当前位置: 仪器信息网 > 行业主题 > >

高能量生物学射线辐照仪

仪器信息网高能量生物学射线辐照仪专题为您提供2024年最新高能量生物学射线辐照仪价格报价、厂家品牌的相关信息, 包括高能量生物学射线辐照仪参数、型号等,不管是国产,还是进口品牌的高能量生物学射线辐照仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高能量生物学射线辐照仪相关的耗材配件、试剂标物,还有高能量生物学射线辐照仪相关的最新资讯、资料,以及高能量生物学射线辐照仪相关的解决方案。

高能量生物学射线辐照仪相关的资讯

  • NSI最新高能量X射线工业CT系统即将来临!
    北极星成像(NSI)美国西海岸设备及检测服务中心正式搬迁至加州亚里索维耶荷市(Aliso Viejo)以满足日益增长的全球高能X射线工业CT检测服务美国北极星成像(North Star Imaging)荣幸地宣布将其位于美国西海岸的X射线设备和检测服务中心搬迁至位于加利福尼亚州亚里索维耶荷市(Aliso Viejo)拥有更大区域的检测服务地址。该新办公地点和实验室将为NSI的北美X射线业务提供更大的扩展空间,同时顺应更多的客户要求,其更大的仓储区域可放置更多的X射线扫描部件。相信随着X射线检测服务业务的持续增长,更多的创新科技将会在这广阔的区域开发和引入。“我们知道,由于新冠疫情(COVID-19),今年对于每个人来说都是非常艰难的一年。NSI美国检测服务业务经理David Nokk表示: “作为一家企业,我们对这一举动非常兴奋,这意味着NSI的母公司ITW(伊利诺伊工具制品公司)对我们在西海岸的业务增长充满信心。”NSI西海岸办公室位于加州亚里索维耶荷市(Aliso Viejo),现拥有X3000™ ,X5000™ 和一台450kV的X5000型X射线检测系统。这意味着NSI美国西海岸实验室已具有扫描从小到几微米到大到50加仑水桶般物品的检测能力,且可以最快的速度进行单次或多次的批量扫描。NSI美国西海岸业务发展经理Kevin Bresnahan说: “现在我们的团队可以进行2D,3D和4D扫描。很快,我们还将拥有一台高能X射线系统,这将成为北美航空航天和国防企业的重要资产投入。我们将在今年推出此新系统,我非常高兴NSI美国西海岸的客户将率先体验它的强大功能与能力。”“我们非常高兴高能量X射线系统正式加入NSI产品系列中,以更好地为我们的客户提供服务,进一步增强提供安全,可靠产品的行业能力。是我们的客户不断推动着NSI的进步,我们的目标是为需要对关键项目进行最具挑战性检测的世界一流企业提供优质的服务。感谢NSI的所有客户和朋友使之成为可能。” 北极星成像总经理Seth Taylor说道。北极星成像美国西海岸办公室。地址:25 Journey Street, Aliso Viejo, California. USA.关于美国北极星成像公司(North Star Imaging)美国北极星成像公司(NSI)是全球知名的工业2D数字成像(DR)和3D计算机断层扫描(CT)X射线设备的制造商。工业X射线扫描通常用于研发,失效分析,质量控制,内部尺寸测量和高速3D扫描等。X射线扫描使用户可以更清楚地查看和检测零件的内外部结构而不破坏它。 NSI的efXCT集成了全球最强大的CT重建和可视化软件,包括用于校准,测量,实时密度切片和表面提取的模块。NSI在其位于美国明尼苏达州,加利福尼亚州,马萨诸塞州和法国,英国,中国的6个全球公司提供X射线检测服务,24/7技术支持和NDT无损检测基础和高级培训课程。 NSI已通过ISO 9001:2015认证。如欲了解更多请关注NSI官方微信:NSIChina
  • 双能量X射线成像技术的发展
    X 光成像是一种非常常见的医学诊断和医学成像技术。例如,传统 DR (Digital Radiography) 技术的基本几何示意图如下,X 射线光管发出光子束穿过患者,在平板探测器上产生二维图像。但是由于软组织和硬组织对 X 射线的质量衰减系数差异很大,导致 X 射线在组织识别上的能力受限。例如,为了评估肺部结构而拍摄胸片,在获得的图像中不可避免地被肋骨阻塞。在这种情况下,肋骨是结构噪声的主要来源,因为它们不是我们感兴趣的结构,如下图。成像的组织模糊不清,通常会增大病灶误判的概率。早在 1976 年科学家就提出了利用双能量 X 射线成像技术来降低结构噪声。先分别用低能光子和高能光子拍摄两幅图片,然后根据低能光子和高能光子在不同组织中的质量衰减系数,通过巧妙的扣减算法将患者的投影分解为仅包含软组织和硬组织的图像,如下图。双能量成像最大的挑战在于获得两幅独立的低能(LE)和高能(HE)图像。为了实现这一点,探测器吸收的 X 射线光谱应该对 LE 图像中的低能量光子和 HE 图像中的高能量光子进行重加权。获得这种分离的光谱可以通过两种不同的方式来完成:双发成像 (Double-shot Imaging)和单发成像 (Sing-shot Imaging)。双发成像是最直接的方法,通过改变 X 射线光管的加速电压来拍摄两幅不同能量段的图像,可以在两幅图像之间实现出色的光谱分离,并最大限度地减少图像光谱之间的重叠。但这种方法固有的时间分离会导致运动伪影出现在最后的图像中。例如在改变加速电压的过程中患者发生的心脏跳动、呼吸和肌肉运动等等,都会产生运动伪影。虽然可以使用双光源系统来解决运动伪影的问题,但也意味着更高的成本。此外,双发成像不可避免的增大了辐照剂量,两次曝光将使剂量至少增大 15%。而单发成像则采用双层平板探测器的手段,探测器主要由上下两个探测模块构成,上层探测模块测低能光子,下层探测模块探测高能光子,中间的金属滤片则用于光谱分离,如下图所示。在正常的剂量下,探测器可获得两幅光谱分离的图片,且没有运动伪影。但金属滤片的光谱分离能力有限,而且它会吸收部分光子,从而使得 HE 图像的信噪比较差。近年来,加拿大滑铁卢大学的研究人员开发的一款新兴探测器 Reveal&trade 35C 已经克服了双能量 X 射线成像的局限性。Reveal&trade 35C 具有独特的三层堆叠设计,便于集成, 量子效率高。与其他双能解决方案不同,Reveal&trade 35C只需要一次 X 射线曝光,即使用与常规胸部 X 光相同的辐射剂量,就能消除运动伪影,实现骨和组织的区分,首次实现横向双能图像。Reveal&trade 35C已经获得美国FDA 510(k) 认证和加拿大卫生部许可。在双层平板探测器的基础上将中间的金属滤片更换为一层探测模块,在不损失X射线剂量的情况下,优化了每层闪烁体的厚度以获得最佳的光谱分离,如左下图。在单次曝光下,可以同时获得三幅无运动伪影的图片,即双能图像(扣减算法处理layer 1和layer 3后)、高剂量效率图像(三层图像相加)。此外,多个感光层的高 DQE 使得即使在减少 30% 剂量的情况下,仍能获得高信噪比的图像,如右下图。在临床试验中,利用 Reveal&trade 35C 对两位患者进行成像,如下图。在检查第一位患者的软组织和硬组织图像后,放射科医生确认左下叶有肿块,右下叶有钙化肉芽肿,可能有新的右下叶肿块;第二位患者的骨折则在硬组织图像中清晰可见,这些病灶都是传统 DR 技术所不能发现的。主要参数参考文献:1. Siewerdsen J H, Shkumat N A, Dhanantwari A C, et al. High-performance dual-energy imaging with a flat-panel detector: imaging physics from blackboard to benchtop to bedside. Medical Imaging 2006: Physics of Medical Imaging. SPIE, 2006, 6142: 489-498.2. Shkumat N A. High-performance Dual-energy Imaging with a Flat-panel Detector. Toronto: University of Toronto, 2008.3. Maurino S L, Badano A, Cunningham I A, et al. Theoretical and Monte Carlo optimization of a stacked three-layer flat-panel x-ray imager for applications in multi-spectral diagnostic medical imaging. Medical Imaging 2016: Physics of Medical Imaging. SPIE, 2016, 9783: 1061-1074.
  • 184万!重庆大学X射线辐照仪采购项目
    项目编号:CQU-SS-HW-2023-008项目名称:重庆大学X射线辐照仪采购预算金额:184.0000000 万元(人民币)最高限价(如有):184.0000000 万元(人民币)采购需求:序号产品名称(设备名称)※数量单位备注1X射线辐照仪1台本项目经批准可以采购进口产品合同履行期限:中标人应在采购合同签订后90日内交货,交货后30日完成安装调试。本项目( 不接受 )联合体投标。重庆大学X射线辐照仪采购-招标文件(定稿).docx
  • 高能量约束先进模式等离子体运行研究取得重要成果
    实现高性能等离子体稳态运行是未来聚变堆必须要解决的关键科学问题。近期,中国科学院合肥物质科学研究院等离子体物理研究所核聚变大科学团队发挥体系化建制化优势,取得了系列原创性的前沿物理基础研究成果。1月7日,国际学术期刊《科学进展》(Science Advances)发表了团队在高能量约束先进模式等离子体运行方面取得的重要成果。   托卡马克先进运行模式是当前磁约束核聚变研究的热点之一。核聚变大科学团队在托卡马克装置等离子体物理实验研究中发现并证明了一种新的高能量约束和自组织模式,即超级I模(Super I-mode)。其特点是等离子体中心的电子内部输运垒和等离子体边界的I模共存,从而大幅度提高了能量约束。该先进模式具有芯部无杂质积累,便于聚变反应生成物排出,维持平稳温度台基等优点,并实现了芯部高约束与无边界密度台基及边界不稳定性的兼容,使得等离子体与壁相互作用同长时间尺度上的高性能等离子体运行方面的优势能够比较好地结合起来。这种无需通过外部控制来确保等离子体稳态运行的高能量约束模式,可应用于国际热核聚变实验堆长脉冲运行,对于未来聚变堆运行具有重要意义。   日前,核聚变大科学团队还首次证明了托卡马克等离子体中存在湍流驱动的电流成份,是保持高电子温度稳定运行的关键物理机制。借助湍流回旋动理学模拟计算证实了实验中观察到的湍流是电子温度梯度模,其产生的剩余协强可驱动这一电流。湍流驱动的电流和压强梯度共同驱动内扭曲模,形成湍流-湍动电流-内扭曲模自我调节系统,从而维持芯部电子温度梯度稳定。相关研究成果日前发表在《物理评论快报》(Physical Review Letters)上。   此外,核聚变大科学团队在托卡马克装置中外联合实验中利用封闭偏滤器下的杂质注入脱靶控制,以及高极向比压运行模式下双输运垒带来的约束增强,实现了高比压高参数芯部等离子体与偏滤器全脱靶状态的有效兼容集成。结合理论模拟揭示了偏滤器脱靶、边界输运垒和内部输运垒三者之间相互作用的物理机制。脱靶引起的双输运垒的自组织协同作用,改善了芯部与边界的兼容性,带来了能量约束的净增益。相关研究成果之前发表在《自然-通讯》(Nature Communications)上。   核聚变大科学团队通过发挥建制化、多学科、大平台的特点,结合开放共享的国际交流与合作,凝聚优势资源,组织开展体系化的等离子体物理实验基础研究。在引领核聚变前沿技术发展的基础研究深耕探索,发现了系列新的物理现象,揭示和验证了其中的相关物理机制,特别是在高性能稳态长脉冲等离子体运行模式方面开展的研究,为聚变堆建设和运行奠定了基础。   等离子体所核聚变大科学团队及国内外合作者在高能量约束先进模式、湍流驱动等离子体电流、偏滤器脱靶与高约束等离子体兼容集成等方面取得的系列重要成果,得益于与中国科学技术大学、法国原子能委员会、美国通用原子能公司、麻省理工学院、普林斯顿大学、加州大学洛杉矶分校、橡树岭联合大学、劳伦斯利弗莫尔国家实验室、橡树岭国家实验室等国内外核聚变研究机构开展的密切交流与合作。   相关工作得到中科院、科技部、国家自然科学基金委等的资助,以及安徽省、合肥市、合肥综合性国家科学中心的大力支持。
  • 辐照食品:身在“辐”中不知“辐”
    虽然公众尚且懵懂,辐照食品在中国的规模增长却十分快速。  辐照食品,一个曾经讳莫如深的话题,随着日本的核危机再度引发了公众的关注。  在大家还尚未对其有足够了解的时候,辐照食品在中国的增长已然十分快速。截至2010年,我国辐照食品总量已经达20万吨以上,约占世界辐照食品的一半。  身在“辐”中不知“辐”,这是我们目前大多数人的现状。与之伴随的,却是在对高剂量辐照食品安全性存疑的情况下,我国辐照食品标准和监管的缺失。  “在郑州,如果问同位素研究所在哪里,没几个人知道,可只要一提‘激光大蒜’,大家都知道。”  “激光大蒜”是农民们给辐照大蒜起的俗名。“最红火的时候,从我们单位门口开始,装大蒜的卡车停在马路边,一辆接一辆,足足能排上两三公里的队,交警还得过来维持秩序。”  四月底,在北京举行的一个辐照食品技术论坛上,河南省科学院同位素研究所有限公司副总经理朱军这样描述大蒜车队的“盛况”。  身在“辐”中不知“辐”  “我们照了很多,但是大家都不知道。”  在这个论坛上,这句话被包括朱军在内的多位辐照食品专家反复提及。  辐照食品,曾经是个讳莫如深的话题。  2009年夏天,从几家知名品牌方便面的调料包“辐照门”事件,到河南杞县的钴-60事件,辐照这一在食品行业应用多年的技术浮出水面,并引起热议。  但没过多久,辐照食品的话题在媒体上渐渐淡去。  此次日本的核危机让民众对“辐射”高度敏感,同时对于辐照食品也再度关注。  在国内一个大型母婴网站上,一位母亲提到了辐照食品话题。她觉得自己在日本核危机后,更迫切地想知道——“这个辐射,跟那个辐射是一样的吗?”  后面跟贴的二十来人中,不乏对辐照食品有所了解者,但更多的人则是表示惊讶——“晕,只听说过防腐剂,没想到还有射线!”  在“辐照门”事件发生近两年后,还有很多人不知道辐照食品为何物。记者在超市的食品柜台翻找,除了方便面,还很难看到其他辐照食品有标识。  虽然公众尚且懵懂,辐照食品在中国的规模增长却十分快速。  “我国绝对是世界辐照食品第一大国。”江苏省农科院原子能所研究员赵永富说。据统计,截至2010年,我国辐照食品总量已经达20万吨以上,约占世界辐照食品的一半。  赵永富还透露,我国相关部门和机构正在努力推动我国食品辐照加工产业的发展,计划在“十二五”期间使辐照食品增长3~4倍。  食品辐照技术是利用钴-60、铯-137等放射源产生的伽马射线,或加速器产生的10MeV以下的高能电子束,对食品和农副产品进行加工处理的技术。其中,钴-60辐照装置还是主要装备,目前全世界运行的大型装置250多座,总装源能力约3亿居里。  中国在其中所占比例很大。  此前我国曾批准6类辐照食品卫生标准和17项辐照食品工艺标准。“现在每年涉及的食品产值应该超过300亿元。”中国同位素与辐射行业协会辐射加工专业委员会主任赵文彦告诉《科学时报》。  据了解,世界上已有60多个国家批准了食品辐照技术的应用。食品辐照技术的主要作用是抑制发芽,杀虫灭菌,改善品质,保鲜耐贮。  由于射线穿透力强,辐照技术的一大好处是无须打开包装,既方便快捷,又可避免二次污染。  对于这种看不见摸不着的杀菌灭虫方式,很多人将信将疑。  江苏瑞迪生科技公司业务经理汪昌保讲了这样一件事情:  一位第一次合作的客户送货时留了个心眼,在包装上做了记号。结果收货时他发现记号完全没被动过,他马上质疑:“你们是不是根本没有给我们的产品杀菌?”  汪昌保给他作了解释。但是,这个客户还是不放心,拿了一部分回去做储藏实验,发现的确有效果,这才相信了汪昌保的话。  正如与会的多位专家所说,我们其实是身在“辐”中不知“辐”。  除了文章开头提到的大蒜,日常我们所用到的香辛料和脱水蔬菜调味品,也有相当一部分是经过辐照的。这些食品容易带有微生物和害虫,传统的加热杀菌工艺会使香气挥发,具有冷处理特色的辐照技术因此体现出优势。  据赵永富介绍,我国现在香辛料和脱水蔬菜的辐照量大概为10万吨左右,占世界辐照量的三分之一左右,约占我国辐照食品一半的产量。  而小食品近年来在辐照食品行业异军突起,几乎与香辛料平起平坐。泡椒凤爪是个典型的例子。赵永富介绍说,如不添加防腐剂,凤爪只能存放2~3天,而采用辐照技术可以使保质期延长到1~6个月。现在仅四川省每年泡椒凤爪辐照处理量就达到了1万吨以上。  此外,冷冻食品、白酒等都是辐照技术覆盖较多的领域。  辐照食品就像烤红薯?  “大家把食品辐照和原子弹联系在一起。其实,这两者完全不是一回事。”朱军说。  严建民、高美须等专家撰文指出,辐照处理食品时,射线透过不锈钢管壁照射到食品上,食品接受到的是射线的能量,而不是放射性物质,受辐照的食品皆严密包装,因此食品不可能直接沾染上辐射物质。  另外,从理论上讲,要使食品中的组成元素在辐照后诱发放射性,需要10MeV以上的能量。在此能量范围内,即使使用高辐照剂量,它们所生成的同位素的寿命也很短,放射性仅为食品天然放射性的15万分之一至20万分之一。钴-60的伽马射线平均能量为1.25MeV,铯-137的伽马射线能量仅有0.66MeV,远低于产生感生射线的能量阈值。因此,辐照食品本身不会产生感生放射性。而10MeV以上的食品辐照源能量是禁止的,这就从根本上杜绝了诱发放射性的问题。  “其实,对辐照食品安全所作的研究是全世界时间最长、成果最多的项目之一,曾经长达几十年,有30个国家分工做实验。”北京三强核力辐射公司总经理王传祯强调。  中国学者也曾经对世界食品辐照界作出重大贡献。1982~1985年在大量动物试验的基础上,我国组织了382人的辐照食品综合人体试食试验。结果表明,食用吸收剂量在10kGy以下的辐照食品对人体无异常影响,从而结束了由印度学者引发的长达10年之久的淋巴多倍体辐照改变之争。  而早在1980年,FAO(联合国粮农组织)/IAEA(国际原子能机构)/WHO(联合国世卫组织)联合专家委员会便作出结论:任何食品总体平均吸收剂量高达10kGy,没有毒理学的危害,不再要求做毒理学试验,同时在营养学和微生物方面也是安全的。  几乎每位专家谈及辐照食品安全时都会引用这个结论。  朱军则认为1980年的这个结论其实根本不用再提。“因为1997年上述委员会又提出,没有必要设定食品辐照剂量的上限。1999年该委员会作出结论:超过10kGy剂量的辐照食品也是卫生安全的。”  北京市射线应用研究中心分析检测中心主任胡金惠介绍了她前些天刚刚拿到的欧洲食品安全局关于辐照食品的推荐意见。该机构下属的两个小组去年对辐照食品的安全进行了调查总结。一个小组负责调查辐照食品的微生物安全和杀菌效率,另一个小组负责调查辐照食品的化学安全。  最后,前者得出如下观点:在辐照食品中,经过辐照的微生物不会给消费者带来新的风险。后者的观点是,食品经过辐照会产生新的化学物质,但这些化学物质主要是碳氢化合物、2-烷基环丁酮、乙醛等,这些物质在其他食品加工中也会产生,不是辐照处理独有的。而且,在辐照过程中这些物质产生的量低于热处理中产生的量。  食品工程博士、知名的科普作者云无心曾这样类比:吃辐射污染的食物,就像把着火的食物吃到嘴里,而且它到了肚子里还在燃烧 而辐照食品,则像精心烤好的红薯,可以安心享用。  “我们行业内的人士要坦然地面对公众,没有什么好怕的。”王传祯在会上发言时声音洪亮地说。  高剂量辐照仍存风险  但是,与王传祯的理直气壮不一样,他的同行中还是有一些人觉得这个话题“敏感”,面对《科学时报》记者的采访非常谨慎。  有报道指出,辐照食品没有那么“美”。  胡金惠分析上述标准和欧洲的调查结果指出,该机构除了对辐照食品安全表示肯定外,其实也表达了这样一种观点:即使有的食品被批准可以辐照,也不一定需要照。“要充分考察食品的微生物数量和状态,不应事先设定剂量和品种。”  她直言,一些专家笼统地说“辐照不会改变食品性状”是不对的。“辐照对于食品来说,肯定还是会产生影响的。我曾经辐照过牛奶,很快就凝固了。所以某种食品是否可以辐照、多大剂量都需要研究。”  朱军说,同为粮食,小麦及面粉、稻谷、杂粮的最高耐受剂量就各不相同。1 kGy以上辐照后的小麦及面粉,黏度值显著下降。稻谷超过0.5 kGy的辐照以后,口感发生明显变化。而0.8 kGy辐照对玉米渣、高粱米、燕麦片等的黏度产生明显影响。  据朱军介绍,目前,对于送到他们单位辐照的食品,一般都是根据国家标准,结合产品的含菌量、生产工艺、品种特点来确定合适剂量。他们也在这方面作了很多研究。但同时他也有几分无奈地表示:“国外一般都是食品厂商来提供剂量数据,而国内全都是由辐照厂来提供剂量。”  “其实作为辐照厂,我关注的是辐照工艺本身。至于辐照后产品品质、成分是否变化,这事应该由食品厂操心。”朱军说。  他举例说,因为原来只会传统的消毒方法,产量受限,河南的大豆蛋白产量曾经在全国排名第三。使用辐照技术后,现在河南的大豆蛋白产量跃居全国第二。但是,食品厂商对于剂量这件事情基本不了解,也不想去了解。  “我跟食品厂商的人开玩笑,说你这大豆蛋白照完后,还是不是大豆蛋白?他说‘我不管,我只管还有没有细菌’。”朱军说。“还有的食品厂家不讲道理,其实用不着那么大的剂量,但他跟你说‘我就是要无菌’。我们也没有办法。”  朱军的话印证了有的专家的观点:“由于辐照具有很好的灭菌效果,加大剂量的话微生物含量甚至可以减至0,而且灭菌时间也能大大缩短,因此很多企业甚至放松了对中间过程的卫生控制,细菌病毒严重超标的产品拉去辐照一下‘达标’,辐照的剂量也远远超过国际标准。这如何能够保证食品和药品的安全呢?”  在本次论坛上,记者也听到一些厂家和研究人员谈到,辐照过后,产品包装变色。“这瓶子都变色了,里面的东西还能吃吗?”有人质疑说。  汪昌保给出的解释是:玻璃瓶变色是因为内含的硅元素辐射后容易变色。如果塑料包装含有氯元素,也可能因为辐照发光变色。但只要剂量合适,变色过一段时间会褪下去。他个人认为“这些变化的物质不会从包装中逸出到食品中”。  不过,王传祯指出,对含水量高的食品高剂量辐照,有产生自由基的危险倾向。  进入标准、法律真空?  “现在辐照食品基本上是想照就照。”多位专家说。  2004年到2006年两年时间内,我国出口食品先后10次被欧盟通报存在有非法辐照问题。这是由于欧盟对于食品辐照的装置具有非常严格的审批程序。欧盟之外共有5个国家的10座辐照装置获欧盟批准。但是,辐照食品大国中国不在获批之列。因此,我国对出口欧盟的食品不得进行辐照处理。  胡金惠多年从事食品和医疗用品辐照法规制度、质量体系的研究,她认为这与我国食品辐照行业标准缺乏和监管不严有关,“还无法达到欧盟的要求”。  和其他食品安全问题一样,辐照食品的监管仍然采取中国特色的分段管理:卫生部负责辐照食品安全性评估,制定有关标准、目录和检验方法。环境保护部负责辐照装置单位辐射安全许可和监督管理、辐照人员资格和培训管理。质检总局负责规范辐照食品标签管理,对辐照食品及原料进行监督管理。  1986年卫生部发布了《辐照食品卫生管理暂行规定》,随后这个规定被1996年卫生部颁布的47号令《辐照食品卫生管理办法》替代。但在监管层面上,《管理办法》没有罚则,而是规定依《食品卫生法》相关罚则条文进行处罚。而2009年6月1日,《食品卫生法》被废止,《管理办法》的罚则也随之失去依据,相关部门无法对不标识辐照食品的企业进行处罚。  “现在,卫生部的官方网站显示《辐照食品卫生管理办法》也已废止。”胡金惠说。记者了解到,这是今年1月10日的卫生部公告。  2001年,国家质量技术监督总局发布《食品辐照通用技术要求》,作出了很多规定。“但这个标准仅是推荐性标准,在我国的食品辐照加工中并没有广泛使用,也没有得到足够的重视。”胡金惠说。  那么,我国的食品辐照现在是否进入标准和法律真空?  农业部辐照产品质检中心常务副主任哈益明说,相应的标准和法规已经在制订中。  哈益明对于一些媒体报道食品行业滥用辐射持保留态度。他告诉《科学时报》,实际上辐照厂生产建设投资不小,辐照成本也不低。“我估计每吨至少在千元以上。对于食品企业,一般来说还是能不辐照就不辐照。”  胡金惠则指出,目前对于辐照食品使用剂量的事后检测,定量分析检测手段还比较缺乏。哈益明表示:“方法是有,但的确比较复杂。”  辐照食品标识是大势所趋  在公众对辐照食品的认知方面,辐照食品是否标识是一个绕不开的话题。  国内国外,有关此问题的争论并没平息,支持者认为消费者有知情权,辐照处理的食品必须标明 反对者认为既然经多年的研究被承认是一种安全的、物理的食品加工技术,就像热加工一样,那就没必要进行标识,标识不利于辐照食品的发展。  “归根结底,还是食品商家和生产厂家担心消费者对辐照食品标识产生误解,不愿进行标识。”一位专家说。  辐照食品不进行标注,是否违法?  哈益明告诉《科学时报》,对于预包装食品的辐照标识,是有强制要求的。“但是的确没有相应的执行细则。”  与他的说法不同,胡金惠表示,现在辐照食品是否标识已经没有法规约束。朱军也谈到标识“并非行业强制要求”。  不过,大多数接受《科学时报》采访的专家都表示,辐照食品进行标识是大势所趋。  朱军对公众逐步接受辐照食品很有信心。  “2009年的辐照门事件,刚开始时对我们的行业打击非常大。一个星期之内,所有的仓库的东西都被拉空了。客户都害怕。”朱军说。  “比较幸运的是,食品行业协会联合出了文。给客户看了以后,再过一个星期,客户又都回来了。”  朱军认为“辐照门”事件不是一件坏事。“让大家敢说了。以前企业都不敢说自己的产品是辐照过的。现在我们河南很多企业都主动打辐照标识。”  同“辐照门”一样,赵文彦认为,日本核事故引起全民对辐射空前关注“并不是坏事”,他告诉《科学时报》:“短期内有不好影响,但长期看起来是好事,可以推动大家了解辐照概念。大家慢慢会接受,就像河南民众已经渐渐接受‘激光大蒜’一样。”
  • 安捷伦科技推出用于结构生物学应用的新一代 X 射线衍射仪
    安捷伦科技推出用于结构生物学应用的新一代 X 射线衍射仪 2012 年 7 月 30日,北京&mdash 安捷伦科技公司(纽约证交所: A)在波士顿召开的美国晶体学协会年会上发布了 GV1000 X 射线单晶衍射仪。 这一革命性的新一代仪器将用于收集生物大分子晶体样品的高质量衍射数据。 GV1000 配备了体积紧凑且高亮度的 X 射线源,采用创新的梯度真空技术,使得该款仪器不仅稳定可靠,而且使用简单。 GV1000 结合了安捷伦高精度四圆测角仪以及高性能 CCD 检测器,是满足现代大分子晶体学实验室极具挑战性需求的理想解决方案。 大分子晶体学是研究蛋白质和核酸分子(这两种物质是生物体的重要成分)原子级别结构的学科。 在制药行业的新药研发中,这门学科也扮演着重要的角色。 安捷伦 X 射线衍射产品线总经理 Leigh Rees 博士说:&ldquo 有了 GV1000,我们可以将产品系列扩展到高端的蛋白质晶体学中。 相比于竞争产品-旋转阳极系统,梯度真空系统GV1000具有许多显著优势,终将成为应用于蛋白质晶体学和其它晶体学研究的尖端实验室系统。&rdquo GV1000 是安捷伦正在扩展的 X 射线晶体学产品系列中性能最高的单波长系统。 GV1000的研发得益于安捷伦为所有X 射线单晶衍射应用提供创新性解决方案的专业技术。 安捷伦所有用于 X 射线晶体测量仪器的主要部件的设计和制造都有 20 年以上的历史。 要了解更多信息,请访问 www.agilent.com/lifesciences/GV1000 。 关于安捷伦科技 安捷伦科技公司(纽约证交所: A)是全球领先的测量公司,同时也是化学分析、生命科学、电子和通信领域的技术领导者。 公司的 20,000 名员工为 100 多个国家的客户提供服务。 在 2011 财政年度,安捷伦的业务净收入为66 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn 。
  • 结构生物学:我们用一百年改变了什么?
    在近代生物学发展史上,有一个问题逐渐占据了科学家的视野:蛋白质、核酸、多糖… … 这些构成生命活动基础的大分子的微观结构是什么样的?解决这个问题满足的不仅仅是科学家们的好奇心,更重要的是对结构的认知将极大地帮助人类在分子层面理解复杂的生命活动,并据此设计出阻止或加强其作用的药物,特别是基于蛋白质结构的药物研发。我们现在知道目前解析生物大分子结构的主流实验手段是X射线晶体学和冷冻电镜,而AI又与这两种手段相辅相成。但在生物学发展早期,我们只能推测大分子的成分,窥见它们精巧而严密的运作机制,但对它们的结构细节一无所知,而结构的未知又影响了人类理解它们的功能。诺贝尔奖获得者费曼曾经半开玩笑地说:“许多基础的生物问题是非常容易解决的:只要能看到它们就行!"然而观测这些微小的分子以及它们那更加微小和复杂的空间结构谈何容易,实际上,这个问题直到今天也不能称得上完全解决。但几十年来,科学家们为此付出了巨大的努力并取得了可观的成果,并最终形成了结构生物学。这是一个漫长而艰难的故事,但也不乏有趣之处。01X射线晶体学的得与失1895年,威廉伦琴发现了X射线。这种具有穿透性的电磁波是19世纪最重要的物理学发现之一,对许多领域和学科都产生了深远的影响,不过这不是本文要讨论的重点,我们直接来看X射线是如何影响甚至可以说奠定了近代结构生物学的发展的。简单来说,人们发现极细的X射线流在穿过化合物晶体后,会在照相板呈现出一些具有规律的衍射图案,这些衍射图案是否有可能反映出了晶体的原子排列规律呢?经过几十年的探索,科学家们终于找到了通过数学规则,利用X射线衍射图案来推算晶体中原子排列的方法。这一技术,使得制备晶体→X射线衍射→推算结构的解析大分子结构的方式成为可能,X射线晶体学的时代开启了。X射线解析蛋白质结构的首例突破是在1960年。约翰与他的同事马克斯佩鲁兹””解析了第一个蛋白质——抹香鲸肌红蛋白的三维结构。与今天科学家们能解析的蛋白结构相比,肌红蛋白的结构较为简单,仅由8条α螺旋组成,且没有4级结构。但在当时,所有人都知道,一个新的时代开启了。蛋白质的折叠方式与空间构象对于蛋白质的功能有着决定性的作用。掌握了蛋白的三维结构,就掌握了开启和关闭蛋白功能的钥匙。在接下来的几十年里,一个又一个重要的蛋白质结构被解析出来,核糖体、肌动蛋白、ATP酶、氧化还原酶、RNA聚合酶… … 结构生物学的黄金时期一直持续到本世纪,以至于2006年诺贝尔化学奖获得者罗杰科恩伯格后来说“2007年至2019年,当我为Nature杂志工作时,我们经常对结构生物学论文的数量开玩笑:似乎每周都有一个新的、重要的蛋白质结构发表。”X射线晶体学并非完美,它的缺陷在这个过程中暴露出来。首先,想要获得一个相对完整的模型,就要获得分辨率足够高的能够得到清晰的X射线“照片”的蛋白晶体,另外,一次X射线穿透获得的是晶体某一角度的衍射图案,这对于计算蛋白质三维结构是远远不够的,需要多角度的几百张甚至成千上万张照片才能构建出一个蛋白质三维结构的雏形,并通过建模和修正得到最终的成品“模型”。这期间的工作量特别是数学部分无疑是巨大的,即使有计算机和更好的X射线设备的辅助计算,X射线晶体学仍然很耗时。还有一个问题是,一些类型的蛋白质被证明很难或不可能结晶,如何进行对于此类蛋白三维结构的探索呢?02冷冻电镜与传统的常温电镜不同,冷冻电镜通过将样品冷冻在一层非晶体的玻璃态冰膜中然后在低温下用电镜成像观察,从而得到结构。这个方法无疑不再对蛋白晶体有硬性要求,可以最大可能的观察到生物大分子的自然状态下。并且,由于样品制备时使用了瞬时冷冻的技术,与X射线晶体衍射学相比,冷冻电镜技术可以瞬时的捕捉到同个样品在不同状态下的近生理构象。不过,虽然这项技术发明得很早,但起初只能对于病毒等较大或具有高度对称性的结构进行解析。因为电镜用于轰击样品的电子具有高能量,无论是生物样品本身还是仪器都难以承受长时间的轰击,而有限次数的曝光得到的图像偏差过大,难以用于精细的结构生物学领域。为了降低电子对样品的损伤,冷冻电镜在低温下,采用了低剂量的图像采集方案,增强图像的信噪比。而近年来,直接电子检测相机的研发和飞速发展的图像处理算法的应用,使得冷冻电镜的分辨率得到了飞跃式的提升,这次分辨率的极大提升,被称为“第一次分辨率革命”。另一方面,随着电镜本身的技术发展,目前已经可以利用冷冻电镜技术观察到原子分辨率的信息,在300 kV冷冻电镜的帮助下,水分子的氢氧原子清晰可见,这就是近年来震撼了冷冻电镜学界的“第二次分辨率革命”。另外,200 kV的冷冻电镜也已经以高分辨解析、多功能用途而广泛安装使用。近年来,冷冻电镜逐渐成为了生物大分子解析的主流手段之一,但是一台冷冻电镜高昂的价格令许多科研工作者或药企研发人员望而却步。而为了使更多的科研工作者能在分辨率革命中受利,在诺贝尔化学奖得主Richard Henderson的呼吁和推动之下,更为“接地气”的100 kV冷冻电镜也被研发出来。100 kV的电镜打破了对于高电压的需求,在电镜整体设计上和相机选择上都以最高性价比的方案进行整合,相比之下较低的价格,使得100 kV的冷冻电镜成为了一台人人都有机会使用的冷冻电镜。03AI的未来?我们在文章最初说过,研究蛋白质和其他大分子的结构是为了了解其功能,并最终转化为改善人类健康和生命质量的应用成果。为了这个目标,科学家们利用X-射线晶体学和冷冻电镜技术解析了一个又一个蛋白的结构,而在无数量变的积累背后,是否有一项科学家们追求的质变存在呢?1965年,《生物化学年鉴》说"人们甚至希望有一天可以完全从氨基酸序列中推断出构象。"1972年,克里斯蒂安安芬森在诺贝尔奖演讲中说:"我们对序列和三维结构之间相关性的大量数据积累,加上多肽链折叠的能量学理论的日益成熟,预测蛋白质构象的想法越来越现实了。"利用氨基酸序列直接预测蛋白空间构象是结构生物学家和分子生物学家们很早就有的渴望。虽然在过去的几十年中,科学家们一直致力于在实验室中用X射线或者冷冻电镜解析蛋白质结构,但科学家们并不会把“将一切存在的蛋白质用X-射线或者电子束打一遍”作为最终目标,掌握规律才是人类在科学探索中真正想要追求的东西。而AI的发展引出了这一目标成为现实的可能。经过深度学习的算法已经可以做到通过与已知结构的蛋白序列进行比较来预测目的蛋白的结构。尽管要真正解析未知蛋白的结构还言之过早,但诸如AlphaFold2等软件也的确为结构生物学的研究带来了不少便利。通过AlphaFold2等计算模拟的方法,与以冷冻电镜为代表的实验结构生物学相结合,两者相辅相成,为生物大分子结构解析,特别是药物发现领域带来了巨大的助力。04Structure Based Drug Design (SBDD)随着结构生物学的发展,人们对药物靶标蛋白的结构和功能的关系的了解越来越深入,逐渐形成了基于结构的药物设计策略,Structure Based Drug Design (SBDD)。1995年,罗氏基于SBDD开发了蛋白酶抑制剂Saquinavir,其抗逆转录病毒的功效可以配合其他药物治疗艾滋病。也使得基于结构的药物设计策略的潜力得到证实。之后,各类抗病毒、抗肿瘤、炎症等新药研发成功。时至今日,对靶标结构的认知和功能的预测几乎成为创新药开发中绕不过去的一环,以近年大热的难成药靶点KRAS为例,安进公司通过KRAS G12C突变体的GTP结合位点“口袋”研发出了首款抑制剂,而这只是结构生物学在药物开发中发挥基础作用的无数案例的一个。有越来越多的例子证明,结构中一些亚纳米级别的微小细节变化,为最终的药物成功与否带来了决定性的影响。相信在未来,技术的发展将带人类进一步认知生命活动中那微小而浩瀚,精密且复杂的分子世界,并为药物研发和疾病攻克带来更多启发和帮助。
  • 蚊子工厂”成功研发全球首台用于蚊子绝育的射线仪
    自2014年起,国际原子能机构与中山大学-密歇根州立大学热带病虫媒控制联合研究中心正式合作,在国际原子能机构的技术支持下建立了“蚊子工厂”,目前雄蚊产能达到300万只/周,同时在雄蚊生产中有关射线去雌方面开展了实质性合作。  “蚊子工厂”最近又取得了新的成果。在国际原子能机构昆虫不育技术的支持下,该联合研究中心日前自主研发了WOLBAKI X射线仪,对所有雌雄分离后的蚊子进行二次绝育,以达到彻底排除风险的效果。今天,在参观完“蚊子工厂”后,国际原子能机构副总干事杨大助表示,这是核技术和生物技术相结合的一次成功实践,在国际上处于领先地位。  在射线绝育室内,记者看到了全球首台用于蚊子绝育的射线设备——WOLBAKI X射线仪。“右边是控制系统,左边是冷却系统。”病原生物学博士生张东京打开左边的阀门,介绍这个类似微波炉构造的装置设备:在高能量光子照射下,将两个盛满成蛹的辐射杯放入其中,进行360度旋转。过程中为保证辐射均匀到位,需进行上下杯调换。在射线仪的作用下,约16分钟后,可使14万~16万个蚊蛹保证不育。“X射线主要影响的是未被完全分离出来的雌蚊,通过破坏它们的生殖腺,即卵巢,让它们绝育。”张东京说。  为什么需要加射线技术?张东京介绍,因为雄蚊生产最大的难题在于雌雄分离。即使通过雌雄分离器进行物理分离,还是会混存0.1%的雌蚊。即使再用人工筛选,仍然会有0.01%的误差。一旦漏网之雌蚊与野外物种交配,则会造成种群替换。  关于对蚊子在生物链底部进行压制,会不会影响到生物链的断裂和生态平衡问题,研究团队带头人奚志勇教授回应,相对于传统的方式,“以蚊治蚊”这种方式更凸显优点。“蚊子的种类很多,我们只是针对传病的蚊种,从危害人群的区域把这类蚊虫给除掉,从而减低危害。其他不吸血的蚊子,吸血不传病的蚊子依然存在。”奚志勇说。  未来10年,该联合研究中心计划向多个国家和地区推广此项技术,希望通过该项目的研究,为热带病虫媒控制开发新的研究方法和控制策略。目前,斯里兰卡、巴基斯坦、美国等国家和地区的组织和机构已明确表示了合作意愿。
  • 施一公Cell综述:X射线晶体学技术和结构生物学的历史与现状
    X射线晶体学技术是人们了解原子世界的利器,人们通过这一技术获得了许多重要的生物学结构。在晶体学技术百年诞辰之际,Cell杂志发表了清华大学施一公教授的前沿文章。这篇综述性文章全面介绍了X射线晶体学技术和结构生物学的历史和现状,读者现在可以在Cell网站免费获取全文。  1914年,德国科学家Max von Laue因为发现晶体中的X射线衍射现象,获得了诺贝尔物理学奖,这一发现直接催生了X射线晶体学。从那以后,研究者们用这一衍射技术解析了大量复杂分子的晶体结构,从简单的矿物、高科技材料(如石墨烯)到病毒等生物学结构。  自1957年确定了肌红蛋白的结构以来,X射线晶体学技术就成为了结构生物学的重要工具,为人们不断揭示生命的奥秘。这一技术不仅增进了我们对细胞的认识,还大大推动了现代医学的发展。  这篇文章首先从结构生物学的角度,回顾了X射线晶体学技术的发展简史。随后,施一公教授以蛋白激酶和膜整合蛋白为例,阐述了结构生物学的发展和现状,探讨了技术发展带来的影响并对未来进行了展望。  作者简介:  施一公,世界着名的结构生物学家,美国双院外籍院士,中国科学院院士。曾是美国普林斯顿大学分子生物学系建系以来最年轻的终身教授和讲席教授。  2008年2月至今,受聘清华大学教授 2009年9月28日起,任清华大学生命科学学院院长。获2010年赛克勒国际生物物理学奖。2013年4月当选美国艺术与科学院外籍院士、美国科学院外籍院士。2013年12月19日,施一公当选中国科学院院士。2014年4月2日,施一公获爱明诺夫奖,成为获此奖项的第一位中国人。该奖为国际知名奖项,由瑞典国王亲自颁发。  主要科研领域与方向:主要运用结构生物学和生物化学的手段研究肿瘤发生和细胞凋亡的分子机制,集中于肿瘤抑制因子和细胞凋亡调节蛋白的结构和功能研究与重大疾病相关膜蛋白的结构与功能的研究  推荐阅读  英文全文下载:A Glimpse of Structural Biology throughX-Ray Crystallography
  • HEPS首批X射线拉曼散射谱仪分析晶体完成在线测试
    近日,中科院高能所自主研制的球面弯曲分析晶体取得突破性进展,助力高能同步辐射光源(HEPS)高能量分辨谱学线站建设。针对国内高压科学、能源材料等多学科的学科优势,为满足广大用户需求,HEPS高能量分辨谱学线站正在设计建造一台具有先进国际水平的X射线拉曼散射(XRS)谱仪—“乾坤”。其中,球面压弯分析晶体基于罗兰圆几何条件,将特定能量的X射线聚焦至探测器上,是XRS谱仪的核心光学部件。聚焦面形精度和高能量分辨是球面弯曲分析晶体的两项极为关键,又互相影响的技术指标,因而极具挑战性。“乾坤”谱仪采用6组模组化分析晶体阵列,由90余块半径1m的分析晶体构成,其晶体能量分辨的设计指标与电子-空穴态寿命展宽数量级相当,达到ΔE/E~10-5,球面弯曲面形精度满足1:1聚焦需求。在HEPS工程指挥部的部署下,HEPS高能量分辨谱学线站团队与光学设计、光学机械、光束线控制系统相关人员,联合多学科中心晶体实验室积极攻关。线站核心成员郭志英、多学科中心晶体实验室刁千顺,经过多年技术攻关和反复尝试,不断改进优化分析晶体制备工艺,最终探索出兼顾能量分辨与聚焦特性于一体的球面弯曲分析晶体制备方法。今年10月2日-5日,项目团队在北京同步辐射装置(BSRF)1W2B线站上,采用Si(111)双晶单色器Si(220)切槽单色器两次单色化、毛细管微聚焦的光学配置,利用自研三元谱仪样机,对谱仪单模组内15块分析晶体(图1),采用EPICS-Bluesky控制系统实现单色器联动扫描,开展了批量、高精度指标测试(装置见图2)。优化后入射能量带宽实现高分辨,达到半高全宽0.8eV@9.7keV,分析晶体自身能量分辨(图3)达到半高全宽~1eV@9.7keV,与理论预测值相当,聚焦特性得到充分验证(图3、图4),各项指标全部满足工程设计需求。HEPS高能量分辨谱学线站是我国首条专注于硬X射线非弹性散射谱学实验的线站,聚焦核能级超精细结构、声子态密度、芯能级电子跃迁和价电子激发的探测,主要提供核共振散射(NRS)、XRS、共振非弹性散射(RIXS)等谱学方法,服务于量子科学、能源科学、材料科学、凝聚态物理、化学、生物化学、地学、高压科学、环境科学等多学科前沿研究。其中,XRS是一种基于X射线非弹性散射原理的先进谱学实验技术,欧洲ESRF (72块分析晶体)、美国APS(19块分析晶体)、日本SPring-8(12块分析晶体)、法国SOLEIL(40块分析晶体)、英国Diamond光源等光源已建成或规划建设XRS旗舰线站。由于非弹性散射截面极小,比X射线吸收截面小4~5个量级,XRS实验技术需要高亮度光源以增加入射光子通量,同时也需要大立体角谱仪提高探测效率,而大立体角探测需要多块发现晶体实现。首批分析晶体的指标通过在线测试,将满足大批量分析晶体加工的工程需求,对HEPS“乾坤”谱仪、高能量分辨谱学线站的实施都具有里程碑意义。值得一提的是,该类型分析晶体的工艺也已经用于多种类型谱仪分析晶体的研制。接下来,该团队将高质量完成其余模组分析晶体的批量加工,同时,将致力攻关无应力高能量分辨分析晶体的研制。晶体研发工作还获得先进光源技术研发与测试平台PAPS的支持,BSRF-1W2B、3W1、4W1A、4W1B线站提供机时。图1. HEPS自研分析晶体图2. 分析晶体测试装置,其中,左图给出了散射光和分析晶体分析光路示意图图3 分析晶体测试结果,左上为4#晶体能量分辨率实验结果和拟合曲线,左下为三块晶体在探测器上的聚焦光斑,右侧为分析晶体能量分辨率批量测试结果图4 扫描单色器能量时探测器上的光斑变化情况图5 测试人员合影
  • 高能量密度、长寿命锌碘液流电池研究新进展
    p  近日,中国科学院大连化学物理研究所储能技术研究部研究员李先锋、张华民领导的研究团队在高能量密度、长寿命锌碘液流电池研究方面取得新进展。研究成果作为“Very Important Paper”在线发表在《德国应用化学》(Angew. Chem. Int. Ed.)上。/pp  大规模储能技术是实现可再生能源普及应用的关键核心技术,液流电池由于具有安全性高、储能规模大、效率高、寿命长等特点,在大规模储能领域具有很好的应用前景。锌碘液流电池由于电化学活性好,电解质溶解度高,能量密度高(理论能量密度可达250.59Wh/L)等优势,具有很好的研究和应用前景。但是目前锌碘液流电池存在循环寿命短,功率密度低的问题。/pp  为解决以上问题,该研究团队提出利用廉价的聚烯烃多孔膜(15美金/m2)替代昂贵的全氟磺酸离子交换膜,大大降低了电池成本。此外,该体系使用KI和ZnBr2的混合溶液作为电池的正负极电解质,大大提高了中性环境下电解质的电导率和稳定性。由于聚烯烃多孔膜的多孔结构在中性环境下表现出优异的离子传导能力,电池的工作电流密度大幅度提高。实验结果表明,在80mA/cm2下运行,单电池能量效率达82%,较之前报道的锌碘体系提高了8倍,能量密度达80Wh/L 在180mA/cm2运行条件下,电池的能量效率超过70%,表现出很好的功率特性。更为重要的是,聚烯烃多孔结构中充满的氧化态电解液I3-可以与锌枝晶反应,解决了由于锌枝晶导致的电池循环寿命差的问题。即便是电池因为锌枝晶发生短路,电池性能也能够通过膜孔中I3-对锌枝晶的溶解作用实现自恢复。该体系单电池在80mA/cm2下连续运行超过1000圈,性能无明显衰减,表现出很好的稳定性。为进一步证实该体系的实用性,研究团队成功集成出kW级电堆,该电堆在80mA/cm2下稳定运行超过300个循环,能量效率稳定在80%,表现出很好的可靠性。该电池目前仍处于研究初期阶段,需进一步提高其高电流密度下的可靠性,推进其实用化和产业化。/pp  上述工作为开发新一代高性能的液流电池新体系提供了很好的借鉴,也为其他锌基液流电池的研发提供了新的思路。/ppimg title="v183344_b1526963928105.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/ac1d0392-cdeb-44ed-937f-f9f31f657397.jpg"//pp  大连化物所高能量密度、长寿命锌碘液流电池研究取得新进展/pp/pp/p
  • 业内人士再揭方便面“辐照”内幕
    本报率先独家爆出的统一和康师傅两大方便面品牌陷入“辐照门”事件后,在社会上引起高度关注。近日,有业内人士向本报进一步透露,食品辐照存在比较严重的安全问题和管理漏洞,在境内外市场,一些方便面在执行双重市场标准 而那么多企业热衷用辐照杀菌,主要是被“逼良为娼”,因为相关食品的卫生标准“太苛刻”。  方便面辐照:  “远不止统一和康师傅”  日前本报曾报道统一和康师傅两大方便面品牌,都存在料包用放射线杀菌(简称辐照)而不在外包装上标识的情况。近日,一位自称曾经在食品企业工作过的人士阿峰(化名)主动联系本报记者,表示愿意提供更多关于食品辐照的情况。据他称,方便面料包辐照在行业内已经不是秘密,“国内方便面料包(香辛料)基本上都经过辐照处理,范围之广令人咂舌,远远不止统一和康师傅两个品牌”。  为什么要辐照?“香辛料在制作过程中很容易被细菌污染,比如将辣椒加工成辣椒粉的制作过程。虽然通过加热也可以杀菌消毒,但是这样一来味道就会受到影响,所以国内几乎所有香辛料生产企业都选择以辐照这种方式来消毒杀菌。”阿峰说。  事实上,记者浏览了国内多家辐照中心的网站,发现所有中心所提供的食品辐照范围远远不止方便面的调料包。比如,许多中心资料都提及,大蒜、洋葱、土豆等蔬菜可通过辐照抑制发芽延长贮存期,然而市面上这类蔬菜却也没有任何相关标识,是否有经过辐照也成了一个谜。  但有一点是肯定的,辐照技术正大行其道。据阿峰透露,前几年各地辐照中心提供的食品辐照服务价格都非常便宜,每一吨只需要200元,后来由于越来越多企业有此需求,使得价格一度飙升至每吨1000元。  国内一些监管部门  没有专用检测仪  阿峰还表示,早在2004年、2005年前后,不少国产食品尤其是方便面在出口欧盟等地的时候已尝到了辐照的“苦头”,由于被检出经过了辐照而又未依法标识,被要求召回产品。  据了解,欧盟对辐照食品管理非常严厉,在全球范围内只认可5家辐照中心提供的服务,同时立法要求辐照食品标识。其对进口食品也必须进行辐照检测,检测结果在700单位以下的放行,700-5000单位之间的进一步检验,超过5000单位以上的立即要求企业或经销商进行召回。  中国市场上的产品怎么样?记者另从有关渠道了解到,2004年有机构曾对广州市场出售的方便面产品所做的检测,所有产品的脱水菜包、汤包和粉包都检出经过辐照(但均未在外包装上进行标识),其中检测数据最高的超过900万单位,差不多超过欧盟标准1800倍!  记者也在爱尔兰食品安全管理局网站上查到,2005年该局曾在一批未标识“辐照”的方便面蔬菜包、汤包或料包中检出辐照残留。“黑名单”上有产地为中国的“统一”(Presi-dent)和“统一100”(President Unif-100)、韩国生产的“农心”(Nong Shim)、香港地区生产的“日清”(Nissin)等。  阿峰进一步解释,大多数方便面企业都是从外面买回胡椒粉、辣椒粉、姜粉等调味料单品回厂里混合加工成调料包,然而这些调味料往往在进厂前都已经过辐照。“很多企业自己没有辐照食品检测仪,根本没办法知道哪些经过辐照。但这也不能完全怪企业,因为现在除了进出口检验检疫部门之外,连其它监管部门都还没有配有专用的检测仪,根本没办法对市场进行监管,企业自然也不会忌惮。”而且,国内虽有《辐照食品卫生标准》等法规,但其中仅规定“平均吸收剂量不得大于10kGy”,而并没有列出具体的检测手段和检测标准,这也给监管带来难度。  正因为如此,部分方便面企业开始采取“双重标准”,出口海外的产品专门找一些非辐照的食品原料,而在国内销售的产品则照用不误。然而最让人担忧的是,现在国内市场上到底有多少食品经过了辐照,由于缺乏专业的检测手段,根本无从得知。  企业为何对辐照趋之若鹜:  标准太严“逼良为娼”?  记者留意到,所有允许对食品进行辐照加工处理的国家和地区,都规定必须对辐照食品进行明确标注。比如,香港地区规定,所有储存辐照食物的容器均须清晰用英文大楷列明“IR-RADIATED”或“TREATED WITH IONIZ-ING RADIATION”及用中文列明“辐照食品”, 违法最高罚款50000美元及监禁6个月。澳大利亚、新西兰等国家,也都要求对辐照食品应在包装或容器上按规定进行标识。  即使是在辐照食品比较普遍的美国,也严格要求在产品包装上加贴国际辐射标志“radura”标识,和注明“经辐照处理”的字样。由于监管严厉,大多数食品企业不到万不得已,都不会使用辐照技术。然而,为何国内企业却对辐照趋之若鹜?  有企业人士则认为,方便面料包之所以成为最普遍使用辐照的食品,与强制性国家标准《方便面卫生标准》(GB17400—2003)中对大肠菌群的要求不无关系。标准要求,方便面(面块+调料)大肠菌群必须≤150(MPN/100g),而国外如澳大利亚、新西兰和英国等,对“即食食品”(ready-to-eat food)的相关标准中,对肠杆菌科这一近似指标的要求则将≤10000(CFU/100g)定为“满意”。  “国外的标准和国内的标准差太远。正因为国内标准太严苛,而香辛料又偏不宜加热杀菌,所以辐照就是最好的办法。哪怕想要做到无菌都可以,只需加强辐射。”该人士指出,一方面标准限制太死,但另一方面监管又不到位,所以才导致了如今大量“隐形”辐照方便面料包存在的局面,形成“逼良为娼”的局面。  -小链接  何谓辐照食品?  辐照食品是利用钴-60等放射源产生的伽玛射线,或是电子加速器产生的高能电子束,来进行加工、处理过的食品。由于电离辐射在食品中会产生辐射化学和辐射生物学效应,因此,辐照可达到抑制发芽、推迟成熟、杀虫灭菌等目的。本报6月29日在A4版独家率先报道的《“辐照食品”为何遮遮掩掩?》,披露了以统一、康师傅两大方便面料包为代表的一批食品虽经过辐照却又未依法标注,侵犯了消费者知情权。在社会上引起了强烈反响,并被各地媒体广泛转载。(本报率先独家爆出的统一和康师傅两大方便面品牌陷入“辐照门”事件后,在社会上引起高度关注。近日,有业内人士向本报进一步透露,食品辐照存在比较严重的安全问题和管理漏洞,在境内外市场,一些方便面在执行双重市场标准 而那么多企业热衷用辐照杀菌,主要是被“逼良为娼”,因为相关食品的卫生标准“太苛刻”。
  • 27载电镜人新探索:高效捕获电子态信息的软X射线发射光谱——访吉林大学电镜中心主任张伟教授
    在过去的近百年里,电子显微镜在现代材料科学研究中起着不可或缺的作用。随着电子显微镜技术的发展,能量色散光谱(EDS)、波长色散光谱仪(WDS)以及电子能量损失谱(EELS)等基于电子显微镜的光谱分析手段不断涌现。在电镜空间分辨率的基础上,这些光谱分析手段为电镜表征又赋予了能量分辨率的维度,通过将两者相融合,电镜技术得以在分析过程中获得高能量分辨率和高空间分辨率并存的结果。近年来,随着先进光谱分析手段的发展,出现了一种基于电镜且十分便捷高效的X射线发射光谱分析方法:软X射线发射光谱(SXES)。吉林大学张伟教授在国内、乃至国际,较早的围绕SXES展开了系列研究,并取得了诸多亮眼成果。近三十年,张伟教授围绕电镜,在诸多材料体系均有代表性成果产出,这不仅基于他对电子显微学的热爱,也离不开对电镜技术的“敏感”。近日,仪器信息网有幸采访了张伟教授,请其分享了SXES技术的最新进展与应用潜力,也聆听了其与电镜的故事。张伟,吉林大学电子显微镜中心主任、材料科学与工程学院“唐敖庆学者”领军教授。现任吉林省电子显微镜学会理事长、英国皇家化学会会士(2022),科睿唯安“全球高被引科学家榜单”(2023,交叉学科)。关注电化学能源存储/转换材料的表/界面的化学和物理调控及与性能的构效关系,强调先进材料的电子显微分析。作为学术带头人引进人才来吉林大学工作前,先后在日本国立材料研究所、韩国三星综合技术研究院、德国Fritz-Haber研究所、丹麦技术大学、西班牙能源协作研究中心从事合作和独立的科学研究。2017年起先后任电子显微镜中心副主任、主任。2020年起任唐敖庆学者-领军教授。27载电镜魅力职业:既是技术手段,更是一门学问“热爱,往往收获意外的惊喜”1997年至2004年,张伟在我国电子显微学重要发展地之一的中国科学院金属研究所攻读硕士和博士,师从我国著名电子显微学专家李斗星研究员、隋曼龄教授。在此,张伟开始开展电镜相关研究,与电镜结缘,并对这个学科产生浓厚兴趣。2004年博士毕业以后又先后在多个国家从事合作和独立的科学研究。2014年开始到吉林大学工作。这十余年间,虽然研究的材料体系广泛、领域不同,但电镜都是最重要的研究手段或对象。回顾以往,“因为我可能经历的地方很多,当时我的直觉,在哪个地方离开的时候都要留下些什么”。在这种直觉和热爱驱动下,十余年的科研历程收获诸多“意外惊喜”,每个领域和阶段也都有一些值得回忆的成果。攻读博士期间,张伟专注于金属与合金的研究。利用电镜深入探索,通过快速加热的方法,发现了传统钛合金中一种特殊的相变形式——快速升温马氏体相变。由于马氏体相变在材料科学和凝聚态物理领域都扮演着至关重要的角色,这一成果在当时备受关注,不仅发表在应用物理快报上,还得到了中国科学院官方报纸科学时报的专门报道。在德国研究期间,基于团队自由的学术氛围,得以深入研究一些有趣的方向。在电镜中,张伟发现了一种超大单胞的表面终结状态,这在当时具有重大意义。传统观念上,透射电镜主要研究块体结构,但此研究成功挑战了表面研究的难题。通过调整衬度传递函数,结合先进球差电镜中的HAADF-STEM技术,揭示了超大单胞结构表面终结于非完整通道的现象,解决了团队长期关于侧面或表面态原子排布的争议。这一工作发表后,引起了广泛关注,并启发了后续相关的诸多研究。回顾这一发现,张伟认为这依旧是自己目前最具原创性的工作之一。随后在丹麦继续研究期间,张伟在电镜中随意观察石墨烯样品时,意外发现石墨烯上会留下痕迹,敏锐地意识到这可能是一种纳米书写工具。于是深入探究,最终发表了题为“以石墨烯为纸,电子束为墨”的纳米书写技术论文。发表后迅速受到国家科技日报海外头版头条报道,这一结果因他灵活的想法和电镜的作用而备受关注,也让张伟备受激励。回国后,张伟致力于能源存储领域研究,并与西班牙能源协作研究中心和韩国基础科学研究所合作,发现了氢氧化物赝电容超级电容器的新机制,即氢离子的嵌入脱出过程,而非传统认为的表面氧化还原反应。成果发表受到广泛关注,至今被引超过250多次。2019年诺贝尔化学奖获得者古迪纳夫教授甚至专门撰写文章评价了这一工作的重要意义。尽管运用了多种研究手段,但核心仍是张伟对电镜的敏锐洞察,通过观察特征形貌演变和电子衍射谱分析,发现了充电和放电结构的高度相似性,这一发现对后续研究起到了关键作用。张伟讲授“电子显微镜魅力职业”课堂一瞥问及在诸多材料体系中都有一定成果的原因,张伟讲到,“一个可能是我兴趣在,再有一个也确实热爱”。正如张伟曾经给本科生、研究生和留学生讲授几门相关的课程“材料科学测试方法”、“电子显微镜应用与实例分析”或讲座“电子显微镜魅力职业与追求”中所阐释的,电镜除了是生存手段,更成为喜欢的一个魅力职业。“双管齐下”的学科:电镜既是手段,更是一门学问在谈到电子显微学这门学科时,张伟认为,首先,电子显微学是一门实用性极强、应用范围广泛,起着为其他学科服务支撑的重要作用。但另外,电子显微学本身也蕴含了丰富的理论,是一门需要不断研究、探索和突破的学问。作为现代科研的重要支撑学科,电子显微学在材料物理化学等领域扮演着不可或缺的角色。无论是探索新现象、新机理,还是揭示物质结构,电镜都发挥着举足轻重的作用。通过电镜对材料的深入研究,科学家们得以发现许多未知的领域,为科学进步贡献着力量。回顾以往,许多革命性成果的获得,正是依赖于电子显微学的突破性发现。例如,碳纳米管、准晶的发现等,背后都离不开电子显微学的直接贡献。同时,随着电镜技术的飞速发展,空间分辨率、能量分辨率以及时间分辨率等方面都取得了前所未有的提高,这些进步离不开新的理论支撑。例如,空间分辨率方面,球差电镜如今已经能够达到0.5埃甚至0.4埃的尺度。然而,一篇物理快报中提到,如果能克服某些限制,分辨率甚至可以达到0.01埃以下。这些突破性的进展,都需要其他学科的研究支持,以实现对分辨率不断突破的目标。总之,电子显微学是一门“双管齐下”的学科。它在支撑其他学科发展的同时,也在自身领域内不断取得新的突破和进展。二者相辅相成,共同推动着电子显微学不断向前发展。张伟的科研工作也与电子显微学的以上两个特性十分契合,在不同材料体系中广泛应用电镜的同时,也在围绕一些电子显微技术进行系统研究。2017年,吉林大学成立电子显微镜中心,张伟先后任电子显微镜中心副主任、执行主任、主任,并开始“双肩挑”的工作。一方面继续在材料学院从事科研工作,一方面也在电镜中心负责管理行政工作,同时也开始“回归”电镜相关研究,希望能通过一些原创性工作,为电子显微学的发展做出一些贡献。其中,软X射线发射光谱的应用与发展就是张伟近来比较聚焦的一个研究方向。探索新方向:基于电镜,以高能量分辨率表征电子态信息的SXES技术SXES技术发展历程:一种高效表征键合电子态信息的光谱方法诞生X射线发射光谱(XES)属于X射线光谱学,其分析原理是入射电子束辐照内层能级电子使其激发,被激发的电子脱离原来稳定的系统,内壳层会存在空穴,此时整个系统处于一种不稳定的激发态。与此同时,外层电子会向内壳层的空穴发生跃迁(退激发De-excitation),从而促使X射线的发射,通过分析发射光子的能量可以获得相关材料的电子信息。X射线发射光谱有多种类型,其中,软X射线发射光谱(SXES)也可用于确定材料的电子结构。1924年,林德(Lindh)和伦德奎斯特(Lundquist)首次发表了关于X射线发射光谱的实验结果,随后X射线发射光谱被广泛应用在材料研究中。虽然这些早期研究提供了对小分子电子构型的基本见解,但X射线发射光谱直到在同步辐射设施提供高X射线强度束后才得到更广泛的应用。近年来,随着先进光谱分析手段的发展,出现了一种基于电子显微镜且十分便捷高效的X射线发射光谱分析方法:软X射线发射光谱(SXES)。SXES的能量分辨率和检出限分别可以达到0.3 eV和20 ppm,优于EDS(120-130 eV、5000 ppm)和WDS(8 eV、100 ppm)。这意味着SXES的诞生为研究更精细的材料电子结构提供了更多的可能性。SXES与WDS,EDS对比(参考日本电子数据,根据安装的装置不同而不同)SXES作为附着在电子显微镜上的光谱分析方法,其目标是获得更高的分辨率,为了达到超高的能量分辨率以及空间分辨率,该技术也经历了几代漫长的发展。2000年,日本东北大学M Terauchi等人开发了连接到透射电子显微镜的第一代亚电子伏特分辨率软X射线光谱仪(JEM 2000FX)。光谱仪由VLS光栅和冷却的CCD探测器组成。首次在TEM中以0.6 eV能量分辨率的特定样品区域观察到价带(VB)的部分态密度(DOS)。然而,由于空间分辨率仅为1μm,在分析更小结构时能力不足。2002年,第二代软X射线发射光谱仪被开发。与第一代相比,能量分辨率从0.6 eV提高到0.4 eV,空间分辨率从1 μm提高到400 nm。可以设置两种不同的光栅,能量范围为60-1200 eV。然而,高能量区域的收集角和能量分辨率仍然不够。因此,从2008年到2012年,日本科学技术振兴机构(JST)资助了一项产学研联合种子创新项目,开发了一种光谱仪,该光谱仪利用VLS光栅作为色散元件,以达到超高的能量分辨率,可以在50 eV到4000 eV的宽能量范围内对软X射线光谱进行测量。成功研发出新一代商用软X射线发射光谱仪(SS- 94000 SXES),随后日本电子以商业化产品推向市场。该光谱仪带有两个光栅,可以检测50 -210 eV的一阶光谱和高达420 eV的二阶光谱,以及更高阶的光谱。该光谱仪可以探测到70多种元素的软X射线发射信号。到目前为止,SXES已经成为在纳米尺度上描述材料物理性质的成熟技术。SXES技术优势:高分辨,无损、化学键状态、锂元素分析X射线发射光谱工作原理示意图X射线发射主要是由电子束辐照引发的电子从价带(键合电子)到核心能级的电子跃迁。发射的X射线携带着有关键合电子(如Li的2s电子,C的2s和2p电子)的能量状态信息。通过检测电子从价带跃迁到内壳引起的X射线发射(上图),可以获得键合电子的部分态密度。由于核心能级态具有良好的对称性,发射强度分布反映了价带的部分态密度。作为一种基于电子显微镜的光谱分析方法,在样品制备过程中无需对样品进行特殊处理;在低加速电压下工作时,可以实现纳米级空间分辨率;在对简单金属、半导体和铝基化合物进行光谱分析时可以探究其能带结构效应。也就是说,一种新的、方便的表征键合电子态信息的光谱方法诞生了,该方法正在蓬勃发展,并在各个领域中得到应用。SS-94000 SXES检测金属Li图谱(图自日本电子)关于SXES技术的优势,张伟表示,一方面是分辨率高,其能量分辨率和检出限分别可以达到0.3 eV和20 ppm,优于EDS和WDS。这意味着SXES的诞生为研究更精细的材料电子结构提供了更多的可能性。另一方面,SXES还具有可视化和选择分析区域的优势,这使得SXES能够获得材料的局部或平均信息。此外,SXES 还具有几个独特的优势。第一,SXES的检测深度在几纳米到几百纳米之间,这使得SXES能够对样品进行无损的分析。其次,由于SXES具有非常高的能量分辨率和检出限,因此高能量分辨率的SXES可用于分析材料中化学键的状态。第三,也是最重要的一点,SXES可以对材料中的锂元素进行分析,这对于当下热点研究的新能源材料、能量存储材料中的应用是十分重要的。SXES技术应用进展:成果广泛,应用潜力被低估当前,从事基于电镜SXES技术研究与应用的团队较少,国际上主要是日本在推进相关研究,张伟则是我国鲜有的从事相关应用研究团队。日本偏技术推进,而张伟则在应用研究方面做了系列工作。并在全球率先发表了以基于电镜SXES技术应用研究为主题的综述。安装于吉林大学的国内首台基于扫描电子显微镜的软X射线发射光谱仪吉林大学也在2017年,购置了国内首台基于扫描电子显微镜的软X射线发射光谱仪(SS-94000 SXES),配置在JSM-7900F热场发射扫描电子显微镜上。基于SXES,张伟团队成功地将SXES应用于电化学能源和电催化领域,并为团队一些文章提供了关键数据,起到画龙点睛的作用。近两年来,张伟团队产出6篇实验型文章,1篇综述型文章。在水系电池领域,通过SXES揭示了CuHCF正极材料中铵离子的可逆嵌入/脱出,伴随Cu/Fe可逆价态转变的储能机制,发表于国际纳米领域的权威期刊Nano Lett上(Nano Lett. 23 (2023) 5307-5316)。在双离子电池工作中,团队利用SXES技术检测了石墨电极中Li-K和C-K边发射峰,证明了Li+成功的预嵌入石墨电极中,发表在国产卓越行动计划期刊JEC上(Journal of Energy Chemistry 71 (2022) 392-399)。团队将SXES与XANES的结果一同分析,研究了充放电过程中Bi电极和碱金属离子(Li+、Na+ 和K+)之间的电子结构演化过程,发表在影响因子高达20.4的ESM期刊中(Energy Storage Materials 45 (2022) 33-39)。此外团队也将这种表征手段应用于OER中,采用熔融盐辅助硼热反应法制备了FeCoB2。通过SXES对OER反应后催化剂的表征,证实OER反应后的催化剂中B原子与FeBO4中B的存在形式相同,与XPS的结果一致(Journal of Energy Chemistry 72 (2022) 509-515)。在HER中,通过SXES对反应前后对MXene量子点催化剂进行表征,证明了在电化学反应后,-Cl基团被氧基团取代,从而优化了HER性能,在EEM期刊上发表,并且作为封面 (Energy Environment Materials 6 (2023) e12438),正逢MXene量子点获得诺贝尔化学奖之际。在ORR中,借助SXES 分析了铠甲催化剂的电子结构,通过对比金属Co元素引入的Co-NC催化剂与没有金属引入的NC催化剂的SXES峰位,表明金属Co物种的引入会使石墨电子结构发生变化,与同步辐射的结果一致,并且在国产卓越行动计划期刊JEC上发表(Journal of Energy Chemistry 70 (2022) 211-218)。随后团队对SXES在锂离子电池中的应用进行了全面的总结,在专注研究材料领域创新性研究成果的国际顶级快报MRL期刊上(年发文量74篇)发表了全球首篇关于软X射线发射光谱仪在锂离子电池研究领域应用的综述型文章,(Materials Research Letters 11 (2022) 239-249)并对SXES未来的发展提出了合理的展望。近两年,张伟团队产出的部分成果显然,SXES将成为在材料科学领域剖析电子结构信息的一个非常重要和强大的表征手段。尽管已经取得了一些进展,但SXES技术在许多的研究领域中的作用仍然被忽视。张伟认为,随着应用的不断深入,相关成果不断涌现,相信SXES技术会受到更多科研工作者的青睐。SXES作为一种简单、方便的光谱分析工具,并不局限于能源和催化领域。另外,张伟也十分看好SXES与其他表征手段联用技术,通过SXES辅助其它表征手段可以简化材料电子结构的研究,通过与其他表征手段的结合可以实现1+1远远大于2的效果。2024年1月,日本电子软X射线发光分光器出货第100台合影留念关于SXES技术的未来展望,张伟十分看好SXES技术以及相关联用技术,并认为,虽然目前SXES技术的研究与应用还处于一个相对初期的阶段,但相信在仪器使用者、研究者,以及仪器企业等多方共同努力下,SXES技术必将在材料电子结构研究领域掀起一个巨大浪潮,从而促进催化、能源以及其他领域的蓬勃发展。后记基于电镜技术,张伟在多个材料体系研究中取得显著成果,并较早投入SXES技术的研究,取得了系列突破。分享经验时,他强调了兴趣的重要性,提倡夯实基础知识,聚焦研究领域,并注重多学科交流。他特别提到,科研应摆脱功利心态,以平和之心面对挑战。就像团队学生们以“正能量满满”来描述张老师,兴趣为伴,乐观的心态下,有生活也有理想,科研与生活之旅中自然收获惊喜。或许,这便是张伟与电镜故事的真实写照。附:4分钟视频一览SXES的特点和功能(视频自日本电子官网)
  • 布鲁克发布Bruker 高通/能量三维X射线显微成像系统(3D XRM)新品
    Skyscan 1273是Bruker最新的基于微型计算机断层扫描(Micro-CT)技术的台式3D X射线显微成像系统。最大可容纳长度不超过500 mm、直径不超过300 mm、最大重量为20 kg的样品,这是台式显微成像设备进行无损检测(NDT)的新标准。一流的硬件让Skyscan 1273成为强有力的工具。高能量的X射线源和具有最高灵敏度和速度的大幅面平板探测器的结合,在短短几秒钟内就能提供出色的高质量图像。 全面的软件,直接进行数据收集,先进的图像分析,强大的可视化使Skyscan 1273成为一个简单易用的3D X射线显微成像系统。 Skyscan 1273台式3D X射线显微成像系统占地面积小,简单易操作,几乎无需维护。因此,Skyscan 1273运行稳定,性价比极高。 特点 40-130kV低成本免维护X射线源 8位滤光片转换器自动进行能量选择 GPU加速性能可提高3D重构速度 大尺寸图像的自动拼接偏移扫描 利用螺旋扫描和精准重构可获得最佳的平面结构图像质量 借助HART Plus,对大宽高比物体在保持图像质量的情况下,扫描速度可提高4倍参数• X射线源:40-130kV,39W,• X射线探测器:600万像素平板探测器(3072×1944像素)• 标称分辨率(最大放大率下样品的像素):图像分辨率<3um;空间分辨率<5um,• 重建容积图(单次扫描):最高4800×4800像素 • 样品尺寸:最大值:直径250mm,长500mm,重量20kg• 扫描空间:最大值:直径250mm,长300mm• 辐射安全:在仪器表面的任何一点上<1 uSv/h• 外形尺寸:1250(宽)×815(深)×820(高)毫米• 重量:400千克,不含包装• 电源:100-240V / 50-60Hz / 3A创新点:Skyscan 1273是Bruker最新的基于微型计算机断层扫描(Micro-CT)技术的台式3D X射线显微成像系统。最大可容纳长度不超过500 mm、直径不超过300 mm、最大重量为20 kg的样品,这是台式显微成像设备进行无损检测(NDT)的新标准。一流的硬件让Skyscan 1273成为强有力的工具。高能量的X射线源和具有最高灵敏度和速度的大幅面平板探测器的结合,在短短几秒钟内就能提供出色的高质量图像。 全面的软件,直接进行数据收集,先进的图像分析,强大的可视化使Skyscan 1273成为一个简单易用的3D X射线显微成像系统。 Skyscan 1273台式3D X射线显微成像系统占地面积小,简单易操作,几乎无需维护。因此,Skyscan 1273运行稳定,性价比极高。Bruker 高通/能量三维X射线显微成像系统(3D XRM)
  • 布鲁克发布Bruker 高通/能量三维X射线显微成像系统(Micro-CT)新品
    Skyscan 1273是Bruker最新的基于微型计算机断层扫描(Micro-CT)技术的台式3D X射线显微成像系统。最大可容纳长度不超过500 mm、直径不超过300 mm、最大重量为20 kg的样品,这是台式显微成像设备进行无损检测(NDT)的新标准。一流的硬件让Skyscan 1273成为强有力的工具。高能量的X射线源和具有最高灵敏度和速度的大幅面平板探测器的结合,在短短几秒钟内就能提供出色的高质量图像。 全面的软件,直接进行数据收集,先进的图像分析,强大的可视化使Skyscan 1273成为一个简单易用的3D X射线显微成像系统。 Skyscan 1273台式3D X射线显微成像系统占地面积小,简单易操作,几乎无需维护。因此,Skyscan 1273运行稳定,性价比极高。 特点 40-130kV低成本免维护X射线源 8位滤光片转换器自动进行能量选择 GPU加速性能可提高3D重构速度 大尺寸图像的自动拼接偏移扫描 利用螺旋扫描和精准重构可获得最佳的平面结构图像质量 借助HART Plus,对大宽高比物体在保持图像质量的情况下,扫描速度可提高4倍参数• X射线源:40-130kV,39W,• X射线探测器:600万像素平板探测器(3072×1944像素)• 标称分辨率(最大放大率下样品的像素):图像分辨率<3um;空间分辨率<5um,• 重建容积图(单次扫描):最高4800×4800像素 • 样品尺寸:最大值:直径250mm,长500mm,重量20kg• 扫描空间:最大值:直径250mm,长300mm• 辐射安全:在仪器表面的任何一点上<1 uSv/h• 外形尺寸:1250(宽)×815(深)×820(高)毫米• 重量:400千克,不含包装• 电源:100-240V / 50-60Hz / 3A创新点:Skyscan 1273是Bruker最新的基于微型计算机断层扫描(Micro-CT)技术的台式3D X射线显微成像系统。最大可容纳长度不超过500 mm、直径不超过300 mm、最大重量为20 kg的样品,这是台式显微成像设备进行无损检测(NDT)的新标准。一流的硬件让Skyscan 1273成为强有力的工具。高能量的X射线源和具有最高灵敏度和速度的大幅面平板探测器的结合,在短短几秒钟内就能提供出色的高质量图像。 全面的软件,直接进行数据收集,先进的图像分析,强大的可视化使Skyscan 1273成为一个简单易用的3D X射线显微成像系统。 Skyscan 1273台式3D X射线显微成像系统占地面积小,简单易操作,几乎无需维护。因此,Skyscan 1273运行稳定,性价比极高。 Bruker 高通/能量三维X射线显微成像系统(Micro-CT)
  • 射线检测仪测到地球磁场出现裂缝 引发人类关注未来
    地球周围有巨大的地磁防护罩,保护人类和其他生物免受太空射线的伤害。  一项最新地球研究报告说,地球磁场不仅正在减弱,而且出现裂缝,因此包括人类在内的生命随时会受到高能量宇宙射线的威胁。  据物理学网站近日报导,印度科学家使用世界最敏感、最大型的宇宙射线检测仪器于近期观察到地球磁场出现裂缝。  科学家在《物理评论快报》(Physics Review Letter)上指出,因为地磁出现裂缝,所以日冕喷发的巨大等离子能量束冲击地球磁层,引发地磁风暴。  地磁裂缝  这种检测仪器为GRAPES-3 介子望远镜,位于印度乌提(Ooty)的塔塔基础研究院(TIFR)宇宙射线实验室。2015年6月22日,该实验室记录到时间长达2小时的200亿电子伏特(20GeV) 高能量太空粒子束,以每小时250万公里的速度撞击地球,造成很多距北极较近的国家地区出现无线电信号中断。  当时,天空出现绚丽多彩的北极光。科学家说,这是因为地磁遭受那种极高速粒子的冲压而产生磁暴的结果。  而这种磁暴的根本原因是近年强度不断减弱的磁场发生重新联接时出现一种磁场裂缝。  报导说,地球磁场是一种人肉眼看不见的无形保护层,减少我们受宇宙射线的威胁。而这个巨大的防护罩近年来出现明显的变化,因此那些潜在的太空威胁问题变得越来越突出。  地磁分布变化  澳洲Science Alert科技新闻网曾于5月11日报导,科学家注意到,地球磁场保护层已经出现非常明显的变化,如地磁北极发生了偏移。  地球磁场强度近年来一直在减弱,目前地球磁场强度以每10年下降5%的速度减弱,而且减弱速度比以前快10倍。而且地磁的分布特点出现改变,即地磁在某些地区增强,在某些地区减弱。  欧洲空间局(ESA)在5月初布拉格召开的“生命地球研讨会”(The Living Planet Symposium )上报告,地磁北极正快速地朝向亚洲东方偏移。  该报告指出,自1999年以来,地球磁场强度在北美上空减弱3.5%,而在亚洲增强2%。大西洋南部的南美地区,地磁强度异常减弱2%,而且近7年来其减弱趋势一直朝着西部方向发展。  与人类未来有关  科学家推测,地球磁场强度不断减弱的最终结果是地磁两极倒转,造成宇宙射线强烈照射地球,包括人在内的生物因此遭受毁灭性灾难。科学家估计,这种地磁倒转的灾难会每10万年发生一次。  报导说,这种研究结果听起来很可怕。但是实际情况可能不是想像的那么糟糕。欧洲空间局地磁观测项目经理鲁尼弗莱博哈根(Rune Floberghagen)于2014年7月曾解释:“这种磁极突然倒转不是瞬间出现,而是在几千年或者几百年的时间内发生。这种现象在过去的历史发生过许多次。”  而且2014年7月,加州大学等机构于英国皇家《国际地球物理研究杂志》(Geophysical Journal International )发表报告认为,78.6万年前的地球磁场活动曾在6000年内一直处于不稳定状态,最后在100年间发生磁场两极倒转。  加州大学伯克利分校的研究者考特妮斯普莱恩(Courtney Sprain)说:“我们很惊讶,当时地球磁场的两极倒转速度很快。”  科学家根据目前的地磁减弱情况推测地磁南北极会在今后几千年间突然发生倒转。  伯克利分校的地质年代学中心主任保罗瑞尼(Paul Renne)教授表示,虽然尚不清楚将在何时突然发生下一次的地球磁场倒转,但人们需要多思考一旦发生后人类会遭受什么。
  • 布鲁克发布超轻元素微区X射线荧光成像光谱仪 M4 TORNADO PLUS新品
    微区X射线荧光光谱仪,M4 TORNADO PLUS,X射线荧光成像光谱仪,微区XRFM4 TORNADOPLUS - 微区X射线荧光成像的新纪元M4 TORNADOPLUS是世界上第yi台能够检测出C(6)-Am(95)间全部元素的微区X射线荧光成像光谱仪。作为微区X射线荧光成像光谱仪M4TORNADO系列的zui新产品,M4 TORNADOPLUS又增添了独特的功能,例如创新性的孔径管理系统,高通量脉冲处理器以及快速灵活更换的样品台。更轻、更快、更深M4 TORNADOPLUS采用超轻元素窗口的大面积硅漂移探测器(SDD)实现对轻元素碳的检测,超高通量脉冲可以zui大程度提升采样速度,BRUKER专利孔径管理系统(AMS)可以获取超大景深,对表面不平整样品分析具有独特的优势。超轻元素检测M4 TORNADOPLUS是史上第yi台能够检测分析轻质元素碳的微区X射线荧光成像光谱仪,具备两个具有超轻元素窗口的大面积硅漂移探测器和一个特别优化的Rh靶X射线光管。与普通微区X射线荧光成像光谱仪不同,M4 TORNADOPLUS在不影响较高能量范围内元素灵敏度的前提下,还可以检测原子数小于11的元素(Z<11),例如氟(F)、氧(O)、氮(N)和碳(C)。随着功能性的增强,M4 TORNADOPLUS应用也正在开发和拓展中,例如地质学、矿物学、生物学、聚合物研究或半导体行业等方向。应用实例-萤石和方解石的区分萤石(CaF2)和方解石(CaCO3)都是以钙为主要成分的矿物。它们的区别在于分别存在轻质元素氟(F),氧(O),碳(C);由于普通微区X射线荧光成像光谱仪检测不到Z<11(Na)的元素,无法区分这两种矿物,所以萤石和方解石的光谱图上都只会显示Ca元素谱线。利用超轻元素探测器,M4 TORNADOPLUS可以检测氟(F)、氧(O)和碳(C),从而可靠地鉴别这两种矿物。图:鉴别萤石与方解石?左:方解石(红)和萤石(蓝)的元素分布图;图像尺寸:20×12mm2;扫描分辨率:800×460pixels 右:萤石(蓝)和方解石(红)的轻质元素光谱图。应用实例-电路板由于AMS的场深度极深,如图所示电路板的X射线图像获得更多的细节。此外,由于激发X射线光子的入口和出口角度减小,光束能量依赖性变得不那么明显。图:具备AMS与不具备AMS的电路板元素分布图左图: 标准多导毛细管聚焦在电路板上,元件的zui高点失焦,显得模糊。右图: AMS系统加载下图像显示高景深,所有组件聚焦在更大的景深范围内。创新点:M4 TORNADOPLUS是世界上第yi台能够检测出C(6)-Am(95)间全部元素的微区X射线荧光成像光谱仪。作为微区X射线荧光成像光谱仪M4TORNADO系列的zui新产品,M4 TORNADOPLUS又增添了独特的功能,例如创新性的孔径管理系统,高通量脉冲处理器以及快速灵活更换的样品台。超轻元素微区X射线荧光成像光谱仪 M4 TORNADO PLUS
  • 布鲁克发布超轻元素微区X射线荧光成像光谱仪 M4 TORNADO PLUS新品
    M4 TORNADOPLUS - 微区X射线荧光成像的新纪元M4 TORNADOPLUS能够检测出C(6)-Am(95)间元素的微区X射线荧光成像光谱仪。作为微区X射线荧光成像光谱仪M4TORNADO系列的新产品,M4 TORNADOPLUS又增添了功能,例如创新性的孔径管理系统,高通量脉冲处理器以及快速灵活更换的样品台。更轻、更快、更深M4 TORNADOPLUS采用超轻元素窗口的大面积硅漂移探测器(SDD)实现对轻元素碳的检测,高通量脉冲可以大程度提升采样速度,BRUKER孔径管理系统(AMS)可以获取大景深,对表面不平整样品分析具有优势。超轻元素检测M4 TORNADOPLUS能够检测分析轻质元素碳的微区X射线荧光成像光谱仪,具备两个具有超轻元素窗口的大面积硅漂移探测器和一个优化的Rh靶X射线光管。与普通微区X射线荧光成像光谱仪不同,M4 TORNADOPLUS在不影响较高能量范围内元素灵敏度的前提下,还可以检测原子数小于11的元素(Z<11),例如氟(F)、氧(O)、氮(N)和碳(C)。随着功能性的增强,M4 TORNADOPLUS应用也正在开发和拓展中,例如地质学、矿物学、生物学、聚合物研究或半导体行业等方向。应用实例-萤石和方解石的区分萤石(CaF2)和方解石(CaCO3)都是以钙为主要成分的矿物。它们的区别在于分别存在轻质元素氟(F),氧(O),碳(C);由于普通微区X射线荧光成像光谱仪检测不到Z<11(Na)的元素,无法区分这两种矿物,所以萤石和方解石的光谱图上都只会显示Ca元素谱线。利用超轻元素探测器,M4 TORNADOPLUS可以检测氟(F)、氧(O)和碳(C),从而鉴别这两种矿物。图:鉴别萤石与方解石 左:方解石(红)和萤石(蓝)的元素分布图;图像尺寸:20×12mm2;扫描分辨率:800×460pixels 右:萤石(蓝)和方解石(红)的轻质元素光谱图。应用实例-电路板由于AMS的场深度深,如图所示电路板的X射线图像获得更多的细节。此外,由于激发X射线光子的入口和出口角度减小,光束能量依赖性变得不那么明显。图:具备AMS与不具备AMS的电路板元素分布图左图: 标准多导毛细管聚焦在电路板上,元件的高点失焦,显得模糊。右图: AMS系统加载下图像显示高景深,组件聚焦在更大的景深范围内。创新点:M4 TORNADOPLUS是世界上第yi台能够检测出C(6)-Am(95)间全部元素的微区X射线荧光成像光谱仪。作为微区X射线荧光成像光谱仪M4TORNADO系列的zui新产品,M4 TORNADOPLUS又增添了独特的功能,例如创新性的孔径管理系统,高通量脉冲处理器以及快速灵活更换的样品台。超轻元素微区X射线荧光成像光谱仪 M4 TORNADO PLUS
  • 又成功一台!散裂中子源大气中子辐照谱仪出束
    作者:倪思洁 来源:中国科学报记者从中科院高能物理研究所获悉,4月2日15时20分,中国散裂中子源(CSNS)大气中子辐照谱仪成功出束。束流性能测试表明,已测工况的中子束尺寸与分布、中子能谱、通量等重要参数与预期相符。谱仪成功出束,标志着谱仪设备研制与安装成功。大气中子辐照谱仪是散裂中子源科学中心与工业和信息化部电子五所共同建设的国内唯一的大气中子地面模拟加速测试平台,也是CSNS继多物理谱仪后完成建设的第二台合作谱仪,可提供与大气中子能谱相匹配、能量范围覆盖毫电子伏特至吉电子伏特(meV-GeV)的高通量中子束流。相关负责人介绍,为确保大气中子辐照谱仪多项指标的先进功能,大气中子辐照谱仪项目组、中子科学部相关专业组、散裂中子源科学中心与工业和信息化部电子五所相关部门通力合作,克服众多重大技术挑战,克服谱仪建设期间多次疫情影响,保证了谱仪设计、研制、安装与调试的顺利进行。大气中子辐照谱仪将为新型半导体器件、大规模集成电路、关键电子设备、新型功能材料、生物辐照效应、核数据与测量等方面提供大气中子加速辐照试验环境,填补我国在该领域的空白,为我国在航空、航天、通讯、能源、电力电子、现代交通、医疗卫生、及高性能计算等高新技术开发与行业标准制定,提供了一个先进的、功能强大的大气中子测试与科研平台。据悉,CSNS总共可建设22台谱仪,包括目前已经开放运行的通用粉末衍射仪、小角中子散射仪、多功能反射仪、多物理谱仪,以及正在建设和规划建设的若干合作谱仪和二期谱仪等。去年1月,CSNS的首台合作谱仪——多物理谱仪研制与安装成功。
  • 王贻芳院士:我国第一台高能同步辐射光源即将完成注入器安装
    “高能同步辐射光源的基础设施建设今年会全部完成,同时,设备的部件生产已经完成相当大一部分,正在逐步安装,争取年底完成注入器安装,并开始调试。”两会期间,全国人大代表、中国科学院院士、中科院高能物理所所长王贻芳说道。同步辐射光源被誉为“超级显微镜”,可以利用X射线看清物质内部的结构,是前沿基础科学、工程材料和装备制造等战略高技术不可或缺的手段。“正在建设的高能同步辐射光源由注入器、储存环和光束线站等部分组成。”王贻芳说,可以更清楚地“看到”材料的内部结构,这对材料科学、生命科学、物理、化学、环境、地质等各个学科的发展具有重要作用。那么,与中、低能区的同步辐射光源相比,高能同步辐射光源有什么优势?对此,王贻芳解释道,高能同步辐射光源的能量高,能够“看清”厚重的样品;同时,它的亮度比第三代光源高出两个数量级(百倍)及以上,能够看到很小的样品,看样品所用的时间也比较短。更重要的是,高能同步辐射光源将建设数十条光束线和相应的实验站,可以满足不同用户的需求。“从光束线指标看,它超过了国内所有的同步辐射光源;从设计角度看,它是目前世界上设计指标最高的光源,没有之一。”王贻芳充满自信地说。高能同步辐射光源于2019年6月在北京怀柔科学城开工建设,建设周期6.5年,预计2025年开始试运行。建成后,高能同步辐射光源将成为中国第一台高能量同步辐射光源,也是世界上亮度最高的第四代同步辐射光源之一,与美国先进光子源、欧洲同步辐射装置、日本SPring-8、德国的PETRA-III一起,构成世界五大高能同步辐射光源。“它将满足国家战略和工业核心创新能力等相关研究对高能量、高亮度X射线的迫切需求,为基础科学和工程科学等领域原创性、突破性创新研究提供重要支撑。”王贻芳强调。“高能同步辐射光源是一个工具、平台,它的目标是可以满足国内相关领域用户的需求。”王贻芳说,根据科学目标,它可以对物质的微观结构进行多维度、实时探测,解析物质结构及其变化的周期和过程,探究材料性能和使用过程中失效的关键因素,解决高温合金材料的制造、加工、服役和修复等环节中一系列复杂问题,还可以解析微米量级的蛋白质晶体结构,解释重要蛋白的功能,推动新药发明等等。王贻芳透露,高能同步辐射光源的设计寿命为30年,建成后还会不断升级改造,预期工作寿命可达50年甚至更长。
  • 高能同步辐射光源:照亮微观世界的结构奥秘
    这里是北京雁栖湖畔的怀柔科学城。群山环绕中,一个圆环状的大科学装置静静矗立其间。它是被公众亲切地称为“放大镜”的高能同步辐射光源(High Energy Photon Source,简称HEPS)。提起光源,你的脑海中会浮现出灯泡的画面吧,于是把HEPS想象成一个“大型灯泡”。其实不然。这里的“高能”可不是“前方高能”里的那个“高能”,而是指物理学中探索微观世界物质探针所具有的高能量。据HEPS工程总指挥潘卫民研究员介绍,从高空俯瞰,HEPS整体建筑形似一个放大镜,设计寓意为“探索微观世界的利器”。“通俗地讲,你可以把HEPS视为一个具有超精密、超快、超穿透能力的巨型X光机。”潘卫民说。作为国家“十三五”重大科技基础设施,HEPS由加速器、光束线站及配套设施等组成,总建筑面积约12.5万平方米。周长约1.5千米的主体环形建筑,如同放大镜的镜框,里面安装有储存环加速器、光学元件、衍射仪等科学仪器。其中的储存环里,分布着2400多块磁铁及各类高精尖设备。“同步辐射是指接近光速的带电粒子在做曲线运动时沿切线方向发出的电磁辐射,也叫作同步光。为了研究材料内部结构与变化的过程,科研人员需要借助强力的科研装置进行探测解析。”中科院高能物理研究所副所长、HEPS工程常务副总指挥董宇辉研究员说,作为研究物质内部结构的平台,HEPS能对物质内部进行多维度扫描,“HEPS运行的首要目标,就是提供高能、高亮度的硬X射线。”产生X射线的常见方式有两种:一是用加速后的电子轰击金属靶,产生X射线;二是在同步辐射装置中,当电子以接近光速的速度“飞行”时,会在磁场作用下发生曲线运动,沿着弯转轨道切线方向发射连续的电磁辐射。“这就像下雨时,我们快速转动雨伞,沿着雨伞边缘的切线方向会飞出一簇簇水珠。”董宇辉说,与常规X射线相比,同步辐射光源产生的同步辐射光频谱更宽、亮度更高、相干性和准直性更好。同步辐射光源根据加速器中电子的能量,可以分为低、中、高三种,各有侧重。董宇辉介绍,HEPS侧重于对微观结构及演变的多维度、实时、原位表征,可用于航空发动机单晶叶片等工程材料结构的多维度表征和1微米量级蛋白质分子结构演变表征等。“作为探测物质结构的探针,X射线的光源亮度是最为关键的指标——更高的亮度能将物质内部的微观结构‘看’得更清楚。因此,获得更高亮度的X射线源一直是科学家孜孜以求的目标。”多年来,我国持续发展同步辐射光源,有力支撑了国内基础科学的发展。但我国目前所拥有的同步辐射装置均处于中、低能区,能区地域分布、光谱亮度等还满足不了经济发展和国家战略需求。建设更高亮度的第四代高能同步辐射光源,成为潘卫民、董宇辉等我国当代“追光人”的一大愿望。2008年,HEPS科研团队就开始对我国建设HEPS的必要性和可行性进行论证。此后经过近十年攻关,科研人员成功完成关键技术攻关和样机研制任务,具备了建设先进高能同步辐射光源的能力。2019年6月,HEPS开工启动,建设周期6.5年,预计将于2025年12月底竣工。建成后,它将在材料科学、化学工程、能源环境、生物医学、航空航天等众多领域大显身手。2021年6月28日,HEPS首套科研设备——电子枪(直线加速器端头,即加速电子产生的源头)安装完成,标志着HEPS工程正式进入设备安装阶段。目前,HEPS各建筑单体已陆续交付设备安装。可以预见,3年后,全球“最亮”的光源将照亮微观世界物质的结构奥秘。(光明日报记者 张亚雄)HEPS效果图(人视图)HEPS效果图(白天)HEPS存储环周期单元mockup模型(HEPS-TF项目支持)
  • 专家:标准线内辐照食品不影响人体健康
    据中国之声《新闻纵横》7时41分报道,河南开封杞县放射性物质钴60事件,一个多月来成为新闻热点,同时也把"辐照技术"这个陌生的专业字眼带到了公众面前。辐照--辐射的辐,照亮的照。这两个字的结合本属于核辐射的范围,可是如今,辐照这个词已经和我们吃的食品联系在了一起,于是产生了一个更新的名词:辐照食品。但是很少有人知道,自己吃的食品哪些可能就是被辐照过的? 辐照技术主要用于灭菌  辐照食品,是指用一种辐射加工技术,运用γ-射线的照射对食品进行加工处理,在强大的理化和生物效应下,对食品进行杀虫、灭菌、保持营养品质和延长保质期的特殊食物。  生活中究竟哪些食品是辐照食品?从干果果脯到水果蔬菜、从大蒜到辣椒粉、还有饭桌上的熟肉,冰箱里的冻虾仁,方便面里的调料,甚至是调理身体的中药丸,他们都有可能是辐照食品。  由于辐照食品要达到的灭菌效果,需要有放射源,所以当很多人知道自己吃下的中药丸、辣椒粉、甚至大蒜都是这种食品时,表现出的惊讶和后怕可想而知。于是不禁有人要问,为什么一定要用放射性物质进行食品的灭菌,甚至像中药丸这样的药品也要加入其中。一位长期从事中药生产管理的业内人士介绍了其中的缘由:“其实外人很陌生,干这个工作的人并不陌生。中药材本身从地下挖出来通过人的加工,在这个过程当中他有很多的细菌在里面,包括大肠杆菌和很多的杂菌。这些东西通过粉粹通过清洗晾干烘干,打成粉。打成粉以后装上袋子,送到农科所进行钴60灭菌。这在过去是不存在的,过去用硫磺熏,这样去一些虫子,不让他发霉变质。这个粉子钴60灭完以后回到工厂再加工成蜜丸,蜜丸(中药丸)蜡封以后装上盒,再重新装箱以后整箱的再去一次钴60,往往这样出来的产品没有菌了,到现在还是用这种方法。”  各国的辐照食品标准不一  世界上第一家商业食品辐照工厂1991年就在美国佛罗里达州注册。截至目前,世界上42个国家正式批准了240多种辐照食品的标准。有些国家则严格禁止辐照食品。  在我国,目前大约有近百种辐照食品通过了鉴定,已经有28个省市自治区建立了50多个辐照装置,专业的大型辐照工厂也已经达到了80-100家左右。2005年我国全年辐照食品产量就已达到世界辐照食品总量的三分之一,堪称辐照食品产量大国。  专家:标准线内的辐照食品安全  但是,河南钴60事件让辐照技术的应用范围浮出水面,也让人们的心提了起来。放射性物质辐照过的东西,人吃了到底安全不安全?下面我们就来连线中国疾病控制中心营养与食品安全所罗雪云教授:  主持人:从您的研究来看,我们想知道,辐照食品到底对我们身体健康有没有危害呢?  罗雪云:实际上这个辐照食品,世界各国对它的安全性都非常的关注。刚刚是提到了美国,从1955年就开始研究它的安全性,做一般的要求,辐照食品要求进行两种动物经过两年的实验研究,包括它的疾病毒性,致癌性、致畸性和致多变性,还有它的生长实验,一共要做4代甚至7到8代的动物实验,所以从动物实验上来讲是这样的,我们国家从50年代就开始进行了辐照食品的毒性研究,70年代在国家科委组织领导下,在全国范围内,比如说北京、上海、天津、四川、河南、山东、广东都进行了大量的研究工作,特别要提出来的就是我们卫生部组织先后在刚刚我们提到的那些省市自治区、直辖市进行了大量的人体实验,事实实验,就是吃辐照食品,一共做了将近450个人,试用时间从7周到15周。就是吃了一个50天到三个半月,吃的辐照食品的品种一共有35种,辐照食品占膳食食品的19%到70%,在做实验的期间,大米可以吃到一斤每天,就是辐照过的大米,所以那么进行了包括血液生化、还有染色体分析、肝肾的扫描进行了全项目的检验,都没有发现有什么问题。所以根据世界卫生组织,根据世界各国都进行了大量的研究,所以他们认为,得到的结论是10个kGy以下的产品,不需要再做毒理学的安全性评价,我们国家定的辐照的剂量,辐照食品的标准都在10个kGy以下,比如说肉、熟肉都是在8个kGy。  主持人:就是说在标准线以下的都是属于安全的?  罗雪云:对。  主持人:去商场,到超市,我们究竟怎样才能辨别出哪些食品是经过了辐照?  主持人:由于经过了辐照的食物口味基本不会改变,感观上也与一般食品没什么两样,仅凭肉眼您可能无法分清辐照食品与非辐照食品。所以,国家强制规定,经电离照射后的食品,必须在包装上加贴标识和中文解释。但现实是有令不行,我们发现,绝大部分辐照食品并没有加贴标识明示。所以,我们在提示大家购物时关注包装上辐照标志的同时,也要提醒广大商家别忘了在您的产品上亮出"辐照食品"的身份!
  • 科学家辐照缺陷影响热离子发电器件石墨烯电极功函数研究获进展
    近期,中科院合肥研究院核能安全所在辐照缺陷影响热离子发电器件石墨烯电极功函数研究方面取得新进展,研究成果发表在国际材料薄膜领域期刊 Applied Surface Science 上。   石墨烯作为微型堆热离子发电器件电极涂层材料具有巨大的应用潜力,能够显著提升电极表面的电子发射能力。热离子发电器件在服役过程中,电极材料将面临高能粒子的辐照作用,早期的理论计算和实验研究表明,在石墨烯内部辐照诱导的缺陷类型主要是Stone-Wales缺陷、掺杂缺陷和碳空位等。缺陷的产生将会影响电极间隙内碱金属和碱土金属在石墨烯表面的吸附性质,进而改变石墨烯涂层的电子发射性能(功函数)。   针对上述问题,科研人员通过第一性原理计算方法在原子尺度上研究了缺陷石墨烯表面碱金属和碱土金属的吸附和迁移行为。研究结果表明:(1)石墨烯表面缺陷位点作为陷阱对金属原子具有捕获作用,Stone-Wales缺陷和碳空位缺陷附近的金属原子扩散受到了严重的阻碍,在掺杂B或O的石墨烯表面,金属原子迁移势垒也有不同程度的升高;(2)Stone-Wales缺陷、碳空位缺陷及掺杂石墨烯的表面功函数均显著增加,电子发射能力明显降低,这主要归因于电偶极子形成概率的降低以及金属内聚能的增加。本研究工作为石墨烯涂层材料在反应堆热离子发电器件中的应用提供了理论指导。   上述研究工作理论计算部分在合肥先进计算中心完成。图1 热离子能量转换示意图图2 碱金属和碱土金属在原始和含氧缺陷石墨烯表面的迁移行为
  • “悟空”巡天两年 获最精确高能电子宇宙射线能谱
    p  暗物质探测又有了新的进展。伦敦时间11月29日,《自然》杂志在线发表了中国科学家的一项研究成果:利用“悟空”卫星获得了世界上最精确的高能电子宇宙射线能谱,这将对判定能量低于1TeV(1TeV=1万亿电子伏特)的电子宇宙射线是否来自于暗物质起到关键作用,并有可能为暗物质的存在提供新证据。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/bf37f730-b28d-45d8-a92e-cb59ec24077d.jpg" title="2a8fb7ae86d94782b2b85138fe237d53_副本.jpg"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "在中国科学院紫金山天文台,“悟空”首席科学家、中科院紫金山天文台副台长常进在介绍暗物质粒子探测卫星的科学成果。/span/pp  暗物质问题是粒子物理和宇宙学的核心问题之一。暗物质不发光,不发出电磁波,从来没有被直接“看”到过。中科院院士吴岳良说,根据最新天文观测结果,宇宙是由27%的暗物质、68%的暗能量和5%的普通物质组成的。对于神秘的暗物质,科学家迫切想知道它到底是什么,对它们的研究很可能会引发科学上的革命。/pp  2015年12月17日,暗物质粒子探测卫星“悟空”发射成功,这是中科院空间科学战略先导专项的首发星。“悟空”卫星首席科学家、中科院紫金山天文台研究员常进说,“悟空”卫星是基于暗物质粒子湮灭或衰变的假设(即暗物质粒子的湮灭或衰变可以产生各种正、反粒子,这些粒子在太空中传播就成了宇宙射线和伽马射线的一部分)而工作的。“悟空”卫星便通过收集高能宇宙射线粒子和伽马射线光子,并分析其能谱和空间分布来寻找暗物质粒子存在的证据。/pp  “悟空”采用了紫金山天文台自主提出的分辨粒子种类的新探测技术方法,实现了对高能(5GeV—10TeV)电子、伽马射线的“经济适用型”观测。“悟空”在轨运行的前530天共采集了约28亿颗高能宇宙射线,其中包含约150万颗25GeV(1GeV=10亿电子伏特)以上的电子宇宙射线。基于这些数据,科研人员成功获取了目前国际上精度最高的电子宇宙射线探测结果。/pp  早在“悟空”上天之前,国际上已有一些空间探测器在尝试搜寻暗物质。但由于探测器规模或设计方案的限制,它们的探测能区相对较低,分辨率和粒子鉴别本领也有限。而“悟空”采用了创新的设计方案,既可探测低能区,也能探测高能区,是世界上第一台能在空间观测直至10TeV能量电子和伽马射线的仪器。/pp  现在“悟空”采集了大量高能电子宇宙射线,清晰地勾勒出电子宇宙射线在宽能量段的能谱行为,以高置信度观测到了能谱在TeV处的拐折行为,并且在1.4TeV能量处发现存在精细结构的迹象。/pp  中科院紫金山天文台研究员范一中说,电子能谱在高能区突然出现拐折,一定是有什么“源”影响了它。现在我们不能确定就是暗物质影响了它,但如果能够证明影响它的不是我们已知的物质,那就很有可能是暗物质了。/pp  据常进介绍,与以前的测量结果相比,“悟空”的能量测量范围比其他空间项目显著提高,打开了宇宙观测新窗口 “悟空”测量到的TeV电子的“纯净”程度最高,能谱的准确性更高 “悟空”首次直接测量到了电子宇宙射线能谱在1TeV处的拐折,其精确的下降行为对于判定部分电子宇宙射线是否来自于暗物质起着关键作用。当然,“悟空”的科学发现有待理论物理学家做进一步的分析阐释。/pp  对于这次暗物质探测上的进展,常进兴奋地说,电子宇宙射线能谱在高能段出现了“引人瞩目的现象”。中科院院长白春礼则认为,“悟空”成果的取得,表明中国科学家已经从自然科学前沿理论的学习者、继承者、围观者,逐渐走到了舞台中央,中国科学家长期以来在基础科学前沿的投入和付出终于有了回报。/p
  • 怀柔科学城大科学装置——高能同步辐射光源安装首台科研设备电子枪
    中国新建于北京怀柔科学城的大科学装置——高能同步辐射光源(HEPS)28日正式安装首台科研设备电子枪,为其提供技术研发与测试支撑能力的先进光源技术研发与测试平台(PAPS),当天也在科学城同步转入试运行。  高能同步辐射光源由中国科学院高能物理研究所(中科院高能所)承担建设,是中国“十三五”重大科技基础设施项目之一,建成后将成为中国第一台高能量同步辐射光源、世界上亮度最高的第四代同步辐射光源之一,为基础科学和工程科学等领域原创性、突破性创新研究提供重要支撑平台。  中科院高能所表示,高能同步辐射光源首台科研设备安装标志着该工程正式进入设备安装阶段,首台安装的加速器设备电子枪,位于高能同步辐射光源直线加速器端头,是加速电子产生的源头,采用全国产技术,自主设计、国内加工。  电子枪由枪体、陶瓷桶、防晕环、阴栅组件四大部件构成,其中阴栅组件是电子枪的关键“卡脖子”部件。中科院高能所提前布局,通过多年技术攻关,克服诸多困难,解决了阴极发射以及微米级栅网编制、变形和焊接等难题,基本实现了阴栅组件的国产化。  高能同步辐射光源也是中科院、北京市共建的怀柔科学城核心装置,由国家发展改革委立项支持并于2019年6月开工建设,建设周期6.5年。截至2021年6月底,其建安工程约完成总工程量的70%,磁铁、电源等设备完成样机试制,进入批量加工阶段,束流位置测量电子学、像素阵列探测器研制取得阶段性进展。预计2022年初,各建筑单体全部交付使用,高能同步辐射光源将全面转入设备安装阶段。  当日,作为第一个通过工艺验收、转入试运行的北京市首批交叉研究平台项目,先进光源技术研发与测试平台同步启动试运行,其超导高频及低温、精密磁铁测量、X射线光学检测等设备开机运转。这既为高能同步辐射光源建设测试和技术研发提供更好支撑,也将为后续其他平台验收起到很好带头作用,标志着北京怀柔综合性国家科学中心已由建设为主转向建设与运行并重的关键阶段。  先进光源技术研发与测试平台由北京市发展改革委立项支持,项目位于高能同步辐射光源对面。该项目创新采取中科院高能所、怀柔科学城公司“双主体”建设模式,开展前瞻性和系统性的研究,解决高能同步辐射光源建设所需的超导高频及低温、精密磁铁测量、探测器技术研发测试、X射线光学检测等一系列关键技术,为先进光源建设、运行及后续发展提供有力的技术支撑。  先进光源技术研发与测试平台于2017年5月启动建设,建设周期4年,本月中旬已顺利通过工艺测试验收,高质量实现项目建设目标。目前,先进光源技术研发与测试平台已取得多项成果,尤其是在1.3G赫兹(Hz)9腔室超导腔研制方面达到国际领先水平。  据了解,高能同步辐射光源、先进光源技术研发与测试平台等所在的北京怀柔科学城,当前正全力推进科学设施建设运行,不断推动综合性国家科学中心建设取得新突破,“十三五”时期布局的29个科学设施平台已全部开工,科技创新的集聚效应和溢出效应正持续显现。
  • 桌面高能X射线光源系统问世
    据美国物理学家组织网10月25日(北京时间)报道,一国际研究小组开发出一种微型同步加速高能X射线光源系统,其能效和质量可与世界上某些最大的X光源设备媲美,这种微型化的廉价高质量X射线光源将有着广泛应用前景。相关研究论文刊登在10月24日的《自然物理学》杂志上。  新设备由英国伦敦帝国学院、美国密歇根州立大学和葡萄牙里斯本大学高等技术学院的科学家共同研制,能在桌面上实现当前巨大激光设备的多项功能。他们的缩微系统采用了一种微型氦气喷气机和一种高能激光,是一种只有铅笔粗细的超短波高能空间相干X射线光束。  论文第一作者、伦敦帝国学院物理系的斯蒂凡柯耐普博士说,我们在产生更加简洁廉价的高能高质X射线方面迈出了第一步。用相对简单的系统,在几毫米范围内产生的高质量X射线光束,能和几百米长的同步加速器产生的光束媲美。尽管我们的技术目前还不能与世界上少数几个大型的X射线源直接竞争,但对于当前某些难以办到的检测来说,它提供了一种重要的应用手段。  新系统产生的X射线具有极短脉冲长度。它们能从一个约1微米的空间小点产生,这会导致一个狭窄的X光束,使研究人员能清楚地看到目标物的细节。这些特性是其他X光源不具备的,超短脉冲使研究人员能以毫微微秒(千万亿分之一秒)的解析度测量原子和分子的互相反应。  新型X射线系统发出称为HERCULES的超高能激光束,进入氦气喷气机生成一个微小的等离子氦柱,激光脉冲在这个等离子内部,生成一个被带负电荷的电子包围的带正电的氦离子泡。  由于这种电荷分离,等离子泡具有强大的电场,不仅能促使等离子体重的某些电子形成能量束,还能使光速“扭动”。当电子束扭动它产生的峰值共振X射线光束时,就能够在实验中进行测量。  这一过程跟其他同步加速光源中所发生的过程相似,但是在一个微观领域内产生。整个桌面X射线源装在一个边长约1米的真空箱里,加速和X射线的产生在不足一平方厘米范围内。这种微型化导致更加廉价高质量的X射线光源,也将带来超短高耀度的属性。  研究人员称,像这样的系统有很多用途,比如使用高能X射线,它最终能极大地提高医学图像的解析度,也能更容易地检测机翼接合有没有微缝隙,还能用于开发特殊科学应用,X射线的超短脉冲可在极短时间内研究“结冰”运动。
  • 又成功一台!散裂中子源大气中子辐照谱仪出束
    从中科院高能物理研究所获悉,4月2日15时20分,中国散裂中子源(CSNS)大气中子辐照谱仪成功出束。束流性能测试表明,已测工况的中子束尺寸与分布、中子能谱、通量等重要参数与预期相符。谱仪成功出束,标志着谱仪设备研制与安装成功。大气中子辐照谱仪是散裂中子源科学中心与工业和信息化部电子五所共同建设的国内唯一的大气中子地面模拟加速测试平台,也是CSNS继多物理谱仪后完成建设的第二台合作谱仪,可提供与大气中子能谱相匹配、能量范围覆盖毫电子伏特至吉电子伏特(meV-GeV)的高通量中子束流。相关负责人介绍,为确保大气中子辐照谱仪多项指标的先进功能,大气中子辐照谱仪项目组、中子科学部相关专业组、散裂中子源科学中心与工业和信息化部电子五所相关部门通力合作,克服众多重大技术挑战,克服谱仪建设期间多次疫情影响,保证了谱仪设计、研制、安装与调试的顺利进行。大气中子辐照谱仪将为新型半导体器件、大规模集成电路、关键电子设备、新型功能材料、生物辐照效应、核数据与测量等方面提供大气中子加速辐照试验环境,填补我国在该领域的空白,为我国在航空、航天、通讯、能源、电力电子、现代交通、医疗卫生、及高性能计算等高新技术开发与行业标准制定,提供了一个先进的、功能强大的大气中子测试与科研平台。
  • 散裂中子源大气中子辐照谱仪研制成功
    11日,记者从中科院高能物理研究所获悉,中国散裂中子源大气中子辐照谱仪近日成功出束,标志着该谱仪设备研制与安装成功。束流性能测试表明,已测工况的中子束尺寸与分布、中子能谱、通量等重要参数与预期相符。  据了解,大气中子辐照谱仪是散裂中子源科学中心与工业和信息化部电子五所共同建设的国内唯一的大气中子地面模拟加速测试平台,由广东省科技厅支持建设,也是继多物理谱仪之后,中国散裂中子源完成建设的第二台合作谱仪,可提供与大气中子能谱相匹配、能量范围覆盖毫电子伏特至吉电子伏特(meV~GeV)的高通量中子束流。  为确保大气中子辐照谱仪性能指标的先进性,大气中子辐照谱仪项目组、中子科学部相关专业组、散裂中子源科学中心与工业和信息化部电子五所相关部门通力合作,克服众多重大技术挑战,克服谱仪建设期间多次疫情影响,保证了谱仪设计、研制、安装与调试的顺利进行。  大气中子辐照谱仪将为新型半导体器件、关键电子设备、新型功能材料、生物辐照效应、核数据与测量等提供大气中子加速辐照试验环境,填补我国在该领域的空白,为我国在航空、航天、通讯、能源、电力电子、现代交通、医疗卫生及高性能计算等领域的高新技术开发与行业标准制定,提供一个先进的、功能强大的大气中子测试与科研平台。
  • “钴60事件”引出“辐照”食品之惑
    “钴60事件”引出“辐照”食品之惑  辐照,一种新的灭菌保鲜技术,粮、蔬、果、肉、调味品、中药等领域均已应用,我国相关食品产量已占全球总量的三分之一。 然而,对大多数消费者来说,“辐照”一词还相当陌生——  新闻背景  河南杞县“钴60事件”  河南省开封市杞县利民辐照中心于1997年成立,业务是用钴60放射源对方便面调料包、辣椒粉等进行辐照灭菌。放射源通常被放在墙壁厚达2米的水井辐照室内,用时提出,用完放回。  2009年6月7日,中心辐照装置运行时货物意外倒塌,导致放射源保护罩倾斜,钴60放射源被卡住,无法回到水井中。  6月14日15时,由于放射源的长时间照射,接受辐照加工的辣椒粉自燃。24时,火势得到控制。  7月12日开封市政府召开新闻发布会,通报相关情况:安全无事,正在处理。  7月16日环保部发布通告,卡源事故不会造成环境污染。  7月17日有谣传称辐照中心钴60将爆炸,致使许多群众逃离家乡,前往附近县市“避难”。当地政府随后召开新闻发布会,专家出面辟谣,警方抓获5名造谣者。大部分群众返回家中。  怎样让大蒜不生芽、中药丸不生虫、方便面调料包不变质?  答案之一是——进行辐照。  从6月7日,装有钴60的放射源无法正常回到铅井内,到目前仍未公布此次故障最终解除的确定时间——河南杞县利民辐照中心不但在一个多月的时间里成为了新闻热点,也把“辐照技术”这个陌生的专业字眼带到了公众面前。  随着辐照技术的应用范围浮出水面,人们不禁发问,我们日常食用的哪些食品是经过了辐照的?放射性物质辐照过的东西人吃了安全吗?  中国辐照食品已占全球总量1/3  北京消费者李先生在浏览河南杞县利民辐照中心“钴60事件”新闻的时候,发现了一个以前他从来没有注意过的现象,那就是,钴60照射的物品竟然包括自己日常吃的辣椒粉。  “一个县不仅有存放放射性物质的辐照厂,而且竟然辐照辣椒粉、大蒜、甚至方便面的调料包,而我和我周围的人竟然都是第一次知道。”李先生告诉《中国经济周刊》记者,“那我除了要关心辐射源的管理会不会出问题以外,可能更要关注那些被辐照的食品对我是不是安全了。可是我查了很多资料,却很难有一个很清晰的答案。”  媒体资料显示,在河南开封,杞县是第一人口大县,同时也是地域大县和农业大县,盛产大蒜等。上世纪八九十年代,因花生、大蒜、棉花等农作物在保存一段时间后会发芽和易生虫等,其产品在国内市场一度受到很大冲击。1997年,民营企业“杞县利民辐照厂”投入运行。该企业的“辐照作业”,主要就是对大蒜、花生、棉花、方便面调料包、辣椒粉、中药材等进行辐照灭菌。  “能够长期保存并且不希望发生变化的食品,目前已经越来越多地应用辐照技术进行处理了。”现已退休的中国疾病控制中心辐射安全所(原卫生部工业卫生试验所)原所长王作元告诉《中国经济周刊》,“比如大蒜,辐照以后就不会发芽了,而且保存的时间要长得多 我们现在吃的中药丸也很少看到长虫子的现象。要获得这些成果,一个重要的技术应用就是辐照技术。”  据王作元介绍,食品辐照技术是20世纪发展起来的一种灭菌保鲜技术。它是一种辐射加工技术,运用γ-射线的照射对食品进行加工处理,在能量的传递和转移过程中,产生强大的理化效应和生物效应,从而达到杀虫、灭菌、保持营养品质及风味和延长货架期的目的。  “食品辐照以其减少农产品和食品损失,提高食品安全质量,控制食源性疾病等独特技术优势,越来越受到世界各国的重视,成为21世纪保证食品安全尤其是固态食品安全的有效措施之一。”王作元说。  目前,我国约有近百种辐照食品通过了鉴定,早在1998年之前国家就已颁布批准了粮食、蔬菜、水果、肉及肉制品、干果、调味品等6大类固态辐照食品的卫生标准,在28个省市自治区建立了50多个商业化规模的辐照装置。“目前类似的辐照厂已经越建越多,而源量为30万居里以上的大型辐照单位也已达到80—100家左右。”王作元说。  另据中国核农学会早前的调查显示,2005年我国辐照食品产量就已达到14.5万吨,占世界辐照食品总量的36%,产值达到35亿元。  但是,几乎很少有消费者知道,自己吃的食品可能就是被辐照过的。  辐照食品安全与否有争论  “辐照食品对人类的健康是否有影响,就像转基因食品一样在世界上是有争议的。”王作元介绍说,“因为我们只能用动物或者离体细胞做实验,所以到底辐照食品对人体有什么样的影响,研究起来还很困难。”据悉,目前辐照研究能够依据的还是美国在日本投下原子弹以后的研究结果。所以尽管第一个商业食品辐照工厂在1991年就已经在美国的佛罗里达州开业,但截止到目前,世界上只有42个国家正式批准了240多种辐照食品的标准。有些国家则严格禁止辐照食品。  “欧盟对辐照食品持相当严格和谨慎的态度。”来自河南相关科研院所的一位专家告诉《中国经济周刊》,他说,欧盟有关食品辐照的指令有两个,即“离子照射处理的食品”的框架指令1999/2/EC和执行指令1999/3/EC。  “第一个指令规定了实施辐照处理的总体概念和技术要求,辐照食品的标示和辐照设施的授权等有关要求,包括‘必须具有合理的技术要求,没有健康危害,有利于消费者’ ‘不作为替代卫生措施的手段’ ‘所有经辐照的食品或含有辐照食品成分的必须在食品标签上标明’等内容。第二个指令规定在欧盟允许辐照的食品,目前只允许辐照处理药草、香料和植物调味料一类物质。”这位专家对记者介绍说。  “日本北海道的土豆辐照设施是世界上较早的商业化运行的辐照设施,但日本除了在1972年批准土豆辐照抑制发芽外,一直没有批准其他食品的辐照处理。”该专家说,“我们国家的辐照厂却批了很多。”  “辐射育种是当前的研究课题之一。”王作元告诉记者,“比如我们把蔬菜种子带到外太空,宇宙线的辐射要比地面强得多,经过宇宙线辐照的外太空种子种出来的蔬菜都超级大,比如黄瓜,都能长到人的胳膊那样粗。而太空蔬菜我们已经食用了很多年。”  “有些食品经过辐照以后是能够鉴别出来的。”王作元说,“比如白砂糖,辐照过的就会发亮光。但现在仍未大面积推广。”  “辐照过的食品或者药品的确发生了化学性质的改变。”一名不愿透露姓名的从事药品加工工艺研究的专业人士告诉《中国经济周刊》,他对辐照技术的关注已经有10年之久,担忧溢于言表。“近年来我发现很多药厂在盲目地使用钴60来灭菌,食品行业也尤为突出,但是这种方法使用不当可能会产生辐解产物,要么造成食物营养素的破坏,要么造成药物的有效成分破坏,抗病毒能力降低。”  该人士告诉记者,目前关于辐解产物的研究工作国内外还不多,但是在有限的研究中,大量检测和临床显示,使用不当产生的辐解产物会产生不可估量的危害,“比如辐照过的青霉素钾会引起摄用的小白鼠罹患癌症,所以美国已经严禁辐照技术应用于液体药物。”据他介绍,因为滥用辐照灭菌,国内的一些厂商和部分出口产品已经多次受到欧盟、日本、美国等国家和组织的警告、退货等处理。  “有意思的是,目前我国辐照企业的钴60大部分都是从国外进口的,他们一边把钴60推销给我们,一边又退我们的货,不能不令我们深思。”该人士说。  辐照食品标识为何有令不行  1980年,国际辐照食品联合专家委员会确认“为贮存的目的,任何食物受到10kGy(放射性计量单位)以下的辐照,不再需要进行毒理学方面的检测”。1983年,FAO(世界粮农组织)与WHO(世卫组织)的食品法典委员会(CAC)正式颁发了《辐照食品通用法规》,为各国辐照食品卫生法规的制订提供了依据。  我国也出台了关于辐照技术的很多文件,如卫生部1996年4月5日颁布了《辐照食品卫生管理办法》,规定辐照食品必须严格控制在国家允许的范围和限定的剂量标准内,如超出允许范围,须事先提出申请,待批准后方可进行生产。我国还规定,从1998年6月1日起,辐照食品必须在其最小外包装上贴有规定的辐照标识,凡未贴标识的辐照食品一律不准进入国内市场。  “遗憾的是目前从未见过该法律的执行。药品辐照更是无人管理。”上述从事药品加工工艺研究的人士告诉记者,“药品的辐照目前并无法律的允许。但是我国目前的辐照厂在批准的经营范围内基本都包含了此项目,并且几乎每天都在照。甚至一些乡镇都会有辐照厂存在。”  相对于企业来说,由于辐射穿透力极强,尤其是γ-射线,因此无须打开包装,可直接照射整体包装物品。操作简便,速度快,比较经济。这也成为了不少生产食品和药品的厂家乐于采用钴60灭菌的原因所在。  “由于辐照具有很好的灭菌效果,加大剂量的话微生物含量可以减至0,而且灭菌时间也能大大缩短,因此很多企业甚至放松了对中间过程的卫生控制,细菌病毒严重超标的产品拉去辐照一下‘达标’,辐照的剂量也远远超过国际标准。”上述人士告诉《中国经济周刊》,“如何科学地确定辐射剂量曾经是个有争议的题目。各个国家之间,对允许的剂量标准也有不同的看法,而我们的一些辐照厂和食品药品生产企业却为了减低成本任意加大辐照剂量,已3倍或5倍地超过国际剂量的最高标准,这如何能够保证食品和药品的安全呢?”  “辐照技术应用于商业化运作并不是一件坏事,问题是我们目前对它的监管到位了吗?”该人士说,“不科学辐照,甚至违法辐照比较突出,很难在我国市场上看到有标识的辐照食品??这些不仅让消费者的知情权得不到保护,给消费者的安全埋下隐患,同时也会对一些合法经营的企业造成不公平。”  中国疾病控制中心辐射安全所原所长王作元:  “我国放射事故发生率高出美国20倍”  “随着科学技术的发展,放射线技术已经广泛应用于工业、农业、医学和科学研究等领域,为人类做出了很大的贡献。”中国疾病控制中心辐射安全所原所长王作元告诉《中国经济周刊》,“但是如果大的对人体极易造成危害的放射源要是管理不好或设备失灵的话,就会造成操作人员伤亡,对周围百姓造成极大的心理影响。”  在王作元看来,大部分的辐射事故是“人为因素造成的”。“设备连锁装置带病运行,操作人员不按规范操作、放射物质在运输、保管、储存过程中疏忽大意发生丢失等,都在一定程度上给人民的生产生活带来了负面的影响。”  “放射事故发生率,美国每年、每万枚放射源约为0.25次,而我国约为5.6次,要比美国高出20倍。这不能不引起我们的重视。”王作元说。  “河南钴60事件既有设备带病运行的因素,也有人员操作失当的因素,更有对事故发生后处理不力的因素,因此有很多经验教训值得总结。比如夜里2点发生的事故,没有当夜进行处理,反而在层层汇报的等待中发生了越来越棘手的情况。对信息总不能作出正面的回答,加上人们基本防护知识的缺乏,自然都会引起人们的恐慌。”  针对人们的谈辐射色变,王作元告诉《中国经济周刊》,“大可不必过于恐慌。很多时候事故本身没有那么大,但是受心理因素的影响,事故就被成倍地放大了”  “关于辐射产生的效应分为两大块。”王作元说,“一是确定性效应,只有超过一定剂量值才会发生,后果可能是眼晶体混浊、明显口腔溃疡、掉头发、皮肤烧伤、脑型、肠型放射病,甚至死亡等。另一种是随机性效应,主要指的是癌症发病率的增加。受到照射的人并不是每个人都会发病,有一定概率,接受的辐射剂量越大,概率越高。所以,人接受的辐射剂量越小越好,或者说,尽量不要接受没有必要的辐射,”  据王作元介绍,目前国内核事故医学应急的相关培训每年都在进行,“但是相关的应急医务人员还是太少,甚至国内的大多数三甲医院都缺乏具有核事故医学处理知识的人员。如果每个省都能有1-2家医院能够处理核事故造成的人员伤害,那么很多损失就可以避免了。”  “中国目前正在大力发展核电站,而建核电站的地方大都是工业最发达、用电量最大、人口最密集的地区,发生或大或小的事故都会引起周边群众的恐慌。”王作元告诉记者,“核电站反应堆事故会释放出大量的放射性碘。因此对周围居民的碘预防就显得十分重要了。”  “目前的问题是我们怎样普及这样的知识,并且能够在事故发生之前就做好准备。比如稳定碘片的生产、储存、更新、发放等工作都要事前安排好。很多时候,未雨绸缪才是我们目前最应该做的事。”王作元说。
  • 高能所等应用同步辐射纳米分辨谱学成像技术揭示氧化还原反应的相变过程
    p style="text-align: justify " 中国科学院高能物理研究所多学科中心X射线成像实验站副研究员袁清习和国内外课题组合作,建立了基于同步辐射纳米分辨谱学成像技术追踪氧化还原反应相变过程的方法,并成功应用于锂离子电池电料相变过程的研究。研究成果近期发表在《自然-通讯》(Nature Communications)期刊上。/pp style="text-align: justify " 同步辐射谱学成像(XANES imaging)是利用特定元素对X射线能量的不同响应特性来获得样品内部对应元素的化学价态三维分布。基于波带片全场成像方法的纳米分辨谱学成像技术可以获得高空间分辨的形貌和化学信息,近年来受到了越来越多的重视,在材料科学领域尤其是在能源材料领域的研究中表现出重要潜力。/pp style="text-align: justify " 针对纳米分辨谱学成像方法学和应用研究,高能所多学科中心X射线成像实验站近年来开展了大量的工作。其中,袁清习和国内外多个同步辐射装置建立紧密联系,在技术研发、科研应用等方面开展了广泛的合作。近期,袁清习联合美国斯坦福同步辐射光源研究员刘宜晋课题组、弗吉尼亚理工大学教授林锋课题组提出了应用同步辐射纳米分辨谱学成像技术研究氧化还原反应的不均匀相变过程的新方法。这个联合团队成功将他们提出的新方法应用于Li(NixMnyCoz)O2(NMC) 三元正极材料的研究中,揭示了该材料热稳定性的一系列问题。该项工作发表于Nature Communications9, 2810,2018,共同第一作者为弗吉尼亚理工大学博士穆林沁和高能所袁清习。/pp style="text-align: justify " 以NMC正极材料中的应用为实例,该实验方法的工作流程如下:首先,为了研究该材料体系在不同温度下的行为,开展原位实验,利用谱学成像获得大量空间分辨的吸收谱数据;其次,提取Ni元素K边吸收能量表示相应的化学状态,高能量代表高价态(相对氧化态),低能量代表低价态(相对还原态)。进而使用样品在不同温度条件下的化学价态分布结果来表征氧化还原相变过程;第三,选择特定的Ni元素价态(例如,选择氧化还原反应最剧烈的能量点代表的价态),利用所采集的大量数据来描绘Ni元素等价态面的三维分布,对比不同反应条件下的等价态面分布来表征相变的发生、发展及相变前沿的推进过程;最后,引入等价面局域曲率(反应界面局域曲率)的概念,来描绘成核生长及整个相变的复杂过程。/pp style="text-align: justify " 图1为Ni的价态随NMC材料加热过程的变化,其中的每一条曲线代表了相应条件下基于全部像素的Ni价态的分布情况,可以看出化学反应从开始到结束全过程Ni元素价态分布的演变情况。图2给出了四个特定反应条件下Ni等价态面的发生、发展过程,所选择的Ni价态为8341eV对应的价态。从图1可以看出,8341eV代表的价态可以代表是化学反应最剧烈情况。图3中用不同颜色表示了镍元素的吸收边能量代表的镍元素的价态。受由晶粒边界和其局域的化学环境(不同组分和缺陷)所影响,相变过程通常非常复杂,如图3a所示,镍阳离子三维的形貌由不同的价态组成,从相对还原态(低能量态)到相对氧化状态(高能量态)。这些三维的价态推进前端提供了一个直观的三维立体多面体。还原态和氧化态分别代表了子相和母相,相变反应的推移前端从图3a到图3c。同时,作者将这些三维多面体每个局域的曲率计算出来,并分别用红色和蓝色代表局域曲率为正值和负值。从图3d、e可以看出相变过程中局域价态曲率的演化过程。br//pp style="text-align: justify " 这项工作不仅对锂离子电极材料的热稳定性和热致相变给出了详细的描述,还为下一步的储能材料优化提供了一些思路。研究工作所使用的方法可以推广到更加广阔的研究领域,尤其是复杂体系的非均匀相变过程等的研究中。特别是考虑到下一代同步辐射光源的发展,更高的亮度将会大大降低实验的时间,从而能够更好地捕捉到相变过程中的非稳定状态,为能源材料、环境科学等研究领域提供有力的工具。/ppbr//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/863601e7-f186-445f-b8b1-ff31fd5d1984.jpg" title="图1111.jpg"//pp style="text-align: center "图1 NMC样品中镍元素的价态随加热过程的变化。(a)为镍元素的局域价态直方图。(b-e)为原位观测镍价态信息示意图。镍的价态由Ni 的K吸收边能量表示,高能量和低能量分别代表了高价态和低价态。/ppbr//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/974970c5-2fc2-4129-beeb-217abf22612c.jpg" title="图2222.jpg"//pp style="text-align: center "图2 NMC样品不同反应条件下Ni等价态面的产生、发展及推进过程/ppbr//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/d29d8585-987d-4cf3-9540-9ad6e2f158af.jpg" title="图3333.jpg"//pp style="text-align: center "图3 局部镍元素价态曲率随相转变的演化。(a,b,c)分别代表了不同能量(8339, 8340 和8341 eV)的Ni K-edge的等值面形成的三维曲面。图d和e表示了在不同能量范围内价态曲率随着能量值的变化。/ppbr//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制