限定的差异也较大。白俄专家更是曾公开批评日本食品辐射检测标准过于宽松,称“37贝克勒尔对儿童而言已经过高,应使其尽量接近于零”。这么看,我们检出的73 Bq/kg可不低啊。/pp style="text-align: center "img title="24.png" src="http://img1.17img.cn/17img/images/201803/insimg/1d90dc84-244b-4105-9e5e-0cb6e6815919.jpg"//pp style="text-align: center "▲ 新闻报道截图/pp  到 2016 年,欧盟已允许进口福岛产蔬菜和牛肉等食品。(才过了5 年......)/pp style="text-align: center "img title="25.png" src="http://img1.17img.cn/17img/images/201803/insimg/ac1dabde-e15a-4689-aee4-55e4e4b9c4e2.jpg"//pp style="text-align: center "▲ 中国质量新闻网报道/pp  美国 FDA 也对部分核污染地区的部分食品解禁....../pp style="text-align: center "img title="28.png" src="http://img1.17img.cn/17img/images/201803/insimg/f5853068-6cab-4fcb-9b6f-60f44e0970e8.jpg"//pp style="text-align: center "▲ 美国FDA网站/pp  相比较下来,其实我国对日本核污染地区的产品进口控制还是较严格的。福岛事故发生后,质检总局明令规定禁止从 12 个县(日本福岛县、群马县、栃木县、茨城县、宫城县、山形县、新泻县、长野县、山梨县、琦玉县、东京都、千叶县)进口食品,食用农产品和饲料。后续进行了调整,除山梨、山形两个县外,其余十县仍然禁止。我们总局管的还是比较严的。/pp  当然,国外进口的也好,大品牌也好,这些都不足以保证一款产品的品质。我不相信广告,我拒绝花言巧语。保护孩子家人健康,选择安全放心产品,努力让老爸评测成为口碑与品质之选,是万千家长与我的共同期待,因为我们只用事实数据说话!/pp  蓝莓酱这种东西,我们国内也有,何必一定要去吃进口的?/p
  • 中国科学报:放射性废物处置遇技术难关
    日益增加的放射性废物令人担忧,然而很多专家都无法清楚说出目前中国究竟有多少放射性废物。公众的担忧不仅来自不断发生的核泄漏事故,更与放射性废物的管理息息相关。将于3月1日实施的《放射性废物安全管理条例》或将推动我国放射性污染物的防治工作,但仍需要接受公众的审视与检验。  2月13日,离大学正式开学还有一星期,《中国科学报》记者来到位于北京师范大学南门外的放射性药物化学实验室。  实验室管理员李娜一早便开始忙碌起来。“过几天,我就更忙了!”她一边在放置放射性废物的冰柜前作记录,一边说,“等学生放假回来之后,实验产生的放射性废物又会多起来。”  在烦琐的处理流程和冗长的半衰期中,李娜必须每天记录下放射性废物的情况,等待专门机构将这些特殊的“垃圾”集中收走。  如同李娜所在的这间实验室一样,许多实验室也产生放射性废物。不仅如此,广泛使用的核电站、铀矿、辐照设备等工业设施则产生了数量更多、放射性剂量更大的废物。  2003年正式实施的《放射性污染防治法》,标志着我国依法防治放射性污染工作迈出了重要的一步。法律明确规定了放射性污染管理的五个方面,放射性废物管理则是其中之一。在此基础上制定的《放射性废物安全管理条例》将于今年3月1日起实施。  中国辐射防护研究院三废治理研究所副所长孙庆红告诉《中国科学报》记者,目前最大的难题在于高放射性水平废物的永久处置。  越来越多的“垃圾”  核技术在医药、能源、军事等领域的应用已经让人们尝到了它的甜头。同时,日益增加的放射性废物也让专家们头疼不已。但当《中国科学报》记者采访相关领域专家时,却没有一位专家能说得清目前究竟有多少放射性废物。  李娜所在的放射性药物化学实验室主要研究放射性药物在动物体内的情况,每天都会产生大量包含放射性的溶液和动物尸体。  李娜介绍,他们所用的药物半衰期都不长,而10个半衰期后,放射性剂量则被认为已经减少到不足以造成伤害的程度,便可以进一步处置。“这个时候,我们就可以向环保局提出申请,请专门人员来收走这些废物了。”  最近这些年,李娜感到收“垃圾”的人来得越来越频繁,实验室的放射性废物也越来越多了。  同样地,据中国原子能科学研究院统计,2009年,该院共收贮放射性固体废物22.2立方米,主要有污土、金属、工作服、塑料、玻璃、棉纱等,均为“低水平放射性废物”。在1996年发布的《放射性废物分类标准》中,这是一种“在正常操作和运输过程中通常不需要屏蔽”的放射性废物。  中国科学技术大学国家同步辐射实验室教授李珏忻也对《中国科学报》记者称:“随着技术的发展,核仪器使用越来越多,留下的废物肯定越来越多。”例如,在找矿时地质工作者使用的探伤仪,其中带有小型放射源。  不仅在科学研究上,放射源也快速进入了民用领域。在常见的烟雾报警器中,便含有少量的放射性金属镭。“单个报警器放射性强度很低,但广泛使用后数量激增,放射性镭的处理便成了大问题。”孙庆红指出。  辐照技术的推广也带来不少放射性废物。据不完全统计,截至2011年,全国已建成运行的辐照装置超过200座。  早在1975年,湖南彬州市农业科学研究所获取钴源38支,放射总强度为5500克镭当量。当时,彬州市农科所利用钴源先后开展了辐射诱变育种、食品灭菌消毒、刺激作物增产、辐射产品加工等综合性应用。  30多年后,这批钴源早已废弃。其间产生了大量放射性废物,针对这些废物的处置则花费了330多万元的经费。  此外,自1956年以来,全国几十座铀矿山、铀水冶厂、铀采冶联合企业已遍布云南、西藏、内蒙古等地区,完整的铀矿冶工业体系同样留下了危险的放射性废物。  孙庆红透露,我国现有核电站中,每一个百万千瓦级的机组将产生50到100立方米的放射性固体废物。  而根据2007年国务院批准的核电中长期规划,到2020年前,中国将新建27个百万千瓦级核电机组,届时将有超过30台的百万千瓦核电机组投入运行。据此估算,到2020年,由这些核电机组运行产生的放射性固体废物将在1500到3000立方米之间。  值得注意的是,尽管这些来自核电站的废物体积看上去并没有达到惊人的地步,但它们都属于“高放射性废物”,其放射性水平高、释热量大、毒性大,处理和处置难度非常大,且费用非常高。  日益严格的管理  近年来,不断发生的核事故让人们谈“核”色变,也与放射性废物的管理无不相关。西安交通大学能源与动力工程学院教授胡华四向《中国科学报》记者强调:“放射性废物安全管理事关人体健康和环境安全,也直接关系到核能和非动力核技术及应用事业的健康发展。”  其实,早在1987年,当时的国家环保总局下发文件《城市放射性废物管理办法》。该《办法》对放射性废物的分类、产生放射性废物单位的责任、废物的收运及废物库的管理都作了详尽的规定。  对此,胡华四解释:“放射性废物处理、贮存、处置活动是放射性废物管理的三个核心环节。”而放射性废物管理还应以安全为目的,具体应遵循“减少生产、分类收集、净化浓缩、减容固化、严格包装、安全运输、就地暂存、集中处置、控制排放、加强监测”的原则。  但是,由于管理不善带来放射源丢失、违规使用的事故仍然时常发生。  2004年7月12日凌晨,唐山市某建筑工地技术人员因操作不慎,将一个用于工业探伤的硒-75放射源失落在施工现场。10余名工人误将放射源当做机器配件,最终发现主要受照者受到全身非均匀照射。  无独有偶,2008年4月11日,山西省农科院旱农辐照中心发生了一起严重的钴源意外照射事故。由于违规使用已经退役的钴源室照射药剂,数名工人受到不同程度的辐照。  另外,在铀(钍)矿和伴生放射性矿开发利用过程中,由于对放射性污染防治重视不够,缺乏对放射性污染防治的专项管理制度,乱堆、乱放放射性废矿渣的情况也时有发生,由此造成的放射性污染威胁着环境安全和公众健康。  中广核中科华核电技术研究院反应堆工程设计与燃料管理研究中心主任肖岷向《中国科学报》记者介绍:“针对这些情况,政府部门对放射性废物进行了日趋严格的管理。”  国务院法制办公室负责人解释,《放射性污染防治法》规定了“要尽量减少放射性废物的产生量”、“排放废物要经国家许可”、“对高放废物要进行分类处理”等原则性问题,而将于今年3月1日起实施的《条例》则将法律的原则规定具体化了。  那么,对具体单位而言,新《条例》的实施将带来什么变化?北京市环保局宣传教育处工作人员称,目前仍在等环保部的进一步通知。截至发稿时,记者仍未得到回应。  肖岷认为,国家对放射性废物的管理力度加大,不仅相关文件得到了细化,管理体系也在进行调整。  有报道称,我国在核安全监管机构上将进行大幅度调整,国家能源局将新增设核电司,国家核安全局在原来一个司的基础上调整到三个司,核安全监管人员增加近千人。国防科工局新增设核应急司。  永久保存难题  孙庆红长期与放射性“三废”打交道,中低放射性水平的废物主要以暂存后处置为主。公开资料显示,目前中国已建有两座中低放射核废料处置库,分别位于甘肃玉门和广东大亚湾附近的北龙,还将在华东和西南建设两座区域性低放废物处置库。  1944年,美国田纳西州橡树岭进行了世界上首次放射性废物的处置。在今天看来,第一个用于处置“放射性污染的破碎玻璃器皿”的处置场,只不过是橡树岭处置场中的一条简易地沟,填满了未经处理的废物。  在核动力发展的初期阶段,世界上其他国家也都采取了与此类似的方法进行放射性废物处置。如今,国际原子能研究机构成员国中已经有100多座专业的设施运行。  在普通人眼中,放射性废物暂存库恐怕是一个非常神秘的地方。据统计,截至2011年,我国已建成31个放射性废物库。孙庆红向记者透露,我国几乎每个省都有自己的放射性废物暂存库。  1998年建成的湖北省城市放射性废物库深藏在大别山脉的崇山峻岭中。戒备森严的仓库配备厚实的铁门,地面上有一个个标有字母的水泥盖板,放射性废物就封存在盖板下面。  运送废物的卡车,必须加装防护铅板,每次将放射源搬入库中后,经办人员、车辆必须进行彻底清洗。这些“洗澡水”被排入专门的蒸发池,防止其混入地表及地下水体。  去年6月,该库结束了为期8年的改造工程。改造后的废物库实现了物联网远程在线监控,这在全国放射性废物库建设中走在了前列。  与此相比,高放射性水平废物处置的技术要求则高很多。高放射性核废料含有多种对人体危害极大的高放射性元素,10毫克钚就能令人毙命。  所以,在孙庆红看来,目前最大的难题在于高放射性水平废物的永久处置。  核工业北京地质研究院环境工程研究所所长苏锐曾撰文称,高放废物的最终去向是深地质处置。这需要把高放废物埋藏在距离地表深约500米到1000米的地质体中,使之永久与人类的生存环境隔离。  首先要将高放废液变成玻璃固化体,再将玻璃固化体装入金属罐中,并在地下1000米的深部找一块2平方公里到10平方公里不等的坚硬岩石,将装有高放玻璃固化体的废物罐埋藏其中,最后用一种特殊的回填材料将所有深部空间封填。  孙庆红形容:“看上去有点像一座巨大的坟墓。”  因此,地质条件是首要的考虑因素。南京大学地球科学与工程学院水科学系教授周启友向《中国科学报》记者介绍,选择高放废物的处置地点最重要的则是要地下水的条件。  “我们要寻找一个不含地下水或者地下水移动非常缓慢的地方。”周启友说,“除了自然条件,还需要加固工程屏障,对岩石圈进行保护。”据此,一些专家认为甘肃敦煌北山可能是将来最为理想的高放废物处置库。  不仅是中国,高放废物的处置也是一个全球性的难题。从建造核电站的那天起,德国政府有关机构和地质、核电专家就在为核废料的最终去处而发愁。  目前已知的看法是,核废料在相当长的时间内不得流入自然界。那么,什么样的建筑构造和地点能经得住自然界的沧海桑田?  “别放在我家后院”  在美国的报刊上,经常会见到这样的缩写——NIMBY,即Not in my backyard.意思是:别将垃圾放在我家后院。  纽约市的许多垃圾填埋场因为不符合美国环境署的环保标准而被迫关闭,一些城市索性将垃圾直接运到别的城市或其他州。被动接受垃圾的城市的居民就非常愤怒,他们组织了“NIMBY”运动,抵制垃圾运进自家后院。  在令人恐慌的放射性废物处置上,我国也面临类似问题。2008年,在一家地方网站的论坛中出现一个“湖北省的放射性废物库在广水市”的帖子。帖子中陈述了“广水市癌症发病率全省最高与省放射性废物仓库具有很大关联”,并抗议废物库继续在当地运行。  而2010年11月,中国核工业集团与法国阿海珐公司签署的协议则引发了更大的波澜。协议规定,在甘肃嘉峪关以北的金塔县内建设一座年处理规模达到800吨的乏燃料后处理基地。  这意味着,今后运往甘肃的核废料不仅来自国内的核电站,还有可能来自周边国家。“回收技术是否成熟”已经成了专家担忧的问题。  不过,这已不是阿海珐公司第一次在运输核废料途中遭遇“拦路虎”。作为国际“核废料处理中心”,核废料在法国与这些国家之间往来运输,所到之处,无不遭到民众的强烈抗议。  普遍认为,核废物处置计划的成功离不开与公众良好的沟通。长久以来,一些国家已经采取若干种步骤,并取得相当的成效。  例如,在匈牙利,上世纪90年代的两次选址受阻后,匈牙利原子能委员会于1992年启动了国家低中放射性废物处置选址计划。委员会采用公众自愿参加的方式,确定了愿意成为这些场地“东道主”的社区,最终在这些社区内选定了6个处置场场址。  在澳大利亚、美国、加拿大等国家和地区,全面的公众磋商过程是专设低中放射性废物处置库选址的一个重要环节。  而在我国,在环境问题上与公众进行互动才刚刚兴起。胡华四向记者表示:“将来,公众对核的态度将影响核科学技术事业的发展。”如何使公众既不“对核安全报以无所谓的态度”,也不致“谈核色变”,还需要作长期的努力。  “必须要开展广泛深入细致的核科技知识的普及宣传工作。”他说,“要使公众能理解、配合和支持这项工作的开展,应当保障充足的经费开展核科学的普及工作。”  放射性废物的来源  地质勘探、铀矿开采、选矿和矿石  含有铀、镭和其他天然放射性核素的铀矿山废石、尾矿和水冶厂尾砂,放射性水平较低  铀的精制、转化、同位素分离和燃料元(组)件制造  含铀的坑道废水、选矿水等  核电厂和其反应堆的运行  含活化产物和裂变产物中、低放射性废物和固体废物及卸出的乏燃料  核燃料后处理厂的运行  含裂变产物和锕系元素高放射性废液和废物  核设施退役  堆芯活化材料、可回收的放射性污染废钢铁及其他废金属、大量放射性水平极低的固体废物  核能研究与开发、放射性同位素生产和应用  废辐射源,主要是钴-60和镭-226源
  • 首次!检测出放射性物质!
    日本东京电力公司发布消息称自福岛核污染水排海后日本方面8月31日于排放口附近取样的海水中首次检测出放射性物质氚据日本共同社9月1日报道,本次取样海水中的放射性物质氚浓度为每升10贝克勒尔。工作人员在福岛第一核电站方圆3公里设置了10个取样点,本次检出氚的海水取自最靠近排放口的取样点,该取样点于8月24日取样的海水中氚浓度为2.6贝克勒尔,当时的常规分析未达到检出下限。对于短短几天内,氚浓度出现大幅上升,东电方面承认这是核污染水排海造成的影响,但他们坚称这一浓度“在安全上完全没有问题”。图/视觉中国岸田文雄被检举据央视新闻援引共同社9月1日报道——针对福岛第一核电站核污染水排海问题,日本一市民团体当日向东京地检提交检举信,指控日本首相岸田文雄和东京电力公司总裁小早川智明涉嫌空置建筑浸毁和业务过失致死。该市民团体名为“反对核电站核污染水排海全国联络会”。在提交检举信后,他们在东京市内召开了新闻发布会。该市民团体共同代表岩田薫表示,日本“采取的排海行为极为严重”。在日本排放核污染水大约一周后,海上拖网捕鱼季于9月1日在福岛县开始。图/视觉中国韩国石斑鱼大量死亡受日本核污染水排海影响越来越多的韩国人不愿意再购买水产品给当地渔业带来巨大损失以下视频来源于央视财经,时长01:37△央视财经《经济信息联播》栏目视频最近韩国不少养殖场内石斑鱼出现大量死亡话题冲上热搜第一↓韩国全罗南道的丽水市,是这一次石斑鱼集体死亡受灾最严重的地方之一。受福岛核污染水排海影响,石斑鱼卖不出去、无法按时正常出货,再加上水温升高,出现集体死亡。据统计,仅全罗南道丽水市已经有超100万条鱼死亡,相当于这里总饲养量的两成多,损失金额约合人民币8400万元。日本福岛核污染水排海,给韩国水产从业者们带来的影响不仅是卖不出去,而且卖不上好价钱。平时,每公斤3万韩元石斑鱼,现在已经跌至不到2万韩元。此外,韩国济州岛地区特产东洋鲈是当地数一数二的高级生鱼片原材料,近期拍卖价格环比暴跌近六成。根据韩国政府8月29日公布的2024年度财政预算案,为应对日本核污染水排海,政府编制相关预算7380亿韩元,约合人民币40.71亿元,较本财年增加约四成,其中用于进行海域、水产品放射性物质浓度检测的预算达576亿韩元。当地时间2023年8月30日,韩国木浦,举行“日本福岛核电站核污染水排海投机谴责大会”。图/视觉中国
  • 基于海洋放射性核素时空演化体系的海洋核安全评估技术
    基于海洋放射性核素时空演化体系的海洋核安全评估技术林武辉1,5,杜金秋2,拓飞3,曹少飞4,张翊邦5,祁第1,陈立奇1,余克服5(1. 集美大学港口与海岸工程学院 极地与海洋研究院,厦门 361021;2. 国家海洋环境监测中心,大连 116023; 3.中国疾病预防控制中心辐射防护与核安全医学所,北京 100088;4. 中国辐射防护研究院,太原 030006;5. 广西大学 海洋学院,南宁 530004)摘要:本文指出全面构建海洋中放射性核素本底基线的时空演化体系是海洋核安全评估的基石,提出本底基线法、活度限值法和剂量限值法三种海洋核安全评估技术,并应用于福岛核事故后污染最严重的核心海区——港口区,定量剖析港口区的海洋核污染历史与现状,有利于评估过去12年以来日本福岛核电站修复进程中相关修复措施的有效性。之后,本文指出在利用海洋数字孪生技术的基础上,针对上述三种海洋核安全评估技术对应提出从寻找人类核活动历史的可靠“档案馆”、健全海洋放射性核素的基准/标准限值和探索长期低剂量生物辐射效应与风险三个角度展望未来海洋核安全评估技术需求与发展方向,以期为国内外新形势下我国海洋核安全评估与管理提供一定借鉴。核安全是核能发展与核技术利用的生命线。自1984年成立国家核安全局以来,我国已经形成法律、条例、部门规章、标准、导则等不同层次的核安全制度体系[1],以保护人类和环境免受电离辐射危害。核安全和深海安全是总体国家安全观的有机组成,二十大报告中也明确指出“强化……核、太空、海洋等安全保障体系建设”。在加快建设海洋强国战略背景下,海洋核安全也应该是国家安全保障体系的重要环节。1. 新形势下的海洋核安全需求海洋占地球表面积约71%,占地球总水量约97%,是地球气候的重要调节器,也为人类生存和发展提供了重要的资源和生态服务功能[2]。然而,20世纪人类大气核试验产生69%的人工放射性核素137Cs(780 PBq)直接沉降进入海洋[3],部分沉降进入陆地环境中的人工放射性核素通过河流仍在持续不断输入海洋[4, 5];福岛核事故泄漏的放射性核素总量的80%最终进入太平洋[6];过去60多年来,英国和法国的乏燃料后处理厂也一直向北大西洋和北冰洋排放137Cs、129I、236U等人工放射性核素[7-13]。日本在2023年8月24日已经启动福岛核污水排海计划,预计持续30年[14, 15]。海洋数值模拟显示,福岛核污水将通过海洋环流逐步迁移扩散至全球海域,未来也将进入我国海域[16, 17]。此外,在复杂的国际形势下,我国周边海域日益频繁的核动力航母和核潜艇活动也有可能增加海洋核污染风险。2023年修订通过的《中华人民共和国海洋环境保护法》中首次新增“加强海洋辐射环境监测”。因此,海洋核安全具有重要的研究意义和强烈的社会需求。2. 全面构建海洋中放射性核素本底基线的时空演化体系天然放射性核素(比如宇生放射性核素14C、原生放射性核素238U等)通过河流、大气沉降和地下水等自然过程,持续不断地进入海洋;核电站、乏燃料后处理厂、核医学等活动以及日本福岛核事故所产生的人工放射性核素也持续排入海洋[18]。当今海洋存在几十种天然和人工放射性核素,不同核素活度水平从104 Bq/m3到10-5 Bq/m3[19],相差9个数量级。海洋中同一种放射性核素也存在一定的时空分布特征。比如,自20世纪60年代美苏停止大气核试验以来,我国海水中人工放射性核素90Sr随着时间总体呈现指数下降趋势[4]。空间上海洋中人工放射性核素存在“双峰型”纬向分布特征,即南北半球40°—60°的纬度带存在全球落下灰(Global fallout)活度高值[20]。由于切尔诺贝利核事故和英法乏燃料后处理厂运行的影响,北欧海域中90Sr、137Cs、129I、239+240Pu等人工放射性核素均显著高于其它海域[21-23]。海水中90Sr和137Cs的活度随深度增加,总体活度呈现下降趋势,而海水中239+240Pu却经常出现次表层峰值现象[24]。精准甄别海洋中人为新增放射性核素的种类与含量不仅是异常辐射信号判别与不同人类核活动溯源技术的前提,也是海洋核安全评估的核心。过去十多年来,作者和团队已经围绕海洋中多种介质(海水、沉积物、生物、悬浮颗粒物、大气等)的210Po[25]、210Pb[25]、234Th[26]、238U[27]、226Ra[27]、228Ra[28]、228Th[28]、232Th[27]、40K[27]、90Sr[4]、137Cs[29]、239,240Pu[29]、14C[29]、3H[15]等十多种天然和人工放射性核素,从放射性核素的源汇过程及其物理—海洋生物地球化学调控机制的角度长期开展海洋与核技术的多学科交叉研究,初步构建海洋放射性核素本底基线的时空演化体系。针对海洋中放射性核素的时空演化历史数据,国际上IAEA与日本筑波大学已经建立Marine Radioactivity Information System (MARIS)[30, 31]与Historical Artificial Radionuclides in the Marine Environment (HAM-Global 2021)[32-34]两个数据库。然而,MARIS和HAM数据库中我国辽阔海域放射性核素的历史资料数据却极度缺乏。我国海洋放射性核素监测工作始于20世纪60年代的大规模大气核爆。在20世纪60~90年代期间,卫生部门李树庆、中国科学院海洋研究所李培泉和原国家海洋局第三海洋研究所蔡福龙等人开展海洋中放射性核素研究[35-37];唐森铭和商照荣重点对20世纪中后期我国海域放射性调查进行总结[38]。我国历次海洋污染基线调查积累了部分海洋放射性监测数据。滨海核电站建设和运行过程中也持续开展海洋放射性监测。虽然我国生态环境部门、自然资源部门、卫生系统、中国科学院与高校系统、地方政府部门和核电公司等不同机构基于业务管理和科研的需求已经积累一些海洋放射性监测的历史数据,但数据零散分布于多个不同管辖部门,不仅缺乏统一的全国性海洋放射性核素监测数据库,而且缺乏基于时空演化视角的系统分析,不利于数据挖掘、解译、利用和管理。总之,全面构建海洋放射性核素本底基线的时空演化体系则是海洋核安全评估的基石。中国近海放射性核素本底基线的时空演化体系构建将有助于科学评价我国滨海核电和其它滨海核设施的影响[4]。开阔大洋放射性核素本底基线的时空演化体系构建可以用于评价其它国家人类核活动(核电站事故、核试验、核材料的海洋倾倒、核潜艇与核动力航母活动等)的影响,并对我国海域的潜在影响进行预报与预警评估,也是我国维护国家安全和人民生命健康、深度参与全球海洋治理、构建海洋命运共同体的重要体现。因此,全面构建海洋中放射性核素本底基线的时空演化体系对于海洋核安全具有重要意义。3. 海洋核安全评估技术活度与剂量是定量表征放射性核素的独特物理量,不同于元素和同位素的常见表征方式。在海洋核安全评估中,活度浓度和剂量率是重要的定量参数,对应常见单位为Bq/m3(或者Bq/kg)和Gy/h(或者Sv/h)。为此,本文总结提出本底基线法、活度限值法和剂量限值法开展海洋核安全评估。3.1 本底基线法自20世纪中叶以来,人类在核能发展与核技术利用的进程中已经产生大量的人工放射性核素[20]。其释放进入地球环境中的长半衰期人工放射性核素(比如239,240Pu、137Cs等)甚至被视为定义“人类世”(继全新世后,人类活动作为重要地质营力所主导的地质新时代)的重要代用指标[20, 29]。全面构建海洋中放射性核素本底的时空演化体系,准确掌握海洋中人工放射性核素的历史本底基线水平,是进一步精准甄别人为新增放射性核素和开展海洋核安全评估的前提。短半衰期的人工放射性核素(比如131I、134Cs、106Ru、110mAg等)通常不存在于天然环境本底之中,其定性或者定量的异常检出可以直接指示短期内人为新增的海洋核污染源(比如核事故、核潜艇活动等)。中长半衰期的人工放射性核素(比如90Sr、137Cs、239,240Pu、129I等)则需要考虑人类核活动的历史排放而残留的本底基线的时空演化特征后,借鉴人为新增信号和本底噪声处理技术,开展人为新增海洋核污染源的定量甄别。此外,核素活度比值(比如134Cs/137Cs、90Sr/137Cs等)和原子比值(比如129I/127I、240Pu/239Pu等)也常作为核素特征指纹,指示判别不同人类核活动源项。3.2 活度限值法不同放射性核素存在不同程度的放射毒性,比如极毒组的239Pu、高毒组的90Sr、中毒组的137Cs、低毒组的3H等。在海洋核安全评估过程中,法律法规和标准规程等对海洋中不同毒性的放射性核素活度限值做出一些规定[39, 40]。比如,福岛核事故后日本政府规定海产品中134+137Cs的活度限值为100 Bq/kg[12]。我国的海水水质标准(GB3097-1997)和食品中放射性物质限制浓度标准(GB14882-94)分别规定了海水和海产品中部分放射性核素的活度限值。我国海洋沉积物尚没有相应放射性核素标准限值规定。鉴于部分地区经常采用海砂作为建筑材料,我们可以参考建筑材料放射性核素限量(GB6566-2010)的部分放射性核素的活度限值标准,评估海洋沉积物中的放射性核素。值得注意的是,国际上不同组织机构(国际原子能机构、世界卫生组织、国际粮农组织)和地区(中国、欧盟、美国、日本等)基于科学认识、国情现状和社会发展需求等综合因素,对相同介质中的同种放射性核素活度限值的规定经常存在一定差异[19, 40]。3.3 剂量限值法处于不稳定状态的放射性核素发生衰变并发射不同能量的α、β、γ粒子。活度可以衡量单位时间内放射性核素发射的粒子数,剂量则更精细刻画不同类型的粒子所产生的能量沉积和危害。比如,我国的电离辐射防护与辐射源安全基本标准(GB18871-2002)中规定公众的年有效剂量为1 mSv。针对海洋生物,欧盟开发的ERICA软件推荐10 μGy/h的剂量率限值作为筛选阈值(screening level)[41]。IAEA、ICRP、美国和加拿大等也推荐不同的剂量率限值(40~400 μGy/h)用以评估放射性核素对海洋生物的影响[42]。截至目前,我国法规标准尚未涉及放射性核素对海洋生物的剂量限值规定。4. 日本福岛核电站港口区的海洋核安全评估日本福岛核事故已经泄漏大量人工放射性核素进入海洋[6],福岛核污染水也已经启动排入太平洋[14]。这些放射性核素可能通过海洋水文动力驱动下的“随波逐流”和海洋生物洄游驱动下的“搭乘便车”等过程进入我国海域[12]。作为福岛核污水排海的利益攸关方,我国公众和政府始终高度关注由此引发的海洋核安全问题。距离福岛第一核电站最近的港口区(图1a,1 km范围内)是日本福岛核事故后污染最严重的海域。港口区属于日本领海,其它国家都无法进行采样而获取相关数据。港口区的海洋核污染历史与现状不仅是世界了解福岛核事故后海洋核污染的重要窗口,而且直接反映日本福岛核电站修复进程与修复措施的有效性。本文聚焦福岛核事故后污染最严重的海区——港口区,系统汇总IAEA的MARIS数据库、日本东电公司(TEPCO)、日本经济产业省(METI)和日本原子能规制委员会(NRA)等多方的大量数据,全面构建福岛核事故前后海水中137Cs的历史活度曲线(图1b),利用本底基线法、活度限值法和剂量限值法,联合开展海洋核安全评估。本底基线法显示,福岛核事故后日本福岛附近海域的海水137Cs活度从1.3 Bq/m3骤升至1.9×1012 Bq/m3(图1b中红色箭头)。截至2023年9月的最新数据,港口区海水中137Cs活度为5.1×103 Bq/m3,仍然比2011~2015年期间我国海域的海水中137Cs平均活度(1.05 Bq/m3)高3个数量级。值得警惕的是,2016年以来福岛港口区海水中137Cs活度并没有显著下降趋势,甚至出现多次周期性异常升高事件。活度限值法显示,2016~2023年期间港口区海水中137Cs平均活度(6943 Bq/m3)高于我国海水水质标准(GB3097-1997)中海水137Cs活度限值(700 Bq/m3)。日本监测数据显示港口区的海洋鱼类通过生物富集吸收海水中高浓度的137Cs,进一步导致部分鱼类体内137Cs(1.8×104 Bq/kg)显著超过日本规定的限值标准(100 Bq/kg)[43]。本文基于港口区的海水中137Cs活度数据,利用欧盟开发的ERICA软件开展海洋鱼类的辐射剂量评估。福岛核事故后海水中137Cs峰值活度(1.9×1012 Bq/m3)可以导致游泳鱼类和底栖鱼类的辐射剂量率为2.9×107 μGy/h和3.1×109 μGy/h,均大大超出欧盟推荐的剂量率筛选阈值(10 μGy/h)。2016~2023年期间港口区海水中137Cs平均活度(6943 Bq/m3)对底栖鱼类产生的剂量率为11.2 μGy/h,也高于欧盟推荐的剂量率筛选阈值(10 μGy/h)。因此,三种海洋核安全评估技术获得的定量评估结果均显示,港口区的海洋核污染仍然较为严重。图1 中国海、日本福岛近海、福岛第一核电站港口区等海区的海水137Cs活度历史曲线。中国海和日本福岛核事故前的福岛近海数据来自MARIS数据库[44],核事故后的福岛近海数据来自NRA[45],核事故后的港口区数据来自TEPCO和METI[46, 47]Fig. 1 Historical 137Cs activity in seawater from the China seas, Fukushima offshore, and the port area nearby the Fukushima Daiichi Nuclear Power Plant. The data of the China seas and the Fukushima offshore before the Fukushima Nuclear Accident (FNA) was obtained from the MARIS database[44], the data of the Fukushima offshore after the FNA was provided by the NRA[45], and the data of the port area after the FNA was derived from TEPCO and METI[46, 47]5. 总结及展望新形势下的海洋核安全需求极为迫切。本文指出全面构建海洋中放射性核素本底基线的时空演化体系是海洋核安全研究的基石,提出本底基线法、活度限值法和剂量限值法的三种海洋核安全评估技术,并应用于福岛核事故后污染最严重的核心海区——港口区,定量剖析港口区的海洋核污染历史和现状。然而,面对海洋中核素种类众多、活度差异巨大、时空分布不均、迁移行为各异、生态影响复杂以及危害程度不一等现状难题,海洋核安全的科学评估仍然存在较大挑战性。基于本底基线法、活度限值法和剂量限值法三种海洋核安全评估技术,本文强调融合海洋数字孪生技术,尝试从以下三个角度展望海洋核安全评估技术未来的发展方向(图2)。图2 海洋核安全评估的技术路线与展望Fig. 2 Technical route and prospect of marine nuclear safety assessment寻找人类核活动历史的可靠“档案馆”。海洋放射性核素的本底基线存在复杂的时空演化特征。然而,海洋放射性核素实际观测数据的时间和空间分辨率均十分欠缺,特别是在我国广大海域。冰芯、树轮、黄土、沉积柱、珊瑚礁是记录不同时空尺度环境变化的天然档案馆。特别指出,海洋中珊瑚礁具有年轮清晰、分辨率高、连续记录、固定生长等优点[48],是记录海洋放射性核素本底基线时空演化历史和追踪人类核活动历史的十分理想的档案馆[29, 49]。健全海洋放射性核素的基准/标准限值。活度限值是海洋核安全评估和管理的重要依据。出于人类健康的需求,国际上更多关注饮用水和食品中放射性核素的活度限值[40]。海洋为人类提供丰富的生物资源和重要的生态服务功能。出于海洋中非人类物种的保护与人类健康的综合需求,未来我国需要加强海洋中非人类物种的放射性核素基准/标准限值研究和制定工作[39]。探索长期低剂量生物辐射效应与风险。国际上对于低剂量辐射效应和危害仍然存在争议[50],较为缺乏实验室内受控观测和流行病学现场调查等证据[51],直接影响人类和非人类物种的剂量限值规定和管理。此外,海洋生物辐射剂量模型的构建和计算,还涉及代表生物的筛选、海洋生物富集和海洋食物链/网的传递等过程。在巨大且复杂的海洋生态环境系统中,这些过程又往往存在较大的物种差异性和海域特异性。因此,在海洋核安全技术与管理需求背景下,亟需开展适用于我国海域现状与发展需求的长期低剂量海洋生物辐射效应与风险研究。作为海洋大国,新时代中国明确提出加快建设海洋强国。海洋核安全是我国维护国家安全和人民生命健康、深度参与全球海洋治理以及构建海洋命运共同体的关键领域,亟需投入与滨海核电发展及应对海上核风险能力需求相匹配的研发力度, 以保障新时期我国海洋核安全,进一步丰富和完善现代化核安全监管体系,践行全面推进美丽中国建设需求。参考文献:[1] 于大鹏, 梁晔, 徐晓娟, 等. 我国核与辐射安全现状研究与探讨 [J]. 核安全, 2022, 21 (4): 12-18.[2] Sverdrup K, Kudela R. Investigating oceanography, 4th edition [M]. New York: McGraw Hill, 2023.[3] Buesseler K O. Fukushima and ocean radioactivity [J]. Oceanography, 2014, 27 (1): 92-105.[4] Lin W H, Mo M T, Yu K F, et al. Establishing historical 90Sr activity in seawater of the China seas from 1963 to 2018 [J]. Marine Pollution Bulletin, 2022, 176: 113476.[5] Smith J T, Wright S M, Cross M A, et al. Global analysis of the riverine transport of 90Sr and 137Cs [J]. Environmental science & technology, 2004, 38 (3): 850-857.[6] Lin W H, Chen L Q, Yu W, et al. Radioactive source terms for the Fukushima nuclear accident [J]. Science China: Earth Sciences, 2016, 59 (1): 214-222.[7] Casacuberta N, Smith J N. Nuclear reprocessing tracers illuminate flow features and connectivity between the arctic and subpolar north atlantic oceans [J]. Annual Review of Marine Science, 2022, 15(1): 203-221.[8] Song J M. Biogeochemical processes of biogenic elements in China marginal seas [M]. Berlin: Springer, 2010.[9] 黄彦君, 沙向东, 祝兆文, 等. 压水堆核电厂流出物监测的关键核素研究 [J]. 核安全, 2020, 19(5): 27-34.[10] 王茂杰, 郝丽娜, 徐晋, 等. 核电厂流出物监督性监测实践 [J]. 核安全, 2021, 20(3): 12-16.[11] Machida M, Iwata A, Yamada S, et al. Estimation of temporal variation of tritium inventory discharged from the port of Fukushima dai-ichi nuclear powerplant:analysis of the temporal variation and comparison with released tritium inventories from Japan and world major nuclear facilities [J]. Journal of Nuclear Science and Technology, 2023, 60(3): 258-276.[12] 林武辉, 余克服, 杜金秋, 等. 日本福岛核废水排海情景下海洋生态环境影响与应对 [J]. 科学通报, 2021, 66(35): 4500-4509.[13] Wang F F, Men W, Yu T, et al. Intrusion of Fukushima-derived radiocesium into the East China Sea and the Northeast South China Sea in 2011–2015 [J]. Chemosphere, 2022: 133546.[14] Smith J, Marks N, Irwin T. The risks of radioactive wastewater release [J]. Science, 2023, 382(6666): 31-33.[15] 林武辉, 张翊邦, 余克服, 等. 2023年日本福岛核污水站在历史的十字路口 [J]. 环球财经, 2023, 267(2/3): 46-50.[16] Zhao C, Wang G, Zhang M, et al. Transport and dispersion of tritium from the radioactive water of the Fukushima daiichi nuclear plant [J]. Marine Pollution Bulletin, 2021, 169: 112515.[17] Liu Y, Guo X-Q, Li S-W, et al. Discharge of treated Fukushima nuclear accident contaminated water: macroscopic and microscopic simulations [J]. National science review, 2022, 9(1): 209.[18] Hu Q-H, Weng J-Q, Wang J-S. Sources of anthropogenic radionuclides in the environment: a review [J]. Journal of Environmental Radioactivity, 2010, 101(6): 426-437.[19] 林武辉, 陈立奇, 何建华, 等. 日本福岛核事故后的海洋放射性监测进展 [J]. 中国环境科学, 2015, 35(1): 269-276.[20] Waters C N, Syvitski J P M, Ga&lstrok uszka A, et al. Can nuclear weapons fallout mark the beginning of the anthropocene epoch? [J]. Bulletin of the Atomic Scientists, 2015, 71(3): 46-57.[21] Zalewska T, Suplińska M. Anthropogenic radionuclides 137Cs and 90Sr in the southern baltic sea ecosystem [J]. Oceanologia, 2013, 55(3): 485-517.[22] IAEA. Worldwide marine radioactivity studies (WOMARS): Radionuclide levels in oceans and seas [M]. Vienna: IAEA, 2005.[23] He P, Aldahan A, Possnert G, et al. A summary of global 129I in marine waters [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 294: 537-541.[24] Wu J W, Sun J, Xiao X Y. An overview of current knowledge concerning the inventory and sources of plutonium in the China seas [J]. Marine Pollution Bulletin, 2020, 150: 110599.[25] Lin W H, Ma H, Chen L Q, et al. Decay/ingrowth uncertainty correction of 210Po/210Pb in seawater [J]. Journal of Environmental Radioactivity, 2014, 137: 22-30.[26] Lin W H, Chen L Q, Zeng S, et al. Residual β activity of particulate 234Th as a novel proxy for tracking sediment resuspension in the ocean [J]. Scientific Reports, 2016, 6: 27069.[27] Lin W H, Feng Y, Yu K F, et al. Long-lived radionuclides in marine sediments from the Beibu Gulf, South China Sea: Spatial distribution, controlling factors, and proxy for transport pathway [J]. Marine Geology, 2020, 424: 106157.[28] Lin W H, Yu K F, Wang Y, et al. Assessing the feasibility of the 228Th/228Ra dating method for young corals (10 a) by gamma spectrometry [J]. Quaternary Geochronology, 2021, 61: 101125.[29] 林武辉, 张帆, 余克服, 等. 人工放射性核素在珊瑚岛礁系统中的富集与评估 [J]. 地球科学进展, 2023, 38(3): 286-295.[30] Povinec P P, Aarkrog A, Buesseler K O, et al. 90Sr, 137Cs and 239,240Pu concentration surface water time series in the Pacific and Indian Oceans–WOMARS results [J]. Journal of environmental radioactivity, 2005, 81(1): 63-87.[31] Povinec P P, Hirose K, Honda T, et al. Spatial distribution of 3H, 90Sr, 137Cs and (239,240) Pu in surface waters of the Pacific and Indian Oceans--GLOMARD database [J]. Journal of environmental radioactivity, 2004, 76(1): 113-137.[32] Aoyama M, Hirose K. Artificial radionuclides database in the Pacific Ocean: HAM database [J]. The Scientific World Journal, 2004, 4: 200-215.[33] Inomata Y, Aoyama M, Hirose K. Analysis of 50-y record of surface 137Cs concentrations in the global ocean using the HAM-global database [J]. Journal of Environmental Monitoring, 2009, 11(1): 116-125.[34] Inomata Y, Aoyama M. Evaluating the transport of surface seawater from 1956 to 2021 using 137Cs deposited in the global ocean as a chemical tracer [J]. Earth Syst. Sci. Data, 2023, 15(5): 1969-2007.[35] 李培泉. 海洋放射性及其污染 [M]. 北京: 科学出版社, 1983.[36] 蔡福龙. 海洋放射生态学 [M]. 北京: 原子能出版社, 1997.[37] 李树庆, 祝汉民, 吴复寿, 等. 中国近海放射性水平 [M]. 北京: 海洋出版社, 1987.[38] 唐森铭, 商照荣. 中国近海海域环境放射性水平调查 [J]. 核安全, 2005, 4(2): 21-30.[39] 杜金秋, 王震, 林武辉, 等. 放射性核素水环境质量标准研究进展 [J]. 生态毒理学报, 2018, 13(5): 27-36.[40] Bradley F J, Pratt R M. Regulations. Poschl M, Nollet L M L. Radionuclide concentrations in food and the environment [M]. Boca Raton: CRC Press. 377-410, 2007. [41] Brown J, Alfonso B, Avila R, et al. The ERICA tool [J]. Journal of Environmental Radioactivity, 2008, 99(9): 1371-1383.[42] 林武辉, 陈立奇, 余雯, 等. 海洋生物辐射剂量评价方法及应用 [C]. 福建平潭: 福建省海洋学会2014年学术年会暨福建省科协第十四届学术年会, 2014: 326-334.[43] TEPCO. Analysis of seafood [EB/OL]. (2023-6-5) [2023-6-13]. https://www.tepco.co.jp/decommission/data/analysis/pdf_csv/2023/2q/fish01_230605-j.pdf.[44] IAEA. Marine radioactivity information system (MARIS) [EB/OL]. (2014-12-28) [2023-11-13]. https://maris.iaea.org/explore.[45] NRA. Readings of seawater monitoring in off-shore sea area [EB/OL]. (2023-11-7) [2023-11-13]. https://radioactivity.nra.go.jp/en/list/292/list-1.html.[46] TEPCO. Analysis of radioactive substances around Fukushima daiichi nuclear power plant [EB/OL]. (2014-7-31) [2023-11-13]. https://www.tepco.co.jp/nu/fukushima-np/f1/smp/indexold-j.html. [47] METI. Progress status reports [EB/OL]. (2023-10-26) [2023-11-13]. https://www.meti.go.jp/english/earthquake/nuclear/decommissioning/progress_status.html.[48] 余克服. 南海珊瑚礁及其对全新世环境变化的记录与响应 [J]. 中国科学: 地球科学, 2012, 42(8): 1160-1172.[49] 林武辉, 何建华, 余克服, 等. 海洋中90Sr:日本周边海域与南海的对比 [J]. 海洋学报, 2020, 42(10): 47-58.[50] Sutou S. Low-dose radiation effects [J]. Current Opinion in Toxicology, 2022, 30: 100329.[51] Lowe D, Roy L, Tabocchini M A, et al. Radiation dose rate effects: what is new and what is needed? [J]. Radiation and Environmental Biophysics, 2022, 61(4): 507-543.
  • 芬兰检测到微量日本核电站泄漏的放射性物质
    新华网赫尔辛基3月23日电 据芬兰辐射与核安全中心23日发表的公报,芬兰部分地区的空气中现已检测到微量源于日本福岛核电站泄漏事故的放射性物质。  公报说,芬兰辐射与核安全中心在芬兰首都赫尔辛基和北部城市罗瓦涅米采集的空气样本中检测到微量的放射性碘,每立方米空气所含浓度低于1毫贝克勒尔。该中心表示,这一浓度仅为可对人体健康造成危害浓度的百万分之一,因此当地居民无需为此采取防护措施。  芬兰辐射与核安全中心表示,日本福岛核电站泄漏的放射性物质将会在晚些时候漂到整个北半球地区,预计其他国家和地区也将会陆续发现微量放射性物质。
  • 日本调低食品中放射性铯标准值
    日本厚生劳动省近日召开药品和食品卫生审议会,决定将食品中放射性铯的新标准值大幅降至现行标准值的二十分之一至四分之一。决议还规定除大米、牛肉和加工食品外,其他食品都将从4月1日起适用新标准值。  新标准值规定,鱼、蔬菜等“一般食品”中放射性铯的上限为每千克100贝克勒尔,牛奶、奶粉以及市场上销售的婴儿食品都列为“婴儿用食品”,上限为每千克50贝克勒尔,饮用水则为每千克10贝克勒尔。而根据福岛第一核电站事故后实施的现行暂定标准值,蔬菜类、谷物类以及肉、蛋、鱼等为每千克500贝克勒尔,牛奶和乳制品、饮用水为每千克200贝克勒尔。为避免引发混乱,厚生劳动省还决定对部分食品采取过渡措施。2011年生产的大米将适用暂定标准值,2012年产的大米则考虑到收获及开始上市的时间,从今年10月1日起适用新标准值。牛肉也因还有部分冷冻保存的产品,也将从10月1日起适用新标准值。关于加工食品,在3月31日前生产、加工及进口的将适用暂定标准一直到保质期结束。而4月1日以后生产、加工及进口的则将适用新标准值。  放射性铯极易被人体吸收,较大量放射性铯摄入体内后可引起急、慢性损伤,且放射性铯的半衰期较长(30年),一旦摄入过量的放射性铯,将对人体产生极大危害。日本此次加严食品中放射性铯标准要求,应引起我相关出口企业关注。
  • 日本多地自来水中检测出微量放射性物质
    日本文部科学省3月19日说,栃木、群马、埼玉、千叶、东京和新潟6地的自来水19日被检测出含微量放射性碘,其中,栃木和群马的自来水还被检测出放射性铯,但尚不会对健康造成影响。 群马县18日对首府前桥市内某些设施的自来水进行了检测,结果发现平均每公斤水含2.5贝克勒尔的碘以及0.38贝克勒尔的铯。栃木县的自来水被检测出平均每公斤含碘77贝克勒尔,含铯1.6贝克勒尔。而日本原子能安全委员会的标准是,每公斤水中的碘超过300贝克勒尔,铯超过200贝克勒尔,才被视为超标而不能饮用。 其他4地自来水中的放射性碘含量也没有超标,即使饮用也不会对健康造成不良影响。日本厚生劳动省解释说,如果水中的放射性物质含量刚刚达到国家规定的饮用水相关限制标准,那么喝1升这样的水,人体受到的辐射影响也远小于坐飞机从东京到纽约所受的辐射影响。 日本19日还检测出福岛第一核电站附近地区出产的原奶以及茨城县出产的菠菜放射性物质含量超标,但也未达到危害人体健康的水平。 日本文部科学省19日对各地监测数据的统计显示,目前福岛第一核电站周边地区中,辐射剂量最高的是位于核电站西北约30公里的浪江町,当天上午达到每小时135微西弗。 数据还显示,东北和关东地区各地辐射剂量继续下降。埼玉县18日的辐射剂量观测值仍高于核电站事故之前的数值,但19日已回落至正常范围内。目前,辐射剂量高于事故之前的只剩茨城、栃木和群马3县,分别为每小时0.186微西弗、0.165微西弗和0.084微西弗。
  • 生态环境部发布国家生态环境标准《放射性物品运输容器跌落试验指南(征求意见稿)》和《放射性物品运输容器耐热试验指南(征求意见稿)》
    为贯彻《中华人民共和国核安全法》《放射性物品运输安全管理条例》,完善我国放射性物品运输及相关领域的标准规范体系,我部组织编制了《放射性物品运输容器跌落试验指南(征求意见稿)》《放射性物品运输容器耐热试验指南(征求意见稿)》,现公开征求意见。征求意见稿及编制说明可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。  各机关团体、企事业单位和个人均可提出意见和建议。有关意见请书面反馈我部,电子版材料请同时发至联系人邮箱。征求意见截止时间为2024年2月23日。  联系人:生态环境部辐射源安全监管司张京晶  电话:(010)65646134  传真:(010)65646138  邮箱:hssrlc@mee.gov.cn  地址:北京市东城区东安门大街82号  邮编:100006  附件:1.征求意见单位名单     2.放射性物品运输容器跌落试验指南(征求意见稿)     3.《放射性物品运输容器跌落试验指南(征求意见稿)》编制说明     4.放射性物品运输容器耐热试验指南(征求意见稿)     5.《放射性物品运输容器耐热试验指南(征求意见稿)》编制说明     6.征求意见反馈单  生态环境部办公厅  2024年1月7日  (此件社会公开)
  • 美研制出放射性物质监测新设备
    新华网洛杉矶1月2日电(记者高原)美国俄勒冈州立大学研究人员日前研制出一种监测放射性物质的辐射谱分析仪,它有助于缩短监控人员对放射性物质超标的反应和清理时间。  研究人员在一份报告中说,这种新设备能迅速检测放射性物质的类型和辐射量,比如核反应堆工作时产生的铯137和锶90,还能区分放射性物质衰变产生的伽马射线和贝塔射线,协助确定核污染程度。  负责这项研究的戴维汉比教授说,与目前普遍使用的探测设备不同,新设备的探测效率更高,过程更快且更加准确。他举例说,新设备只需15分钟就能确定伽马射线和贝塔射线以及它们的辐射量,而过去这一工作可能需要半天时间。  汉比说,该设备可用于监测核工业设施的放射性物质,或用来监测医院放射性治疗的安全性。
  • 500余套放射性物质检查系统为世博防恐
    由中国原子能科学研究院研制的500多套放射性物质检查系统,日前在刚刚开幕的2010年上海世界博览会上投入使用。  该系统是为打击恐怖分子利用放射性物质危害社会和人类,阻止放射性物品的非法转移出入境而专门研制开发的具有自主知识产权的专利产品。可广泛应用在体育场馆、宾馆、海关、机场、火车站及码头,对行人、行李、包裹、车辆等是否携带放射性物质进行实时检查,曾成功应用于2008年北京奥运会、全国第十一届运动会等重大活动。
  • 福建、台湾南部海域放射性物质监测正常
    记者11日从国家海洋局获悉,国家海洋局开展的2013年度西太平洋海洋环境放射性监测初步结果显示,我国福建海域、台湾南部海域表层海水中放射性物质铯-134未检出,铯-137活度水平处于该海域本底范围内。  国家海洋局表示,自2011年福岛核泄漏事故发生以来,日方持续将大量放射性污水排放入海,对海洋生态环境造成严重影响,为维护我国海洋环境安全和保护人民健康,国家海洋局于今年10月20日启动了2013年度西太平洋海洋环境放射性监测第二航次。截至11月8日,航次共执行作业任务20天,已完成我国福建海域和台湾南部海域的监测工作,期间采集海洋大气、海水、海洋生物及沉积物等各类样品共计1150余个。目前监测队伍正在福岛东南方向的西太平洋公海海域执行监测任务。  据介绍,本航次开展了“海洋放射性现场监测设备”的示范应用工作。该设备是国家海洋局为应对日本福岛核泄漏事故,组织有关单位自主研发的具备高效富集、快速分析功能的放射性现场检测仪器,将极大提高放射性监测检测效率,可满足常规及应急状态下的放射性监测需求。  目前,监测队伍已利用该设备对我国福建海域、台湾南部海域采集的20余个表层海水样品铯-134、铯-137进行了现场分析检测。初步监测结果表明,监测海域表层海水中铯-134未检出,铯-137活度水平处于该海域本底范围内。
  • 日本12个都县自来水被检测出放射性物质
    3月23日电(记者王艇)据日本共同社报道,日本文部科学省今天发布消息称,22日对宫城、福岛、奈良和大分以外各都道府县的自来水进行采样调查后发现,12个都县的自来水被检测出放射性物质。福岛县22日单独从自来水中检测出了放射性物质。22日共有13个都县检测出自来水含有放射性物质,比21日多了4个县。检测出的放射性物质含量均 视频:东京自来水被检出碘超婴儿饮用标准低于政府规定的限制摄取基准值。  在22日的采样调查中,岩手、秋田、山形和静冈县的自来水新检测出了碘 东京、茨城、栃木、群马检测出了碘和铯。福岛、埼玉、千叶、神奈川和新潟检测出了碘。每公斤自来水中的碘浓度为:东京19贝克勒尔、栃木15贝克勒尔、茨城12贝克勒尔。铯浓度为:栃木5.3贝克勒尔、茨城4.8贝克勒尔。政府的限制摄取基准值为碘300贝克勒尔、铯200贝克勒尔。  文科省还宣布,从20日在福岛第一核电站以西约40公里的福岛县饭馆村采样的土壤中检测出的碘浓度为每公斤117万贝克勒尔、铯浓度为16.3万贝克勒尔。日本没有针对土壤中放射性物质含量的标准。文科省表示:“虽然这不是应马上疏散的水平,但需要专家判断其长期影响。”  在18日从该核电站西北约45公里的福岛县川俣町采样的土壤中,检测出的碘与铯的浓度分别为8.43万贝克勒尔和1.42万贝克勒尔。
  • 美国本土食物中检测出放射性物质
    美国环保局周五对美国西岸生产的牛奶及饮料等食物进行检测时,首次发现美国本土生产的食物中含有放射性物质。环保专家表示目前的放射性物质含量并不会对人体产生伤害,但食品卫生部门需持续进行放射性物质检测。  周五美国环保局对美国加州及华盛顿州生产的牛奶及饮料进行了放射性物质检测。监测发现这些生产于美国本土的食物中确实有微量放射性物质,但是并不足以对人体产生伤害。  检测人员麦克洛博士:在(华盛顿州)斯博坎检测到的辐射量低于公共卫生危害值的5000倍。  医学专家也表示,目前美国因加强对日本进口食物的监测,而并非过多担忧自产食物的辐射含量。  医学博士西格尔:我们应该更多关注来自日本的进口。这是我们需要检测的地方,而不是我们这里的雨水或牛奶。  美国医疗卫生部门多次强调目前的辐射含量没有危险性,但是民众对食品卫生还是有所担忧。  美国民众:对家庭而言这是很大的担忧,特别是对于儿童。  医疗专家同时指出,虽然很多食物都含有放射性物质,但牛奶中的放射性碘更容易被甲状腺吸收,所以有关闭门必须密切检测食物中的放射性物质含量。
  • 国家生态环境标准《核电厂液态流出物 总β放射性测量 标准曲线法(征求意见稿)》发布
    《核电厂流出物放射性监测技术规范(试行)》(国核安发[2020]44 号)(以下简称“技术规范”)由国家核安全局颁布,于2020年9月1日起施行。核电厂液态流出物中总β放射性监测是技术规范明确规定的监测项目之一,为了统一和规范各监测单位对核电厂液态流出物中总β放射性的监测工作,生态环境部组织编制了国家生态环境标准《核电厂液态流出物 总β放射性测量 标准曲线法(征求意见稿)》,相关意见和建议反馈日期至2024年1月26日。总β放射性是指核电厂液态流出物中各种核素的β放射性活度浓度的总和,它不包括3H、14C的放射性贡献。本标准为首次发布。本标准规定了核电厂液态流出物总β放射性活度浓度的测量方法。本标准由生态环境部核设施安全监管司、法规与标准司组织制订。标准主要起草单位:生态环境部辐射环境监测技术中心(浙江省辐射环境监测站)。本标准规定了核电厂运行状态下液态流出物总β放射性活度浓度的测量方法。本标准适用于核电厂运行状态下液态流出物总β放射性活度浓度的测量,事故状态下参考使用。现行常用水中总β放射性测量标准有:(1)《水质 总β放射性的测定 厚阿源法》(HJ899-2017)原环境保护部发布,该标准适用于地表水、地下水、工业废水和生活污水中总β放射性的测定。(2)《生活饮用水标准检验方法第 13 部分:放射性指标》(GB5750.13-2023)中华人民共和国国家市场监督管理总局和国家标准化管理委员会发布,适用于测定生活饮用水和/或水源水中β放射性核素(不包括在本文件规定条件下具有挥发性的核素)的总β放射性活度浓度。(3)《饮用天然矿泉水中总β放射性的测定方法 蒸发法》(GB8538-2022)中华人民共和国国家卫生健康委员会和国家市场监督管理总局发布,该标准采用薄样法和活性炭吸附法,适用于饮用天然矿泉水中总β放射性的测定。(4)《水中总β放射性测定 蒸发法》(EJ/T900-1994)中国核工业总公司发布,适用于饮用水、地表水、地下水和工业排放废水中放射性核素的总β放射性的测定,也可用于咸水或矿化水中放射性的测定。(5)《地下水质检验方法》(DZ/T0064.1~0064.80-2021)中华人民共和国自然资源部发布,采用放射化学法,适用于地下水总β放射性的测定。(6)《煤矿水中总α和总β放射性测定方法》(MT/T744-1997)。原中华人民共和国煤矿工业部发布,采用比较测量法,适用于煤矿矿井水,深井水总α和总β放射性测定。附件1  征求意见单位名单  国家能源局综合司  国家国防科技工业局综合司  各省、自治区、直辖市生态环境厅(局)  新疆生产建设兵团生态环境局  生态环境部各地区核与辐射安全监督站  中国环境监测总站  生态环境部核与辐射安全中心  国家海洋环境监测中心  中国核工业集团有限公司  中国广核集团有限公司  国家电力投资集团有限公司  中国华能集团有限公司  中国原子能科学研究院  中国辐射防护研究院  苏州热工研究院有限公司  抄送:生态环境部辐射环境监测技术中心。附件2、核电厂液态流出物 总β放射性测量 标准曲线法(征求意见稿).pdf附件3、《核电厂液态流出物 总β放射性测量 标准曲线法(征求意见稿)》编制说明.pdf
  • 福岛核电站放射性物质乘北风向日本各地扩散
    环球网记者张哲报道 韩联社3月15日援引日本媒体的报道称,因福岛核电站爆炸而泄露的放射性物质正在乘北风向日本各地扩散开。  报道称,包括东京在内的日本关东地区,已检测到比通常更高的放射性物质。在茨城县检测到的放射性物质比平常高出100倍,神奈县的放射性物质含量比平时高出近10倍。此外,在千叶县及市原县也检测到了较高的放射性物质。  日本文部科学省表示,现在检测到的数值虽然对人体健康没有太大影响,但已要求各地的有关部门提高测定频率。  另据日本共同社3月15日消息,福岛核电站3号机组附近测量结果显示,核辐射水平比法定标准高出400倍。
  • Milli-Q水没有放射性物质污染(碘131,铯137)的风险
    问题一:默克密理博纯水和超纯水系统能去除放射性物质吗?答:据新闻报导,以铯137、碘131为主的放射性物质可能已经混入水中,它们是化学性质稳定的铯133和碘127的放射性同位素。 在ASTM*1(美国材料与测试协会)和JIS*2(日本工业标准)中,碘是可以被活性炭吸附的物质。也就是说,Progard预过滤柱和Milli-Q超纯水柱中含有活性炭,可以吸附碘。自来水中放射性物质的暂定指标是碘131:300 becquerel/kg,换算起来也就是6.5× 10-14 g/L(65 fg/L)。 Progard的碘静态吸附容量能达到700g,如果活性炭接近饱和,氯和碘会相互竞争,吸附上去的碘有可能又被释放。Progard在设计时就考虑到了这些方面,如果水机提示更换Progard柱,应尽快更换。 碘还可能以离子形式存在。RO膜、EDI和离子交换树脂都能有效去除溶解在水中的碘离子,我们认为去除效果尤以RO膜最佳。 由于铯是碱金属,通常以离子形式存在,因此也能被RO膜、EDI和离子交换树脂有效去除,我们认为RO膜的去除效果最好。 因为铯的电负性最小,在EDI离子交换过程中,与其他离子相比,铯优先被吸附去除。这时,铯以离子状态被浓缩并成为RO膜和EDI弃水。 这样的话,使用了Elix系列水机和以Elix做进水的Milli-Q系列水机,就可以像往常一样放心的使用纯水和超纯水。*1 ASTM D4607 - 94(2006) Standard Test Method for Determination of Iodine Number of Activated Carbon*2 JIS K1474 :2007活性炭试验方法问题二:纯水和超纯水系统产水能饮用吗?答: 不行。默克密理博的纯水和超纯水仅供实验使用。关于Milli-Q水,请点击此处关于Milli-Q 纯水/超纯水器, 请点击此处关于Elix 纯水器,请点击此处更多详情,请来电垂询技术支持热线:400-889-1988
  • 标准|《生物样品中放射性核素的γ 能谱分析方法》国家标准发布
    p 近日,国家标准化管理委员会在2020年第8号中国国家标准公告中发布了《生物样品中放射性核素的γ能谱分析方法》(GB/T 16145—2020)。该标准将代替GB/T 16145—1995。新标准将在span style="color: rgb(255, 0, 0) "strong2020年11月1日/strong/span实施。归口国家卫生健康委员会。/pp 该标准规定了用锗[HPGe,Ge(Li)]或碘化钠[NaI(Tl)] γ能谱仪分析生物样品中放射性γ核素的方法。标准中规定了strong生物样品 /strong(strongB/strongstrongiological Sample/strong) 的概念以及样品处理的一般方法。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 356px height: 243px " src="https://img1.17img.cn/17img/images/202005/uepic/2fbb8aed-e222-432e-8d7c-c5fc528c8527.jpg" title="GEORADiS RT-30.jpg" alt="GEORADiS RT-30.jpg" width="356" vspace="0" height="243" border="0"//pp style="text-align: center "span style="font-size: 14px color: rgb(0, 112, 192) "strong图为GEORADiS RT-30 手持放射性伽马能谱仪/strong/span/pp γ能谱仪设计用于监测和检测各种金属制品、建筑材料、地质样品、环境采样样品及食品中可能存在的放射性辐射。例如:钢铁厂内钢、尘、渣的快速辐射分析;建筑材料、岩石中钾、铀和钍的浓度检测以及食品、动物饲料和环境样品中可能存在的放射性辐射。/pp 仪器有台式机型和手持机型。手持版本便携、体积小、操作方便,在实验室外也可以轻松完成检测。br//pp span style="color: rgb(255, 0, 0) "strong标准原文/strong/spanspan style="color: rgb(165, 165, 165) "待国家标准化委员会正式发布后上传。/span/pp-------------#会议预报#-------------------/pp style="text-align: center "strong style="color: rgb(255, 0, 0) text-align: center "span style="background-color: rgb(255, 255, 0) font-family: 楷体, 楷体_GB2312, SimKai font-size: 24px "欢迎报名“药品微生物检测技术”/span/strongstrong style="color: rgb(255, 0, 0) text-align: center "span style="background-color: rgb(255, 255, 0) font-family: 楷体, 楷体_GB2312, SimKai font-size: 24px "专题网络研讨会/span/strong/pp style="text-align: center"a href="https://www.instrument.com.cn/webinar/meetings/Drug2020/" target="_blank" title="微生物大会链接"img style="max-width: 100% max-height: 100% width: 400px height: 300px " src="https://img1.17img.cn/17img/images/202005/uepic/dfdb8120-0b79-41bd-b6f2-f2fc9417648b.jpg" title="微生物检测技术大会.jpg" alt="微生物检测技术大会.jpg" width="400" vspace="0" height="300" border="0"//a/ppstrong报名链接/strong:a href="https://www.instrument.com.cn/webinar/meetings/Drug2020/" target="_blank" style="color: rgb(255, 0, 0) text-decoration: underline "span style="color: rgb(255, 0, 0) "stronghttps://www.instrument.com.cn/webinar/meetings/Drug2020//strong/span/a/p
  • 科尔仪器现货供应美国进口放射性物质检测仪
    据有关报道,日本9级地震引发当地核电站连续出现安全问题,自12日以来,福岛第一核电站4个机组连续发生爆炸,核泄漏情况加剧。日本核电站核泄漏产生的放射性物质污染物已影响了日本中部、北部极其以东的太平洋区域,在日本地震核安全事件发生后,环境保护部持续跟踪地震对日本核电站的影响,并要求省级环保部门加强监测。根据国家环保部的指令,3月12日起上海市环保局已经开展了放射性监测,目前国家海洋局已启动海域放射性应急监测,对我国海域进行持续性检测。 北京中科科尔仪器有限公司,现货供应美国进口环境检测仪器,放射性物质检测仪,辐射警报模拟监测器,Inspector放射性表,数字放射性监测器,AC/DC放射性监测器,用途广泛,操作简单,灵敏度高,用于检测人体暴露环境中的辐射,监控某个区域周边的辐射程度,检测辐射泄漏和污染,检验确定背景辐射的变化。个人防护、现场检测、实验室环境放射性安全检测的理想选择。
  • 日开发吸附土壤放射性物质新方法
    新华社东京7月14日电 人工沸石在水质净化和土壤改良等领域早有应用,它还有吸附放射性铯的功能。日本研究人员日前宣布,他们在人工沸石的这一性能基础上,通过化学合成使其带有磁性,这一技术可在清除土壤放射性物质时派上用场。  据日本《每日新闻》报道,人工沸石可由火电站发电副产品粉煤灰制成,原料价廉易得。爱媛大学农学部教授逸见彰男等研究人员在人工沸石的合成过程中混入铁化合物,成功地获得了带有磁性的人工沸石。将这种沸石铺敷在被放射性物质污染的土壤上,沸石会吸附放射性物质,由于这种沸石带有磁性,最后可用磁铁将吸附了放射性物质的沸石与土壤分离。  据介绍,这一技术可以将每千克被污染土壤中的放射物污染程度从数千至1万贝克勒尔降低到每千克500贝克勒尔以下。他们期望两年内将这一技术实用化。
  • 突发!日本糖果产品检测出放射性物质
    中新网3月9日援引韩联社报道,韩国食品安全机构8日表示,在计划进口到韩国的日本糖果产品中,检测出少量的放射性物质铯。韩国食品药品安全部总部。图/《韩国时报》据报道,涉事进口商原本打算从日本进口122公斤该款糖果,但在检测结果公布后,目前已取消进口计划。韩联社称,据韩国食品药品安全部消息,韩国去年在从日本进口的产品中四次发现铯痕迹,每次都导致相关进口计划取消。哪些进口产品“存在风险”?早在2011年,我国就开始对日本福岛县等可能遭受核污染影响的日本进口食品进行入境管理,《关于禁止部分日本食品农产品进口的公告》明确指出,禁止进口日本福岛县、栃木县、群马县、茨城县、千叶县的乳品、蔬菜及其制品、水果、水生动物及水产品。公告要求加强检测这些地区生产的其他输华食品农产品中放射性物质浓度,对日本其他地区生产的输华食品农产品一并予以监测和风险分析,严防受放射性污染食品农产品进口。同年发布的《关于进一步加强从日本进口食品农产品检验检疫监管的公告》(2011年44号),其第一条对地区范围有更加严格的规定,除上述地区外,还需禁止日本宫城县、山形县、新潟县、长野县、山梨县、埼玉县、东京都等都县的进口食品、食用农产品及饲料。同时,自日本进口的食品也不应途经日本福岛县、群马县、栃木县、茨城县、宫城县、新潟县、长野县、埼玉县、东京都、千叶县等10个都县,其原产地、产品主要加工原料的产地(捕捞区域)、从生产地区到发货地和中国目的地的运输方式及路线、加工原料产地到加工厂的运输路线、加工厂地址等信息均需标注在日本政府出具的原产地证明中。消费者如何鉴别?实际上,我们身边的日本进口食品随处可见。专家建议,消费者在购买日本进口食品时,要关注进口食品是否有中文标签,中文标签标示的内容是否齐全,要特别留意所购食品的原产地。如果消费者发现购买到食品产地为禁入区域,可以保留相关证据并向市场监管部门反映,保护自身的权益。普通消费者如何选购合法合格的进口食品?广州海关进出口食品安全处的专家提醒:对于一般贸易进口食品,可以通过“三看”方式选购。一看进口预包装食品是否有中文标签,正规的进口预包装食品都有中文标签。二看进口食品的“身份证”,即向经销商索取查看海关出具的检验检疫证明,该证明详细记载了进口食品的名称、原产地、生产日期、品牌等信息。三看进口食品准入情况,登录海关总署网站查看相关食品是否获得准入,只有经评估并获得我国准许进口的特定国家地区的特定产品方可入境。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制