当前位置: 仪器信息网 > 行业主题 > >

高通量植物分蘖测量系统

仪器信息网高通量植物分蘖测量系统专题为您提供2024年最新高通量植物分蘖测量系统价格报价、厂家品牌的相关信息, 包括高通量植物分蘖测量系统参数、型号等,不管是国产,还是进口品牌的高通量植物分蘖测量系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高通量植物分蘖测量系统相关的耗材配件、试剂标物,还有高通量植物分蘖测量系统相关的最新资讯、资料,以及高通量植物分蘖测量系统相关的解决方案。

高通量植物分蘖测量系统相关的仪器

  • Vitae 100高通量自动核酸纯化系统是一款高通量、全自动化核酸纯化平台,采用磁珠分离技术,可连续从96个样本中快速、可靠的纯化高质量的核酸。该系统能降低用户在生物样本核酸提取中产生的操作误差,减少人工操作,提高效率。 产品特点■ 功能多样化即具备核酸提取的功能,又具备PCR体系构建功能■ 自动化 高通量以全自动液体处理工作站为基础,一次性可以处理96份样本■ 实验结果稳定均一化操作,减少实验过程中的误差,提高检测的准确性■ 安全防污染措施严谨的自动防污灭活处理,减少检测人员在核酸提取过程中直接接触病人样本,降低检测人员感染风险■ 灵活高效的盘面设计Vitae 100高通量自动核酸纯化系统提供多种功能模块与适配器部件,强大而灵活,允许用户根据实验方案需求调整配置,真正实现自动化流程。■ 界面简洁 一目了然1)界面人性化设计,拖拽式模式,操作方便,易于使用2)模块端口自动扫描,用户无需手动配置,使用更为省心3)拖拽式生成实验流程,每个动作可独立配置参数,满足用户不同的实验需求■ 高质量的纯化产物将8份血液样本6倍稀释,使用Vitae 100高通量自动核酸纯化系统提取gDNA,紫外分光光度计测量DNA质量和纯度。结果显示,提取的gDNA为高质量核酸。■ 高度重复性结果Vitae 100高通量自动核酸纯化系统单次运行提取96个样本,提取结果进行荧光定量。结果表明,Vitae 100高通量自动核酸纯化系统具有非常高的批内和批间重复性。应用领域■ 全血DNA/RNA 提取■ 动/植物组织DNA/RNA 提取■ 真菌、细菌、病毒等微生物样本DNA/RNA 提取■ 法医样本DNA/RNA 提取■ 生物体液DNA/RNA 提取■ 培养细胞DNA/RNA 提取■ FFPE基因组DNA提取
    留言咨询
  • 产品简介高通量植物分蘖测量系统 PhenoTiller用于测量温室盆栽的禾本科植物的分蘖数。以工业CT为基础,结合农业应用实践重新设计,主要包括自动传送系统、X-射线发射器、X-射线检测器、自动旋转平台、伺服电机控制器和电脑工作站。测量时利用传送系统将被测植株传送至旋转平台,通过电脑工作站对伺服电机控制器进行调控,使之稳定匀速驱动旋转平台进行360°自动旋转,该过程中X-射线发射器和检测器则处于固定位置进行扫描测量,图像自动获取、存储和分析,整个测量过程大约20 s完成。 功能特性专为禾本科植物分蘖数测量而设计的CT系统特别适合水稻、小麦等作物的分蘖数量集成自动传送系统对植物分蘖位置进行360度旋转断层扫描(CT)扫描完成后自动完成分蘖计数 系统配置焦点到检测器的最大距离:850 mm焦点到被测物的距离:740 mm视野面积:20 x 20 cm焦点尺寸:约0.8 mm工作电压范围(kV):40 – 80工作电流范围(mA):0.2 – 1实际工作电压(kV):50实际工作电流(mA):1剂量当量率:0.06 μSv/h发射器焦点到旋转平台距离:1122 mm发射器焦点到检测器距离:1412 mm放大倍数:1.26横截面视野范围:244 mmX-射线检测器:线阵X-射线检测器X scan 0.4f3-205X-射线管电压范围(kV):20 -160像素数目:768像素间距(mm):0.4像素高度(mm):0.6像素宽度(mm):0.3最大扫描速度(cm/s):80 系统图 (a)高通量植物分蘖测量系统(PhenoTillerV1.0)系统图(b)X-ray成像系统 公司简介谷丰光电(GREENPHENO)致力于植物表型,农业科研和机器视觉系统集成领域,具备核心图像处理、光机电控制、以及系统集成技术,掌握一批自主知识产权。主营业务包含:水稻数字化考种机;玉米籽粒数字化考种机;玉米果穗考种机;叶片表型快速分析仪;双目视觉植物表型分析系统;小型植物表型分析系统;高通量植物表型参数自动提取系统;高通量植物荧光表型检测平台;高光谱成像系统;水稻穗长测量系统;同时我们也提供作物考种服务,图像分析定制服务,表型仪器定制服务。
    留言咨询
  • 产品简介高通量植物分蘖测量系统 PhenoTiller2.0用于测量温室盆栽的禾本科植物的分蘖数、分蘖角度、分蘖大小、分蘖形状等分蘖参数;以及株高、株型、颜色、生物量等植株性状参数。以微型CT和RGB成像为基础,结合农业应用实践重新设计,主要包括自动传送系统、X-射线发射器、X-射线检测器、自动旋转平台、伺服电机控制器和电脑工作站。测量时利用传送系统将被测植株传送至旋转平台,通过电脑工作站对伺服电机控制器进行调控,使之稳定匀速驱动旋转平台进行360°自动旋转,图像自动获取、存储和分析,整个测量过程大约3 分钟完成。系统配置参数Micro-CT成像单元主要技术参数:视野面积:25 x 20 cm最小焦点尺寸:约0.035 mm实际工作电压(kV):40实际工作电流(mA):1剂量当量率:0.06 μSv/h RGB成像单元主要技术参数:视野面积:1607 mm (height) x 1347 mm (width)分辨率:2452 (height) × 2056 (width)镜头焦距:8 mm每株水稻拍摄图像帧数:20物距:1520 mm 系统结构图 图(a)高通量植物分蘖测量系统(PhenoTriller V2.0)整体结构图,图(b)x-ray单元及RGB单元布局设计,图(C)不同角度的水稻样品,图(d)不同角度的x-ray投影图像采集,图(e)正弦图获取,图(f)重建投影图,图(g)图像分割处理,(h)分蘖数、分蘖大小、分蘖形形状提取,(i)分蘖角度计算,图(j)水稻植株表型和分蘖表型性状。
    留言咨询
  • 温室盆栽高通量植物表型成像系统集光电技术、自动化控制技术和计算机图形处理技术于一体,实现水稻、玉米、小麦、油 菜、棉花、烟草、柑橘等盆栽植物表型参数全自动、无损、高通量准确提取。系统整体包括栽培单元、输送单元、成像单元、 图形工作站,根据用户选配情况可在线获取植物RGB可见光图像(VISI)、远红外图像(FIRI)、近红外图像(NIRI)、荧光图像 (FLUI)、高光谱图像(HYPSI)、3D激光图像(3D-LSI)、CT断层图像(CT-I)、多光谱图像(MSI),通过数据软件分析可 得到盆栽植物的株高、株宽、叶片面积、叶片角度等株型参数、鲜重干重等生物量参数、分蘖参数,此外还可根据用户需要定 制化感兴趣的二级性状参数。成像暗室单元暗室尺寸: 2000mm×3300mm×2000mm (可定制)最大植物尺寸:幼苗至 8m自动传送单元传送速度:0-2m/s传送线宽度:500mm定位精度:≤±2mm承重:50-300kg/ 盆(可定制)控制/采集单元控制/采集单元由高性能自动化控制系统和植物图形采集工作站组成,为植物表型成像系统的大脑中枢;可编程序控制器、工 业通讯系统、变频器等均采用国际名牌产品,提供符合Windows标准的友好的人机界面,方便人员操作;单元中充分考虑环 境对设备的影响,保证意外状态下不影响正常运行:故障单元的停机、离线对系统没有任何影响,运用自动均载技术,保证运 行平稳;按照设计规范安装各种探测开关和限位装置防止越程、误操作,并进行信息反馈;采用标准开发协议,支持自有或第 三方平台实时获取植物扫描图像、监控等数据;储存空间无限扩容,以应对不同阶段对数据库性能和存储空间的需求。成像传感器单元RGB可见光成像单元:可测参数:持绿性,卷叶程度,枯死叶比例,生物量,高度等远红外成像单元:可测参数:作物冠层温度分布、叶片蒸腾作用、作物干旱胁迫等相关性状高光谱成像单元:可测参数:无损动态提取海量光谱特征性状,获取不同波段下高光谱图像参数的光谱指数、并基于模型计算植株叶片营养元素含量(N、P、K)、叶绿素含量、水分含量等相关性状。CT成像单元:可测参数:主要用于测量温室盆栽的禾本科植物的分蘖数、分蘖角度、分蘖大小、分蘖形状等分蘖参数、作物植株的茎秆壁粗、壁厚、维管束等茎秆相关参数以及植株内部形态结构、成分含量变化等。多光谱成像单元:三维多光谱冠层扫描仪适用于室外自然光照条件下 农作物冠层的三维多光谱表型数据快速采集,可在 室外自然光条件下采集多光谱数据时,同步测量农 作物冠层的三维点云数据。选型配置表河南大学抗逆改良中心高通量作物表型平台集成高通量表型检测平台、植物生长平台、根系生长平台、植物春化平台,快速高通量计算样品相应表型信息,获取大量高价值 的表型数据,建立表型数据库。
    留言咨询
  • 产品简介高通量植物荧光表型检测平台可以定制化的对小型样品进行荧光图像采集,通过定制化的数据分析软件连续720小时以上获取各类小型植物荧光图像参数以及动态参数,可用于拟南芥,烟草等小型植物的表型研究。应用领域植物病理研究作物抗病研究植物动态生长发育研究主要配置成像单位像素:14μm成像单元类型:高分辨率CCD相机照明位置:顶部,侧部 照明光源类型:紫外灯(荧光成像光源),日光灯(生长光源)尺寸:2000*2000*2000mm(长宽高)电源:单相 220VAC控制装置:WindowsPC控制机柜软件:在线控制,图像处理,数据分析主要性能参数可测参数:荧光图像亮斑个数,纹理,面积变化趋势,荧光亮度变化趋势等效率:5s/株检测方式:在线实时采集数据存储:JPG格式实存储数据分析:EXCEL格式自动存储系统稳定性:连续工作720h以上工作环境温度:0-50℃产品图片高通量植物荧光检测平台、荧光图像采集软件图、数据分析图(a)为原始荧光图像,(b)为分割伪彩图。公司简介谷丰光电(GREENPHENO)致力于植物表型,农业科研和机器视觉系统集成领域,具备核心图形处理、光机电控制、以及系统集成技术,掌握一批自主知识产权。主营业务包含:水稻数字化考种机;玉米在体、离体数字化考种机;全自动银染显影仪;双目视觉谷粒检测仪;叶片表型快速分析仪;水稻穗长测量系统;高通量植物分蘖测量系统;高通量植物表型参数自动提取系统等光机电一体化仪器设备定制,应用软件及算法开发。谷丰光电将立足于高端农业科研仪器、植物表型系统,坚持高科技、高价值、高效益三大目标,打造实力品牌优势、系统优势和价值优势的知名光电企业。
    留言咨询
  • 高通量植物荧光表型检测平台可以定制化的对小型样品进行荧光图像采集,通过定制化的数据分析软件连续720小时以上获取各类小型植物荧光图像参数以及动态参数,可用于拟南芥,烟草等小型植物的表型研究。应用领域:植物病理研究作物抗病研究植物动态生长发育研究成像单位像素:14μm成像单元类型:高分辨率CCD相机照明位置:顶部,侧部照明光源类型:紫外灯(荧光成像光源),日光灯(生长光源)尺寸:2000*2000*2000mm(长宽高)电源:单相 220VAC控制装置:WindowsPC控制机柜软件:在线控制,图像处理,数据分析 可测参数:荧光图像亮斑个数,纹理,面积变化趋势,荧光亮度变化趋势等效率:5s/株检测方式:在线实时采集数据存储:JPG格式实存储数据分析:EXCEL格式自动存储系统稳定性:连续工作720h以上工作环境温度:0-50℃ 高通量植物荧光检测平台、荧光图像采集软件图、数据分析图(a)为原始荧光图像,(b)为分割伪彩图。主营业务包含:水稻数字化考种机;经济型水稻数字化考种机;玉米籽粒数字化考种机;玉米果穗考种机;叶片表型快速分析仪;双目视觉植物表型分析系统;小型植物表型分析系统;高通量植物表型参数自动提取系统;高通量植物荧光表型检测平台;高光谱成像系统;水稻穗长测量系统;高通量植物分蘖测量系统;同时我们也提供作物考种服务,图像分析定制服务,表型仪器定制服务。谷丰光电将立足于高端农业科研仪器、植物表型系统,坚持高科技、高价值、高效益三大目标,打造实力品牌优势、系统优势和价值优势的知名光电企业。
    留言咨询
  • 空间集约型植物根系表型高通量移动测量系统空间集约型植物根系表型高通量移动测量系统是针对作物根系生长特性和根系表型图像采集需要,研发的可用于根系生长可视化动态监测系统。该根系表型系统空间利用率高,且基于CIS扫描仪设计了适用于根系表型图像采集的专用传感器,可实现作物根系表型图像的无畸变、高分辨率及高质量采集,同时可选配搭载AI视觉机械臂的全方位智能自主移动机器人,进行植物根系的全自动高频次采集。广泛应用于小麦、水稻、玉米、大豆、棉花和油菜等作物,可测量根系条数、最大根长、总长度、根夹角、表面积、根系分布范围、体积、根系生物量等。主要参数主要配置&bull 成像单元类型:CIS根系图像扫描仪&bull 尺寸:400*400*2000mm(长宽高)&bull 软件:原始图像数据储存、基于深度学习算法的web端根系图像表型数据自动处理,数据分析及存储&bull 扁根盒数量:单套45个主要性能参数通量:10s/个工作温度:-10℃~60℃;数据格式:jpg等图像格式; 分辨率(可选):600 DPI 应用案例使用该设备进行大规模小麦群体全生育期的根系表型监测,探究全生育期范围内根系表型对干旱、渍水等非生物胁迫的动态响应。产地与厂家:中国Eco-mind
    留言咨询
  • 全自动、高通量对大量植株进行成像特别适合植物功能基因组学和植物表型组学遗传育种、突变株筛选、表型筛选的强大工具机器人技术、图像分析和大规模计算能力的完美结合 实验室高通量植物成像系统&mdash &mdash Scanalyzer HTS是一套可以全自动、高通量对大量小植株进行成像的系统,可以选择配置可见光(VIS)成像、近红外(NIR)成像、红外(IR)成像、荧光成像或激光扫描3D成像(只适合高度15 cm以下的小植株)中的一种或多种。成像系统带程控移动装置,可以在X轴和Y轴上进行移动,并配有射频或条形码读取器。Scanalyzer HTS系统通过软件控制摄像头移动到样品上方(多孔板或小盆)进行拍照,照片数据与该样品的电子标记(射频或条形码)一起存储。软件也可控制摄像头对多孔板上的每个孔进行单独成像,每个孔的数据分布存储(告诉软件多孔板类型,然后自动编码,如A01、A02&hellip &hellip )。(下载演示视频)软件可以控制系统每天自动对样品进行成像,获得样品成像的时间动力学变化。只要点击样品的编码,就可以获得样品的图像及分析数据的时间动力学变化,并可进行复杂的统计学分析和图表分析。系统提供顶部光源和底部光源,并可通过软件控制光强变化。根据测量样品数目的多少,可以选择配置4、24、48或72个多孔板的版本,不同版本的外观尺寸差别很大。如有特殊需要,可以定制更大版本。由于全自动、高通量测量获得的数据非常庞大,本系统必须配置服务器来存储数据。选购PHP远程数据库软件,还可以对系统进行远程原理、控制和分析。主要功能◆ 全自动、高通量对植物等小型样品进行可见光成像、近红外成像、红外成像、荧光成像(包括整株GFP成像)和/或激光扫描3D成像(每套系统可选择一种或多种)◆ 通过可见光成像可以测量植物的结构、宽度、密度、对称性、叶长、叶宽、叶面积、叶角度、叶颜色、叶病斑、种子颜色、种子颜色面积等等50多个参数◆ 通过近红外成像可以分析植物的水分分布状态、水力学研究、胁迫生理学研究等◆ 通过红外成像可以进行植物干旱胁迫研究、蒸腾研究等◆ 通过荧光成像可以分析植物的生理状态◆ 样品可以是培养在多孔板中(如12、24、48、96、384孔板),也可以是长在小花盆中。◆ 高通量测量大量样品,标准配置可选择装4、24、48或72个多孔板的版本◆ 花盆大小范围,直径3.64 ~ 20.51 cm,高2.79 ~ 15.44 cm◆ 可选择成像分辨率,特别适用于96孔板高精度测量◆ 进行动物/昆虫的游动/运动测试时,可自动获取图像应用领域植物功能基因组学、植物表型组学、遗传育种、突变株筛选、植物生理学、农业科学、植物病理学、植物形态建模、植物生物信息学、种子生理学、种子病理学、植物胁迫生理学、植物水力学等研究领域。HTS系统的成像扫描模式多孔板扫描模式整个多孔板像素每个孔的像素每个板扫描1次1 228 80012 800每个板扫描4次4 915 20051 200每个板扫描9次11 059 200115 200每个板扫描16次19 660 800204 800每个板扫描96次117 964 8001 228 800应用实例◆ 整盆拟南芥的GFP成像实验室型高通量植物成像系统Scanalyzer HTS特别适合于拟南芥植株的整株甚至是整盆的GFP成像。软件可以自动过滤掉盆和土壤引起的噪音,把有用的图像抽提出来进行进一步分析。对于不同的GFP,可以定制激发波长。下图是整盆拟南芥的eGFP成像。◆ 通过荧光成像进一步分析植物的生理状态植物的可见光成像更多的是反映植物的表观信息,对生理状态的反映有限。而荧光成像可以较深入的反映到植物的生理状态,如下图中,热水处理部分叶片后,可见光成像看不出有什么区别,而荧光成像则可以反映出受损伤的部位。热水处理部分叶片(红框区域)后的可见光成像原始照片和软件成像热水处理部分叶片(红框区域)后的荧光成像原始照片和软件成像◆ 植物的生长动力学变化高通量Scanalyzer HTS系统特别适合于研究植物的形态学指标和在生长过程中这些指标随时间的动力学变化,如下图就是利用Scanalyzer HTS系统研究的拟南芥植株面积随时间的动力学变化。利用Scanalyzer 3D系统可以研究玉米等大植株整个生活史的动力学曲线,各种形态学指标都可以测量。t = 0 dt = 4 dt = 7 dt = 11 d基于面积的植株生长动力学曲线◆ 利用表型参数的雷达图进行植株分类通过Scanalyzer HTS系统可以获得大量的植物表型参数,利用这些表型参数绘制的雷达图,可作为反映植株形态的&ldquo 指纹图谱&rdquo 。根据这种&ldquo 指纹图谱&rdquo 可以对植株根据表型进行分类,特别适合于数量性状基因座(QTL)研究。下面两个图根据拟南芥的表型雷达图进行的植物分类,对于其它大型的农作物用Scanalyzer 3D系统测量后,也可以获得类似的结果。利用表型参数的雷达图进行植株分类南芥表型参数的静态雷达图(&ldquo 指纹图谱&rdquo )利用5种参数做的雷达图,分类结果用颜色显示。数据为拟南芥生长到第13天时的结果。更多详细介绍,请点击链接:
    留言咨询
  • PlantScreen野外高通量植物表型分析平台——Field-based High-throughput Phenotyping PlatForm 建立对野外生长植物迅速、准确、高通量非损伤多性状表型分析能力,是21世纪作物遗传育种面临的最 大挑战(Andrade-Sanchez et al.2014, Furbank and Tester 2011, Houle et al. 2010)。野外高通量植物表型分析平台对遗传学、生物技术、作物育种,及作物对气候变化、土壤、耕作管理的响应研究监测等,特别是现代农业、智慧农业都具有无比重要的意义。 PlantScreen野外高通量植物表型分析平台集成了自动化控制系统、叶绿素荧光成像测量分析、植物热成像分析、植物高光谱分析、RGB彩色成像分析及互联网+表型大数据平台等现代先进技术,以最 优化的方式实现野外植物原位高通量表型分析测量、植物胁迫响应与作物抗性成像分析测量筛选、植物生长分析测量、性状识别及植物生理生态分析研究等。作为全球第 一家研制生产植物叶绿素荧光成像系统的厂家,PSI公司在植物表型成像分析领域处于全球的技术前列,大面积叶绿素荧光成像分析等成像分析平台使PlantScreen成为植物表型分析与功能成像分析的最为先进的仪器设备。 功能特点:1) 大型多功能成像平台(Multi-functional sensor platform),集成了叶绿素荧光成像、RGB成像、红外热成像、LiDAR、高光谱成像等各种先进高端传感设备,全面分析:a) 结构性状表型分析(RGB成像及LiDAR)b) 功能表型分析(叶绿素荧光成像)c) 形状与生长评估(RGB成像及LiDAR)d) 光合作用表现(叶绿素荧光成像)e) 生物胁迫与非生物胁迫响应(叶绿素荧光成像、高光谱成像、红外热成像)f) 生理生态表现包括光合生理、气孔动态、生化代谢指标等等(叶绿素荧光成像、高光谱成像、红外热成像)2) 全球领 先的FluorCam叶绿素荧光成像技术,是作物生理生态功能性状的必备分析技术,智能LED光源提供调制测量光可以在白天自动成像测量光适应条件下的叶绿素荧光及光合效率;配备独有的高灵敏度叶绿素荧光成像镜头,成像面积达35cm x 35cm(可客户定制80cm x 80cm),是世界上单幅叶绿素荧光成像面积最 大的技术设备3) 可安装在拖拉机上进行移动式自动成像分析,也可安装在专用自动运行平台上沿样带轨道自动运行的同时进行样带全覆盖自动扫描成像和在线分析4) 表型分析大数据平台,包括系统控制、数据采集、数据处理分析与可视化在线显示、数据库等5) PSI表型研究中心专家团队技术支持,每年在美国和欧洲分别组织举办一次世界植物表型研讨会6) 可选配基于无人机技术(UAV-based)的PhenoUAS无人机高通量表型分析平台,使基于地面的表型分析scalling-up到空中大区域快速表型分析7) 可选配土壤气象监测站,全面分析环境条件与表型性状的关系8) 可选配植物生理生态监测系统,同步监测植物光合作用及果实生长等信息9) 可选配自动称重数字化培养盆,进行精确称重、土壤水分监测、自动浇灌等主要技术指标:1. 一体式多功能自动成像分析平台,集成了智能LED光源及叶绿素荧光成像模块、RGB成像分析模块及其它如红外热成像、LiDAR激光扫描、高光谱等选配成像模块,通过操作系统自动运行、自动分类存储、自动在线分析等2. 叶绿素荧光成像分析(标配): a) 3色智能LED激发光源,620nm脉冲测量光、白色光化学光和最 大饱和光闪、735nm红外光用于测量Fo’等b) 可选配蓝色光源与7位滤波轮用于多光谱多波段荧光测量如GFP成像测量c) 独有高灵敏度CCD叶绿素荧光成像传感器,帧频达50fps,有效捕捉叶绿素荧光瞬变,分辨率720x560像素,A/D 12比特,具备视频模式和快照模式;可选配高分辨率CCD,分辨率1360x1024,帧频20fps,A/D 16比特d) 单幅成像面积35x35cme) 成像测量参数:可进行黑夜暗适应测量及白昼光适应测量,测量参数包括Fo, Fm, Fv, Fo’, Fm’, Fv’, Ft, Fv/Fm, Fv’/Fm’, Phi_PSII, NPQ, qN, qP, Rfd等叶绿素荧光参数,用于分析植物光合效率、适合度、生物与非生物胁迫及作物抗性、恢复力等f) Fv/Fm、Kautsky诱导效应、荧光淬灭分析等完备自动化测量程序(protocols)与测量参数,如Fv/Fm程序测量时间仅需10sg) 叶绿素荧光数据在线分析,包括柱状图、测量参数图、数据表格等,具备自定义图像分割等功能,可进行不同时间尺度(如日、月、整个生长季节等)的多参数动态分析h) 是真正的二维同步成像,所得叶绿素荧光参数是真正的基于像素点的二维分布参数,避免简单化的“激光诱导成像”(优点是轻便、省电)仅仅是一维成像(点或线)、不能同步化二维成像、易受环境因素影响(如风吹草动即产生严重误差)、成像参数只是模拟参数(根据激光扫描快慢得到的快速测量荧光与慢速测量荧光不是真正的最小荧光和最 大荧光,所得参数“光量子产量”只是模拟光量子产量需要用进行校准后参数才能使用)、测量参数单一(只能得到快速测量荧光和慢速测量荧光及由此计算出的模拟光量子产量或称光量子效率)、技术不成熟(找不到参考文献)等问题i) 是世界上用于植物高通量表型分析应用最广、发表论文最多的技术手段3. RGB成像分析(标配):可对植物的形状、颜色绿度等进行成像分析,分辨率5Mpx,并可自动对植物花朵数量、水稻分蘖等进行统计分析,主要分析测量参数包括:1) 叶面积(Leaf Area: Useful for monitoring growth rate) 及其动态变化2) 植物紧实度/紧密度(Solidity/Compactness. Ratio between the area covered by the plant’s convex hull and the area covered by the actual plant)3) 叶片周长(Leaf Perimeter: Particularly useful for the basic leaf shape and width evaluation (combined with leaf area))4) 偏心率(Eccentricity: Plant shape estimation, scalar number, eccentricity of the ellipse with same second moments as the plant (0...circle, 1...line segment))5) 叶圆度(Roundness: Based on evaluating the ratio between leaf area and perimeter. Gives information about leaf roundness)6) 叶宽指数(Medium Leaf Width Index: Leaf area proportional to the plant skeleton (i.e. reduction of the leaf to line segment))7) 叶片细长度SOL (Slenderness of Leaves)8) 植物圆直径(Circle Diameter. Diameter of a circle with the same area as the plant)9) 凸包面积(Convex Hull Area. Useful for compactness evaluation)10) 植物质心(Centroid. Center of the plant mass position (particularly useful for the eccentricity evaluation))11) 扁平指数(Flattening index)12) 相对生长速率(Relative growth rate)13) 绿度指数与分级分析(暗绿、健康绿、浅绿等)14) 颜色分级与分区分析(Color segmentation for plant fitness evaluation)15) 其它性状与颜色分级动态分析4. 3D激光扫描分析(选配):用于植物结构表型分析,通过点云模型自动分析计算植物结构、生物量、叶片数量、叶面积、叶片倾斜角度、植物高度等各种形态结构参数5. 红外热成像分析(选配):焦平面阵列微测热辐射计,分辨率 640×480 像素,波段7.5-13μm,温度范围 -20 – 120℃,分辨率0.05℃@30℃/50mK,成像面积35x35cm,用于成像植物在光辐射情况下的冠层温度分布,并分析植物的气孔导度动态、干旱胁迫及抗干旱能力评估等,良好的散热可以使植物耐受较长时间的高光辐射或低水条件(干旱)6. 高光谱成像分析(选配):波长范围380-1000nm,光谱带数(波段数)675个波段,可成像并分析归一化指数(Normalized Difference Vegetation Index (NDVI))简单比值指数(Simple Ratio Index, Equation: SR = RNIR / RRED)、改进的叶绿素吸收反射指数(Modified Chlorophyll Absorption in Reflectance Index (MCARI1), ?Equation: MCARI1 = 1.2 * [2.5 * (R790- R670) - 1.3 * (R790- R550)])、优化土壤调整植被指数(Optimized Soil-Adjusted Vegetation Index (OSAVI)?, Equation: OSAVI = (1 + 0.16) * (R790- R670) / (R790- R670 + 0.16))、光化学植被反射指数(Photochemical Reflectance Index (PRI), Equation: PRI = (R531- R570) / (R531+ R570))等7. 野外移动平台:平台臂12m跨度,多功能成像平台可在移动平台上左右自动扫描成像分析,可自动扫描宽度达10m的样带,每一次扫描成像面积可达10x0.35m(3.5m2),完成一次扫描时间从不足1分钟到几分钟(根据实验测量程序Protocol而定),移动平台可沿轨道自动运行,运行距离原则上不受限制(受轨道长度限制);移动平台高度2.5m,多功能成像平台高度可调节,以适应不同高度作物成像分析;移动平台4个橡胶轮既可在轨道上通过控制系统自动运行并自动扫描成像,还便于在一般地面上移动、拐弯等,对于75x20m的样方,移动平台可以载荷多功能成像平台一次完成75x10m的样带,然后手动拐弯后再自动完成另一半75x10m的成像分析;配备GPS系统精度达2cm,通过软件自动记录测量数据、位置、时间等,可由柴油发电机提供动力驱动整个平台移动8. 可选配环境测量传感器网络,自动监测记录PAR、环境CO2浓度、空气温湿度、降雨量及土壤水分等。9. 系统控制与数据采集分析系统(表型大数据平台):1) 用户友好的图形界面2) GPS定位功能可进行空间分布信息及时空分布格局分析3) 已内置各种成熟的Protocols,具备用户定义、可编辑自动测量程序(protocols),根据用户设定程序自动完成全部实验。数据结果自动存储并分析,分析的数据结果可自动以动态曲线的形式显示4) MySQL数据库管理系统,可以处理拥有上千万条记录的大型数据库,支持多种存储引擎,相关数据自动存储于数据库中的不同表中5) 可用默认程序进行所有测量,也可通过开发工具创建自定义的工作过程,或者手动操作LED光源开启或关闭、RGB扫面成像、叶绿素荧光成像等6) 实验程序(Protocols)具备起始键、终止键、暂停键7) 系统可通过互联网无线远程控制,允许用户通过互联网远程访问,进行数据处理、下载及更改实验设计,具备用户权限分级功能,防止其他人员误操作影响实验产地:欧洲PSI应用案例: 应用FluorCam叶绿素荧光技术,对野外植物进行原位不同季节长期监测,同时监测植物光合作用(CO2同化)A,结果参见下图。FluorCam叶绿素荧光技术采用激发光脉冲调制技术、高灵敏度CCD传感器(采样频率达每秒50次)技术及智能LED光源,可以大面积(标配每帧成像面积35x35cm)植物/作物成像分析,在野外既可在夜间进行暗适应条件下的叶绿素荧光成像分析,还可在环境光适应条件下进行叶绿素荧光成像分析,比简单的激光诱导叶绿素荧光测量(通过一束点状或线型单色激发光源激发叶绿素荧光并进行测量,优点是省电且可以更轻便)相比有诸多功能优势,不仅测量参数多、可以进行各种叶绿素荧光实验程序成像测量分析,而且一次二维成像(真正的成像分析)避免了点状或线型激发光扫描造成的叶绿素荧光测量不同步、野外风吹草动分辨率严重降低等问题。 附:其它野外表型成像分析系统:1) PhenoUAS无人机高通量大田作物表型分析平台2) FluorCam野外移动式叶绿素荧光与RGB成像分析系统3) FluorCam样带扫描式叶绿素荧光与RGB成像分析系统(可选配红外热成像)
    留言咨询
  • &ldquo 温室自动化 + 高通量成像&rdquo 技术机器人技术、图像分析和大规模计算能力的完美结合全自动、高通量对大量植株进行3D成像,从幼苗到成株皆可特别适合植物功能基因组学和植物表型组学植物表型和生理研究的强大助手遗传育种、突变株筛选、表型筛选的强大工具全自动高通量植物3D成像系统&mdash &mdash Scanalyzer 3D是一套可以全自动、高通量对大量植株(从幼苗到成熟植株即可)进行成像的系统,可以选择配置可见光(VIS)成像、近红外(NIR)成像、红外(IR)成像、荧光成像或根系近红外成像中的一种或多种,每个成像模块包括顶部和侧面两个摄像头,结合样品旋转装置,就可以对植株进行3D形态学分析。如果做小植株(15 cm以下),也可选配激光扫描3D成像。每一种成像模块都有单独的成像区域(&ldquo 暗房&rdquo ),依次进行成像分析。(下载演示视频) 小型版只能自动传送10盆植物,需手动更换花盆大型定制版(温室版)可自动传送1200盆植物的系统该系统通过可见光成像可以测量植物的结构、宽度、密度、对称性、叶长、叶宽、叶面积、叶角度、叶颜色、叶病斑、种子颜色、种子颜色面积等参数;通过近红外成像可以分析植物的水分分布状态、水力学研究、胁迫生理学研究等;通过根系近红外成像分析植物根系和土柱中的水分分布情况;通过红外成像可以进行植物干旱胁迫研究、蒸腾研究等;通过荧光成像可以分析植物的生理状态。由于所有植物都通过条形码或射频标记,其整个生活史的的不同阶段所有的表型数据都可定期进行测量。整套系统包括传送带、成像模块、&ldquo 暗房&rdquo 、运输车、浇水和称重装置、控制系统等。其中传送带、运输车和植物在温室中运转,所有的植物可以由软件控制在传送带上进行动态分布,以避免由于温室中的光、温、湿分布不均匀造成的影响;成像模块、&ldquo 暗房&rdquo 、浇水和称重装置安装在独立的空调房中,并通过传送带与温室相连。分析模式有两种:一种是软件控制温室中的植物定期传送到&ldquo 暗房&rdquo 进行成像分析;另一种是人工携带生长在其他温室中的植物放到&ldquo 暗房&rdquo 前的传送带上,进行成像分析。软件通过成像分析的结果,根据表型数据可以对植株进行高通量筛选。通过对成像结果的分析,可以进行表型组学研究。目前我国对于作物的研究主要是利用传统的遗传育种方法以及基因组学的方法进行研究, 然而仅停留在基因组学研究水平上显然是不够的,并不能全面、彻底地阐明作物的生理功能,特别是作物表型与其产量、生理状态之间的相互关系,以及不同的环境条件对作物生长状况、产量、种质质量等的影响。这就需要对作物进行表型组学的研究,通过研究不同的表型性状来确定作物的遗传性状,并且寻找不同环境因子对作物各种指标影响的阈值,从而能够更加科学地阐明作物生长机理,指导作物生产。 ◆ 3D成像可选VIS、NIR、IR、根系NIR成像、荧光成像中的一种或多种,每种成像有独立的摄像区域(&ldquo 暗房&rdquo ),每个&ldquo 暗房&rdquo 的顶部和侧面各安装一个摄像头(拍摄顶部和侧面成像)。花盆底座有旋转装置,可以360度旋转,这样可以获得植株4个侧面的成像信息。结合顶部成像,可以获得完整的植株3D成像信息。针对15 cm以下的小植株,可以选择配置激光扫描3D成像,获得详细的三维形态学信息。◆ 自动传送系统带自动传送装置,所有花盆上都有电子标签,所有拍摄数据根据电子标签归档。可选传送50、100、150、250、375、500、800、1400盆或更多盆的传送装置,花盆和植株的重量可以为1、4、10或25 kg,更重需要定制。◆ 自动浇水和称重装置在温室系统中,可增加自动浇水和称重装置,软件控制对不同编号的花盆采用不同的浇水量,并每日对花盆进行称重。◆ 自动加营养盐装置在温室系统中,与自动浇水装置结合,可以在浇水的同时补充营养盐。◆ 自动喷淋装置在温室系统中,根据电子标签由软件控制是否喷洒农药,可用于检测农作物对农药的抗性或敏感性。◆ 自动分选在温室系统中,只要在传送装置上增加多级T-Junction(丁字路口),就可根据成像结果对大批量的植株进行分选,分选用的阈值参数可以由用户设定,分选级数取决于T-Junction的数目。◆ 服务器存储由于数据量非常大,本系统必须用服务器存储数据。◆ 软件分析软件分析功能非常强大,可以通过植株的编号(电子标签)调出整个生活史的数据,进行时间动力学分析,对拍摄的照片进行动画演示,对同一植株的时间动力学数据进行图表统计分析,对不同植株的数据进行复杂的统计学分析和图表分析。◆ 远程管理通过专用远程服务器管理软件,可以在异地对本系统的运转状况进行监测、改变测量程序或分析测量数据。◆ 系统大小最简单的只能传送10盆植物的系统可以安装在室内,高度(Y轴)是4 m,宽度(Z轴)是2 m。如果只配置一个成像模块,则系统长度(X轴)是4.5 m,每增加一个成像模块,系统长度(X轴)增加1.5 m。传送上百甚至上千盆植物的系统,多安装在温室内。实际大小可根据现场情况进行定制。主要功能◆ 全自动、高通量对植物等小型样品进行可见光成像、近红外成像、红外成像、荧光成像(包括整株GFP成像)和/或激光扫描3D成像(每套系统可选择一种或多种)◆ 通过可见光成像可以测量植物的结构、宽度、密度、对称性、叶长、叶宽、叶面积、叶角度、叶颜色、叶病斑、种子颜色、种子颜色面积等等50多个参数◆ 通过近红外成像可以分析植物的水分分布状态、水力学研究、胁迫生理学研究等◆ 通过根系近红外成像分析植物根系和土柱中的水分分布情况◆ 通过红外成像可以进行植物干旱胁迫研究、蒸腾研究等◆ 通过荧光成像可以分析植物的生理状态测量参数* 植株高度、宽度和密度* 植株结构分析、骨架分析、紧密性分析、对称性分析* 叶片长度、宽度、叶角度、叶面积* 植株紧凑性(叶角度和紧密性)* 植株体积* 植株和叶片的颜色分析,包含发育状态、病理学等信息* 植株鲜重* 植株和叶片含水量、玉米水分利用效率* 植株生长速率* 种子颜色、种子数目* 开花时间、花穗颜色、大小、性状等应用领域植物功能基因组学、植物表型组学、遗传育种、突变株筛选、植物生理学、农业科学、植物病理学、植物形态建模、植物生物信息学、种子生理学、种子病理学、植物胁迫生理学、植物水力学等研究领域。技术优势和先进性请联系我们获取电子版资料。 可以自动传送10盆植物的小型系统T-Junction分选自动灌溉装置侧面、侧面旋转90度和顶部成像应用实例◆ 植物颜色分类植物的颜色是反映植物健康状态的关键指标之一,而人肉眼对颜色的敏感度较低,存在较大的视觉误差。利用Scanalyzer系统可以在拍摄植物可见光照片的基础上,通过软件对获得的颜色信息进行锐化处理,从而使原本肉眼不易区分的颜色差别,显著的区分开来。 可见光成像 软件锐化处理后的图像◆ 植物骨架/结构分析植物骨架和架构信息,是非常典型的植物表观信息,是农业信息学的重要研究内容。对于杂交育种而言,Scanalyzer系统有助于快速进行表型筛选,也可用于了解整个生活史以及受到胁迫后的骨架/结构变化。 植物骨架分析植物结构分析◆ 植物形态学分析成像后,通过Lemna Tec公司专业的软件工程师团队开发的软件,可以对植物进行详细的三维形态学分析。对于所拍摄的每一张图片,都可获得50多个形态学参数。 对于本图而言,可以获得单个叶的长度、单个叶的面积、平均叶宽、茎长、茎宽、茎体积、弯曲度(Bent index)、叶卷曲指数(Leaf curling index)、叶朝向(Leaf orientation)、单个叶的颜色分类等等指标。本图用于详细的植物朝向、角度分析。 通过顶部成像和多个侧面成像,可以获得植物X、Y、Z三个轴的信息,根据各个方向的叶面积、茎长、茎宽、叶长、颜色等来估算植物的生物量。实验证明这种估算的生物量与实际生物量有非常好的线性关系。 X轴为实际鲜重,Y轴为通过成像参数估算的鲜重二者有非常好的线性关系由于转基因植物有很高的形态变异性,因此对叶片和茎杆进行定量非常重要◆ 利用近红外(NIR)成像分析植株和土壤的水分利用情况近红外成像可以直观的反映植物不同部位的含水量,通过软件处理加上代表不同含水量的颜色后,可以非常直观的看出不同处理下植株不同部位的含水量变化。如果植物是生长在专用土柱中,还可以对植物根系和土壤的含水量变化进行定量分析。 玉米停止浇水8 h后(轻度干旱处理),植株含水量的变化可以通过近红外成像明显从看出来,特别是老叶片失水严重。不同叶片的失水情况还可以通过软件获得数据,并可做图表分析。 土柱和玉米整株的近红外成像(原始图像)干旱过程中土柱的含水量变化干旱0 h和8 h时土柱中不同层的含水量分布注:LemnaTec公司设计的土柱筒,是透明聚丙烯塑料材质,内装自然土壤,高50 cm,直径5、8或10 cm,装土1.5 3.0 5.0 kg,底部有排水孔。培养时土柱外部套上不透明PVC管遮荫,放置苔藓和土壤藻类滋生,测量时将遮光管取下即可。◆ 利用近红外(NIR)成像分析NIR成像分析小麦干燥过程中含水量的变化本例是小麦在高温处理下,植株含水量的时间动力学变化可以通过NIR成像直观的反映处来,并进行定量分析。 高温处理16 h,小麦的NIR成像变化小麦植株含水量变化的定量分析,可以看出,随着高温处理时间的延长,小麦含水量逐渐降低◆ 利用红外(IR)成像检测植物温度差异红外成像,也叫热成像,用于检测植株的温度变化。由于植株温度与植物的蒸腾作用和含水量密切相关,因此红外成像常用于干旱胁迫研究、群体蒸腾等领域。 通过肉眼很难区分哪株玉米受到干旱胁迫 通过红外成像,明显看出右边的玉米温度更高,说明含水量低,受到干旱胁迫◆ 利用红外成像反映小麦气孔的关闭照光时气孔开放,叶片进行蒸腾作用。关光4 min后就检测到叶片温度的显著上升,说明气孔开始关闭。Scanalyzer 3D系统可以非常灵敏的检测气孔状态。 随着时间的延长,气温与叶片温度的差异越来越小,说明气孔逐渐关闭◆ 静态根密度分析析Scanalyzer 3D系统可以拍摄生长在土柱中的植物根系可见光照片,软件自动分析土柱表层的根系。由于土柱的运输车下自带程序控制的旋转台,就可以通过软件控制自动顺序旋转90度角来完成4个不同侧面的成像,获得更完善的根系信息。 不同植物根系的静态分析同一株植物4个侧面的根系成像◆ 根系动态生长分析析Scanalyzer 3D系统可以全自动、高通量的拍摄植物根系照片,结合电子标签,就可以对特定编号的植物根系数据进行时间动力学分析。从下图中的结果可以看出,从第35-100天,根生长最快,从表层有大量的根往下生长,从第35-60天,浇水过量,导致底部很多根死亡。 左图示出了一株植物根系随时间的生长发育过程,右图示出的是不同时间点的根系覆盖面积随深度分层的变化◆ 鉴定非转基因植物喷洒农药后,没有转入抗农药基因的植物,可以通过颜色鉴定出来。 ◆ 植物个体和群体的形态学应用举例Scanalyzer 3D成像系统可以获得大量的形态学参数,并且针对不同的材料,可以获得有针对性的参数。下面是几个例子: 水稻植株成像的部分参数:* 叶片长度(即使交叉也可测量)* 叶片面积* 叶片颜色* 植物高度* 植物宽度* 叶片密度* 叶片朝向 稻穗成像的部分参数:* 稻穗面积* 稻穗颜色* 稻穗长度* 稻穗最大长度* 稻穗结构* 稻穗骨架(skeleton) 群体表型成像的部分参数:* Criteria of plant growth* 高度* 紧密性(Compactness)* 叶朝向&ndash 弯曲指数* 密度* 对称性* 单位高度的平均植物宽度基于复杂的形态学指标的表型分析:* 结构朝向* momentum of inertia* 高度* 宽度* 圆度(roundness)* 紧密性◆ 植物开花过程的动态监测由于绝大多数植物的花的颜色与茎叶不同,利用Scanalyzer 3D成像系统的高通量、全自动、带电子标签的特性,就可以自动监测植物是否开花、开花时间、花朵数目、花朵发育阶段、花败时间等信息。 开花过程监测的部分参数:* 叶面积* 白化(Chlorosis)* 黑斑(Necrosis)* 衰老(Senecence)* 角果数目* 角果长度* Start flowering* End flowering* Stay green* Morphology* 生长速率Scanalyzer 3D系统与PL和HTS系统的比较 Scanalyzer PLScanalyzer HTSScanalyzer 3D高通量否是是小植株成像是是是96孔板成像是是否大植株成像否否是根系研究否否是可见光成像可以可以可以,3D荧光成像可以可以可以,3D红外成像可以可以可以,3D近红外成像可以可以可以,3D根系近红外成像否否可以,3D激光扫描3D成像否可以可以,只限高度15 cm以下的小植株部分用户* 澳大利亚植物功能基因组中心(Australian Centre for Plant Functional Genomics)位于阿德雷德(Adelaide)大学,建有澳大利亚植物表型组设施(Australia Plant Phenomics Facility)&mdash &mdash 植物加速器(Plant Accelarator)和高精度植物表型组中心(The High Resolution Plant Phenomics Centre)。2010年1月28日,造价超过3000万美金的&ldquo 植物加速器&rdquo (The Plant Accelerator)正式运行,并对全球科学家开放。&ldquo 植物加速器&rdquo 是一套国际上到目前为止进行植物表型组研究的最复杂、造价最昂贵的设备。它的核心由4个140平米的温室以及两套&ldquo 全自动高通量植物3D成像系统Scanalyzer 3D&rdquo 组成,所有进行植物表型研究的成像设备,包括传送带、成像模块、&ldquo 暗房&rdquo 、运输车、控制系统等都由德国LemnaTec公司提供。每套Scanalyzer 3D系统占有两个140平米的温室,带可见光成像、近红外成像、根系近红外成像、红外(热)成像和荧光成像模块,以及自动浇水和称重的设备,并配有可自动传送2400盆植物的传送带和运输车。两套Scanalyzer 3D系统的传送带长度加起来达1.2公里。如果两套系统24 h连续运转,每天可以获得4000-6000盆植物的表型成像数据,一年可以获得30-60T的数据量。根据实际实验情况,预计&ldquo 植物加速器&rdquo 一年可以进行16万盆植物的实验。高精度植物表型组中心有一套不带温室传送的基础型Scanalyzer 3D系统,已运转多年。* 法国农业科学研究院(I&rsquo institut National de la Recherche Agronomique,INRA,French National Institute for Agricultural Research)是世界上最有科研实力和竞争力的农业研究机构之一。INRA Montpelier(蒙彼利埃)正在建设一套传送1400盆植物的系统,2010年中完工;INRA Dijon(第戎)正在建设一套传送1482盆植物的系统,2010年底完工。* 德国莱布尼茨植物遗传和作物研究所(Leibniz-Institut fü r Pflanzengenetik und Kulturpflanzenforschung,IPK,Leibniz Institute of Plant Genetics and Crop Plant Research)IPK是德国的著名公立研究所,在大麦杂交育种方面很有名。到2010年底有三套Scanalyzer系统运转:1) 目前正在运转一套能600盆植物的系统,专门做大麦研究2) 一套做拟南芥的S惨案了原则让 3D系统,能传送600盆拟南芥,2010年春天投入运转3) 目前正在建设一套大的能传送600盆玉米的系统,预计2010年底投入运转* 意大利麦塔庞特市植物生物技术研究所(Metapontum Agrobios Research Centre for Plant Biotechnology)归政府所有,但以企业化运作,特点在于小麦、西红柿等的基因改良。有一套能传送500盆植物的系统,2009年开始运转* 先锋(Pioneer)/杜邦(Dupont)先锋良种国际有限公司是杜邦集团的子公司,是国际玉米育种巨头!先锋从2005年开始运转一套能传送1500盆植物的系统。* 荷兰Keygene公司在瓦赫宁根,是几家农业公司合资建的一个做研究的公司,有一套小的系统在运转,正在建设一套能传送1100盆植物的系统。LemnaTec公司与Keygene公司合作,承担了一个EuroStar的PhenoCrop项目:Innovation in vegetable plant breeding by large scale deep phenotyping。项目目的:&ldquo The overall objective is to develop new deep phenotyping applications for the LemnaTec Scanalyzer for vegetable crops. Correlation of genotypic data and phenotyping results will lead to new molecular markers or gene clones that positively contribute to complex commercial traits in vegetable plants&rdquo 。项目总经费达142万欧元,预计2011年结题。* 巴斯夫(BASF)国际化工巨头,从1998年开始介入植物科学研究,兼并了比利时CropDesign公司,并与孟山都有密切合作,在玉米、土豆、甜菜、苜蓿等的遗传育种方面取得了丰硕成果。2006年,BASF USA和BASF Germany分别建立了一套能传送800盆和300盆植物的Scanalyzer 3D系统。* 英国草地与环境研究所(Institute of Grassland and Environmental Research,IGER)正在建设一套可以传送800盆植物的系统,预计2010年底或2011年初运转* 拜耳作物科学公司(Bayer CropScience)是拜耳集团三大业务子集团之一、全球领先的创新型作物科学公司。拜耳作物科学公司的销售额(2009年)为65.10亿欧元,约占拜耳集团销售额的20.8%。拜耳作物科学公司在水稻、油菜以及蔬菜育种方面占有很大市场份额。到2010年中,Bayer CropScience Belgium将建成一套可传输600盆植物的系统;到2010年底,Bayer CropScience Germany将建成可传输1200盆植物的系统。更多详细介绍,请点击链接:
    留言咨询
  • WIWAM植物表型成像系统由比利时SMO公司与Ghent大学VIB研究所研制生产,整合了LED植物智能培养、自动化控制系统、叶绿素荧光成像测量分析、植物热成像分析、植物近红外成像分析、植物高光谱分析、植物多光谱分析、植物CT断层扫描分析、自动条码识别管理、RGB真彩3D成像等多项先进技术,以优化的方式实现大量植物样品——从拟南芥、玉米到各种其它植物的全方位生理生态与形态结构成像分析,用于高通量植物表型成像分析测量、植物胁迫响应成像分析测量、植物生长分析测量、生态毒理学研究、性状识别及植物生理生态分析研究等。SMO机械设备制造与设计工程公司是一家将大规模自动化理念和工业级零件和设备整合入植物成像系统的厂家,在机械自动化以及机器视觉成像领域拥有丰富的设计和实践经验,为欧洲客户提供机械设计解决方案,SMO公司将机械领域的先进理念带入了植物表型机器人领域,所采用的配件均为工业界广泛认可的高品质配件,耐受苛刻环境,另外表型设备领域的诸多自动化配件,均由SMO公司自主设计,因公司拥有极为强大的工程师团队,基于工业领域的丰富经验,可针对不同客户需求,一般2-3周就可以提供极复杂表型成像系统的解决方案。目前WIWAM植物表型平台分为WIWAM XY,WIWAM Line以及WIWAM Conveyor3个系列,同时还提供WIWAM Boxing柜式成像系统,也提供野外表型成像系统设计方案。植物表型成像系统WIWAM XY产品介绍WIWAM XY是一款高通量可重复性表型机器人,用于对小型植物,如小玉米植物研究。该机器人可定期对多种植物参数进行自动化灌溉和并测量多种植物生长参数。WIWAM XY代替了很多手工处理、省时省钱、精度较高。WIWAM XY由花盆定位桌面,不同个体线路,底层端口机器人以及1或多个成像或称重/浇水站组成。全套系统可以安装在现有生长室,内置高品质工业部件。植物在各自花盆内生长,预设时间间隔,机器臂提取植物,将其带到成像和称重浇水工作站。机器人将桌面上的线路移到旁边,生成机械臂到定位花盆所需空间,并将其提升脱离桌面。RFID读取装置以及花盆底部的RFID标签,可作为额外花盆识别法,识别和校正桌面上因手工花盆安置造成的错误。通常旁边取景照相机从不同角度获得图像。成像站可安装一系列照相机系统。组合称重/浇水站集成在机器臂上。花盆中植物在浇水时旋转以获得较佳水分布。灌溉精度较高可达+/- 0.1mL。另外,灌溉可基于自动目标重量计算或固定量。在整个实验过程中,可有效控制土壤湿度水准。集成光、温度和湿度传感器可监控温度,详细记录实验生长条件。植物表型成像系统WIWAM XY产品特点1、浇水时花盆旋转以获得较佳水分布2、高精度灌溉(达0.1mL!).3、植物表型成像系统WIWAM XY 可配置环境传感器4、植物表型成像系统WIWAM XY 配有直观用户界面5、开放式数据库结构6、可提供全定制系统成像系统优势所有表型平台均为SMO工程部门自主设计、针对课题组的研究项目快速、准确提供技术方案,设备中诸多备件为自主生产和设计;公司软件设计团队针对具体项目提供有针对性的WIWAM定制软件;SMO和VIB自主开发PIPPA 数据管理、视觉成像和分析软件,系统高效处理整个实验设计的大数据;PIPPA 软件可安装在网络服务器上(包括专有用户管理系统),网络中每个计算机均可操作;在PIPPA软件内,可集成整合外来分析数据和文本;易于获取数据库和原始图像数据;与客户自有IT技术设施进行整合;针对客户对表型设备运行环境了解欠缺的事实,提供表型设备生长室、温室建设交钥匙设计方案,实现环境参数如照明、温度、湿度等控制,提供一站式表型研究解决方案;专门技术人员维护设备、定期指导维护硬件;官方代理密切沟通服务、提供支持反馈;自主电路设计、建筑内电柜设计、机械电缆布线以及PLC管理所有室内设施,将工业领域理念灌输到科研中;多篇利用WIWAM系统进行研究的文章发表在期刊如Nature Biotechnology等上面;迅速增长的用户群;采用开放式框架设计,可整合市面上的所以种类成像模块。应用领域遗传资源和序列数据快速积累,但将该信息与基因功能相关联的进程要缓慢的多,这表明植物表型是理解基因 编码过程以及应用该知识改善作物产量的主要瓶颈。众所周知表型工作是最耗劳力和具技术挑战性的部分,成本高且耗时。但该“表型瓶颈”已可通过集成新型图像获取技术、机器人技术、图像分析技术以及数据处理技术解决。WIWAM 植物表型成像系统集成了这些技术,替代了很多人工处理。该植物表型平台可应用到多个研究领域,包括植物生长调节、耐旱研究、植物生理、盐碱或重金属胁迫反应等。也可在不同光照条件,营养水平或土壤类型下,研究化学物影响.产品可选配模块可见光RGB成像模块可见光RGB成像是所有高通量植物表型平台的核心部分,它分辨率高、测量快速、科研中应用较多、发表文章较多,可以捕获与植物生长和发育相关的大量参数。此外,它们可以提供植物形态和结构的测量,并且包含颜色信息。参数如下:叶面积、植物紧实度/紧密度、叶片周长、偏心率、叶圆度、叶宽指数、植物圆直径、凸包面积、植物质心、节间距、生长高度、植物三维最大高度和宽度、相对生长速率、叶倾角、节叶片数量。叶绿素荧光成像模块叶绿素荧光成像属于定制化设计,成像面积范围是从30x30cm到200x200cm,是目前适合大型植物植株成像的荧光成像系统。它可以顶部成像,也可以侧面成像,甚至顶部和侧面都成像;集成到高通量植物表型平台中,进行高通量的光合表型测量。该模块技术参数如下:Fo, FI, Fm, Ft, Fm’, FI’, Fo’, Fv/Fm, φPSII, φRO, NPQ, qN, qP, Rfd, NDVI, RNIR, RChl, RAnth, RRed, RGreen, RBlue, Chl. Index, Ant. Index等。叶绿素荧光成像技术参数群体植物光合长期监测模块实时对植物进行多传感监控:PSII最大和有效效率,光强,辐射,ETR以及植物面积。群体植物光合长期监测传感器是一款自动多传感器,可测量PSII与最大效率(Fv/Fm)、有效效率相关的参数。通过镜像系统,通过内置计算机控制,激光束打到植物上。每5秒钟,激光束不断变化在植物上的位置,每次循环可生成数百个测量点。系统编程测量每个激光点的PSII效率,光强以及辐射。计算参数有PAR光,Fq’/Fm’以及ETR(电子传 递速率)。ETR与CO2吸收相关。植物面积可从含有叶绿素的测量位置数计算出来。传感器上面有2个内置Licor传感器,PAR传感器以及辐射传感器。传感器可集成在知名的LetsGrow系统中以及wiwam系统中。在系统中,可监测来自该传感器的所有数据并与其它环境数据进行对比。 激光点测量参数:最小(Fo或 Fs)以及最大(Fm或Fm)叶绿素荧光信号、CropObserver顶部光强、CropObserver顶部辐射、计算机24/7实时信息、实时Fv/Fm 和Fq /Fm平均值与分布、实时PAR平均值 μmol/s/ m2、实时辐射平均值 /s/ m2、实时ETR平均值与分布、植物面积近红外成像模块近红外成像主要用于观测分析植物的水分状态及其在不同组织间的分布变异,处于良好浇灌状态的植物表现出对近红外光谱的高吸收性,而处于干旱状态的植物则表现出对近红外光谱的高反射性,通过分析软件可以监测分析从干旱胁迫到再浇灌过程中的整个过程动态及植物对干旱胁迫的响应和水分利用效率,并形成假彩图像,可以与植物的形态指数及叶绿素荧光指数进行相关分析研究。近红外成像模块技术参数红外热成像模块红外热成像主要用于成像分析植物在光辐射情况下的二维发热分布,良好的散热可以使植物耐受较长时间的高光辐 射或低水条件(干旱)。红外热成像模块技术参数高光谱成像模块高光谱成像在估测植物各种生化组分的吸收光谱信息及植物生长情况的检测上表现出了强大的优势,主要用于植物 的营养状况、水分含量、长势情况、病虫害情况监测等。高光谱成像模块技术参数激光3D扫描多光谱成像模块激光3D扫描成像能够耐受全日照辐射而不影响测量,在高精度测量三维点云信息的同时,测量400-900 nm范围内4 个波段的多光谱成像,使得我们可以得到植物在X、Y和Z轴上所有坐标点的多光谱信息,通过点云的空间深度信息和角 度信息,可以对光谱信息进行完美的校准,从而获得更加精准的数据。 激光3D扫描多光谱成像模块技术参数根系CT成像模块根系CT成像是植物表型平台的重要组成部分,成功的实现了原位监测植株根系状态,并对直径20cm花盆内自然土 壤中的根系进行扫描和重建。根系CT成像模块技术参数IT解决方案和储存WIWAM软件在高端工业计算机上运行,触摸屏。该软件配有用户友好图形界面,用于控制机器人站行为以及以极高灵活度设计设计实验。可同时运行多组实验,可运行不同随机模式,可及时规划单个植株或一组植株的处理。在预设启动时间,PC机将向工业PLC发送指令,照管机器人移动。所有成像,称重/浇水以及环境数据均可存于SQL数据库,记录后可用于分析记录。系统采用了开放式数据库结构,可以直接获取图像。该平台可以与高性能计算相连,用于分析储存数据或者可与本地服务器设施整合。SMS邮件服务可以通知用户机器报警和错误,可尽快进行用户干涉。系统可于任一点暂停和停下,UPS(不间断电源)可防止数据丢失和确保在停电后全系统恢复。该软件也有平台管理员系统设置和维护行为通道。图像分析和数据可视化WIWAM Conveyor有VIB开发的图像分析和数据可视化软件支持,此软件包,称为PIPPA,是中央网络界面和数据库,一方面用来为不同类型的WIWAM植物表型平台提供管理的工具,另一方面用于分析图像和数据。PIPPA与该平台通讯,通过将PIPPA网络界面生成的实验结果传到平台。每个花盆的处理和基因型信息已在数据库限定以确保在整个实验中的数据一体性。实验期间PIPPA对来自平台的称重,灌溉测量,环境数据,错误记录以及图像信息进行处理分析。PIPPA支持这些图像后续处理(旋转/收获/等)。图像分析文本可以在PIPPA界面初始化,可设置于网络服务器运行(独立版本)或计算机群运行,以快速生成结果。随后,通过检查数据是否在特定阈值之内可在网络几面对输出文本进行验证,例如,是否生长相关性状,如植物枝条面积一段时间内是否增加。北京博普特科技有限公司是比利时WIWAM植物表型成像系统的中国区总代理,全面负责其系列产品在中国市场的推广、销售和售后服务。
    留言咨询
  • 田间轨道式高通量植物表型监测系统田间轨道式高通量植物表型监测系统是针对植物表型在基因*环境互作下呈现时空动态变化特点,研发的一款长期连续动态监测植株表型的田间轨道式表型监测设备,包括硬件模块和控制模块及软件分析模块。硬件模块以可拓展的嵌入式开发板为核心,可选配激光雷达,RGB相机、多光谱相机、热成像相机及叶绿素荧光等传感器子模块,实现大田环境下作物生长过程中器官尺度的表型特征和生理参数变化的连续测量,可开展光合作用效率、胁迫与抗胁迫等生理性状的表型高通量分析与耐胁迫品种筛选,生成叶绿素荧光、温度、植被指数等数据,广泛应用于小麦、水稻、玉米、大豆、棉花、油菜等。主要参数主要配置 成像单元类型:多元传感器,可选配RGB、多光谱、热成像、及叶绿素荧光成像 软件:在线控制,原始图像数据储存、图像处理,数据分析及存储主要性能参数&bull 工作温度:-10℃~60℃;&bull 数据采集频次:可调作业范围:可根据需求定制&bull 通量:对覆盖范围内植物实现24小时持续监测&bull 数据格式:Ply三维点云、jpg、tif等文件格式可测参数:&bull 形态表型参数:株高、叶面积、冠层覆盖度、叶倾角、绿叶总面积,黄叶总面积,绿叶面积比,叶片衰老程度等&bull 生理表型参数:NDVI、CIgreen等多个与叶绿素/氮含量等生理相关植被指数&bull 冠层温度参数:冠层温度、冠气温差等叶绿素荧光参数:Fv/Fm, ΦPSII 等产地与厂家:中国Eco-mind
    留言咨询
  • 用途:凭借数十年植物科学研究的经验而设计出的PlantScreen植物表型成像分析系统,可用于高通量植物表型监测、植物构架量化以及在自然环境、温室和野外条件下高精度控制测量。 PlantScreen植物表型成像分析系统整合了叶绿素荧光动力学成像、植物形态学和RGB真彩3D成像、植物热成像、植物高光谱成像、植物近红外成像、自动条形码识别管理、植物图像控制软件和植物表型数据分析等系统,通过外接传感器和软件系统可测量光合有效辐射、空气温湿度、CO2、风速等环境因子,用于植物高通量表型成像分析测量、植物胁迫响应分析测量、植物生长分析测量、植物生态毒理学研究、性状识别及植物生理生态分析研究等。 特点:专业定制,根据用户实验需求量身定制;测量参数多样,有热成像、RGB成像、叶绿素荧光成像、高光谱成像、近红外成像等全方位测量参数;适用于多种类型的研究对象,拟南芥、水稻、小麦、玉米等;成像面积大,单幅成像达40cm x40cm;成像分析平台尺寸大,宽10m,高度可调至2.5m,样带轨迹长度100m;可外接环境气象因子传感器,综合分析环境因素的影响;用户可编辑测量程序(protocols),满足特殊实验需求。 技术规格:系统主体成像分析平台宽10m,高度可调,最大2.5m,可沿10m宽样带移动成像,样带轨迹长度100m外接传感器外接传感器和软件可采集PAR、CO2、空气温湿度、风速GPS带GPS精准定位系统实验程序预设常用实验程序(Protocols),用户可自定义、编辑实验程序叶绿素荧光成像系统测量和计算的参数Fo, Fm, Fv, Fo’, Fm’, Fv’, Ft, Fv/Fm, Fv’/Fm’, Phi_PSII, NPQ, qN, qP, Rfd等几十个叶绿素荧光参数成像面积40cm x 40cm测量光橙色620nm光化学橙色和白色双色光饱和光白色或蓝色,最大光强3600μmol.m-2 .s-1镜头分辨率1024 x 768像素,7位滤波轮RGB成像测量参数叶面积、植物紧实度、叶片周长、偏心率、叶圆度、叶宽指数、叶片细长度SOL、植物圆直径、凸包面积、植物质心、节间距、生长高度、植物三维最大高度和宽度、相对生长速率、叶倾角、节叶片数量、其他用于植物适合度估算的颜色定量分级、绿度指数成像位置顶部及侧面全方位成像分辨率500万像素高光谱成像测量参数归一化指数、简单比值指数、改进的叶绿素吸收反射指数、最优化土壤调整植被指数、绿度指数、改进的叶绿素吸收反射指数、转换类胡萝卜素指数、三角植被指数、ZMI指数、简单比值色素指数、归一化脱镁作用指数、光化学植被反射指数、归一化叶绿素指数、Carter指数、Lichtenthaler指数、SIPI指数、Gitelson-Merzlyak指数光谱范围380-1000nm光源LED,光强50-1000μmol/m2s热成像分辨率640x480nm温度范围20-120°C灵敏度NETD0.05°C@30°C/50mK成像面积35x35cm近红外成像波长范围1450-1600nm RGB成像 叶绿素荧光成像 高光谱成像 近红外成像 热成像 控制软件 产地:捷克
    留言咨询
  • 田间作物高通量表型检测系统集光电技术、自动化控制技术和计算机图形处理技术于一体,实现田间小区作物表型参数全自 动、无损、高通量准确提取,可广泛应用于水稻、玉米、小麦、油菜、棉花等作物;系统整体包含田间龙门自动传动单元、成像单元、控制采集/图形数据处理单元,成像单元可搭载可见光成像传感器(VISI)、红外成像传感器(IRI)、高光谱成像传感器 (HYPSI)、激光雷达成像传感器(LIDARI)等,通过不同的成像传感器可获取田间作物不同的表型性状指标,并且可定制化二级指标参数,系统兼容性强,适用于各种复杂的田间环境,并具有多项核心自主专利技术。专为田间或者温室田间各种不同尺度的作物表型性状提取定制的检测系统;适用于多种田间作物检测;全自动测量;可集成多种成像传感器;通量高、效率快、性价比高;基于“Sensor to Plant”检测模式,保证作物的原位状态不变;具有稳定的成像环境、光照,保证成像不受环境光变化的影响;具备传感器制冷装置;采用激光条码绝对寻址的定位方式,定位精度可达±5mm。龙门自动传送单元匹配性:与大田环境或者温棚环境设备之间的较好匹配性适应性:适应田间环境、作物栽培要求、作物试验要求以及作物生理要求可靠性:在系统设计和软件设计上,充分考虑系统的自恢复能力和冗余设计,确保系统的抗干扰能力、作 业过程实现自动化与管理信息化经济性:从系统使用全寿命周期成本最低出发,减少系统 的使用维护费用兼容性:模块化设计,使用标准的单元模块,保证系统的可 扩展性和二次开发能力控制/采集单元控制/采集单元由高性能自动化控制系统和植物图形采集工作站 组成,为植物表型成像系统的大脑中枢;可编程序控制器、工业 通讯系统、变频器等均采用国际名牌产品,提供符合Windows 标准的友好的人机界面,方便人员操作;单元中充分考虑环境对 设备的影响,保证意外状态下不影响正常运行:故障单元的停 机、离线对系统没有任何影响,运用自动均载技术,保证运行平 稳;按照设计规范安装各种探测开关和限位装置防止越程、误操 作,并进行信息反馈;采用标准开发协议,支持自有或第三方平 台实时获取植物扫描图像、监控等数据;储存空间无限扩容,以 应对不同阶段对数据库性能和存储空间的需求。成像单元可选配RGB可见光成像单元、红外成像单元、激光雷达成像单元、高光谱成像单元。RGB可见光成像单元:可测参数:总面积、绿叶面积、绿叶面积占比、分形维数、内接矩面积、内接矩宽度、高度、周长面积比、总面积最小内接矩面积比、凸包面 积、可见叶片边缘长度、作物持绿特性、卷叶程度、枯死叶比例、生物量的评估、株高、地上部分鲜重(干)重、植株紧凑度、植株 伸展度、株型分撒度、生物量、干旱程度、稻穗分割、产量预估等。红外成像单元:可测参数:实现田间水稻等模式作物冠层温度采集,植株叶片 病变区域温度分布、叶片蒸腾作用相关性状,用于 胁迫生理学,水力学相关研究。高光谱成像单元:可获取海量的光谱和空间信息,实现作物颜色、形 态及纹理参数;叶绿素、叶黄素等色素含量;氮磷 钾等营养元素含量、水分等的提取。激光雷达成像单元:获取作物三维形态结构,作物株高、茎秆粗细、分支数量、分支夹 角、叶片面积、叶片宽度叶片长度、叶片夹角以及作物果实体积、直 径等形态参数(作物数量统计、生物量估计等)。选型配置表上海市农业生物基因中心高通量抗旱表型鉴定平台田间龙门系统搭载不同光学检测手段,全生育期多模式并行检测,无损高通量实时获取海量表型信息数据。主营业务包含:水稻数字化考种机;经济型水稻数字化考种机;玉米籽粒数字化考种机;玉米果穗考种机;叶片表型快速分析仪;双目视觉植物表型分析系统;小型植物表型分析系统;高通量植物表型参数自动提取系统;高通量植物荧光表型检测平台;高光谱成像系统;水稻穗长测量系统;高通量植物分蘖测量系统;同时我们也提供作物考种服务,图像分析定制服务,表型仪器定制服务。谷丰光电将立足于高端农业科研仪器、植物表型系统,坚持高科技、高价值、高效益三大目标,打造实力品牌优势、系统优势和价值优势的知名光电企业。
    留言咨询
  • 01产品简介双目视觉是获取目标物体三维几何信息的重要手段之一,双目视觉植物表型分析系统是基于双目视觉技术,可静态快速测量植物表新型参数。以米粒为例,可获取其粒长、粒宽、粒厚,粒周长,粒面积,粒体积,细长度,紧凑度以及颜色等信息。 02应用领域谷粒3D表型性状提取植物3D表型性状提取 03主要配置成像单元像素尺寸:0.07mm成像单元类型:高分辨率RGB可见光光照:顶部尺寸:750*500*900mm(长宽高)电源:单相 220V AC控制装置:WindowsPC软件:图像处理,数据分析 04主要性能参数平均误差:≤3%±0.5%效率:10s/次检测方式:双目相机静态采集数据存储:EXCEL格式自动存储可持续工作时长:20h(每天)工作环境温度:0-50℃额定功率:0.5KW 05产品图片双目视觉植物表型分析系统及数据分析软件。系统获取的粒长、粒宽、粒厚表型参数与人工测量结果的分析。系统测量的谷粒长、宽、厚、周长、面积、体积参数与千粒重之间的相关性分析。06公司简介谷丰光电(GREENPHENO)致力于植物表型,农业科研和机器视觉系统集成领域,具备核心图形处理、光机电控制、以及系统集成技术,掌握一批自主知识产权。主营业务包含:水稻数字化考种机;玉米在体、离体数字化考种机;全自动银染显影仪;双目视觉谷粒检测仪;叶片表型快速分析仪;水稻穗长测量系统;高通量植物分蘖测量系统;高通量植物表型参数自动提取系统等光机电一体化仪器设备定制,应用软件及算法开发。谷丰光电将立足于高端农业科研仪器、植物表型系统,坚持高科技、高价值、高效益三大目标,打造实力品牌优势、系统优势和价值优势的知名光电企业。
    留言咨询
  • 高通量田间植物表型分析系统PhenoMobile V1Phenomobile是全自动无人驾驶智能车,专用于高通量田间表型研究。它们的配置和监控,使用用户友好的软件。创建测量路径,绘制微型田块,管理地图或确定车辆轨迹。然后实现任务监控。系统设计可在2.5m宽通道运行,远程聚焦可达12m长,可向各个方向移动。测量头高度可自动在1.0m-4.5m之间进行调整。Phenomobile可沿微型田块按照预设轨迹运行,因采用了RTK GPS定位,精度为厘米级。Phenomobile田间全自动无人驾驶智能车,图1-Phenomobile-V1可适用于1m以下的植株,图2-Phenomobile-V2可适用于5m以上的植株。Phenofield田间固定式高通量表型系统适用于固定地块的作物研究,植株高度最多可达5m。图1图2图3图4任务规划软件确定地图创建微型田块,增加障碍物或者导入已有geotiff文件显示在地图上。创建轨迹形成车辆轨迹和快速移动的测量点。现场监控实时反馈,监测车辆和任务进展平板上运行的监控软件远程控制车辆通过4G进行网络监控表型应用种子质量评价(以植株出苗计数)耐氮能力评价(以多光谱和叶绿素评价) 产量构成的测定(生物量评估、辐照利用率、水分利用效率
    留言咨询
  • 产品简介高通量植物表型参数自动提取系统集光电技术、自动控制和机械化技术于一体,实现水稻、玉米、小麦、油菜等盆栽植物表型参数全自动、无损、高通量准确提取,系统包括输送单元、成像单元、计算机工作站,可在线获取植物RGB可见光图像、高光谱图像、CT断层图像,通过数据软件分析可得到盆栽植物的株高、株宽、叶片面积、叶片角度、长宽比,周长面积比、绿色投影面积、鲜重、干重等整株相关表型参数,以及相关形态性状参数和颜色相关性状参数(RGB、HSL分量)。 系统配置参数成像单元像素尺寸:14.08μm输送单元:可根据用户需求定制自动输送系统,环形输送线(规模根据用户需求配置)成像暗室:可配置RGB可见光相机、高光谱相机、Micro-CT成像单元(根据用户需求配置)RGB成像单元主要技术参数:视野面积:1607 mm (height) x 1347 mm (width)分辨率:2452 (height) × 2056 (width)镜头焦距:8 mm每株水稻拍摄图像帧数:20物距: 1520 mmMicro-CT成像单元主要技术参数:视野面积:25 x 20 cm最小焦点尺寸:约0.035 mm实际工作电压(kV):40实际工作电流(mA):1剂量当量率:0.06 μSv/h高光谱成像单元主要技术参数:成像单元组成:成像光谱仪,EMCCD传感器,镜头(23nm)成像单元光谱范围:400nm-1000nm成像单元光谱分辨率:3.2nmEMCCD传感器像素:1004*1002EMCCD传感器像素大小:8*8(μm2) 成功案例华中农业大学作物表型中心植物表型参数自动提取系统
    留言咨询
  • 产品简介高通量CT检测系统主要用于作物种子、果实内部、作物穗部结构三维重建和表型提取,是一款适用于实验室的高通量CT检测设备。功能特点1.高通量设计,可同时放入检测样本量达100个;2.实验室一体化设计,操作简单,一键启动;3.针对不同档位样品尺寸,一键矫正;4.闭管射线源,无需耗材,维护简单;5.非常好的隔震设计、防辐射设计,保证数据稳定采集。技术参数1.空间分辨率:小于100μm2.设备物理参数:尺寸:1800mm(长)×1200mm(宽)×1800mm(高); 3.重量:约500kg; 4.管电压:10-90kV 5.管电流:30-200μA 6.最大成像面积:250 mm×300 mm 7.探元尺寸:100μm2 8.像素矩阵:2508×3004 9.动态位数:16 位 10.旋转台:360°,最大负载 10kg 11.测量效率:5-10分钟/样本12.样本尺寸大小:1.5cm(直径)*15cm(高)(可根据用户需求设计)13.样本通量:50-100样本(可根据用户需求设计)客户案例1、果实内部结构检测2、种子内部结构检测3、穗部结构检测
    留言咨询
  • 随着遥感、机器人技术、计算机视觉和人工智能的发展,植物表型组学研究已经步入了快速成长阶段。出现了各类室内和室外表型技术载体平台,如Hiphen公司的手持、车载、航空机搭载、田间实时监控、大型室内外自动化平台等(搭载Airphen多光谱相机。室内、外植物研究中核心问题是对表型研究中产生的巨量图像和传感器数据进行量化分析,把大数据转化为有实际意义的性状信息和生物学知识,对后期表型数据解析尤其重要。PHENOMOBILaE-V2是全自动无人驾驶智能机器人,专用于高通量田间表型研究测量头主要传感器为3个LMS400激光雷达2个RGB相机5个LUMIX FR60 flash 闪光灯2个RTK GPS2个IMU(椭圆SBG)1个风速风向计传感器头易于安装新传感器配置和监控,使用用户友好的软件。创建测量路径,绘制微型田块,管理地图或确定车辆轨迹。然后实现任务监控。建任务并定制所有参数,配置传感器探头参数。创建微型田块,增加障碍物或者导入已有geotiff文件显示在地图上形成车辆轨迹和快速移动的测量点。技术参数现场监控实时反馈,监测车辆和任务进展平板上运行的监控软件远程控制车辆通过4G进行网络监控种子质量评价(以植株出苗计数)耐氮能力评价(以多光谱和叶绿素评价)产量构成的测定(生物量评估、辐照利用率、水分利用效率)
    留言咨询
  • 欧洲知名植物表型分析技术公司PSI与荷兰植物生态表型中心(NPEC)合作,隆重推出PlantScreen全自动高通量琼脂培养植物表型成像分析平台。PlantScreen全自动高通量琼脂培养植物表型成像分析平台是一套新型高通量、自动化的植物表型成像系统。植物样品种植于专门设计的方形琼脂培养皿中。该平台是一个开创性的解决方案,重新定义了植物表型的研究方法。全自动高通量琼脂培养植物表型成像分析平台为全自动机器人操作,包括倾倒琼脂、播种、层积催芽、接种、成像分析全自动运行。可容纳2160个特制培养皿的全自动全流程(倾倒琼脂、播种、培养、成像分析)高通量表型分析。该平台由具备GMO(转基因生物)控制区的环控室(可选配)、操作台、培养柜(包括层积催芽柜)、机器人及成像工作站等组成,可进行根系形态成像分析、GFP等荧光蛋白成像分析、叶绿素荧光成像分析、多光谱成像分析、高光谱成像(透射光)分析及香豆素荧光高光谱成像分析等。 系统组成:1. 植物(琼脂)培养柜2. 层积催芽柜3. 培养皿操作台4. 用户缓冲区5. 液体操作台6. 叶绿素荧光与多光谱荧光成像工作站7. VNIR高光谱成像工作站8. 机器人主要模块功能:§ 培养皿操作台:准备培养介质、自动浇注培养皿、机器人自动播种 § 层积催芽柜:精确控温5℃、暗培养、容量2×360培养皿§ 植物(琼脂)培养柜:多通道LED培养光源(白光/红光/远红光)、最大光强400µ mol/m² .s、可调控红光/远红光比例模拟光调控条件§ 表型成像工作站:根系形态、叶绿素荧光(光合表型)、荧光蛋白、多光谱荧光(次生代谢)、高光谱等表型成像分析§ 液体操作台:自动化液体操作、生物安全柜、机器人自动细菌接种 § 机器人:高精度SCARA机器人,完成培养皿在各功能模块间的全部自动化转运作业 技术指标:§ 植物(琼脂)培养柜布局:共3个培养柜,4培养架/柜,9培养盒/架,20培养皿/盒§ 系统通量:2160专用培养皿§ 样品托盘类型:专用培养皿,129×129×16.5mm§ 培养光源:每层培养架上均配备光源,每个培养架和LED通道均可独立调控§ 光质:配备冷白光、红光和远红光,红光/远红光比例调控范围:0.5-0.82§ 光强:距离光源30cm处最大光强400µ mol/m² .s § 层积催芽柜:精确控温5℃、暗培养、容量2×360培养皿§ 培养皿操作台容量:1500培养皿§ 无菌处理:HEPA高效空气过滤,UV-C紫外杀菌§ 成像站:2台叶绿素荧光与多光谱荧光成像站、形态成像站、VNIR高光谱成像站 § 成像传感器:&Yuml 传感器类型:CMOS &Yuml 分辨率:4112×3006,12.36MP;binning模式2056×1503,3.09MP&Yuml 位深度:12bit&Yuml 传感器尺寸:1.1”&Yuml 快门:全域快门&Yuml 自由运行模式最大fps:2&Yuml 像素尺寸:3.45µ m;binning模式6.9µ m&Yuml 通讯接口:GigE千兆以太网§ 叶绿素荧光测量光源:620nm红橙光、5700K冷白光、735nm远红光§ 多光谱荧光与荧光蛋白测量光源:365nm紫外光,445nm品蓝光,470nm蓝光,505nm青光,530nm绿光,590nm琥珀色光§ 形态测量光源:5700K冷白光§ 叶绿素荧光成像参数:Fo, Fo’, Fs, Fm, Fm’, Fp, FtDn, FtLn, Fv, Fv'/ Fm', Fv/ Fm, Fv', Ft, NPQ_Dn, NPQ_Ln, Qp_Dn, Qp_Ln, qN, qL, QY, QY_Ln, Rfd, ETR等50多个叶绿素荧光参数§ 荧光蛋白成像:GFP、YFP、RFP、BFP等§ 滤波器:F469、F483、F513、F565、F586、F593、F520、F635、glass等(选配)§ VNIR高光谱成像&Yuml 光谱范围:350-900nm&Yuml 谱带尺寸:520nm&Yuml 入射狭缝宽度:50μm&Yuml 像素色散:0.28nm/pixel&Yuml 波长分辨率:2nm FWHM&Yuml 光谱分辨率:480 pixels&Yuml 空间分辨率:500 pixels&Yuml 帧频:45fps&Yuml 传感器类型:CMOS &Yuml 图像分辨率:1920×1000&Yuml 位深度:12bit&Yuml 像素尺寸:5.86µ m&Yuml 动态范围:67dB&Yuml 光源:反射模式:白光;荧光模式:紫外光&Yuml 控制与数据接口:GigE千兆以太网安装实例:荷兰植物生态表型中心NPEC已与PSI公司合作建设了多套PlantScreen植物表型成像系统,应用于拟南芥、烟草、番茄、藜麦等植物的表型研究。PlantScreen全自动高通量琼脂培养植物表型成像分析平台是他们的最新合作成果,于2023年刚刚建设完成。产地:欧洲
    留言咨询
  • 上海净信的高通量组织研磨机(专利产品,仿冒必究!ZL2018300207398)是一种特殊的、快速的、高效率的、多试管的一致系统。它能将任何来源(包括土壤、植物和动物的组织/器官、细菌、酵母、真菌、孢子、古生物标本等)的原始DNA、RNA和蛋白质进行提取和纯化。高通量组织研磨仪产品特点:用途:粉碎、混合、均化以及细胞破碎,冷冻研磨应用领域:农业、生物、化学、塑料、建筑材料、电子、环境、食物、玻璃、陶瓷、医药、矿物冶金等适用样品:植物(根茎叶种子等)、动物(肌肉内脏骨骼牙齿等)、微生物、食品、土壤、矿物等适用样品质地:硬性,中度硬性,软性,脆性,弹性,纤维性等粉碎原理:撞击力,摩擦力运动方式:水平往复振荡球磨式研磨种类:干磨、湿磨、低温研磨高通量组织研磨仪技术参数:主要参数参数范围样品防温升设计:有研磨平台数:2样品处理量:24个2.0ml样品管、10个5.0ml样品管或2个15ml研磨罐参数显示方式:数字显示振动频率设置:100-2000次/分钟,连续可调粉碎时间设定:0秒-9999分钟间歇时间设定:0秒-99秒编程功能:可编程设置研磨时间、暂停时间及循环数间歇振荡功能:有典型粉碎时间:2分钟进样尺寸:≤8mm出料粒度:~5μm中心自动定位紧固:自带中心自动定位紧固装置翻盖开关:开盖自动停机安全级别:符合欧盟CE认证主机身材质:全金属机身低温研磨功能:适配器及研磨罐可浸入液氮样品温度可达-192℃高通量组织研磨仪相关配件:研磨罐:选配:一对15ml旋盖型研磨罐,硬质钢、特氟龙和刚玉等多种材质可选研磨试管夹具:选配:一对12孔2ml适配器,一对5孔5ml适配器其他可选配件:全钢研磨珠(φ2/3/5/8mm)、碳化钨研磨珠(φ3/5mm)、氧化锆研磨珠(φ5mm)、玻璃珠(φ0.1-2mm)、硬质研磨试管(24个/包)、不锈钢研磨管(8个/包)
    留言咨询
  • Phenomobile是全自动无人驾驶智能车,专用于高通量田间表型研究。它们的配置和监控,使用用户友好的软件。创建测量路径,绘制微型田块,管理地图或确定车辆轨迹。然后实现任务监控。系统设计可在2.5m宽通道运行,远程聚焦可达12m长,可向各个方向移动。测量头高度可自动在1.0m-4.5m之间进行调整。Phenomobile可沿微型田块按照预设轨迹运行,因采用了RTK GPS定位,精度为厘米级。Phenomobile田间全自动无人驾驶智能车,图1-Phenomobile-V1可适用于1m以下的植株,图2-Phenomobile-V2可适用于5m以上的植株。Phenofield田间固定式高通量表型系统适用于固定地块的作物研究,植株高度较多可达5m。图1图2图3图4任务规划软件确定地图创建微型田块,增加障碍物或者导入已有geotiff文件显示在地图上。创建轨迹形成车辆轨迹和快速移动的测量点。现场监控实时反馈,监测车辆和任务进展平板上运行的监控软件远程控制车辆通过4G进行网络监控表型应用种子质量评价(以植株出苗计数)耐氮能力评价(以多光谱和叶绿素评价) 产量构成的测定(生物量评估、辐照利用率、水分利用效率
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • MGS-24高通量智能动植物研磨均质仪通过将动植物组织样品及研磨珠同时放入样品管中,然后通过剧烈的三维高效立体振荡对样品进行高动能撞击、碰撞或摩擦,进而裂解并释放细胞内的物质,从而完成均质提取的过程。三维立体振荡形成的动能更高,速度更快,样品均匀性更好,细胞裂解提取更高效。研磨均质完成后,样品可以直接进行离心,收集上清液等进一步的前处理流程,高效便捷。 MGS-24采用7寸高清智能彩色触屏控制,智能控制界面上实时显示研磨均质的方法,包括方法名称、转速、运行时间和样品规格等,完美搭载手动自动双模式。终端可以储存多种研磨均质方法方便直接调用,从而确保实现更佳的均质提取重现性。整机结构紧凑,美观大方,最多可以同时研磨处理26个样品,广泛适用于样品的研磨粉碎,动植物组织的均质提取。1、高通量,最多支持26个样品同时研磨均质,兼容多种规格的样品管。MGS-26(2/1.5ml)MGS-24(5/8ml)MGS-16(15ml)MGS-12(50ml)2、独特的三维立体振荡技术,无惧韧性强、破碎难度大的样品,振荡频率范围:500-6000rpm,确保样品细胞裂解更有效,均匀性更好。3、智能安全防护,运行开始后自动锁紧防护罩;研磨过程中防护罩意外松开后,仪器立即自动停止。4、专业的圆周样品夹具设计,确保每个样品振荡碰撞动能的一致性,从而保证批量样品研磨均质的平行性。5、多种规格研磨珠可选,用户可以根据不同的样品种类和实验要求选择不同材质的研磨珠:如不锈钢珠、氧化锆珠、硅珠和陶瓷珠(用于QuEChERS方法)等。6、7寸智能控制终端,实时显示运行转速和时间,极佳操作体验。◆ 采用7寸高清彩屏控制,实时显示方法名称、转速、运行时间和样品盘规格。◆ 支持自动模式或手动模式,中英文操作界面自由切换。◆ 可储存32种以上研磨均质方法和程序提取曲线,每种方法可设六段研磨均质程序。◆ 研磨均质过程随时启停仪器,均质完成后自动报警提示,轻松实现无人值守。
    留言咨询
  • 点击蓝字!关注我们目前用于植物抗性品种筛选的仪器设备大多比较复杂,数据繁多,数据分析耗时多,难以快速筛查出指示性指标。 PhenScope高通量植物抗性筛选系统,以监测植物的叶绿素荧光变化特征为基础,在大田条件下,自动在线测量,可以快速筛查抗性样本。同时在线测量32个样本,太阳能供电,远程数据传输,野外长期独立工作。可用于突变株&抗性株筛选、遗传育种、植物病理学、植物胁迫生理学等应用研究。大田条件下多样本同时测量主机技术特点01探头配备专利日光暗适应模块,方便在白天同时对大批量植物自动进行暗适应测量。抗性筛选都会选择测量叶绿素荧光参数,大部分叶绿素荧光参数需要在暗适应的条件下测量,同时伴随着频繁使用高强度饱和光闪,研究证实夜晚在植物的同一位置上频繁出现的饱和光闪会破坏植物组织,对植物的光合能力产生影响,而白天进行暗适应测量,可以减少对植物生长的影响。 每个探头都配备暗适应模块,程序化设计,解决了田间大批量植物同时进行暗适应测量的难题,也可以随意设置不同时间不同处理的暗适应测量。日光暗适应模块关闭状态日光暗适应模块打开状态02可以同时测量叶绿素荧光参数和叶绿素含量,几秒钟测完大批植物。非接触式叶绿素含量探头可以直接测量叶绿素绝对含量(单位:mg/m2),几乎所有的植物叶片都可以测量。一次可以测量多株植物。采用调制光测量,不受环境光照影响。防水设计,非常适合监测营养胁迫。还配有快速测量NDVI、NDRE、PPR&CCCI植被指数的探头,适合测量C3、C4或CAM植物的干旱胁迫和氮胁迫。叶绿素含量探头用于营养胁迫NDVI、NDRE、CCCI探头用于干旱胁迫、氮胁迫03精确测量qE、qM、qT和qI参数,准确评估植物光合效率和生产力。qE、qT、qI、qM是NPQ的四个分量,多用于抗性品种的鉴定,Goss和Lepetit(2015)使用光保护性成分qE、qM鉴定抗性品种。各种研究人员提出了计算NPQ分量的正确方法(Maxwell and Johnson 2000,Guadagno et al.2010,Rohá?ek2010,Kasajima et al.2015,Tietz et al.2017)可用于鉴定抗性品种或评估qE在胁迫耐受性中的效率。qI是光合作用的光抑制作用,是植物对环境压力和变化的保护性调节。 准确计算四个分量有助于从光合特性的角度深层次研究植物的抗性机理。qE、qM、qT、qI测量结果显示抗性筛选试验方案01筛选抗旱品种, 测量Fv/Fm、Y(II)、ETR、NPQ、qP参数测定:配置32个荧光探头,每个探头测量一株植物。选择系统已有程序,凌晨4点开始,依次测量Fv/Fm,每60min测量一次,共测量3次。然后测量Y(II),ETR、NPQ、qP,每30min测量一次,共测量10次。以上步骤均为系统自动测量,无需人为操作。Fv/Fm、Fo、Fm测量结果显示Y(II)、ETR、qP、qN、NPQ测量结果显示02筛选耐弱光植物,测量Fv/Fm、Y(II)、ETR、NPQ、qP、qE、qM、qT、qI、RLC参数测定:配置32个荧光探头,每个探头测量一株植物。选择系统已有程序,凌晨4点开始,依次测量Fv/Fm,每60min测量一次,共测量3次。然后测量Y(II),ETR、NPQ、qP,每30min测量一次,共测量10次。测量qE,qT,qM和qI,测量完成。再调用系统内置的RLC快速光曲线程序,测量8个光强梯度下的RLC曲线,每隔两小时测量一次,共测量3次,以上步骤均为系统自动测量,无需人为操作。Y(II)、ETR、NPQ测量结果显示RLC快速光曲线测量结果显示03筛选耐高温植物,测量Y(II)、叶绿素含量。参数测定:配置32个探头,16个荧光探头,16个叶绿素含量探头,平均分配,每个探头测量一株植物。选择Y(II)和叶绿素含量测量程序,测量Y(II)和叶绿素含量CCI,每60min测量一次,共测量5次。以上步骤均为系统自动测量,无需人为操作。Y(II)测量结果显示Y叶绿素含量测量结果显示(mg/m2)04筛选耐低温植物,测量Fv/Fm、Y(II)、ETR、qP、NPQ、qE、qI参数测定:配置32个荧光探头,每个探头测量一株植物。选择已有程序,先测量Fv/Fm,每10min测量一次,共测量3次。然后测量Y(II),ETR、NPQ、qP,每30min测量一次,共测量10次。最后测量qE,qT,qM和qI,测量完成后,测量完成。以上步骤均为系统自动测量,无需人为操作。Y(II)、ETR、NPQ、qP、qE、qM、qI、qT测量结果显示05筛选耐盐碱,土壤肥力差地区生长的植物,以氮缺乏为例,测量叶绿素含量和Y(II)参数测定:配置32个探头,16个荧光探头,16个叶绿素含量探头,平均分配,每个探头测量一株植物。选择Y(II)和叶绿素含量测量程序,测量Y(II)和叶绿素含量CCI,每60min测量一次,共测量5次。每次测量间隙,光化光都会自动关闭,测量完成。抗性筛选案例01使用美国Opti-Sciences公司OS5p+叶绿素荧光仪选择Y(II)、ETR、NPQ荧光参数,比较弱光条件的大麦和小麦的光合特性的变化(Wheat and barley can increase grain yield in shade through acclimation of physiological and morphological traits in Mediterranean conditions,2019),结果显示弱光胁迫条件下大麦显示出比小麦更强的光合作用适应性,在辐照度降低的情况下也可保证产量。小麦和大麦弱光胁迫下Y(II)、ETR和NPQ的差异比较02使用美国Opti-Science公司的CCM300叶绿素含量仪和OS1p便携式叶绿素荧光仪选择CCI、Fv/Fm、Y(II)荧光参数,筛选蓝莓适宜生长的土壤(Growth, Fruit Yield, Photosynthetic Characteristics,and Leaf Microelement Concentration of TwoBlueberry Cultivars under Di?erent Long-Term SoilpH Treatments,2019),结果显示酸性土壤(pH=4.5)适合蓝莓生长,并筛选出ChaoyueNo.1是适合在高pH环境下生长的蓝莓品种。两个品种的蓝莓在不同土壤pH下,CCI、Fv/Fm、Y(II)和光合速率的比较03使用美国Opti-Science公司OS5p+叶绿素荧光仪利用Fv/Fm、qN、qP筛选抗旱金银花品种(刘志梅,蒋文伟,2012),结果显示,不同干旱胁迫处理条件下,不同品种的金银花Fv/Fm、qN值显示出不同程度的降低,qP呈上升趋势,3种金银花抗旱能力排序为红花金银花>京红久金银花>台尔曼忍冬.三个品种的金银花,不同干旱胁迫下Fv/Fm、qN、qP的比较04使用美国Opti-Science 公司OS5p+叶绿素荧光仪,选择Fv/Fm、Y(II)、ETR、qP和qN对比两种速生树种竹柳和尾巨桉的抗旱性(白晶晶,吴俊文,2015)。结果显示,干旱胁迫下,两个树种Y(II)、ETR、qP和Fv/Fm均有不同程度的下降,尾巨桉的下降幅度大于竹柳;而qN呈上升趋势,竹柳上升幅度大于尾巨桉,两树种相比,竹柳的抗旱性更强。技术指标测量参数叶绿素荧光参数:Fv/Fm、Y(II)、ETR、qP、NPQ、qE、qT、qM、qI、Ik、Im、PAR、T叶绿素含量指数:CCI、NDVI、NDRE、PPR、CCCI标准荧光探头技术参数蓝光饱和脉冲强度: Fm’校正,7000 μmols/m2/s 方形顶脉冲,10000 μmols/m2/s红光饱和脉冲强度:Fm’校正,7000 μmols/m2/s 方形顶脉冲,10000 μmols/m2/s调制光源:Blue 455nm – 半波宽21nm的蓝色光源 Red 640nm - 半波宽17nm的红色光源光化光源:蓝光,可达5000 μmols m-2 s-1红光,可达5000 μmols m-2 s-1远红光源:结合暗适应模块用于Fo’测量或者暗适应模式中Fv/Fm测量前的预照射。检测器&滤波器: 具有700 ~ 750带通滤波器的PIN光电二极管叶绿素含量探头技术参数测量参数:CFR或叶绿素荧光比率(F735/F700),叶绿素含量mg/m2 测量面积:10cm—1.2m直径NDVI、NDRE、PPR & CCCI探头技术参数测量参数:NDVI, NDRE, PPR, CCCI测量面积:10cm—1.2m直径采样速率 : 1~10000点每秒,根据不同测量自动选择存储空间:2GB输出: CSV文件,可以通过wifi,以太网、U盘传输;可选手机、无线点对点、卫星电话传输方式供电:可以根据要求提供外部12伏电池。可以使用太阳能电源和主电源。操作温度: -10℃~+50℃
    留言咨询
  • 产品简介叶片表型快速分析仪是一款光电一体化设备,可在线获取叶片表型参数。可获取植物叶片平均(最大)叶长、平均(最大)叶宽、平均(最大)叶片周长、平均(最大)叶片面积、叶片数、绿叶总面积、总面积、绿叶面积比、叶色分级等形态参数和颜色参数。数据分析软件可实时进行数据分析并将数据结果实时导入到EXCEL表格中。应用范围广泛应用于水稻、油菜、棉花、玉米、小麦叶片形状提取 主要配置成像单元像素尺寸:14.08μm成像单元类型:单色线阵列CCD相机光源:线阵列LED光源尺寸:1150*600*1200mm(长宽高)电源:单相 220V AC控制装置:WindowsPC,控制机柜软件:在线控制,图像处理,数据分析及存储 主要性能参数可测参数:平均叶长,平均叶宽,平均叶片周长,平均叶片面积,叶片数,绿叶总面积,总面积,绿叶面积比,叶色分级等:平均误差:≤3%效率:60s/株检测方式:在线实时采集数据存储:EXCEL格式自动存储可持续工作时长:20h(每天)工作环境温度:0-50℃额定功率:0.5KW 产品图片叶片表型分析仪、数据分析软件、(a)叶片表型性状测量结果,(b)叶片原始保存图片公司简介谷丰光电(GREENPHENO)致力于植物表型,农业科研和机器视觉系统集成领域,具备核心图形处理、光机电控制、以及系统集成技术,掌握一批自主知识产权。谷丰光电在武汉光电工业技术研究院;华科大鄂州工业技术研究院拥有办公,研发及生产基地。主营业务包含:水稻数字化考种机;玉米在体、离体数字化考种机;全自动银染显影仪;双目视觉谷粒检测仪;叶片表型快速分析仪;水稻穗长测量系统;高通量植物分蘖测量系统;高通量植物表型参数自动提取系统等光机电一体化仪器设备定制,应用软件及算法开发。谷丰光电将立足于高端农业科研仪器、植物表型系统,坚持高科技、高价值、高效益三大目标,打造实力品牌优势、系统优势和价值优势的知名光电企业。
    留言咨询
  • 植物表型是反映植物结构及组成、植物生长发育过程及结果的全部物理、生理、生化特征和性状。高通量植物表型平台可以高精度、非破坏性的快速获取大规模群体样本的表型信息;伴随着无人机的普遍使用,在大田自然环境中,无人机载平台的应用在高通量、快速、无损获取植物表型数据过程中也变得越来越普遍,将逐渐成为植物表型数据采集的优势载体平台。安洲科技以灵活多变的无人机系统为平台,结合被广泛应用于遥感、环境监测、精准农业领域的高光谱及多光谱、热红外成像、激光雷达成像技术,提供一整套完善的高通量、非破坏性、具备高可信度的机载遥感高通量表型测量系统,以协助研究人员实时、快速、无损获取大面积田间作物高质量、可重复的植物表型性状和特征数据,为野外植物表型研究、大规模作物育种、抗逆胁迫监测、精准农业及指导灌溉等应用,提供专业的解决方案。
    留言咨询
  • SPEX HG-400 MiniG 高通量动植物组织研磨机(1600 MiniG)美国SPEX SamplePrep 公司拥有近 61 年的专业样品前处理仪器生产经验和专业背景。GENO Grinder高通量动植物组织研磨仪,开始是专门为杜邦旗下先锋良种农业植物样品而研发。是为快速细胞破碎、细胞裂解、组织匀浆和QuEChERS 方法量身定制的。独创的上下垂直震荡模式,使得样品研磨更加均匀、充分,样品重复性好,样品之间没有交叉污染,是真正的高通量动植物组织研磨机。每个样品只需要1-2分钟即可完成。 研磨样品包括植物的根、茎、叶、花、果、种子和某些动物组织;特别适用于植物组织中核酸、蛋白质和其它成分的提取。另外它还可以对酵母、培养的动物细胞、细菌细胞等进行破碎,从而提取其中的组分。 1600 (HG-400) MiniG 是一个较低通量的组织研磨机,夹具适用于1 个或2 个深孔板。通量可达192。可一次同时研磨2个96孔版(或相同尺寸孔版)、48个2或5 mL离心管(搭配离心管架)、12个15 mL离心管(搭配冷冻模块或离心管架)、6个50 mL离心管(搭配冷冻模块或离心管架)。虽然MiniG的夹具是为夹住两个标准的深孔板而设计的,但是它也能适用于具有相同尺寸的任何东西,包括具有更少或更多样品孔的深孔板、固定多个独立离心管的支架、和其它可能的构件。 对于温度敏感的样品可选Kryo-Tech配件进行低温研磨和保存。 适用样品和应用 1)PCR(聚合酶链反应)快速多样品制备2)快速裂解组织匀浆,进行核酸提取、RNA/DNA 提取、蛋白质提取3)酵母、细菌细胞的裂解4)农药/ 杀虫剂分析(在LC/MS/MS 测试食品残留农药或有毒物质样品处理,现已被美国环保署USEPA 和食品药物管理局USFDA 采用))5)QuEChERS 方法(农药、抗生素、药物提取)6)药用活性成分APIs 提取7)食品安全(污染、掺假、食物溯源)8)生物燃料 典型应用领域介绍广泛应用于:分子标记辅助育种、基因组学、系统生物学和分子进化、转基因研究等生物化学研究领域植物组织核酸提取。分离完整种子中的核酸,需先用机械方法破碎种子,再提取和纯化核酸。通常的机械破碎方法速度很慢而且易导致交叉污染,不适合高通量的种子破碎。用GENO 对微孔板中的种子进行研磨,可从种子细胞中快速释放出大量核酸;再从匀浆液中分离纯化出核酸。例如:用水浸泡过夜大豆,3 分钟内被均质化成浆液,用于DNA 分析的材料来源。从培养细胞中快速提取基因组D N A为P C R 分析做准备PCR 技术提高了核酸检测和定量测序效率。但在模板扩增前需要一个包括细胞收集和核酸溶解纯化的步骤,过程缓慢。然后用层析树脂把核酸从裂解液中分离出来。需要耗费大量时间和昂贵的材料。GENO 技术快速破碎大量培养细胞,为后期基因组DNA 进行PCR 分析做准备。GENO 对微孔板中大量培养细胞,进行高通量均质化处理,再通过层析树脂对核酸进行纯化,从而进行PCR 分析,大大提高基因组分析的效率。Yeast 酵母的9 6 孔高通量破碎酵母已成为基因表达研究和蛋白质重组表达的通用宿主,成为生物系统研究模式型生物,成为生物药学家的有力工具。包括Picbia、Hansenula、Debaryomyces 均被研究者所使用,如最普遍的Saccbatomyces 酵母。酵母mRNA 和细胞内蛋白,很难用传统酶解方法提取。裂解酶中通常含有核糖核酸酶和其他蛋白,它们不仅会攻击细胞壁,而且会攻击特定分子。并且,酶解产生的原生质体,需借助特定的试剂进行溶解,而导致很多蛋白质变性失活。通常的压榨或球磨方式,只能在单样品下破碎酵母细胞,释放其内溶物,操作效率太低。GENO 专为那些需要大量酵母克隆进行高通量筛选检测的实验,设计了破碎种子的深孔板,在深孔板中对酵母进行破碎。实现高通量地分裂细胞。细菌细胞的裂解(嗜盐菌和杆菌)Bacterial CellsGENO 借助碰撞,裂解细菌细胞。以格兰氏阴性耐盐菌Halomonas elongate 和格兰氏阳性杆菌为模式的研究对象,SPEX 发展了两种相应技术:1)细菌培养,收获并冲洗掉多余的培养基,将细胞悬浮于深孔板的盐水溶液中,2)GENO 可借助研磨介质, 进行细胞振荡破碎,6-9 分钟就释放出足够量的核酸,进行后续试验。QuEChERS 方法Geno/Grinder 研磨仪可用于QuEChERS 方法中的样品处理步骤,可以用Geno研磨仪进行水果、蔬菜植物组织的均质化,从而更高效、快速的研磨处理样品,为后续的LC/MS/MS 方法测试残留农药做准备。可以在室温下均质化或者配合Kryo-Tech 冷冻装置使用,为了消除交叉污染需要添加QuEChERS 试剂。目前,美国FDA 食品药品管理局和美国环保局EPA均采用Geno 研磨仪作为标准设备进行水果、蔬菜植物组织的均质化处理。根据美国环保署U S E P A 和食品药物管理局U S F D A, L C / M S / MS 测试食品残留农药,样品处理采用不同方法之比较说明(资料来源佛罗里达州农药残留研讨会Florida Pesticide Residue Workshop,)如下:采用GENO/Grinder 萃取器来增快残留农药, 霜脲氰(Cymoxanil),的LC/MS/MS 分析之样品处理,其产能达到一般方法三倍、杜邦方法两倍数量的样品,大大节省时间人力成本的耗费。回收率(SPIKERECOVERY) 和其他QA/QC 的效果一致。 SPEX HG-400 MiniG 高通量动植物组织研磨机(1600 MiniG)主要特点: 先锋良种与SPEX 共同开发设计,全世界专门为农业植物样品而研发的一款新型高通量动植物组织研磨机。 针对提取植物样品中核酸,蛋白质其分析成分的应用,进行了特殊设计的研磨机 高通量:使用大夹具可同时研磨至192个样品,可一次同时研磨2个96孔版(或相同尺寸孔版)、48个2mL或5 mL离心管(搭配离心管架)、12个15 mL离心管(搭配冷冻模块或离心管架)、6个50 mL离心管(搭配冷冻模块或离心管架)。并可适用于多种尺寸样品的研磨,极大提高了工作效率 为了保证样品的重现性、有效性、可比性,研磨机可设置研磨时间、研磨速率和循环次数,保证每次研磨和下一次研磨条件的一致性。 内置两个安全锁扣及一个样品舱盖联锁,极为安全可靠。 常温、低温动植物样研磨专家 盖子上的可视窗口可使使用者随时观察研磨过程。 开始和停止按钮可使使用者随时启动或者停止研磨进程。 可选Kryo-Tech配件进行低温研磨和保存温度敏感的RNA和蛋白质提取样品 配件: 1. 可调节的夹具轻松适应深孔板和瓶子,夹具盖上有一沿着轴上下滑动的释放按钮。2199 型标准夹具配件也可选配。2. 嵌套托盘叠放深孔板的理想产品,用来将深孔板垂直叠放,并确保研磨过程中样品的安全3. 预填充瓶广泛应用于各种领域,2 mL 的样品瓶用于研磨诸如:细菌、小酵母和土壤等复杂样品4. 深孔板和板盖有24/48/96 孔深孔板可选,可应用于如:大批量样品稀释、细胞悬浮和RNA 提取5. 瓶组和离心管容量大于深孔板的瓶组,可用于样品量比置于深孔板中的样品量更大时。瓶组加珠子配套提供。有2 ml、5 ml、15 ml、50 ml可选。6. 研磨介质不锈钢珠、硅珠、氧化锆珠和陶瓷珠。研磨珠分为3 种:分子生物学型,弱结合型和酸洗型。研磨介质有助于样品的均质和混合过程。陶瓷珠有助于QuEChERS方法的使用。7. KRYO-TECH 低温功能组件KRYO-TECH 研磨配件为 Geno 高通量组织研磨机,有效处理农药、RNA、蛋白质等样品提供了解决方案。Cryo-Blocks 冷冻盒子是专为在2600 Cryo-Station 冷冻站中使用设计的。装有温敏样品的样品瓶,或者深孔板被置于Cryo-Blocks 冷冻盒中,随后直接放入Geno 高通量组织研磨机。在批次样品研磨的过程中,可同时在零下温度中进行预冷冻,从而提高了产量。对于保存RNA 和蛋白质样品尤其有用保存和预冷深孔板和样品瓶维持组织样品处于零下温度中确保为热敏感提取方法提供一个可能的稳定提高产量的方法 应用参考文献SP001 - GG –使用SPEX组织研磨机进行细胞裂解-从动物组织中提取脂肪酸SP011 - GG -使用SPEX组织研磨机从甜菜叶中提取核酸SP013 - GG –使用SPEX组织研磨机辅助高氯酸提取叶片,从而进行淀粉和可溶性代谢物测定SP014 - GG –使用SPEX组织研磨机从黄曲霉、寄生曲霉菌丝中提取RNA。SP016 - GG -使用SPEX组织研磨机从大米中快速提取DNASP017 - GG -裂解时间和其他变量对使用Geno高通量组织研磨机和2mL样品瓶从新鲜罗勒细胞溶解液中提取DNA的影响SP018 - GG - 使用SPEX组织研磨机在96孔板中高通量破碎酵母菌。SP019 - GG - 使用SPEX组织研磨机从大豆中分离DNA的方法比较SP020 - GG -使用SPEX组织研磨机进行细菌细胞裂解SP021 - GG - 使用SPEX组织研磨机从组织中提取RNA-cDNA和基因组DNA - 实时定量PCRSP022 - GG –使用SPEX Geno高通量组织研磨机提高液相色谱-质谱/质谱联用技术进行农药残留分析的样品通量SP023 - GG –使用SPEX Geno组织研磨机对农产品中农药提取对比SP024 - GG –农药残留分析- QuEChERS法和SPEX组织研磨改良方法对比SP025 - GG –使用SPEX Geno组织研磨机进行大米DNA的快速提取(湿)
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制