当前位置: 仪器信息网 > 行业主题 > >

大小鼠无创血压测量系统

仪器信息网大小鼠无创血压测量系统专题为您提供2024年最新大小鼠无创血压测量系统价格报价、厂家品牌的相关信息, 包括大小鼠无创血压测量系统参数、型号等,不管是国产,还是进口品牌的大小鼠无创血压测量系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合大小鼠无创血压测量系统相关的耗材配件、试剂标物,还有大小鼠无创血压测量系统相关的最新资讯、资料,以及大小鼠无创血压测量系统相关的解决方案。

大小鼠无创血压测量系统相关的资讯

  • 瑞沃德发布RWD71000全自动脑立体定位仪-大小鼠新品
    71000全自动脑立体定位仪是一款应用于小型啮齿动物的自动化、智能化脑立体定位仪,通过电脑软件精确控制操作臂移动(精度1um),软件内置大小鼠脑图谱能更方便、更直观的进行脑立体定位,三大自动化程序(自动开颅、组织移除和多位点注射程序)可减少人为操作带来的误差,节省手动操作时间。精确:高精度步进电机,位移分辨率1μm高效:内置自动化程序,减少人工误差简单:软件内置脑图谱,简化手术操作三大自动化程序,实验更高效自动开颅程序:设置参数,颅钻自动按照运行轨迹进行开颅,节省人为操作时间组织移除程序:减少损伤,保证创口端面平整性,提高神经元存活率,提高实验重复性组织移除程序:减少损伤,保证创口端面平整性,提高神经元存活率,提高实验重复性1、操作臂上下、左右、前后移动范围80mm,搭配高精度丝杆,运行精度1μm;2、一键校准功能,当长时间使用,电脑显示位置参数和定位仪读数出现偏差时,用户可以通过一键自行校准;3、定位仪移动控制功能, 4种控制方式:a、PC端软件界面箭头控制;b、PC端输入目标坐标位置后自动移动到目标坐标;c、微操平台能精密控制定位仪运动,按钮可控制持续移动,微操旋钮每旋转18°执行1μm位移;d,键盘按键控制定位仪移动。4、定位仪移动速度调节功能,a、在PC端软件界面三个轴对应位置可分别输入移动速度进行调节,其中AP轴和ML轴4种移动速度可选: 2.00 mm/s、1.00 mm/s、0.50 mm/s、0.20 mm/s;DV轴7种移动速度可选2.00 mm/s 、1.00 mm/s、0.50 mm/s、0.20 mm/s 、0.01 mm/s、0.005 mm/s、0.001 mm/s;b、在微操端可通过按键对三个轴移动速度以一定步进量进行统一调节;5、 一键设置Bregma/Lambda位点,当用户使用定位仪到达Bregma/Lambda位点时可以标记,一键设定Bregma/Lambda位点;6、定位仪坐标与脑图谱集成,脑图版本为小鼠第二版大鼠第六版,用户可选脑图版本,选定版本后显示脑图版本信息;7、探针位置与脑图显示,当用户找到并设置Bregma/Lambda点后电脑界面能够显示脑图及探针所在位置,能够实时显示移动过程;8、自动开颅程序,2种形状选择:方形或圆形,长宽或半径参数(输入范围:0~10mm)及深度(输入范围:0~20mm),AP轴和ML轴4种移动速度可选,DV轴7种移动速度可选;9、多位点程序设定,用户可手动输入或脑图谱上选择至多10个坐标,可以选择自动运行或者信号触发后启动运行,用户可以设定定位仪到达目标点位后是否输出TTL信号,用户可以设定在每个位点停留时间(输入范围:00:00:00 23:59:59);10、组织移除程序,2种形状选择:方形或圆形,长宽或半径参数(输入范围:0~10mm)及深度(输入范围:0~20mm),支持2种针头规格27G、30G,6个梯度的密度系数设置1-6,AP轴和ML轴4种移动速度可选,DV轴7种移动速度可选;11、位置坐标存储功能,用户可手动输入或脑图谱上选择至多个坐标并命名,最多可存储10个位点;12. Z轴回缩功能,当用户定义Bregma/Lambda点之后,定位仪在执行X、Y方向的移动时,无论探针位于Z轴的任意位置,需要使探针先回缩至高于动物头骨表面5mm的位置,保证电机的水平方向移动不会触碰到动物的头骨;13、消隙功能选择,可尽量消除电机反向运动时,电机齿轮间缝隙引起的误差,用户可选择开启或关闭;14、错误日志自动保存功能,方便对产品进行维护;15、软件要求适配win7、win10中英文操作系统;16、报警功能,实时检测,遇到故障时停止所有部件运动,PC端弹框提示;17、能够接收或输出TTL信号,例如接收TTL信号触发全自动脑立体定位仪按设定程序自动移动,或者到达特定位置时输出TTL信号;18、微操控制,能够实现手柄按键对全自动脑立体定位仪上下左右前后六向控制持即续按键持续移动,能调节电机移动速度,有急停按钮;19、控制盒有2种电源指示灯,通电正常状态为绿灯,异常状态为红灯;控制盒有12V电源接口,USB方口与电脑通信,3个电机接口,有丝印标识区分,BNC接口处理TTL信号。创新点:简介:71000是一款自动化、智能化的脑立体定位仪,通过电脑软件精确控制步进电机,进而驱动定位仪操作臂移动。软件内置大小鼠脑图谱和三大自动化程序,可自动化运行,减少人为操作带来的误差,能更方便、更直观的进行脑立体定位。同时配备了微操,满足更灵活的操作需求。创新点:1、精度更高:传统机械型脑立体定位仪精度100um,数显型脑立体定位仪精度为10um,而全自动脑立体定位仪精度达到1um,满足更高实验需求;2、内置脑图谱:用户可直接在软件上翻阅脑图谱,探针实时显示与脑图谱的相对位置,更加直观便捷;3、三大自动化程序:自动开颅程序可预设开颅的尺寸、深度等参数,颅钻自动按照预设轨迹运行,可减少手动操作带来的损伤;组织移除程序可预设移除组织的尺寸、深度等参数,保证创口端面平整,减少神经元死亡;多位点注射程序可设置十个位点的注射,软件控制运行轨迹,精准并减少人工操作的繁琐步骤。RWD71000全自动脑立体定位仪-大小鼠
  • 小动物活体成像系统在急性心力衰竭小鼠模型治疗中的应用
    2023年11月8日,由山西农业大学王金明教授、海军军医大学梁晓及美国威斯康星大学Hector H. Valdivia 团队共同在国际一流期刊《Materials Today Bio》(IF= 8.200)中发表了题为“OpiCa1-PEG-PLGA nanomicelles antagonize acute heart failure induced by the cocktail of epinephrine and caffeine”的文章。在急性心脏疾病中,通过钙素(calcin)作用于利亚诺定受体(RyR)减少肌浆网中的Ca2+含量,是一种潜在的干预策略,可用于减轻β-肾上腺素能应激触发的SR Ca2+过载。然而,作为一种含有33-35个氨基酸的球形肽,calcin主要对抗轻度的室性早搏(PVCs)或和双向室性心动过速(BVTs),而不是严重持续性的双向室性心动过速(BVTs)或多形性室性心动过速(PVTs)。像大多数肽类药物一样,calcin在体内具有快速的代谢率,其半衰期甚至不到2小时,因此,有必要通过增加心脏局部浓度来提高其药效,并通过长效的药剂学方法延长其作用持续时间。本研究通过将calcin家族中最活跃的成员Opticalcin1(OpiCa1)与最常见的无毒纳米载体PEG-PLGA聚合物连接,首次合成了Opticalcin-PEG-PLGA(OpiCa1-PEG-PLGA)纳米胶束。作者发现,OpiCa1-PEG-PLGA纳米胶束在拮抗肾上腺素和咖啡碱引起的致命性急性心衰方面具有与OpiCa1几乎相同的作用,并具有良好的心脏靶向性、自稳定性和低毒性,研究还发现OpiCa1-PEG-PLGA纳米颗粒可在体内保持长期低浓度的OpiCa1。主要实验方法1.纳米胶束的制备: 使用特定的配方制备了OpiCa1-PEG-PLGA纳米胶束,确保其稳定性和有效性。2.动物模型: 使用相关的动物模型模拟急性心力衰竭,实验对象接受肾上腺素和咖啡因的混合物。3.纳米胶束给药: 给实验组注射OpiCa1-PEG-PLGA纳米胶束,对照组分别接受安慰剂或其他干预措施。4.监测指标:监测各种心脏参数,如心率、血压和生化标志物,以评估纳米胶束对急性心力衰竭的影响。在研究中,作者将5-8周龄的ICR小鼠,分为对照组、PEG-PLGA组、OpiCa1组和OpiCa1-PEG-PLGA组(n = 6)。静脉注射PEG-PLGA、OpiCa1和OpiCa1-PEG-PLGA纳米胶束12 h后,使用上海勤翔IVScope 8000小动物体内成像系统监测纳米胶束的分布情况。结果表明,与FITC标记的PEG-PLGA的分散分布相比,FITC标记的OpiCa1和OpiCa1-PEG-PLGA纳米细胞在12 h内更集中在心脏组织中,在体内表现出良好的心脏靶向性。该研究表明,OpiCa1-PEG-PLGA纳米胶束在对抗由肾上腺素和咖啡因联合引起的急性心力衰竭方面具有潜在的治疗作用。需要进一步的研究和临床试验来验证这些发现,并探索OpiCa1-PEG-PLGA纳米胶束在治疗心脏急症中的转化潜力。
  • 六天内根除小鼠癌症!可植入“药物工厂”这么神奇?
    据《科学进展》杂志2日在线报道,美国莱斯大学的生物工程师表示,他们使用针头大小的可植入“药物工厂”持续提供高剂量白细胞介素-2,在短短6天内根除了小鼠体内的晚期卵巢癌和结直肠癌。该疗法或在今年晚些时候开始人体临床试验。白细胞介素-2是一种可激活白细胞以对抗癌症的天然化合物。试验使用的药珠可通过微创手术植入,每个都含有可产生白细胞介素-2的细胞,这些细胞被包裹在保护壳中。莱斯大学生物工程助理教授奥米德魏瑟的实验室研发了这种治疗方法。他说,人体临床试验最早可能在今年秋天开始。该团队只选择了已证明可安全用于人体的成分,并在多项测试中证明了新疗法的安全性。魏瑟说:“我们只给一次药,但‘药物工厂’每天都在生产药物,直到癌症被消除。一旦确定了正确的剂量,即需要多少家‘药物工厂’,我们就能够根除全部的卵巢癌和7/8的结肠直肠癌。”在新发表的研究中,研究人员将产生药物的珠子植入在肿瘤旁边和腹膜内,腹膜是一种支持肠道、卵巢和其他腹部器官的囊状内层,植入的白细胞介素-2集中在肿瘤内,并限制在其他地方暴露。该研究合著者、美国MD安德森癌症中心妇科肿瘤学和生殖医学教授埃米尔贾再瑞博士说:“免疫治疗领域的一个主要挑战是增加肿瘤炎症和抗肿瘤免疫,同时避免细胞因子和其他促炎药物的全身副作用。在这项研究中,我们证明了‘药物工厂’可在几种小鼠模型中进行可调节的白细胞介素-2局部给药和根除肿瘤。”白细胞介素-2是一种细胞因子,一种免疫系统用来识别和对抗疾病的蛋白质。这是一种FDA批准的癌症治疗方法,但研究人员表示,与现有的白细胞介素-2治疗方案相比,“药物工厂”引发了更强的免疫反应,因为药珠直接提供更高浓度的蛋白质到肿瘤。研究人员称:“如果你通过静脉注射泵给予相同浓度的蛋白质,那将是剧毒的。而对于‘药物工厂’,我们在远离肿瘤部位的身体其他部位观察到的浓度,实际上低于患者在接受静脉注射治疗时必须承受的浓度,高浓度仅处于肿瘤部位。”药珠的外壳保护其产生细胞因子的细胞免受免疫攻击。外壳由被免疫系统识别为异物但不视为直接威胁的材料制成。研究团队发现,异物反应在30天内“安全而有力”地关闭了胶囊中细胞因子的流动。如果有必要,可进行第二个疗程。总编辑圈点“药物工厂”可放置在肿瘤旁边,围绕在这些器官和大多数其他器官的内膜内。如果医生需要不同的细胞因子来靶向特定形式的癌症,还可在药珠上装载工程细胞,制造相关免疫治疗的化合物。更值得欣喜的是,这一方法未来将不局限于文中的两种癌症,也可用于治疗胰腺癌、肝癌、肺癌和其他器官的癌症。
  • 低成本手机附件测血压“触手可及”
    美国加州大学圣地亚哥分校的工程师创造了一种廉价的解决方案来降低血压监测的门槛。他们开发了一种简单、低成本的夹子,它使用智能手机的摄像头和闪光灯来监测使用者指尖的血压,这种夹子可以与定制的智能手机应用程序配合使用。相关论文发表在5月29日《科学报告》杂志上。目前这种夹子的制作成本约为80美分。研究人员估计,如果规模化生产,成本可能低至每个10美分。这有助于让资源匮乏地区的人们能够低成本、轻松、方便地进行常规血压监测。除了成本低廉,这种夹子与其他血压检测仪相比的另一个关键优势是,它不需要根据袖带进行校准。研究人员解释说,该系统是免校准的,这意味着受测者只需把夹子夹在指尖即可,定制的智能手机应用程序可以指导用户在测量过程中按压的力度和时间。该夹子是一个3D打印的塑料附件,可以安装在智能手机的摄像头和闪光灯上。它的光学设计类似于针孔相机。当用户按下夹子时,智能手机的闪光灯就会照亮指尖。然后,光线通过针孔大小的通道投射到相机上,形成一个红色圆圈的图像。夹子内的弹簧允许用户以不同的力按压。用户按下的力度越大,相机上出现的红色圆圈就越大。通过观察圆圈的大小,这款应用程序可以测量用户指尖施加的压力,通过观察圆圈的亮度,它可以测量指尖进出的血量,然后通过算法将这些信息转换为收缩压和舒张压读数。研究人员在加州大学圣地亚哥分校医疗中心的24名志愿者身上测试了夹子,结果与用血压计测得的数值相当。
  • 喷雾监测|水性底漆在喷涂过程中的液滴大小测量-智能在线喷涂监测系统现场测试报告
    雾化研究涂料的使用对成品的色调、铝效果颜料的底色、涂料的外观等性能有决定性的影响。不仅应用方法本身是决定性的。例如在高转速雾化情况下,转速、流量、转向空气等应用参数的选择也对雾化效果有决定性的影响。因此,了解油漆的雾化过程是很有意义的。巴斯夫涂料部门使用由AOM - Systems公司研发的智能在线喷涂监测系统(图1)开发了一套测量装置,可以对汽车涂料的雾化过程(甚至是静电雾化)进行详细研究。这样,就能从油漆雾化过程中获得的信息来更有效预测的油漆配方开发或设置最优的应用参数。图1:来自AOM-Systems的智能在线喷涂监测系统LabLine 450使用智能在线喷涂监测系统获得更多关于雾化过程的参数信息智能在线喷涂监测系统测量技术基于移动液滴在激光照射下的产生的光散射。由此产生的光散射在时间上被分离成单个的散射信号,并被光子接收器记录下来。散射阶数的特征与液滴的大小、速度和不透明度密切相关。这是智能在线喷涂监测系统技术成为一种直接计数测量方法。与其他测量方法相比,他既测量喷涂中的透明液滴,也能够对透明液滴进行测量。该系统测量所使用的激光束在液滴内或液滴表面上产生穿透和反射。如果把这些结果相互联系起来,就会对喷涂的表征产生一个重要的测量值,这是很难用其他任何方法做到的。这既是时移测量方法的优势。喷涂监测系统能够在真实的应用条件下进行测量。例如可以测量高电压下ATEX区域内的含溶剂涂料。简便的测量设置为了表征汽车喷漆锥,使用了如图2所示的测试装置。高旋转钟罩与测量部分呈45度角,在标准条件下,实际测量激光位于钟罩边缘以下25mm。因此,过喷、紊流和逆流都能够降到最.低。这种测量几何结构提供了激光透镜或探测器受到污染较少的优点。由于喷涂比较稠密,保证了较高的液滴密度,使得测量结果具有较高的统计确定性。此外,在55毫米的测量截面上,所有喷涂部分都能够被捕捉到,因此即使非常宽的喷涂锥也能被检测。总而言之,这个测试设置能够重复测量不同应用参数设定下所有雾化器,旋杯和油漆系统。此外,对于用户来说,这种测量装置还有许多优点。与现有的液滴尺寸测量装置相比,该测试装置在短时间内就可以安装就位,测量程序十分简便。同样地,测量系统对不准情况也很少会发生,因此即便更换到其他测试工位也不会产生任何问题。分析四个水性底漆在一项研究中,使用喷涂监测系统分析了四种不同的水性底漆(WB)。解决系统中对透明度产生的影响●M1,WBL无填料●M2,WBL使用硫酸钡作为填料●M3,WBL有填料,并且有碳黑颜料●M4,WBL有填料,碳黑和铝效果颜料进行分析。为此,预先使用405和450 nm (喷涂监测系统激光器的波长)对10μm抗蚀剂薄膜厚度进行传输测量。(图3)。图3:抗蚀剂M1 - M4在10μm薄膜厚度时的透射测量。NT (%) = 喷涂监测系统测量中不透明滴剂的比例。正如预期的那样,M1的透明度最.高,而M2和M3按照这个顺序吸收的能量更多。最.后,除M4铝系统外,干燥膜中的透射率与雾化过程中不透明液滴的比例有很好的相关性。这可以解释为干燥膜中的铝颜料,它们没有完全平面排列,导致比在喷涂锥的液滴中传输更高。通过高旋转雾化,使用喷涂监测系统在三种不同速度(23k、43k和63k rpm)下对四种涂层进行分析。如图4所示,可以清楚地区分不同的油漆。大于35μm (中值)的透明大液滴在M1雾化中产生,而M2中的填充剂将液滴尺寸减小到27 ~ 31μm。在含有颜料涂层的M3(炭黑)和M4(铝效果颜料)中发现了更小的透明液滴,大小约为15 - 17μm。如预期的那样,在较高的速度下可以得到更小的液滴,这在非透明测量模式下尤为明显。在这里,M3和M4系统的进一步区分成功了,在M4铝系统中,较大的非透明液滴在所有速度下都能够被测量到。一般来说,较大液滴能够产生最.大的速度,正如图中的线性趋势线所说明的那样。钟形锯齿决定空间解决的水滴大小进一步的研究表明,旋杯边缘对空间分辨的液滴大小有显著的影响。为此,选择一个WBL雾化速度为43000 rpm,出流率为300 mL/min,转向空气为400 NL/min,有两种不同形状的旋杯:a)无锯齿钟形和b)线锯齿旋杯。首先看一下平均值,没有锯齿的旋杯(D中位数= 18.2μm)和有锯齿的旋杯(D中位数= 18.9μm)之间没有显著差异。然而,喷涂锥彼此之间差异很大,如图5所示,基于0 - 30mm的空间分辨下降速度。对于两种旋杯产生的液滴来说,液滴的速度从喷涂锥的内部(0毫米)向中.心下降,而喷涂锥外部区域(18 - 25毫米)的线锯齿导致透明液滴和非透明液滴明显具有高速。这种特征对于没有锯齿的旋杯来说不明显。结论:结果表明,喷涂监测系统是一种易于使用的测量系统,特别适用于在汽车涂料的应用过程中测量和表征喷锥。这些特性能够获得非常详细的雾化参数信息,并提供关于空间分辨的液滴大小、速度和液滴类型(透明vs.非透明)的信息。指导用户可以较快地获得可重复的结果。因此,在标准的测量条件下(一个雾化器,一个特定的测量位置),喷涂监测系统提供了非常有用的方法来区分不同的油漆系统,并进一步更精确地了解雾化过程。有了表面特性的知识,应用参数就可以进一步优化。在巴斯夫涂料部门的技术管理中,例如新涂料和涂料工艺的开发和测试,喷涂监测系统作为测量的关键技术,能够更有针对性地阐明复杂的因果机制。Author:Steffen Rohlmann, Georg Wigger, Christian BornemannECO/TAVB, Application Process Technology Europe, BASF Coatings GmbH Münster, Glasuritstrasse 1如果您对AOM Systems喷涂监测系统感兴趣,欢迎致电翁开尔公司咨询。
  • 一种光电容积脉搏波测量方式有望实现指夹式血压测量
    近年来,生物传感设备的深入研究和进步大大提升了人类监测各项生命体征的手段,可以帮助医生更快速、便利、准确地了解患者的健康状况,但是,因血压的准确性可能受到紧张情绪的影响(如“白大衣性高血压”等),所以快速、便捷、轻松的血压测量和持续的血压监测技术仍存在较大需求和开发空间。  近日,来自密苏里大学的研究团队通过光电容积脉搏波传感器测量脉搏波速度,实现了对血压的测量,有望为开发一种新型的指夹式血压测量工具提供了理论基础。相关研究成果发表在《IEEE Sensors Journal》上,题为“Toward Robust Blood Pressure Estimation from Pulse Wave Velocity Measured by Photoplethysmography Sensors”。  科学家们设计了一种基于两个光电容积脉搏波 (PPG) 传感器开发的血压测量单元,从中可以得出血流的脉搏波速度 (PWV),在两次心跳之间收集的后续的 PPG 波形稳定时间差用于计算PWV,一旦收集到PWV的数据,信息就会自动无线传输到计算机中,以通过机器学习算法进行信号处理和血压计算。  这项研究取得了较为理想的通过非侵入性血压测量设备测量血压的准确率,并同时可以测量心率、血氧饱和度、体温和呼吸频率等生命体征,该项研究仍需要更大样本量的数据验证最终的准确性,这为未来开发一种指夹式生命体征监测便携设备提供了一定的设计构想和理论基础。  论文链接:  https://ieeexplore.ieee.org/document/9646921/metrics#metrics  注:此研究成果摘自《Ieee Sensors Journa》,文章内容不代表本网站观点和立场,仅供参考。
  • 岛津成像质谱显微镜应用专题丨小鼠大脑成像分析
    优势● iMScope QT可测量的最大范围超过100万像素,能够进行大面积样本分析,例如在一次检测中对小鼠大脑全切片进行分析。● iMScope QT的分析速度比前一代产品快8倍以上,能够进行快速分析。● iMScope QT具有高质量准确度、分辨率及高空间分辨率,能够进行精确质谱成像分析。 概述质谱成像技术可以通过质谱仪直接检测生物分子和代谢物,同时保留其在样本组织上的位置信息,因此,可以生成不同生物分子基于特定离子信号强度和位置信息的二维质谱图像。iMScope成像质谱显微镜是用于质谱成像分析的整合型仪器,结合了光学显微镜和质谱仪,能够分析物质的结构和分布特征,拓展了药物研发和代谢物研究等领域的范围。通过将MALDI转换成LC和ESI系统,iMScope还可用于LC-MS定性及定量分析。本文将介绍配备Q-TOF质谱仪的新型iMScope QT(图1),并与前一代iMScope TRIO设备进行比较。图1 iMScope QT 小鼠全脑切片分析前一代iMScope TRIO设备的最大可测量范围是250 × 250像素。在iMScope QT中,可测量范围已扩展至1024 × 1024像素,能够以15 μm的空间分辨率分析小鼠全脑切片(约17mm × 9.4 mm)。根据表1条件进行检测,可在m/z 885.557处获得磷脂酰肌醇PI (38:4),并在m/z 888.631处获得硫苷脂(C24:1)的清晰质谱图像(图2)。 此外,由于iMScope QT的最大激光频率为20 kHz,分析速度比iMScope TRIO快8倍以上。结果显示完成图2所示的小鼠全脑切片(702624 pix)质谱成像分析仅需6小时。 表1 分析条件图2 小鼠全脑切片的质谱成像结果(空间分辨率:15 μm) 小鼠小脑的高空间分辨率分析对小鼠小脑附近的区域进行高空间分辨率质谱成像分析,如图2(a)中红色部分所示。根据表1中的分析条件,空间分辨率为5 μm。如图所示,可在m/z 885.557处获得 PI (38:4)、在m/z 888.631处获得硫苷脂(C24:1),检测到更清晰更详细的质谱图像(图3(b)和(d))。 此外,由于iMScope QT的质量准确度和分辨率较高,能够分离和检测PI (38:4)的同位素(m/z 888.573)和硫苷脂(C24 :1)(m/z 888.631),并能提取每种同位素的质谱图像(图3(c)和3(d))。而iMScope TRIO则无法获得以上结果。 图3 小鼠小脑的光学图像和质谱图像(空间分辨率:5 μm) (a) 光学图像(b) PI (38:4)的质谱图像,m/z 885.557(c) PI (38:4)同位素的质谱图像,m/z 888.573(d) 硫苷脂(C24:1)的质谱图像,m/z 888.631 结论与iMScope TRIO相比,iMScope QT的分析范围更广,分析速度更快,可实现更广泛的快速成像分析。此外,随着检测准确度和分辨率的提高,能够对各种目标化合物进行高精确度、高特异性的质谱成像分析。 iMScope QT不仅整合了质谱和形态学分析,而且能够在更广泛的领域实现更快速、更灵敏以及更高的空间分辨率的检测。 本文内容非商业广告,仅供专业人士参考。
  • 转化医学系列|人源化模式小鼠在肿瘤免疫药物研究中的应用
    肿瘤免疫疗法是当前肿瘤治疗领域中最具前景的研究方向之一,已发展成为继手术、化疗和放疗之后的第四种肿瘤治疗模式。肿瘤免疫学治疗的方法种类繁多,目前各大医药研发企业的关注焦点主要包括:免疫检查点抗体药物,CAR-T疗法,溶瘤病毒等等,但新型的免疫疗法如何进行可靠有效的临床前效果评估,是推进肿瘤免疫疗法的一关键节点。百奥赛图自主研发了一系列免疫检查点人源化小鼠,为免疫检查点抗体药物筛选提供了可靠的体内药效模型,此外基于重度免疫缺陷B-NDG小鼠建立的免疫系统人源化小鼠模型也为药物验证提供了更多的选择。本期转化医学系列webinar邀请到的是百奥赛图药理药效事业部总监郭雅南博士,郭博士将给大家介绍:1. 免疫检查点抗体单用或联用在体内药效筛选的策略2. 利用免疫重建小鼠和B-hCD3e人源化小鼠进行双特异性抗体的体内药效评估与毒性检测3. 利用重度免疫缺陷小鼠B-NDG小鼠对CAR-T药物进行体内药效评估与毒性检测转化医学系列网络讲座第五期讲座题目:人源化模式小鼠在肿瘤免疫药物研究中的应用讲座时间:7月25日下午14:00-15:00主讲人:郭雅南 博士(百奥赛图)讲座形式:网络讲座,手机或PC即可参与(会议链接和如下报名链接相同)即刻报名扫描下方二维码主讲人简介郭雅南 博士百奥赛图 药理药效事业部总监清华大学生物科学与技术系本科;美国罗切斯特大学神经生物学/药理学博士学位;2009-2013年,在哈佛大学医学院伯明翰妇女医院转化医学系从事博士后研究工作;2014年回国,担任百奥赛图基因生物技术有限公司研发部副总监。拥有10多年癌症生物学和神经生物学的研究经验,现担任药理药效事业部总监。更多转化医学系列网络讲座安排,具体时间以珀金埃尔默微信推送时间为准。敬请关注!主题预计时间高内涵筛选助力个性化癌症医疗8月小分子激酶抑制剂研究最新进展9/19/2019使用Alpha技术研究RNA甲基化“橡皮擦” (ALKBH5)10/24/2019研究蛋白相互作用就是这么简单11/7/2019细胞成像分析前沿应用案例心得分享11/28/2019原来药物研发还可以这样做——基于表型筛选的药物研发11月小动物活体成像技术助力脑靶向载体的研究12/19/2019关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 岛津成像质谱显微镜应用专题丨多模式成像分析小鼠心肌梗塞
    简介作为一种成像技术,磁共振成像(MRI)广泛应用于日常临床诊疗中。为了在检查过程中增强对比度,可以使用几种不同的造影剂。由于五个或七个不成对电子具有出色的顺磁性,因此最常使用Fe3+、Mn2+或Gd3+。因游离形态的Gd3+具有毒性,此探针与氨基羧酸一起作为复合物给药。大多数钆造影剂(GBCA)是全身分布的,一些靶向特异性GBCA也正在研究中。图1 Gadofluorine P的结构Gadofluorine P是一种靶向造影剂,对富含胶原蛋白的细胞外基质(ECM)具有高亲和性,ECM在发生心肌梗塞(MI)时分泌。多模式生物成像技术能够可视化靶向造影剂的分布。使用激光剥蚀与电感耦合等离子体质谱(LA-ICP-MS)以高空间分辨率在元素水平上生成定量图像,而基质辅助激光解吸电离质谱(MALDI-MS)用于在分子水平上验证研究结果,提供更多分布信息,例如磷脂或血红素b的分布。材料和方法动物实验此项动物实验在明斯特大学医院临床放射学研究所Moritz Wildgruber教授的研究小组进行。使用诱导心肌梗塞六周的小鼠,注射照影剂Gadofluorine P后进行MRI检查。小鼠被处死后,取出心脏并快速冷冻。用冷冻切片机制备厚度为10μm的切片。标准品制备对于LA-ICP-MS分析,用明胶制备基体匹配标准品,用于外标 校正。明胶(10%w/w)添加9种不同浓度,范围为0至5000 μg/g Gd。另制备了厚度为10μm的标准品切片。样品制备对于MALDI-MS成像分析,将切片放置于氧化铟锡(ITO)涂层的载玻片上。先用升华法涂敷α-氰基-4-羟基肉桂酸(CHCA)至组织表面,然后用500μl水和50μl甲醇混合溶液喷雾于组织表面2.5分钟进行再结晶。分析条件对于LA-ICP-MS分析,使用Tygon管,将ICPMS-2030与激光剥蚀系统LSX-213 G2+(Teledyne CETAC)连接,此系统配有HelEX II池和波长为213nm的Nd-YAG激光。氦气用于剥蚀池的冲洗和传输。ICP-MS 2030配有镍采样锥和截取锥。在碰撞模式下,31P、57Fe、66Zn、158Gd和160Gd的积分时间为100ms条件下进行测量。每种标准品的标准曲线使用了10个浓度水平进行分析,并且同样的条件下分析了样品(表1)。表1 LA-ICP-MS的实验条件MALDI-MS分析使用了配有离子阱-飞行时间(IT-TOF)质谱分析仪iMScope TRIO。选择正离子模式,质量范围为m/z 700到1200。其他实验条件列于表2中。基质使用iMLayer升华20分钟。表2 MALDI-MS的实验条件结果LA-ICP-MS用基体匹配标准品进行的外标法定量分析结果显示,在高达5000μg/g的浓度范围内存在良好的线性关系,相关系数R2为0.997。采用15μm光斑尺寸时,基于158Gd的检测限(LOD)为43ng/g Gd,定量限(LOQ)为140ng/g Gd(根据Boumans[1]算出)。图2 小鼠心脏组织切片的H&E染色图2所示为连续切片的苏木精伊红染色结果,检测出心肌梗塞的区域(以黑线标出)。图3 两个连续切片的显微图像(a.和b.);经LA-ICP-MS测定的Gd定量分布(c.);Gadofluorine P的配体分布(d.);配体结构及理论峰值(青色条)、MALDI-MS测定峰值(黑线)(e.)图3所示为两个连续切片的显微图像(a.和b.)。使用LA-ICP-MS(c.),检测到健康心肌中Gd的均匀分布,平均浓度约为50μg/g。梗塞区的Gd浓度高两倍,约为110μg/g,最高值可达370μg/g。由于静脉注射造影剂的作用,心室中也存在较高浓度的Gd。这些分布可以通过MALDI-MS成像进行验证(d.)。该实验中,只能检测到Gadofluorine P的质子化配体,而不是完整的复合物(e.)。结果显示,主峰m/z 1168.39的质谱成像图与LA-ICP-MS检测的Gd分布具有良好的相关性。在心机梗塞和心室区发现了分子探针的最高强度,而健康心肌则显示出低而均匀的强度。结论 该应用表明,元素选择性(LA-ICP-MS)和分子选择性(MALDI-MS)成像技术的组合是可视化心机梗塞后小鼠心脏组织中靶向钆造影剂分布的有力工具。通过LA-ICP-MS技术实现了高空间分辨率和定量,并通过MALDI-MS在分子水平上验证了其分布。参考文献[1] P.W.J.M.Boumans, Spectrochimica Acta 1991, 46 B, 641-665.文献题目《Gadofluorine P多模式生物成像分析用于小鼠心肌梗塞研究》使用仪器岛津iMScope TRIO作者Rebecca Buchholz1、Fabian Lohofer2、Michael Sperling1,3、Moritz Wildgruber4、Uwe Karst11 明斯特大学无机和分析化学研究所 2 慕尼黑工业大学放射学研究所3 明斯特欧洲物种分析虚拟研究所(EVISA) 4 明斯特大学医院临床放射学研究所声明1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。本文内容非商业广告,仅供专业人士参考。
  • 岛津微焦点X射线CT助力动物实验-小鼠股骨CT观察
    现在的研究中经常需要动物实验提供数据支持,这些研究包括对骨病的研究、药物管理评价和代谢中的脂肪测量等。实验对象的动物有大、小鼠和兔子等。 X射线CT系统通常用于观察和分析小动物的骨骼,人类或小动物的牙齿。对小动物的观察包括活体动物的CT成像,猝死动物整体或切除部位的体外CT成像。 本案例介绍了利用inspeXio SMX-100CT Plus采集的小鼠股骨CT图像(体外)数据以及其三维解析结果。 图1. 岛津微焦点X射线CT inspeXio SMX-100CT Plus 对小鼠股骨的观察 使用inspeXio SMX-100CT Plus微焦点X射线CT系统(图1)进行数据采集。该设备采用密封式微焦点X射线发生源,最大输出电压为100 kV,图像亮度高,可对树脂、药物、骨骼等软材料在高放大倍数下进行三维观察。图2为小鼠股骨。红色矩形框部分是股骨,红色矩形框右侧的是胫骨。图3显示了小鼠股骨的原理图。股骨由近端、股骨本身和远端三部分组成。近端肢体与臀部骨共同构成髋关节。远端肢体与胫骨共同构成膝关节。本标本观察是股骨远端离体成像的一例。图2.小鼠股骨照片 图3 小鼠股骨的原理图 图4为骨骺的横断面图像,图5为骺端和干骺端横断面图像,图6为干骺端的横断面图像。在干骺端横断面上,圆形骨区为皮质骨,内部网状区为骨小梁。使用inspeXioSMX-100CT进行锥束扫描,一次即可获得区域内所有的横断面图像,还可以连续进行图像观察。 图4骨骺的CT图像图5骺端和干骺端的CT图像图6 干骺端CT图像 图7为MPR(多平面重构)图像,MPR显示的是在虚拟空间中堆叠的多个CT图像。 图7 小鼠股骨MPR图像 图8 小鼠股骨的三维图像 小鼠股骨分析 使用X射线CT获取图像,不仅可以进行横断面和三维观察,而且可以单独提取感兴趣区域进行观察,并测量骨的厚度。 图9 小鼠股骨三维图像 图10~14显示小鼠股骨皮质骨、骨小梁及皮质骨内血管的扫描结果,图像处理为某软件公司的TRI/3D-Bon骨结构分析软件。 图10 白色:皮质骨和骨小梁红色:皮质骨中的血管绿色:生长板软骨 图11 白色:骨小梁红色:皮质骨中的血管绿色:生长板软骨 图10、11中白色为皮质骨和骨小梁、红色部分为皮质骨中的血管、绿色部分为生长板软骨,图10中皮质骨在外观上是半透明的。 图12 骨小梁和生长板软骨图13 提取的生长板软骨图14 皮质骨和骨小梁厚度的测量 图13是提取的成长板软骨。图14是对提取的皮质骨和骨小梁测量出的厚度结果,从外观上使用不同颜色标示出各不相同的薄、厚部分。 结论 使用inspeXio SMX-100CT Plus不仅可以对小鼠股骨结构进行三维观察,而且可以通过其它分析软件提取感兴趣区域,并测量、评价皮质骨和骨小梁的厚度。 另外,针对专用软件(例如TRI/3 DBON),可利用BMD模型(骨矿定量) 将影像数据的亮度值转换为CT值,分离出皮质骨和骨小梁,获得皮质骨和骨小梁各自的BMD值。因此,在骨成像后,用BMD模型代替骨成像来建立分析曲线是可行的。(此应用只可针对特定第三方软件进行。)
  • 北航冯林课题组: 磁流体基靶向给药微纳米机器人小鼠体内实现肿瘤杀伤
    近几年具有出色变形能力和可控性的磁流体机器人受到广泛关注。然而,这些研究大多是在体外进行的,将磁流体用于体内医疗应用仍然是一个巨大的挑战。同时,将磁流体机器人应用于人体也需要解决许多关键问题。本研究创建了基于磁流体的毫米机器人,用于体内肿瘤靶向治疗,其中考虑了生物相容性、可控性和肿瘤杀伤效果。针对生物相容性问题,磁流体机器人使用玉米油作为基载液。此外,该研究使用的控制系统能够在复杂的生物介质中实现对机器人的三维磁驱动。利用1064纳米的光热转换特性,磁流体机器人可以在体外杀死肿瘤细胞,在体内抑制肿瘤体积、破坏肿瘤间质、增加肿瘤细胞凋亡、抑制肿瘤细胞增殖。这项研究为基于磁流体的毫米机器人在体内实现靶向治疗提供了参考。近日,北京航空航天大学机械学院冯林课题组提出了一种通过具有生物相容性的磁流体机器人实现肿瘤的光热治疗方法。该方法将磁流体的基载液改为具有生物相容性的植物油,通过三维电磁控制系统实现磁流体机器人的靶向控制,对该种磁流体机器人在体外与体内的生物相容性和光热肿瘤杀伤效果进行了细致的研究。本研究中的所有3D模型均使用摩方精密nanoArchS140设备打印。相关研究内容以“Biocompatible ferrofluid-based millirobot for tumor photothermal therapy in Near-Infrared II window”为题发表在《Advanced Healthcare Materials》期刊上,冯林教授为通讯作者,硕士生纪易明为第一作者。图1.用于近红外 II 窗口肿瘤光热治疗的生物兼容磁流体液滴机器人(BFR)概念图。图2. BFR表征。(A)Fe3O4纳米粒子的 XRD 图。(B)Fe3O4纳米颗粒的傅立叶变换红外图。(C)油酸包裹Fe3O4纳米颗粒的傅立叶变换红外图。(D) BFRs 中纳米粒子的透射电子显微镜(TEM)结果。(E) 所制备磁流体的磁滞线。(F) 磁流体的紫外-可见-近红外吸收光谱。(G) 不同浓度的BFR在 1064 纳米近红外照射下的温度曲线。(H) 5个加热-冷却循环过程中BFR的光热稳定性研究。该研究制备了一种生物相容性磁流体(BFR),并对其进行了详细表征,如图2所示。该生物相容性磁流体由超顺磁性纳米颗粒(磁响应组分)和生物相容性植物油(基载液)构成。双层的油酸包裹磁颗粒使磁流体获得较好的稳定性。磁滞回线展现出该磁流体良好的磁响应能力。红外吸收光谱和光热升温曲线体现了该磁流体较好的光热转换效率和光热稳定性。图3. BFR在体外模拟血液循环环境中的运动。(A) BFR 可被控制移动到全血环境中三维血管模型的任意分支。比例尺:5 毫米:(B) BFR 在肝门静脉血管模型中的运动控制,显示了 BFR 由于可变形性和分裂能力而在血管中的可移动性。比例尺:2 毫米。(C) 磁流体机器人越过障碍物的侧面示意图。(D) BFR 在磁阻力作用下穿过障碍物和心脏组织表面的沟槽。(E) BFR 超声成像示意图。比例尺:5 毫米:(F) BFR 在一块牛心血管组织的内表面形成一个稳定的球体。(G) 超声成像视频快照,显示运动控制过程中 BFR 在不同时间的位置。比例尺:2 毫米。(H) BFR 在全血环境中逆流而上。比例尺:1 毫米。同时该研究对BFR在针对模拟体内靶向治疗环境的运动控制进行了详细研讨。通过四线圈三维电磁系统,磁流体机器人可以实现高精度三维运动控制。由于其具有极强的变形、分裂和融合能力,BFR可以在更为复杂的血管环境(如模拟肝门静脉模型)中运动,以及逆血流的运动。此外,因所选磁流体基载液材为有机液体,该种磁流体并不会与血管和心脏内壁发生粘连,可以实现在血管中和心脏表面的运动控制。磁颗粒与体内环境的密度差异也使得超声成像对BFR在体内的位置进行实时显示。图4. 体内肿瘤杀伤实验。(A) 各实验组裸鼠在治疗六天后的肿瘤情况,(B) 体重曲线。(C) 肿瘤大小曲线。(D) 六天治疗后离体肿瘤组织的体积统计。(E) 小鼠肿瘤切片的 H&E 染色结果。比例尺:50 微米。(F) 和 (G) 肿瘤切片的 TUNEL 和 KI67 染色结果。黑色背景图像为荧光图像,白色背景图像为特征荧光图像。比例尺:100 μm。此外,该种磁流体对体内肿瘤的治疗效果得到了验证。通过小鼠实验可以观察到治疗组小鼠的肿瘤体积有明显的减小。在染色结果中治疗组也展现出了对肿瘤组织的杀伤和抑制生长效果。
  • 科学创新 | 白藜芦醇有效改善母体免疫激活(MIA) 诱导的小鼠自闭ASD症样行为
    科学创新 | 白藜芦醇有效改善母体免疫激活(MIA) 诱导的小鼠自闭ASD症样行为自闭症谱系障碍(Autism spectrum disorder,ASD)是一种主要在儿童中出现的神经发育障碍性疾病,主要特征是社交功能障碍和局限、重复的行为或兴趣。妊娠期母体感染是子代发生ASD的重要原因,母体免疫激活(Maternal immune activation,MIA)引起的炎症浸润可导致胎儿神经发育障碍。根据流行病学调查,全球大约有7800万人患有ASD,而且在过去20年里,ASD患者的数量迅速增加。然而,一些用于治疗ASD的药物效果有限,而且还会引起高血糖、血脂异常、体重增加等副作用。因此,迫切需要找到更有效的治疗方法。近期,哈尔滨医科大学公共卫生学院儿少卫生与妇幼保健教研室在《Journal of Nutritional Biochemistry》发表题为“Resveratrol regulates Thoc5 to improve maternal immune activation-induced autism-like behaviors in adult mouse offspring”(第一作者:曾心、范琳琳;通讯作者:武丽杰、梁爽)的研究成果,基于中医药食同源的概念,验证了白藜芦醇对母体免疫激活诱导的小鼠ASD样行为的治疗作用。研究团队采用综合生物信息学方法,对药食同源的中草药和药物靶点进行了大规模筛选和分析,确定白藜芦醇和Thoc5分别是治疗母体免疫激活诱导的小鼠ASD样行为的最佳小分子成分和药物靶点,经体外实验结果显示,发现白藜芦醇能够增加Thoc5的表达。为更好的验证白藜芦醇的药用潜力,研究人员对小鼠进行了体内实验,通过 SOPTOP激光共聚焦扫描显微镜 观察Iba-1(小胶质细胞的标志物)在胎鼠大脑中的表达情况。实验结果显示,MIA胎鼠大脑中Iba-1的表达水平明显高于PBS组,但经过白藜芦醇预处理后,Iba-1在胎脑中的表达显著降低。▲免疫荧光法观察Iba-1表达情况本研究首次全面探索了药食同源草药治疗ASD的有效成分和靶点。通过体外和体内实验,成功证明了白藜芦醇能够增加Thoc5的表达,降低IL-6的水平,并抑制MIA引起的胎盘、胎脑和后代大脑皮层的炎症,改善成年后代的ASD样行为。论文信息:Zeng X, Fan L, Li M, Qin Q, Pang X, Shi S, Zheng D, Jiang Y, Wang H, Wu L, Liang S. Resveratrol regulates Thoc5 to improve maternal immune activation-induced autism-like behaviors in adult mouse offspring. J Nutr Biochem. 2024 Apr 5:109638. doi:10.1016/j.jnutbio.2024.109638. Epub ahead of print. PMID: 38583499.
  • Nature Medicine:武阳丰团队证实,低钠盐可安全降血压、减少心血管事件
    2023年4月13日,北京大学武阳丰教授团队在 国际顶尖医学期刊Nature Medicine上发表了题为: Salt substitution and salt-supply restriction for lowering blood pressure in elderly care facilities: a cluster-randomized trial 的研究论文。 该研究发现, 将养老院厨房中的普通盐更换为富钾低钠盐,在2年干预期间,入住老人的收缩压平均下降7.1mmHg,舒张压平均下降1.9mmHg,主要心血管事件减少40%。 与此同时,逐步减少厨房供盐的措施未能取得成功,24小时尿钠、血压及主要心血管病事件均未见显著下降。 高血压是中国居民发生心血管病的最主要危险因素。减少人群钠摄入是全球公认的高血压及慢性病防治重要策略。然而,世界卫生组织的最新报告表明:实现“到2025年将钠摄入量减少30%”的全球目标仍面临巨大的困难和挑战。 集体养老人群中低钠盐和逐步减少厨房供盐的干预效果和安全性评价 (DECIDE-Salt) 研究,正是为了探索适合全人群推广的有效减钠策略。它试图通过一项严格设计的整群随机对照试验,同时评价两种减盐策略的有效性和安全性:一是用富钾低钠盐替换普通食盐,二是逐步减少厨房供盐量。 食用富钾低钠盐作为一种减盐策略,在降低钠摄入的同时,增加钾的摄入,能够实现“双重降压”。阶梯式逐步减少厨房供盐是研究团队开发的一项创新干预策略,以每3个月为一个阶梯,每次减少5%-10%的厨房供盐,试图使养老人群在不知不觉中实现减少钠摄入。 DECIDE-Salt研究于2017年至2020年期间,在山西省长治县和阳城县、陕西省西安市和内蒙古自治区呼和浩特市四地共48所养老机构中开展,纳入1612名符合入组条件 (55岁以上且测量了基线血压) 的入住老人作为评价干预效果的研究对象。研究采用2×2析因、整群随机对照设计,将养老机构按所在地区分层,随机分组。分别于第6、12、18和24月进行随访,测量血压并了解主要心血管病事件发生情况。 研究结果显示:在有效性方面:与24家仍食用普通盐的养老院老人相比,24家更换为富钾低钠盐的养老院老人收缩压、舒张压分别平均降低-7.1mmHg、-1.9mmHg;主要心血管病事件显著减少40%;全因死亡减少16%,但未达到统计学显著性;24小时尿钾显著升高,尿钠下降但未达统计学显著性水平。 在安全性方面:与食用普通盐的养老院老人相比,更换为富钾低钠盐的养老院老人,化验检出高血钾增加、低血钾减少;两年间仅发生3例持续高血钾 (血钾5.5mg/dL) ,低钠盐组2例,普通盐组1例,但均未发生不适症状或其他不良反应;化验检出高血钾的51人中,发生2例死亡,低钠盐组与普通盐组各1例,分别死于髋骨骨折后并发症和肺癌。“阶梯式逐步减少厨房供盐”策略未能取得成功,所有观察指标,包括24小时尿钠、收缩压、舒张压及主要心血管病事件等在逐步减供组和常规供应组间均未见到显著性差异。低钠盐组和普通盐组在基线和干预期间收缩压的变化低钠盐组和普通盐组干预期间心血管事件累计发生风险 2021年武阳丰教授团队发表于《新英格兰医学杂志》 (NEJM) 的SSaSS研究显示, 在患有脑卒中或未控制的高血压人群中使用低钠盐替换普通盐,可显著降低脑卒中、心血管事件和全因死亡风险。与SSaSS研究相比,DECIDE-Salt的研究人群更加宽泛,有一半的养老院在城市,有脑卒中或冠心病的老人仅占1/3,近40%血压正常,近1/4的人基本健康。即使如此,DECIDE-Salt仍取得了远较SSaSS研究更好的降压效果和更好的减少主要心血管病事件的效果。这说明只要能够较好地解决依从性,确保长期坚持食用低钠盐,就会取得良好的心血管病防控效果。 与既往所有的低钠盐临床试验不同,DECIDE-Salt没有将患有慢性肾病或正在服用保钾药物的老人排除在外,而是采取了较为严格的高钾血症高危人群监测计划来及时发现和处理研究期间可能发生高钾血症的情况。研究中,有5.5%的老人患有慢性肾病、5.3%长期卧床、8.3%正在服用有保钾作用的药物。尽管如此,研究结果表明,低钠盐组未增加临床高钾血症和其他严重不良事件。这些结果说明养老人群中推广应用低钠盐是较为安全的,也间接说明将低钠盐向其他发生高钾血症风险较低的人群(如年轻人)推广将更加安全。 DECIDE-Salt研究课题负责人、我国著名心血管病防治专家武阳丰教授指出: DECIDE-Salt的研究结果,为中国减盐行动选择合适的减盐策略提供了重要的循证决策依据。低钠盐简单、易行、安全、有效,具有很大的公共卫生价值,值得政府、企业和社会各界大力推广。消费者应尽可能采用低钠盐替代普通食盐,进行烹饪、调味和腌制食物。论文链接:https://www.nature.com/articles/s41591-023-02286-8
  • 安捷伦科技推出具有先进蛋白质大小测量功能的液相色谱解决方案
    安捷伦科技推出具有先进蛋白质大小测量功能的液相色谱解决方案1260 Infinity 多检测器 Bio-SEC 解决方案为大分子生物治疗药物开发提供无可比拟的分析性能 2014 年3月14日,北京 — 安捷伦科技公司(纽约证交所:A)宣布推出 1260 Infinity 多检测器 Bio-SEC 解决方案,该解决方案是整个 Infinity 液相色谱系统系列中的最新创新成果。新一代体积排阻色谱 (SEC) 系统具有先进的光散射检测功能、完全生物惰性的仪器、高分离度的色谱柱以及直观的软件。这些特点将素有“蛋白质聚集体分析的黄金标准”之称的 SEC 的分析速度、灵敏度以及重现性推向了全新的水平。 安捷伦液相分离事业部业务开发经理 Helmut Schulenberg-Schell 说:“大分子蛋白质生物治疗药物的开发对于人类临床治疗来说是一个重大突破,但是为了成功开发药物,生物制药行业亟需严格的研究、测量和分析技术,以充分确保这些化合物的安全性和有效性。我们强大的全新 SEC 液相色谱解决方案能够为生物制药研究者提供前所未有的稳定分析性能和无可比拟的可重现性。” SEC 可用于蛋白质大小测量和聚集体以及生物结合体研究。那些在重组蛋白质和单克隆抗体生物制剂中积聚的“错误折叠”蛋白质即使浓度非常低,但也是有毒性的,会导致致病效应。在药物开发生命周期的每一个阶段,包括从早期研究,到临床配制,再到大规模生产,都必须对这些错误折叠蛋白质进行鉴定和修复。 多检测器 Bio-SEC 解决方案具有先进的检测性能和完善而直观的软件,能够为您提供最佳灵敏度和准确性。在整个药物开发生命周期中,采用该技术将大大简化并加速工作流程,节省将生物治疗药物推向市场的宝贵时间和金钱。 如需了解关于全新 1260 Infinity 多检测器 Bio-SEC 解决方案以及安捷伦全套 Infinity 系列液相色谱产品的更多信息,请访问 www.agilent.com/chem/infinity。 关于安捷伦科技公司 安捷伦科技公司(纽约证交所:A) 是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20600 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2013 财年,安捷伦的净收入达到 68 亿美元。有关安捷伦科技的更多信息,请访问:www.agilent.com.cn。 2013 年 9 月 19 日,安捷伦宣布将通过对旗下电子测量公司进行免税剥离,分拆为两家上市公司的计划。分拆后的电子测量公司命名为是德科技 (Keysight Technologies, Inc.),此次分拆预计将于 2014 年 11 月初完成。 更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news
  • 小鼠原代海马神经元细胞的分离培养方法!
    小鼠原代海马神经元细胞的分离培养方法!海马体主要负责记忆和学习,日常生活中的短期记忆都储存在海马体中。神经元是构成神经系统结构和功能的基本单位。神经元具有长突起,由细胞体和细胞突起构成。小鼠海马神经元细胞的组织来源于实验小鼠的正常脑组织,因为海马神经元细胞类似于干细胞属于高分度分化的细胞特性,具有不能传代,不能增殖等特点,所有收到细胞后尽快使用。为了更好的服务于广大科研工作者,百欧博伟生物技术人员特提供了海马神经元细胞分离培养方法,技术因人而异仅供参考:1、试验所需仪器设备及试剂(1)仪器生物安全柜CO2细胞培养箱荧光倒置显微镜高速冷冻离心机电热恒温鼓风干燥箱(2)试剂耗材T25细胞培养瓶血球计数板细胞培养孔板红细胞裂解液神经元完全培养基0.25%胰蛋白酶(含0.02%EDTA)多聚甲醛(PFA)DAPITriton X-100山羊血清NSEGoat anti-Rabbit lgG(H+L)Cross-Adsorbed Secondary antibody,Alexa Fluor 594Fluoromount-G荧光封片剂2、分离培养方法1) 取1-10 d的新生小鼠。用75%的乙醇浸泡,2) 在冰浴的PBS中分离海马,PBS洗涤3次,剪碎,3) 用0.25% Trypsin + 0.1% Ⅰ型胶原酶37℃水浴振荡消化30min,4) 用FBS终止消化,轻轻吹打,5) 过100 μm 滤网,6) 收集滤液,300 g离心5 min,7) 用完全培养基重悬沉淀,铺瓶。3、免疫荧光3.1.实验步骤(1)细胞爬片取3片玻璃片于24孔板中,每孔加入培养基1mL,加入细胞0.02million个/孔。置培养箱2h或过夜。(2)固定细胞爬片后,吸出培养基,用PBS洗1遍,加入4% PFA于4℃固定30min。用PBS洗3×5min/次。也可最后一次不吸出PBS,放4℃过夜。(3)破膜封闭将玻片除去水分,置于培养皿支撑物上,玻璃片封闭液配置:0.5% Trition X-100与PBS 1:1混合,再加10% 血清,取50uL破膜封闭液滴于防水膜上,将玻片上有细胞的一面盖上2h。(4)一抗孵育一抗配制:抗体与PBS 1:100(200)稀释破膜封闭后,取50uL一抗于防水膜上(湿盒中),将玻片(有细胞的一面)盖上置于4℃(最多可放置一周)(5)二抗孵育室温避光孵育二抗(二抗:PBS=1:500)2h后,PBS洗3×5min/次,染DAPI(DAPI:PBS=1:1000)5min,PBS洗3×5min/次。(6)包埋玻片上各滴1滴Fluoromount-G,将有细胞的一面盖上。鉴定细胞为P1代细胞3.2.检测结果(1)细胞免疫荧光鉴定照片阴性100X-DAPINSE100X-DAPI(2)检验基本情况:经免疫荧光鉴定,该细胞纯度达到90%以上。除了上述的细胞分离方法以外,百欧博伟还有很多关于其他细胞的分离方法,想要学习的小伙伴可以来百欧博伟进行现场学习,如果想要其他原代分离培养方法,可打电话或咨询相关技术人员哦。
  • 江西中医学院高效液相色谱仪等设备中标公告
    江西国政招标咨询有限公司受江西中医学院委托,根据江西省政府采购工作领导小组办公室(2011)部门188号文批复,对江西中医学院高效液相色谱仪等设备采购项目(采购编号:JXGZ2012-04-0901)进行公开招标采购,采购活动于2012年5月10日在江西省南昌市公共资源交易中心进行,经评标委员会推荐,采购人确定,中标结果如下:包号项目编号货物名称中标单位中标金额0111B188001超高压液相色谱/四极杆-飞行时间串联质谱仪(进口产品)江西省通用技术进出口有限公司叁佰叁拾玖万捌仟元整(¥3398000.00)11B188002高效液相色谱仪(进口产品)0211B188004全自动生化分析仪(进口产品)南昌百特生物高新技术股份有限公司陆拾叁万捌仟陆佰元整(¥638600.00)0311B188003超速离心机(进口产品)实质性响应供应商不足三家,该包废标0411B188011全波长酶标仪(进口产品)实质性响应供应商不足三家,该包废标11B188015真空离心浓缩仪(进口产品)11B188008倒置显微镜(进口产品)11B188007倒置荧光显微镜系统(进口产品)0511B188006无创血压测量系统(进口产品)江西圆通科技有限公司叁拾陆万壹仟元整(¥361000.00)11B188018电泳转印系统(进口产品)11B188019化学发光凝胶成像系统(进口产品)0611B188016实时荧光定量PCR仪(进口产品)江西省中星进出口有限公司肆拾壹万柒仟柒佰元整(¥417700.00)11B188017梯度PCR仪(进口产品)0711B188029血流变仪南昌君安创业生物科技有限公司肆拾肆万贰仟叁佰元整(¥442300.00)11B188030血凝仪11B188031血小板聚集仪11B188032血沉测试仪11B188005小动物行为学视频分析系统(进口产品)11B188022转轮式疲劳仪11B188023跳台记录仪0811B188044恒温金属浴南昌市锡南实验仪器制造有限公司贰拾玖万壹仟贰佰伍拾元整(¥291250.00)11B188043水平电泳仪11B188045超声波细胞破碎仪11B188046隔水式培养箱11B188047恒温培养摇床11B188048脱色摇床11B188049磁力搅拌器11B188050旋涡振荡器11B188051低温恒温槽11B188052十万分之一电子天平11B188053万分之一电子天平11B188054千分之一电子天平11B188055百分之一电子天平11B188056PH计11B188057旋转蒸发仪11B188042台式低速离心机11B188024小鼠饲养笼11B188025不锈钢小鼠笼架11B188026大小鼠群养繁殖笼11B188027大小鼠通用平放架11B188028大小鼠代谢笼11B188034制冰机11B188035全自动高压灭菌锅11B188036冰箱11B188037液氮罐11B188038自动三重纯水蒸馏器11B188039超声波清洗器11B188040电热鼓风干燥箱11B188041电热恒温水槽11B188033垂直净化工作台  本公告自发布之日起七个工作日内若无异议,将向中标供应商发《中标通知书》。  采购人:江西中医学院  采购人地址:南昌市湾里区云湾公路18号  采购人电话:0791-87118821  采购代理机构:江西国政招标咨询有限公司  详细地址:南昌市高新开发区高新七路186号一楼  联 系 人:熊思杰  电  话:0791-88194897  传  真:0791-88194861  邮  编:330096  开 户 行:南昌银行高新支行营业部  账  号:791911233300088  江西国政招标咨询有限公司
  • 王凯研究组:共聚焦光场显微镜对小鼠和斑马鱼大脑快速体成像
    p style="text-align: justify text-indent: 2em "8月10日23点,iNature Biotechnology/i在线发表了由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室研究员王凯研究组完成的题为《共聚焦光场显微镜对小鼠和斑马鱼大脑快速体成像》的研究论文。该研究发展了一种新型体成像技术:共聚焦光场显微镜(Confocal light field microscopy),可以对活体动物深部脑组织中神经和血管网络进行快速大范围体成像。/pp style="text-align: justify text-indent: 2em "跨脑区大规模的神经元如何整合信息并影响行为是神经科学中的核心问题,解答这一问题需要在更高时空分辨率上捕捉大量神经元活动动态变化的工具。共聚焦显微镜和双光子显微镜等运用于活体脑成像的传统工具基于点扫描,时间分辨率较低,难以研究大范围脑区中神经元的快速变化。因此,近年来科研人员一直致力于开发更快的成像方法。在多种新技术中,光场显微镜具有潜力,得到广泛关注,其特点在于可以在相机的单次曝光瞬间,记录来自物体不同深度的信号,通过反卷积算法重构出整个三维体,实现快速体成像,在线虫、斑马鱼幼鱼等小型模式动物上已获得初步应用。/pp style="text-align: justify text-indent: 2em "传统光场显微镜存在两个难以解决的问题,限制了其在生物成像上的应用。首先,重构的结果会出现失真。2017年,王凯研究组研发的新型扩增视场光场显微镜(eXtended field-of-view Light Field Microscopy, XLFM)解决了这一问题,并应用于自由行为斑马鱼幼鱼的全脑神经元功能成像上,首次三维记录了斑马鱼幼鱼在完整捕食行为中的全脑神经元活动的变化。其次,现有光场显微成像技术缺乏光学切片能力,无法对较厚组织,如小鼠的大脑进行成像。让光场显微镜具有共聚焦显微镜一样的光学切片能力,滤除大样品中焦层之外的背景信号来提高信噪比,是提高成像质量、可广泛应用的关键所在。/pp style="text-align: justify text-indent: 2em "然而,传统共聚焦显微镜采用激光逐点扫描和共轭点针孔检测来降低焦面外噪声的策略不适用于三维光场显微镜。面对这一挑战,研究团队创新提出广义共聚焦检测的概念,使其可以与光场显微镜的三维成像策略结合,在不牺牲体成像速度的前提下有效滤除背景噪声,提高了灵敏度和分辨率。这种新型的光场显微成像技术称为共聚焦光场显微镜。/pp style="text-align: justify text-indent: 2em "研究团队在不同动物样品上测试了共聚焦光场显微镜的成像能力。团队成员对包埋的活体斑马鱼幼鱼进行全脑钙成像,对比共聚焦和传统光场显微镜的成像结果,发现加入光学切片能力后,图像分辨率和信号噪声比提高,可以检测到更多较弱的钙活动。进一步的,将共聚焦光场显微镜和高速三维追踪系统结合,对自由行为的斑马鱼幼鱼进行全脑钙成像,在ø 800 μm x 200 μm的体积内达到2 x 2 x 2.5 μmsup3/sup的空间分辨率和6Hz的时间分辨率。受益于更高的分辨率和灵敏度,可以识别出斑马鱼幼鱼在捕食草履虫过程中单个神经元的钙离子活动的变化。/pp style="text-align: justify text-indent: 2em "团队成员验证了共聚焦光场显微镜对小鼠大脑的成像效果,对清醒小鼠的视皮层进行钙成像,可以同时记录ø 800 μm x 150 μm的体积内近千个神经元的活动,最深可达约400 μm,且连续5小时以上稳定记录超过10万帧,没有明显的光漂白。团队成员进一步尝试使用共聚焦光场显微镜对鼠脑中的血细胞进行成像,深度可达600 μm,拍摄速度70 Hz,同时记录上千根血管分支中群体血细胞的流动情况并计算血细胞的速度,相比之前的传统成像方法通量提高了百余倍。/pp style="text-align: justify text-indent: 2em "研究团队在自由行为的斑马鱼幼鱼和小鼠大脑上证明了共聚焦光场显微镜有更高的分辨率和灵敏度,为研究大范围神经网络和血管网络的功能提供了新的工具。同时,该技术不仅适用脑组织的成像,还可以根据所需成像的样品种类灵活调整分辨率、成像范围和速度,应用在其他厚组织的快速动态成像中。/pp style="text-align: justify text-indent: 2em "研究在王凯的指导下,主要由博士研究生张朕坤、白璐,以及助理研究员丛林共同完成。王凯研究组余鹏、张田蕾,中国科学技术大学本科生石万卓,杜久林研究组李福宁做出贡献,研究员杜久林参与合作并给予指导意见。研究得到中科院脑智卓越中心实验动物平台的支持。研究工作受到科技部、中科院、国家自然科学基金委员会和上海市的资助。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/9bfa0661-24ad-4d0d-9ccd-10db465617c7.jpg" title="图1.jpg" alt="图1.jpg"//pp style="text-align: justify text-indent: 2em "图1.(上)共聚焦光场显微镜原理示意图。(下)不同于传统光场显微镜,共聚焦光场显微镜采用片状照明,选择性激发样本的一部分,在垂直照明的方向上扫描,采集到的信号被遮挡板过滤掉焦层范围之外的部分。对采集到的图像进行重构可以得到焦层内的三维信息。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/28e2bd6d-59f5-4ff1-8085-355f6d295cbf.jpg" title="图2.jpg" alt="图2.jpg"//pp style="text-align: justify text-indent: 2em "图2.(左)斑马鱼幼鱼捕食行为的一个例子。0s 为斑马鱼吞食草履虫的时刻。(右)左图斑马鱼捕食行为中,共聚焦光场显微镜记录到的两个不同脑区的神经元活动。箭头所指为过程中激活的单个神经元。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/c26412e7-a408-4c67-8533-1c5a118fdb4b.jpg" title="图3.jpg" alt="图3.jpg"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(68, 68, 68) font-family: 微软雅黑 background-color: rgb(255, 255, 255) " /span图3.(左)共聚焦光场显微镜拍摄得到的小鼠视皮层中的复杂血管网络。6个在不同深度拍摄的体积连接为一个深度达600 μm的三维结构。(中)100 μm到250 μm深度血管网络的平面投影,颜色代表不同血管分支中血细胞的平均流速。(右)图中箭头所指的区域中五个血管分支在一段时间内流过血细胞数量的计数。/p
  • Nature!庄小威团队利用MERFISH技术绘制小鼠全大脑分子可定义和高空间分辨的细胞图谱
    在哺乳动物的大脑中,许多不同类型细胞形成复杂的相互作用网络,从而实现广泛的功能。由于细胞的多样性和复杂的组织,人们对大脑功能的分子和细胞基础的理解受到了阻碍。单细胞RNA测序(scRNA-seq)和单细胞表观基因组分析的发展使发现大脑中许多分子上不同的细胞类型成为可能[1,2]。然而,这些研究中有限的样本量可能导致对大脑细胞多样性的低估。此外,了解大脑功能背后的分子和细胞机制不仅需要对细胞及其分子特征进行全面的分类,还需要详细描述分子定义的细胞类型的空间组织和相互作用。在更精细的尺度上,细胞之间的空间关系是通过相邻分泌和旁分泌信号传递的细胞间相互作用和通信的主要决定因素。虽然突触通信可以发生在细胞体相距较远的神经元之间,但神经元和非神经元细胞之间的相互作用以及非神经元细胞之间的相互作用通常借助直接的体细胞接触或旁分泌信号,因此需要细胞之间的空间接近。而且涉及局部中间神经元的相互作用也倾向于发生在空间近端神经元之间。因此,一个高空间分辨率的全脑细胞图谱对于理解大脑的功能极其重要。来自美国哈佛大学的庄小威教授课题组使用多重误差鲁棒荧光原位杂交(MERFISH)技术对整个成年小鼠大脑中大约1000万个细胞中的1100多个基因进行了成像,并通过整合MERFISH和scRNA-seq数据,在全转录组尺度上进行了空间分辨的单细胞表达谱分析。研究人员在整个小鼠大脑中生成了5000多个转录不同的细胞簇(属于300多种主要细胞类型)的综合细胞图谱,将该图谱与小鼠大脑共同坐标框架进行定位,可以系统量化单个大脑区域的细胞类型组成和组织,并进一步确定了具有不同细胞类型组成特征的空间模块和以细胞渐变为特征的空间梯度。这种高分辨率的细胞空间图—每个细胞都具有转录组表达谱,有助于推断数百种细胞类型对之间的细胞类型特异性相互作用和预测这些细胞-细胞相互作用的分子(配体-受体)基础和功能。总之,此研究不仅为大脑的分子和细胞结构提供了丰富的见解,而且为其在健康和疾病中的神经回路和功能障碍奠定了基础。该结果于近日发表在Nature上,题为“Molecularly defined and spatially resolved cell atlas of the whole mouse brain”。研究小组通过MERFISH技术对横跨4只成年小鼠(1雌3雄)大脑整个半球的245个冠状面和矢状面切片上进行成像,根据DAPI和总RNA信号,单个RNA分子被识别并被分配到细胞,进而得到单个细胞的表达谱。总之,该研究对成年小鼠大脑中大约1000万个细胞进行成像和分割,包括11个主要的大脑区域:嗅觉区、等皮层(CTX)、海马形成、皮质底板(CS)、纹状体(ST)、苍白球、丘脑、下丘脑(HT)、中脑、后脑和小脑。基于典型相关性分析整合MERFISH数据和scRNA-seq数据,采用K最近邻(k-NearestNeighbor,KNN)分类算法对MERFISH细胞进行分类。为了对不同大脑区域的细胞类型组成和组织进行系统定量,他们将MERFISH生成的细胞图谱注册到艾伦脑科学研究所发布的小鼠脑三维图谱第三版(Allen Mouse Brain Common Coordinate Framework,CCFv3)[3],可将每个单独的MERFISH成像细胞及其细胞类型身份标签放入3D CCF空间(图1)。图1 对整个小鼠大脑的分子定义和空间分辨的细胞图谱(图源:Zhang, M., et al.. Nature, 2023)据统计,整个小鼠大脑由46%的神经元和54%的非神经元细胞组成,神经元细胞与非神经元细胞的比例在后脑中最低、在小脑中最高。神经元细胞包括315个亚类和超过5000个集群,其类型也表现出很强的区域特异性,大多数神经元亚类仅在11个主要区域中的一个区域富集。这11个主要区域包含了不同数量的细胞类型,尤其是后脑、中脑和下丘脑所包含的神经元细胞类型的数量以及局部复杂性远远高于其它大脑区域。基于神经递质转运体和参与神经递质生物合成相关基因的表达,他们将成熟的神经元分为8个部分重叠的组别。其中,谷氨酸能神经元和γ-氨基丁酸(GABA)能神经元分别约占神经元总数的63%和36%,谷氨酸能与GABA能神经元的比例在不同的大脑区域中差异很大,而5-羟色胺(5-HT)能、多巴胺能、类胆碱能、甘氨酸能、去甲肾上腺素能和组胺能神经元仅占神经元总数的2%(图2c)。谷氨酸能神经元和GABA能神经元广泛分布于全脑,可分为具有不同空间分布的不同细胞类型;在谷氨酸能神经元中,Slc17a7(Vglut1)、Slc17a6(Vglut2)和Slc17a8(Vglut3)在不同的脑区分布存在差异,Slc17a7主要位于嗅觉区、CTX、海马形成、CS和小脑皮层,而Slc17a6主要位于HT、中脑和后脑(图2d,e)。他们还观察到两个未成熟神经元(IMNs)亚类:一种是抑制性的,一种是兴奋性。抑制性IMNs由30个簇组成,沿脑室下区(SVZ)分布,通过前连合处延伸至嗅球;兴奋性IMNs由七个簇组成:簇516主要位于嗅觉区域,而其它簇沿海马体形成的齿状回分布(图2f),这与之前关于海马形成中成人神经发生的发现一致[4]。图2 神经元细胞的类型和空间分布(图源:Zhang, M., et al.. Nature, 2023)非神经元细胞包括23个亚类和117个簇。通过量化,研究小组发现在整个大脑中,非神经元细胞由30%少突胶质细胞、6%少突胶质细胞前体细胞(OPCs)、28%血管细胞、23%星形胶质细胞、8%免疫细胞和5%其它类型细胞组成。一些非神经元细胞类型,特别是星形胶质细胞和心室系统中的细胞也表现出很强的区域特异性。星形胶质细胞包括36个细胞簇,最大的两个集群Astro 5225和Astro 5214,分别占星形胶质细胞总数的48%和33%。基本上每个Astro星团都显示出独特的空间分布,Astro 5225只位于端脑区,Astro 5214只位于非端脑区,Astro 5215位于丘脑,Astro 5216位于后脑,Astro5231-5236位于嗅球,Astro 5207位于小脑,Astro 5222位于齿状回,Astro 5208富集于靠近软脑膜表面的髓质,Astro 5228、5229和5230位于SVZ沿线,延伸至嗅球,并与抑制性IMNs广泛共定位(图3d)。少突胶质细胞在纤维束中富集,在整个脑干中十分丰富,而OPCs则均匀分布地整个大脑;在集群水平上,一些少突胶质细胞和OPCs也表现出区域特异性,如Oligo 5277在皮层中富集,而Oligo 5286在后脑中富集(图3e)。与心室系统相关的细胞也呈现区域特异性分布,在第三脑室,下丘脑室管膜—胶质细胞位于腹侧区域,而ependymal细胞占据背侧区域,Hypendymal细胞位于第三脑室背侧的下联合器,心室内的主要细胞是脉络膜丛细胞和血管软脑膜细胞(VLMCs)。除了VLMC 5301和VLMC 5302,大多数VLMC集群被限制在软脑膜(图3f)。图3 非神经元细胞的类型和空间分布(图源:Zhang, M., et al.. Nature, 2023)接下来,研究团队为每个细胞定义了一个局部细胞类型的组分矢量,并使用这些矢量聚类细胞,从而得到了包含相似邻域细胞类型组成的细胞的“空间模块”(图4a)。他们确定了16个一级空间模块和130个二级空间模块,一级空间模块将大脑分割成与CCF中定义的主要大脑区域基本相吻合的区域,一个显著的差异是中脑和后脑之间的边界(图4b,c)。许多2级空间的模块与CCF中定义的子区域一致,但观察到更多的差异(图4d)。此研究中的空间模块描述是基于单个细胞的转录组范围内的表达谱所定义的细胞类型,因此比CCF中脑区描述的信息具有更高的分子分辨率,空间梯度代表了对该区域的分子轮廓的更精确的描述。图4 空间模块:分子定义的大脑区域(图源:Zhang, M., et al.. Nature, 2023)考虑到在某些情况下,细胞的基因表达谱可能会表现出渐进或连续的变化,他们因此检查了所有的细胞亚类,结果发现细胞的空间梯度广泛分布在大脑的许多区域。例如,颅内(IT)神经元在整个CTX上形成了一个连续的梯度,在这个区域,基因表达沿皮层深度方向逐渐变化,但第2/3层IT神经元的分离更为明显(图5a)。在纹状体中,D1和D2中棘神经元均沿背外侧-腹内侧轴形成空间梯度(图5b,c)。在外侧间隔复合体(LSX)中,几个GABA能亚类沿着背腹轴形成了一个梯度(图5d)。在海马体的CA1、CA3和齿状回区域和中脑的下丘中也观察到空间梯度。他们也观察到了一些非神经元细胞之间的空间梯度,如下丘脑室管膜—胶质细胞,沿着第三脑室的背腹轴形成了一个连续的梯度(图5e)。通过基于UMAP(一致的多方面逼近和投影以进行降维)的基因表达可视化分析,他们发现一个大规模的跨越HT、中脑和后脑区域的空间梯度(图5f)。图5 分子定义的细胞类型的空间梯度(图源:Zhang, M., et al.. Nature, 2023)最后,他们分析了亚类水平上的细胞类型,并推断单个大脑区域中细胞类型特异性的细胞-细胞相互作用(包括非神经元细胞间,非神经元细胞和神经元之间以及神经元间)。几百对细胞亚类被确定,统计学结果显示有显著的相互作用。预测的大多数具有相互作用的细胞类型对包含多个配体-受体对,与同一细胞类型对中的非近端细胞对相比,近端细胞对的表达显著上调,为这些细胞间相互作用的分子基础提供了见解。在非神经元细胞之间,发现内皮细胞和周细胞均与大脑中的边缘相关巨噬细胞(BAMs)、巨噬细胞有显著的相互作用。在这两种情况下,与非近端细胞对相比,来自层粘连蛋白信号通路的配体-受体对在近端细胞对中均明显上调,一些细胞因子(内皮细胞中的Cytl1和周细胞中的Ccl19)在BAMs近端血管细胞中表达上调,这说明大脑中的血管细胞可能利用这些细胞因子来招募巨噬细胞(图6d,e)。小胶质细胞也被发现与内皮细胞、周细胞之间的显著相互作用;与内皮细胞相比,周细胞与小胶质细胞相互作用的可能性更高,而与BAMs相互作用的趋势则相反(图6f,g)。他们还观察到神经元和非神经元细胞之间的显著相互作用,例如星形胶质细胞和抑制性IMNs在嗅球中、星形胶质细胞和兴奋性IMNs在海马形成中表现出显著的相互作用。此分析也预测了一些神经元亚类之间的相互作用,例如,海马形成过程中Pvalb枝形吊灯状GABA神经元和CA3谷氨酸能神经元之间、IPN Otp Crisp1 GABA神经元和中脑的DTN-LDT-IPN Otp Pax3 GABA神经元之间的相互作用。图6 细胞间的相互作用和通信(图源:Zhang, M., et al.. Nature, 2023)文章结论与讨论,启发与展望通过MERFISH技术成像约1000万个细胞,并将MERFISH数据与全脑scRNA-seq数据集整合,该研究生成了一个具有高分子和空间分辨率的、横跨整个小鼠大脑的分子定义的细胞图谱。进一步将该图谱注册到了艾伦脑科学研究所发布的CCF中,提供了一个可被科学界广泛使用的参考细胞图谱,使科研人员能够确定每个大脑区域不同转录细胞类型的组成、空间组织和潜在的相互作用。一方面,非神经元细胞与神经元细胞或非神经元细胞之间的相互作用,以及配体-受体对、基因的相关上调,为测试不同非神经元细胞类型的功能作用提供了切入点。另一方面,将转录组成像与不同行为范式下的神经元活动成像相结合可以揭示神经元的功能角色[5]。未来的研究将结合空间分辨的转录组学分析和各种其它特性的测量(如表观基因组谱、形态学、细胞的连通性和功能、系统的基因扰动方法),将有助于大家阐述大脑的分子和细胞结构的功能和功能障碍在健康和疾病中的作用。MERFISH(Multiplexed Error-Robust Fluorescence In Situ Hybridization),一种空间分辨的单细胞转录组学方法,经过近年的发展已成为生命科学领域中最具有前景的单细胞测序技术之一。该技术独特的原理和方法,可实现对单细胞进行多重靶向探测,从而深入研究细胞的生物学特性,对于疾病诊治及药物研发等方面也有着广泛的应用价值。
  • 杨扬/韩华团队成功开发小鼠听觉皮层亚细胞结构的三维电镜重构算法
    2022年8月,上海科技大学生命科学与技术学院杨扬团队与中国科学院自动化研究所韩华团队合作,在Cell Press细胞出版社期刊Cell Reports上以长文形式发表了题为“Fear memory-associated synaptic and mitochondrial changes revealed by deep learning-based processing of electron microscopy data”的研究论文,该研究通过对恐惧学习小鼠听觉皮层突触的三维电镜重建和大规模比较分析,探究了小鼠听觉皮层中与恐惧记忆相关的神经元突触等亚细胞结构的变化情况,并用模型分析方法揭示了突触连接模式变化引起的信息存储容量的大幅提升。中国科学院自动化研究所刘静助理研究员、上海科技大学生命科学与技术学院漆俊倩博士、中国科学院自动化研究所陈曦研究员和李贞辰博士生为本文的共同第一作者,杨扬研究员、韩华研究员、谢启伟教授为本文的共同通讯作者。大脑中的神经网络由神经元通过复杂的突触连接构成,神经元编码、处理和存储信息从根本上依赖于突触的连接模式以及在此基础之上的协调活动,解析突触的连接模式对理解大脑的结构与功能至关重要。在哺乳类动物大脑中,除了由单个轴突小结(axonal bouton)与单个树突棘(dendritic spine)形成的1-1型连接,即单位点突触连接外,大脑中的突触连接模式还包括由单个轴突小结与多个树突棘形成的1-N型连接,或多个轴突小结与单个树突棘的N-1型连接,统称为多位点突触(multiple-contact synapses,MCS)。此前,已有很多研究通过光学显微镜发现学习记忆可以改变突触的组织结构,由于突触间隙宽度仅有几十纳米(低于一般光学显微镜的衍射极限),因此在光学显微镜下观察突触结构的精细变化非常困难。与此同时,突触三维结构的光学数据获取和分析高度依赖于人工,更是极大限制了突触结构的重建数量和分析规模。为探究学习记忆如何促进突触多位点连接模式的形成及效果,本项研究以经典的听觉条件恐惧学习(auditory fear conditioning)为范式设置了实验组和对照组,基于大规模序列电子显微镜成像技术和深度学习识别模型,实现了电镜图像中多种亚细胞三维结构的自动提取,重构了小鼠听觉皮层135,000个线粒体和160,000个突触。实验组和对照组的大规模对比分析表明,尽管恐惧学习训练没有改变突触的空间密度与空间分布,却特异性地增加了1-N型突触的比例。进一步分析发现,绝大多数1-N型突触中的树突棘来自不同树突主干,并且这种多树突1-N型突触在神经元网络中能够起到信号广播的作用。为了进一步分析多树突1-N型突触的信息编码能力,本项研究建立了基于香农信息熵来计算突触信息存储容量(information storage capacity,ISC)的组合数学模型。在无新增突触的静态网络和包含新增突触的可塑性动态网络两种条件下,分别计算了引入多树突1-N型突触的ISC增量。在静态网络中,引入此类突触只是略微增加了ISC容量,而在动态可塑性网络中,此类突触将信息存储容量显著提高了50%。综上,基于序列电子显微镜成像技术和深度学习计算方法,研究者开发了小鼠听觉皮层亚细胞结构的三维电镜重构算法,自动重建精度可以满足大规模分析的精度需求,有效地节省了人工校验时间消耗,极大提高了分析效率。大规模电镜重构和对比分析结果在亚细胞水平揭示了学习记忆对大脑皮层突触、线粒体的组织结构和连接模式的影响,为类脑计算仿生模型的精确建模提供了结构基础和启发依据。图:(上左)听觉条件恐惧学习的对照组和实验组。(上右)轴突小结与树突棘替换或增加的示意图。(中左)不同突触连接模式的电镜图像及三维重构结果。1-N型突触由单个轴突小结与多个树突棘形成,N-1型突触由多个轴突小结与单个树突棘形成。(中右)不同突触连接模式示意图。绿色:树突;蓝色:轴突。(下左)密集重构揭示绝大多数1-N型突触中的树突棘来自不同树突主干。(下右)无新增突触的静态网络和包含新增突触的可塑性动态网络。该研究获得了国家科技创新2030重大项目、中国科学院战略性先导科技专项、国家自然科学基金、北京市科技计划的经费支持。作者专访Cell Press细胞出版社公众号特别邀请杨扬研究员、刘静博士和韩华研究员代表研究团队接受了专访,请他们为大家进一步详细解读。CellPress:过去也有基于电镜图像重构来探究突触和线粒体的研究报道,有的还完成了更大规模的密集重构。本文的方法和思路与过去的研究有何不同?杨扬研究员:电镜图像的密集重构对运算量的要求很高,工作量极大。而本文所使用的方法可以在不做密集重构的前提下,选择性识别和分割出研究者感兴趣的亚细胞结构,如本文关注的突触、线粒体,也可以推广到其他有特殊结构的细胞器。已有的突触或线粒体的自动重构算法多是像素或体素分割模型,也就是将图像中的像素或体素分类成前景或者背景。本文所使用的region-based卷积神经网络是一种实例分割网络,可端到端的完成目标实例的检测和分割。另外,针对强各向异性的序列电镜数据,本文提出一种2D到3D的重构方法,首先在2D上识别和分割亚细胞结构,随后应用3D连接算法完成3D的重构。这种方式可有效避免直接应用3D卷积神经网络带来的目标尺度在特征空间和图像空间不一致的问题。CellPress:多位点突触是一个新的概念吗?本文对此类突触的研究有何特别之处?杨扬研究员:一个突触前轴突小结与多个突触后树突棘形成的1-N多位点突触,和多个突触前轴突小结与一个突触后树突棘形成的N-1多位点突触,在过去的文献中都有过报道。但限于电镜图像人工识别的效率,过去的工作未能对这种特殊突触进行大规模的定量研究。本文通过基于机器学习的自动识别与重构算法实现了这一突破。此外,连接同一个多位点突触中的多个树突棘是来自同一根树突还是不同树突,代表了两种不同的神经元连接方式:前者仍是1对1的神经元连接,后者则是1个神经元对多个神经元的信息广播。本文通过密集重构,首次对这两类多位点突触进行了区分和定量,并发现后者在大脑皮层中,特别是学习之后占据了绝大多数,提示这种连接可能表征了大脑中突触层面的记忆痕迹。CellPress:人工智能算法在这个研究中发挥着怎样的作用?刘静博士、韩华研究员:近年来,人工智能算法已经深入应用到生命科学领域,加速甚至革新了生物学的研究进程。在连接组(Connectomics)领域,面对海量的高分辨电镜数据,借助人工智能算法绘制神经元的线路图是一个必不可少的环节。在本文中,我们设计了一套深度学习算法工具集,可以自动识别序列电镜图像中神经元、突触以及线粒体并恢复其三维形态。深度学习算法的应用大大提高了识别效率,将人从大量冗余复杂的标注工作中解放出来,加速了研究进程。CellPress:可否用简要的语言解释文中所提及的突触连接静态网络和动态网络,两者最核心的区别是什么?具有何种生物学意义?刘静博士、韩华研究员:突触连接网络是指根据神经元的几何拓扑特征来模拟突触连接模式的一种建模方式。其中,静态模型中仅考虑稳定的突触连接,假设没有新突触的形成或旧突触的消亡,本文使用信息熵定义静态网络的信息存储容量。而动态模型则将突触可塑性引入到网络中,允许新突触的形成,本文使用信息熵的增益表示新突触形成带来的信息存储容量的增加。动态模型通过模拟突触可塑性,与真实的大脑神经网络更为相似。CellPress:您认为该项研究对类脑计算有什么启发吗?刘静博士、韩华研究员:类脑智能(Brain-inspired Intelligence)本身就是通过模仿和借鉴人类神经系统的工作原理以构建新型的计算结构和智能形态。然而,目前人对大脑的生理机制还知之甚少。类脑研究的第一步就是要理解大脑,突触作为神经元连接的桥梁,是大脑中最重要的结构之一。突触的可塑性(synaptic plasticity)被认为与长时程记忆(long-term memory)有关。本文通过恐惧学习实验范式和电镜成像技术,发现了恐惧记忆能促进小鼠听觉皮层中一种特殊的1-N突触连接模式的形成,且这种连接模式大大增强了局部环路的信息编码能力。本研究中发现的这种局部神经环路信息传递模式或许能够作为一种记忆存储模块启发新型的类脑计算模型。作者介绍谢启伟教授谢启伟,北京工业大学现代制造业基地教授研究兴趣、领域:数据挖掘、图像处理和复杂系统智能;应用图像处理、机器学习和深度学习等方法研究基于电镜数据的神经元重建,集中于神经元电镜图像的前处理、超体素分割、图融合后处理等方法的研究,为神经科学提供有力工具,期待从脑的结构中挖掘出智能的本源。韩华研究员韩华,中国科学院自动化所研究员研究兴趣、领域:高通量显微成像技术产生海量影像数据,如何重构数据、分析数据、可视数据等已成为脑科学与类脑研究领域的重大挑战。我们致力于建立我国微观脑图谱的高通量技术体系和自主可控技术平台,持续突破大体块神经组织样品制备、长时程超薄切片连续收集、高通量扫描电镜三维成像、高精度神经结构三维重建等关键技术,开展多个百TB规模的微观脑图谱绘制工程,为构建类脑计算仿真提供生物真实网络和仿生建模依据。杨扬研究员杨扬,上海科技大学生命科学与技术学院助理教授、研究员研究兴趣、领域:以条件恐惧学习和增强式学习为行为范式,使用在体双光子成像、双光子全息光遗传、电镜、电生理等技术,研究与学习记忆相关的神经环路活动性和可塑性,及神经调制系统在其中所起的作用。
  • 预防代替治疗|《中国高血压临床实践指南2022》发布|看好家用血压检测仪等需求提升
    近日,国家心血管病中心、中国医师协会等多方联合制订的《中国高血压临床实践指南2022》发布,针对高血压诊治过程中的常见问题,给出了较为详细的循证推荐。其中尤为引人注目的是,将我国成人高血压的诊断标准由140/90mmHg下调至130/80mmHg。评论:1、诊断标准调低将增加高血压患病人群数量此次标准下调体现了高血压预防与诊治的防线前移,加强了初始预防的理念,减少因重视不足导致的心血管疾病和其他疾病危害的可能性。中国现有约3亿高血压病患者,新标准实施后患者数量将会有明显的提升,原本的亚健康人群将会有一部分纳入高血压病患人群,诊治思路从“治已病”开始向“治未病”转换。2、预防代替治疗利好前期治疗与预防,有利于总体医疗费用下降。调低血压诊断值,使纳入高血压范围的人群增多,用于前期治疗的费用可能略有增高,但用于后续治疗严重并发症,如脑卒中、心梗、肾功能不全等治疗的高额费用有望降低。3、看好家用血压检测仪、降压药及相关原料药等常规高血压防治手段的需求提升。我们认为患病人群的扩大将有效提升患病人群对于前期预防性、常规性防治手段的需求,建议关注家用血压检测仪、具备相关药品和原料药生产的企业。相关公司:华海药业、天宇股份、普洛药业、美诺华;鱼跃医疗、三诺生物等风险提示:公司业绩不及预期风险、市场竞争风险、生产风险、产品质量风险、临床指南落地进度不及预期风险、疫情相关风险等。
  • 借助双光子显微成像技术 北京大学陈良怡团队合作揭示小鼠社交行为神经编码机制
    陈良怡团队合作揭示小鼠偏好“喜新厌旧”的神经元集合和孤独症小鼠的缺陷社交行为是个人和人类社会生存和发展的基础。有关大脑通过何种方式编码社交行为信息这一科学问题,目前尚无确切答案。此外,孤独症、抑郁症、精神分裂症、社交恐惧症或创伤后应激障碍(PTSD)等患者,均存在显著社交识别或互动障碍,给家庭、社会和国家带来诸多问题和负担,当前仍缺乏行之有效的干预手段或治疗方法,原因之一在于对大脑处理和编码社交行为信息的神经机制知之甚少。既往研究表明,大脑内侧前额叶皮层(mPFC)在社交探索、社交恐惧和社会竞争等方面均发挥重要调控功能[1-4]。当小鼠进行社交探索行为时,mPFC脑区前边缘皮质(PrL)内部分兴奋性锥体神经元活动会显著增强[5, 6],mPFC神经元集群在处理不同社交对象信息时,其活动表现出较强的异质性[7, 8],而且mPFC脑区内抑制性GABA能中间神经元也同社交行为密切相关[1, 4, 9],然而,由于缺乏在体单细胞分辨率水平、实时动态可视化的神经编码研究方法,这些不同亚型神经元集群是如何编码特定社交对象信息的尚不明了。北京大学未来技术学院分子医学研究所、IDG麦戈文脑科学研究所、北大-清华生命科学联合中心、生物膜国家重点实验室陈良怡实验室,联合军事医学研究院吴海涛实验室以及北京大学工学院张珏实验室,在Science Advances杂志发表了题为“Encoding of social novelty by sparse GABAergic neural ensembles in the prelimbic cortex”的研究论文,解析了孤独症小鼠“喜新不厌旧”社交缺陷下的神经编码机制。在陈良怡实验室和程和平院士团队联合开发两代高时空分辨率的微型化双光子显微成像系统基础上[10, 11],通过建立改进型小鼠两箱社交行为学研究范式,利用MeCP2转基因孤独症小鼠模型和细胞亚型特异性Cre小鼠,借助微型化双光子显微镜钙成像技术,结合基于Tet-off系统的细胞特异性化学遗传学操控技术、CRISPR-Cas9介导的基因编辑和功能挽救等前沿技术,系统探讨了正常和孤独症小鼠模型不同社交行为过程中,PrL脑区内不同亚型神经元集群编码特定社交信息的模式差异。首先,借助微型化双光子钙成像技术,研究人员发现在小鼠自由社交活动过程中,PrL脑区内抑制性中间神经元较之于兴奋性锥体神经元具有更强的相关性。数学分析揭示其中存在稀疏分布的“社交特异”神经元,与之前研究的“社交相关”神经元不同,它们特异性地参与了同“陌生”或“熟悉”老鼠的社交行为。通过化学遗传学技术,特异性抑制社交行为过程中被激活的这些抑制性中间神经元亚群,能够显著破坏小鼠社交偏好及社交新颖性行为。提示PrL脑区内这群稀疏分布的中间神经元集群在调控小鼠社交偏好性以及“喜新厌旧”行为模式中,扮演着极为关键的角色。进一步,研究人员在进行小鼠两箱社交行为学观察时发现,MeCP2转基因孤独症小鼠社交偏好性并无显著缺陷,但会丧失典型的“喜新厌旧”样社交新颖性行为。利用CRISPR-Cas9基因编辑技术,在MeCP2转基因孤独症小鼠PrL脑区中间神经元内特异性剔除外源性MeCP2转基因后,可显著挽救孤独症小鼠“喜新厌旧”样社交缺陷表型。表明PrL脑区抑制性中间神经元内过表达MeCP2转基因可能是诱发孤独症小鼠产生社交新颖性行为缺陷的罪魁祸首。最后,通过系统分析野生型和MeCP2转基因孤独症小鼠模型PrL皮层内编码“陌生”和“熟悉”社交对象信息、且稀疏分布的抑制性中间神经元钙信号动力学特征,研究人员发现,当野生型小鼠分别与“陌生”或“熟悉“小鼠发生社交时,其PrL皮层中编码相关社交对象特异性神经元的发放概率、钙信号变化幅度以及达峰时间均存在显著差别。这两群细胞通过“跷跷板”式的协同增强效应,帮助小鼠确定面对不同类型对象采取不同的社交策略。而孤独症小鼠PrL脑区内相关神经元集群均明显异常,总体表现为“陌生”或“熟悉”社交对象引起社交特异神经元间反应差异消失,从而无法区分“陌生”和“熟悉”不同社交对象之间的差别,最终导致社交新颖性行为缺陷。综上,该研究工作发现在小鼠前额叶皮层内存在一群稀疏分布的中间神经元集群,分别负责编码社交行为中的“熟悉”和“陌生”社交对象信息,这些稀疏分布的神经集群在调控小鼠社交行为,尤其是社交新颖性行为中发挥着重要作用,揭示了个体在面对不同类型对象进行社交行为时的神经编码机制。该研究为深入理解孤独症等神经精神疾病患者社交行为缺陷的神经机制,探索精准靶向诊疗新策略提供了新的证据和线索。PI简历陈良怡北京大学未来技术学院学院教授北大-清华生命科学联合中心PI邮箱:lychen@pku.edu.cn实验室主页:http://www.cls.edu.cn/PrincipalInvestigator/pi/index5489.shtml研究领域:我们发展自驱动的活细胞智能超分辨率成像技术,并应用这些技术来研究生物医学重要问题。目前一方面的工作主要集中在引入物理光学中新成像原理、数学和信息学科中的图像重建新方法等,致力于发展可以在活细胞中实现两种以上模态光学信号探测的三维超分辨率成像的通用工具,实现同一活细胞样本上长时间、超分辨率、三维成像特定生物分子(荧光)和主要细胞器(无标记)。建立基于深度学习等手段Petabyte级的图像数据的高速处理以及分割手段,自动化、定量化描述活细胞内不同蛋白等分子以及细胞器的形状、位置以及相互作用等参数,找到新的细胞器并定义它们生化特性,最终目标是建立单细胞细胞器互作组学以及活细胞超分辨率病理学的概念,利用成像来揭示细胞内的异质性动态变化以及如代谢类疾病的发生发展机制。另一方面,我们也应用发展的高时空分辨率生物医学成像的可视化手段,系统研究血糖调控紊乱激素分泌在活体组织、细胞水平以及分子代谢水平的关系。参考文献:1.Xu, H., et al., A Disinhibitory Microcircuit Mediates Conditioned Social Fear in the Prefrontal Cortex. Neuron, 2019. 102(3): p. 668-682 e5.2.Kingsbury, L., et al., Cortical Representations of Conspecific Sex Shape Social Behavior. Neuron, 2020.3.Báez-Mendoza, R., et al., Social agent identity cells in the prefrontal cortex of interacting groups of primates. Science, 2021. 374(6566): p. eabb4149.4.Zhang, C., et al., Dynamics of a disinhibitory prefrontal microcircuit in controlling social competition. Neuron, 2021.5.Murugan, M., et al., Combined Social and Spatial Coding in a Descending Projection from the Prefrontal Cortex. Cell, 2017. 171(7): p. 1663-1677 e16.6.Liang, B., et al., Distinct and Dynamic ON and OFF Neural Ensembles in the Prefrontal Cortex Code Social Exploration. Neuron, 2018. 100(3): p. 700-714 e9.7.Pinto, L. and Y. Dan, Cell-Type-Specific Activity in Prefrontal Cortex during Goal-Directed Behavior. Neuron, 2015. 87(2): p. 437-50.8.Rigotti, M., et al., The importance of mixed selectivity in complex cognitive tasks. Nature, 2013. 497(7451): p. 585-90.9.Cao, W., et al., Gamma Oscillation Dysfunction in mPFC Leads to Social Deficits in Neuroligin 3 R451C Knockin Mice. Neuron, 2018. 97(6): p. 1253-1260.e7.10.Zong, W., et al., Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging. Nat Methods, 2021. 18(1): p. 46-49.11.Zong, W., et al., Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat Methods, 2017. 14(7): p. 713-719.
  • “精准用药多学科融合创新发展专家论坛暨控制H型高血压,精准预防心血管疾病培训班”成功举办
    精准用药多学科融合创新发展专家论坛2021年11月27日,由陕西省药学会、陕西省医学会主办,渭南市中心医院、渭南市现代心血管疾病防治研究中心承办,西安天隆科技有限公司协办的“精准用药多学科融合创新发展专家论坛暨控制H型高血压,精准预防心血管疾病培训班”在渭南市天启悦华酒店举办。来自渭南市及周边区域的50余位医药同行参加了此次会议,共同探讨心血管疾病精准治疗策略。下午14:20分,会议在大会主席、渭南市中心医院心血管病院心内科李军农主任的致辞中拉开帷幕。李主任指出,“在座的医药同仁都是精准医疗的践行者,H型高血压和脑卒中防控的‘渭南模式’已经取得了一些成绩,这是我们努力的结果。如何进一步去实践,更好地实现精准用药,还需要大家共同努力。今天的会议就提供了一个很好的学习和交流平台,我们一起来听听专家们的意见。”尹 彤中国人民解放军总医院会议邀请了中国人民解放军总医院心内科尹彤教授,在线分享《高血压药物基因组学的临床转化应用》专题报告。尹彤教授详细介绍了已经获得国家药监局(NMPA)批准的5个高血压基因位点和H型高血压基因检测位点产品的临床应用,并指出中国人群高血压药物基因组学证据需要继续积累,以期获得更多的临床验证和应用。侯江红渭南市中心医院渭南市中心医院心血管内科侯江红主任以《H型高血压专家共识解读》为题,从H型高血压的概念、H型高血压与脑卒中预防的循证医学证据和H型高血压诊断与治疗建议三个方面对H型高血压专家共识进行了详细的解读。董卫华西安交通大学第一附属医院西安交通大学第一附属医院药学部董卫华主任的报告题目为《药物基因检测在个体化药物治疗中的应用》。董主任介绍了药物基因组学与个体化治疗的关系,并分享了氯吡格雷、华法林、他汀类药物及卡马西平药物基因检测在临床的应用。董主任也指出我国临床药物基因组学也面临诸多困难,期望能够建立基于中国人群的药物基因组学指南,降低患者基因检测成本。陈 楚陕西省中医医院陕西省中医医院检验科副主任陈楚以《高血压药物基因检测的理论与实践》为题,用生动幽默的语言介绍了药物基因检测的原理和方法,并以高血压基因检测为例分享了基因检测的实践应用。李军农渭南市中心医院渭南市中心医院心血管病院心内科李军农主任作了《H型高血压管理与脑卒中精准预防的渭南实践》专题报告。李主任从精准医学的时代背景开始,介绍了H型高血压与脑卒中防控的意义和高血压精准管理的内涵。并着重分享了H型高血压管理与脑卒中精准预防渭南模式的成绩。专家们的分享精彩异常,引得参会人员阵阵掌声。讨论环节围绕“心血管疾病个体化药物治疗我们怎么做?”展开,与会嘉宾各抒己见,畅所欲言,就目前个体化用药中遇到的问题及应对措施展开激烈讨论。大家都表示,相信此次会议对渭南市高血压及心血管疾病的精准治疗有重要意义,渭南市精准用药工作会步入新的阶段。天隆科技携心血管疾病个性化用药基因检测整体解决方案参与此次会议,技术平台多选、检测项目多样、产品性能优异、报告解读全面,吸引了众多的参会者前来咨询,进行深入交流。天隆科技作为国内基因检测、分子诊断领域的知名企业,一直高度关注精准医疗领域,尤其是精准用药。天隆科技已经为近千家医疗机构及第三方检验所提供个性化用药基因检测整体解决方案,涉及心血管疾病用药、精神疾病用药、优生优育、代谢性疾病用药、免疫抑制剂、消化系统用药、肿瘤用药等多个临床专业多种疾病,为精准医疗提供基因检测技术支撑。
  • 文献解读丨小鼠组织中口服奥曲肽的MALDI-TOF质谱成像方法优化及评价
    本文由中国药科大学天然药物国家重点实验室药物代谢与药代动力学重点实验室所作,发表于Talanta 165 (2017) 128–135。 近年来,基质辅助激光解吸/电离飞行时间质谱成像(MALDI-TOF-MSI)技术受到了广泛的关注,因为它可以对动植物组织切片中不同的分子进行定位,尽管在逐点绝对定量中仍存在一些障碍。奥曲肽是一种合成的生长抑素类似物,在临床上广泛应用于预防胃肠道出血。 本研究的目的是建立一种定量显示奥曲肽在小鼠组织中空间分布的MALDI-TOF-MSI方法。在这个过程中,一个结构相似的内标物与基质溶液一起被点到组织切片上,以尽量减少信号变化,并给出良好的定量结果。通过比较奥曲肽与不同基质共结晶后MALDI-TOF-MSI产生的信噪比,选择2,5-二羟基苯甲酸作为最合适的基质。通过测定不同浓度的新鲜组织切片中奥曲肽的含量,验证了MALDI-TOF-MSI在线性、灵敏度和精密度方面的可靠性。验证的方法成功地应用于奥曲肽在小鼠组织中的分布研究。 结果表明,MALDI-TOF-MSI不仅能清晰地显示奥曲肽的空间分布,而且可以计算关键的药代动力学参数(Tmax和t1/2)。更重要的是,MALDI-TOF-MSI测定的奥曲肽的组织浓度-时间曲线与LC-MS/MS测定的结果一致。这些发现说明了MALDI-TOF-MSI在药物开发过程中的药代动力学分析潜力。使用仪器:岛津MALDI TOF、 LC–MS/MS 图1 内标对MALDI-TOF-MSI分析小鼠肝切片中奥曲肽线性的影响。(A) 小鼠肝脏切片上的兰瑞肽(内标)的质谱图,(B)加入奥曲肽标准溶液的肝脏切片光学图像,(C)5个浓度水平的奥曲肽的代表性质谱图像([M+H]+离子 m/z 1019 Da),(D) 用奥曲肽的平均信号强度绘制的奥曲肽校准曲线(n=5),(E)经内标校正后的奥曲肽的代表性质谱图像,(F) 用奥曲肽/内标的平均强度比绘制的奥曲肽校准曲线(n=5) 图2 对口服20 mg/kg奥曲肽后0、10、30、60、90和120 min采集的小鼠组织进行成像MS分析。(A)胃切片的代表性光学和质谱图像,(B)肠切片的代表性光学和质谱图像,(C)肝切片的代表性光学和质谱图像 图3 MALDI-TOF-MSI和LC-MS/MS测定奥曲肽的组织浓度-时间曲线。(A) MALDI-TOF-MSI法测定小鼠胃中奥曲肽的浓度-时间曲线 (B) LC-MS /MS法测定小鼠胃中奥曲肽的浓度-时间曲线 (C) LC-MS/MS法和MALDI-TOF-MSI法测定小鼠胃中奥曲肽的含量的相关性分析。 本研究开发了一种基于MALDI-TOF-MSI的小鼠组织切片奥曲肽定量分析方法。首次通过比较DHB、CHCA和SA提取的奥曲肽在一系列激光功率水平下的信噪比,系统研究了激光能量对MALDI基质选择的影响。结果表明,DHB、CHCA和SA的最优功率水平应分别设置为50、70和60,DHB因其较高的灵敏度和较低的基质效应最终被选为最合适的MALDI基质。兰瑞肽是一种与奥曲肽结构相似的生长抑素类似物,被用作内标,通过减小组织异质性、基质晶体异质性和激光功率波动引起的离子信号变化,提高分析的线性、准确性和精密度。然后成功地应用所开发的MALDI-TOF-MSI方法,观察口服20 mg/kg剂量后,奥曲肽在小鼠胃、肠、肝中的分布和消除过程。 结果表明,MALDI-TOF MSI不仅能清晰地显示奥曲肽在小鼠组织中的空间分布,而且使关键药物动力学参数(Tmax和t1/2)的计算成为可能。更重要的是,MALDI-TOF-MSI测定的奥曲肽的组织浓度-时间曲线与LC-MS/MS绝对定量的结果吻合较好。 文献题目《Optimization and evaluation of MALDI TOF mass spectrometric imaging for quantification of orally dosed octreotide in mouse tissues》 使用仪器岛津MALDI TOF、 LC–MS/MS作者Tai Rao, Boyu Shen,Zhangpei Zhu, Yuhao Shao, Dian Kang, Xinuo Li, Xiaoxi Yin, Haofeng Li,Lin Xie, Guangji Wang, Yan Liang Key Lab of Drug Metabolism & hamacokinets,State Key Laboratory of Natural Medicines,China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009 PR China
  • 科学家发表中国老年高血压的降压目标值的临床研究结果
    近期,中国医学科学院北京协和医学院阜外医院高血压中心的研究团队在《The New England Journal of Medicine》发表中国老年高血压病人的降压目标值的临床研究结果,论文题为:Trial of Intensive Blood-Pressure Control in Older Patients with Hypertension。该研究发现,针对中国老年高血压患者(60-80岁)与标准降压相比,强化降压治疗(收缩压降低至130 mmHg以下),可显著减少主要心血管不良事件的发生,且治疗安全性可靠。  高血压是常见心血管事件死亡的重要危险因素之一。而中国老年高血压病人逐年增加,控制高血压对于延长寿命降低死亡率至关重要,目前老年高血压病人最佳降压目标值仍存在争议。该研究采用多中心、前瞻性、随机对照临床试验,分为强化降压组(110~130 mmHg)和标准降压组(130~150 mmHg)。研究结果显示,两组平均降压值为127.5mm Hg和135.3mm Hg。强化降压组主要不良结局事件比标准降压组低(3.5% vs 4.6% HR 0.74 CI 0.60-0.92 P=0.007);各主要不良结局事件风险比亦优于标准降压组,包括卒中(HR 0.67)、急性冠脉综合征(HR 0.67)、急性失代偿性心力衰竭(HR 0.27)、冠状动脉血运重建(HR 0.69)、心房颤动(HR 0.96)和心血管原因死亡(HR 0.72)。而强化降压治疗并不增加药物不良反应和肾脏损伤风险。  该研究结果表明,强化老年高血压患者的血压控制,目标收缩压控制在110~130 mmHg将有明显的心血管获益,且用药安全性并未降低。这一研究发现将为临床诊疗决策提供依据,为高血压规范治疗和管控提供理论数据。  注:此研究成果摘自《The New England Journal of Medicine》,文章内容不代表本网站观点和立场。  原文链接:  https://www.nejm.org/doi/full/10.1056/NEJMoa2111437
  • 空气湿度大小对人体的危害
    空气湿度大小对人体的危害东井除湿机新闻报道:据气象专家介绍,“空气湿度”是指空气中所含水汽的大小,湿度越大表示空气越潮湿,水汽距离饱和程度越近。通常我们用相对湿度来表示空气湿度的大小。在一定温度条件下,空气相对湿度越小,人体汗液蒸发越快,人的感觉越凉快。冬季和春季白天一般湿度为20%左右,夜晚一般在70%左右,由于冬春季节湿度太小,人们往往有不舒服的感觉,有时还出现嘴唇干裂、鼻孔出血、喉头燥痒等现象。可是,到了盛夏季节,空气湿度达到80%以上时,由于汗液蒸发缓慢,人们又会感觉酷暑难耐,有时还会中暑或引发肾病、结核病、关节炎等疾病。气温在28摄氏度、相对湿度达90%时,人们就会有气温达到34℃的感觉。据专家陈述,居室里比较舒适的气象条件是:室温达25℃时,相对湿度应控制在40%至50%为宜,室温达18℃时,相对湿度应控制在30%至40%。有加湿器和除湿机的家庭应注意经常调节室内湿度,保持在一个平衡的状态。专家提醒市民,闷热潮湿天气会导致突发性眩晕、脑出血、脑梗死等脑血管疾病。特别是有高血压、心脏功能不全及冠心病的老人,很可能会因闷热而中风。所以在这种变化多端的季节里,防止以上危害的产生我们必须使用东井除湿机和加湿器,DJ-201E-581E是一些常规家用除湿机,其能很好地控制室内环境的温湿度,机器本身带有水箱,水满会自动停止运行,底部还带有万向轮方便用户移动,如果你这个房间湿度除好了还可以很方便的移动到另外的房间节省了资源。 以下是DJ系列东井除湿机四大核心技术:优势一【外观简单大方,带有万向轮移动方便】优势二【三排铜管两器,能够很好的达到除湿机效果】优势三【全电脑液晶彩屏控制】优势四【高效节能压缩机】东井除湿机给客户的服务:整机保修一年,完善售后服务体系;以产品质量第一,让客户满意。电话:18106500661 0571-85167701-809
  • 冷冻电镜解析高血压药物设计的关键蛋白结构
    冷冻电镜(cryo-EM)解析了一种帮助调节血压的蛋白质,即血管紧张素转换酶(ACE)的详细结构。这些结构提供了迄今为止对ACE的最全面的看法,将有助于改善心脏病的药物设计。这项工作是由开普敦大学(UCT)的研究人员与英国同步辐射光源"DIAMOND"的电子生物成像中心(eBIC)合作完成的。研究人员在《EMBO Journal》上发表了他们的研究结果("冷冻电镜揭示了血管紧张素I转化酶的异构化和二聚化机制")。ACE会产生激素血管紧张素II,使血管收缩并提高血压。高血压是心脏病和中风的主要风险因素。与以前的方法相比,冷冻电镜使研究人员能够在更多的功能相关状态下观察到ACE。他们的工作为其生物功能和潜在的药物结合特性提供了关键性的见解。ACE蛋白的一个副本(即单体形式)是由两个结构相似但功能不同的结构域连接而成的。二聚体化(即两个ACE单体的相互作用)发生在一个小的表面空腔附近,改变了对ACE功能至关重要的核心氨基酸的构象。研究人员提出,这种二聚体化可能像一个 "关闭开关",触发蛋白质核心的变化,并可能抑制它。如果能设计出一种类似药物的分子在腔内结合并引起同样的效果,它就能提供一种新的手段来使该酶失活。目前,许多ACE抑制剂在临床上可用于治疗高血压。但这些抑制剂非选择性地针对两个ACE结构域,并因此会在一些患者中引发副作用。开普敦大学教授、该研究的主要研究者Edward Sturrock博士解释说:“了解这些新发现的ACE结构和动态至关重要,这可能针对结构域选择性抑制剂的设计提供新的结合位点,进而规避副作用。”ACE蛋白在Sturrock的实验室生产,在UCT的电子显微镜单元(EMU)进行成像前的准备,并在之后转运到eBIC,在Titan Krios上进行冷冻电镜成像。图像处理在南非的CSIR高性能计算中心(CHPC)和EMU进行。“即使有高分辨率的成像,ACE的独特形状、小分子量和高度动态等特征也带来了许多挑战。"该研究的共同作者之一Jeremy Woodward博士解释道。该研究的第一作者Lizelle Lubbe博士解释说:"最近开发的冷冻电镜图像处理方法对解析这些结构至关重要。"我们必须通过广泛的分类来计算分离图像,这一过程相当于' 数字纯化' ,因为生化方法无法分离ACE的单体和二聚体形式。然后,我们可以将三维细化的重点依次放在结构的不同部分,从而解析这两种ACE结构"。该研究的发现独特地揭示了ACE的高度动态特征,以及其不同结构域之间发生二聚体化和交流的机制--这可能启发治疗心脏病的新药。DIAMOND科学组组长克里斯-尼克林博士说:“我们对非洲的杰出科学家团队利用eBIC先进的冷冻电镜取得的这项研究结果感到高兴。世界迫切需要针对致命的心脏病和其他慢性健康状况的可持续解决方案。我们非常高兴的是,这项研究的结构见解可以为改进抗高血压药物设计铺平道路。”相关文献:Cryo-EM Structures of a Key Hypertension Protein to Aid Drug DesignCryo-EM揭示了血管紧张素I转化酶的异构化和二聚化的机制高血压(高血压)是心血管疾病的一个主要风险因素,而心血管疾病是全世界死亡的主要原因。血管紧张素I转化酶(sACE)的体细胞异构体在血压调节中起着关键作用,因此ACE抑制剂被广泛用于治疗高血压和心血管疾病。我们目前对sACE结构、动力学、功能和抑制作用的理解是有限的,因为截短的、最小的糖基化形式的sACE通常被用于X射线晶体学和分子动力学模拟。在这里,我们首次报告了全长的、糖基化的、可溶性的sACE(sACES1211)的冷冻电镜结构。这个高度灵活的apo酶的单体和二聚体形式都是由一个数据集重建的。单体sACES1211的N端和C端结构分别在3.7和4.1Å被解析,而负责二聚体形成的相互作用的N端结构则在3.8Å被解析。此外,观察到两个结构域都处于开放构象,这对设计sACE调节剂有意义。参考资料:"Cryo-EM reveals mechanisms of angiotensin I-converting enzyme allostery and dimerization"
  • 日本开发出袖珍辐射测量仪 仅硬币大小
    日本产业技术综合研究所宣布开发出仅为500日元硬币大小的袖珍辐射测量仪  中新网2月14日电 据共同社报道,日本产业技术综合研究所(茨城县筑波市)13日宣布,开发出一种仅为500日元硬币大小的轻便型辐射测量仪,1颗电池最多可记录6个月的辐射量。  据介绍,该种测量仪重10~20克,可每小时或每天一次进行辐射测定,1颗钮扣电池可使用2~6个月。该仪器将零部件数量控制在最小范围,仪器本身无法显示辐射量,但可连接电脑读取数据。  该仪器还可设置成当辐射量超过一定数值时,测量仪的显示灯闪烁并响铃。目前市场上的测量仪大多为数万日元,但该研究所开发的这款产品将把价格控制在1万日元以下,争取2~3个月后上市。
  • 德国成功研发氮原子大小量子传感器 可用于测量微磁场
    p  量子技术为电子元件小型化开辟了新的途径。近日,德国弗劳恩霍夫应用固体物理研究所(IAF)和马普固体研究所发布消息称,其科研人员共同研发出一种量子传感器,未来可用于测量微磁场,如硬盘磁场和人脑电波。/pp  集成电路越来越复杂,目前一台奔腾处理器可容纳约3000万个晶体管,因而硬盘的磁性结构可识别的范围仅为10至20纳米,比直径为80至120纳米的流感病毒还小,该量级的尺寸规格只有量子物理技术可触及。新研发的量子传感器则可精确测量这类用在未来硬盘上的微小磁场。新型量子传感器仅有氮原子的大小,作为载体物质的是一种人造金刚石。金刚石具有很好的机械和化学稳定性以及超强的导热性能,可通过引入硼、磷等外来原子,将晶体制成半导体,且非常适用于光学电路。/pp  IAF的研究人员在近几十年中研制并优化出用于生产金刚石的设备,一种专用的椭圆形等离子体反应堆模具。在800-900摄氏度的高温下,在金刚石底物上从导入甲烷气和氢气中可长出金刚石层,再将边长3-8mm的晶体从底物剥离并抛光,最后制造出具备量子物理用途的、仅含碳原子稳定同位素C12的超纯单晶金刚石晶体。所用的甲烷气经锆过滤器净化,氢气经其它手段净化。/pp  研究人员制做磁场检测器有两种途径:直接植入单个氮原子,或在制造金刚石的最后一步加入氮。之后,在超净室内采用氧等离子体蚀刻法均可制作出类似于原子力显微镜的纤细金刚石尖。关键点是导入的氮原子以及晶格中的相邻空位。该氮空位中心就是实际的传感器,用激光和微波照射时会发光,发出的光可随附近磁场的强度变化而变化。专家们将这项创新与光学探测磁共振(ODMR)相提并论。/pp  这种传感器不仅能准确检测到纳米级的磁场,还能确定其强度,应用潜力惊人。例如,可监控硬盘质量,检测出密集存储数据中的小错误和发现有缺陷的数据片段,在刻写和读取前即将其去除。因此,可减少随着小型化的加速而迅速增加的废料,降低生产成本。IAF的专家称,这种量子传感器还可用于测量很多微弱磁场,包括脑电波。与目前使用的脑电波传感器相比,不仅更准确,而且在室温下即可使用,无需经液氮冷却。/p
  • 安捷伦科技公司发布适用于人、小鼠和大鼠模型的新型基因表达微阵列芯片
    安捷伦科技公司发布适用于人、小鼠和大鼠模型的新型基因表达微阵列芯片 安捷伦公司与根特大学合作在芯片中整合入了 LNCipedia 内容2015 年 6月 10 日,北京 — 安捷伦科技公司(纽约证交所:A)近日宣布更新其新型 SurePrint 基因表达微阵列芯片用于人、小鼠和大鼠模型的信使 RNA 分析应用。此次更新改进了编码和非编码内容,为研究人员提供在常用平台上研究表达模式的最新工具。安捷伦公司与根特大学合作开发了最新款旗舰版 SurePrint G3 人基因表达 v3 微阵列芯片,其中完整包含的 LNCipedia 2.1 数据库能够对长链非编码 RNA (lncRNA) 转录物进行可靠分析。LncRNA(长度大于 200 个核苷酸的非编码 RNA)能够通过直接作用于 DNA、RNA 和蛋白质而改变基因调控,从而实现靶标特异性或系统范围内的调控。 通过 lncRNA 与癌症、心血管疾病和神经退行性疾病的关联不难看出其广范却至关重要的作用。经重新设计的安捷伦基因表达微阵列芯片是高质量的特征捕获工具,可实现目标基因或通路的有效分析,涉及从协助疾病危险分层到阐明药物作用机制的各种应用。根特大学的 Jo Vandesompele 教授说:“我们与安捷伦密切合作设计了一流的 mRNA 和 lncRNA 表达分析方法。在单次分析中对这两种类型的RNA进行的同时测定有助于从相对基因表达水平深入探究mRNA与lncRNA之间的生物学联系。 其中的关键在于实现编码和长链非编码特征的良好平衡,而LNCipedia 2.1 则是与安捷伦基因表达内容配对的最佳数据源。微阵列芯片的最终设计经优化后可快速给出大量有价值的信息。”最新的微阵列芯片采用能够实现寡核苷酸精确合成的 SurePrint 技术制造。 SurePrint 微阵列芯片的灵敏度处于业内领先水平,具有5 个数量级以上的动态范围以及 5% 的阵列间变异系数中值,且在 R20.95 时与外部 RNA 对照联盟 (External RNA Controls Consortium) 的加标 RNA 对照品相比具有出色的定量一致性。“我们的 SurePrint 基因表达微阵列芯片不仅包含 LNCipedia 的 lncRNA 等严谨的专业内容,还能够为专家级用户提供灵活的定制服务。”安捷伦基因组学高级总监 Alessandro Borsatti 博士谈道, “凭借基因表达微阵列芯片的出色性能和定量一致性以及 RNA 测序和靶向序列捕获产品,我们能够使研究人员在微阵列芯片的筛查应用与更深度的二代测序的发现性应用之间实现完美转换。”SurePrint 基因表达微阵列芯片属于 SurePrint 产品系列,该系列包括 microRNA 与比较基因组杂交微阵列芯片。 安捷伦基因组学工作流程包括用于质量控制的 2100 生物分析仪和 2200 Tapestation、用于数据采集的SureScan 扫描仪、用于数据分析的 GeneSpring 软件,以及用于进行实时聚合酶链反应的 AriaMX 系统。如需了解有关 SurePrint 基因表达微阵列芯片的更多信息,请访问 www.agilent.com/genomics/v3。关于安捷伦科技公司安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,是致力打造美好世界的顶级实验室合作伙伴。安捷伦与全球 100 多个国家的客户进行合作,提供仪器、软件、服务和消耗品,产品可覆盖到整个实验室工作流程。在 2014 财年,安捷伦的净收入为 40 亿美元。全球员工数约为 12000 人。今年是安捷伦进军分析仪器领域的 50 周年纪念。如需了解安捷伦科技公司的详细信息,请访问 www.agilent.com.cn。编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 明美1250万像素高分辨率相机助力小鼠贴壁细胞观察
    近日,为了提高医院医疗水平,进一步规划和凝练医疗方向,深州市人民医院对小鼠细胞的观察效果提出了更高的要求。明美专业工程师经过详细的沟通了解,针对博士的特殊需求,为其推荐了明美生物倒置显微镜mi52搭配研究级1250万高像素显微数码相机msx2的组合方案,并免费提供专业的样机演示服务,展现了明美在显微成像领域的专业素养。此次项目中,博士需要观察的是小鼠细胞中的贴壁细胞,这种细胞在培养过程中,必须有可以贴附的支持物表面,其依靠自身分泌或培养基中的贴附因子才能在该表面生长增殖,因此,对观察使用的显微成像产品要求极高。通过明美专业工程师的多次沟通,以及产品推荐使用,最终选定使用明美生物倒置显微镜mi52搭配研究级显微数码相机msx2来进行观察研究。msx2是明美最新研发的1250万高像素科研级数字相机,采用1英寸大靶面高性能的成像芯片,设计usb3.0数据传输接口,具有高分辨率、颜色还原准确和高灵敏度的特点,其优秀的色彩表现,是液基细胞分析、免疫组化、骨髓细胞分析等对颜色要求高的病理诊断的理想工具。此外在明暗场、相衬、偏光、dic、荧光成像等领域同样表现出色。下图为使用明美生物倒置显微镜mi52与研究级显微数码相机msx2、ms60进行观察: 下图为明美生物倒置显微镜mi52与研究级显微数码相机ms60镜头下的小鼠细胞图片: 下图为明美生物倒置显微镜mi52与研究级显微数码相机msx2镜头下的小鼠细胞图片: 使用机型:明美生物倒置显微镜mi52 研究级显微数码相机msx2。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制