当前位置: 仪器信息网 > 行业主题 > >

高性能阴极发光成像系统

仪器信息网高性能阴极发光成像系统专题为您提供2024年最新高性能阴极发光成像系统价格报价、厂家品牌的相关信息, 包括高性能阴极发光成像系统参数、型号等,不管是国产,还是进口品牌的高性能阴极发光成像系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高性能阴极发光成像系统相关的耗材配件、试剂标物,还有高性能阴极发光成像系统相关的最新资讯、资料,以及高性能阴极发光成像系统相关的解决方案。

高性能阴极发光成像系统相关的资讯

  • 荷兰delmic公司本月喜获两个重要订单-阴极发光系统
    2018年3月, 我们成功获得阴极发光系统SPARC的重要订单。在丹麦,联合TESCAN公司获得南丹麦大学(University of Southern Denmark)的订单。南丹麦大学使用我们的先进阴极发光系统,应用于纳米光子学的研究。纳米光子学(Nanophotonics)是研究光在纳米范围内行为的科学。它是光工程的一分支。它研究光学,光和粒子或物质在亚波长长度范围的相互作用。另外一台订单来自德国Braunschweig University of Technology,这套系统除了基本系统功能外, 还特别配置了time-resolved时间分辨功能,包含超快扫描相机。时间分辨阴极发光系统,是delmic今年最新发布的产品,全球领先。项目开发来自delmic公司、赛默飞FEI和Hamamatsu战略合作。
  • 苏州德尔微仪器喜获西安电子科技大学阴极射线荧光系统订单
    苏州德尔微仪器喜获西电阴极射线荧光系统订单按照招投标流程,经过系列流程严格论证,西安电子科技大学2017年7月7日发布中标公示:先进材料与纳米学院最终选择delmic公司创新研发的阴极发光成像系统sparc,服务于该校郝越院士团队在宽禁带半导体材料的研究。用户认为该产品具有独特的先进性,在灵敏度,系统高度集成性,硬件模块化设计和软件开源对于先进材料研究有重大帮助,尤其在优化的紫外波段的分析。系统还有全球独有的角分辨功能,后续在需要的时候可以灵活升级。该套系统由著名的nanophotonics方面的研究专家,来自荷兰amolf 的polman教授团队超过10年的研究, 荣获2014年mrs材料表征创新大奖。后经荷兰delmic商用服务于先进材料研究、纳米光子学、光子晶体、表面等离激元、光伏、半导体材料、药物活性等多种领域。sparc阴极发光系统具有收集镜自动精准对准,高效率光传输和灵敏度、光路系统模块化设计灵活可选、多种探测器对应不同应用、全球独创的角分辨解析功能、软件完全开源等独特优点。 目前已经得到欧美数十家著名学府和公司的认可和使用,中国区域目前为止已有两家客户购买,意向客户快速增长。苏州德尓微仪器作为delmic公司中国代理商, 致力于引进先进技术产品和服务科研团队。 关于德尓微 苏州德尔微仪器有限公司,位于苏州生物纳米园。创新服务于电镜实验室,致力于创新样品制备工艺和装备、极致探测手段和表征方法。创造和引进先进的实验方法和表征手段,为中国电镜在纳米科技,先进材料和生命科学等领域的突破提供最有力的高端设备。 作为荷兰delmic公司中国授权代理商,我们提供集成光电联用(iclem)和高性能角分辨荧光成像(angle-resolved cl)电镜附件和服务。 同时,公司创新推出超微加工服务和自主开发制样仪器设备,服务科研群。 助力科学,探索致发现!
  • 新品上市:ChemiDoc Go荧光及化学发光成像系统
    点亮蛋白条带,赋能科学研究 — StarBright完美搭档全新ChemiDoc Go成像系统。全新 ChemiDoc Go 荧光及化学发光成像系统采用先进的互补金属氧化物半导体(CMOS)感光元件和高强度LED光源,并使用背照式传感器技术,在灵敏度和动态范围方面与传统CCD成像相比毫不逊色。您可以在ChemiDoc Go系统上实现传统的化学发光、比色检测等应用,也可使用StarBright Blue荧光二抗进行蛋白印迹的多重检测。在蛋白印迹实验中,您还可使用免染凝胶归一化总蛋白,实现更为精准可靠的蛋白内参定量。先进的CMOS传感器技术经过多年发展,CMOS传感器技术现已能满足生命科学成像的苛刻要求,与电荷耦合器件(CCD)检测相比,其具有更高的效率和更大的像素密度(超2000万像素)。另外,ChemiDoc Go成像系统的新型高灵敏度背照式CMOS传感器所需的冷却要求及功率也更低,从而增强了系统的可靠性。全LED光源ChemiDoc Go系统中新增了用于透照和落射照明的全LED光源。多个光源可为对应应用提供精确的激发或照明,全LED光源设计提升了系统性能,并具有超长使用寿命。兼容StarBright荧光标记抗体ChemiDoc Go系统现在支持使用StarBright Blue 520和700荧光二抗进行成像,实现多重荧光蛋白印迹检测。安全云存储ChemiDoc Go系统是首款与BR.io云平台连接的Bio-Rad成像系统,其可简化图像上传到云端安全文件夹中后的数据存储、共享和分析程序。三步触控实验流程使用Image Lab Touch软件,选择适合您应用的优化预设、选择“Acquire(获取)”、选择多种文件格式保存图像,即可完成实验操作。您可将图像保存到所在机构的网络、U盘或BR.io云账户,也可使用专用打印机打印图像。可使用Mac或PC版Image Lab软件随时随地分析数据。可使用PC安全版本Image Lab软件维护电子记录,以符合美国FDA 21 CFR Part 11的规定。申请试用:本产品仅用于科研,不可作临床诊断使用。Bio-Rad 是 Bio-Rad Laboratories, Inc. 在特定区域的商标。
  • 德国耶拿化学发光成像系统喜获“2013优秀新产品”
    “德国耶拿”盛装出席2014科学仪器发展年会,满誉而归!(德国耶拿蝉联“2013年最具影响力国外十大厂商”,PQ9000,ChemStudio SA荣获“2013优秀新产品”!) 2014年4月18日上午9:00,中国科学仪器行业的“达沃斯论坛”——2014中国科学仪器发展年会(ACCSI 2014)在北京京仪大酒店正式召开。300余位相关政府领导及业内专家、300余位仪器企业负责人、40家媒体及200余位其他有关机构代表出席了会议。 德国耶拿作为本次年会的特别赞助商,积极参加年会,不仅出席企业高峰论坛,同时在展位上展示了最新的产品信息,并在“食品检测技术论坛”中做了“高分辨率原子光谱仪最新技术进展及食品行业的应用“报告。 作为ACCSI 2014的“重头戏”,“2013年度科学仪器优秀新产品”、“2013年度绿色仪器”、“2013年度最受关注仪器”以及“2013年度最具影响力厂商”等重要奖项在晚会现场一一揭晓。共有247家国内外仪器厂商,申报了561台2013年度上市的仪器新品, 经新品组委会初评,有150台仪器入围。 德国耶拿公司申报的4台仪器,全部顺利入围:AI部门: PQ9000电感耦合等离子体发射光谱仪,SPECORD 50 PLUS 高智能紫外可见分光光度计LS部门: Chemstudio SA全自动化学发光成像系统一体机,InnuPureC96 高通量自动核酸纯化系统 在晚会上最终揭晓了20台获奖仪器,PQ9000电感耦合等离子体发射光谱仪,ChemStudio SA全自动化学发光成像系统一体机凭借多项创新技术,卓越分析性能,在众多产品中,脱颖而出,喜获”2013年度科学仪器优秀新产品”。同时,德国耶拿荣获“2013年最具影响力国外十大厂商”。 Chemstudio SA全自动化学发光成像系统一体机 创新点介绍:1、eLite光源使用高性能氙灯提供全光谱的光源,突破了传统led光源能量不足、激发效率不够、波长单一不可变的瓶颈,结合21种滤光片最大化的拓展了荧光成像的应用。突破性的解决了传统成像荧光应用单一不可扩展的问题,普通荧光成像、RGB可见荧光成像、近红外荧光成像都能轻松得到最优化的结果。eLite光源是业内唯一一个既可以提供顶置荧光又可以提供透射荧光的光源,结合高分辨率的CCD首次实现了用CCD成像技术来进行2D DIGE的完美成像。 2、-50℃冷CCD确保仪器能提供最好的检测灵敏度。3、15.6寸彩色触控屏结合专为中国科研工作者开发的中文软件让操作变得极其简单,独立操作的仪器无需外接电脑,让您拥挤的实验室变得更加宽敞明亮。4、成像结果可以通过无线传输将图片传到每一位工作者的各人电脑中,方便操作且可以让仪器远离U盘病毒。5、专利的三波长紫外光源,蛇形排布的灯管使光源更均匀。
  • 南开大学团队:研制出世界首套超快扫描电子显微镜与超快阴极荧光多模态载流子动力学探测系统
    近日,南开大学物理科学学院超快电子显微镜实验室付学文教授团队成功研制并报道了国际首套超快扫描电子显微镜(SUEM)与超快阴极荧光(TRCL)多模态载流子动力学探测系统。该系统在飞秒超快电子模式下实现了空间分辨率优于10 nm,SUEM成像和TRCL探测的时间分辨率分别优于500 fs和4.5 ps,各项技术性能和参数指标达到国际领先水平。该团队利用该多模态载流子动力学探测系统在飞秒与纳米时空分辨尺度直接追踪了n型掺杂砷化镓(n-GaAs)半导体中的光生载流子的复杂动力学过程,结合SUEM成像和TRCL测量成功区分了其表面载流子和体相载流子的动力学行为,全面直观地给出了其光生载流子动力学的物理图像。该仪器系统的成功研制填补了我国在该技术领域的空白,为研究和解耦半导体中复杂的光生载流子动力学过程提供了一个强有力的高时空分辨测量平台,将为新型半导体材料与高性能光电功能器件的开发提供重要支撑。该研究近日以“A femtosecond electron-based versatile microscopy for visualizing carrier dynamics in semiconductors across spatiotemporal and energetic domains”(一种基于飞秒电子的可用于跨时空和能量维度可视化半导体载流子动力学的多功能显微镜)为题,发表于重要国际学术期刊《Advanced Science》。半导体光电材料与器件的功能和性能主要取决于其材料表/界面的载流子动力学过程,例如光伏与光电探测器件需要增强其界面光生载流子的分离与传输,抑制载流子的复合,而发光器件则要增强其界面载流子的辐射复合,抑制非辐射复合。这些载流子的动力学过程多发生在表/界面处,且动力学过程快至皮秒乃至飞秒量级,因此以超高的时间、空间以及能量分辨率测量半导体材料表/界面载流子不同类型的动力学过程对于现代半导体器件的研发及应用起着至关重要的作用,尤其是对于一些低维、高速、超灵敏的半导体光电器件。当前,研究半导体光生载流子动力学的时间分辨探测技术主要有瞬态吸收显微镜(TAM)及光谱、时间分辨近场扫描光学显微镜(NOSM)、时间分辨阴极荧光(TRPL)、时间分辨光发射电子显微镜(TR-PEEM)等。然而,光学衍射极限限制了这些技术的空间分辨率,并且激光较大的作用深度使得测得的动力学信号主要来自材料内部的平均载流子动力学信息,很大程度上掩盖了来自表面或界面载流子的贡献,且单一的探测手段难以同时给出载流子不同类型的动力学信息。因此,为了全面表征半导体材料的载流子动力学,特别是表/界面载流子的动力学,亟需发展一种在时空间和能量维度上同时具有超高分辨率并且兼具高表面敏感特性的超快探测手段。图1. 仪器系统的示意图和时空分辨性能表征。(a)超快扫描电镜与超快阴极荧光多模态载流子动力学探测系统的示意图。其中包含飞秒光学系统、扫描电镜系统、阴极荧光收集系统、条纹相机以及液氦低温台。图中左上角分别为金刚石微晶的扫描电镜图、阴极荧光强度分布图像、阴极荧光光谱以及n型GaAs在77 K下的条纹相机图像 (b)传统模式下锡球标样的SEM图 (c)和(d)不同放大倍数下锡球标样的飞秒脉冲电子图像,表明飞秒脉冲电子模式下良好的成像质量,其空间分辨率优于10 nm。(e)初始红外飞秒激光脉冲的脉宽;(f)超快扫描电子成像的时间分辨率测试,其仪器相应函数(IRF)大约为500 fs;(g)超快阴极荧光探测的时间分辨率测试,其IRF约为4.5 ps。随着超快电子显微镜技术的蓬勃发展,超快扫描电子显微镜(SUEM)和超快阴极荧光(TRCL)技术也迅速兴起,两者都同时兼具超短脉冲激光的超快时间分辨率和电子显微镜的超高空间分辨率。其中SUEM技术是基于泵浦-探测原理,用一束可见波段飞秒激光激发样品表面产生光生载流子,另一束同步的紫外飞秒激光激发扫描电子显微镜的光阴极产生飞秒脉冲电子进行扫描成像。由于扫描电子显微镜主要收集来自距离样品表面几个纳米范围内的二次电子信号,使得超快扫描电子显微镜技术具有表面敏感特性,能够直接对半导体材料表面或界面光生载流子(电子和空穴)的时空演化动力学进行成像。然而,该技术无法直接区分辐射复合与非辐射复合动力学过程。TRCL技术是用聚焦的飞秒脉冲电子束激发样品产生瞬态荧光,用条纹相机或时间相关单光子计数器对瞬态荧光进行测量,具有能量敏感特性,且信号绝大部分来源于材料体内,可直接反映载流子的辐射复合行为。因此,SUEM和TRCL在功能上形成良好的互补,将两者有机结合有望实现在超高的时空和能量分辨下全面解析半导体材料表/界面和体相载流子的动力学信息。鉴于此,付学文教授团队将飞秒激光、场发射扫描电子显微镜和瞬态荧光探测模块相结合,研制出了国际首套超快扫描电子显微镜与超快阴极荧光多模态载流子动力学探测系统(如图1示意图和图2实物图所示),实现了对半导体材料表/界面和体相载流子动力学过程的高时空分辨探测和解析。图2. 超快扫描电子显微镜与超快阴极荧光多模态载流子动力学探测系统实物照片。图3. 利用该系统对n型GaAs单晶表面的SUEM成像和TRCL测量结果。(a)n型砷化镓表面测量得到的随时间演化的SUEM图像;(b)从图(a)中光激发区域提取的二次电子强度演化及相应的载流子演化时间常数;(c)表面载流子的空间分布随时间的演化;(d)从297 K到77 K的变温时间积分CL光谱;(e)和(g)在图(a)的SUEM测试区域中分别探测得到的297 K和77 K下的条纹相机图像;(f)和(h)分别从(e)和(g)中提取的带边发射的衰减曲线及相应的荧光寿命。为展示SUEM成像与TRCL探测在超高时空和能量分辨率下直接可视化并解耦半导体中复杂激发态载流子动力学过程上的独特优势,该团队利用该自主研发的多模态实验装置研究了n型GaAs中的载流子动力学。如图3所示,SUEM图像表明由于表面能带弯曲效应,飞秒激光作用后表面光生载流子发生快速分离使空穴向表面富集。通过分析随时间变化的SUEM图像,提取出了光生载流子不同阶段的衰减时间常数;同时通过计算表面空穴分布的均方根位移,揭示了对应不同阶段表面空穴随时间的超扩散、局域化和亚扩散过程。通过进一步分析室温和液氦温度下测量的条纹相机图像中相应的非平衡载流子复合动力学过程和寿命,不但区分出了体相和表面载流子动力学过程的差异,还揭示了上述表面载流子的空间演变过程分别对应于能量空间热载流子冷却、缺陷捕获和带间/缺陷辅助辐射复合过程。该工作阐明了表面态和缺陷态对半导体表/界面载流子动力学的重要影响,展示了超快扫描电子显微镜和超快阴极荧光多模态动力学探测系统在超高时空尺度解耦半导体表/界面和体相载流子动力学中的独特优势。南开大学为该项工作的第一完成单位及通讯单位。南开大学物理科学学院博士生张亚卿和博士后陈祥为该论文共同第一作者,南开大学付学文教授为通讯作者。该研究得到了国家自然科学基金委、国家科技部、天津市科技局、中央高校基础研究经费等的大力支持。文章链接:https://doi.org/10.1002/advs.202400633
  • 250万!华南理工大学高性能样本处理、生物分子分析及红外激光成像系统采购项目
    项目编号:GZZJ-ZFG-2023078项目名称:华南理工大学高性能样本处理、生物分子分析及红外激光成像系统采购项目预算金额:250.0000000 万元(人民币)最高限价(如有):250.0000000 万元(人民币)采购需求:包组号序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价万元(人民币)(一)1高性能样本处理系统1台组织破碎及均化、代谢物提取及蛋白质组学分析、RNA提取、纳米粒子微粉的制备、细胞/孢子或细胞器的裂解、复合物分离、ADME/Tox等。人民币250万元2生物大分子分析仪1台2.1用于二代测序或三代测序过程中基因组DNA和文库的质控(定性定量);2.2用于用于高通量片段分析如SSR/CAPS/RAPD/AFLP分析;2.3用于常规DNA/RNA或扩增产物片段大小定性定量分析;2.4质粒DNA分析;2.5RNA定性定量分析,含体外合成的RNA完整性分析、smal RNA分析;3全自动氨基酸分析仪1台一次进样可分析18种以上氨基酸。4双色红外激光成像系统1台Western blots分析、多色荧光Western blots分析、多色EMSA(电泳迁移率变化分析)、微孔板In-Cell Western分析、凝胶In-Gel Western分析、考马司亮蓝凝胶扫描、蛋白双向电泳扫描、蛋白芯片扫描、Northern/Southern blots、Membrane arrays、核酸与蛋白相互作用研究、组织切片扫描、器官扫描成像等。经政府采购管理部门同意,本项目允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品,具体详见采购需求。本项目采购标的所属行业为:工业合同履行期限:国内供货:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用。境外货物:收到信用证后(90)天内。本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名称:华南理工大学地址:广州市天河区五山路381号联系方式:文老师020-871129622.采购代理机构信息名称:广州中经招标有限公司地址:广州市越秀区寺右一马路18号泰恒大厦14楼1409室联系方式:陈小姐、庄小姐 020-87385151、020-37639369、020-87371812、020-873722963.项目联系方式项目联系人:陈小姐、庄小姐电话:020-87385151
  • 年底现货大促销 化学发光凝胶成像系统
    上海山富科学仪器有限公司作为提供生命科学专业性仪器的公司,从事生物成像类仪器研发多年。 在黄山市经济开发区拥有占地15亩标准厂房与生产车间,生产部通过ISO9001:2008质量体系认证,医疗器械生产许可证,拥有凝胶成像两项技术专利成果,CE认证,08年开始对外的出口如今我司的产品遍布全球各大洲。 910 化学发光凝胶成像系统,现参加年终现货大促销,促销时间:2011年12月5日-2012年1月20日。价格从11万6直降3万元整,支持试用二周。确保您满意产品的最终成像效果,凡是在年底促销期间提交试用的客户,优惠价格都能保留到年后实际采购,如有意者欢迎随时与我司联系,踊跃参加促销活动。 910 化学发光凝胶成像是入门级别,能够兼容普通的荧光凝胶成像。使用变焦镜头。目前使用west blotting的用户越来越多,而传统的压片过程存在很多弊端。费时费力而且实验成本也大。910化学发光可以完成快速成像,无需暗室与胶片,无需显影与定影。短短几分钟也能得出灵敏度与压片相媲美的影像结果。910可以完成5分钟的持续曝光。对于west blotting在压片过程中肉眼可见的样品,或者压片时间小于2分钟的样品都可以拍摄出来。专业的化学发光软件,帮助您更好的定量目标蛋白。传统的胶片显影的动态范围窄,不适用于蛋白的精确定量分析,使用化学发光得到的图片能够提供宽的动态范围,进行精确的定量分析。技术参数 摄像头:进口高分辨率低照度数码制冷CCDCCD尺寸:2/3英寸(10.2mm*8.3mm) SONY ICX285 冷却方式:半导体制冷冷却温度:-35℃ 有效像素:1392*1040 采集位数:16bit像素尺寸:6.45&mu m*6.45&mu m像素合并:1*1,2*2,4*4动态范围:三个数量级灵敏度:20pg双链DNA电动变焦镜头:日本进口电动6倍变焦 F1.0 2/3英寸大口径高通透镜头照明模式:透射紫外,透射白光,反射白光激发光源:312nm紫外透照台;均匀冷光源白光透射板;LED反射白光灯;紫外反射选配滤光片数量:6位电动控制自动滤光片轮滤光片:标配590nm超多层镀膜螺旋型标准滤光片透射面积:紫外:21*26cm 白光:20*28cm外形尺寸:430*430*620mm主要特点 1 910采用密封条设计,确保暗箱的绝对密封,拍摄时不受环境光源的任何影响。2 910采用进口2/3大尺寸CCD可以制冷-35℃,确保微弱的化学发光捕捉。3 电动6位的滤光轮,为将来更多应用预留了空间。4 保留了紫外透照的设计,在可以做化学发光的同时也兼容普通的凝胶成像。化学发光凝胶全系列 型号 910920950采集系统进口高分辨率低照度数码制冷CCD进口高分辨率低照度数码制冷CCD进口高分辨率低照度数码制冷CCDCCD尺寸10.2*8.3mm 10.2*8.3mm15.2/*15.2mm冷却方式半导体制冷三级制冷三级制冷冷却温度-35℃-55℃-60℃有效像素1392*1040 145万1392*1040 145万2048*2048 420万像素尺寸(um V*H)6.45*6.456.45*6.457.4*7.4采集位数16 bit16 bit16 bit像素合并1*1,2*2,4*41*1,2*2,4*41*1,2*2,4*4接 口USB 2.0USB 2.0USB2.0镜 头 2/3英寸 日本进口电动6倍变焦镜头 F1.02/3英寸 日本进口定焦镜头 17mm F0.952/3英寸 日本进口定焦镜头 25mm F0.95暗 箱化学发光专用密封暗箱,确保适用于微弱光源长时间曝光下显影滤光片数量6位电动控制自动滤光片轮标配滤光片590nm超多层镀膜螺旋型标准滤光片选配滤光片537nm红色滤光片,460nm蓝色滤光片,699nm滤光片照明模式透射紫外,透射白光,反射白光反射白光反射白光软件ChemShot化学发光专用软件,全中文界面,支持Win2000/XP,集图像采集、编辑、分析和数据库管理功能为一体。尺寸(mm)(W*D*H)430*430*620430*430*620430*430*620重量32kg32kg32kg认证CECECE 上图为910,曝光2分钟图像。使用western blot 曝光标签,以及ECL染色剂,左边第一个点为AB原液混合,后面各点是分别等比例稀释结果。一共可见6个点,第七个点隐约可见。 软件功能简介 ChemiShot全功能控制分析软件,能对DNA/RNA,蛋白质电泳图像、荧光及化学发光成像,各种杂交膜图像、克隆计数、放射自显影、酶标板点杂交图像进行拍摄和分析; 可自动识别条带及其左右边界,自动生成峰值曲线图、数据表; 可进行分子量、百分比、含量计算并生成分子量数据库; 所有数据表均能保存为Excel格式和打印; 一 图像采集编辑功能: 1 中文界面,Windows操作系统。(也可提供英文界面) 2 可通过软件进行缩放、聚焦、光圈、透射紫外灯及反射灯的全自动控制 3 实时显示图像 4 通过软件控制选取不同滤镜 5 多种格式存储图像 6 可连接其它输入设备。 7 灰度调整:调节图像黑白对比度、亮度和灰度系数,达到最佳照片效果。 8 图像旋转:图像可左右,上下旋转。 9 图像反转:图像可黑白转换。 10 添加文字:可在图像上添加中英文。 11 可打印图像、图谱曲线、图表及数据报告。 二 电泳条带分析功能:1 可自动或手动识别泳道,并能手动调整泳道边框,增删泳道,实现泳道的精确分离。 2 可去除背景,以达到最佳的分析效果 3 泳道(Lane)密度扫描:可同时进行多泳道密度扫描,自动辨别电泳条带,同时绘出扫描曲线。 4 分子量计算:输入Market泳道已知分子量(bp值),就可计算出其它泳道分子量(bp值)。 5 数据分析结果:可计算出每根条带的迁移率。 6 分析结果的数据可以用 Excel 文件形式输出。 三 图像数据库功能: 1 可以导入导出多种格式的图像文件 2 可以添加删除数据库图像文件 3 可以在数据库内按采集时间,图像类型进行检索 4 可以根据不同人员建立不同数据库保存图像,便于使用与管理 5 分析结果的数据以及所有图像能复制、粘贴、打印,具有与Excel、Word、画图、剪切板、PhotoShop的连接功能 6 无需借助其它软件即可进行加注文字、箭头、矩形框等,并可对已加注的历史图像反复修改。 更多详情,请登录我司网站了解更多。www.shbiotech.com该活动最终解释权归上海山富所有。------上海山富科学仪器有限公司联系电话:021-65550736 65558758 传真:021-65522489上海市曲阳路851弄沪办大厦9号楼506室www.shbiotech.com
  • 世界首例!西湖大学实验室发现首个“光阴极”量子材料
    近期,西湖大学理学院何睿华课题组连同研究合作者一起,发现了世界首例具有本征相干性的光阴极量子材料,其性能远超传统的光阴极材料,且无法为现有理论所解释,为光阴极研发、应用与基础理论发展打开了新的天地。3月8日,相关论文“Anomalous intense coherent secondary photoemission from a perovskite oxide”,已提前线上发表于Nature期刊。西湖大学博士研究生洪彩云、邹文俊和冉鹏旭为共同第一作者,西湖大学理学院长聘副教授何睿华为通讯作者。全部实验和理论工作都在西湖大学完成。摄影师镜头下,首例具有本征相干性的光阴极量子材料:钛酸锶。光阴极:辉煌的出身,沉寂的领域,现代科技的基石之一1887年,德国物理学家赫兹在实验中意外发现,紫外线照射到金属表面电极上会产生火花。1905年,爱因斯坦基于光的量子化猜想,提出了对该现象的理论解释。这标志着量子力学大门的正式开启,因为这个贡献,爱因斯坦于1921年被授予诺贝尔物理学奖。由此,将“光”转化为“电”的“光电效应”,以及能够产生这个效应的“光阴极”材料,正式进入了人类的视野。伴随着对光电效应理解的加深,人们后来发展出了更完善的理论,能够解释所有光阴极材料的基本性能,并成功预言了当时未知的光阴极材料。这些光阴极材料基本上都是传统金属和半导体材料,大多数在60年前被发现。它们已经成为当代粒子加速器、自由电子激光、超快电镜、高分辨电子谱仪等尖端科技装置的核心元件。这类高精尖设备除了常见于实验室,还被应用在大众生活中,如粒子加速器已被用于治疗癌症、杀灭细菌、开发包装材料、改进车辆的燃料注入等。简单说来,光阴极材料是否“好用”,直接关系着这类设备的性能。然而,这些传统的光阴极材料存在固有的性能缺陷——它们所发射的电子束“相干性”太差,也就是电子束的发射角太大,其中的电子运动速度不均一。这样的“初始“电子束要想满足尖端科技应用的要求,必须依赖一系列材料工艺和电气工程技术来增强它的相干性,而这些特殊工艺和辅助技术的引入极大地增加了“电子枪”系统的复杂度,提高了建造要求和成本。钛酸锶:量子材料之光,光阴极领域的潜在重启者尽管基于光阴极的电子枪技术最近几十年来有了长足的发展,但它已渐渐无法跟上相关科技应用发展的步伐。许多前述尖端科技的升级换代呼唤初始电子束相干性在数量级上的提升,而这已经不是一般的光阴极性能优化所能实现的了,只能寄望于在材料和理论层面上的源头创新。长期深耕材料物理性质研究的西湖大学理学院何睿华团队,意外在一个同类物理实验室中“常见”的身影——钛酸锶上实现了突破。近年来兴起的一大类新的材料——量子材料,以其复杂多变的性质和丰富多样的功能而著称。具有钙钛矿结构的钛酸锶(SrTiO3)是这类材料的重要代表之一。被誉为“钛酸锶之父”、高温超导发现人、诺贝尔物理学奖获得者K. A. Muller教授称钛酸锶为“固体物理中的果蝇”,因为很多重要的固体物理现象都是首先从该材料上发现的,其中还包括许多尚未被理解的现象。然而,以钛酸锶为首的氧化物量子材料研究,其主流是将这些材料当作硅基半导体的潜在替代材料来研究,主要关注的是它们独特的电子学相关性质。但何睿华团队却在实验中发现,这些熟悉的材料竟然同样承载着触发新奇光电效应的能力——它有着远超于现有光阴极材料的光阴极关键性能:相干性(见图1说明),从而极大地弥补了现有光阴极材料的缺憾。图1. 钛酸锶和其他材料的初始电子束能谱分析对比。前者具有更高的初始电子束相干性,具体体现为:电子发射动能能量发散度小于0.01 eV(a),发散角小于2°(b),相比普通材料的约0.5 eV和20°有了数量级上的提升。Nature论文匿名审稿人指出:“与类似实验条件下的其他现有光阴极相比,钛酸锶光阴极最重要的性质是它所发射的初始电子束所具有的相干性有了数量级上的提升。这种性能上的巨大飞跃允许(人们)完整获得具有本征相干性的电子束,而无需为了提高相干性而牺牲电子束流强度。这一发现可能会导致光阴极技术发生范式转变,该技术长期以来一直受困于(电子枪)电子束不能同时具有高相干性和高束流强度的矛盾,(这个矛盾的)根源就在于初始电子束的本征非相干性。”超快电镜专家、论文合作者、西湖大学理学院研究员郑昌喜认为,合作团队发现的重要性“不在于往钛酸锶的神奇性质列表增添了一个新的性质,而在于这个性质本身,它可能重启一个极其重要、被普遍认为已发展成熟的光阴极技术领域,改变许多早已根深蒂固的游戏规则”。角分辨光电子能谱:以子之矛,攻子之盾图片设计师:林晨科学探索常常在意外中触碰出新的火花。为什么何睿华团队能在“常见”的材料上获得新的发现?这得归功于一种强大的、但很少被应用于光阴极研究的实验手段:角分辨光电子能谱技术。以往,由于大部分具有较高性能的传统光阴极材料其表面具有多晶或非晶结构,光阴极领域的主流研究方法依赖的主要是光电流探测,这个135年前已开始使用的实验手段。这也使得一大类新近发展出来的研究单晶量子材料的实验利器无用武之地,其中包括角分辨光电子能谱技术。究其本质,角分辨光电子能谱技术这个技术的工作原理,就是光电效应。它被用于探测材料的电子结构,即了解电子如何在材料里运动。在过去的几十年里,角分辨光电子能谱技术主要用于研究跟材料的光学、电学和热学性质相关的那部分电子结构。受这种强烈的科学关注的驱使,现有大多数实验设施针对相关能量区域内的电子结构测量进行了相应的配置和优化。谁能想到,这个运用了光电效应原理的技术,竟然能“以子之矛,攻子之盾”,挖掘出光电效应中新的物理——在实验中,西湖大学何睿华团队使用了这个源自光电效应的量子材料研究利器,出乎意料地捕捉到了单晶量子材料的独特光电发射特性。通过对角分辨光电子能谱仪进行“非常规”配置,以实现对非常规能量区域内、与光电效应相关的电子结构测量,他们发现钛酸锶优越的光阴极性能来自于其独特的光电发射性质(图2),而这些性质明显不同于所有已知的光阴极材料。可以说,它们几乎在每个主要方面都超出了已有光电发射理论的预期。图2. 普通光阴极材料(a)和光阴极量子材料钛酸锶(b)所发射的初始电子束的区别。关于西湖大学团队的以上结论,角分辨光电子能谱理论权威、论文合作者、美国东北大学教授Arun Bansil进行了理论确认,他指出:“(这个发现)表明我们对光电效应相关物理过程的完整理解缺少一些很基本的东西,而这个缺失的元素可能成为开启整个光阴极量子材料家族之门的钥匙,(这些材料)具有独特的、不为现有材料所具有的光阴极性能。”展望:从理论到应用的待解之谜而发现,往往只是驶向未知浩瀚海洋的第一步。在激动人心的发现过后,何睿华实验室立刻投身于下一步的探索之中。据本成果的第一作者、西湖大学理学院2019级博士生洪彩云介绍,接下来,他们将进一步在理论和应用方面展开对钛酸锶材料的研究工作。在理论方面,既然现有理论失灵了,那就意味着需要建立新的理论,来解释观察到的钛酸锶光阴极性能。何睿华对此给出了一个非常大胆的猜想,跟Bansil组合作提出了一个全新的光电发射机制。按照这个新的理论,他们预测了一大类由此新机制主导的候选光阴极量子材料,实验团队正计划对这些材料预测进行一一验证。在应用方面,既然钛酸锶材料比已有的光阴极材料表现都要更理想,团队也计划与相关领域的团队合作,挖掘这种材料的实际应用价值。何睿华在西湖大学的个人介绍页面上,写着对这所学校的心愿:“希望西湖大学能成为一个具有独特定位,鼓励学科交叉和大胆创新的冒险家乐园”。事实上,首个光阴极量子材料钛酸锶的发现,也正开花于他带领团队进行的长达数年的沉浸式“冒险”探索之中。原本,实验室所进行的一个“小”研究项目是研究量子材料的逸出功(注:在光电效应中,电子跃出材料表面需要付出一定的能量“代价”,即逸出功)。依托物质科学平台的超高真空互联系统,以“高通量”手法批量测量各材料的逸出功时,他们偶然发现钛酸锶有些“与众不同”,并且抓住了这个“意外”,这才得以有了后面的发现。有趣的是,何睿华实验室“无心插柳柳成荫”的发现,似乎在冥冥中,也呼应了人类与光电效应意外“相遇”的起始点——1887 年,赫兹为了证明麦克斯韦的电磁波预言,进行了火花放电实验,而偶然发现了这种神奇的现象。探索前人未达之境。热爱“冒险”的西湖科学家们,将进一步挖掘光阴极材料的更多奥秘。
  • 勤翔推出冷却CCD荧光及化学发光成像系统
    ClinxChemiScope系列荧光及化学发光成像系统是一款同时适用于荧光成像分析及化学发光成像分析的仪器。系统选用高分辨率数字冷却CCD相机结合高通透镜头系统,使其能够捕获到信号极其微弱的荧光及化学发光样品图像,并且能够最大程度的降低噪音,减少背景,提供出色的图像清晰度。激发光源及滤光片可根据用户的不同需求进行定制,扩大了荧光/化学发光成像的应用范围,是目前用于生命科学领域中功能性最强、性价比最高的研究工具之一。 随着生物科研的日益广泛和深入,客户对荧光及化学发光分析的检测仪器的需求愈来愈多,要求也越来越高。针对目前国内高端化学发光成像系统基本依赖进口的现状,我们自主研发生产了高性价比的ChemiScope系列荧光及化学发光成像系统,无疑为我们中国的生物科研人员提供了更好的选择。
  • Sanotac发布蒸发光散射检测器技术 高性能的ELSD 检测器
    全新的Omnitor低温型蒸发光散射检测器(ELSD检测器)重磅上市!三为科学蒸发光散射检测器技术团队通过独创的卧式结构,全新的光散射光路设计,智能的自动化功能、友好的用户界面和多平台控制,Omnitor蒸发光散射检测器可以为不同层次和需求的用户提供不同的实验体验。 三为科学本次推出全新ELSD900和ELSD6000两个型号蒸发光散射检测器参加慕尼黑分析仪器展览,新产品几个亮点:一、仪器内部温度场合理设计使体积小到26*19*46cm,和液相色谱泵同等宽度;二、定量重复性达到RSD6≤1.5%,最小检测浓度为≤5.0×10-6 g/mL (胆固醇-甲醇溶液)。三、信号稳定、噪音低,信号噪音0.01 mV(企业标准),优于《JJG1512-2015液相色谱仪型式评价大纲》要求的<1mV。 三为科学技术总监姜总向我们介绍Omnitor的仪器性能、参数和工程设计等方面已经达到国外品牌蒸发光散射检测器的同等品质,这两款检测器非常适合制药、药物开发、质保/质控、食品质量检测、保健品和精细化学品分析领域中化合物的分析和中草药、天然药物、食品科学领域天然产物活性成分分离纯化过程中的在线检测。这两款检测器可以消除梯度洗脱时溶剂峰的干扰,大大提高药物化合物库筛选效率。 姜总还向我们介绍了品牌蒸发光散射检测器应该具备的技术特点:紧凑的结构——独创的全新光散射光路和卧式仪器结构,并且对仪器内部温度场进行合理设计,仪器结构紧凑合理安全、长寿命——16项仪器自检,多重安全设计,避免流动相进入检测室检测性能优异——定量重复性达到RSD6≤1.5%,基线噪声低至0.01 mV,漂移小方便用户使用——10组方法存储管理(25个参数),多重报警模式,雾化管前置,便于用户观察和清洗智能温控——漂移管辅助快速降温系统可以完成不同方法间的快速切换,喷嘴加热及雾化管角度调整功能为高端用户提供个性化实验参数定制需求灵活的输出——0.3 ~ 30倍的连续增益调整,提供输出自动归零功能,-1000 mV ~ 1000 mV的偏置模拟输出,并且提供数字输出功能控制采集软件——色谱系统软件符合FDA 21CFR Part 11要求,具有审计追踪功能,可以与任何主流HPLC系统联用多重通讯模式——RS232,RS-485,USB,LAN(TCP/HTTP),可编程外部事件接口绿色节能——提供待机模式,检测器低功耗状态,同时节省50%以上氮气消耗,多重方式开启待机模式(内部、远程、定时器) 会议期间,ELSD9000蒸发光散射检测器得到仪器厂家和分析化学专家的充分认可,来自化学、医疗、食品、环境和医药产业的科技研发人员对ELSD9000的产品性能、结构设计、软件功能给予很大的肯定。 作为专业科学仪器生产企业,三为科学致力于制备液相色谱、蛋白纯化系统、色谱通用检测器的研究。对于行业热衷的液相色谱使用通用的检测器,ELSD9000和ELSD6000蒸发光散射检测器为广大分析检测和药物分离纯化领域的科学家提供了液相色谱通用检测器的解决方案和理想的性价比。在致力于优质色谱通用检测器的国产化的道路上,我们任重路远!
  • 2013科学仪器优秀新产品:德国耶拿PQ9000 ICP-OES, Chemstudio SA全自动化学发光成像系统一体机
    2014年4月18日晚,中国科学仪器行业的“达沃斯论坛”——2014中国科学仪器发展年会(ACCSI 2014)于晚宴上公布了“2013科学仪器行业优秀新产品”。中国分析测试协会汪正范研究员、军事医学科学院杨松成研究员、中国农业科学院蒋士强研究员、清华大学邓勃教授为“2013科学仪器行业优秀新产品”获奖代表颁发了奖项。图1-2 “2013科学仪器行业优秀新产品”颁奖现场PQ9000 电感耦合等离子体发射光谱仪创新点介绍:1.提高了分辨率和光学性能:0.003nm(在200nm处)的光学分辨率,已达到谱线的自然宽度;将卡尔蔡司光学技术成功应用于ICP-OES。 2.采用垂直矩管、双向观测和4种测量方式(轴向、轴向Plus、侧向、侧向Plus)设计:适合各类样品(包括有机,高盐)的分析,能满足各种浓度(ug/L~%)的同时测定。3.科学降低消耗和提高灵敏度:吹扫、冷却用氩气又回到等离子体再用,节省氩气消耗超过35%;如此还实现了对光室的持续吹扫,自然提高了紫外波长谱线检测的灵敏度。4.使用新一代CCD检测器:快速,高像数分辨率——0.002nm,自动选择最佳积分时间,至少6个数量级的动态监测范围,同时记录元素线与其直接光谱环境,自动扣除背景。 5.即开即用:5分钟即可达到平稳的工作状态,不需要提前预热、提前吹扫和延时吹扫。 6.精巧设计:在同类仪器中体积较小。 Chemstudio SA全自动化学发光成像系统一体机创新点介绍:1、eLite光源使用高性能氙灯提供全光谱的光源,突破了传统led光源能量不足、激发效率不够、波长单一不可变的瓶颈,结合21种滤光片最大化的拓展了荧光成像的应用。突破性的解决了传统成像荧光应用单一不可扩展的问题,普通荧光成像、RGB可见荧光成像、近红外荧光成像都能轻松得到最优化的结果。eLite光源是业内唯一一个既可以提供顶置荧光又可以提供透射荧光的光源,结合高分辨率的CCD首次实现了用CCD成像技术来进行2D DIGE的完美成像。 2、-50℃冷CCD确保仪器能提供最好的检测灵敏度。3、15.6寸彩色触控屏结合专为中国科研工作者开发的中文软件让操作变得极其简单,独立操作的仪器无需外接电脑,让您拥挤的实验室变得更加宽敞明亮。4、成像结果可以通过无线传输将图片传到每一位工作者的各人电脑中,方便操作且可以让仪器远离U盘病毒。5、专利的三波长紫外光源,蛇形排布的灯管使光源更均匀。关于第八届“科学仪器优秀新产品”评选活动:于2013年3月份开始筹备,截止到2014年2月28日,共有247家国内外仪器厂商申报了561台2013年度上市的仪器新品。经仪器信息网编辑初审、2013中国科学仪器发展年会新品组委会初评,在所有申报的仪器中约有三分之一进入了入围名单。本届新品评审专业委员会邀请了超过60位业内资深专家按照严格的评审程序,对入围的新品进行网上评议。最终获奖的仪器除在“2014年中国科学仪器发展年会”上揭晓并颁发证书外,还将在多家专业媒体上公布。关于耶拿: 德国耶拿分析仪器股份公司,是德国最大的分析仪器制造商之一,在光学制造领域拥有超过160年的历史,在发展高质量精密仪器和发明创造方面有着悠久的传统。前身为久负盛名的卡尔蔡司公司分析仪器部。公司总部设在世界光学精密仪器制造中心的德国耶拿市,目前在全球90多个国家设有分支机构。 以“品质造就非凡,创新成就梦想”为企业信条,公司的宗旨是不断创新和追求活力,始终保持领先的技术水准。耶拿公司凭借其在光学和光谱技术领域内的优势,凭借其历史上的传统和经验,一直不间断地研究新的技术,并且和应用紧密联系, “技术”与“品质”是耶拿公司核心的竞争力。 更多信息,请登录:http://www.analytik-jena.com.cn/ 欢迎关注我们,获得更多资讯:新浪微博:@analytikjena, 微信:德国耶拿北京代表处
  • Multiwave7000助力OLED显示及发光材料的研究
    高清超大屏幕说到显示面板,大家几乎就会想到LCD和OLED,前者是一项已经相当普及的技术,广泛应用在各种显示设备上。后者则是近几年才逐渐普及的新显示技术,也被称为下一代显示技术。OLED将成为下一个消费电子应用风口。OLED有机发光二极管3OLED全称为有机发光二极管,又称为有机电激光显示、有机发光半导体,OLED显示技术是继LCD以后新一代平板显示技术,相比与上两代显示技术(CRT、LCD),OLED显示面板真正拥有了“未来科技”材料的轻、薄、快响应、透明显示、柔性可折叠的特点。同时,OLED具有更广的色域、更大的视角、更宽的工作温度区间且更低的功耗。我国作为全球最大的消费电子产品生产国、消费国和出口国,广大的终端应用市场是我国OLED产业发展最大的推动力量;但OLED面板供应主要集中在韩国,国内OLED面板处于供不应求的状态。目前OLED产业链上游关键材料基本被国外企业垄断,随着产能增加及良品率提升,国内OLED产业的进一步发展将面临关键材料供应“卡脖子”的风险及高成本的压力,使得上游关键材料供应的国产化势在必行。作为OLED性能关键基础的发光材料更具发展前景和投资价值。发光材料的特性影响元件之光电特性。在阳极材料的选择上,材料本身必需是具高功函与可透光性,具有4.5eV-5.3eV的高功函数、性质稳定且透光的ITO透明导电膜,便被广泛应用于阳极。在阴极部分,为了增加元件的发光效率,电子与电洞的注入通常需要低功函数的Ag、Al、Ca、In、Li与Mg等金属,或低功函数的复合金属来制作阴极(例如:Mg-Ag镁银)。在生产OLED光电材料的过程中,会引入一些金属元素。因此,OLED发光材料对其中10多种金属元素残留要求特别高,金属残留一般高于400个ppb会影响发光性能。伴随着行业发展,法律法规的健全,越来越多的生产企业开始重视这些金属元素方法开发检验检测并验证,使其能够生产出合格的产品。目前普遍采用ICP-MS检测OLED光电材料中的金属残留,但由于发光材料基质比较复杂,传统消解方法无法实现溶解,需要高性能的超级微波消解仪进行制样,来确保含量测试的准确度。Multiwave 7000实验方案消解/稀释3消解方法:称取发光材料样品,加入硝酸等消解液于Multiwave 7000超级微波消解仪18 mLPTFE反应管中:按以下程序消解样品:步骤温度[℃]爬坡[min]保持[min]12802030消解效果:见下图:图1溶液消解后效果图图2 稀释后效果图消解结束后,查看结果,溶液澄清透明,稀释后无析出,金属残留物已溶解。因此,Mutiwave 7000超级微波解决了显示材料中金属残留检测的一大难题。Multiwave 7000超级微波消解系统3Multiwave 7000 将众所周知的安东帕 HPA-S 概念与现代性能优越的微波技术相结合,代表了微波消解的新高度。新型加压消解腔 (PDC),温度高达 300 °C,压力可达200Bar。确保所有种类的样品消解完全,如食品、环境、聚合物、化妆品、药品、地质、化学和石化样品。可节省宝贵的时间并降低运营成本的出色特性。为您提供不同尺寸的经济型样品管,样品管塞和多达28位的样品管支架。集成水冷却装置,最大化样品处理量的同时将冷却时间降到最短。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 150万!广东医科大学计划采购多功能化学发光成像系统
    一、项目基本情况项目编号:GPDIZB-2022-A02ZJ094项目名称:广东医科大学购置多功能化学发光成像系统等设备一批采购方式:公开招标预算金额:1,500,000.00元采购需求:合同包1(多功能化学发光成像系统等设备):合同包预算金额:1,500,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他专用仪器仪表多功能化学发光成像系统等仪器设备一批1(批)详见采购文件1,500,000.00-本合同包不接受联合体投标合同履行期限:采购合同签订之日起30个工作日内完成交货、安装调试。二、申请人的资格要求:1.投标供应商应具备《政府采购法》第二十二条规定的条件,提供下列材料:1)具有独立承担民事责任的能力:在中华人民共和国境内注册的法人或其他组织或自然人, 投标(响应)时提交有效的营业执照(或事业法人登记证或身份证等相关证明) 副本复印件。分支机构投标的,须提供总公司和分公司营业执照副本复印件,总公司出具给分支机构的授权书。2)有依法缴纳税收和社会保障资金的良好记录:提供投标截止日前6个月内任意1个月依法缴纳税收和社会保障资金的相关材料。 如依法免税或不需要缴纳社会保障资金的, 提供相应证明材料。3)具有良好的商业信誉和健全的财务会计制度:供应商必须具有良好的商业信誉和健全的财务会计制度(提供2021年度财务状况报告或基本开户行出具的资信证明) 。4)履行合同所必需的设备和专业技术能力:按投标(响应)文件格式填报设备及专业技术能力情况。5)参加采购活动前3年内,在经营活动中没有重大违法记录:参照投标(报价)函相关承诺格式内容。 重大违法记录,是指供应商因违法经营受到刑事处罚或者责令停产停业、吊销许可证或者执照、较大数额罚款等行政处罚。(根据财库〔2022〕3号文,“较大数额罚款”认定为200万元以上的罚款,法律、行政法规以及国务院有关部门明确规定相关领域“较大数额罚款”标准高于200万元的,从其规定)2.落实政府采购政策需满足的资格要求: 无。3.本项目的特定资格要求:合同包1(多功能化学发光成像系统等设备)特定资格要求如下:(1)供应商未被列入“信用中国”网站(www.creditchina.gov.cn)“记录失信被执行人或重大税收违法案件当事人名单或政府采购严重违法失信行为”记录名单;不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间。(以资格审查人员于投标(响应)截止时间当天在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网(http://www.ccgp.gov.cn/)查询结果为准,如相关失信记录已失效,供应商需提供相关证明资料)。(2)单位负责人为同一人或者存在直接控股、 管理关系的不同供应商,不得同时参加本采购项目(或采购包) 投标(响应)。 为本项目提供整体设计、 规范编制或者项目管理、 监理、 检测等服务的供应商, 不得再参与本项目投标(响应)。 投标(报价) 函相关承诺要求内容。三、获取招标文件时间: 2022年10月28日 至 2022年11月04日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外)地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/方式:在线获取售价: 免费获取四、提交投标文件截止时间、开标时间和地点2022年11月22日 09时30分00秒 (北京时间)递交文件地点:广东政府采购智慧云平台系统线上提交开标地点:广东政府采购智慧云平台系统远程开标五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.本项目采用电子系统进行招投标,请在投标前详细阅读供应商操作手册,手册获取网址:https://gdgpo.czt.gd.gov.cn/help/transaction/download.html。投标供应商在使用过程中遇到涉及系统使用的问题,可通过020-88696588 进行咨询或通过广东政府采购智慧云平台运维服务说明中提供的其他服务方式获取帮助。2.供应商参加本项目投标,需要提前办理CA和电子签章,办理方式和注意事项详见供应商操作手册与CA办理指南,指南获取地址:https://gdgpo.czt.gd.gov.cn/help/problem/。3.如需缴纳保证金,供应商可通过"广东政府采购智慧云平台金融服务中心"(http://gdgpo.czt.gd.gov.cn/zcdservice/zcd/guangdong/),申请办理投标(响应)担保函、保险(保证)保函。本项目支持电子保函,可通过登录项目采购电子交易系统跳转至电子保函系统进行在线办理。电子保函办理办法详见供应商操作手册。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:广东医科大学地 址:广东省湛江市霞山区文明东路1号联系方式:0759-23887332.采购代理机构信息名 称:广东省电信规划设计院有限公司地 址:0759-3386658联系方式:0759-33866583.项目联系方式项目联系人:吴娟、李静电 话:0759-3386658广东省电信规划设计院有限公司2022年10月28日
  • “高性能免疫现场快速检测系统研发”项目正式启动 亚辉龙任牵头单位
    12月16日,由亚辉龙(688575)任牵头单位、中国医学科学院阜外医院周洲教授担任项目负责人的“高性能免疫现场快速检测系统研发”项目启动会在深圳成功召开,该项目属于“十四五”国家重点研发计划“诊疗装备与生物医用材料”重点专项,由一支产学研医检的多学科优势团队共同参与,本次项目启动会旨在交流心脑血管诊断研究进展,讨论快速免疫检测系统关键技术与项目实施方案,以保证高质量完成重点专项。  中国科学院院士、南方科技大学代理副校长顾东风,加拿大健康科学院院士、香港中文大学(深圳)医学院创院院长郑仲煊,国家卫健委中国生物技术发展中心副主任郑玉果,深圳市发展和改革委员会副主任王浚,深圳市科技创新委员会副主任钟海,龙岗区人民政府副区长张玉庆等领导出席会议。在数百名专家和嘉宾的共同见证下,“高性能免疫现场快速检测系统研发”项目正式启动,并在会议上成立了项目指导专家组。  专家代表在会议提问环节向记者表示,心脑血管疾病是中国居民致死率最高的疾病之一,在急性心梗的死亡病例中,约有50%-70%的患者都是因为在到达医院前没能得到及时正确的抢救而耽误了救治,高性能免疫现场快速检测便成为了心脑血管急危重症临床诊疗的必要手段。针对现场快速免疫检测准确定量的临床需求,项目通过关键技术攻关,构建并优化高性能免疫现场快速检测系统,完成多种心脑血管标志物检测试剂的研发,致力于解决现场全血检测干扰多、微量检测灵敏度低、检测环节点多耗时长等问题,整体提升现有危急重症等特定场景下的医疗服务能力。  据亚辉龙介绍,项目重点攻关的技术之一就是开发基于微流控化学发光技术的心脑血管疾病检测系统,涵盖仪器、试剂、芯片三大部分,这也是公司目前重点布局的研究方向。微流控免疫检测技术是一种对微纳升流体进行操控的新兴科学技术,相比以往大部分疾病检测需要在特定的医护条件下在大型仪器上进行抽血、上机、离心等复杂操作,微流控技术可将样本分离和免疫检测的多个步骤集成到微小芯片上,可仅用一台电脑主机大小的仪器实现即时检测,用血量也大大减少。与同类其他技术相比,微流控表体比大、传质短、传热快、反应体系转化率高,具有样本用量少、分析速度快和易实现多联检的优势,为心脑血管多标志物现场快速检测提供了一个新的平台,为抢救病人争夺了宝贵的黄金时间。公司负责人表示,该项目预计在4年的执行期内完成多项相关创新产品的发布,实现微流控芯片和光检测装置国产化。  资料显示,亚辉龙是国产化学发光的领导品牌之一,在自身免疫、生殖健康、糖尿病、感染性疾病等诊断领域拥有突出优势,拥有国内领先的体外诊断产品研发能力和成果转化能力。  亚辉龙董事长胡鹍辉表示,本项目的获批,是国家对亚辉龙在生物医药检测领域的研发和应用能力的认可,体现了其在技术创新实力、组织管理能力和人才积累等方面的优势,有利于亚辉龙进一步加强微流控前沿生物检测技术研发,对于全面提升心脑血管病急危重症诊疗能力具有重要意义。“未来,亚辉龙将继续坚持做好研发创新,主动扛起社会责任的大旗,发扬优势和特色,进一步深化与各高校、医院及国内外科研机构的紧密合作,合力推动”产、学、研、用“一体化发展,共同探索和推进前沿科学技术的研究和应用,打造更多具有创新技术和竞争力的产品,为解决百姓看病难、看病贵做出更多努力,为国家医疗卫生事业的高质量发展持续贡献力量!”
  • 我司成功开发出高性能瞬态光电压/光电流测试系统
    经过我司科技人员半年多的技术攻关,成功开发出太阳能电池高性能瞬态光电压/光电流测试系统,适用于钙钛矿结构、量子点结构和有机结构等太阳能电池测试。该系统采用特殊设计的低噪音放大电路确保该测试系统具有极高的灵敏度。同时考虑到材料的弛豫时间与太阳能电池结电容和取样电阻的相关性,采用优化的硬件设计方案确保了信号测量的真实性和完整性,带探针的样品仓夹使得更换样品和电学互联非常方便,基于Labview的测试软件可实时采集数据/图像显示功能。此外,采用外部调制的固体激光器而非昂贵飞秒激光器产生脉冲光(最短脉宽仅7ns)使得该测试具有高性能的前提下成本大大降低。 瞬态光电流/光电压测试系统 光电压测试模块和光电流测试模块 带探针的样品仓夹
  • Azure Biosystems发布Azure 多功能荧光凝胶成像系统新品
    2019年10月Azure产品全新升级,我们新推出的基于CCD的凝胶和蛋白荧光印迹多功能成像系统将客户所期望的高性能尖端技术与最新的严格标准定量方法相结合,全新升级系统,设计更紧凑,界面更时尚,性能更优越,定量更精准。创新点:Azure Imager多功能分子成像系统是整合一体机设计,13.3英寸触摸屏,2min完成深度制冷,可完成NIR双激光检测; RGB可见荧光检测,全蛋白定量,满足期刊杂志发表要求;快速高灵敏的化学发光检测;同时四通道成像,检测更高效。Azure 多功能荧光凝胶成像系统
  • DNR推出高灵敏度化学发光型凝胶成像系统
    MicroChemi是以色列DNR生物影像系统有限公司推出的最新的高端凝胶成像系统,为了更好的检测化学发光的图像,DNR推出了单独应用于化学发光的专业机型。  CCD: -60℃,二级petier超冷CCD 分辨率:1200×1600,可以升高到800万像素 像素大小: 7.4x7.4 μm 灰度:16-bit,65,535灰阶 动态范围:大于4.6 OD QE 量子效应:90% 曝光时间:0.5秒至24小时 成像面积:10 x 14 cm 镜头:高灵敏度,高速镜头f/0.95,保证从样品上收集最多的光 BINING:1 × 1,2 × 2,3 × 3,4 × 4,5 × 5,6 × 6,7 × 7,8 × 8 光源:标配落射白光 全自动曝光系统:自动检测到最微弱的条带,同时生成最优质的图像 滑动式抽屉方便胶体的放置和清洁 软件:一键操作的图像获取软件,显示饱和像素 存储:可在图像上加入成像参数,提高实验的准确性和可重复性 标配:全免费的Gelcapture图像获取软件(可多台电脑多次安装),Gelquant分析软件,实验助手软件(记录所有实验相关的图片,数据) M&M应用标准套装 对化学发光,可见光,荧光成像均需要的用户,特推出应用型标准促销套装 MicroChemi 光源:落射白光;化学发光应用: MicroBIS: 光源:蓝光LED;可见光,荧光应用 联系电话:400-818-2168 联系电话:400-818-2168,迎广大新老用户与我们联系,了解详情可访问东胜创新网站:www.eastwin.com.cn
  • 2016重大科学仪器专项之“空心阴极灯”
    p  2月19日,科技部网站发布关于发布重大科学仪器设备开发专项2016年度指南的通知,本指南共设置了关键核心部件、高端通用科学仪器和专业重大科学仪器3类任务,下设10个重点方向。其中核心关键部件开发与应用中包括:源部件、探测器与传感器、分析分离与控制部件。而空心阴极灯项目列于源部件项目的第一位, 为原子吸收光谱仪和原子荧光光谱仪等仪器提供核心部件。据业内人士说,该考核指标稍高于进口产品的指标,对于目前国产空心阴极灯相关企业来说,具有一定难度,但是,是完全可以达到的(具体指标详见文后)。/pp  回顾历史,在上世纪60年代,中国已经研制出自己的空心阴极灯,与国外基本同时起步。如今,HCL国产厂商主要是有色金属研究院、曙光明、河北衡水宁强光源等,国外厂商主要有贺利氏、珀金埃尔默、安捷伦(原瓦里安)等。近年来,中国市场HCL年销售量约为10万支,其中国产产品占据了95%左右的市场份额。/pp  但是,在高端空心阴极灯方面,国产产品还存在一定差距。“与进口HCL比较,国产HCL在外观、一致性方面有一定的差距,但是,性能方面的差距非常之小,而长期稳定性已经完全没有问题。” 生产工艺或生产技术方面是否还存在一些难点?对此,有色院李中建说,“HCL生产过程中手工作业的比例较大,但是,我们已经在不断改进,尝试投入更多的自动化生产设备。在生产工艺上还需要继续提高,以克服一致性、噪音问题,以及整体的设计工艺。所以说,今年国家科学仪器重大专项支持的到来,对于促进国产HCL产业发展是一个非常好机遇。”/pp  strong空心阴极灯产品概况/strong/pp  空心阴极灯(HCL)是原子吸收、原子荧光光谱仪必不可少的组成部分。原子荧光的灯和原子吸收的灯原理是一样的,但是结构上有一定的区别。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201603/insimg/37ad5e5a-c896-45ae-826f-65e38938e022.jpg" title="HCL.jpg"//pp  原子吸收的空心阴极灯有单元素灯、多元素灯、高性能灯和多阴极灯。最常用的空心阴极灯由一个钨(W)棒阳极和含金属元素或其合金的空心圆柱杯阴极组成。两极之间充满低压的惰性气体(Ne或Ar气),密封在一种特性玻璃筒里,应用辉光放电和阴极溅射原理将HCL点亮。充Ne气的HCL呈橘红色,充Ar气的HCL呈浅蓝色。/pp  单元素灯阴极由1种金属元素或其合金构成。多元素灯阴极由2~7种金属元素合金或混合物构成 优点是可以在不换灯情况下连续测定多种元素,缩短预热时间和换灯的麻烦 缺点:比单元素发射强度弱,有些元素搭配不当会造成相互影响,并可能降低寿命。多阴极灯由一个阳极放置中间位置,其周围放置6种金属元素6个阴极。其原理与单元素(HCL)相同,其价格昂贵。/pp  高性能灯除了和普通HCL一样有1个阴极和1个阳极外,还增加了一对辅助电极。辅助电极间通过几百mA的低压直流电,使其产生电离的气体原子流,使从空心阴极溅射出来的金属原子与之碰撞后进一步激发,从而提高共振线的强度。这种灯光强度比普通HCL强几倍到几十倍,不产生谱线变宽,适用于As、Sb、Bi、Se、Ag、Cd、Pb或某些稀土元素。/pp  strong难以替代的空心阴极灯/strong/pp  空心阴极灯是原子吸收、原子荧光光谱仪的关键核心部件,而原子吸收、原子荧光光谱仪的市场规模都相对较大,仪器生产商数量非常多。其中,原子吸收光谱仪器是现代分析检测实验室必备的重要检测手段,有着广泛的应用。据现有不甚完整的资料显示,近年来中国市场原子吸收光谱仪器年销售量约为5000多台。据初步统计,目前全国有AAS生产厂家达20家,国外在华厂商近10家。如普析通用、东西分析、上海光谱、北京海光、北京瑞利,岛津、珀金埃尔默、德国耶拿、安捷伦、赛默飞、日立等。/pp  而原子荧光光谱仪是我国少数具有自主知识产权、技术水平超过进口的分析仪器。目前国内外生产AFS的主要仪器厂商有10多家,有北京海光、北京吉天、北京瑞利、普析通用、廊坊开元、东西分析、金索坤、江苏天瑞、卓信博澳、欧罗拉等。近年来,原子荧光光谱仪每年销售量大致在2500~3000台。/pp  原子吸收、原子荧光光谱法是元素分析领域现行标准方法的主力军。现有各国颁布各类原子吸收光谱分析的标准共计2600多个,中国颁布的国家标准和行业标准近800个。原子荧光光谱法在各个领域中先后建立了相关的国家标准、行业标准和地方标准,截至2011年5月为止已建立的各项标准己达111项。正是这些标准的建立,有力推动了原子吸收、原子荧光光谱仪的推广和普及,现已成为众多实验室常规的分析仪。/pp  未来对HCL的需求与国家经济的发展状况息息相关。“目前,采购、使用原子吸收、原子荧光光谱仪的用户多是基层单位和工业企业。”对于基层单位和工业企业,日常检测的元素比较固定,且数量不多,对这样的用户原子吸收光谱仪器具有最好的性价比。而对于As、Hg等元素的检测,原子荧光具有ICP-MS都不具有的优势,方法简便、灵敏度高,并且在仪器价格和使用成本上具有很大的优势,适合地级市等小型实验室及检测中心的使用,符合中国经济发展的现状,是元素分析非常必要的补充仪器。/pp  由于原子吸收、原子荧光光谱仪在未来的不可替代性,这样大的一个‘用户群’也为HCL打下了坚实的基础,使得HCL也同样具有了不可替代性。可预见,未来20年内HCL行业都会平稳发展。/pp style="text-align: right "撰稿:刘丰秋/p
  • BPCL微弱发光\化学发光\电化学发光测量的原理及应用
    品牌:BPCL是Biological& Physical Chemiluminescence的缩写,1995年开始对外使用;超微弱发光测量仪,英文Ultra-WeakLuminescence Analyzer。 BPCL超微弱发光测量仪,是生物与化学光子计数器,又俗称为化学发光分析仪,是我国原中科院系统科研人员自主研发的一种可探测超微弱生物发光和化学发光的分析仪器,是我国最早商品化的微弱光测量产品。BPCL倾注了老一辈科研工作者的心血,其研制为发光研究提供了有力的科研工具,推动了我国甚至国际发光研究的发展,目前被众多高校、研究院所使用,产生了具有重大社会和经济效益。 涉及研究方向包括:发光分析检测技术研究(如:流动注射发光分析、毛细管电泳发光分析、生物传感器发光分析、纳米材料发光分析、自由基临床检验)、自由基生物学研究、药物抗氧化剂研究、细胞学超微弱发光研究、肿瘤医学研究、农业种质研究、花卉果实超微弱发光研究及农作物抗逆性研究。 BPCL微弱发光测量仪现有19个型号产品,覆盖近紫外、可见及近红外光谱领域微弱光检测,同时还有光谱扫描、多样品测试、温控等型号产品,以适应不同领域研发需求。由于BPCL独特和先进的光探测技术,利用此仪器可测定10^-15瓦的光强度,测量10^-13瓦的微弱光影可给出1-2万/秒的计数率,这对于生物体、细胞、DNA等生命物质的超微弱发光研究尤为重要。通过独特的接口计数,该仪器可实时获得发光动力学曲线,最快采集速度可达0.1毫秒,可用于快速发光反应的监测。 任何有生命的物质都可以自发的或在外界因素诱导下辐射出一种极其微弱的光子流,这种现象称为生物的超微弱发光(UltraweakPhoton Emission),亦被称为生物系统超弱光子辐射、自发发光等。超微弱发光只有10^-5~ 10 ^-8hυ / s cm ,量子产额(效率)为10^-14~ 10 ^-9,波长范围为180~800nm,从红外到近紫外波段。1.BPCL电化学发光测试原理 电化学发光分析技术(Electrogeneratedchemiluminescence,ECL)。ECL是一种在电极表面由电化学引发的特异性化学发光反应。包括了两个过程。发光底物二价的三联吡啶钌及反应参与物三丙胺在电极表面失去电子而被氧化。氧化的三丙胺失去一个H成为强还原剂,将氧化型的三价钌还原成激发态的二价钌,随即释放光子恢复为基态的发光底物。最好的发光标记物-三联吡啶钌分子量小,结构简单。可以标记于抗原,抗体,核酸等各种分子量,分子结构的物质。从而具有最齐全的检测菜单。三联吡啶钌为水溶性,且高度稳定的小分子物质。保证电化学发光反应的高效和稳定,而且避免了本底噪声干扰。 简单来理解,ECL是在电极上施加一定的电压使电极反应产物之间或电极反应产物与溶液中某组分进行化学反应而产生的一种光辐射,其作为一种新的痕量分析手段越来越引人注目。1.1电化学反应过程 在工作电极上(阳极)加一定的电压能量作用下,二价的三氯联吡啶钌[Ru(bpy)3]2+释放电子发生氧化反应而成为三价的三氯联吡啶钌[Ru(bpy)3]3+,同时,电极表面的TPA也释放电子发生氧化反应而成为阳离子自由基 TPA+,并迅速自发脱去一个质子而形成三丙胺自由基TPA,这样,在反应体系中就存在具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基TPA。1.2化学发光过程 具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基 TPA发生氧化还原反应,结果使三价的三氯联吡啶钌[Ru(bpy)3]3+还原成激发态的二价的三氯联吡啶钌[Ru(bpy)3]2+,其能量来源于三价的三氯联吡啶钌[Ru(bpy)3]3+与三丙胺自由基TPA之间的电势差,激发态[Ru(bpy)3]2+以荧光机制衰变并以释放出一个波长为620nm光子的方式释放能量,而成为基态的[Ru(bpy)3]2+。1.3循环过程 上述化学发光过程后,反应体系中仍存在二价的三氯联吡啶钌[Ru(bpy)3]2+和三丙胺(TPA),使得电极表面的电化学反应和化学发光过程可以继续进行,这样,整个反应过程可以循环进行。 通过上述的循环过程,测定信号不断的放大,从而使检测灵敏度大大提高,所以ECL测定具有高灵敏的特点。上述的电化学发光过程产生的光信号的强度与二价的三氯联吡啶钌[Ru(bpy)3]2+的浓度成线性关系。将二价的三氯联吡啶钌[Ru(bpy)3]2+与免疫反应体系中的一种物质结合,经免疫反应、分离后,检测免疫反应体系中剩余二价的三氯联吡啶钌[Ru(bpy)3]2+经上述过程后所发出的光,即可得知待检物的浓度。1.4电化学发光剂定义:指通过在电极表面进行电化学反应而发出光的物质。特点:反应在电极表面进行发光标记物/化学发光剂:三联吡啶钌Ru(bpy)32+共反应剂/电子供体为:三丙胺(TPA)电化学发光启动条件:直流电场反应产物:三丙胺自由基(TPA*)+620nm的光子最终检测信号:可见光强度反应特点:迅速、可控、循环发光三联吡啶钌“催化”三丙胺发出可见光2.BPCL化学/电化学发光分析领域的应用案例2.1 医学及药学领域 BPCL在临床上,其可直接或与免疫技术结合,通过化学/电化学发光技术,其可用于甲状腺激素、生殖激素、肾上腺/垂体激素、贫血因子、肿瘤标记物、癌细胞等物质的检测;另外,基于活性氧诱导的化学发光现象,其可实现体内及光治疗过程产生的活性氧的检测。2.1.1 Ru@SiO2表面增强电化学发光检测痕量癌胚抗原 癌胚抗原(CEA)被认为是反映人体中各种癌症和肿瘤存在的疾病生物标志物。体液中CEA的灵敏检测利于癌症的临床诊断和治疗评估。 在此,本文提出了一种基于Ru(bpy)32+的局域表面等离子体共振(LSPR)增强电化学发光(ECL)超灵敏测定人血清中CEA的新方法。在这种表面增强ECL(SEECL)传感方案中,Ru(bpy)32+掺杂的SiO2纳米颗粒(Ru@SiO2)并且AuNPs用作LSPR源以增强ECL信号。两种不同种类的CEA特异性适体在Ru@SiO2和AuNP。在CEA存在的情况下Ru@SiO2-将形成AuNPs纳米结构。我们的研究表明Ru@SiO2可以通过AuNP有效地增强。一层Ru@SiO2-AuNPs与不存在AuNP的纳米结构的ECL相比,纳米结构将产生约3倍的ECL增强。通过多层Ru@SiO2-AuNPs纳米架构。在最佳条件下,人血清CEA的检测限为1.52×10^-6ng/mL。 据我们所知,对于ECL传感器,从未报道过具有如此低LOD的CEA测定。2.1.2 基于连接探针的电化学发光适体生物传感器,检测超痕量凝血酶的信号 基于结构切换电化学发光猝灭机制,本文中开发了一种用于检测超痕量凝血酶的新型连接探针上信号电化学发光适体生物传感器。ECL适体生物传感器包括两个主要部分:ECL底物和ECL强度开关。ECL衬底是通过修饰金电极(GE)表面的Au纳米颗粒和钌(II)三联吡啶(Ru(bpy)32+–AuNPs)的络合物制成的,ECL强度开关包含三个根据“结-探针”策略设计的探针。 第一种探针是捕获探针(Cp),其一端用巯基官能化,并通过S–Au键共价连接到Ru(bpy)32+–AuNPs修饰的GE上。 第二个探针是适体探针(Ap),它含有15个碱基的抗凝血酶DNA适体。 第三种是二茂铁标记探针(Fp),其一端用二茂铁标签进行功能化。 文中证明,在没有凝血酶的情况下,Cp、Ap和Fp将杂交形成三元“Y”结结构,并导致Ru(bpy)32+的ECL猝灭。然而,在凝血酶存在的情况下,Ap倾向于形成G-四链体适体-凝血酶复合物,并导致Ru(bpy)32+的ECL的明显恢复,这为凝血酶的检测提供了传感平台。利用这种可重复使用的传感平台,开发了一种简单、快速、选择性的ECL适体生物传感器信号检测凝血酶,检测限为8.0×10^-15M。 本生物传感器的成功是朝着在临床检测中监测超痕量凝血酶的发展迈出的重要一步。2.1.3 Ru(phen)32+掺杂二氧化硅纳米粒子的电化学发光共振能量转移及其在臭氧“开启”检测中的应用 首次报道了灵敏检测臭氧的电化学发光(ECL)方法和利用臭氧进行电化学发光共振能量转移(ECRET)的方法。 它是基于Ru(phen)32+掺杂的二氧化硅纳米颗粒(RuSiNPs)对靛蓝胭脂红的ECRET。在没有臭氧的情况下,RuSiNP的ECL由于RuSiNP对靛蓝胭脂红的ECRET而猝灭。在臭氧存在的情况下,系统的ECL被“打开”,因为臭氧可以氧化靛蓝胭脂红,并中断从RuSiNP到靛蓝胭脂的ECRET。通过这种方式,它通过所提出的基于RuSiNP的ECRET策略提供了臭氧的简单ECL传感,线性范围为0.05-3.0μM,检测限(LOD)为30nM。检测时间不到5分钟。该方法也成功应用于人体血清样品和大气样品中臭氧的分析。2.1.4 用二极管实现数码相机灵敏视觉检测,使无线电极阵列芯片的电化学发光强度提高数千倍 首次报道了无线电化学发光(ECL)电极微阵列芯片和通过在电磁接收器线圈中嵌入二极管来显著提高ECL。新设计的设备由一个芯片和一个发射机组成。该芯片有一个电磁接收线圈、一个迷你二极管和一个金电极阵列。该微型二极管可以将交流电整流为直流电,从而将ECL强度提高18000倍,从而能够使用普通相机或智能手机作为低成本探测器进行灵敏的视觉检测。使用数码相机检测过氧化氢的极限与使用基于光电倍增管(PMT)的检测器的极限相当。与基于PMT的检测器相结合,该设备可以以更高的灵敏度检测鲁米诺,线性范围从10nM到1mM。由于具有高灵敏度、高通量、低成本、高便携性和简单性等优点,它在护理点检测、药物筛选和高通量分析中很有前途。2.1.5 中晶体和仿生催化剂调控肿瘤标志物的比例电化学发光免疫分析 本文以壳聚糖功能化碘化银(CS-AgI)为仿生催化剂,研制了一种基于八面体锐钛矿介晶(OAM)载体的比率电化学发光免疫传感器,用于α胎儿蛋白(AFP)的超灵敏测定。所提出的系统是通过选择鲁米诺和过硫酸钾(K2S2O8)作为有前途的ECL发射单元来实现的,因为它们具有潜在的分辨特性和最大发射波长分辨特性。采用具有高孔隙率、定向亚基排列和大表面积的OAM吸附鲁米诺形成固态ECL,并作为亲和载体首次固定了大量AFP(Ab)抗体。 此外,发现CSAgI具有仿生催化剂活性,可以催化作为鲁米诺和K2S2O8共同助反应剂的过氧化氢的分解,从而放大了双ECL响应。当生物传感器在CSAgI标记的AFP的混合溶液中孵育时(CS-AgI@AFP)和目标AFP,这是由于对CS-AgI@AFP和目标AFP与AbCS-AgI@AFP固定化Ab捕获的蛋白质随AFP浓度的增加而减少,因此,双ECL反应减少。基于两个激发电位下ECL强度的比值,这种提出的比率ECL策略通过竞争性免疫反应实现了对α胎儿蛋白的超灵敏测定,线性检测范围为1fg/ml至20ng/ml,检测限为1fgg/ml2.1.6 一种新型放大电化学发光生物传感器(基于AuNPs@PDA@CuInZnS量子点纳米复合材料),用于p53基因的超灵敏检测 在这项工作中,首次设计了一种基于Au的新型表面等离子体共振(SPR)增强电化学发光(ECL)生物传感模型NPs@polydopamine(PDA)@CuInZnS量子点纳米复合材料。 通过静电力用PDA层涂覆AuNP。CuInZnS量子点结合在Au表面NPs@PDA纳米复合材料。CuInZnS量子点在传感应用中起到了ECL发光体的作用。PDA壳层不仅控制了AuNPs和QDs之间的分离长度以诱导SPR增强的ECL响应,而且限制了电势电荷转移和ECL猝灭效应。结果,纳米复合材料的ECL强度是具有K2S2O8的量子点的两倍。在扩增的ECL传感系统中检测到肿瘤抑制基因p53。 该传感方法的线性响应范围为0.1nmol/L至15nmol/L,检测限为0.03nmol/L。基于该纳米复合材料的DNA生物传感器具有良好的灵敏度、选择性、重现性和稳定性,并应用于加标人血清样品,取得了满意的结果。2.1.7铕多壁碳纳米管作为新型发光体,在凝血酶电化学发光适体传感器中的应 提出了一种新的电化学发光(ECL)适体传感器,用于凝血酶(TB)的测定,该传感器利用核酸外切酶催化的靶循环和杂交链式反应(HCR)来放大信号。捕获探针通过Au-S键固定在Au-GS修饰的电极上。随后,捕获探针和互补凝血酶结合适体(TBA)之间的杂交旨在获得双链DNA(dsDNA)。TB与其适体之间的相互作用导致dsDNA的解离,因为TB对TBA的亲和力高于互补链。在核酸外切酶存在的情况下,适体被选择性地消化,TB可以被释放用于靶循环。通过捕获探针的HCR和两条发夹状DNA链(NH2-DNA1和NH2-DNA1)形成延伸的dsDNA。然后,可以通过NH2封端的DNA链和Eu-MWCNT上的羧基之间的酰胺化反应引入大量的铕多壁碳纳米管(Eu-MWCNTs),导致ECL信号增加。 多种扩增策略,包括分析物回收和HCR的扩增,以及Eu-MWCNTs的高ECL效率,导致宽的线性范围(1.0×10-12-5.0×10-9mol/L)和低的检测限(0.23pmol/L)。将该方法应用于血清样品分析,结果令人满意。2.2 环境领域 采用BPCL已建立了众多灵敏快速检测环境污染物、环境激素、环境干扰物、自由基的发光分析方法。此外有有研究人员将其与臭氧化学发光结合应用于水体COD分析。其突出优点是仪器方法简单、易操作、线性范围宽、灵敏度高。 2.2.1 Fenton体系降解持久性氯化酚产生本征化学发光的机理:醌类和半醌自由基中间体的构效关系研究及其关键作用 在环境友好的高级氧化过程中,所有19种氯酚类持久性有机污染物都可以产生本征化学发光(CL)。然而,结构-活性关系(SAR,即化学结构和CL生成)的潜在机制仍不清楚。在这项研究中,本文中发现,对于所有19种测试的氯酚同系物,CL通常随着氯原子数量的增加而增加;对于氯酚异构体(如6种三氯苯酚),相对于氯酚的-OH基团,CL以间->邻-/对-CL取代基的顺序降低。 进一步的研究表明,在Fenton试剂降解三氯苯酚的过程中,不仅会产生氯化醌中间体,而且更有趣的是,还会产生氯化半醌自由基;其类型和产率由OH-和/或Cl取代基的定向效应、氢键和空间位阻效应决定。 更重要的是,观察到这些醌类中间体的形成与CL的产生之间存在良好的相关性,这可以充分解释上述SAR发现。 这是关于醌和半醌自由基中间体的结构-活性关系研究和关键作用的第一份报告,这可能对未来通过高级氧化工艺修复其他卤代持久性有机污染物的研究具有广泛的化学和环境意义。2.2.2 介质阻挡放电等离子体辅助制备g-C3N4-Mn3O4复合材料,用于高性能催化发光H2S气体传感 提出了一种新的、简单的基于介质阻挡放电(DBD)等离子体的快速制备g-C3N4-Mn3O4复合材料的策略。所获得的g-C3N4-Mn3O4可作为一种优良的H2S气体传感催化发光(CTL)催化剂,具有优异的选择性、高灵敏度、快速稳定的响应。 基于所提出的传感器能够检测到亚ppm水平的H2S,为在各个领域监测H2S提供了一种极好的替代方案。采用SEM、TEM、XPS、XRD、N2吸附-脱附等测试手段对合成的传感材料进行了表征。该复合材料具有较小的颗粒尺寸和较大的比表面积,这可能归因于氧化非平衡等离子体蚀刻。 此外,该合成以Mn2+浸渍的g-C3N4为唯一前驱体,以空气为工作气体,不含溶剂、额外的氧化剂/还原剂或高温,具有结构简单、操作方便、速度快等优点,并且它可以容易地大规模实施,并扩展到制造用于不同目的的各种金属氧化物改性复合材料。2.2.3表面增强电化学发光,用于汞离子痕量的检测 Ru(bpy) 3^2+的电化学发光(ECL)在分析化学中有着广泛的应用。在此,我们提出了一种通过金纳米棒(AuNR)的局域表面等离子体共振(LSPR)来增强Ru(bpy)3^2+的ECL的新方法。 我们的研究表明,通过控制Ru(bpy)3^2+与AuNRs表面之间的距离,可以大大增强ECL强度。我们将这种表面等离子体激元诱导的ECL增强称为表面增强电化学发光(SEECL)。利用这种SEECL现象来制备用于痕量Hg2+检测的生物传感器。SEECL生物传感器是通过在金电极表面自组装AuNRs和富含T的ssDNA探针来制备的。随着Hg2+的存在,ssDNA探针的构象通过形成T-Hg2+-T结构而变为发夹状结构。Ru(bpy)3^2+可以插入发夹结构DNA探针的凹槽中产生ECL发射,AuNR的LSPR可以增强ECL发射。传感器的ECL强度随着Hg2+浓度的增加而增加,并且在水溶液中达到10fMHg2+的检测极限。研究了AuNR不同LSPR峰位对生物传感器灵敏度的影响。 结果表明,Ru(bpy)3^2+的LSPR吸收光谱和ECL发射光谱之间的良好重叠可以实现最佳的ECL信号增强。2.3 农林业领域 BPCL在农业上有着十分广阔的应用价值。植物的超弱发光来自于体内的核酸代谢、呼吸代谢以及各种氧化还原过程,它变化与植物体内的生理生化变化密切相关.边种广泛存在于体内的自发辐射与机体代谢活动、能量转化之间存在着磐然的联系.因此,利用它作为代谢指标的应用研究就很快引起了广泛的重视。 超弱发光可以作为一种反映生命过程及变化的极其灵敏的指标。另一方面,由于植物的超弱发光与环境密切相关,在不同植物、不同的环境条件下超弱发光均有所不同。 BPCL可以探测植物的超弱发光,研究植物的盐碱、抗旱、抗热、抗寒乃至抗病的指标,从而为抗逆性育种提供一种新的灵敏的物理方法。植物的超弱发光能在一定程度上反映植物生活力的大小,所以可用超弱发光鉴定植物或种子的活力.用超弱发光鉴定种子的活力用样品量少又不破坏种子,对于种子量少的珍贵品种极其有益。此外,BPCL还可以用于农蔬作物新鲜度的评价、污染物残留量分析、辐照食品的检测。2.3.1 基于生物延迟发光,评价玉米萌发期抗旱性。(西安理工大学习岗) 玉米种子萌发抗旱性评价是节水农业研究中的难点和热点问题之一,生物延迟发光分析技术的应用有可能解决这一问题。采用生物延迟发光评价方法研究了玉米种子萌发期的抗旱性能力,延迟发光积分强度的升高有不同的抑制作用,胁迫强度越大。以下为玉米萌发过程中的延迟发光积分强度的变化:2.3.2 盐胁迫下绿豆幼苗的超微弱发光(山东理工大学王相友) 对不同 NaCl 浓度胁迫下绿豆种子早期萌发时的超微弱发光变化进行了初步研究。结果表明,随 NaCI 浓度的增加,绿豆胚根的生长速度(根长)减慢,生长受到明显抑制,其超微弱发光的强度显著下降。萌发期间,SOD 活性随着盐浓度的增加而降低,其活性与生物光子强度有极为密切的关系。 这些结果表明生物超微弱发光探测技术有可能成为植物盐胁迫研究的有效工具,对于进一步理解盐胁迫机理有一定的意义。2.3.3 苹果成熟过程中超弱发光强度与果实跃变的关系(山东理工大学王相友) 用1-甲基环丙烯(1-methyicyclopropene,1-MCP)和乙烯利两种化学药剂,测定了红富士苹果果实超弱发光强度的变化及与乙烯释放、呼吸的关系。 结果显示,各处理果实超弱发光强度的变化与呼吸、乙烯释放速率的变化趋势相似,均有明显的高峰出现,且出峰时间一致。乙烯利处理加速了果实软化,使果实超弱发光强度峰直出现时间提前,并加速了果实跃变后超弱发光强度的衰减:1-MCP 处理延缓了果实的衰老,使果实超弱发光强度峰值推迟,并减弱了峰值过后超弱发光强度的衰减。超弱发光强度能反映富士苹果成熟过程中代谢的变化。2.4 材料领域2.4.1 有机改性水滑石量子点纳米复合材料作为新型化学发光共振能量转移探针 在本工作中,通过在有机改性的LDH外表面上以十二烷基苯磺酸钠双层束的形式高度有序和交替地组装痕量CdTe量子点,制备了定向发光量子点(QD)-层状双氢氧化物(LDH)纳米复合材料。 有趣的是,新型QD-LDH纳米复合材料可以显著增强鲁米诺-H2O2体系的化学发光(CL),这归因于H2O2对QD氧化的抑制、辐射衰减率的增加以及对QDs的非辐射弛豫的抑制。 此外,以鲁米诺为能量供体,以固体发光QD-LDH纳米复合材料为能量受体进行信号放大,制备了一种新型的基于流通柱的CL共振能量转移。通过使用鲁米诺-H2O2CL系统测定H2O2来评估该流通柱的适用性。CL强度在0.5至60μM的浓度范围内对H2O2表现出稳定的响应,检测限低至0.3μM。 最后,该方法已成功应用于雪样品中H2O2的检测,结果与标准分光光度法一致。我们的研究结果表明,新型发光量子点-LDH纳米复合材料将用于高通量筛选具有不同尺寸量子点的复杂系统。2.4.2 油膜碳糊电极热电子诱导阴极电化学发光及其在邻苯二酚纳摩尔测定中的应用 首次在油膜覆盖碳糊电极(CPE)上研究了Ru(bpy)32+/S2O82-体系在阴极脉冲极化下的热电子诱导阴极电化学发光。与其他电极相比,CPE具有更低的背景、更好的稳定性和再现性。该方法也适用于邻苯二酚的测定。 在最佳条件下,在2.0*10^-10mol/L~4.0*10^-9 mol/L和4.0*10^-9mol/L~4.0*10^-7 mol/L范围内,观察到猝灭ECL强度(DI)与邻苯二酚浓度对数(logCcatechol)之间的线性相关性,检测限(LOD)为2.0*10^-10mol/L,低于其他报道的方法。 将该方法应用于水库水中邻苯二酚的测定。平均回收率为83.3%–99.0%,相对标准偏差为0.8%–2.2%。2.4.3 等离子体辅助增强Cu/Ni金属纳米粒子的超弱化学发光 采用具有类似Kirkendall效应的简单水溶液法合成了具有稳定荧光和良好水分散性的Cu/Ni纳米颗粒。60±5nm铜镍摩尔比为1:2的Cu/NiNP显著增强了碳酸氢钠(NaHCO3)与过氧化氢(H2O2)在中性介质中氧化反应产生的超微弱化学发光(CL)。时间依赖性CL的增强取决于NP的组成和试剂添加的顺序。 在研究CL发射光谱、电子自旋共振光谱、紫外-可见吸收光谱和荧光光谱的基础上,提出了等离子体辅助金属催化这种金属NP(MNP)增强CL的机理。MNP的表面等离子体可以从化学反应中获得能量,形成活化的MNP(MNP*),与OH自由基偶联产生新的加合物OH-MNP*。OH-MNP*可以加速HCO3-生成发射体中间体(CO2)2*的反应速率,从而提高整个反应的CL。2.5 食品领域 BPCL可以用于食品中的微生物/病原体及其毒素、痕量金属离子、抗生素、氧自由基、含氮、硫、磷物质、抗坏血酸、有机酸以及辐照食品的分析检测。2.5.1 基于光谱阵列的单一催化发光传感器及其在葡萄酒鉴定中的应用 识别复杂混合物,特别是那些成分非常相似的混合物,仍然是化学分析中一个具有挑战性的部分。本文利用MgO纳米材料在封闭反应池(CRC)中构建的单一催化发光(CTL)传感器来识别醋。它可以提供这种类型的高度多组分系统的原型。通过扫描反应期间分布在15个波长的CTL光谱,获得了醋的光谱阵列图案。这些就像他们的指纹。然后通过线性判别分析(LDA)对阵列的CTL信号进行归一化和识别。对九种类型和八个品牌的醋以及另外一系列的人造样品进行了测试;人们发现这项新技术能很好地区分它们。 这种单一传感器在实际应用中表现出了对复杂混合物分析的良好前景,并可能提供一种识别非常相似的复杂分析物的新方法。2.5.2 层状双氢氧化物纳米片胶体诱导化学发光失活对食品中生物胺浓度的影响 通过氢键识别打开/关闭荧光和视觉传感器在文献中已经明确确立。显然没有充分的理由忽视氢键诱导的化学发光失活(CL)。 在本工作中,作为新型CL催化剂和CL共振能量转移受体(CRET),层状双氢氧化物(LDH)纳米片胶体可以显著提高双(2,4,6-三氯苯基)草酸盐(TCPO)-H2O2体系的CL强度。另一方面,生物胺可以选择性地抑制LDH纳米片TCPO–H2O2系统的CL强度,这是由于光致发光LDH纳米片通过O–H…N键取代O–HO键而失活的结果。 此外,组胺被用作食品腐败的常见指标,发现CL强度与组胺浓度在0.1–100uM范围内呈线性关系,组胺(S/N=3)的检测限为3.2nM。所提出的方法已成功应用于追踪变质鱼类和猪肉样品的组胺释放,显示出这些样品中生物胺水平的时间依赖性增加。2.5.3 碳酸盐夹层水滑石增强过氧亚硝酸化学发光,检测抗坏血酸的高选择性 在本研究中,发现Mg-Al碳酸酯层状双氢氧化物(表示为Mg-Al-CO3LDHs)催化过氧硝酸(ONOOH)的化学发光(CL)发射。CL信号的增强是由于过亚硝酸根(ONOO)通过静电吸引在LDHs表面的浓度,这意味着ONOO可以容易有效地与嵌入的碳酸盐相互作用。此外,抗坏血酸可以与ONOO或其分解产物(例如_OH和_NO2)反应,导致Mg-Al-CO3-LDHs催化的ONOOH反应的CL强度降低。 基于这些发现,以Mg-Al-CO3-LDHs催化的ONOOH为新的CL体系,建立了一种灵敏、选择性和快速的CL法测定抗坏血酸。CL强度在5.0至5000nM的范围内与抗坏血酸的浓度成比例。检测限(S/N=3)为0.5nM,9次重复测量0.1mM抗坏血酸的相对标准偏差(RSD)为2.6%。 该方法已成功应用于商业液体果汁中抗坏血酸的测定,回收率为97–107%。这项工作不仅对更好地理解LDHs催化的CL的独特性质具有重要意义,而且在许多领域具有广泛的应用潜力,如发光器件、生物分析和标记探针。2.6 气相催化发光2.6.1 基于纳米ZnS的四氯化碳催化发光气体传感 基于四氯化碳在空气中氧化纳米ZnS表面的催化发光(CTL),提出了一种新的灵敏的气体传感器来测定四氯化碳。详细研究了其发光特性及最佳工艺条件。 在优化的条件下,CTL强度与四氯化碳浓度的线性范围为0.4–114ug/mL,相关系数(R)为0.9986,检测限(S/N=3)为0.2ug/mL。5.9ug/mL四氯化碳的相对标准偏差(R.S.D.)为2.9%(n=5)。 对甲醇、乙醇、苯、丙酮、甲醛、乙醛、二氯甲烷、二甲苯、氨和三氯甲烷等常见异物无反应或反应较弱。在4天的40小时内,传感器的催化活性没有显著变化,通过每小时收集一次CTL强度,R.S.D.小于5%。该方法简便灵敏,具有检测环境和工业中四氯化碳的潜力。2.6.2 珊瑚状Zn掺杂SnO2的一步合成及其对2-丁酮的催化发光传感 将一维纳米级构建块自组装成功能性的二维或三维复杂上部结构具有重要意义。在这项工作中,我们开发了一种简单的水热方法来合成由纳米棒组装的珊瑚状Zn掺杂SnO2分级结构。利用XRD、SEM、TEM、XPS、FTIR和N2吸附-脱附对所得样品的组成和微观结构进行了表征。通过研究在不同反应时间合成的样品,探讨了生长机理。作为催化发光(CTL)气体传感器的传感材料,这种珊瑚状Zn掺杂的SnO2表现出优异的CTL行为(即,与其他15种常见的挥发性有机化合物(VOC)相比,具有高灵敏度、对2-丁酮的优异选择性以及快速响应和回收)。在相同的条件下测试了SnO2样品的三种不同Zn/Sn摩尔比,以证明Zn掺杂浓度对传感性能的影响。在最佳实验条件下,进一步研究了基于1∶10Zn掺杂SnO2传感材料的CTL传感器对2-丁酮的分析特性。气体传感器的线性范围为2.31–92.57ug/mL(R=0.9983),检测限为0.6ug/mL(S/N=3)。2.6.3 缺陷相关催化发光法检测氧化物中的氧空位 氧空位可以控制氧化物的许多不同性质。然而,氧空位的快速简单检测是一个巨大的挑战,因为它们的种类难以捉摸,含量高度稀释。在这项工作中,本文中发现TiO2纳米颗粒表面乙醚氧化反应中的催化发光(CTL)强度与氧空位的含量成正比。氧空位依赖性乙醚CTL是由于氧空位中大量的化学吸附O2可以促进其与化学吸附的乙醚分子的接触反应,从而显著提高CTL强度。因此,乙醚CTL可以用作TiO2纳米颗粒中氧空位的简单探针。通过检测金属离子掺杂的TiO2纳米粒子(Cu、Fe、Co和Cr)和氢处理的TiO2纳米粒子在不同温度下在具有可变氧空位的TiO2表面上的乙醚CTL强度,验证了其可行性。本CTL探针测得的氧空位含量与常规X射线光电子能谱(XPS)技术测得的结果基本一致。与已经开发的方法相比,所开发的CTL探针的优越性能包括快速响应、易于操作、低成本、长期稳定性和简单配置。本文认为氧空位敏感的CTL探针在区分氧化物中的氧空位方面具有很大的潜力。
  • Quantum Design中国引进高性能激光浮区法单晶生长系统
    浮区法单晶生长技术在晶体生长过程中具有无需坩埚、样品腔压力可控、生长状态便于实时观察等诸多优点,目前已被公认为是获取高质量、大尺寸单晶的重要手段之一。激光浮区法单晶生长系统可广泛用于凝聚态物理、化学、半导体、光学等多种学科领域相关单晶材料制备,尤其适合高饱和蒸汽压、高熔点材料及高热导率材料等常规浮区法单晶炉难以胜任的单晶生长工作。Quantum Design中国引进的高性能激光浮区法单晶生长系统,传承了日本理化研究所(RIKEN,CEMS)的先进设计理念,具有更高功率、更加均匀的能量分布和更加稳定的性能。 图1:RIKEN(CEMS)设计的五束激光发生器原型机实物图2:RIKEN(CEMS)设计的同源五束激光发生器原型机原理图 与传统的激光浮区法单晶生长系统相比,新一代激光浮区法单晶炉系统具有四项技术优势:● 采用技术五束激光设计,确保熔区能量分布更加均匀;(号:JP2015-58640)● 更加科学的激光光斑优化方案,有助于降低晶体生长过程中的热应力;(号:JP2017-136640, JP2017-179573 )● 采用了特的实时温度集成控制系统。(号:JP2015-78683 ) 采用新一代激光浮区法单晶炉系统生长出的部分单晶体:(图片由 Dr. Y. Kaneko (RIKEN CEMS) 提供)Sr2RuO4Ba2Co2Fe12O22SmB6Y3Fe5O12 新一代激光浮区法单晶炉系统主要技术参数:加热控制激光束源5束同源设计激光功率2KW熔区可实现高温:~3000℃*测温范围900℃~3500℃温度稳定性+/-1℃晶体生长控制晶体生长大设计长度150mm*晶体生长大设计直径8mm*晶体生长大速度/转速200mm/hr 40rpm样品腔真空度/压力10-4torr to 10 bar样品腔气氛O2/Ar/混合气晶体生长监控高清摄像头晶体生长控制PC控制其它占地面积D140 xW210 x H200 (cm)除此之外,Quantum Design还推出了多款光学浮区法单晶炉以满足不同的单晶生长需求。高温光学浮区法单晶炉:采用镀金双面镜以避免四镜加热带来的多温区点、高反射曲面设计,高温度可达2100-2200摄氏度,高效冷却节能设计不需要额外冷却系统,稳定的电源输出保证了灯丝的恒定加热功率。适用于生长高温超导体、介电和磁性材料、金属间化合物、半导体/光子晶体/宝石等。德国SciDre公司的高温高压光学浮区炉:能够提供2200–3000℃以上的生长温度,晶体生长腔可大压力可达300Bar,甚以及10-5mBar的高真空。适用于生长各种超导材料单晶,介电和磁性材料单晶,氧化物及金属间化合物单晶等。Quantum Design中国期望能够给予浮区法晶体生长技术的科研学者更多的支持与帮助!
  • 89.9万!赛默飞世尔等中标化学发光成像系统、实时荧光定量PCR仪等设备一批项目
    一、项目编号:[3500]ZSZBGS[GK]2022005(招标文件编号:?[3500]ZSZBGS[GK]2022005)二、项目名称:化学发光成像系统、实时荧光定量PCR仪等设备一批三、中标(成交)信息供应商名称:本项目合同包一废标。供应商地址:本项目合同包一废标。中标(成交)金额:0.0000000(万元) 供应商名称:福州欣鸿博仪器仪表有限公司供应商地址:福州市台江区上浦路南侧富力中心C区C1栋1120室中标(成交)金额:89.9000000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 本项目合同包一废标。 无 无 无 1 无 序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 2 福州欣鸿博仪器仪表有限公司 超纯水系统;实时荧光定量PCR仪;化学发光成像系统;氮气发生器。 臻纯;赛默飞世尔;易勃特;析维。 Smart Direct pro;QuantStudio 1 plus;TOUCH IMAGER;BIO-NG+。 1;1;1;1。 50000;429000;300000;120000。
  • 新品发布|设备更新政策好,惠然科技高性能场发射扫描电子显微镜F4000助力科技攻关
    新品发布|设备更新政策好,惠然科技高性能场发射扫描电子显微镜F4000助力科技攻关近日,为加快构建新发展格局、推动高质量发展,国务院印发《推动大规模设备更新和消费品以旧换新行动方案》(以下简称《行动方案》)的通知,提出实施设备更新、消费品以旧换新、回收循环利用、标准提升四大行动,大力促进先进设备生产应用,推动先进产能比重持续提升等举措。《行动方案》指出,推动符合条件的高校、职业院校(含技工院校)更新置换先进教学及科研技术设备,提升教学科研水平。严格落实学科教学装备配置标准,保质保量配置并及时更新教学仪器设备。强化创新支撑,聚焦长期困扰传统产业转型升级的产业基础、重大技术装备“卡脖子”难题,积极开展重大技术装备科技攻关。完善“揭榜挂帅”、“赛马”和创新产品迭代等机制,强化制造业中试能力支撑,加快创新成果产业化应用。惠然科技长期专注于攻克国家第35项“卡脖子”工程“扫描电镜”的关键技术壁垒,坚持全正向自主研发,关注供应链国产化率,期望为中国科学仪器行业带来真正的国产高性能电子束检测设备,助力科学研究及工业领域科技攻关,成为领先的“纳米世界之眼”关键设备供应商。新品问世惠然科技FE-SEM整机“风”系列再添新品——高性能场发射扫描电子显微镜F4000。2023年,惠然科技FE-SEM整机“风”系列F6000顺利出机并取得较好客户反馈,其业界独创的WR-HybriCol磁电混合式电子束扫描偏转系统、WR-AdapCol 双物镜镜筒设计以及优化设计的“能量选择型”WR-ExBCol 双镜筒内探测器设计,得到技术专家认可的同时,其低电压成像,大视野无畸变成像,快速定位ROI以及多种探测器匹配的产品特点受到市场好评。为满足客户不同应用场景下的要求,以及客户对于高性能场发射扫描电镜的多样化需求,惠然科技即日发布FE-SEM整机“风”系列F4000,可实现较高分辨率的同时,实现磁性样品的直接观测以及强大的可拓展附件功能,同时在价格上更具市场优势。FE-SEM整机“风”系列 高性能场发射扫描电子显微镜F40005大技术优势自主研发电子光学系统分辨率 0.9nm@30kV; 1.4nm@15kV无漏磁镜筒设计,可直接观测磁性样品双物镜无漏磁设计,可直接观测磁性样品高速扫描成像技术单像素有效驻留时间20ns,将SEM跨越至视频级纳米摄像机时代三步成像,操作易上手WD(工作距离、放大倍数)、ABC(自动亮度、对比度调整)、AF/AS(自动对焦)附件拓展功能强可拓展功能:样品预抽交换仓;真空转移样品杆;拉曼-电镜联用系统;EDS能谱仪;EBSD背散射衍射仪;CL阴极荧光分析成像等。5大产品竞争力自主研发国产电镜,核心技术自主正向研发,分辨率性能达到通用型科研电镜领先水平软件可控软件系统自主开发,可支持Windows、Linux、麒麟系统,满足客户信息安全保密需求操作方便界面中文为主,支持英文,可选专家级页面模式和极简模式,适应不同类型用户应用习惯客户定制强大的研发团队,可根据用户需求和应用场景,定制化开发和升级软硬件系统售后服务先进的售后理念和完善的运维体系,最快的速度响应用户的需求,支持用户的应用惠然FE-SEM整机“风”系列产品 当前,惠然科技紧跟国家政策,以市场需求为导向,以客户为中心,为客户带来更多可选择、高性能的国产电子束检测产品。
  • 上海微系统所在硅基胶体量子点片上发光取得重要进展
    PbS胶体量子点(CQDs)由于具有带隙宽、可调谐以及溶液可加工性强等优点,已广泛应用于气体传感、太阳能电池、红外成像、光电探测以及片上光源的集成光子器件中。然而PbS CQDs普遍存在发射效率低和辐射方向性差的问题,因此科学家们尝试利用半导体等离子体纳米晶或全介质纳米谐振腔来增强PbS CQDs的近红外荧光发射,使其成为更高效、更快的量子发射器。但是普遍存在光场限制能力弱,Q值低的问题。   针对这些问题,近日中国科学院上海微系统与信息技术研究所武爱民研究员团队与浙江大学金毅副教授团队合作在Nanophotonics发表最新文章,将BIC引入到PbS CQDs发光应用中,提出了一种支持对称保护BIC的硅超表面通过激发相邻的高Q泄露导波模式来增强室温下PbS CQDs的自发辐射的方案,实现了硅基量子点近红外片上发光。   该超表面由亚波长尺寸的硅棒周期性排列而成(图1a),结构具有各向异性且与偏振相关。其反射率是入射光角度和波长的函数,当TE偏振激发时,对称保护型BIC会出现在布里渊区的Γ点处(图1b),对应的电场分布如图1c所示。基于洛伦兹拟合方法分别从仿真和实验反射谱中提取出Q值曲线(图1d),两者趋势一致,且激发的高Q导波模式可以有效的增强量子点的发射。由图1e的实验结果可以看出,制备的超表面使包覆的PbS CQDs的荧光辐射显著增强,并且在波长1408 nm处的发射峰的Q值高达251。随后,研究人员利用实验简单演示了该系统的传感潜力。将稀疏度为4/1000 μm2,直径为60 nm的Au纳米颗粒随机分布在涂敷PbS CQDs的超表面顶部,通过与不含Au纳米颗粒的样品相比,PL峰从1408 nm红移到1410 nm,且强度出现明显的增强(图1f)。该研究成果不仅为实现支持BIC的介电超表面可以有效地增强PbS CQDs的发射性能提供了设计指导与实验验证,并为PbS CQDs在硅基片上光源和集成传感器等各种实际应用提供了新思路。   研究团队提出的基于BIC超表面增强PbS CQDs近红外发射的新方法,是一种普适、高效、功能广泛的方法。该方法证明了BIC系统在荧光增强方面的有效性,它是提高PbS胶体量子点在光源和荧光传感器等各种应用中的最好选择之一。通过提高制造精度或者合并的BIC可以进一步提高增强效果,并且可以通过改变几何尺寸来调节工作波长。这种无源超表面结构可以在商用CMOS平台上以简单的工艺制造,因此它可以结合到硅光子集成中,用于硅基片上光源以及荧光传感器,在多通道通信,近场传感和红外成像等领域都有广阔的应用前景。   相关成果以“Fluorescence Enhancement of PbS Colloidal Quantum Dots from Silicon Metasurfaces Sustaining Bound States in the Continuum”为题在线发表在Nanophotonics (https://doi.org/10.1515/nanoph-2023-0195)上。   这项工作的作者包括 Li Liu, Ruxue Wang, Yuwei Sun, Yi Jin*, Aimin Wu*,其中上海微系统所博士研究生刘丽为该文章的第一作者,浙江大学金毅副教授和上海微系统所武爱民研究员为论文的共同通讯作者。上述研究工作得到了国家重点研发计划项目(2021YFB2206502)、中科院青促会(2021232)、上海市学术带头人项目(22XD1404300)和国家自然科学基金委(61875174,62275259)的支持。图1:(a)硅超表面的结构示意图;(b)TE偏振激发时,反射率是入射角和入射波长的函数。在Γ处形成了一个对称保护型BIC,对应波长为1391 nm;(c)对称保护型BIC的Ey电场分布。灰线表示结构边界;(d)与BIC相邻的泄露导波模式在同一能带上的Q值随入射角度的变化。虚线为实验结果,实线为仿真结果。插图为硅超表面的SEM图像;(e)在同一块SOI衬底表面旋涂PbS CQDs,超表面结构区域(黑色曲线)和无结构区域(红色曲线)的实测PL谱。插图为顶部涂敷PbS CQDs的超表面的SEM图像;(f)在超表面结构上引入随机Au纳米颗粒前(红色曲线)和后(黑色曲线)的实测PL谱。插图为表面随机分布Au纳米颗粒的顶部涂敷PbS CQDs的超表面的SEM图像。
  • 国家重点研发计划——“高强度高稳定空心阴极灯的研究”项目启动会在京召开
    仪器信息网讯:9月26日上午九点,作为“2016重大科学仪器设备开发专项”中“核心关键部件开发与应用”任务方向的子项目之一“高强度高稳定空心阴极灯的研究”项目启动会在北京远望楼宾馆第七会议室召开。 本次会议的参会人员有科技部高技术研究发展中心刘进长研究员,北京有色金属研究总院科技开发部副主任朱宝宏教授,项目专家组以及北京有色金属研究总院等项目承担单位的项目组关键人员等。启动会由北京有色金属研究总院分析测试技术研究所副所长刘英教授主持。会议现场(一) 朱宝宏教授和刘进长研究员首先分别代表项目主要承担单位和项目上级管理单位致辞。从有关领导的讲话中,笔者了解到此次“重大科学仪器设备专项”的实施方案具有如下三个特点:一、坚持企业牵头,鼓励企业结合国家和自身发展需要,联合科研院所和高等学校的优势力量参与项目研发工作,构建“仪器原理验证—关键技术研发—系统集成—应用示范—产业化”的链条;二、重视非技术因素对成果产业化的影响,组织专家对企业工程化和产业化措施和方案、企业的资质和能力,以及知识产权和利益分配等进行评审把关;三、结合科学仪器开发的特点,强化利益共享、风险分担机制,对企业牵头的项目,实施专项经费后端资助政策。 随后,项目负责人李继东教授向参会人员详细汇报了项目基本情况及启动准备情况。据李教授介绍,作为本项目的牵头单位——北京有色金属研究总院具有空心阴极灯光源研究生产的悠久历史,50余年来致力于原子吸收分析技术仪器和方法的研究,尤其空心阴极灯的研究,开发,生产和应用,已形成有一定实力的科研-生产-应用联合体。李继东教授在讲话中特别指出,北京有色金属研究总院曾经承担过多项国家项目,取得国内专利 14 项,国外专利2项,建立技术标准1项,拥有完整的生产线,可以生产元素周期表中大多数元素各种型号的空心阴极灯,年生产能力达数万只,占有国内90%以上高端市场份额。李教授表示,本次“重大科学仪器设备开发”重点专项将为空心阴极灯的研究和产业化提供新的契机。项目组将在以往技术积累的基础上,从优化空心阴极灯结构设计、研究新型阴极材料、改善生产工艺等方向着手,找到影响关键指标的因素及改善方法;开展工程化和产业化开发,形成工程化和产业化能力。项目组预期项目完成时,指标将达到或部分超过指南要求,获得高强度、高稳定空心阴极灯光源,为原子吸收和原子荧光光谱仪等仪器提供可靠的核心部件。 在谈到本项目在研究过程中将体现哪些优势时,李教授表示,首先本研究将充分利用北京有色金属研究总院人员、设备和技术等方面的优势,根据金属材料的不同特性研究采用相应方法进行阴极材料制备,这也是空心阴极灯的关键技术。其次,本研究将发挥北京有色金属研究总院在无机材料成分和组织结构分析方面的优势,对空心阴极灯阴极材料进行原子尺度的微结构分析,从研究材料微观组织结构和化学成分的方向入手分析阴极材料变化导致空心阴极灯寿命终结的原因,以及对发光稳定性、噪音的影响。 会议现场(二) 在会议的专家指导及交流环节,专家们表示,鉴于北京有色金属研究总院在空心阴极灯的研制方面历史悠久、基础雄厚、且目前的市场占有率高,拿下这个项目应当说是实至名归。同时,大家对于空心阴极灯的未来市场也持较为乐观的态度(据了解,目前国内空心阴极灯市场大概是9万只/年,而且绝大多数是国产产品)。以空心阴极灯的主要应用仪器之一原子吸收光谱仪为例,由于原子吸收光谱仪的一些独特优势,譬如所需耗材较之ICP仪器容易获得(这一点对于偏远地区尤为有利);对操作人员的要求低,特别适合于企业使用等。因此在可预见的未来,原子吸收光谱仪将会继续发展,而不会为其他仪器所取代。很自然,作为原子吸收光谱仪的重要部件之一——对于空心阴极灯的需求未来也将会继续增长。而开发出寿命更长,发光同心度更优的空心阴极灯反过来也会进一步促进原子吸收光谱仪的应用普及。
  • 世界卓越的高灵敏度硫化学发光检测系统“Nexis SCD-2030”即将发售
    岛津制作所近期将推出硫化学发光检测器气相色谱系统“Nexis SCD-2030”。本产品由高性能气相色谱仪“Nexis GC-2030”及新研发的硫化学发光检测器“SCD-2030”组成。随着实现“世界卓越高灵敏度”、“飞跃提升的操作性和可维护性”、“高稳定性”的“Nexis SCD-2030”的发售,我公司将正式涉足SCD(硫化学发光检测器)市场。 燃料中含有的硫成分,不仅会造成大气污染,而且也是化学反应中妨碍催化剂发生作用的主要原因。各石油化工公司都在努力减少燃料中的硫成分,推进几十ppb以下的低硫燃料的研发。要想准确检测燃料中微量硫成分,高灵敏度SCD检测器不可或缺。在这种背景下,SCD检测器在全球的销售台数预计今后也会稳步增加,尤其是对具有高灵敏度检测优势的机种需求在不断攀升。 2017年5月,我公司向市场推出了具有世界最高性能的新一代气相色谱仪“Nexis GC-2030”。“Nexis SCD-2030”即为以该产品为基础,配套使用新研发的硫化学发光检测器“SCD-2030”的硫化学发光检测系统。微量硫化合物的检测不仅在石油化工领域,而且,预计在食品、饮料、香料、煤气、燃料电池等领域的研发、质量管理等上均有广泛的应用。我们将为用户提供微量硫分析的新解决方案。新产品的特点1. 世界卓越的高灵敏度通过采用水平式氧化还原燃烧器,和传统的SCD检测器相比,从燃烧器到检测部的流路缩短三分之一,可快速将不稳定成分导入反应器,最小限度降低灵敏度损失,实现世界卓越的高灵敏度分析。(和以前我公司销售的SCD相比,灵敏度约提高3倍)2. 全面提升的分析效率配置竖置式燃烧器的SCD,由于设备上部的耗材(内部陶瓷管)很难伸手够到,更换工作十分繁琐。而水平式硫化学发光检测系统“Nexis SCD-2030”,内部陶瓷管的更换操作5分钟即可完成。通常,SCD检测器和普通GC检测器相比,操作相对繁琐,但“Nexis SCD-2030”由于可自动调节气体流量和温度,一键便可完成检测前启动准备。与分析数据处理系统“LabSolutions”配套使用,可实现从系统启动,到分析的开始结束、设备停止,全工序的自动化。为提高分析工作效率提供支持,防止检测器因操作失误受损或分析效果下降。3. 提升行业水准的高稳定性硫化学发光检测器的核心部件氧化还原燃烧器采用水平方式,开启了行业的先河。通过充分确保反应空间与反应时间,实现稳定的氧化还原反应。和其他公司的SCD相比,灵敏度波动小(24小时灵敏度波动优于1.6倍),色谱柱流量等分析条件的不同所造成的影响也降低到最小程度。关于岛津岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 新品发布——iBright智能成像系统
    了解ibright™ 智能成像系统——蛋白质免疫印迹成像的最新进展。新品发布——ibright智能成像系统全新invitrogen™ ibright™ 智能成像系统重磅上市!通过强劲的系统配置、先进的自动化功能和友好的用户界面,ibright成像系统可显著提升蛋白免疫印迹实验体验,助您轻松获得理想结果。灵活多样的成像方案——适用于多色荧光western blot印迹、化学发光western blot印迹、蛋白凝胶和核酸凝胶成像一键式优化曝光——smart exposure™ 智能曝光技术与高灵敏910万像素冷ccd相机的结合,具备强劲的成像性能简洁流畅的操作体验——直观友好的界面设计结合高度自动化功能,帮助各种经验水平的研究人员快速上手多重成像能力——实现多达4色荧光western blot的多重成像,拓展了在单块印迹上同时检测多种蛋白质的能力小体积,大视野——紧凑的一体化设计与大尺寸成像视野兼具,可一次采集多达4块小型印迹膜或凝胶图像即刻加速您的蛋白质免疫印迹研究进程,请点击thermofisher.com/ibright
  • PerkinElmer展出用于高级研究和开发的先进试剂、成像系统和检测系统
    PerkinElmer 在神经科学学会年会上展出用于高级研究和开发的先进试剂、成像系统和检测系统 芝加哥,2009 年 10 月 16 日(美国商业新闻)- 专注于提高人类健康及其生存环境安全的全球领先公司 PerkinElmer, Inc.,今天在 2009 神经科学学会年会上宣布推出几款新工具,旨在促进神经系统疾病(如阿尔兹海默氏症、帕金森氏综合症、多发性硬化症和其它中枢神经系统疾病)研究的速度和效率。 &ldquo PerkinElmer 素有参加神经科学学会年会的传统,今年也不例外,&rdquo PerkinElmer 生物研发业务总裁 Richard M. Eglen 博士说。&ldquo 今年我们推出了几种细胞信号研究的新工具,包括细胞和生物化学检测工具、3D 活细胞成像工具、创新性数据管理软件以及全新的超灵敏度发光微孔板检测仪。这些工具主要用于促进科研人员提高研究的速度和效率。&rdquo 他接着说,&ldquo 在神经科学学会年会上,我们还发布了有关整合最近从GE Healthcare 收购的无形资产的信息,其中包括 3H 和 14C 目录放射化学试剂、SPA 试剂和 CytoStar-TTM 微孔板产品。这些资产充实并加强了我们的研究试剂解决方案,进一步帮助客户推进重点医药项目的研发工作,同时还显示了我们在放射化学试剂领域始终领先的地位。&rdquo PerkinElmer 在神经科学学会年会 1017 号展台展示的新技术包括: - 15 种全新的 已制备 GPCR 冷冻细胞系 - 扩展了该公司针对各种主要病症效果显著的细胞系产品线。 - 7 种全新的 LANCE Ultra 检测产品 - 将可检测的激酶数量增加到 300 多种。 - 全新的 EnSpire(TM) 多标记微孔板检测仪具有超灵敏度的发光检测和温度控制功能 &ndash 经济实用,将提供高性能的检测方案和方便易用的软件,适用于任何规模的实验室。 - 12 种全新的 3H 和 125I 放射性配体 - 将我们的系列产品增加到 1,000 多种 NEN 放射性化学试剂。 - 全新的 NeoLite 报告基因检测 - 能够提高灵敏度,延长发光检测时间。 - 全新的 TSA 增强型生物素试剂盒 - 将免疫检测的灵敏度增加 10 到 20 倍。 - UltraVIEW VoX 3D 活细胞成像系统 &ndash 唯一的 3D 转碟系统,能够针对细胞分析提供集成的图像采集。 - OperettaTM 紧凑型高内涵筛选系统 &ndash 首个具有全部可视化向导式的成像分析流程设计用户界面的高内涵筛选 (HCS) 系统。 - ColumbusTM 图像数据管理系统 &ndash 用于高容量图像数据管理和分析,为细胞研究人员提供导入、导出和管理所有细胞图像数据的高容量高性能图形数据中央服务器。 - MicroBeta2 和 MicroBeta2 LumiJETTM 微孔板检测仪 &ndash 将液体闪烁计数的可靠性和发光检测与微孔板检测仪的简易性相结合,从而节省时间和消耗品并减少浪费。 PerkinElmer 在年会的活动包括下列放射性化学试剂开放式讨论会和细胞成像研讨会,以及两个论文研读会: PerkinElmer 的放射性化学试剂开放式讨论会 10 月 19 日周一,上午 11 时到下午 2 时,Hyatt McCormick Place 的 CC10AB 室 此次开放式讨论会将探讨 PerkinElmer 对 GE 的闪烁近似检测 (SPA) 技术与 3H 和 14C 放射性化学试剂资产的整合。公司将讨论通过并入 SPA 技术试剂产生行业新发展的重要性,这些试剂产品增强了公司在业界领先的 GPCR 和激酶研究产品线,完善了我们&ldquo 一应俱全&rdquo 的研究试剂解决方案。 3D 活细胞成像研讨会 10 月 19 日周一,下午 2 时到 4 时,Hyatt McCormick Place 的 CC10CD 室 在嘉宾科学家和 PerkinElmer 的成像专家进行一系列说明性介绍过程中,探讨活细胞成像,并分析 3D 图像采集和分析的优点。此次研讨会将讨论和展示一些解决当今细胞成像和分析难题的各种新技术。 有关 PerkinElmer 在 2009 神经科学学会年会上全部活动的详细信息,请访问。 来源:PerkinElmer 关于 PerkinElmer, Inc. PerkinElmer, Inc. 是一家专注于提高人类及环境的健康和安全的全球领先公司。据报道,该公司 2008 年收入约为 20 亿美元,拥有 8,400 名员工,为超过 150 个国家/地区的客户提供服务,同时该公司也是标准普尔 500 指数的成员。有关其它信息,请访问 www.perkinelmer.com.cn 或致电 1-877-PKI-NYSE。 媒体联络 PerkinElmer, Inc. Kim McCrossen 联络电话︰+781-663-5871 版权所有 美国商业新闻 2009
  • BLT小课堂|细菌发光原理及其在动物活体成像中的应用
    夏季的夜晚,走到山间草丛,可以看到一种昆虫提着一盏灯在飞行,这就是萤火虫在发光。萤火虫体内的荧光素酶催化底物荧光素,发生化学反应,产生光子。这也是大家比较熟悉的,在动物活体生物发光成像当中运用到的反应原理。通过利用该原理,配合上转基因技术及动物活体成像系统,我们可以非侵入性和纵向研究小动物的基因表达、蛋白质-蛋白质相互作用、肿瘤学机制和抗肿瘤药物药效及动力学和疾病机制等;相比于传统研究手段,这种方法通过在动物整体水平上进行研究,能提供更多有用的信息,同时大幅减少实验研究所需的动物数量和降低个体间的差异。萤火虫荧光素酶反应的示意图(a)、荧光素酶以报告基因的形式进入细胞核,并翻译成功能性酶。该酶将底物荧光素、氧(O2)和三磷酸腺苷(ATP)转化为氧荧光素、二氧化碳(CO2)和二磷酸腺苷(ADP),同时发光。(b)、萤火虫底物D-荧光素及其产物氧合荧光素的化学结构。 那么问题来了,自然界会发光的生物除了有萤火虫,还有鱼类、藻类、植物和细菌等,这些生物的发光原理是否也和萤火虫一样呢?这些发光原理能否运用到动物活体成像研究中呢?今天,小编就为大家介绍另外一种生物发光原理—细菌发光及其在动物活体成像中的应用。细菌荧光素酶对于细菌的生物发光现象,早在1875年就被发现了,研究人员Boyle首先揭示了细菌发光对氧气的依赖。而随着研究的深入,研究人员发现细菌发光涉及到的酶有荧光素酶、脂肪酸还原酶和黄素还原酶,以及底物还原性黄素单核苷酸和长链脂肪醛。在发光细菌中发现的一种操纵子,基因顺序为luxCDABEG,其中luxA和luxB基因分别编码细菌荧光素酶α和β亚基,luxC、luxD和luxE基因分别编码合成和回收荧光素酶醛底物的脂肪酸还原酶复合物的r、s和t多肽,luxG编码黄素还原酶。到目前为止所知的所有发光细菌,都是基于细菌荧光素酶介导的酶反应来产生光。这是一种大约80kDa的异二聚体蛋白,与长链烷烃单加氧酶具有同源性。该酶通过以下反应介导O2氧化还原的黄素单核苷酸(FMNH2)和长链脂肪族(脂肪)醛(RCHO),以产生蓝绿光。细菌荧光素酶介导的酶反应1细菌发光明场图2细菌发光发光图细菌发光反应过程在发光反应中,FMNH2与酶结合,然后与O2相互作用,形成黄素-4A-过氧化氢。这种复合物与醛结合形成一种高度稳定的中间体,其缓慢的衰变导致FMNH2和醛底物的氧化和发光,反应的量子产率估计为0.1-0.2个光子。该反应对FMNH2具有高度特异性,体内的醛底物可能是十四醛。FMNH2是由NADH:FMN氧化还原酶(黄素还原酶)提供,该酶从细胞代谢(如糖酵解和柠檬酸循环)中产生的NADH中提取还原剂,还原剂通过自由扩散从FMNH2向荧光素酶的转移。长链醛的合成是由脂肪酸还原酶复合物催化。与细菌荧光素酶一样,底物FMNH2和长链脂肪醛也是细菌发光反应的特异性底物;真核生物生物发光使用不同的化学物质和荧光素酶,它们在蛋白质或基因序列水平上与细菌荧光素酶不同。细菌中的荧光素酶反应过程细菌发光原理在动物活体成像中的应用目前,细菌发光原理在动物活体成像研究中的应用有:传染病研究、菌种抗药性测试及细菌介导的肿瘤治疗等。通过将luxCDABE操纵子稳定地整合到不同的细菌基因结构中,不需要任何其他外源底物(除了氧)来产生生物发光,再通过一套超灵敏的动物活体成像系统(AniView 100),为监测细菌物种感染负担、致病机理研究和肿瘤药物靶向治疗等提供了一种快速便捷的研究检测方法。AniView 100检测减毒鼠伤寒沙门氏菌体内靶向性肿瘤情况(箭头指向为肿瘤)应用说明如以细菌介导的肿瘤治疗为例,传统的癌症治疗方法是手术切除,治疗转移性癌症还需要与其他疗法(如放疗或化疗)相结合。这些疗法存在局限性,如放疗的疗效主要取决于组织氧水平,肿瘤内坏死区和缺氧区低氧浓度是治疗失败的常见原因;而化疗的疗效主要取决于药物的分布,肿瘤内坏死区和缺氧区的血管不规则会影响药物的输送,限制药物的疗效。与传统方法相比,使用细菌进行癌症治疗有以下优势:首先,细菌会在肿瘤中选择性积累,肿瘤中的细菌聚集量大约是正常器官的1000倍,肿瘤特有的坏死区和缺氧区一般不会在大多数器官中形成。其次,细菌的增殖能力使得它们可以进行持续治疗;最后,许多细菌的全基因组测序已经完成,能够通过基因组操作提高它们在人类使用中的安全性,并增强其杀瘤效果。目前,细菌介导的肿瘤治疗广泛应用于DNA或siRNA的传递、运送经工程改造的毒素或前药物和触发机体免疫反应,进而达到抑制或杀灭肿瘤细胞、起到抗击肿瘤的作用。应用案例 静脉注射3天后,表达lux的鼠伤寒沙门氏菌在各种肿瘤中积聚。CT26:小鼠结肠癌,4T1:小鼠乳腺癌,MC38:小鼠结直肠腺癌,TC-1:小鼠肺癌,Hep3B:人肝细胞癌,ARO:人甲状腺癌,ASPC1:人胰腺癌应用案例 携带受L-阿拉伯糖诱导启动子pBAD表达系统控制的细胞毒蛋白(溶细胞素A)、表达lux报告基因的减毒鼠伤寒沙门氏菌,用于肿瘤治疗。总结利用生物发光原理进行动物活体成像,目前主要有两种方式。一种是使用萤火虫荧光素酶,最适合在哺乳动物细胞中表达;另外一种是细菌荧光素酶,广泛应用于原核生物。细菌Lux操纵子由于编码生物发光所需的所有蛋白质,包括荧光素酶、底物和底物生成酶,不需要外源底物,成像更加的方便,不需要像萤火虫荧光素酶一样,考虑ATP的可用性、底物分子的渗透、药代动力学和生物分布等对成像的影响。但是,细菌荧光素酶的发射波长较短(490nm),组织吸收较大,这会影响成像数据的量化;而且,对于某些真核微生物(包括真菌和寄生虫)和真核细胞,仍然需要使用萤火虫荧光素酶标记,原因在于lux报告基因没有得到足够的优化,还不能在真核细胞中稳定表达。不过由于细菌荧光素酶和萤火虫荧光素酶的发射波长不同,从而可以进行多光谱成像,用于同时定量评估小动物的不同生物过程,进一步扩展生物发光原理在动物活体成像中的应用。TipsAniView 100多模式动物活体成像系统 AniView 100多模式动物活体成像系统作为广州博鹭腾生物科技有限公司推出的高灵敏度动物活体成像系统,其采用全密闭抗干扰暗箱,避免外界光源及宇宙射线对拍照影响的同时,配合零缺陷、科研级高灵敏背部薄化、背部感应型冷CCD相机,极大地提高成像的灵敏度。AniView 100可以检测到100个luciferase标记细胞,对于动物活体细菌荧光素酶的生物发光信号,无论是在皮下或器官,均可以轻易检测到。快来关注我们,申请免费试用!参考文献1、Hastings JW. Cell Physiology Source book 2012.2、Nguyen V H et al. Cancer Research, 2010, 70(1):18-23.3、 Nguyen V H et al. Nuclear Medicine & Molecular Imaging, 2016.4、 Dunlap P . ADVANCES IN BIOCHEMICAL ENGINEERING BIOTECHNOLOGY, 2014.5、Keyaerts Marleen et al. Trends in molecular medicine,2012,18(3).6、 Nathan K. Archer et al. Springer International Publishing, 2017.7、Doyle T C et al. Cellular Microbiology, 2004, 6(4):303-317.8、Avci P et al. Virulence.
  • 华粤行成功举办UVITEC化学发光和多色荧光成像技术巡回讲座
    2011年4月12至20日,广州华粤行联合英国剑桥UVItec在上海交通大学、南昌大学举办了化学发光和多色荧光成像技术巡回讲座。 英国UVItec公司高级应用专家Walter现场详细讲解了生物分子成像技术的最新进展,对UVItec Alliance 4.7的性能、构造和特点等进行了详细阐述。讲座之后,Walter在上海交通大学医学院、Genie在南昌大学食品学院分别对客户提供的样本进行了现场测定,Alliance 4.7精准快速的曝光、高性能CCD的拍摄及UVIband软件的人性化便捷操作得到与会者的极大肯定,最终的拍摄效果也大大超出了用户的预期。 希望这一活动能够让更多的生命工作者了解化学发光和多色荧光成像技术,更多的实验室能够配备上这种先进仪器。
  • 全球首台套冷阴极无损检测
    2024年2月1日,中科盈德(泰州)测控技术有限公司为交通部绿通快速检测项目研发生产的全球首台套冷阴极无损检测交通专用设备已顺利完成,即日将前往青岛高速集团灵珠收费站完成现场交付。中科盈德(泰州)测控技术有限公司聚焦于激光超声、冷阴极无损检测等多种世界领先的高端创新无损检测技术设备的设计开发、成果转化与生产制造,是全球唯一一家掌握自主知识产权,能够提供全系列激光超声、冷阴极无损检测等技术做为工业系统全方位无损检测解决方案的企业。中科盈德一直用更安全、更方便、更有效的创新技术引领世界无损检测行业的发展方向、开拓新领域、开发新市场,并以走向世界为企业的发展目标。高速公路绿色通行是指在高速公路收费站设立专用通道,对鲜活农产品车辆实行优惠政策的安全、快捷的便利通道。自2005至2023年,交通部、国务院、财政部、国家发改委等相继印发了一系列关于全国高效率鲜活农产品流通“绿色通道”建设实施方案的通知,运载符合绿通目录内鲜活农产品的流通车辆,经道路部门检测后,装载率达到80%以上的,可以享受国家给予的相关道路免费通行的绿通优惠政策。2021年10月交通运输部路网监测与应急处置中心印发了收费公路联网收费预约通行服务规程,明确指出了使用数字自动检验设备的查验方式。规划了将逐步建立以自动检测为主、人工查验为辅的鲜活农产品运输绿色通道的规范检测体系。目前各地交通部门主要的绿通检测方式,仍然是以收费站工作人员的人工检测为主,存在着效率低、风险大、偏差大、争议大、易勾结逃费、高投诉等各种棘手问题,在部分地区虽有进行数字自动检验设备的试点工作,但因其技术原理上的缺陷,存在诸多问题,无法做进一步的推广。这样的现状既影响了国家惠民政策的具体落实,又给交通管理部门的声誉带来了负面的影响,也给国家形成了长期可观的经济损失。因此多年以来,国家相关部门一直亟待能有更先进的数字自动检测设备出现,需要更好的创新技术为绿通快速检测项目带来更安全、更高效、更可靠的系统解决方案。中科盈德基于自有知识产权、自主研发完成了世界首台套冷阴极无损检测交通专用设备,领先使用世界最先进的创新型冷阴极无损检测技术生产的绿色通道快速检测系统,通过颠覆百年未变的热阴极无损检测的产生原理,很好的解决和提升了安全、效率等多个原有的卡脖子疑难问题,比较起传统的热阴极无损检测产品,具有诸多的革命性的优点:更加安全、小型轻便、无需预热、节能高效、更长期限使用寿命等等。因其采用先进的数字脉冲技术,响应速度快、对外部影响小、更加安全可靠,对于检测工作人员和广大物流驾驶员来说,这是更安全、更高效的创新型无损检测技术手段。产品采用数字图像分析系统,检测结果比传统人工检查更方便、更快捷,也更少产生争议,且节能省电、绿色环保,即时检测,即时出结果,使得绿通快速检测的通过流程更快速、更高效、更安全!中科盈德的新一代冷阴极无损检测技术,可以较好的解决交通部门长期以来最为关心的安全性等诸多技术痛点和社会关切问题,具有较好的经济效益和社会效益。中科盈德创新型冷阴极无损检测技术在以安全性、可靠性为代表的多个重要方面,已经有了革命性的提升和进步,未来还可以通过不断的开发,做进一步的迭代增强,如增强穿透功能、多角度立体成像功能、AI智能识别功能、大数据分析等,使中科盈德的绿通系列产品具有持续迭代升级的能力,始终走在无损检测技术发展的创新前沿。中国具有全世界最多的高速公路里程,各地交管部门对于绿通快速检测产品普遍具有较大的需求,随着绿通快速检测产品的逐步推广,每年将会为国家挽回上百亿的道路通行费损失,也能够为企业带来进一步践行创新型科技发展的机遇。2024年1月山东省高速首先启动了绿通快速检测项目的试点工作。山东省首批计划改造收费站点约825个,交通部计划自2024年起,开始向全国逐步推广,全国共有近5万对收费站点需要逐步进行安装,产品每五年进行一次强制性更换,绿通快速检测产品每年约有400亿元的市场规模。现在已有数个省份的交通部门计划加入今年的推广之中,目前各省交通部门的订单意向汇总已接近4000台套,价值近80亿元人民币。高速公路绿通快速检测项目的研发完成,是中科盈德创新型冷阴极无损检测技术成长历史上的一个里程碑,这也是企业自主知识产权的冷阴极无损检测技术在进入航空航天、半导体行业、核能核电、国家电网、船舶制造、医疗等领域之后,新进入的又一个重大应用领域,是对热阴极无损检测技术的一次产业迭代革命,让自主知识产权、世界领先的冷阴极工业无损检测装备得到进一步的推广和普及,用创新科技解决原有的各种卡脖子难题,这对于助力中国从工业制造大国向工业制造强国的进一步提升,具有重大的积极意义和良好的社会效益!此次中科盈德绿通快速检测项目的交付,将有机会让我国的冷阴极无损检测技术,从技术原理、专利发明、到实际应用,再到商业价值,都能够走在全世界的最前沿,未来有机会彻底地改变世界无损检测技术的面貌与行业市场的格局!中科盈德的冷阴极无损检测产品,既是照出万物的智慧之光,也是企业自身的发展之光,更会是一束迈向世界,今后让国人都能够引以为自豪的希望之光!展望未来的创新发展之路,冷阴极无损检测产品的前景无限!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制