高功率全波长激光反射镜

仪器信息网高功率全波长激光反射镜专题为您提供2024年最新高功率全波长激光反射镜价格报价、厂家品牌的相关信息, 包括高功率全波长激光反射镜参数、型号等,不管是国产,还是进口品牌的高功率全波长激光反射镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高功率全波长激光反射镜相关的耗材配件、试剂标物,还有高功率全波长激光反射镜相关的最新资讯、资料,以及高功率全波长激光反射镜相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

高功率全波长激光反射镜相关的厂商

  • 北京飞凯曼科技有限公司为多家国内外高科技仪器厂家在中国地区代理商。飞凯曼科技公司一贯秉承『诚信』、『品质』、『服务』、『创新』的企业文化,为广大中国用户提供最先进的仪器、设备,最周到的技术、服务和完美的整体解决方案。在科技日新月异、国力飞速发展的中国,光电技术、材料科学、光电子科学与技术、半导体等等领域,都需要与欧美发达国家完全接轨的仪器设备平台来实现。飞凯曼科技公司有幸成长在这个科技创造未来的年代,我们愿意化为一座桥梁,见证中国科技水平的提升,与中国科技共同飞速成长。主要产品: 1.飞秒激光元件飞秒激光反射镜、飞秒激光透视镜、飞秒激光棱镜、飞秒偏振光学器件、飞秒非线性激光晶体2.非线性光学和激光晶体BBO晶体, LBO晶体, KTP晶体, KDP晶体, DKDP晶体, LiIO3晶体, LiNbO3晶体, MgO:LiNbO3晶体, AGS晶体 (AgGaS2晶体), AGSe晶体 (AgGaSe2晶体), ZGP (ZnGeP2) 晶体, GaSe晶体, CdSe晶体等。Nd:YAG晶体, Nd:YVO4晶体, Nd:KGW晶体, Nd:YLF晶体, Yb:KGW晶体, Yb:KYW晶体, Yb:YAG晶体, Ti:Sapphire晶体, Dy3+:PbGa2S4晶体等晶体恒温炉、晶体温控炉等3.普克尔斯盒及驱动KTP普克尔斯盒、DKDP普克尔斯盒、BBO普克尔斯盒、高重复频率普克尔斯盒驱动和高压电源、低重复频率普克尔斯盒驱动和高压电源、普克尔斯盒支架等4. Nd:YAG激光器元件Nd:YAG激光反射镜、Nd:YAG激光棱镜、Nd:YAG激光窗口、Nd:YAG激光偏振片、Nd:YAG激光晶体等5.激光器和激光器模块连续半导体激光器、连续DPSS激光器、调Q DPSS激光器、超快光纤激光器等6.光学元器件光学材料、光学镀膜、介质镜、金属镜、激光器窗口、棱镜、光学滤光片、光学柱面镜、偏振镜、紫外和红外光学元件7.光学整形系统高斯光转平顶光光束整形系统、扩束镜、F-Theta镜(聚焦镜)、望远镜、可调激光衰减器、可变光圈、精密空间滤光片、束流捕捉器8.光学精密位移机构防震桌、光学支架、光学导轨、固定座、光学固定、光学定位、传输和定位台、自动定位和控制器等9.半导体激光器高功率半导体激光器、波长稳定的半导体激光器、单频半导体激光器、光纤耦合半导体激光器、光纤激光器、波长可调谐单频激光器10.铒玻璃掺铒磷酸盐激光玻璃、铒玻璃、铒镱共掺激光玻璃、1550nm激光器、人眼安全激光器11. DPSSL激光谐振腔设计软件和数据库12. F-P扫描干涉仪13.应力测试仪日本UNIOPT公司应力双折射测量系统、光弹性模量测试系统、应力测试系统、磁光克尔效应(MOKE)测试仪、薄膜残余应力测试仪。应力双折射测试仪、应力测试仪、应力分析仪、偏振相机14.精密划片机日本APCO公司手动精密划片机、自动精密划片机。日本NDS公司半自动自动划片机、贴膜机、UV解胶机、清洗机、晶圆划片(切割)刀、电畴划片刀、陶瓷划片刀、金属烧结划片刀、树脂划片刀等15.材料表征仪器霍尔效应测试仪、变温霍尔效应测试仪、低温霍尔效应测试仪、塞贝克效应测试仪、低温探针台、变温探针台、椭偏仪联系电话:010-57034898,15313084898 邮箱地址:info@pcm-bj.com
    留言咨询
  • 深圳市檀臻科技有限公司 Tangent Optics Co.,Ltd檀臻科技专注于光电探测领域,与全球顶级光电仪器及器件厂商合作,致力于为物理光学、生物光子学、化学材料分析、纳米光子学等领域提供优质产品和服务,并不断积累经验为科学研究者和高科技企业提供成像及光谱相关解决方案。目前我们代理的国外仪器、设备及系统生产商产品均为各自领域内的技术领先产品:Cobolt:单纵模、窄线宽、高功率DPSS激光器,多波长激光器HüBNER:OPO激光器,激光合束器,太赫兹成像产品Becker & Hickl: TCSPC单光子计数器,荧光寿命成像-FLIM系统id Quantique:TCSPC单光子计数器,SPAD, 近红外InGaAs SPAD,超导纳米线探测器,量子传感Semrock:高性能荧光滤光片, 拉曼滤光片,激光反射镜,窄带滤光片Princeton Instruments:科学级制冷型CCD,X-ray CCD , EMCCD, ICCD 各种研究级光谱探测与影像探测系统Energetiq:超高亮度,宽光谱LDLS光源SuperLum:超辐射发光二极管,OCT领域首选低相干光源SmartAct:尖端的微米、纳米移动控制系统,机械手,真空、低温系统用移动台
    留言咨询
  • 400-860-5168转2482
    鼎信优威光子科技有限公司专业从事光谱,生物与物理影像及相关应用的科学仪器的销售,目前我们代理多家国外仪器、设备及系统产品均为各自领域内的技术领先产品。美国PRINCETON INSTRUMENTS公司:科研级CCD,红外CCD,各种研究型光谱系统。 德国 Becker & Hickl GmbH 公司: TCSPC单光子计数器 ,弱信号处理产品, 荧光寿命影象系统 , 多波长荧光寿命影象分析系统。美国ISS公司:瞬态/稳态荧光磷光光谱分析系统,荧光关联光谱分析系统。我们还代理光纤超快激光器,脉冲可调光纤激光器,宽光谱激光器,显微镜宽光谱光源,LED光源。美国 Semrock公司:高性能荧光滤光片, 喇曼滤光片,激光反射镜,窄带滤光片。 美国ANDOVER公司:荧光滤光片,窄带滤光片,衰减片等。我们可以根据用户的具体要求,提供完整的系统解决方案,包括集成、设计等。 我们的商务人员具有丰富国际贸易经验,力争让用户在最短的时间内收到订购的仪器。
    留言咨询

高功率全波长激光反射镜相关的仪器

  • 2.介质膜反射镜A.介质膜激光反射镜:1)OML系列介质膜激光反射镜 命名规则:OML直径-波长-厚度OML系列激光反射镜选型表:型号名称面精度直径(mm)厚度(mm)入射角( ° )OML25.4-355-6.35355nm反射镜&lambda /10&phi =25.4T=6.3545OML20-441-4441nm反射镜&lambda /4&phi =20T=445OML25-441-4441nm反射镜&lambda /4&phi =25T=445OML25.4-441-4441nm反射镜&lambda /4&phi =25.4T=445OML30-441-5441nm反射镜&lambda /4&phi =30T=545OML50-441-5441nm反射镜&lambda /4&phi =50T=545OML20-488-4488nm反射镜&lambda /4&phi =20T=445OML25-488-4488nm反射镜&lambda /4&phi =25T=445OML25.4-488-4488nm反射镜&lambda /4&phi =25.4T=445OML30-488-5488nm反射镜&lambda /4&phi =30T=545OML50-488-5488nm反射镜&lambda /4&phi =50T=545OML20-532-4532nm反射镜&lambda /4&phi =20T=445OML25-532-4532nm反射镜&lambda /4&phi =25T=445OML25.4-532-4532nm反射镜&lambda /4&phi =25.4T=445OML30-532-5532nm反射镜&lambda /4&phi =30T=545OML50-532-5532nm反射镜&lambda /4&phi =50T=545OML20-633-4632.8nm反射镜&lambda /4&phi =20T=4452)紫外(深紫外)介质膜激光反射镜(进口)说明: 1.激光介质膜反射镜是一种在面精度为&lambda /10 的BK7 基板上,顺序镀上不同折射率的多层电介质膜的全反射镜。 2.此种膜层比Al+ 氟化镁(MgF2)膜更耐强激光,面精度是镀膜前的反射面的面精度。 3.入射角度为45° ± 3° ,平行度&le 3&prime 。 曲线图:TFM系列紫外(含深紫外)激光波长介质膜反射镜(SIGMA)选型表:
    留言咨询
  • B.宽带介质膜反射镜(Optical Mirror: Broadband) 1)OMB系列宽带介质膜反射镜 命名规则:OMB直径-波长1波长2(取微米数)-厚 度 曲线图: OMB系列宽带介质膜激光反射镜(波长范围400~700nm)选型表:型号名称面精度直径(mm)厚度(mm)OMB20-0407-4400~700nm宽带反射镜&lambda /8&phi =20T=4OMB25-0407-4400~700nm宽带反射镜&lambda /8&phi =25T=4OMB25.4-0407-4400~700nm宽带反射镜&lambda /8&phi =25.4T=4OMB30-0407-4400~700nm宽带反射镜&lambda /8&phi =30T=4OMB50-0407-4400~700nm宽带反射镜&lambda /8&phi =50T=42)紫外宽带介质膜反射镜(进口) 曲线图: MPQ-245-390系列紫外宽带介质膜反射镜(CVI Melles Griot)选型表:型号名称面精度直径(mm)厚度(mm)MPQ-245-390-1206M紫外宽带介质膜反射镜&lambda /412.56MPQ-245-390-2506M紫外宽带介质膜反射镜&lambda /425.06MPQ-245-390-5010M紫外宽带介质膜反射镜&lambda /450.0103)红外宽带介质膜反射镜(进口) 1480~1550nm产品反射曲线图(0~45° ): BLD-PM系列红外宽带介质膜反射镜(CVI Melles Griot)选型表: 型号名称波长范围(nm)面精度直径(mm)厚度(mm)BLD1-PM-1037-C红外宽带介质膜反射镜670~905&lambda /1025.49.5BLD2-PM-1037-C红外宽带介质膜反射镜1200~1310&lambda /1025.49.5BLD3-PM-1037-C红外宽带介质膜反射镜1408~1550&lambda /1025.49.5C. 超宽带介质膜反射镜(进口)曲线图:相关参数: 材料:BK7 面精度:&lambda /10 平行度:&le 3&prime 反面状态:光面 入射角:45± 3° TFMS系列超宽带介质膜反射镜(SIGMA)选型表:型号名称波长范围(mm)反射率(%)直径(mm)厚度(mm)TFMS-25.4C05-2-4超宽带介质膜反射镜245~400平均值&ge 9725.45TFMS-30C05-2-4超宽带介质膜反射镜245~400平均值&ge 97305TFMS-25.4C05-2-7超宽带介质膜反射镜245~700平均值&ge 9725.45TFMS-30C05-2-7超宽带介质膜反射镜245~700平均值&ge 97305TFMS-25.4C05-4-11超宽带介质膜反射镜400~1100平均值&ge 9825.45TFMS-30C05-4-11超宽带介质膜反射镜400~1100平均值&ge 98305TFMS-50C08-4-11超宽带介质膜反射镜400~1100平均值&ge 98508TFMS-25.4C05-4-20超宽带介质膜反射镜400~2000平均值&ge 9825.45TFMS-30C05-4-20超宽带介质膜反射镜400~2000平均值&ge 98305TFMS-50C08-4-20超宽带介质膜反射镜400~2000平均值&ge 98508TFMS-25.4C05-3-20超宽带介质膜反射镜300~2000平均值&ge 9725.45TFMS-30C05-3-20超宽带介质膜反射镜300~2000平均值&ge 97305TFMS-50C08-3-20超宽带介质膜反射镜300~2000平均值&ge 97508
    留言咨询
  • 曲线图:特点及相关参数: 1.飞秒低分散发射镜专为飞秒脉宽激光设计; 2.飞秒低分散反射镜采用多层镀膜技术,专为减少波长分散而设计; 3.此种反射镜采用等离子镀膜法制造,和通常的真空镀膜相比,其对应波长范围宽,更适用于飞秒激光系 统; 4.两个子系列产品,一种具有高的激光损伤阈值,称为FLM1系列;另外一个系类具有比较宽的反射域, 称为FLM2系列; 5.镀膜前面精度&lambda /10,反射率&ge 99.8%; 选型表:型号类型波长范围(nm)直径(mm)面精度镀膜前平行度(秒)反射率(%)入射角(° )FLM1-12.7C05-800平面镜750~850ø 12.7&lambda /10&le 5&ge 99.845± 3FLM1-25.4C05-800平面镜750~850ø 25.4&lambda /10&le 5&ge 99.845± 3FLM1-30C05-800平面镜750~850ø 30&lambda /10&le 5&ge 99.845± 3FLM2-12.7C05-800平面镜730~870ø 12.7&lambda /10&le 5&ge 99.845± 3FLM2-25.4C05-800平面镜730~870ø 25.4&lambda /10&le 5&ge 99.845± 3FLM2-30C05-800平面镜730~870ø 30&lambda /10&le 5&ge 99.845± 3
    留言咨询

高功率全波长激光反射镜相关的资讯

  • 首个中红外波长超级反射镜制成
    来自奥地利、美国和瑞士的科学家组成的国际科研团队,研制出了首个中红外波长范围超级反射镜,有望用于测量微量温室气体或用于切割和焊接的工业激光器等领域。研究论文发表于最新一期《自然通讯》杂志。在可见光波长范围内,现有金属反射镜的反射率为99%。在近红外范围,专用反射镜涂层的反射率高达99.9997%;但迄今最好的中红外反射镜的反射率为99.99%,光子丢失率是近红外超反射镜的33倍。人们一直希望将超反射镜技术扩展到中红外领域,以促进很多领域取得重大进展,如测量与气候变化有关的微量气体、分析生物燃料,以及提升广泛应用于工业和医疗领域的切割激光器和激光手术刀的性能等。此次,研究团队研制出的中红外超反射镜的反射率高达99.99923%。为制造出中红外超级反射镜,研究团队结合传统薄膜涂层技术与新型半导体材料和方法,开发出一种新涂层工艺。为此,他们先研制出直径为25毫米的硅基板,然后让高反射半导体晶体结构在10厘米的砷化镓晶片上生长,接着将其分成更小的圆形反射镜,再将这些反射镜安装到硅基板上,得到了超级反射镜并证明了其性能。研究人员指出,这款新型超反射镜的一个直接应用是显著提高中红外气体分析光学设备的灵敏度,可准确计量微量环境标志物,如一氧化碳等。
  • 40年坚持,打通双折射双频激光器及干涉仪全技术链条
    双频激光干涉仪是先进制造业、半导体芯片制造等行业不可或缺的纳米精度的尺子,应用广泛。张书练教授团队(先清华大学精密测试技术及仪器国家重点实验室,后镭测科技有限公司),以解决双频激光干涉仪关键技术为线,经近40年坚韧攀登,研究完成了“可伐-玻璃组装式单频氦氖激光器→双折射双频激光器→双折射双频激光干涉仪”的全链条技术,并批产。该技术开国内可伐-玻璃组装式氦氖激光器之先,吹制工艺或成历史。开国内外应力激光腔镜产生双频激光之先,解大频差和高功率不可得兼之难,频率差可以在1~40 MHZ范围选择而功率大于1 mW。双折射双频激光干涉仪测量70 m长度误差小于5 μm,非线性误差小于1 nm,测量速度高于3 m。1 研究背景激光干涉仪是当今纳米时代的长度基准,也是先进制造业(机床、光刻机,航空、航天等)制造的精度保证。制造精度和生产效率越来越高,对激光干涉仪的测量精度和测量速度提出了更高的要求。激光干涉仪的“激光”是(HeNe)氦氖激光器,至今无可替代。传统HeNe双频激光干涉仪存两个难点,成为瓶颈:1)国内外,我们之前,双频激光器靠塞曼效应产生两个频率,频率之差小(在3 ~ 5 MHz之间),频差越大激光功率越小,不能满足光刻机等应用的更大频率差要求(如10、20、40 MHz),频率差大,测量速度高,效率高;2)不论是单频还是双频激光干涉仪,国产还是外购,各型号都有几纳米甚至十几纳米的非线性误差,一直没有找到解决办法。通常,在单频激光器的光增益路径上加磁场后(塞曼效应)就变成双频激光器。可是,相当长的期间,购买到的大部分单频激光器因为常出现跳模,用于单频激光干涉仪时淘汰率很高,此外,加上磁场后单频并不呈现双频,双频激光干涉仪难有好的光源。经近40年坚持,研究打通了单频氦氖激光器→双折射双频激光器→双频激光干涉仪的全技术链条,批产,获得了广泛应用和认可。2 双折射双频激光器及干涉仪的关键和全链条技术2.1 双折射双频激光器置晶体石英片(图1a中的Q双面增透)或有内应力的玻璃元件(图1b中的M2右表面镀反射膜)于激光器谐振腔内,这些元件的双折射使激光频率分裂,一个频率分裂成两个频率,两个频率的偏振方向互相垂直(正交偏振)。反复实验证明,激光器可输出频率差大于但不能小于40 MHz两个频率。如果频率差稍大于40 MHz,在改变(调谐)激光频率谐振腔长(即用压电陶瓷1纳米一步“距”的推动M2改变激光谐振腔长)过程中看到的是一个频率振荡会陡然变成两个频率振荡,而前者功率陡然下降一半,刚升起的频率则获得同样的功率。继续调谐腔长,最早振荡的频率会陡然消失,而后起振的频率功率升高到最大。如果频率差小于40 MHz,两频率则有你无我。图2示出了频率差20 MHz时o光和e光的光强度此长彼消得过程。理论和实验一致。图1 激光频率分裂原理图。(a)晶体石英片Q于激光谐振腔内,(b)激光输出镜为M2右表面,对M2加力使激光反射镜内产生应力图2 频差20 MHz时的强烈模竞争。激光强度随腔长调谐(改变)的实验曲线。理论和实验一致图3给出了两个频率的频率差多大时,在频率轴上两个频率的共存区的宽度,也即两个频率差大小对应的共存频域宽度。曲线最左侧可见,在约40 MHz时,共存宽度迅速下降趋于0 Hz,也即小于40 MHz时,两频率之一熄灭,频率差消失。图3 实验测得的两个频率共存的频域宽度和激光频率差的关系2.2 双折射-塞曼双频激光器塞曼双频激光器的频率差一般在5 MHz以下,功率随频率差增大而减小,7 MHz时的激光功率仅0.2 mW以下。作者团队研发的双折射双频激光器频率差大于40 MHz,研制成的双折射-塞曼双频激光器可以输出百KHz到几十MHz的频率差,而功率不因频率差增大而改变,可以达到1.5 mW。双折射-塞曼双频激光器包括两项关键技术,先由双折射造成激光器频率分裂,决定了激光器输出为两个偏振正交频率以及它们的间隔(频率差)的大小。再因激光器上加了横向磁场,横向塞曼效应使增益原子分成两群——π群和σ群。π群和σ群光子的偏振对应双折射互相垂直的主方向,也即正交偏振的光“各吃各粮”,它们之间的相互竞争不存在了,无论频率差大小都能振荡。频率差可以是3、5、7、10、20、40 MHz或更大。2.3 内雕应力双折射-塞曼双频激光器提出了“内雕应力”的概念和产生双频的原理,即用窄脉冲激光器对激光腔镜表面或基片内部造孔(或穴),造成激光腔镜内的应力精确改变(图4所示),“雕刻”提高了频率差的控制精度。“内雕应力”双折射双频激光器不仅用于国产双频激光干涉仪,也用于运行中的光刻机的激光器替换。同时,提供了科研单位的科学研究。该激光器替换正在服役的光刻机的原有激光器,使光刻机机台误差由24 nm下降到6 nm。图4 内雕应力双折射-塞曼双频激光器。M2内部雕刻出的孔造成激光器的双频,磁条PMF1和PMF2消除激光器强模竞争2.4 可伐-玻璃组装式(无吹制)双频激光器国内,研制生产HeNe激光器历史很长,但我国一直靠吹制工艺制造氦氖激光器,而且不能制造可伐-玻璃组装式氦氖激光器。北京镭测科技有限公司研制成可伐-玻璃组装式单频氦氖激光器,功率大于1 mW,满足单频和双频激光器的需求。同时,这一技术将使整个国产氦氖激光器告别吹制,进入一个新的技术高度(如图5所示)。图5 可伐-玻璃组装内雕应力双频激光器(镭测科技提供)2.5 研制成的双频激光干涉仪技术指标作者强调的是,我们有了可伐-玻璃组装式激光器和双折射(内应力)-塞曼双频激光器,双频激光干涉仪有了强力的“心脏”,有了自主可控的基础。团队又全面设计干涉仪的光、机、电、算。时至今日,可伐-玻璃组装式双折射(-塞曼)双频激光器(非吹制)和干涉仪已批量生产,正在满足科学研究和产业的需求。中国计量科学院对双折射-塞曼双频激光干涉仪的测试结果:频率稳定度为10-8,分辨力为1 nm,非线性误差小于1 nm(图6所示),12小时漂移35 nm(图7所示),70 m长度测量误差小于5 μm。这些数据来自中国计量科学院测试证书:CDjx 2014-2352, CDjx 2018-4810, CDjx 2020-04463等。图6 双频激光干涉仪非线性误差图7 双折射-塞曼双频激光干涉仪12小时零点漂移3 展望在实现“可伐-玻璃组装式激光器”→“内雕应力双折射-塞曼双频激光器”→“双折射-塞曼双频激光干涉仪”全链条技术基础上,进一步发展各种规格的可伐-玻璃组装式激光器,以开拓双折射-塞曼双频激光干涉仪的应用深度和应用范围。
  • 滨松开发出世界上最小波长扫描量子级联激光器,有望用于便携式火山气体监测系统光源
    此次,滨松光子学株式会社在日本国家研究开发法人新能源与产业技术开发组织(NEDO)主办的“实现IoT社会的创新传感技术开发”项目中,利用独自的微机电系统(MEMS)技术和光学封装技术,成功开发出世界上最小尺寸的波长扫描量子级联激光器(QCL),其体积约为传统产品的1/150。通过将其与日本产业技术研究所开发的驱动系统结合,实现了高速操作和外围电路简化,同时作为光源安装在分析设备上,使可便携的小型分析设备的开发成为现实。在本开发项目中,我们提高了二氧化硫(SO2)和硫化氢(H2S)的探测灵敏度以及设备的维修性,目标是实现在火山口附近对火山气体成分的长期和稳定的检测。此外,它还可以应用于化工厂和下水道中有毒气体的泄漏检测和大气测量等。图1 世界上最小尺寸的波长扫描QCL,体积约为传统产品的1/150概要在火山爆发的前几个月,火山气体中的二氧化硫(SO2)或硫化氢(H2S)等浓度会开始逐渐上升,因此对该气体浓度的监测是火山爆发预测的常规方法。目前许多研究机构在火山口附近安装了电化学传感器分析设备,通过电极检测来实时分析火山气体的成分。但由于电极与火山气体的接触,容易出现寿命变短和性能降低的问题,因此除了定期更换部件等维护,监测的长期稳定性也是一个难题。这样,长寿命光源和全光学光电检测器分析设备则具有无需大量保养,还具有高灵敏度并长时稳定地进行成分分析的特点。目前因为光源的尺寸较大,尙难以将其安装在火山口附近。 在此背景下,滨松从2020年开始,参与了NEDO与产业技术综合开发机构(产综研)的“实现IoT社会的创新传感技术开发”※1项目,积极投入研究和开发具有全光学,小尺寸,高灵敏度和高可维护性特点的新一代火山气体监测系统。 滨松公司正在该项目中承担了分析设备光源的小型化任务,并成功开发出中红外光※2在7-8微米(μm,μ为百万分之一)范围内可高速改变输出功率的世界上最小尺寸波长扫描QCL(Quantum Cascade Laser)。※3(图1、图2、表)。本次新开发的产品是通过将其与产综研开发的驱动系统相结合,实现了高速操作和外围电路简化,作为光源安装在分析设备上,实现了可便携的小型化分析设备。此外,本项目的目标是进一步提高灵敏度和可维护性,实现长时间稳定地对火山口附近气体进行实时监测。同时也有望应用于化工厂和下水道的有毒气体泄漏检测和大气测量等用途。产品特点 1、开发了世界上最小的波长扫描QCL,体积约为传统产品的1/150。 公司利用独自的MEMS技术,对占据了QCL的大部分体积的MEMS衍射光栅※4进行完全的重新设计,成功开发出新的尺寸约为以前1/10的MEMS衍射光栅。此外,通过采用小型磁铁,减少了不必要的空间,并采用独特的光学封装技术,以0.1微米为单位的高精度实现部件的组装,实现了世界上最小的波长扫描QCL,其体积约为传统产品的1/150。 2、实现中红外光在波长7~8μm的范围内的周期性变化输出 滨松利用多年积累的量子结构设计技术※5通过搭载新开发的QCL元件,实现中红外光在易于吸收SO2或H2S的7-8μm的波长范围内的扫描输出。同时,我们还开发了可变波长QCL,可以从7-8μm范围内选择特定波长进行输出。 3、可高速获取中红外光的连续光谱 与产综研传感系统研究中心开发的驱动系统相结合,实现波长扫描QCL的高速波长扫描。它可以在不到20毫秒的时间内获取中红外光的连续光谱,可捕捉和分析随时间快速变化的现象。图2 波长扫描QCL的结构表 本次开发的波长扫描QCL的主要规格未来计划滨松公司将与NEDO和产综研进一步构建新型高灵敏度和高可维护性的火山气体监测系统,同时推进多点观测等实地测试。此外,公司将在2022年度内推出将该产品与驱动电路或与本司光电探测器相结合的模块化产品,以扩大中红外光的应用。 “注释” *1 实现IoT社会的创新传感技术开发 项目名称:实现IoT社会的创新传感技术开发 / 创新传感技术开发 / 波长扫描中红外激光器 研究开发新一代火山气体防灾技术 业务和项目简介:https://www.nedo.go.jp/activities/ZZJP_100151.html *2 中红外光 是一种波长比可见光长的红外光,一般把波长在4-10μm之间的红外光称为中红外光。 *3 波长扫描QCL(Quantum Cascade Laser) 量子级联激光器(QCL)是一种通过在发光层中采用量子结构,可以在中红外到远红外的波长范围内获得高输出功率的半导体激光光源。波长扫描量子级联激光器是将从量子级联激光器发出的中红外光进行分光,反射到MEMS衍射光栅,再通过对MEMS衍射光栅进行电控,使其的倾斜面发生快速变化,从而实现中红外光的波长快速变化并输出。 *4 MEMS衍射光栅 通过电流工作的小型衍射光栅。衍射光栅是一种利用不同波长的光衍射角度的差异来区分不同波长光的光学元件。 *5 量子结构设计技术 是一种利用纳米级超薄膜半导体叠层产生的量子效应的器件设计技术。在该开发中,滨松公司在QCL的发光层采用了独有的反交叉双重高能态结构(AnticrossDAUTM )。

高功率全波长激光反射镜相关的方案

高功率全波长激光反射镜相关的资料

高功率全波长激光反射镜相关的试剂

高功率全波长激光反射镜相关的论坛

  • 首个中红外波长超级反射镜制成

    来自奥地利、美国和瑞士的科学家组成的国际科研团队,研制出了首个中红外波长范围超级反射镜,有望用于测量微量温室气体或用于切割和焊接的工业激光器等领域。研究论文发表于最新一期《自然通讯》杂志。在可见光波长范围内,现有金属反射镜的反射率为99%。在近红外范围,专用反射镜涂层的反射率高达99.9997%;但迄今最好的中红外反射镜的反射率为99.99%,光子丢失率是近红外超反射镜的33倍。人们一直希望将超反射镜技术扩展到中红外领域,以促进很多领域取得重大进展,如测量与气候变化有关的微量气体、分析生物燃料,以及提升广泛应用于工业和医疗领域的切割激光器和激光手术刀的性能等。此次,研究团队研制出的中红外超反射镜的反射率高达99.99923%。为制造出中红外超级反射镜,研究团队结合传统薄膜涂层技术与新型半导体材料和方法,开发出一种新涂层工艺。为此,他们先研制出直径为25毫米的硅基板,然后让高反射半导体晶体结构在10厘米的砷化镓晶片上生长,接着将其分成更小的圆形反射镜,再将这些反射镜安装到硅基板上,得到了超级反射镜并证明了其性能。[b]研究人员指出,这款新型超反射镜的一个直接应用是显著提高中红外气体分析光学设备的灵敏度,可准确计量微量环境标志物,如一氧化碳等。[/b][来源:科技日报]

  • 【原创】激光的知识

    实际应用的激光器种类很多,如以组成激光器的工作物质来说可分为气体激光器、液体激光器、固定激光器、半导体激光器、化学激光器等。在同一类型的激光器中又包括有许多不同材料的激光器。如固体激光器中有红宝石激光器、钇铝石榴石(Nd:YAG)激光器。气体型的激光器主要有He-Ne(氦-氖)、CO2及氩离子激光器等。由于工作物质不同,产生不同波长的光波不同,因而应用范围也不相同。最常用而范围广的有CO2laser及Nd:YAG激光。有的激光器可连续工作,如He-Ne laser;有的以脉冲形式发光工作。如红宝石激光。而另一些激光器既可连续工作,又可以脉冲工作的有CO2laser及Nd:YAG laser。   (一)固体激光器  实现激光的核心主要是激光器中可以实现粒子数反转的激光工作物质(即含有亚稳态能级的工作物质)。如工作物质为晶体状的或者玻璃的激光器,分别称为晶体激光器和玻璃激光器,通常把这两类激光器统称为固体激光器。  在激光器中以固体激光器发展最早,这种激光器体积小,输出功率大,应用方便。由于工作物质很复杂,造价高。当今用于固体激光器的物质主要有三种:掺钕铝石榴石(Nd:YAG)工作物质,输出的波长为1.06μm呈白蓝色光;钕玻璃工作物质,输出波长1.06μm呈紫蓝色光;红宝石工作物质,输出波长为694.3nm,为红色光。主要用光泵的作用,产生光放大,发出激光,即光激励工作物质。  固定激光器的结构由三个主要部分组成:工作物质,光学谐振腔、激励源。聚光腔是使光源发出的光都会聚于工作物质上。工作物质吸收足够大的光能,激发大量的粒子,促成粒子数反转。当增益大于谐振腔内的损耗时产生腔内振荡并由部分反射镜一端输出一束激光。工作物质有2条主要作用:一是产生光;二是作为介质传播光束。因此,不管哪一种激光器,对其发光性质及光学性质都有一定要求。  (二)气体激光器  工作物质主要以气体状态进行发射的激光器在常温常压下是气体,有的物质在通常条件下是液体(如非金属粒子的有水、汞),及固体(如金属离子结构的铜,镉等粒子),经过加热使其变为蒸气,利用这类蒸气作为工作物质的激光器,统归气体激光器之中。气体激光器中除了发出激光的工作气体外,为了延长器件的工作寿命及提高输出功率,还加入一定量的辅助气体与发光的工作气体相混合。  气体激光器大多应用电激励发光,即用直流,交流及高频电源进行气体放电,两端放电管的电压增压时可加速电子,带有一定能量,在工作物质中运动的电子与粒子(气体的原子或分子)碰撞时将自身的能量转移给对方,使分子或原子被激发到某一高能级上而形成粒子数反转,产生激光。气体激光器与固体激光器相比较,两者中以气体激光器的结构相对简单得多,造价较低,操作简便,但是输出功率常较小。因气体激光器中的工作物质不同。因此分中性(惰性)原子、离子气体、分子气体三种激光器。  中性原子气体激光器这类激光器中主要充有以惰性气体(氦、氖、氩、氪等)的物质。  氦-氖(He-Ne)激光器 首台氦-氖激光器诞生于1960年,它可以在可见光区及红外区中产生多种波长和激光谱线,主要产生的有632.8nm红光、和1.15μm及3.39μm红外光。632.8nm氦-氖激光器最大连续输出功率可达到一W,寿命也达到一万小时以上。借助调节放大电流大小,使功率稳定性达到30秒内的误差为0.005%,十分钟内的误差为0.015%的功率稳定度;发散角仅为0.5毫弧度。氦氖激光器除了具有一般的气体激光器所固有的方向性好,单色性好,相干性强诸优点外,还具有结构简单、寿命长、价廉、频率稳定等特点。氦氖激光在精确指示,激光测量,医疗卫生方面有很广泛的用途。  氦氖激光器的工作原理:氦氖激光器的激光放电管内的气体在涌有一定高的电压及电流(在电场作用下气体放电),放电管中的电子就会由负极以高速向正极运动。在运动中与工作物质内的氦原子进行碰撞,电子的能量传给原子,促使原子的能量提高,基态原子跃迁到高能级的激发态。这时如有基态氖原子与两能级上的氦原子相碰,氦原子的能量传递给氖原子,并从基态跃迁到激发的能级状态,而氦原子回到了基态上。因为放电管上所加的电压,电流连续不断供给,原子不断地发生碰撞。这就产生了激光必须具备的基本条件。在发生受激辐射时,分别发出波长3.39μm,632.8nm,1.53μm三种激光,而这三种激光中除632.8nm为可见光中的红外,另二种是红外区的辐射光。因反射镜的反射率不同,只输出一种较长的光波632.8nm的激光。  He-Ne激光器结构:此类激光器的结构大体可分为三部分,既放电管、谐振腔和激发的电源。现在临床上最常应用的为内腔式。  He-Ne激光的放电管,最外层是用硬质玻璃制成。放电的内管直径约2~3mm,管长几厘米到十几厘米,放电管越长功率越大,相应的放电电压就高。管内主要按5:1~10:1的比例充入氦氖混合气体达到总气压约2.66~3.99Pa。管的一端装有铝圆筒作阴极(其圆管状结构主要是为了减少放电测射),另一端装有钨针作阳极,放电管两端装有反射镜(即一头为全反射镜,出光一端为半反射镜)。这就构成了激光放电管。  在氦氖激光器中,采用的谐振腔有球面腔或平凹腔。一般腔镜内侧镀有高反射率的介质。在其中一端反射率为100%,另一端反射率由激光器的增益而定。放电毛细管长度约15~20cm,He-Ne激光器的半反射镜的半反射镜的反射率98.5%~99.5%。谐振腔的轴线和放电毛细管轴偏离不超过0.1mm。  He-Ne激光器的外界激励能源与固体激光器不相同,不能使用光泵激励,而采用电激励的方法。把工作物质封入放电管中,供以直流、交流及射频等方式激励气体放电。通过放电过程把能量传给工作物质,促使气体中的离子、原子被激发。医疗中使用的激励方法主要是以直流电激发出光。大体结构主要有高压变压器、整流与滤波回路、限流与稳流回路组成。

高功率全波长激光反射镜相关的耗材

  • 激光反射镜
    双线激光反射镜又名双激光谱线反射镜,是英文Dual Laser Line reflecting mirrors 的翻译。双线激光反射镜用于在两个不同的波带上实现进行高反或高透应用,入射角一般为45度。百分之百进口,质优价廉。双激光谱线反射镜采用多层镀膜,当可以在两个激光波长上实现最高的激光反射率。双线激光反射镜采用了离子束溅射技术(Iom Beam Sputtering, IBS)或电子束蒸发技术进行镀膜,这些镀膜技术非常成熟,并且采用多层镀膜技术可以保证双线激光反射镜高功率应用。双激光谱线反射镜,Dual Laser Line reflecting mirrors 技术指标基片尺寸公差:+0/-0.1mm基片波前畸变:基片表面质量:20/10 SD 40/20SD(曲面)镀膜粘附性和耐久性:Per MIL-C-675A净孔径: 90%镀膜反射率:R99,5% @ 0o Rs99,3% and Rp98,5% @ 45deg激光损伤阈值:3-5J/cm2 for 10 ns pulses @1064nm进The measured transmission curve for dual wavelength HR coating (HR @ 515+1030 nm)双线激光反射镜,双激光谱线反射镜,Dual Laser Line reflecting mirrors 询问服务:请阁下根据如下格式选择和填写您需要的镜片和镀膜参数,然后复制后直接通过Email发送给我们,您会收到及时的报价回复。Substrate material 基片材料 Shape 基片形状RectangularRound 请选择圆形或方型Dimensions 尺寸mm 如果是圆形就填写直径大小Thickness 厚度mm Type 类型Plano-ConcavePlano-ConvexOtherFlat/Flat如果您选择曲面镜片,请填写曲率半径 eg ROC1=-50mm ROC2=+1000mmSurface figure L/4 L L/2 L/8Surface quality 20/1040/2060/40Parallelism error10arcsec1arcmin3arcminWedgeNo wedge30arcmin1deg2deg3degCentral wavelenghs: eg. 1064nm+532nm Angle of incidence (AOI)deg Comments
  • 宽带激光反射镜
    这款宽带激光反射镜,HR Broad Band mirrors是欧洲进口的宽波段激光反射镜,非常适合宽范围波段的激光反射应用,比较适合大于关于中心波长10%范围浮动的激光的高反应用,比如,对用中心波长为800nm的激光,HR@800nm, 这种宽带激光反射镜就比较适合反射的激光范围为750-850nm 甚至更大的范围。 这种宽带激光反射镜,宽波段激光反射镜常常用于腔外激光束的操作应用,对激光束的反射要求非常严格,不允许存在透过激光的问题产生,常常使用这种宽波段激光反射镜 ,但是它只适合固定的入射角(常用45度)。宽带激光反射镜,宽波段激光反射镜采用了离子束溅射技术(Iom Beam Sputtering, IBS)或电子束蒸发技术进行镀膜,这些镀膜技术非常成熟。 基片尺寸公差:+0/-0.1mm 基片波前畸变:基片表面质量:20/10 SD 40/20SD(曲面) 镀膜粘附性和耐久性:Per MIL-C-675A 净孔径: 90% 镀膜反射率:R99% @ 0o Rave99% @ 45o 激光损伤阈值:2-3J/cm2 for 10 ns pulses @1064nm宽带激光反射镜,宽波段激光反射镜垂询格式: 如下是镜片的标准参数格式,请阁下仿照如下格式把您对镜片及其镀膜的要求发邮件给我们,我们会及时回复报价。Substratematerial 基片材料 CaF2, FS, ZnSe, UVFS, IRFSShape 形状Rectangular Round (方形还是圆形)Dimensions 尺寸 mm Thickness 厚度 mm Type 类型Other Flat/Flat Plano-Concave Plano-Convex Radius of Curvature (ROC) 曲率半径(对曲面镜而言) for curved substrates only eg ROC1=-50mm ROC2=+1000mm Surface figure L/4 L L/2 L/8 Surface quality 表面质量20/10 40/20 60/40 Parallelism error 平行误差10arcsec 1arcmin 3arcmin Wedge No wedge 30arcmin 1deg 2deg 3deg Coatings on Side1 S1面镀膜例如. PR(R=80+/-2%)@1064nmCoatings on Side2 S2 面镀膜例如. AR(R0,2%)@1064nmAngle of incidence (AOI) 入射角Comments 评论订购数量
  • 激光谱线反射镜
    这款欧洲进口激光谱线反射镜/(HR Laser Line mirrors )是一种高功率激光反射镜,比较适合关于中心波长百分之十范围内的激光高反使用。激光谱线反射镜,高功率激光反射镜在窄带上提供绝佳的高反性能,而且比较适合对反射要求较高的应用。这款激光谱线反射镜,高功率激光反射镜比较适合关于中心波长10%范围浮动的激光的高反应用,比如,HR@800nm, 比较适合反射的激光范围为760-840nm, 由于激光谱线反射镜适合的激光波段较窄,因此高功率激光反射镜常常被称为激光谱线反射镜Laser Line mirrors 或单波长激光高反镜。 这种激光谱线反射镜常常用于腔外激光束的操作应用,对激光束的反射要求非常严格,不允许存在透过激光的问题产生,常常使用这种单波段激光谱线反射镜,高功率激光反射镜,但是它只适合固定的入射角(常用45度),而且最好是单波长激光或对波带宽度要求很窄的激光。 单波长激光谱线反射镜,高功率激光反射镜采用了离子束溅射技术(Iom Beam Sputtering, IBS)或电子束蒸发技术进行镀膜,这些镀膜技术非常成熟。 基片尺寸公差:+0/-0.1mm 基片波前畸变:基片表面质量:20/10 SD 40/20SD(曲面) 镀膜粘附性和耐久性:Per MIL-C-675A 净孔径: 90% 镀膜反射率:R99,6% @ 0o Rs99,8% and Rp99,3% @ 45o 激光损伤阈值:5-7J/cm2 for 10 ns pulses @1064nm激光谱线反射镜,高功率激光反射镜问询: 根据如下格式填写您的要求,复制后发邮件给我们,我们将及时回复报价 Substrate material ShapeRectangularRoundElliptic Dimensionsmm Thicknessmm TypePlano-ConvexFlat/FlatPlano-ConcaveOther Radius of Curvature (ROC) for curved substrates only eg ROC1=-50mm ROC2=+1000mm Surface quality20/1040/2060/4020/5 Central wavelengthnm Angle of incidence (AOI)deg Surface figure L/4 L L/2 L/8 Parallelism error10arcsec1arcmin3arcmin- WedgeNo wedge30arcmin1deg2deg3deg Comments