当前位置: 仪器信息网 > 行业主题 > >

便携式纯水电导率测量仪

仪器信息网便携式纯水电导率测量仪专题为您提供2024年最新便携式纯水电导率测量仪价格报价、厂家品牌的相关信息, 包括便携式纯水电导率测量仪参数、型号等,不管是国产,还是进口品牌的便携式纯水电导率测量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合便携式纯水电导率测量仪相关的耗材配件、试剂标物,还有便携式纯水电导率测量仪相关的最新资讯、资料,以及便携式纯水电导率测量仪相关的解决方案。

便携式纯水电导率测量仪相关的方案

  • 超纯水电导率的测量
    本方法提供了去离子水的电导率测量方法。使用 DuraProbeTM 电导电极013016MD进行测量,其电导池常数为0.1cm-1,可广泛应用于实验室和野外的低电导率以及超纯水样品的测量。
  • 超纯水电导率的测量
    本方法提供了去离子水的电导率测量方法。使用 DuraProbeTM 电导电极013016MD进行测量,其电导池常数为0.1cm-1,可广泛应用于实验室和野外的低电导率以及超纯水样品的测量。
  • WET-Kit便携式土壤水分、温度、电导率测量仪
    便携式,携带方便测量迅速,响应时间短可以针对不同类型土壤进行标定,达到更高测量精度选择特殊类型的介质标定时,可以测量纤维、煤灰等介质
  • 在实验室同时测试制药用水的阶段1电导率和TOC
    FDA和USP将TOC和电导率定为药用水质量保障的四个关键属性中的两个。但这两种属性参数的手动实验室测试需要耗时数小时之久。用手动测量仪和探头测量阶段2电导率所需要的时间为每样品最长30分钟,而且不包括TOC测量。如此耗时的测量过程包括:测量样品、记录数据、等待审核和批准。当自动同时测量阶段1电导率和TOC时,以后就无需再测量电导率,从而节省时间。
  • 油料电导率仪在油品中的应用
    雷磁 DDB-301 型便携式油料电导率仪,为精密测定液态烃、高洁净性或污染严重等各种油料(例如甲苯、变压器油、航空燃料、汽油、煤油、柴油、机油、食用油、润滑油、油漆涂料等)的电导性能而专业设计。适用于各行业油料化验室,通过测量电导性能可了解油料的静电安全性、比较含添加剂量、洁净性、或受污染程度。
  • WET便携式土壤水分、温度、电导率测量仪 在太空种植中的应用
    我国在之前发射的神舟十一号飞船中,带去了生菜的种子以及专门定制的蔬菜培养箱,在对接的天宫二号中首次当起了“太空菜农”。
  • FluorCam便携式叶绿素荧光成像技术方案 ——植物表型分析、光合生理生态研究
    FluorCam便携式叶绿素荧光成像可以与LCi/LCpro等便携式光合仪及FluorPen手持式叶绿素荧光测量仪组合使用,应用于实验室和大田植物光合生理生态快速全面测量研究、植物表型分析、生物(病虫害)与非生物胁迫/抗性检测,具备使用方便、功能全面、原位无损伤在线测量、高性价比等优势。
  • 哈希应用案例---电导率表的应用
    我们厂EDI出口电导率测量采用的是玻璃美特龙的电导率表,EDI出口电导率很小,所以要求仪表的精确度高,哈希的这款仪表满足了我们的要求,它测量准确,稳定性好,故障率低EDI的工作原理:该装置包括阴/阳离子交换膜、阴阳离子交换树脂、直流电源等设备。其中阴离子交换膜只允许阴离子透过,不允许阳离子通过 而阳离子交换膜只允许阳离子透过,不允许阴离子通过。阴阳离子交换树脂充夹在阴、阳离子交换膜之间形成单个处理单元,并构成淡水室。单元与单元之间用网状物隔开,形成浓水室。在单元组两端的直流电源阴、阳电极形成电场。来水水流流经淡水室,水中的阴、阳离子在电场作用下通过阴、阳离子交换膜被清除,进人浓水室。在离子交换膜之间充填的离子交换树脂大大地提高了离子被清除的速度。同时,水分子在电场作用下产生氢离子和氢氧根离子,这些离子对离子交换树脂进行连续再生,以使离子交换树脂保持最佳状态,在EDI进出口设置电导率表一方面可以观察产进出水的质量,当进水大于0.2时,禁止运行EDI防止污染除盐水,同时当产水电导不合格时,可以及时的发现EDI的问题,哈希的电导率表,投产两年多来,一直未出现过故障,更有两次通过它的及时准确的显示,发现了进水的问题,有效的避免了我们厂除盐水被污染的事故,为我厂安全稳定的运行做出了贡献。更多精彩内容,请您下载后查看。
  • 电导率分布和接触电阻测量
    作为电导率-塞贝克系数扫描探针显微镜的一个重要附属功能之一,对样品电导率的测量可以通过对样品表面各处电势测量计算得到。采用特殊的导电样品夹具,可以给样品施加一个均匀的电流,针触点与夹具一端的电压是可以测量的,而触点处的电势是跟该处的电导率相关。因此系统测量塞贝克系数分布的同时也可以测量样品各处的电势分布,根据欧姆定律我们可以计算出每一点的电阻率。
  • 泰林生物:薄膜—电导率法总有机碳分析仪测量结果不确定度的评定
    摘要 目的:建立薄膜—电导率法总有机碳分析仪测量结果不确定度的评定方法。方法:分析了测量过程中不确定度的主要来源,即工作曲线的不确定度、测量仪器读数分辨率导致的不确定度、测量不重复性引起的不确定度、标准溶液引起的不确定度等,分别量化后合成标准不确定度,得到总有机碳测量的扩展不确定度。结果:通过对HTY-2500总有机碳分析仪在2000μg• L-1测量点测量结果不确定度的评定,其扩展不确定度为U95 = 49(μg• L-1)(k=2)。结论:本方法所建立的测量结果不确定度评定方法准确、可靠,可为薄膜-电导率法总有机碳分析仪的测量结果不确定度评定提供较为准确简便的方法。关键词:总有机碳;测量不确定度;薄膜—电导率法中图分类号:R917 文献标识码:A 文章编号:0254-1793(2008)12-0-0Evaluation of Measurement Uncertainty for the Total Organic Carbon Analyzer with Membrane Conductmetric Detection Technology YAN Xiang-qing1,WU Xu-mei2(1.Zhejiang Province Institute of Metrology, Hangzhou, 310013, China 2. Hangzhou Tailin Bioengineering Equipments Co. LTD, Hangzhou, 310052, China)Abstract: Purpose: The article set up an evaluation method of measurement uncertainty for the total organic carbon analyzer with membrane conductmetric detection technology. Method: The article analyzed the main resources of the uncertainty of the measurement, which include uncertainty of the working curve, uncertainty of the resolution ratio of the instrument, uncertainty of measure unrepeatability, uncertainty of standard solution, etc. It quantified these uncertainties respectively and composed them to a standard uncertainty. Finally it got the expanded uncertainty of the total organic carbon measurement. Result: It evaluated the measurement uncertainty of the total organic carbon analyzer at 2000μg• L-1 and got the expanded uncertainty which is U95 = 49(μg• L-1)(k=2). Conclusion: The evaluation method of measurement uncertainty set up by the article is accurate, reliable, and it can offer comparatively exact and convenient method for measurement uncertainty evaluation of the total organic carbon analyzer with membrane conductmetric detection technology. Key words: total organic carbon uncertainty of a measurement membrane-conductometric detection technology
  • ET100便携式光谱发射计在太阳能热发电CSP领域内的应用
    现今,太阳能正作为一种清洁能源和动力被广泛重视和利用。 太阳能热发电技术,也叫聚焦型太阳能热发电(Concentrating Solar Power,简称CSP),是通过大量反射镜以聚焦的方式将太阳能直射光聚集起来,加热工质,产生高温高压的蒸汽,蒸汽驱动汽轮机发电。 因此,太阳能热发电过程中采用的反射镜的反射率对提高太阳能利用就是至关重要的,反射镜的反射率测量的准确性必须受到重视。我司代理的美国SOC公司的410Solar便携式光谱反射计光谱范围覆盖太阳能光谱的范围即330~2500nm,410VIS反射率测量仪光谱范围为400~1100nm,精度达到±3%,其便携性可使得工作人员随时随地对反射镜的反射率进行精准测量。 410Solar 和410VIS便携式光谱反射计在美国被能源部的NREL实验室所采用进行太阳能聚光塔反射镜反射率测量,其可靠性、便携性和准确性得到了NREL的高度评价。 410VIS便携式光谱反射计和ET100便携式红外光谱发射率测量仪在NREL实验室的应用可进行下载和参考。
  • 梅特勒托利多 | 纯水的pH测量
    纯水样品pH值的测定由于电导率低、电极液接电位不稳定以及玻璃膜的灵敏度低等原因而极具挑战。纯水可定义为电导率小100μ S/cm的水样。这些纯水样品中氢离子和导电离子的含量都很低。在pH电极测量系统中,较低的离子浓度会导致液接电位的不稳定。ASTM D5464法主要研究电导率为2-100μ S/cm4的低离子水样pH值的测定。使用Mettler Toledo的专业实验室pH电极,可以简化低离子水样的pH测量。下面的研究是通过使用不同类型的pH电极(包括专家级电极)测量低离子水样中pH值的实验方法。
  • 哈希应用案例---快速检测 pH、电导率、溶解氧
    哈希的便携式现场监测设备,一台设备可以同时测定pH、电导率、溶解氧这三个项目。特点:快速、方便。使用起来非常快捷,而且探头更换也方便,一台主机和三个探头的配置非常好,不需要携带三台设备,只需要携带一台即可。更多精彩内容,请您下载后查看。
  • 车载式土壤电导率测量系统在精准农业中的应用
    精准农业是近年来国际农业科学研究的热点领域,也是当今世界农业发展的新潮流。研究人员希望通过精准农业技术体系的使用降低生产成本, 提高和稳定农产品产量和质量, 增加经济收入, 减少环境污染。 土壤中的盐分、水分、有机质含量、土壤压实度、质地结构等,均不同程度影响土壤电导率变化。通过测定土壤电导率,可为分析产量、评价土壤生产能力、制定精准施肥处方提供重要依据。传统的样方抽样调查不仅费时费力,还由于抽样密度过低不能真实反应其时空变化,对于大尺度调查而言车载式土壤电导率测量系统无疑是最佳选择。
  • ES-9100 型脱气氢电导率测量系统在电厂中的应用
    在燃气发电厂的水汽系统中,氢电导率是一项重要参数,既是发电厂水汽纯度的指标,也是判断凝汽器是否泄漏的重要指标,是电厂化学监督中不可忽视的重要手段。但是由于火电厂水汽系统特别是凝结水中会含有一定量的 CO2,虽然给水中存在的 CO2 被认为是侵蚀性非常小的污染物,但是它却能导致氢电导率升高,它和主要的杂质阴离子氯离子、硫酸根离子等混淆在一起,不能直接反应杂质阴离子的含量,造成了氢电导率的误判,严重影响氢电导率测定的可靠性。当凝结水氢电导率升高时,运行人员无法判断是因为凝汽器管泄漏,还是因为真空严密性差导致吸收 CO2 而引起的。
  • 应用案例-药品制造过程控制的多参数变送器
    FDA 的过程分析技术 (PAT) 倡议表明,高品质、稳定且安全的产品更有可能是通过“对原材料和中间材料的关键质量和性能属性以及工艺过程的及时测量来得以保障。如果产品设计得以理解、产品制造过程稳定一致、输入变量得以控制,那么关键变量的影响因素就变得已知从而就可以生产制造出符合预期的产品。对工艺过程的了解程度是 PAT (过程分析技术倡议)的关键。要了解工艺过程,测量数据是用于支持过程控制决策的必须条件。上述理念对于水的制备至关重要,因为水是唯一被全世界所有生产商最广为使用的原料。PAT 倡议已经获得全球认可和支持。USP 是美国药品和相应设备的标准设定组织,它已在其 “用于产品控制和其他过程和系统控制的水质电导率”章节中支持采用在线电导率测量仪器,同时警告离线测试纯水电导率所面临的来自取样过程和空气中污染物的风险。同样的有关离线检测警告也存在于 USP的 总有机碳章节中。
  • 哈希应用案例---哈希 Polymetron 8310 电阻率仪在电子行业超纯水中的应用
    电子半导体行业的客户在生产过程中对生产用水的要求非常高。集成电路的集成度越高,对水质的要求也越高,电阻率是衡量超纯水水质的关键参数之一,终端出水一般都需要达到18.10 MΩ .cm以上。 POLYMETRON 8310----用于纯水/低电导率水样的电导率产品。电子级超纯水是所有行业中最干净的水体,对仪表的高求很高,尤其是对临近电极测量下限值的准确度以及稳定性都有很高的要求。通过一段时间的现场测试,以及跟行业内用户认可度较高的权威产品做了对比分析,发现该产品能够很好的用于电子半导体行业的超纯水测量。
  • 同类型的桥接研究应用于实时检测过程验证
    在线型总有机碳(TOC)和电导率测量仪器用途广泛,包括过程监测、过程控制、过程放行等。为确保仪器及其所采用的方法可靠,每种应用均有具体的验证要求。因此,需要对在线型TOC和电导率测量仪器进行安装、运行和性能确认(IOPQ),以验证其在过程监测和控制应用中是否能按预期使用。如果在线型TOC和电导率测量仪器用于过程放行或实时检测(RTT),则必须另外完成附加的过程验证步骤。长久以来,超纯水(UPW)和注射用水(WFI)放行检测均在实验室环境中进行。如果实验室型仪器用于生产用水放行,则IOPQ确认必须满足USP 、USP 和USP 的所有要求。ASTM E2656为生产放行从实验室环境过渡至在线环境提供实时检测过程验证方面的指导原则。对于实时检测的过程验证,需要完成附加的步骤,包括方法转移、方法等效性和用水点(POU)可比性。本文件将重点讨论方法转移和方法等效性两方面。方法转移是指确定仪器未来的方法适合性。方法等效性是指验证仪器未来是否“等效于或优于”ASTM E2656要求的现状。
  • 使用Orion电导率电极测量有机溶液电导率
    大多数有机化合物,如油、溶剂、苯酚、酒精和糖,导电能力都不强,导电性很低 然而,一些有机化合物和混合溶剂体系的电导率可与水溶液相媲美。
  • 电导率检测终极解决方案
    电导率检测终极解决方案   ——电导率标准液,控制器,监示器,传感器,电极缆线,管路式三通电极接头,旁路引流式电导度电极测量槽  电导率定义:物理学概念,指在介质中该量与电场强度之积等于传导电流密度。对于各向同性介质,电导率是标量;对于各向异性介质,电导率是张量。生态学中,电导率是以数字表示的溶液传导电流的能力。单位以西门子每米(S/m)表示。  上海甄准生物科技有限公司是一家专业经营标准物质、标准品、化学试剂及相关技术服务创新型高科技企业,坐落于人才荟萃的上海张江高科技园区。本着始终拥有的创业激情和服务热忱,甄准生物已成长为我国重要的标准物质和标准品领域集成服务的领导者、中国最大的标准物质/标准品供应商之一。
  • 8310电导率分析仪在海淡产水中的应用
    热法海水淡化产质量高,电导率 一般值为 10 μ s/cm,最大不超过 ,最大不超过 20 μ s/cm,并要 求显示为 TDS值。8310电导率极,常数为 0.01,测量范围为 ,测量范围为 0.01~200 μ s/cm,带 Pt100温度补偿,适用范围为 温度补偿,适用范围为 0~125 ℃、压力 ℃、压力 10 bar的水样监测,能够准确量 的水样监测,能够准确量 10 μ s/cm左右的电导率值 。通过控制器的 参数 设置,直接显示为 TDS测量值,满足用户考核指 标的要求。 8310电导率极采用 电导率极采用 SS1.44外壳材质,坚固耐用小而紧凑精度达到 外壳材质,坚固耐用小而紧凑精度达到 2%; 电极 采用标准螺纹 3/4“NPT,并配套有 SS材质流通池, 安装方便 ;电极在 现场几乎做到了零维护工作效果,得到用户好评
  • 超纯水pH的测量
    超纯水pH的测量介绍本方法提供了超纯水pH值的测量方法,使用8102BNUWP ROSS Ultra pH电极,可广泛应用于超纯水样品pH值的野外测量。推荐设备型号1. 3-Star便携式pH计 12120002. ROSS Ultra pH电极8102BNUWP3. 温度补偿探头927005MD4. 烧杯(100ml)5. 量筒(100ml)
  • 电导率方法转换的桥接试验:从使用台式仪和探头转换为使用自动化的Sievers M9 TOC分析仪
    本研究的目的是证明使用配置了电导率选项的Sievers M9总有机碳(TOC)分析仪和使用台式仪表和探头来测量USP 645 规格样品水第1阶段电导率这两种方法同样有效,并帮助用户从使用台式仪表和探头转换为使用配置电导率选项的Sievers M9 TOC分析仪。
  • 科众精密仪器-自动款接触角测量仪测试薄膜样品的解决方案
    针对使用水和乙二醇测量薄膜材料的接触角测量仪,可以提供以下解决方案:仪器选择: 选择一台全自动接触角测量仪,确保其具备高精度、稳定性和可靠性。该仪器应具备液滴放置、图像采集和接触角计算等功能,以便进行测量和分析。
  • 疾病预防控制中心采样设备检测设备配套方案微生物采样器防爆大气采样器防爆粉尘采样器定量采样机器人粉尘甲醛噪声等
    疾病预防控制中心采样设备检测设备配套方案:空气微生物采样器水中微生物膜过滤装置压力蒸汽灭菌器干热灭菌器高精度恒温培养箱恒温培养箱生化培养箱霉菌培养箱CO2培养箱厌氧培养装置厌氧工作站三气培养箱恒温水浴箱恒温摇床培养箱涡旋振荡器水平摇床金属浴程控定量封口机掌上离心机低速大容量离心机定量采样机器人ATP荧光检测仪实验室温湿度自动监测站4℃医用冰箱普通冰箱多通道移液器(套)人工气候箱超低容量喷雾机超声波清洗器全自动移液工作站组织破碎仪尿分析仪菌落计数器自动菌落计数仪组织匀浆机散射式浊度仪旋光测定仪折光仪总有机碳测定仪全自动索氏提取仪超声波萃取仪智能电热消解装置pH/离子选择电极测定仪电导率测定仪激光粒度分析仪分散度测定仪臭氧测定仪高速大容量旋转蒸发器有害气体快速检测仪便携式气质联用仪蛋白质测定仪全自动脂肪测定仪甲醛测定仪一氧化碳红外测定仪二氧化碳红外测定仪空气采样装置氨测定仪余氯分析仪二氧化氯分析仪激光颗粒物检测仪风速计/噪声计/温湿度计低本底αβ放射性检测仪尿素测定仪氧化还原电位分析仪水样采样箱振动测定仪微波漏能测试仪场强仪频谱分析仪(套)有机气体测定仪气体采样及浓缩系统声级计照度仪智能多参数水质分析仪便携式分光光度计激光测距仪身高计、体重计、脊柱弯曲测量仪电极电位仪空盒气压表氧浓度快速监测仪马弗炉(或高温炉)溶解性总固体通风式试剂柜智能一体化蒸馏仪硫化物酸化吹脱系统流量校准仪标准声源校准仪声级校准器WBGT指数仪氡测量仪皂膜流量计α、β表面沾污测量仪中子剂量当量测量仪X、γ射线巡测仪低本底γ谱仪(高纯)便携式γ谱仪α、β弱放射性测量仪低本底液体闪烁测量仪氡、钍测量仪中子射线个人剂量测量仪个人剂量报警仪射线防护器材防护性灰化装置石材样品粉碎设备大流量空气采样装置氡子体测量仪个人剂量监测照射器活度计低本底多道α谱仪颗粒物监测仪(含)恒温干燥箱实验室空气消毒设备温度压力测定仪紫外线强度测定仪微量振荡器样品粉碎机均质器超纯水装置十万分之一电子天平万分之一电子天平千分之一电子天平百分之一电子天平百万分之一天平手持式采样定位记录仪急性食物中毒检测箱水质快速检测箱突发事件有毒有害气体检测箱硫化氢快速监测仪二氧化硫自动监测仪氯气快速检测仪
  • 克吕士MSA便携式接触角测量仪对大表面接触角测量方案
    如今我们可以无需破坏的测量大表面功能材料的润湿特性,具体将以挡风玻璃及印刷滚筒为例。手持式接触角一键式测量表面能。
  • 410Solar便携式光谱反射计在太阳能热发电CSP领域内的应用
    现今,太阳能正作为一种清洁能源和动力被广泛重视和利用。 太阳能热发电技术,也叫聚焦型太阳能热发电(Concentrating Solar Power,简称CSP),是通过大量反射镜以聚焦的方式将太阳能直射光聚集起来,加热工质,产生高温高压的蒸汽,蒸汽驱动汽轮机发电。 因此,太阳能热发电过程中采用的反射镜的反射率对提高太阳能利用就是至关重要的,反射镜的反射率测量的准确性必须受到重视。我司代理的美国SOC公司的410Solar便携式光谱反射计光谱范围覆盖太阳能光谱的范围即330~2500nm,410VIS反射率测量仪光谱范围为400~1100nm,精度达到±3%,其便携性可使得工作人员随时随地对反射镜的反射率进行精准测量。 410Solar 和410VIS便携式光谱反射计在美国被能源部的NREL实验室所采用进行太阳能聚光塔反射镜反射率测量,其可靠性、便携性和准确性得到了NREL的高度评价。 410VIS便携式光谱反射计在NREL实验室的应用可进行下载和参考。
  • 克吕士MSA便携式接触角测量仪对大表面接触角测量方案
    如今我们可以无需破坏的测量大表面功能材料的润湿特性,具体将以挡风玻璃及印刷滚筒为例。手持式接触角一键式测量表面能。
  • 生物医疗设备涂层应用-Filmetrics 膜厚测量仪
    Filmetrics 膜厚测量仪的卓越技术,Filmetrics膜厚测量仪提供了范围广泛的测量生物医疗涂层的方案。支架: 支架上很小的涂层区域通常需要显微镜类的仪器。 我们的 F40膜厚测量仪 在几十个实验室内得到使用,测量钝化和/或药物输送涂层。我们有独特的测量系统对整個支架表面的自動厚度测绘,只需在测量时旋轉支架。植入件: 在测量植入器件的涂层时,不规则的表面形状通常是唯一挑战。 Filmetrics 提供这一用途的全系列探头。导丝和导引针: 和支架一样,这些器械常常可以用象 F40 这样的显微镜仪器。 用 F42 可以进行显微区域内厚度的两维测绘。导液管和血管成型球囊的厚度:大于 100 微米的厚度和可见光谱不透明性决定了 F20-NIR 是这一用途方面全世界众多实验室内最受欢迎的仪器。
  • 纯水pH 值的测定及影响因素
    纯水的pH测试在饮用水、食品、药品、医疗保健、工业生产等行业是非常重要的。纯水因为其极低的电导率使溶液的电阻极高,与电极的玻璃膜的高阻抗产生干扰,使测量漂移不稳定。纯水易吸收CO2,因此在测试的时候测得的pH值往往与理论的pH值有较大的偏差。而且在测试温度不在25℃左右时,选择合适的温度补偿方式对于纯水pH值的测试也是很重要的。本文选择几款不同性能的纯水pH电极,对影响纯水pH值的各种因素和实验条件进行了分析,最后得到满意的结果。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制