当前位置: 仪器信息网 > 行业主题 > >

热成像粒子成像测速系统

仪器信息网热成像粒子成像测速系统专题为您提供2024年最新热成像粒子成像测速系统价格报价、厂家品牌的相关信息, 包括热成像粒子成像测速系统参数、型号等,不管是国产,还是进口品牌的热成像粒子成像测速系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热成像粒子成像测速系统相关的耗材配件、试剂标物,还有热成像粒子成像测速系统相关的最新资讯、资料,以及热成像粒子成像测速系统相关的解决方案。

热成像粒子成像测速系统相关的资讯

  • 重庆科技学院300.00万元采购粒子图像测速
    详细信息 重庆科技学院工业安全与爆炸防护实验室建设(CQS22A02461)公开招标公告 重庆市-沙坪坝区 状态:公告 更新时间: 2022-12-04 招标文件: 附件1 重庆科技学院工业安全与爆炸防护实验室建设(CQS22A02461)公开招标公告 发布日期: 2022年12月4日 项目概况: “重庆科技学院工业安全与爆炸防护实验室建设”项目的潜在投标人应在“重庆市政府采购网”获取采购文件,并于 2022年12月26日 10:00(北京时间)前递交投标文件。 一、项目基本情况 项目号:CQS22A02461 采购执行编号:1708-BZ2200461555AH 项目名称:重庆科技学院工业安全与爆炸防护实验室建设 采购方式:公开招标 预算金额:3,000,000.00元 最高限价:3,000,000.00元 采购需求: 包号:1 包内容 最高限价 数量 单位 简要技术要求 粒子成像测速系统(PIV系统) 1,700,000.00元 1 套 粒子图像测速系统PIV,包括:同步控制器、PIV专用图像采集系统、PIV专用双腔激光光源及光学组件、激光片光整形器件、软件控制、分析平台,以及高性能图形工作站。 包号:2 包内容 最高限价 数量 单位 简要技术要求 爆炸性能测试及附属设备 1,300,000.00元 1 批 多物态管道式可视化火焰传播实验系统:采用分压法精密比例配气,手动配气。 最高限价总计:3,000,000.00元 合同履行期限:包1:中标人应在采购合同签订后180个日历日内交货并完成安装调试。包2:中标人应在采购合同签订后90个日历日内交货并完成安装调试。 本项目是否接受联合体:否 二、申请人的资格要求 1、满足《中华人民共和国政府采购法》第二十二条规定。 2、落实政府采购政策需满足的资格要求: 无。 3、本项目的特定资格要求: 无。 三、获取公开招标文件的地点、方式、期限及售价 获取文件期限:2022年12月4日 至 2022年12月9日。 每天上午09:00:00至12:00:00,下午13:30:00至17:00:00。(北京时间,法定节假日除外 ) 文件购买费:0.00元/包 获取文件地点:重庆市政府采购网 方式或事项: (一)投标人应通过重庆市政府采购网(www.ccgp-chongqing.gov.cn)登记加入“重庆市政府采购供应商库”。 (二)凡有意参加投标的投标人,请到采购代理机构领取或在“重庆市政府采购网”网上下载本项目招标文件以及图纸、澄清等开标前公布的所有项目资料,无论投标人领取或下载与否,均视为已知晓所有招标内容。 (三)招标文件公告期限:自采购公告发布之日起五个工作日。 (四)招标文件提供期限 1.招标文件提供期限:同招标文件公告期限。 2.报名方式:无需报名。 四、投标文件递交 投标文件递交开始时间: 2022年12月26日 09:30 投标文件递交截止时间: 2022年12月26日 10:00 投标文件递交地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层) 五、开标信息 开标时间: 2022年12月26日 10:00 开标地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层) 六、公告期限 自本公告发布之日起5个工作日 七、其他补充事宜 (一)按照《财政部 生态环境部关于印发环境标志产品政府采购品目清单的通知》(财库〔2019〕18号)和《财政部 发展改革委关于印发节能产品政府采购品目清单的通知》(财库〔2019〕19号)的规定,落实国家节能环保政策。 (二)按照财政部、工业和信息化部关于印发《政府采购促进中小企业发展管理办法》的通知(财库〔2020〕46号)的规定,落实促进中小企业发展政策。 (三)按照《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号)的规定,落实支持监狱企业发展政策。监狱企业视同小型、微型企业。 (四)按照《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕 141号)的规定,落实支持残疾人福利性单位发展政策。残疾人福利性单位视同小型、微型企业。 八、联系方式 1、采购人信息 采购人:重庆科技学院 采购经办人:汤昌晟 采购人电话:023-65023937 采购人地址:重庆市沙坪坝区大学城东路20号 2、采购代理机构信息 代理机构:重庆市政府采购中心 代理机构经办人:吴荐 彭晓玲 代理机构电话:023-67118096 代理机构地址:重庆市江北区五简路2号重庆咨询大厦B座502室 3、项目联系方式 项目联系人:吴荐 彭晓玲 项目联系人电话:13527346015 项目联系人邮箱:2337035465@qq.com 九、附件 重庆科技学院工业安全与爆炸防护实验室建设(CQS22A02461)(终审稿).doc 免责声明: 本页面提供的内容是按照政府采购有关法律法规要求由采购人或采购代理机构发布的,重庆市政府采购网对其内容概不负责,亦不承担任何法律责任。 重庆科技学院工业安全与爆炸防护实验室建设(CQS22A02461)(终审稿).doc × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:粒子图像测速 开标时间:2022-12-26 10:00 预算金额:300.00万元 采购单位:重庆科技学院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:重庆市政府采购中心 代理联系人:点击查看 代理联系方式:点击查看 详细信息 重庆科技学院工业安全与爆炸防护实验室建设(CQS22A02461)公开招标公告 重庆市-沙坪坝区 状态:公告 更新时间: 2022-12-04 招标文件: 附件1 重庆科技学院工业安全与爆炸防护实验室建设(CQS22A02461)公开招标公告 发布日期: 2022年12月4日 项目概况: “重庆科技学院工业安全与爆炸防护实验室建设”项目的潜在投标人应在“重庆市政府采购网”获取采购文件,并于 2022年12月26日 10:00(北京时间)前递交投标文件。 一、项目基本情况 项目号:CQS22A02461 采购执行编号:1708-BZ2200461555AH 项目名称:重庆科技学院工业安全与爆炸防护实验室建设 采购方式:公开招标 预算金额:3,000,000.00元 最高限价:3,000,000.00元 采购需求: 包号:1 包内容 最高限价 数量 单位 简要技术要求 粒子成像测速系统(PIV系统) 1,700,000.00元 1 套 粒子图像测速系统PIV,包括:同步控制器、PIV专用图像采集系统、PIV专用双腔激光光源及光学组件、激光片光整形器件、软件控制、分析平台,以及高性能图形工作站。 包号:2 包内容 最高限价 数量 单位 简要技术要求 爆炸性能测试及附属设备 1,300,000.00元 1 批 多物态管道式可视化火焰传播实验系统:采用分压法精密比例配气,手动配气。 最高限价总计:3,000,000.00元 合同履行期限:包1:中标人应在采购合同签订后180个日历日内交货并完成安装调试。包2:中标人应在采购合同签订后90个日历日内交货并完成安装调试。 本项目是否接受联合体:否 二、申请人的资格要求 1、满足《中华人民共和国政府采购法》第二十二条规定。 2、落实政府采购政策需满足的资格要求: 无。 3、本项目的特定资格要求: 无。 三、获取公开招标文件的地点、方式、期限及售价 获取文件期限:2022年12月4日 至 2022年12月9日。 每天上午09:00:00至12:00:00,下午13:30:00至17:00:00。(北京时间,法定节假日除外 ) 文件购买费:0.00元/包 获取文件地点:重庆市政府采购网 方式或事项: (一)投标人应通过重庆市政府采购网(www.ccgp-chongqing.gov.cn)登记加入“重庆市政府采购供应商库”。 (二)凡有意参加投标的投标人,请到采购代理机构领取或在“重庆市政府采购网”网上下载本项目招标文件以及图纸、澄清等开标前公布的所有项目资料,无论投标人领取或下载与否,均视为已知晓所有招标内容。 (三)招标文件公告期限:自采购公告发布之日起五个工作日。 (四)招标文件提供期限 1.招标文件提供期限:同招标文件公告期限。 2.报名方式:无需报名。 四、投标文件递交 投标文件递交开始时间: 2022年12月26日 09:30 投标文件递交截止时间: 2022年12月26日 10:00 投标文件递交地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层) 五、开标信息 开标时间: 2022年12月26日 10:00 开标地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层) 六、公告期限 自本公告发布之日起5个工作日 七、其他补充事宜 (一)按照《财政部 生态环境部关于印发环境标志产品政府采购品目清单的通知》(财库〔2019〕18号)和《财政部 发展改革委关于印发节能产品政府采购品目清单的通知》(财库〔2019〕19号)的规定,落实国家节能环保政策。 (二)按照财政部、工业和信息化部关于印发《政府采购促进中小企业发展管理办法》的通知(财库〔2020〕46号)的规定,落实促进中小企业发展政策。 (三)按照《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号)的规定,落实支持监狱企业发展政策。监狱企业视同小型、微型企业。 (四)按照《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕 141号)的规定,落实支持残疾人福利性单位发展政策。残疾人福利性单位视同小型、微型企业。 八、联系方式 1、采购人信息 采购人:重庆科技学院 采购经办人:汤昌晟 采购人电话:023-65023937 采购人地址:重庆市沙坪坝区大学城东路20号 2、采购代理机构信息 代理机构:重庆市政府采购中心 代理机构经办人:吴荐 彭晓玲 代理机构电话:023-67118096 代理机构地址:重庆市江北区五简路2号重庆咨询大厦B座502室 3、项目联系方式 项目联系人:吴荐 彭晓玲 项目联系人电话:13527346015 项目联系人邮箱:2337035465@qq.com 九、附件 重庆科技学院工业安全与爆炸防护实验室建设(CQS22A02461)(终审稿).doc 免责声明: 本页面提供的内容是按照政府采购有关法律法规要求由采购人或采购代理机构发布的,重庆市政府采购网对其内容概不负责,亦不承担任何法律责任。 重庆科技学院工业安全与爆炸防护实验室建设(CQS22A02461)(终审稿).doc
  • 美国TSI公司网上讲座:粒子图像测速仪系统
    粒子图像测速仪系统  演讲人: 许荣川博士高级应用工程师  KHOO Yong Chuan Mike PhD  Senior Applications Engineer  网上讲座: 2011年1月12日上午10点  美国TSI公司非常荣幸的为您提供有关流体力学的网上讲座, 讲座将由来自TSI的技术专家用中文讲解。讲授涵盖广泛,包括初级,中级和高级水平的流体力学研究,有助您提高测试技术的水平,与此同时提供解决方案 寻求如何优化系统得到更可靠数据。  这次的讲座也包括更多关于TSI精准仪器在流体研究中的应用(包括所有从基础流体研究到环境和生物医学), 请踊跃参加网上讲座以得到更多相关讯息。  讲座将会进行40分钟及预留15分钟答疑环节。  这是TSI公司首次推出PIV系列中文网上讲座,以帮助您提高利用PIV系统测量流体速度的技术水平。 我们将于2011年1月12日上午10点开始第一个讲座,介绍PIV系统基本原理与利用Insight3G软件进行数据采集与分析的基本技巧。  具体内容:PIV原理及PIV实验基本原则 Insight3G中PIV系统软硬件设置、图像校准、图像优化、示踪粒子浓度调整与△T参数优化。  网上讲座是免费为您提供,如果您有兴趣参加, 请点击链接www.tsi.com/FMwebinars(英文注册)或http://www.instrument.com.cn/netshow/SH100732/guestbook.asp(中文注册)简单填写表格,并点击“发送”。我们将在一两天内发给您相关讲座的链接,以便您在方便的时间参加。  讲师简介: 许荣川博士是TSI新加坡的高级应用工程师,他为东南亚包括澳大利亚,台湾及韩国等地的流体及粒子仪器用户提供应用解决方案和技术支持。他于1997年在英国拉夫伯勒大学获得机械工程学位并获全额奖学金完成其博士学位
  • 大连理工大学295.00万元采购粒子图像测速
    详细信息 大连理工大学随车水下三维粒子图像测速系统采购项目公开招标公告 辽宁省-大连市-甘井子区 状态:公告 更新时间: 2022-12-25 大连理工大学随车水下三维粒子图像测速系统采购项目公开招标公告 2022年12月25日 12:18 公告信息: 采购项目名称 大连理工大学随车水下三维粒子图像测速系统采购项目 品目 货物/通用设备/仪器仪表/光学仪器/光学测试仪器 采购单位 大连理工大学 行政区域 大连市 公告时间 2022年12月25日 12:18 获取招标文件时间 2022年12月26日至2022年12月30日每日上午:8:00 至 11:30 下午:13:00 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥500 获取招标文件的地点 大连市甘井子区软件园路80号科技园大厦B座601室(电子邮箱) 开标时间 2023年01月17日 09:00 开标地点 大连市甘井子区软件园路80号科技园大厦B座609室 预算金额 ¥295.000000万元(人民币) 联系人及联系方式: 项目联系人 李楠 项目联系电话 0411-39700100 采购单位 大连理工大学 采购单位地址 大连理工大学采购与招标管理办公室(大连理工大学南门科技园C座)411室 采购单位联系方式 李老师;0411-84709969 代理机构名称 大连理工招标代理有限公司 代理机构地址 大连市甘井子区软件园路80号科技园大厦B座601室 代理机构联系方式 李楠;0411-39700100 项目概况 大连理工大学随车水下三维粒子图像测速系统采购项目 招标项目的潜在投标人应在大连市甘井子区软件园路80号科技园大厦B座601室(电子邮箱)获取招标文件,并于2023年01月17日 09点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:DUTASZ-2022861 项目名称:大连理工大学随车水下三维粒子图像测速系统采购项目 预算金额:295.0000000 万元(人民币) 最高限价(如有):295.0000000 万元(人民币) 采购需求: 采购随车水下三维粒子图像测速系统1套,用于水下航行器、水面船舶等的流场测量,测量系统整体跟随拖车一起前进,测量结果更接近于船舶真实航行状态下船体的流场,从而可以研究船体周围流场运动特征、涡流作用机理以及船体与自由面的相互作用等科学问题,同时也是开展水下航行体伴流场特征及流噪声机理研究的重要试验手段,具体要求详见招标文件。 本项目 随车水下三维粒子图像测速系统 可提供进口产品。进口产品是指通过中国海关报关验放进入中国境内且产自关境外的产品。 合同履行期限:自签订合同之日起,接到采购人供货通知后8个月内货到采购人指定地点安装调试验收合格。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 1)非专门面向中小企业采购项目;2)中小微企业、监狱企业、残疾人福利性单位、节能、环保产品优先采购等;3)截至开标时间,经 信用中国 网站(www.creditchina.gov.cn)、 中国政府采购网 网站(www.ccgp.gov.cn)查询,被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的不得参加本采购项目,查询结果以资格审查过程中现场网络截图为准;4)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。为本采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加本采购项目的采购活动。 3.本项目的特定资格要求:代理商须具有制造商合法有效授权(国产设备除外)。 三、获取招标文件 时间:2022年12月26日 至 2022年12月30日,每天上午8:00至11:30,下午13:00至17:00。(北京时间,法定节假日除外) 地点:大连市甘井子区软件园路80号科技园大厦B座601室(电子邮箱) 方式:通过电子邮箱提交报名材料扫描件进行报名。 售价:¥500.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年01月17日 09点00分(北京时间) 开标时间:2023年01月17日 09点00分(北京时间) 地点:大连市甘井子区软件园路80号科技园大厦B座609室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.获取招标文件时间:2022年12月26日8:00-2022年12月30日17:00(双休日及法定节假日除外)。 2.获取文件方式:通过电子邮箱提交报名材料扫描件进行报名。 3.获取文件地点:大连市甘井子区软件园路80号科技园大厦B座601室(电子邮箱) 4.通过电子邮箱提交报名材料扫描件进行报名:在招标文件发售期内,申请报名和购买招标文件的投标人请将营业执照(或事业单位法人证书)副本复印件、法定代表人身份证明(法定代表人报名提供)或法定代表人授权委托书(授权委托人报名提供,应附法人代表和被授权人的身份证明复印件)、《报名及购买文件登记表》(格式自拟,须含法定代表人或授权委托人的电子邮箱、联系电话、办公电话等)、招标文件费汇款凭证(招标文件费须以公司电汇方式至采购代理人公司银行账户,须备注项目名称及投标人名称)、上述材料加盖公章、扫描后发至电子邮箱710578087@qq.com,经采购代理人确认报名后,发售招标文件。 5.投标保证金:4万元,保证金形式及缴纳方式见招标文件。 6.公司名称:大连理工招标代理有限公司; 开户行:农行高新技术产业园支行; 账号:34263001040002404; 行号:103222006805。 注:1.如投标人为 通过电子邮箱提交报名材料扫描件进行报名 ,招标文件费以实际到账时间为准,报名截止时间后收到的材料及费用不予认可。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:大连理工大学 地址:大连理工大学采购与招标管理办公室(大连理工大学南门科技园C座)411室 联系方式:李老师;0411-84709969 2.采购代理机构信息 名 称:大连理工招标代理有限公司 地 址:大连市甘井子区软件园路80号科技园大厦B座601室 联系方式:李楠;0411-39700100 3.项目联系方式 项目联系人:李楠 电 话: 0411-39700100 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:粒子图像测速 开标时间:2023-01-17 09:00 预算金额:295.00万元 采购单位:大连理工大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:大连理工招标代理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 大连理工大学随车水下三维粒子图像测速系统采购项目公开招标公告 辽宁省-大连市-甘井子区 状态:公告 更新时间: 2022-12-25 大连理工大学随车水下三维粒子图像测速系统采购项目公开招标公告 2022年12月25日 12:18 公告信息: 采购项目名称 大连理工大学随车水下三维粒子图像测速系统采购项目 品目 货物/通用设备/仪器仪表/光学仪器/光学测试仪器 采购单位 大连理工大学 行政区域 大连市 公告时间 2022年12月25日 12:18 获取招标文件时间 2022年12月26日至2022年12月30日每日上午:8:00 至 11:30 下午:13:00 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥500 获取招标文件的地点 大连市甘井子区软件园路80号科技园大厦B座601室(电子邮箱) 开标时间 2023年01月17日 09:00 开标地点 大连市甘井子区软件园路80号科技园大厦B座609室 预算金额 ¥295.000000万元(人民币) 联系人及联系方式: 项目联系人 李楠 项目联系电话 0411-39700100 采购单位 大连理工大学 采购单位地址 大连理工大学采购与招标管理办公室(大连理工大学南门科技园C座)411室 采购单位联系方式 李老师;0411-84709969 代理机构名称 大连理工招标代理有限公司 代理机构地址 大连市甘井子区软件园路80号科技园大厦B座601室 代理机构联系方式 李楠;0411-39700100 项目概况 大连理工大学随车水下三维粒子图像测速系统采购项目 招标项目的潜在投标人应在大连市甘井子区软件园路80号科技园大厦B座601室(电子邮箱)获取招标文件,并于2023年01月17日 09点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:DUTASZ-2022861 项目名称:大连理工大学随车水下三维粒子图像测速系统采购项目 预算金额:295.0000000 万元(人民币) 最高限价(如有):295.0000000 万元(人民币) 采购需求: 采购随车水下三维粒子图像测速系统1套,用于水下航行器、水面船舶等的流场测量,测量系统整体跟随拖车一起前进,测量结果更接近于船舶真实航行状态下船体的流场,从而可以研究船体周围流场运动特征、涡流作用机理以及船体与自由面的相互作用等科学问题,同时也是开展水下航行体伴流场特征及流噪声机理研究的重要试验手段,具体要求详见招标文件。 本项目 随车水下三维粒子图像测速系统 可提供进口产品。进口产品是指通过中国海关报关验放进入中国境内且产自关境外的产品。 合同履行期限:自签订合同之日起,接到采购人供货通知后8个月内货到采购人指定地点安装调试验收合格。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 1)非专门面向中小企业采购项目;2)中小微企业、监狱企业、残疾人福利性单位、节能、环保产品优先采购等;3)截至开标时间,经 信用中国 网站(www.creditchina.gov.cn)、 中国政府采购网 网站(www.ccgp.gov.cn)查询,被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的不得参加本采购项目,查询结果以资格审查过程中现场网络截图为准;4)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。为本采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加本采购项目的采购活动。 3.本项目的特定资格要求:代理商须具有制造商合法有效授权(国产设备除外)。 三、获取招标文件 时间:2022年12月26日 至 2022年12月30日,每天上午8:00至11:30,下午13:00至17:00。(北京时间,法定节假日除外) 地点:大连市甘井子区软件园路80号科技园大厦B座601室(电子邮箱) 方式:通过电子邮箱提交报名材料扫描件进行报名。 售价:¥500.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年01月17日 09点00分(北京时间) 开标时间:2023年01月17日 09点00分(北京时间) 地点:大连市甘井子区软件园路80号科技园大厦B座609室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.获取招标文件时间:2022年12月26日8:00-2022年12月30日17:00(双休日及法定节假日除外)。 2.获取文件方式:通过电子邮箱提交报名材料扫描件进行报名。 3.获取文件地点:大连市甘井子区软件园路80号科技园大厦B座601室(电子邮箱) 4.通过电子邮箱提交报名材料扫描件进行报名:在招标文件发售期内,申请报名和购买招标文件的投标人请将营业执照(或事业单位法人证书)副本复印件、法定代表人身份证明(法定代表人报名提供)或法定代表人授权委托书(授权委托人报名提供,应附法人代表和被授权人的身份证明复印件)、《报名及购买文件登记表》(格式自拟,须含法定代表人或授权委托人的电子邮箱、联系电话、办公电话等)、招标文件费汇款凭证(招标文件费须以公司电汇方式至采购代理人公司银行账户,须备注项目名称及投标人名称)、上述材料加盖公章、扫描后发至电子邮箱710578087@qq.com,经采购代理人确认报名后,发售招标文件。 5.投标保证金:4万元,保证金形式及缴纳方式见招标文件。 6.公司名称:大连理工招标代理有限公司; 开户行:农行高新技术产业园支行; 账号:34263001040002404; 行号:103222006805。 注:1.如投标人为 通过电子邮箱提交报名材料扫描件进行报名 ,招标文件费以实际到账时间为准,报名截止时间后收到的材料及费用不予认可。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:大连理工大学 地址:大连理工大学采购与招标管理办公室(大连理工大学南门科技园C座)411室 联系方式:李老师;0411-84709969 2.采购代理机构信息 名 称:大连理工招标代理有限公司 地 址:大连市甘井子区软件园路80号科技园大厦B座601室 联系方式:李楠;0411-39700100 3.项目联系方式 项目联系人:李楠 电 话: 0411-39700100
  • Nature子刊等高水平文章必备神器——纳米光谱与成像系统
    neaSCOPE是德国neaspec公司推出的全新一代散射式近场光学显微镜(简称s-SNOM)。neaSCOPE基于散射式核心设计技术,不依赖于入射激光的波长,很大程度上提高了光学分辨率,能够在可见、红外和太赫兹光谱范围内,提供优于10 nm空间分辨率的光谱和近场光学图像。neaSCOPE同时支持s-SNOM功能与纳米红外(nano-FTIR)、针尖增强拉曼(TERS)、超快光谱(Ultrafast)和太赫兹光谱(THz)进行联用,实现高分辨光谱和成像。由于其高度的可靠性和可重复性,neaSCOPE已成为纳米光学领域热点研究方向的优选科研设备,在等离子激元、二维材料声子极化、半导体载流子浓度分布、生物材料红外表征、电子激发及衰减过程等众多研究方向得到了许多重要科研成果。本文将概述neaSCOPE在不同领域发表的高水平文献。 neaSCOPE纳米光谱与成像系统一、高效有机光伏材料nature materials 对于有机光伏材料来说,在纳米尺度上的供受体结构域的形貌控制是提高其激子的扩散和解离、以及载流子的传输和复合损耗抑制效率的关键所在。本文展示了一种基于多个不同长度尺度的三元供受体形貌生成的双原纤维网络。这种结构形貌是通过辅助共轭聚合物结晶器和非富勒烯受体丝组装结合使用得到的。本研究的关键点在于使用neaSCOPE纳米光谱与成像系统对双原纤维网络PM6/L8-BO有强烈红外信号对比度的1648/1532 cm-1波段进行纳米级的红外成像。在此之上,通过对横跨图像的线方向进行数据的采集与分析,文章估算出其材料的供体与受体原纤维的直径分别为22.1 nm和 22.6 nm。并就此得出结论:其供受体结构域这种较低的混合体积导致材料拥有了较低的配对重组率和较高的填充因子。 综上所述,通过利用这种双原纤维网络的形貌结构,该研究将损耗最小化,能力输出最大化,使得在单结有机光伏材料中获得20%的能量转换效率成为了一种可能。 Zhu et al., nature materials 21, 656 (2022)二、催化剂的分子特性J. Am. Chem. Soc. 明确地鉴别催化剂中毒的类别需要具有纳米级空间分辨率和提供吸附物的吸附位点和其吸附几何形状的详细的化学结构和表面官能团的准确信息。时至今日,不通过牺牲化学特性就在纳米级尺度上研究金属/金属氧化物界面的催化剂硫中毒还是一项非常困难的工作。本研究利用纳米傅里叶红外光谱和扫描式近场光学显微镜(nano-FTIR & s-SNOM)在纳米尺度上鉴定了基于Pd(纳米盘)/Al2O3(薄膜)平面模型催化剂表面上的硫基催化剂中毒的化学性质、吸附位点和吸附几何形状。在此之上,本研究揭示了对于单个Pd纳米粒子来说,即使只是所用的硫酸盐种类有纳米颗粒之间的不同,也会使硫中毒有所不同甚至产生巨大的变化。 nano-FTIR & s-SNOM提供关键的分子级视角对于开发具有更长寿命的高性能多相催化剂至关重要。 J. Am. Chem. Soc. 2022, 144, 8848&minus 8860三、固态电池Nature Communications 固态电池因其各种各样的优势(比如更高的安全性和能量密度),拥有显著影响能源存储行业的潜力。不过,电极/电解质界面的物理化学性质和过程仍然是其需要面对的挑战。因此,对此类界面的原位表征以及对催化工程方案的科学性理解的揭示变得十分需要。在本研究中,作者利用了各种尺度的原位显微镜(光学、原子力和红外近场)以及纳米傅里叶红外光谱nano-FTIR对电化学操作生成的石墨烯/固体聚合物电解质界面进行了无损表征。作者发现固体聚合物电解质固有的纳米结构和化学异质性在镀锂和脱锂的过程中引发了一系列额外的纳米级界面异质性;这其中包括锂离子电导率、电解质分解和界面形成的异质性。 He et al.. Nature Communications 13. 1398 (2022)四、纳米系统的光电特性Applied Surface Science 碳纳米管(CNTs), 石墨烯纳米带, 以及过渡金属二硫属化物(TMDCs)等纳米尺度系统的光电特性是由它们的介电函数决定的。这个复杂的与频率相关的函数受激子共振、电荷转移效应、掺杂、样品的应力和应变以及其表面粗糙度影响。对于此介电函数的了解使科学家能够探知材料的透射和吸收特性。在本研究中,研究者使用扫描式近场光学显微镜s-SNOM相关的技术提取了局部区域介电变化的数据。并在此之上,将s-SNOM测量的结果与空间分辨光致发光(PL)光谱和开尔文探针力显微镜(KPFM)测量的结果相关联。 将s-SNOM与局域光致发光结果相关联是识别和表征层间激子的有力工具。这种新颖的方法也开始在低维系统(碳纳米管和石墨烯纳米带)上得以应用。 Applied Surface Science 574 (2022) 151672
  • 上海应物所在纳米粒子活细胞成像、胞吞和胞内运输方面取得进展
    p  近日,中国科学院上海应用物理研究所物理生物学研究室与加州大学圣地亚哥分校合作,发展了一种基于金纳米粒子的荧光-纳米等离子体双模态成像fPlas探针,并对其在胞内运输中的聚集过程及聚集态对其传输动力学的影响开展研究。相关结果发表于《自然-通讯》(Nature Communications, 2017, 5, 15646)。/pp  胞吞及囊泡运输是细胞信号传导和能量交流的重要生理过程。其中,纳米粒子的胞吞和胞内运输过程研究是设计新型纳米药物载体和纳米诊疗方法的基础。物理生物学研究室的博士研究生刘蒙蒙和副研究员李茜等在研究员樊春海和加州大学教授Lal的指导下,通过发展fPlas探针实现了在单细胞水平半定量研究纳米粒子聚集状态的方法,可以清晰区分活细胞中呈单分散、小聚集体和大聚集体的金纳米粒子,并与暗场显微镜下的绿色、黄色以及亮黄色颗粒信号分别对应。他们进一步通过纳米等离子体成像与荧光成像的联用,实现了活细胞内纳米粒子聚集状态与定位信息同时获取。对金纳米粒子在细胞内通过微管进行运输,并且对在运输过程中发生逐步聚集的过程进行了实时成像,发现其聚集状态对相关囊泡的运动状态有重要影响。这一研究结果揭示了纳米粒子在细胞内的运输与其聚集状态直接相关,为设计新型纳米药物提供了新的思路和靶点。/pp  centerimg width="500" height="279" alt="" src="http://www.cas.cn/syky/201706/W020170614416182049650.jpg"//centerp/pp style="text-align: center " 上海应物所在金纳米粒子活细胞成像和胞内运输方面取得进展/p/p
  • 兼具核磁共振和荧光成像功能的健康信号粒子
    据报道,麻省理工学院(MIT)化学家们最近开发出了一种神奇的纳米粒子。其神奇之处在于植入到活体动物体内后,该粒子不但可以核磁共振成像(MRI)还可以完成荧光成像。结合这两种成像技术科学家们可以轻易追踪体内的特异分子,监控肿瘤周围状况,更能直接观察到药物是否成功抵达靶细胞。 在自然通讯11月18号发表的文章中,研究者揭示了这种粒子的作用机理。以小白鼠体内的维生素C追踪为例,实验前将同时携带有MRI和荧光传感器的纳米粒子注入到小白鼠体内。在维C高的地方,荧光信号强烈而核磁共振信号较弱,反之则较强。 Johnson表示未来这种粒子的应用将更加广泛,性能也将更加多样化。不但可以一次检测多种分子还可以专门用来检测某种特定分子比如和疾病息息相关的厌氧分子浓度。借助成像探测器,人们就可以进一步剖析病发过程。 这种由Johnson和他的同事们一起发明的纳米粒子其组装过程就像搭积木。不同的是,此处积木是由携带有传感器的高分子链组成。一部分分子链上携带有硝基氧(MRI造影剂)而另一部分则会携带一种叫做Cy5.5的荧光分子。 当这两种分子链按比例混合时,就可以形成一种特殊的纳米结构,这种结构被他们称作毛刷状枝型高分子。在该研究中,硝基氧和Cy5.5的比例分别是99%和1%。 硝基氧中的一个氮原子通过一个孤对电子与氧原子结合,这种结合很不稳定,所以正常情况下硝基氧表现出很大的化学活性。而这种活性正好抑制了Cy5.5的荧光效应。但是当遇到某些像维生素C这种特殊分子,硝基氧就会捕获电子失活,此时Cy5.5的荧光效应就得以体现。 普通硝基氧的半衰期很短,但是最近Andrzej Rajca教授发现在硝基氧上连入两个巨体结构,其半衰期可以延长。另外,将Rajca发现的硝基氧与Johnson合成的毛刷状枝型高分子结构相结合,其半衰期又会大大延长到几个小时,这段时间足以获得有效的MRI图像。 研究者发现成像粒子在肝处聚积,缘于小白鼠体内的维C由肝脏制造,所以一旦硝基氧分子到达肝脏部位从维生素C中捕获电子失活后,MRI信号就会消失而荧光信号则会加强。除此之外,研究者还发现在大脑(维C循环的终点站)只有少量的荧光信号。相反在血液和肾脏处(维C含量低)MRI信号最强。 下阶段,这些研究者的工作将围绕如何扩大遇到靶分子时不同传感器的信号差异展开。而目前他们已经能够创造可携带三种不同药物的荧光分子,这项技术使得他们能够追踪纳米粒子是否到达了目标位。 Johnson 在论文中指出:如果解决了这些粒子到达靶细胞的问题,那么我们将可以获得肿瘤的生长信息。未来的某一天人们只需要直接注射这些粒子到病人体内,就可以直接观察病灶和健康组织。 Steven Bottle教授说:这项研究最成功的地方在于将两种有效的成像技术合二为一。这种多功能、多组合的显像模式必然会发展成为一种检测活体动物体内疾病系数的有效工具。
  • 质谱成像:沃特世全谱图分子影像系统介绍
    pstrong  span style="color: rgb(84, 141, 212) "全谱图分子影像/span/strong  /pp  全谱图分子影像系统将多种分析技术整合至同一仪器平台并进行了优化,能够更好地了解细胞功能和生理机能,或监测整个组织或器官中的药物化合物分布情况。它可以结合多种成像技术获得全面分析结果。 /pp style="text-align: center "img title="1.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/222f22ae-9fa8-40b9-a478-bfe553697df5.jpg"//pp style="text-align: center "strong小脑中三种脂质离子的特定分布叠加图像/strong/pp  沃特世全谱图分子影像系统通过将MALDI™ 、DESI、离子淌度质谱技术和信息学工作流程整合入单个系统,可以带来其它任何单一影像技术都无法企及的详细分子信息。全谱图分子影像系统可用于:/pp  发现、识别并测定目标分子的空间分布;/pp  有效研究各种大分子和小分子;/pp  无需标记探针即可进行成像研究;/pp  可从单个样品获取尽可能多的信息;/pp style="text-align: left "  获得关键化合物的最终分子分布。 /pp  全谱图分子影像功能能够帮助用户更加深入地了解癌症潜在机制,并能够通过测定细胞和组织中的分子转运发现心血管疾病以及神经退行性疾病。在其它研究中,全谱图分子影像系统可根据分子组成对不同的组织类型进行鉴定,也可以区分病变和正常组织。 /ppstrong  span style="color: rgb(84, 141, 212) "全谱图分子影像技术/span/strong/pp  全谱图分子影像系统可用于Xevo G2-XS或SYNAPT G2-Si质谱平台。如有需要,上述全谱图分子影像系统完全可作为标准ESI-TOF仪器用于除分子成像之外的其它应用。/pp  全谱图分子影像系统与质谱技术结合后非常适用于分析特定类型的分子(多肽、脂质、小分子代谢物和糖类等等),这两项技术相互补充,可为质谱成像提供最全面的信息。 /pp  strong全谱图分子影像系统可采用的技术包括:/strong/pp  strong基质辅助激光解吸电离(MALDI)成像/strong/pp  MALDI成像技术利用激光直接电离法分析化学基质包被样品中的分子。MALDI成像技术是公认的质谱成像应用标准技术。/pp  利用MALDI质谱成像技术直接生成组织截面的图谱是一种直接从生物学基质研究其大、小分子空间分布的强大工具。质谱数据图像的描述作为二维图像,允许从视觉上确定其分子的空间分布。不像昂贵耗时的传统空间图谱方法,如放射自显影术、闪烁计数器,它不需要放射标签。/pp  MALDI SYNAPT™ HDMS™ 系统成像设备,为小分子、药物及其代谢产物提供了最佳的特异性和灵敏度。MALDI Q-Tof Premier™ 质谱仪,利用一个能够进行快速数据采集的200赫兹固态激光器,可以方便地提取质量、强度和位置等信息。提取的数据可以输入适当的软件包,如用于图像生成和操控的BioMap(Novartis)。其技术优势为:/pp  卓越的空间分辨率;/pp  适用于分析多种分子类型;/pp  尤其擅长大分子成像。/pp  strong电喷雾解吸电离(DESI)成像/strong/pp  DESI成像技术利用溶剂电离喷雾直接进行成像,此电离技术无需进行样品预处理。沃特世在传统DESI成像技术的基础上强化了其功能性,赋予该创新型成像方法以更好的可用性和性能。使用DESI成像技术的部分优势:/pp  最简单的样品制备过程;/pp  擅长脂质和小分子成像;/pp  可在同一个样品上进行多个成像实验。/pp style="text-align: center "img title="DESI_MaldiWorkflow_White.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/d38df7b4-3558-4637-9e34-f18a3c1bd077.jpg"//pp style="text-align: center "strongDESI-MALDI流程图/strong/pp strong 离子淌度技术的质谱成像/strong/pp  离子淌度可为成像研究增加另一个维度的分子分离,此技术能够根据分子大小和形状对其进行分离分析。离子淌度技术可用于消除干扰或分离目标分子用以通过更加严格的审查,利用更强的分子区分能力来提升成像系统分析性能。离子淌度可用于:/pp  消除图像中的干扰分子;/pp  区分结构极其相似的分子(例如脂质等);/pp  分离特定类型的目标分析物。/pp style="text-align: center " img title="1Triwave_Figure10_lg_700.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/4aeda8b7-4c91-428b-a85a-5c896fac8c01.jpg"//pp style="text-align: center "strong离子淌度分离技术/strong/pp  与UPLC/MS不同,质谱成像在电离前不涉及任何形式的分离。由于观察的详细程度和可能的背景干扰,产生的数据通常非常复杂。SYNAPT HDMS实现了MALDI和DESI成像与离子淌度质谱的强大结合,离子可以按质谱成像实验中的化合物种类和电荷进行气相分离,提供单独的质谱不具备的选择性水平。该技术可以使得到的成像数据更清楚,可以更精确地看到背景存在下的分子分布。/pp style="text-align: center "img title="1DESI-Systems.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/955d4a17-0825-444a-acef-9c6f1de56666.jpg"//pp style="text-align: center "strong全谱图分子影像系统所采用技术/strong/pp  span style="color: rgb(84, 141, 212) "strong全谱图分子影像系统组件/strong/span/pp  strongSYNAPT G2 Si质谱仪/strong/pp  SYNAPT平台是一款功能强大且非常灵活的仪器,可配备各种选件(MALDI、DESI、离子淌度技术)进行成像研究。这款强大的系统可根据具体需要添加任意数量的配置,能够最好地满足几乎任何实验室对分析性能的要求。SYNAPT G2-Si在所有成像模式中均表现出众,是唯一能够将离子淌度功能与成像技术充分结合的系统。基于SYNAPT的全谱图分子影像系统非常适用于蛋白质组学、代谢组学、细胞生物学、生物化学乃至临床研究病理学和组织学应用,是质谱成像研究的终极解决方案。/pp  strongXevo G2-XS QTof质谱仪/strong/pp  Xevo G2-XS QTof是一款高性能、高灵敏度分析平台,专为某些最具挑战性的成像研究而设计。全谱图影像系统借助Xevo G2-XS QTof出色的分析性能并结合DESI成像技术,能够对整个样品和组织中的小分子分布进行研究,尤其适用于脂质组学、代谢组学和药物分布研究。/pp style="text-align: center "img width="200" height="345" title="_1rgp8465_ian2.jpg" style="width: 200px height: 345px " src="http://img1.17img.cn/17img/images/201708/insimg/055e40bb-04f6-471f-8746-0b498bd9c17c.jpg" border="0" vspace="0" hspace="0"/ /pp style="text-align: center "strongXevo G2-XS QTof质谱仪/strong/pp  strongHDI成像软件/strong/pp  这款功能强大且直观的软件包中含有针对复杂成像数据进行高效、快速数据分析时所需的全部数据分析和先进统计工具。HDI软件简单易用且专门为质谱成像而开发,可查询多维度数据,并能够轻松给出丰富详实的图像和统计数据,这些都使得质谱成像技术成为一项极具前景的分析技术。/pp style="text-align: center "img title="1WG_HDI_Software_schematic_950px.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/78843426-0455-43b6-af8d-930c34f8143a.jpg"//pp style="text-align: center "strongHDI成像软件/strong/pp /p
  • 理加联合代理Resonon高光谱成像系统
    Resonon 公司的高光谱成像系统是高光谱行业内性价比最高的产品,轻巧便携,设计紧凑;为满足商业、工业及科研领域的不同需要,设计了许多适用于室内、野外、工厂、航空的附件设备,为用户提供了极大的便利;具备雄厚的技术力量和经验,自2002年成立以来,和很多著名的研究机构合作(NIH、NOAA、USDA、USDE等),其产品被NIST权威结构采用。Resonon高光谱成像仪被世界各国的研究机构、工业及公司所长期使用,坚固耐用,质量可靠;产品制造技术精良,采用当前最先进的技术和材料,不断的优化和提高成像性能,保证用户获得低杂散、低失真、高信噪比的高光谱图像;为成像仪专门设计了一系列的野外及室内采样平台,大大简化了采样的难题。2013年12月20日,Resonon授权理加联合在中国市场销售其产品,这极大地丰富了理加联合的产品线,同时,凭借优秀的销售团队和专业、专注、专才的服务理念,理加人相信,通过专业的仪器销售、技术培训和售后服务,Resonon高光谱成像仪将在中国得以推广并被广大用户所认可。
  • TSI 网上讲座: 粒子图像测速仪系统 II ( 2011年3月22日)
    美国TSI公司非常荣幸的为您提供有关流体力学的网上讲座, 讲座将由来自TSI的技术专家用中文讲解。讲授涵盖广泛,包括初级,中级和高级水平的流体力学研究,有助您提高测试技术的水平,与此同时提供解决方案;寻求如何优化系统得到更可靠数据。 这次的讲座也包括更多关于TSI精准仪器在流体研究中的应用(包括所有从基础流体研究到环境和生物医学), 请踊跃参加网上讲座以得到更多相关讯息。 讲座将会进行40分钟及预留15分钟答疑环节。 这是TSI公司第二次推出PIV系列中文网上讲座,以帮助您提高利用PIV系统测量流体速度的技术水平。 我们将于2011年3月22日上午10点开始此次讲座,介绍PIV系统基本原理与利用Insight3G软件进行数据采集与分析的基本技巧。 具体内容:PIV原理及PIV实验基本原则;Insight3G中PIV系统软硬件设置、图像校准、图像优化、示踪粒子浓度调整与△T参数优化。 网上讲座是免费为您提供,如果您有兴趣参加, 请点击链接 http://www.instrument.com.cn/netshow/SH100732/guestbook.asp (中文注册)简单填写表格,并点击&ldquo 发送&rdquo 。我们将在一两天内发给您相关讲座的链接,以便您在方便的时间参加。
  • 横河电机收购液体粒子成像解决方案提供商Fluid Imaging Technologies公司
    横河电机公司宣布,根据双方约定,于2020年4月8日完成对Fluid Imaging Technologies公司全部股份的收购。Fluid Imaging Technologies公司拥有分析悬浮在液体介质中的细胞和其他类型颗粒的尖端技术和经验,专门从事液体中悬浮细胞等粒子的测量设备的研发、制造和销售。通过将Fluid Imaging Technologies纳入横河集团,横河将能够扩展生命创新业务,提供细胞观察解决方案的产品组合,加强生物经济市场的业务。Fluid Imaging Technologies是开发流体成像仪器的先驱,这些仪器结合了传统显微镜(观察细胞)和流式细胞仪(高速分析悬浮在液体介质中的淋巴及其他类型血细胞的特性)的功能,能够对液体样品中的颗粒进行成像、测量、分析和计数,可用于海洋研究、市政水管理等领域,也可用于生物制药、化学制品、石油和天然气等行业。横河电机通过提供用于细胞内部三维观察的CSU系列共焦扫描仪单元及用于培养细胞进行药物自动评估实验的CellVoyager系列高含量筛选系统,支持活细胞成像系统的前沿研究和开发。这些仪器适用于观察培养在培养皿和其他培养皿表面的粘合细胞。横河电机产品系列中增加了Fluid Imaging Technologies的流体成像仪器后,将为客户提供更多选择,而我们将AI辅助图像分析技术与这些技术相结合,将使我们能够为生产线上的抗体药物的质量检查和供水系统的水质检查等应用提供新的解决方案。横河电机将流体成像技术与其在石油、化工、给排水处理行业的控制业务的核心技术和专业经验相结合,将能够在医疗保健、食品和饮料、制药和环境研究等不同领域为客户提供新的价值。Fluid Imaging Technologies公司总裁兼首席执行官Kent Peterson说:“流体成像仪器与横河电机的光学工程、人工智能软件、市场营销能力相结合,将加速FlowCamTM成为流体成像技术全球尖端品牌的定位。”横河电机执行役员兼生命创新业务总部负责人中尾宽说:“横河的长期目标是2050年为社会的可持续增长做出贡献。我们的目标之一是为所有人提供福利。我坚信流体成像技术将为实现这一目标做出巨大贡献。 流式成像颗粒分析系统
  • 量子物理学促进电镜技术两大新成果:敏感样品高分辨成像和原子级粒子相互作用测量
    作者:俄勒冈州大学Laurel Hamers   UO CAMCOR工厂的扫描电子显微镜。物理学家Ben McMorran和他的团队想出了一种改进研究工具性能的方法。图片来源自俄勒冈州大学  量子怪诞正在为电子显微镜打开新的大门,成为高分辨成像的强大工具。  UO物理学家Ben McMorran实验室的两项新进展正在改进显微镜。这两种方法都源于量子力学的一个基本原理:电子可以像波和粒子一样同时运动。这是许多奇怪的量子级怪诞的例子之一,在这些怪诞中,亚原子粒子的行为似乎往往违反了经典物理定律。  其中一项研究发现了一种在显微镜下研究物体而不与之接触的方法,从而防止显微镜损坏易碎样品。第二种方法设计了一种同时对一个样本进行两次测量的方法,提供了一种研究该物体中的粒子如何跨距离相互作用的方法。  McMorran和他的同事在两篇论文中报告了他们的发现,这两篇论文都发表在《物理评论快报》杂志上。  “通常很难在不影响它的情况下观察到一些东西,尤其是当你观察细节时。”McMorran说道:“量子物理学似乎为我们提供了一种在不破坏事物的情况下更深入地研究它们的方法。”  电子显微镜被用来近距离观察蛋白质和细胞以及非生物样本,比如新材料。电子显微镜将电子束聚焦在样品上,而不是传统显微镜中使用的光。当光束与样品相互作用时,其某些特性会发生变化。探测器测量光束的变化,然后将其转换为高分辨率图像。  但这种强大的电子束会对样品中的脆弱结构造成破坏。随着时间的推移,它可能会削弱科学家试图研究的细节。  作为一种解决方法,McMorran的团队使用了20世纪90年代初发表的一项理想实验,该实验提出了一种在不触碰敏感炸弹、不冒引爆风险的情况下探测敏感炸弹的方法。  这个技巧依赖于一种叫做衍射光栅的工具,衍射光栅是一种带有微小缝隙的薄膜。当电子束击中衍射光栅时,它被一分为二。  McMorran实验室的研究生Amy Turner是第一项研究的主导人,她解释说:“在这些分束衍射光栅正确对准的情况下,电子进入并分裂成两条路径,但随后重新组合,使其只流向两种可能输出中的一种。其原理是,当你放入样品时,电子与自身的相互作用会被打断。”  在这种装置中,电子不会像传统的电子显微镜那样击中样品。相反,电子束重组的方式揭示了范围内样本的信息。  在另一项研究中,McMorran的团队使用类似的衍射光栅装置同时在两个地方测量样品。他们将电子束分开,使其在一个小金粒子的两侧通过,测量电子传递到每一侧的粒子的微小能量。  这种方法可以揭示样本在原子水平上的敏感细微差别,了解样本中粒子相互作用的方式。  劳伦斯伯克利国家实验室的博士后研究员Cameron Johnson在McMorran的实验室做了博士研究,并领导了这项研究。他认为:“这项研究的特殊之处在于,你可以观察它的两个独立部分,然后将它们结合在一起,看看这是一种集体振荡,还是它们之间不相关。我们可以超越显微镜的能量分辨率和通常无法达到的探针相互作用的极限。”  虽然这两项研究进行了不同类型的测量,但它们使用的是相同的基本设置,即所谓的干涉测量法。McMorran团队的成员认为,他们的工具可能在他们自己的实验室之外有用,可以用于各种不同类型的实验。  Turner自豪道:“这是第一台此类电子干涉仪。人们以前使用过衍射光栅,但这是一种功能灵活的版本,可以根据不同的实验进行调整。”  McMorran谈到,如果有合适的材料和说明,这种装置可以被添加到许多现有的电子显微镜上。他的团队已经引起了其他实验室研究人员的兴趣,他们希望在自己的显微镜中使用干涉仪。参考资料:Amy E. Turner et al, Interaction-Free Measurement with Electrons, Physical Review Letters (2021). DOI: 10.1103/PhysRevLett.127.110401Cameron W. Johnson et al, Inelastic Mach-Zehnder Interferometry with Free Electrons, Physical Review Letters (2022). DOI: 10.1103/PhysRevLett.128.147401
  • Waters首次将MALDI,DESI和IMS技术集成于其最新的全谱图分子成像系统
    p 新奥尔良 – 9/3/2015 – Waters集团今天推出了一款全新的全谱图分子成像系统以用于组织样品的高级分子成像。基于Waters的SYNAPT G2-Si 质谱,该系统首次在一个单独的质谱平台上实现了基质辅助激光解吸附离子化技术(MALDI),解吸附电喷雾离子化技术(DESI)和离子淌度分离技术(IMS)等三种技术的集成。/pp 据Waters公司介绍,凭借该新系统的成像能力,研究实验室可以更加精准,更加确切地得到在组织样品中大,小分子的分布。在成像实验中,通过测量在细胞和组织中的分子分布获取的信息会对癌症,心血管和神经组织退化的研究产生帮助。此外,成像技术还可以帮助科研人员通过分子组成鉴别不同的组织类别。/pp “通过整合MALDI,DESI和 IMS于同一台仪器,Waters将分子成像引入了一个全新的领域”,Waters 健康科学部门的副总经理 Jeff Mazzeo博士表示,“对于细胞生物学家,生物化学家,临床诊断科研工作者和分析科学家,我们承诺为他们提供他们需要的工具以获得最大量的信息,从而帮助他们将他们的研究向人类健康领域推进。这个新的全谱图分子成像系统集成并优化了Waters的质谱技术,在可提供的细节和分子信息程度方面,超过其他单一成像技术。”/pp Waters预计将于2015年第三季度向全球发货。/pp style="text-align: center "img style="width: 500px height: 375px " alt="" src="http://img1.17img.cn/17img/old/NewsImags/images/2015310112544.jpg" width="600" height="450"//pp style="text-align: center "strong新品发布会现场/strong/pp style="text-align: center "strongimg style="width: 500px height: 333px " alt="" src="http://img1.17img.cn/17img/old/NewsImags/images/201531013526.jpg"//strong/pp style="text-align: center "strong合影/strong/pp style="text-align: center "  strong(左一Waters全球营销副总裁Rohit Khanna博士、左二Waters总裁Art Caputo先生、右一Waters健康科学业务副总经理Jeffrey Mazzeo博士、右二仪器信息网总经理唐海霞女士)/strong/p
  • Teledyne FLIR和法雷奥就汽车安全系统热成像达成协议
    近日,法雷奥(Valeo)和Teledyne FLIR公司开始战略合作,将热成像技术引入汽车行业,以提高道路使用者的安全。双方已于2023年底从一家全球领先的汽车OEM获得了一份重要合同,交付其作为新一代高级驾驶员辅助系统(ADAS)驾驶员辅助技术的新型热像仪,以提高车辆和道路安全。图片来源:法雷奥法雷奥和Teledyne FLIR将推出首款用于夜视ADAS的ASILB级热成像技术。该系统将补充法雷奥的各种传感器,并依靠法雷奥的ADAS软件堆栈来支持乘用车、商用车以及自动驾驶汽车的夜间自动紧急制动(AEB)等功能。法雷奥与热成像技术公司Teledyne FLIR强强联手,打造下一代汽车安全多光谱传感器融合系统。法雷奥将利用其在汽车视觉系统方面的丰富专业知识,集成Teledyne FLIR热视觉技术,并为OEM提供完整的夜视解决方案,包括基于法雷奥人工智能和图形可视化堆栈的感知软件。图片来源:法雷奥“法雷奥拥有市场上最广泛的感知解决方案组合,我们期待与Teledyne FLIR合作,将热成像技术添加到我们的产品中,”法雷奥舒适和驾驶辅助总裁Marc Vrecko表示。“这款新摄像头及其感知软件将补充我们的产品,并提高ADAS和自动驾驶车辆系统的整体性能,为道路使用者带来更多安全,尤其是在夜间。”Teledyne FLIR副总裁兼总经理Paul Clayton表示:“从售后驾驶员辅助技术到自动驾驶机器人出租车,Teledyne FLIR在开发热成像并将其融入汽车安全系统方面不断取得巨大进步。我们与法雷奥的合作使我们能够使热成像技术广泛应用于从乘用车到半挂卡车的交通运输中,让更多的驾驶员和自动车辆安全系统能够在完全黑暗、杂乱的环境和其他现有传感器无法看到的恶劣天气下看清东西。”
  • 全新一代纳米光谱与成像系统-neaSCOPE,在可见、红外和太赫兹光谱范围实现10 nm高分辨光谱和成像!
    一、 neaspec推出全新一代纳米光谱与成像系统neaSCOPE系列产品 近期,全球知名纳米显微镜领域制造商neaspec推出了纳米光学显微镜neaSCOPE全新一代系列产品,加载了全新技术,拓展了产品功能,以满足客户多样的实验需求。neaSCOPE是基于针增强的纳米成像和光谱,以应用为目的,满足客户在科学,工程和工业研究等不同领域的科研需求。由于其高度的可靠性和可重复性,neaSCOPE已成为纳米光学领域热点研究方向的科研设备,在等离子激元、二维材料声子化、半导体载流子浓度分布、生物材料红外表征、电子激发及衰减过程等众多研究方向得到了许多重要科研成果。neaSCOPE技术特点和优势包括:♢ 行业的针增强技术,高质量的纳米分析实验数据。♢ 采用模块化设计,针对用户的实验需求量身定制配置,同时兼顾未来的升需求,无需重复购置主机。♢ 软件使用方便,提供交互式用户引导功能,让新用户也能快速上手。流程化的软件界面,逐步引导用户轻松完成实验操作。♢ 功能多样、可靠性高,已得到大量发表文章的印证,在纳米光学领域有很深的影响力,是国内外实验室的头号选择。二、neaSCOPE全新一代产品型号 IR-neaSCOPE:基于AFM 针的激光诱导光热膨胀的纳米红外成像和光谱。IR-neaSCOPE可测量纳米红外吸收谱。该设备利用AFM-IR机械信号来检测样品中激光诱导的光热膨胀。IR-neaSCOPE无需红外探测器和光学干涉仪,为热膨胀系数大的样品(如聚合物、生物材料等)提供了一种经济高效的纳米红外成像及光谱研究的解决方案。IR-neaSCOPE提供红外吸收成像,点光谱和高光谱成像,并可升到IR-neaSCOPE+s,拓展更多功能,实现更多种类材料的研究。♢ 将样品的光学与机械性质有效地去耦,实现无伪影的吸收测量。♢ 将激光地聚焦在探针上,实现优化条件下对样品的无损表征。♢ 互动式软件界面,帮助新用户直接上手,获取高质量数据。IR-neaSCOPE+s:探测商用AFM针的弹性散射光,实现纳米红外成像和光谱。IR-neaSCOPE+s能实现10 nm空间分辨率的化学分析和电磁场成像。该设备利用先进的近场光学显微镜技术来测量红外吸收和反射率,以及局部电磁场的振幅和相位。设备支持红外纳米成像、点光谱、高光谱、以及纳米 FTIR,可使用CW照明源,宽波激光器,以及同步辐射源。IR-neaSCOPE+s在有机和无机材料分析方面具有广泛的应用案例以及特殊的近场表征手段,如定量s-SNOM或亚表面分析。♢ 同时探测样品吸收和反射,适用于各类型材料。♢ 快速可靠的s-SNOM成像和光谱系统,在不影响数据质量的情况下实现高效数据产出。♢ 结合多光路设计和多项技术,实现大量选配功能(纳米 FTIR、透射、底部照明、光电流等)。...… VIS-neaSCOPE+s:局部电磁场偏振分辨的近场成像(振幅和相位)。VIS-neaSCOPE+s优化了可见光波长范围内的振幅和相位的矢量场成像。利用的s-SNOM技术实现对等离子体纳米结构和波导结构的近场成像和光谱研究。VIS-neaSCOPE+s提供灵活的光路配置,能够进行偏振测量、侧面和底部照明。同时支持升纳米FTIR 和TERS功能。♢ 检测局域电磁场的振幅和相位,实现对波衰减、模场和色散的全面表征。♢ 有的100%无背景检测技术和稳定的无像差对焦,保证在可见光全波数范围内的实验结果。♢ 灵活的光路选配,可将光源聚焦到样品或探针上,适用于等离子体不同的研究方向。 THz-neaSCOPE+s:纳米尺度太赫兹 (THz) 近场成像和光谱多功能平台。THz-neaSCOPE+s可在纳米尺度上实现太赫兹成像和光谱。该设备基于完全集成的紧凑型 THz-TDS 系统,可直接用于半导体纳米结构、二维纳米材料和新型复合材料系统的电导率研究。THz-neaSCOPE+s同时支持用户自由耦合太赫兹和亚太赫兹源,并集成了市面上SPM仪器中的软件界面,是强大的纳米太赫兹分析仪器。 ♢ 全反射光路,大程度上兼容宽波和单波太赫兹源,覆盖全部光谱范围。♢ 模块化设计和多光束路径设计,支持多种分析功能,包括光电流、泵浦以及纳米FTIR。♢ 基于THz-TDS 技术,实现紧凑且完全集成的太赫兹纳米光谱。 IR-neaSCOPE+fs:10 fs 时间分辨率和 10 nm 空间分辨率的超快泵浦光谱。IR-neaSCOPE+fs实现了泵浦光谱空间分辨率的突破。设备基于纳米FTIR 的fs激光系统,提供完全集成的硬件和软件系统,实现纳米的时间动态研究。该系统具备有的双光路设计、无色散光学元件、以及可选配的SDK,兼容各种泵浦激光器,使用成熟的高功率实验配置进行突破性的超快研究。♢ 完全集成的系统,帮助用户免于复杂的设备调试,专注于研究本身。♢ 无芯片的光学元件进行光聚焦和收集达到大时间分辨率。♢ 灵活的硬件和软件界面,可根据客户实验需求定制。 IR-neaSCOPE+TERs:nano-FTIR与nano-PL和TERS相结合,突破性的纳米尺度光谱探测技术。IR-neaSCOPE+TERs将纳米FTIR与针增强拉曼TERS和光致发光(PL)光谱相结合,在同一显微镜内利用弹性和非弹性散射光同时进行表征。该系统通过简单的光路校准可实现互补的红外光和可见光散射,可使用商用镀金的AFM探针进行稳定的纳米拉曼和PL表征。 ♢ 模块化设计和多光路设计,实现AFM探针在同一位置的纳米FTIR和纳米拉曼/PL光谱。♢ 通过简单的光路校准收集AFM探针针的强弹性散射光。♢ 使用商用AFM探针获得大 TERS 信号。♢ 优化的软件数据收集处理,在同一用户界面进行所有测量。 cryo-neaSCOPE+xs:超低温环境纳米光学成像和光谱。cryo-neaSCOPE+xs可在端低温下实现近场光学纳米成像和纳米光谱。该设备可获得高质量的近场信号,且支持可见光、红外光、以及太赫兹源。因此,该系统可实现10 K以下不同能相关的研究。cryo-neaSCOPE+xs 基于全自动干式低温恒温器,无需液氦。该系统同时具备共聚焦以及接电功能,以实现低温条件下的多功能研究。♢ 的s-SNOM和纳米FTIR技术,实现低温下纳米光学分析,温度低至10K。♢ 使用neaspec 照明和检测模块,兼容红外到太赫兹光源,应用领域广泛。♢ 使用全自动闭式循环高真空干式低温恒温器,降温速度快,使用成本低。 三、背景简介neaspec创立于2007年,起源于德国马克斯普朗克研究所,因其在纳米分析领域的一系列突破性技术而受到广泛关注。neaspec和Quantum Design结为全球战略合作伙伴,并于2013年次引入中国。产品经过多次升换代,设备的各方面性能均已达到高度优化。目前在国内的用户包括清华大学、北京大学、中国科学技术大学、中山大学、中科院诸研究所等高校和研究所。此次升使得系统在软件用户交互性、模块化、后续升兼容性方面具有更大的提升。 四、应用案例1. Nature: 双层旋转的范德瓦尔斯材料中的拓扑化激元和光学魔角 相关产品:IR-neaSCOPE+s 2018年W. Ma等在Nature报道了范德瓦尔斯材料α-MoO3 中的面内双曲声子化激元的重要发现。2020年6月,G.W. Hu等在此基础上通过理论预测并在实验上证实了双层旋转范德瓦尔斯材料α-MoO3体系,可以实现由转角控制的声子化激元从双曲到椭圆能带间的拓扑变换。在这个变换角附近,光学能带变成平带,从而实现激元的直线无衍射传播。类比于双层旋转石墨烯中的电子在费米面的平带,作者因此将这一转角命名为光学魔角。 研究中作者采用散射型近场光学显微镜(s-SNOM)对双层α-MoO3 旋转体系进行扫描测试。实验结果显示,在接近魔角时,光学能带变平,声子化激元沿直线无衍射传播。此外,通过测试不同转角的双层体系,作者成功观测到在不同频段大幅可调的低损耗拓扑转换和光学魔角。这一重要发现奠定了“转角光子学”的基础,为光学能带调制、纳米光操控和超低损耗量子光学开辟了新的途径,同时也衍生出“转角化激元”这一重要分支研究方向,为进一步发展“转角声学”或“转角微波系统”提供了重要的线索和启发。(引自:中国光学-公众号,2020年6月11日《Nature:光学魔角!二维材料转角遇见光》) 【参考】 Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature, 2020, 582, 209-213.2. Nature: 天然双曲材料的声子化研究 相关产品:IR-neaSCOPE+s W. Ma在自然材料体系(α-MoO3)中观察到在平面内各项异性传播的声子化激元,包括传播速度不同的平面椭圆型和单向传播的平面双曲型声子化激元;并发现了在α-MoO3中支持的声子化激元具有低的损耗。实验发现,α相三氧化钼在两个光谱范围内存在两个剩余射线带,声子化激元的传播行为在两个剩余射线带内表现出不同的性质。在低剩余射线带内,α相三氧化钼可以在中红外波段支持双曲型声子化激元,也就是说声子化激元仅沿一个方向传播([001]方向),在垂直方向[100]的传播完全被抑制,这种化激元有多种具吸引力的性质,它具有强的场局域特性,可以支持厚度可调节的波导模式,并且损耗低。而在另外一个剩余射线带内,α相三氧化钼在中红外波段支持椭圆型声子化激元,化激元沿着[001]和垂直方向[100]以不同的波长进行传播,这种化激元传播寿命高达约8 ±1 ps,远高于目前已知的高寿命。研究进一步促进了光学器件的微型化和多元的调制特性,并且再次证明自然材料中仍然具有无穷的挖掘潜力。 【参考】 In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature, 2018, 562, 557–562. 3. 纳米空间分辨超快光谱和成像系统在范德瓦尔斯半导体研究中的应用 相关产品:IR-neaSCOPE+fs近年来,范德瓦尔斯(vdW)材料中的表面化激元(SP)研究,例如等离化激元、声子化激元、激子化激元以及其他形式化激元等,受到了广大科研工作者的关注,成为了低维材料领域纳米光学研究的热点。其中,范德瓦尔斯原子层状晶体存在特的激子化激元,可诱导可见光到太赫兹广阔电磁频谱范围内的光学波导。同时,具有较强的激子共振可以实现非热刺激(包括静电门控和光激发)的光波导调控。2020年7月,美国哥伦比亚大学Aaron J. Sternbach和D.N. Basov教授等研究者在Nature Communications上发表了题为:“Femtosecond exciton dynamics in WSe2 optical waveguides”的研究文章。研究者以范德瓦尔斯半导体中的WSe2材料为例,利用德国neaspec公司的纳米空间分辨超快光谱和成像系统,通过飞秒激光激发研究了WSe2材料中光波导在空间和时间中的电场分布,并成功提取了飞秒光激发后光学常数的时间演化关系。同时,研究者也通过监视波导模式的相速度,探测了WSe2材料中受激非相干的A-exciton漂白和相干的光学斯塔克(Stark)位移。【参考】 Aaron J. Sternbach et.al. Femtosecond exciton dynamics in WSe2 optical waveguides, Nature Communications, 11, 3567 (2020) 4. ACS Nano:光致发光、拉曼、近场光学同步测量技术揭示二维合金材料新特性 相关产品:IR-neaSCOPE+TERs 单层异质结构的应用潜力直接受到材料内在和外在的缺陷影响。乔治亚大学的研究人员在Abate教授的带领下,利用neaSNOM散射式近场光学显微镜,研究了二维(2D)单层合金光致氧化过程中纳米尺度下的奇异界面现象。他们发现界面张力可以通过建立稳定的局部势阱来集中本征激子,从而实现高的热稳定性和光降解稳定性。该实验结果由neaspec公司特的nano-PL / Raman和s-SNOM同步测量技术所采集,并已发表在ACS NANO中。在实验中,作者合成了由单层面内MoS2-WS2异质结构制成的2D纳米晶体,这些晶体在富Mo的内部区域和富W的外部区域间,显示出了较强的纳米合金界面。在针增强照明刺激下(100天),作者进一步观察到,光降解过程中界面的激子稳定性、局域性和不均匀性。得益于高度敏感的s-SNOM成像技术,作者探测到富W的外部区域的反射率出现急剧下降。该反射率始于晶体边缘,并随时间向内传播。在同一样品区域获得的高光谱纳米光致发光(nano-PL)图像显示,W氧化相关的激子的猝灭会遵循与s-SNOM相同的模式(在边缘开始并向内传播)。值得注意的是,合金界面的内部区域表现出了强大的抗氧化能力。即使在光降解100天后,它仍具有很强的s-SNOM信噪比和未淬灭的nano-PL信号。为了进一步研究结构变化,作者使用nano-PL进行了增强拉曼高光谱纳米成像测量,并在同一扫描区域的每个像素处获取了空间和光谱信息。实验结果表明,在整个晶体的光降解过程中,WS2拉曼峰逐渐消失,而在内部区域中的MoS2仍然存在。该结果表明在相同的环境条件、同一显微镜下测量相同的晶体,由于热诱导的合金和基底晶格常数的不匹配,导致光氧化与局部应变存在一定的关联。而合金界面可防止该应变传播到内部区域,从而防止其降解。 【参考】 Photodegradation Protection in 2D In-Plane Heterostructures Revealed by Hyperspectral Nanoimaging: The Role of Nanointerface 2D Alloys. ACS Nano 2021, 15, 2, 2447–2457. 5. Cryo-SNOM低温近场在氧化物界面的新应用 相关产品:cryo-neaSCOPE+xs 氧化物界面处的二维电子体系(2DES)做为一个特的平台,将典型复合氧化物、强电子相关的物理特性以及由2DES有限厚度引起的量子限域集成于一体。这些特的性质使其在电子态对称性、载流子的有效质量和其它物理特性方面与普通半导体异质结截然不同,可以产生不同于以往的新现象。然而氧化物界面多掩埋于物质间使其难以探测,为探究其局限2DES需要一个无创并且具有很高空间分辨率的表征技术,如果还能提供一个较宽范围内温度变化的平台将大地推进该领域的研究。通常光学显微镜可用于上述研究,其中,远场的探测技术由于受到波长和衍射限的限制缺乏空间分辨率,而红外波段的光束探测传导电子的Drude反应分辨率仅有几个微米的量,无法满足测试需求,而利用散射式近场光学显微镜(s-SNOM)可以克服这一限制,使其具有10-20 nm的空间分辨率并获得光响应信号中的强度和相位信息。近期,Alexey B. Kuzmenko团队在Nat. Commun.上获得新进展,他们利用s-SNOM来研究从室温下降到6K时LaAlO3/SrTiO3界面的变化情况,从近场光学信号,特别是其中的相位分量信息可以看出对于界面处的电子系统的输运性质具有其高的光学敏感度。这一模型说明了2DES敏感性来源于AFM针和耦合离子声子模型在很小穿透深度下的相互作用,并且该模型可以定量地将光信号的变化与冷却和静电选通控引起的2DES传输特性的变化相关联,从而提供操控光学信息的有效手段。从利用s-SNOM得到的实验结果和建立的模型结果来看,二者之间具有很好的拟合,这一结果说明了电子声子相互作用对于在零动量时的表面声子离子模型的散射化吸收具有至关重要的作用。【参考】 High sensitivity variable-temperature infrared nanoscopy of conducting oxide interfaces. Nature Communications 2019, 10, 2774. 6. Science:近场太赫兹光电流-石墨烯等离子体在近费米速度传播下的非局域量子效应 相关产品:THz-neaSCOPE+s西班牙光子科学研究所(ICFO)的 Marco Polini教授和Frank H. L.Koppens教授在《Science》上发表了题为:Tuning quantum nonlocal effects in graphene plasmonics的文章。 在本篇文章中,研究者利用散射式近场光学手段,对石墨烯-(h-NB)-金属复合体系表面进行了纳米尺度下的精细扫描,由此观测到了太赫兹波段下的石墨烯等离子体以近费米速度进行传播。研究发现,在慢的速度(数百倍低于光速)下,石墨烯等离子的非局域响应得以探测,通过近场成像能够以无参数匹配手段清晰地揭示无质量的Dirac电子气体的量子描述,进而展示了三种类型的非局域量子效应,即单粒子速率匹配,相互增强费米速率和相互减弱压缩性。通过该近场光学的研究方法,研究者终提供了确定电子体系的全时空反应的新途径。 【参考】 Tuning quantum nonlocal effects in graphene plasmonics. Science 2017, 357, 187. 五、部分发表文章[1]. Nature (2021) 596, 362[2]. Science (2021) 371, 617[3]. Nature Physics (2021) 17, 1162[4]. Nature Phot. (2021) 15, 594[5]. Nature Chem. (2021) 13, 730[6]. Nature (2020) 582, 209[7]. Nature Phot. (2020) 15, 197[8]. Nature Nanotech. (2020) 15, 941[9]. Nature Mater. (2020) 19, 1307[10]. Nature Mater. (2020) 19, 964[11]. Nature Phys. (2020) 16, 631[12]. Nature (2018) 562, 557 [13]. Nature (2018) 359, 892[14]. Science (2018) 362, 1153 [15]. Science (2018) 361, 6406 [16]. Science (2018) 359, 892[17]. Science (2017) 357, 187[18]. Science (2014) 344, 1369[19]. Science (2014) 343, 1125
  • 中科院分子细胞卓越中心陈铭、赵宏伟:高内涵成像分析系统应用心得
    生命科学研究过程离不开各类科学仪器的帮助,仪器信息网特别策划话题:“生命科学技术平台经验分享”,邀请高校、科研院所公共技术平台的老师分享技术心得和经验,方便生命科学领域研究人员了解相关技术进展,学习仪器使用方法。本篇由中国科学院分子细胞科学卓越创新中心化学生物学技术平台陈铭研究员和高级工程师赵宏伟联合供稿,以下为供稿内容:高内涵成像分析系统,通俗来讲就是自动化成像平台和图像定量分析平台的集成,于20世纪90年代中后期推出第一代产品。高内涵成像分析系统的出现得益于自动化技术的进步,也依赖于计算机辅助的图像自动采集和信息提取能力的提升,其鲜明特点就是图像采集速度快、样品检测通量高、数据分析功能强。高内涵主要应用于高通量药物筛选和功能基因组筛选的细胞表型类实验检测,也适用于中低通量的细胞学研究中实验条件的摸索和优化。本文主要从图像高通量采集和图像批量分析两个方面介绍一下应用心得,并简要介绍一下我们在高内涵使用中遇到的一些思考。1. 自动化成像:图像采集要兼顾成像速度和成像质量的平衡作为高通量检测设备,高内涵的成像速度非常快,现在的技术能在5分钟之内完成一整块384孔板的单通道单视野的高质量图像采集。高内涵的成像对象通常是板底透明的微量多孔板,包括1-1536孔板,其中以96孔板和384孔板的使用最为常见。当然,借助于适配器的使用,也可以实现对培养皿和玻片的观察。根据板底材质的不同,分为PS材质多孔板和玻璃底多孔板,其中板底透明的黑色PS材质微孔板使用较广泛。根据板底厚度的不同,板底厚度大于200 μm的属于厚底板,小于等于200 μm的属于薄底板。薄底板多用于高数值孔径物镜的成像,厚底板适配于长工作距离物镜。同时,由于高数值孔径物镜比较宽,容易与多孔板边缘的裙边相撞,导致多孔板最外面的一圈的孔无法成像,现在也有低裙边的多孔板来兼容高数值孔径物镜的整板成像。此外,出于特定的实验目的,还有一些特殊的板型,也可以在高内涵上进行图像采集,比如适用于3D 类器官培养的U型底多孔板,用于研究细胞迁移能力的Transwell孔板等。区别于一般的荧光显微镜,高内涵属于自动化的倒置荧光显微镜,通常搭配自动化的载物台来驱动多孔板的移动。目前通用的载物台是机械载物台和高精度磁悬浮载物台,可以实现连续时间点成像后稳定的视频输出。由于所有的微孔板的板底都无法保证厚度是绝对一样的,因此高质量图像采集的自动化还依赖于精确自动聚焦技术的发展。常用的聚焦方式包括基于激光的硬件聚焦和基于图像的软件聚焦。基于激光的硬件聚焦是通过光源的反射或折射实现的,利用近红外激光探测微孔板的底部界面作为自动聚焦的参照,特点是速度快、重复性高、光毒性低。我们平台目前使用的高内涵设备的聚焦方式为硬件聚焦,包括双峰探测和单峰探测两种板底探测方式。双峰探测的原理是利用激光探测微孔板板底下表面和空气之间的界面得到第一个探测峰,物镜继续向上移动,激光会探测到微孔板板底上表面和溶液之间的界面得到第二个探测峰,对于样品的聚焦就是在第二个探测界面上加上聚焦高度实现的。这种双峰探测方式可以保证同一个荧光通道的图像都是在样品的同一高度上采集得到,聚焦精确,但同时也相对容易受到一些因素的干扰造成聚焦困难,包括微孔板板底的厚度及均一度,以及溶液的性质和体积等。当使用低倍物镜或检测玻片样品时,双峰探测模式不再适用,只能使用单峰探测方式,即在自动聚焦时只能探测到多孔板板底的下表面和空气之间的界面或者玻片和空气之间的界面。单峰探测模式下,自动聚焦的实现是把单峰界面作为聚焦参照,加上板底厚度或玻片厚度作为理论上的第二个界面从而实现样品的自动聚焦。这种单峰探测方式下聚焦更容易些,但共聚焦成像的精确度会降低。需要特别注意的是硬件聚焦对于板底的洁净程度要求较高,多孔板在进行成像前最好用喷过消毒酒精的无尘纸擦拭,而且要保证物镜镜头洁净无尘,避免因为板底和物镜上的灰尘造成聚焦失败。另外有些自动化微孔板成像设备,还配置了软件聚焦模式。软件聚焦是指机器自动在z轴上拍摄一系列图像,根据算法挑选最大对比度的图像作为样品图像,这种软件聚焦模式速度通常较慢,而且容易因细胞碎片或死细胞等原因导致聚焦不精确。作为显微镜,高内涵的成像模式也包括宽场成像和共聚焦成像。高内涵仪器上宽场成像用途比较广泛,但对于一些信噪比很低的实验或者需要观察亚细胞结构的筛选则必须使用共聚焦成像。为了适配检测通量和检测速度,因此高内涵上的共聚焦只能是转盘共聚焦,有效提高了成像速度的同时但也会导致图像分辨率受一定损失。目前主流的高内涵品牌推出的共聚焦,有较低端的LED光源的单转盘共聚焦,也有激光光源的双转盘共聚焦。由于共聚焦排除了非焦平面的杂散光,到达样品的激发光的光子数量的急剧锐减,微透镜双转盘共聚焦能极大地提高到达样品的光子数量,从而达到比较好的成像效果。高内涵的共聚焦通常搭配水镜使用,与空气镜相比,水镜的透光量是空气镜的4倍以上。另外,目前虽然有的高内涵搭配了油镜,但是油镜并不适用于高通量筛选,进行稳定的大规模自动化实验时还是空气镜和水镜更为适用。作为高通量自动化仪器,高内涵通常会搭配机械臂和多孔板堆栈来提高检测通量。考虑到荧光成像样品最好避光保存,降低荧光淬灭或衰减风险,在使用多孔板堆栈时,条件允许的情况下最好能做适当的避光措施以更好地保护样品的荧光信号。在实际科研应用中,有的实验细胞密度较低,有的实验因为药物处理或siRNA处理导致的细胞毒性问题使部分样品孔内细胞比较稀疏,有的类器官成像实验中样品只存在于孔内的部分区域,对于上述这些情况可以考虑使用低倍物镜进行预扫描,对扫描结果进行简单的图像分析确认精确的检测区域,再对目标区域进行高倍物镜下的正常图像采集。这不仅可以节省大量的检测时间,同时也避免了大量冗余数据的产生。2. 细胞图像分析:标准化、多参数、高通量、无偏差高内涵图像采集速度快和检测通量高的直接结果是会产生海量的图像数据,因此,标准的、无偏差的批量图像分析是必不可少的。同一批次的筛选样品,设置一个通用的图像分析方法,可以稳定的用于所有筛选数据的批量分析。高内涵分析软件能够根据细胞图像提取数百到数千个特征参数,用于定义或区分不同细胞表型,也可以输出所有的特征参数用于实验数据的评价。高内涵的图像分析软件可包含三个难度的分析模式:简单的预设方法模式,灵活的模块化组合模式,以及难度最大的个性化分析方法开发模式。预设方法模式对操作新手比较友好,按照实验类型简单修改后套用即可,比如细胞计数、荧光强度分析、细胞增殖分析、细胞凋亡分析、蛋白核质转位分析、蛋白受体内化分析、Spot分析等等。由于面临的实验需求多种多样,在我们平台的实际科研应用中高内涵图像分析通常采用灵活的模块化组合模式,优化调整不同的模块参数使其更加贴合具体的实验需求。基于这种分析模式,细胞的亚群分析、基于图像的纹理分析、细胞周期分析、Spot分析、神经细胞分化分析、单细胞迁移轨迹追踪分析、微核分析、类器官分析、免疫细胞杀伤分析等实验类型,都已获得很好的分析效果。图像分析主要包括以下步骤:图像的处理、图像分割、特征参数的定量和提取、细胞亚群分类和结果输出。图像分析环节特别具有挑战性的步骤就是图像分割,尤其是对于样品质量比较差或者是没有荧光标记的明场图像而言。对于细胞分布不均匀,细胞核拥挤成团的样品的分割,往往要尝试很多分割方法,包括对图像进行锐化或模糊化处理、通道叠加、调整细胞识别方法的荧光阈值或对比度、优化不同切割方法的参数等,从而获得最好的分割效果。对于分割不理想的图像,可以将细胞区域和背景区域分割,对细胞区域进行整体定量。现在随着机器深度学习技术在高内涵图像分析软件中的应用拓展,软件图像分割能力已得到很大提升。当微孔板上孔内细胞表型的异质性比较大的时候,采用整孔平均值这样的参数定义不同处理之间的差异时,往往信号的窗口比较小。为了增大信号窗口,可以考虑采用将细胞群体划分为不同的亚群,针对不同的亚群进行数据分析,或者是计算某个亚群在群体细胞中的占比。对于荧光图像的分析,多数情况下平均荧光强度(即mean-mean值,每个孔内所有像素点的平均荧光强度)可以反映不同孔之间的差异,但当不同处理导致细胞形态发生变化时,总荧光强度的平均值(即sum-mean,每个孔内所有细胞的总荧光强度的平均值)更能反映真实的孔间差异。对于一些荧光强度比较低的样品,阴性样品和阳性样品的信号窗口不够大的时候, 通过扣除背景信号,也可以提高阴性阳性之间的信号窗口。我们常用的背景信号的计算方法有四种:① 通过平均荧光强度和对比度,反推背景荧光强度;②通过纹理分析,找出没有细胞的区域定义为背景区域,定量该背景区域的荧光值为背景荧光强度;③圈选细胞之外的一圈无细胞区域为背景区域,定量该区域的荧光强度;④制备没有荧光标记的细胞孔,该孔的荧光值作为背景荧光。高内涵分析软件虽然能够对细胞图像提取成百上千个生物学参数,但大多数情况下,简单表型只需要其中一个或几个参数就可以进行数据评价,判断药物处理效果和反映趋势。常用的参数包括:荧光强度、荧光总强度、细胞数量、细胞面积、阳性细胞比例、荧光强度比值等。但是有一些复杂的细胞表型,无法用单个或几个参数进行简单区分,这时候结合软件的机器自学习功能/深度学习功能,利用多参数体系对细胞群体进行分类,可能更容易实现不同表型的区分。3. 高内涵系统使用过程中需注意完善的地方总的来说,高内涵细胞成像和图像分析功能都很强大,但是在实际的使用中也面临着一些问题和挑战。首先,高内涵实验产生的数据量非常庞大,高效安全的数据存储管理非常重要。如果由于配套电脑的硬盘容量跟不上实际实验规模的需求,仪器管理员往往会处于频繁的数据备份和硬盘清理工作中。同时也需要有高速稳定的数据信息传输途径,确保采集好的图像能及时传输到分析软件系统,避免发生数据丢失的情况。其次,图像分析对电脑的运算性能要求比较高,特别是有些类型的图像分析方法步骤复杂,定量参数繁多。比如单细胞实时追踪实验,需要对单个细胞的多个连续时间点进行多参数定量统计,最后的结果输出阶段也需要对单个细胞数据进行呈现,因此对电脑的运算能力很有挑战。如果配置的数据分析电脑性能与这类图像分析的需求不太匹配,往往会导致分析速度过慢甚至容易发生宕机现象。最后,对于实心的类器官样品,目前常见的高内涵系统的激光穿透效率和成像分辨率还不足够理想,重构获得的三维图像可以用于获取体积面积等参数,但还不太能对球体深处内部细胞进行高质量分割,也较难获取准确的蛋白定位信息。相信这也是高内涵成像系统在未来发展提升中会逐渐优化解决的一些要点。本文作者:赵宏伟,化学生物学技术平台,高级工程师陈铭,化学生物学技术平台,平台主任,研究员
  • 细胞分泌物的实时纳米等离子体成像 ——新的纳米等离子体成像系统允许对单细胞分泌物进行时空监测
    • Inara Aguiar来自生物纳米光子系统实验室(BIOS)、EPFL和日内瓦大学的研究人员开发了一种光学成像方法,可以在空间和时间上提供细胞分泌物的四维视图。通过将单个细胞放入纳米结构镀金芯片的微孔中,并在芯片表面诱导一种称为等离子体共振的现象,他们可以在分泌物产生时绘制分泌物的图谱。这项研究发表在《自然生物医学工程》(Nature Biomedical Engineering )杂志上,详细介绍了细胞的功能和交流方式,有助于药物开发和基础研究。芯片上的单个单元。(图片来源:BIOS EPFL)细胞分泌物(即蛋白质、抗体和神经递质)在免疫反应、代谢和细胞之间的交流中起着至关重要的作用。了解细胞分泌物的过程对开发疾病治疗至关重要;然而,现有的方法只能量化分泌物,而不能提供其产生机制的任何细节。BIOS负责人Hatice Altug表示:“我们工作的一个关键方面是,它使我们能够以高通量的方式单独筛选细胞。对许多细胞平均反应的集体测量并不能反映它们的异质性……在生物学中,从免疫反应到癌症细胞,一切都是异质性的。这就是为什么癌症如此难以治疗。”筛选细胞分泌物该方法包括一个1cm2的纳米等离子体芯片,由数百万个小孔和数百个用于单个细胞的腔室组成;该芯片由覆盖有薄聚合物网的纳米结构金基底组成。用细胞培养基填充腔室以在测量过程中保持细胞存活。Saeid Ansaryan说:“我们仪器的美妙之处在于,分布在整个表面的纳米孔将每个点都转化为传感元件。这使我们能够观察释放蛋白质的空间模式,而不考虑细胞的位置。”使用这种新方法,可以评估两个重要的细胞过程,细胞分裂和死亡。此外,还对分泌精细抗体的人类供体B细胞进行了研究。研究小组可以看到两种形式的细胞死亡过程中的细胞分泌,细胞凋亡和坏死。在后者中,内容以不对称的方式释放,产生了图像指纹——这是科学家首次能够在单细胞水平上捕捉到细胞特征。由于测量是在营养丰富的细胞培养基中进行的,因此与其他成像技术一样,它不需要有毒的荧光标记,并且所研究的细胞可以很容易地回收。根据作者的说法,“该系统的多功能性和性能及其与粘附细胞和非粘附细胞的兼容性表明,它可以为全面了解单细胞分泌行为铺平道路,应用范围从基础研究到药物发现和个性化细胞治疗。”原始出版物:Ansaryan, S., Liu, YC., Li, X., et al.: High-throughput spatiotemporal monitoring of single-cell secretions via plasmonic microwell arrays. Nat. Biomed. Eng. (2023) DOI: 10.1038/s41551-023-01017-1作者简介Inara AguiarInara是一位拥有无机化学博士学位的科学编辑和作家。在获得计算化学博士后后,她开始在化学、工程、生物工程和生物化学领域担任科学编辑。她一直在几家科学出版商担任技术作家/编辑,最近加入威利分析科学公司,担任自由职业内容创作者。本文来源:Real-time nanoplasmonic imaging of cell secretions——New nanoplasmonic imaging system allows spatiotemporal monitoring of single-cell secretions。Microscopy Light Microscopy ,13 April 2023供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 红外学院|系统提升红外热成像技能的秘籍,尽在这里......
    时光飞逝,您的2021年余额已不足80天留给我们奋斗的时间不多啦想成为进阶红外热像师热像分析师的各行业技术人员本年度还有2次机会对专业技能进行提升赶快抓紧报名Teledyne FLIR的“明星课程”ITC红外培训ITC红外培训ITC红外培训,是全球一大红外技术培训和国际认证的提供者。凭借国际上最权威的红外培训课程,在全球30几个国家设有培训基地,遍布欧洲、中东、非洲、亚太和拉丁美洲等地,是一家通过ISO9001:2000质量管理标准认证的培训中心。行业涉猎范围广ITC红外培训由于温度这个决定性的因素,测温工作在现代化社会中变得极其重要,菲力尔公司的热像设备在军事、安防、机械、电气、医疗、建筑、兽医等,甚至家用领域都有广泛的应用场景,因此ITC培训的范围非常广,几乎和温度相关的行业都覆盖。讲师经验技术牛ITC红外培训ITC讲师是在全球相关行业拥有丰富经验的培训人员和热像师,拥有ASNT、EPRI、EN、BINDT和ISO资质,他们丰富的知识与经验将带你更好地领悟红外世界!学业完成技能强ITC红外培训完成ITC培训后,你将获得以下技能:★ 提高解释热图的能力,利用测温数据的历史纪录做出趋势分析;★ 在创建红外检测报告时,学习使用最恰当的技术;★ 学会区分真正的热点和虚假的热点,以避免出现代价高昂的错误;★ 满足许多雇主和客户要求的认证、培训和质量标准;★ 结合热力学和红外电磁辐射的知识在各行各业中,更好地使用红外热像仪。证书到手未来棒ITC红外培训ITC红外培训,提供红外热成像所有领域的培训课程,以及国际认证与再认证,包括:ITC一级、ITC二级、ITC三级红外热像技术认证培训。ITC的一级和二级课程是基于美国无损检测学会的ANSI/ASNT CP-105 和CP-189的要求设立。完成所有培训课程要求和热成像实地作业后,学员将获得ITC国际认证证书及证书的身份卡片。2021可选课程ITC红外培训时间地点等级11/22-11/26上海一级12/27-12/31上海一级在日常工作中用热像仪助力检测定位问题是关键如何熟练掌握红外热像仪的理论和实践能力?快来参加Teledyne FLIR的明星课程ITC红外培训顺利毕业之后你就可以熟练掌握红外热成像知识全面提高工作效率与能力
  • 募资16.4亿!睿创微纳重磅加码红外热成像市场
    2022年2月13日,烟台睿创微纳技术股份有限公司(简称“睿创微纳”)发布公告,拟向不特定对象发行可转换债券,募资不超16.4亿元,用于红外热成像整机项目、智能光电传感器研发中试平台,以及补充流动资金。募集资金使用计划各项目情况如下:(一)红外热成像整机项目 子项目一:艾睿光电红外热成像整机项目该项目由烟台艾睿光电科技有限公司建设,总投资80,000万元,其中使用募集资金61,909.06万元。致力于非制冷红外民品系列整机生产线建设和制冷系列机芯及整机产品研发及生产。拟建设地点为烟台开发区贵阳大街13号,建设期36个月。睿创微纳表示,该项目将新增产能350万台套/年,进一步丰富公司红外产品线。项目建成后,税后财务内部收益率31.65%,静态投资回收期6.09年(税后, 含建设期)。具体投资计划如下:序号项目名称投资金额/万元拟使用募资金额/万元1工程费用57,147.0457,147.042工程建设其他费用9,762.034,762.033预备费4,004.48-4铺底流动资金9,086.46-合计80,000.0061,909.06(二)红外热成像整机项目 子项目二:合肥英睿红外热成像终端产品项目该项目由合肥英睿系统技术有限公司建设,总投资30,000万元,其中募集资金13,500.00万元。展开民用红外整机系列产品开发,打造非制冷红外全生态产业链核心竞争力。拟建设地点为合肥高新技术产业开发区彩虹西路与鸡鸣山路交口西北角TH4-1-4,建设期36个月。睿创微纳表示,该项目预计年产能14万台套,以满足国内外民用市场的应用需求。项目建成后,税后财务内部收益率26.62%,静态投资回收期5.7年(税后, 含建设期)。具体投资计划如下:序号项目名称投资金额/万元拟使用募资金额/万元1厂房建设9,000.009,000.002设备购置及安装4,000.004,000.003办公设备500.00500.004研发费用8,500.00-5铺底流动资金8,000.00-合计30,000.0013,500.00(三)智能光电传感器研发中试平台该项目由烟台齐新半导体技术研究院有限公司建设,总投资90,000万元,其中募集资金40,000万元。致力于红外、激光、微波等新型智能光电传感器技术及产品研究,建设特色光电传感器研发中试平台。拟建设地点为烟台开发区贵阳大街13号,建设期36个月。睿创微纳表示,该项目预计系列传感器年产能200万颗,将进一步巩固和提升公司在光电领域的市场地位,提高盈利能力。项目建成后,税后财务内部收益率8.22%,静态投资回收期9.63年(税后,含建设期)。具体投资计划如下:序号项目名称投资金额/万元拟使用募资金额/万元1工程费用78,268.0740,000.002工程建设其他费用2,277.09-3预备费4,833.75-4铺底流动资金4,621.10-合计90,000.0040,000.00(四)补充流动资金睿创微纳拟将本次向不特定对象发行可转换公司债券募集资金中的48,590.94万元用于补充流动资金。并表示,本次募集资金补充流动资金后,将有效满足公司经营规模扩大所带来的新增营运资金需求,缓解公司资金需求压力,从而集中更多的资源为业务发展提供保障,提高抗风险能力,有利于公司持续、健康、稳定发展。睿创微纳简介睿创微纳(股票代码:SH688002)是专业从事专用集成电路、特种芯片及MEMS传感器设计与制造技术开发的国家高新技术企业,具备多光谱传感研发、多维感知于AI算法研发等能力,为客户提供红外成像MEMS芯片、ASIC处理器芯片、红外热成像与测温全产业链产品、激光、微波产品及光电系统等。旗下拥有InfiRay等品牌商标,产品广泛应用于夜视观察、人工智能、机器视觉、自动驾驶、无人机载荷、智慧工业、安消防、物联网、医疗防疫等领域。目前拥有员工2000余人,研发人员占比48%。2020全年及2021上半年分别营收15.6亿元、8.7亿元,净利润分别为5.8亿元、3.2亿元。
  • Teledyne Flir和Ansys合作推进热成像技术在驾驶辅助和自动驾驶系统中的集成应用
    帮助车辆改善在所有天气和照明条件下的环境感知能力,对于减少全球创纪录的车祸死亡人数以及实现更安全的自动驾驶汽车(AV)系统至关重要。2023年6月,美国州长公路安全协会(GHSA)预计,2022年全美有7508名行人死于交通事故,这是自1981年以来美国行人死亡人数最高的一年。车辆环境感知工程师可以利用热成像数据和计算机模拟来提高系统性能,加速高级驾驶辅助系统(ADAS)和AV系统的开发目前,将长波红外数据集成到车辆现有传感器套件中,成为改进ADAS和AV系统的有效手段之一。热探测能够填补车辆环境感知能力的缺陷,通过与可见光相机、雷达以及激光雷达(LiDAR)传感器配合使用提供冗余。据麦姆斯咨询报道,为了支持更高效的ADAS和AV系统,传感、成像及相机制造商Teledyne Flir正在与工程模拟软件开发商Ansys合作,利用热成像数据促进系统开发,改进车辆面向行人的自动紧急制动系统。Ansys AVxcelerate Suite现在可以与Thermal by Flir一起提供,成为车辆感知系统设计师的一款新工具,促进热成像功能在ADAS和AV传感器堆栈中的集成,提高感知算法的准确性。凭借该工具,工程人员可以模拟数百万英里利用热像仪提供关键数据的场景,在拥挤和低对比度环境(如雾或烟雾等)中检测行人。环境温度影响热成像性能简化数据整合AVxcelerate获得了Flir的Prism AI的有力支持,该软件可以在内部开发过程中用作主要感知或参考软件。Prism AI工具套件提供了与Teledyne Flir的Conservator数据生命周期管理软件,以及被合作伙伴称为“行业最大热成像和可见光训练数据集”的简化数据整合。Teledyne Flir产品管理副总裁Mike Walters表示:“Ansys AVxcelerate Suite是感知工程师利用热成像数据挽救生命的另一个关键工具。从学术界到汽车原始设备制造商,各机构现在都可以拥有从虚拟世界到物理世界的完整生态系统,以构建挽救生命的热成像系统。”Flir推出用于毒品快速分析的便携式探测器此外,Flir Defense近期还宣布推出了Griffin G510x便携式化学品探测器,专门用于在现场行动中分析并识别爆炸物和毒品(包括芬太尼)。这款新版本基于广受欢迎的G510系统,可使急救人员和执法部门在五分钟内确认并识别街头毒品。Griffin G510x设计用于检测芬太尼等毒品Griffin G510平台是一款便携式气相色谱-质谱仪系统,被全球多国公共安全团队广泛用于现场实时确认化学威胁。新款G510x的改进,使操作人员能够识别复杂混合物中的微量毒品(现在已经成为新常态)。芬太尼和甲苯噻嗪组合镇静剂等阿片类药物,对使用者和急救人员都构成严重威胁。G510x可以在常见止痛药中发现混合浓度低至2%的芬太尼,而其他系统可能只能检测到止痛药。Flir Defense集成检测系统副总裁Mark Blanco表示:“芬太尼及其他毒品夺走了很多人的生命,正在摧毁各地的社区。G510x为全球执法部门提供了一款强大的新工具,可以在现场识别危险的毒品,帮助将其从我们的街道上清除。”G510x的板载化学品数据库每三到六个月更新一次,可对3500多种非法药物、代谢物和其他相关化合物进行验证性分析。其230毫米(9英寸)的触摸显示屏可引导用户提示,并能够在穿戴防护装备的情况下进行操作。
  • 盘点:红外成像系统进展
    p  随着检测器和数据处理系统的发展,傅里叶变换显微红外光谱技术在短短的二十几年间从单纯的显微镜与红外光谱联用,发展到了红外成像系统。/pp  将傅里叶变换红外光谱仪中的红外光束引入显微镜光路,可以获得在显微镜下观察到微小尺寸样品的光学影像及相应成分的红外光谱信息。由于红外光的波长较长,红外显微镜的空间分辨率一般在6um左右。若采用单点检测器收集红外光谱,则为傅里叶变换显微红外光谱仪 若采用阵列检测器收集红外光谱,则为傅里叶变换红外成像系统。红外图像系统的出现大大提高了样品的检测速度,目前在刑侦学、生物学、医学、化学、材料科学和矿物学等诸多领域都得到了广泛的应用。/pp  无论是显微红外光谱仪或是红外成像系统,使用者最关心的还是仪器的性能指标,也就是显微模式下红外光谱的信噪比及空间分辨率,另外,如何从红外光谱图像中提取有用的信息,也是大家所关心的,下面将综合这几点,介绍红外成像系统的进展。/pp  一、信噪比/pp  在红外显微镜和红外成像系统测试中,通过特殊设计的光学系统将测量光束直径缩小到微米甚至亚微米量级,从而可测试尺寸非常小的样品或者是大尺寸样品中非常小的区域,显然此时光通量远远小于常规红外光谱仪,若要获得高的信噪比,对整体光学系统的光路系统要求相应也有很大的很高,通常需要多个光学聚焦镜(卡塞格林镜)联合使用,才能保证红外光同轴,且能量损失最小,如图1所示为PerkinElmer公司红外光谱成像系统中的三卡塞格林镜光学系统。/pp  红外光先从光源到达卡塞格林镜1,该镜为聚焦镜,将光束聚焦,经过样品,到达卡塞格林镜2,即物镜上,在此光路图中,最重要的卡塞格林镜为3号镜,即到达检测器前,将红外光谱的信号再次聚焦,保证能量最大。/pp  高的光通量,才能保证高的信噪比,所以红外光谱成像系统中三卡塞格林镜的光路设计在一定程度上决定了其较高的信噪比。/pp style="text-align: center "img style="width: 450px height: 338px " alt="" src="https://img1.17img.cn/17img/old/NewsImags/images/201481101535.jpg"//pp style="text-align: center "span style="font-size: 14px "图1 PerkinElmer公司红外图像系统中的三卡塞格林镜光学系统/span/pp  如前所述,在红外显微镜和红外成像系统的光通量远低于常规红外光谱仪,且扫描速度较快,常规红外检测器不能满足要求,无论是单点还是图像分析,均需要使用液氮冷却的MCT检测器以保证在快速测量时的高信噪比。此处需要说明,虽然测试速度比较慢,但是单点检测器的信噪比更高、测量光谱范围更宽。/pp  红外成像系统所用检测器基本上可以分为两种,一是焦平面阵列检测器,另一种是线阵列检测器。焦平面阵列检测器包括两类,第一类主要是由红外显微镜和大面积焦平面阵列检测器(凝视型,以64*64和128*128为主)组成,凝视型同时以步进扫描技术(Step Scan)作支撑 第二类主要是由红外显微镜和小面积焦平面阵列检测器(非凝视型,以16*16和32*32为主)组成,非凝视型不需要步进扫描技术作支撑,而是采用了快速扫描(Rapid Scan)的技术。由于焦平面阵列检测器源于美国军方的技术,美国国防部对此类产品向中国大陆的出口进行了限制,目前仍存在禁运的问题。因此,国内市场上常见的红外光谱仪器公司如PerkinElmer、Thermo Fisher Scientific、JASCO等则提供双排跳跃式线阵列检测器(2*16或2*8)或线阵检测器(1*16),再结合快速扫描功能,实现红外光谱成像质量和速度的双重提高。目前各仪器厂商阵列检测器的信噪比从150/1~800/1不等。/pp  二、空间分辨率/pp  空间分辨率是指被测试的样品采用显微红外“见到”的最小测试面积。采用红外显微光谱仪器的可见光显微系统对样品进行观察,选择感兴趣的测试区域,然后将其划分成若干个采样微区,通常将这些采样微区称为“像素(pixel)”。像素的尺寸是由仪器测试能力与样品表征要求共同决定的。较小的像素尺寸可以提高测试结果的空间分辨率,但是光谱信噪比会降低,测量相同面积的区域时所需时间也要增加。/pp  由于红外光波长较长,易产生衍射现象,不能像可见显微镜将样品放大至1um甚至更小,一般常规的红外图像系统空间分辨率极限在6um左右,所获得的红外指纹图谱为6*6um区域的信息集合。/pp  若要提高红外光谱成像系统的空间分辨率,可以考虑选择衰减全反射(ATR模式)。由于常规红外光谱透射或反射成像时物镜与样品之间的介质为空气,而ATR模式中物镜与样品之间的折射率更高的内反射晶体为介质,因而光束半径可以更小,即成像测试时的空间分辨率更高。例如,锗的折射率是空气的4倍,因此以锗作为内反射晶体时,ATR模式的空间分辨率比常规透射或反射模式高4倍左右。所以,在仪器厂家的宣传中可见ATR模式空间分辨率为1.56um的说法,应特别注意,此时为其名义空间分辨率,或称像素空间分辨率,而非实际真正的空间分辨率。/pp  ATR模式包括ATR单点物镜与ATR成像附件两种测量方式。如图2所示,如果使用ATR单点物镜进行成像分析,每次只能测量与内反射晶体接触的一个像素,然后使晶体与样品脱离,移动样品使内反射晶体接触下一个像素并进行测量,直到获得所有像素的光谱。很明显的问题是,内反射晶体与样品接触后很容易被污染,影响后续像素测试结果的准确性,而且所有像素逐个测量的方式非常耗时。如果使用ATR成像附件,内反射晶体与所测样品一起固定在样品台上,二者之间没有相对位移,避免了晶体污染造成的测量误差。样品台同步移动内反射晶体与所测样品,改变红外光束在内反射晶体上的入射位置,完成所有像素的测量。由于可以使用阵列检测器,ATR成像的测试速度也非常快。但是,受到内反射晶体尺寸的影响,ATR成像的测试面积比较小(目前仪器上通常配备的反射晶体的直径为500um,最大可以定制直径为2 mm的晶体,但应同时考虑检测器、软件等因素)。此外, ATR单点物镜与ATR成像附件有个共同的问题:该方法只能测量距离内反射晶体表面几个微米深的样品部分 在样品表面与内部不一致时,该方法获得的一般只是表面信息。/pp style="text-align: center "img style="width: 450px height: 277px " alt="" src="https://img1.17img.cn/17img/old/NewsImags/images/201481101556.jpg"//pp style="text-align: center "图2 ATR红外光谱成像的两种测量方式。左:ATR单点物镜 右:ATR成像附件。/pp  2013年,Neaspec公司推出了nano-FTIR光谱仪,利用其独有的散射型近场光学技术发展出来的纳米傅里叶变换红外光谱技术,使得纳米级化学鉴定和成像成为可能。nano-FTIR光谱仪的工作原理如图3所示,将一束宽带中红外激光耦合进入近场显微镜(NeaSNOM),对原子力显微镜(AFM)针尖进行照明, 通过一套包含分束器、参考镜和探测器在内的傅里叶变换光谱仪对反向散射光分析,即可获得针尖下方20 nm区域内的红外光谱,使得红外光谱成像系统的的空间分辨率突破了微米的界限。该类型仪器综合了AFM的高空间分辨率,和FTIR的高化学敏感度,实现了对有机、无机材料的纳米级化学分辨。/pp style="text-align: center "img style="width: 450px height: 269px " alt="" src="https://img1.17img.cn/17img/old/NewsImags/images/201481101615.jpg"//pp style="text-align: center "图3 Nano-FTIR光谱仪的工作原理/pp  图4所示为在不使用任何模型矫正的条件下,nano-FTIR获得的近场吸收光谱,由图中可见,其分子指纹特征与使用传统FTIR光谱仪获得的分子指纹特征吻合度极高,这在基础研究和实际应用方面都具有重要意义,因为研究者可以将nano-FTIR光谱与已经广泛建立的传统FTIR光谱数据库中的数据进行对比,从而实现快速准确的进行纳米尺度下的材料化学分析。对化学成分的高敏感度与超高的空间分辨率的结合,使得nano-FTIR成为纳米分析的独特工具。/pp style="text-align: center "img style="width: 450px height: 271px " alt="" src="https://img1.17img.cn/17img/old/NewsImags/images/201481101630.jpg"//pp style="text-align: center "图4 Nano-FTIR所获得的光谱图与传统红外光谱图的比较/pp  但目前昂贵的价格,较为复杂的操作(需要与AFM联合使用),以及红外光谱波段的限制(每次扫描的波数范围有限),光谱分辨率有待提高等,仍是该类仪器需要克服的难题,同时也是未来发展的方向。/pp  三、红外光谱成像的信息提取/pp  使用合适的信息提取方法,从像素光谱中获得所需要的信息,是红外光谱成像技术应用的关键。成像所测量的数据为若干个像素的红外光谱,这些像素具有特定的空间位置,一般用横坐标和纵坐标来表示。如果按照测量时的空间位置进行排列,像素光谱数据需要表示为一个r*c*n维的矩阵,因此需要使用适当的数据处理方法,对上述矩阵进行降维。若将每张像素光谱均转换为反映特定信息的单一数值之后,再按照像素的空间位置将这些数值排列成一个r*c维的矩阵,然后以二维或三维图形表示出来,就得到了反映特定信息的数据采集区域的化学图像。/pp  常见的降维手段包括:像素光谱平均强度图像,该方法可以反映测试区域内样品数量较多的位置 像素光谱图像特征峰强度或面积图像,该方法可以反映测试区域样品中特征官能团的分布情况 使用模式识别方法对像素光谱进行分类,根据像素光谱所属类别将成像区域分割为不同部分,对各个部分的典型像素光谱进行解析,可以了解一些成分的分布情况等。/pp  本课题组近期也提出了两种新的振动光谱成像数据信息提取方法。 “主成分载荷乘积聚类分析-交替最小二乘法” 可用于没有参考信息时的样品化学成分非靶向解析 “偏最小二乘投影-相关系数法”,则主要用于已知目标成分的靶向检测,对微量成分的识别能力更强。若有兴趣可查阅相关文献,此处不多加描述。/pp style="text-align: right "  (撰稿人:清华大学 周群)/pp style="text-align: right "  注:文中观点不代表本网立场,仅供读者参考/p
  • 【综述】超声红外热成像技术国内研究现状与进展
    超声红外热成像技术具有选择性加热、可检测复杂工件裂纹缺陷的优点,是一种具有很大研究价值的无损检测方法。近期,南京诺威尔光电系统有限公司和上海复合材料科技有限公司的科研团队在《红外技术》期刊上发表了以“超声红外热成像技术国内研究现状与进展”为主题的文章。该文章第一作者和通讯作者为江海军,主要从事红外无损检测技术及图像处理方面的研究工作。本文介绍了超声红外热成像技术原理与系统组成,并对国内的发展历程、发展现状进行了回顾和总结。重点针对仿真研究、复合材料损伤、疲劳裂纹、金属构件裂纹、混凝土零件裂纹应用领域的研究现状进行了详细论述,最后展望了超声红外热成像技术的未来发展趋势。超声激励系统装置超声红外热成像系统一般包括超声激励源、红外图像采集系统、红外图像处理系统;超声激励源包括超声电源、超声换能器、超声枪,红外采集系统主要使用红外热像仪采集红外图像,超声红外热成像系统原理如图1所示。红外图像采集和超声激励之间需要同步,当超声枪头能量注入到试件表面时,红外热像仪开始采集图像,采集红外图像包括缺陷升温过程和降温过程。图1 超声红外热成像技术原理超声红外热成像检测技术最早由美国弗吉尼亚大学于1979年开始研究,2000年,美国韦恩州立大学的Lawrence Dale Favro等人首先使用超声波焊接发生器作为超声激发源进行金属疲劳裂纹检测。2003年,南京大学张淑仪等采用超声红外热成像技术对铝合金板疲劳裂纹进行了检测研究。近年来,国内有很多团队对超声红外热成像技术进行研究,研究重点包括理论仿真、金属裂纹检测、疲劳裂纹检测、航空发动机叶片裂纹检测、复合材料冲击损伤。北京航空航天大学研究人员主要研究复合材料脱粘/冲击缺陷;哈尔滨工业大学研究人员主要研究金属表面裂纹以及超声锁相红外热成像技术;陆军装甲兵学院研究人员主要研究仿真、超声激励参数(预紧力,夹具,激励方式,激励位置)对检测结果的影响,并将该技术引入到装甲设备缺陷检测;湖南大学研究人员主要对复合材料平底孔缺陷以及冲击损伤缺陷进行研究;火箭军工程大学主要研究合金钢裂纹缺陷、复杂型面裂纹缺陷、复合材料冲击损伤;福州大学研究人员主要研究超声激励参数(不同方向、频率、幅值)对金属焊缝裂纹缺陷的影响;西南交通大学研究人员主要研究超声激励对混凝土板裂纹的检测;南京水利科学研究院研究人员主要研究激发频率、功率、预紧力、声波吸收能力对混凝土裂纹检测的影响;中国南方航空工业有限公司和南京诺威尔光电系统有限公司研究人员主要研究航空发动机喷涂前和喷涂后叶片裂纹检测;武汉理工大学研究人员主要研究复合材料的螺栓连接件裂纹缺陷和分层缺陷的检测。超声红外热成像系统的核心是预紧力单元和夹具单元,预紧力单元一般靠机械弹簧或者气动系统产生预紧力;夹具单元需要根据检测试件的结构进行优化设计,夹具单元采用医用胶带或者刚性耦合方式把超声耦合进试件中,从而会使得各研究机构的系统装置有所差异,图2展示了部分研究机构的超声红外热成像系统装置。图2 超声红外热成像系统装置主要应用领域仿真研究金国锋对不同曲率复合材料裂纹缺陷进行仿真,仿真结果表明构件曲率越大,温升阶段斜率越大,缺陷信号越容易被激化。田干等用数值仿真方式研究了多模式超声激励形态,仿真结果表明多模式激励方法对于消除驻波非常有效,同时产生更为丰富的次谐波和高次谐波,可有效提高超声激励红外热成像技术的检测能力。徐欢等采用ANSYS和ABAOUS仿真软件对裂纹进行三维仿真,结合模态和谐响应分析手段,可以获取裂纹试件固有频率,对超声激励频率和裂纹生热提供了相关理论依据。郭怡等对宽度为10 μm钛合金裂纹进行了检测,并采用ANSYS模拟数值分析,与试验数据基本一致。蒋雅君采用ANSYS对混凝土板裂纹进行仿真,为混凝土裂纹检测提供了理论依据。复合材料损伤复合材料具有高比强度、高比刚度、耐腐蚀、耐老化、耐热性的优点,广泛应用在航空航天、新能源、建筑、汽车、体育等领域。复合材料在低速冲击下,承载能力弱、抗冲击性能差,容易出现基体开裂、分层、断裂等。J. Rantala、G. Busse等最早采用超声红外热成像技术检测复合材料内部缺陷。田干等采用超声红外热成像技术对航空复合材料进行数值仿真研究,建立含裂纹缺陷复合材料的有限元模型。金国锋、张炜等通过数值计算和试验研究了超声红外热成像技术对复合材料冲击损伤检测的适用性;吴昊等对复合材料螺栓连接件损伤检测,分析了螺栓预紧力对螺栓孔损伤生热特性的影响。李胤等研究了复合材料在不同冲击能量(24 J和29 J)的冲击损伤情况,检测结果与C扫进行对比,实验结果表明超声红外热成像技术具有检测速度快、检测精度高、结果直观的优点。杨正伟等研究复合材料在不同冲击能量(15 J和30 J)冲击下,复合材料分层损伤情况,检测结果与超声C扫进行对比,试验结果表明超声C扫损伤检测误差在30%,超声红外热成像损伤检测误差在5%。图3为作者采用超声红外热成像系统在不同低速冲击能量(10~50 J)下,复合材料冲击损伤检测图像,从图中可以看出冲击能量越大,损伤区域面积越大,且对于编织型复合材料,损伤裂纹具有延展性。图3 不同冲击能量试件检测图像疲劳裂纹闵庆旭等验证了超声红外热成像技术可用于金属疲劳裂纹的检测;高治峰等对航空航天7075铝合金疲劳裂纹进行检测,模拟和试验研究了激励参数和生热关系,并研究了检测参数对检测效果的影响;激励源距离裂纹15 mm时,检测效果最佳,侧面激励和正面激励都可以检测出7075铝合金疲劳裂纹,但侧面激励效果好于正面激励。郭伟等对喷涂层下基体疲劳裂纹进行检测研究,涂层厚度为300~400 μm,该方式可用于拉-拉疲劳载荷的二次拉伸制备的疲劳裂纹。韩梦等模拟裂纹开口宽度(5~30 μm)对激励后最高温度影响,开口宽度增加导致裂纹面接触降低和摩擦作用的减弱,导致开口宽度越大,最高温度反而越低,最后通过试验进行验证,如图4所示制作的宽度为20 μm疲劳裂纹以及检测结果。图4 金属疲劳裂纹检测金属构件裂纹金属构件,特别是异形结构的金属构件,其内部或者表面裂纹缺陷采用光激励红外热成像技术检测都难以实现检测。Guo等检测重型铝制飞机结构裂纹,发现该技术对闭合裂纹的探测效果良好。李赞等对金属构件裂纹发热情况开展研究,研究表明当激励于最佳位置时,裂纹发热最高。江涛等对汽车轮毂裂纹进行了检测,同时采用磁粉检测技术进行对比研究,对比研究发现超声红外热成像技术可以更好检测出轮毂内部裂纹以及看出裂纹延伸方向。敬甫盛等对35 kg重量的铁路机车钩舌进行裂纹检测,检测出中部L型裂纹和角端裂纹。冯辅周等对装甲车底板裂纹展开研究,表明该技术能够在3.5 s内实现对装甲车底板裂纹快速检测。作者采用超声红外热成像系统对8 kg锻钢块进行裂纹检测,裂纹位于试件端面,如图5所示,图5(a)为试件整体外观,图5(b)为试件端面图像,可以看出有一条无分叉的裂纹;检测结果如图6所示,展示了激励前后检测到图像的变化,对比激励前后图像可知,有一条裂纹信息,并且裂纹分叉了,存在一条隐裂纹,图6(c)中圈出部分,表明该技术可以探测到人眼看不见的裂纹信息。图5 锻钢块试件图6 锻钢块试件检测结果航空发动机叶片裂纹航空发动机叶片在交变拉应力、热腐蚀、扭转应力、高速冲击等复杂载荷的作用下,叶片容易生成裂纹。服役过程中,叶片裂纹在大应力作用下,小裂纹会扩展为大裂纹从而危害飞行安全。航空发动机叶片复杂,传统无损检测在复杂叶片时有各自的局限。借助超声红外热成像对试件形状不敏感的特点,国内外学者广泛开展了研究工作。Bolu等采用超声红外热成像技术对60个涡轮叶片进行检测,评估该技术对叶片裂纹检测的可靠性。寇光杰等采用ANSYS仿真模拟了合金钢叶片裂纹生热过程,采用激光切割预制裂纹进行检测,并分析了预紧力对检测效果的影响。苏清风对导向叶片和工作叶片服役过程中产生的裂纹进行检测,并测试预紧力对检测结果的影响。习小文等对航空发动机工作叶片进行研究,同时采用渗透检测进行比对,试验结果表明超声激励红外热成像可以检测出裂纹宽度为0.5 μm的裂纹信息,渗透检测无法检出,表明该技术对微小裂纹检测有优势。袁雅妮等针对2块无涂覆层和3块带涂覆层空腔叶片进行检测,并用荧光检测进行对比,结果发现荧光检测对于涂覆层空腔叶片容易出现漏检,表明超声红外热成像技术对受到叶片结构及涂覆层影响更小,能够检测含涂覆层空腔叶片裂纹。图 7为作者采用超声红外热成像系统对航空发动机工作叶片进行检测,同时采用渗透检测进行对比,图7(a)为工作叶片光学图像,图7(c)为超声红外热成像检测结果,可以看到叶片中部有一个裂纹,图7(b)为渗透检测结果,除了叶片中部裂纹,在叶片四周由于清洗渗透剂不干净,导致叶片边缘也会出现零星亮点区域。图7 工作叶片裂纹检测混凝土零件裂纹混凝土结构常见的缺陷是混凝土裂纹,裂纹严重削弱了混凝土结构的承载水平,加速了结构的老化程度,并严重影响了结构的安全性和耐久性。裂纹很难避免。一般来说,这项工作的主要目的是检测和处理裂纹。谢春霞等基于红外热像检测方法推导出了混凝土缺陷深度的定量计算公式;胡振华等以混凝土结构缺陷为检测目标,采用超声红外热成像检测技术对其进行了检测分析,证明了超声红外热成像缺陷检测技术对混凝土试件中肉眼不能发现的微小裂纹或隐裂纹的检测能力。Jia Yu等使用振动热成像技术检测混凝土零件中的裂缝,开发了声激励设备(声波和超声以及低功率和高功率激发设备),并研究了激发频率,功率和预紧力对声吸收能力的影响。Jia Yu等预制了充满标准微裂纹的预裂混凝土标本,以量化裂纹的可检测性,结果表明,超声激发热成像可以有效地检测出宽度为0.01~0.09 mm的混凝土裂缝。任荣采用ANSYS仿真研究V形裂缝混凝土板裂纹生热机理,并对激励位置、激励时间、激励频率等影响因素进行了模拟分析,图8所示为混凝土裂纹检测图像,圈出部分为裂纹区域。图8 混凝土裂纹检测发展趋势超声红外热成像技术在金属材料中可识别0.5 μm宽度的裂纹,在复合材料中可识别1.0 μm的裂纹,在混凝土材料中可识别10 μm量级的裂纹。超声红外热成像技术具有选择性加热的特点,仅对裂纹区域加热,正常区域不加热,可检测复杂结构试件,非常适合于金属裂纹、混凝土裂纹、航空航天叶片裂纹、复合材料损伤等材料的检测。超声激励方式与光激励方式不同,光激励方式系统比较统一;超声激励方式由于试件结构复杂,同时需要夹具固定试件并对激励头施加预紧力,例如金属疲劳裂纹夹具、航空发动机工作叶片夹具、航空发动机导向叶片夹具都不同,需要根据试件制作各自合适的夹具,系统比较复杂与多样,但如果针对同一类型的试件,可以制作统一的夹具、形成标准化的检测流程,因此超声红外热成像技术具有广阔发展前景,未来的研究重点包括以下3个方向:1)激励装置的优化。激励装置需要具备夹具单元和预紧力单元,夹具单元需要根据检测试件单独设计,预紧力单元有机械结构和气动结构。机械结构体积小、设计简单,但施加/释放预紧力需要手动旋转手柄;气动结构体积大、设计复杂,但可设计为自动施加预紧力和释放预紧力,从而可以实现集超声激励、自动装配、红外图像采集、红外图像处理一体化集成的超声红外热成像系统,以便适用于工业领域裂纹检测。2)检测标准化。超声激励与光激励具有很大不同,超声激励与检测人员经验有关,超声激励位置、超声激励时间、超声耦合效率都会影响检测结果。因此针对该技术形成统一检测规范和技术,可以加速该技术工程实践应用。3)缺陷检测自动化识别。超声红外热成像需要采集数百帧序列图像,从采集数百帧序列图像中识别出缺陷信息,相比于自动视觉检测,该方式需要人工判断、准确度依赖于检测人员主动判断,容易导致缺陷识别出现误检、漏检等情况。随着人工智能深度学习的兴起,深度学习模型具有图像特征信息感知能力,在大量数据训练的基础上,更容易实现缺陷的自动检测。结语与展望超声红外热成像技术经过几十年的发展,在生热特性、仿真研究、缺陷可检测性和检测材料应用领域取得了突出进展,但是在工业应用方面落后于光激励红外热成像技术;闪光灯红外热成像技术已形成国家标准,应用在飞机复合材料胶接质量、航天飞机耐热保护层脱粘检测、热障涂层缺陷检测等,并且有成熟的工业检测设备。目前超声红外热成像技术还基本处于实验室阶段,随着科学技术的发展,工业特别是航空航天对裂纹检测需求的提高,超声红外热成像技术也会从实验室逐步进入到工业、航天航天应用领域。论文链接:http://hwjs.nvir.c n /cn/article/id/6e1aff8c-e3f5-4c4d-aedd-d6074696f17a
  • Nature子刊:香港科技大学瞿佳男团队开发活体高分辨大脑成像新技术
    大脑是高等生命体最复杂的器官。在其自然状态下实现对神经元、神经胶质细胞和微血管系统的非侵入式活体高分辨成像对于促进理解大脑生理机能和疾病至关重要。为了实现这一目标,研究人员一直致力于研发能穿过颅骨的大脑活体成像技术。虽然超声成像、正电子发射断层扫描、磁共振成像等技术都能对大脑进行无损成像,但却无法提供足够的空间分辨率来解析亚细胞水平的生物结构和功能。光学显微镜的独到之处在于能够以高空间分辨率提供活体样本的结构和功能信息。然而,当光波在不均匀生物组织(例如哺乳动物颅骨和大脑组织)中传输时就会遇到组织产生的光学像差和散射,从而限制了光学成像的分辨率和深度。近年发展的三光子显微镜(3PM)技术是一种使用长激发波长和高阶非线性激发的光学成像方法。与其他光学成像技术相比,3PM有效地减少了散射和背景荧光,在对哺乳动物大脑成像方面已经显示出巨大的潜力。然而,不透明的颅骨和脑组织仍然会严重衰减激发和发射光子并产生光学像差和散射,从而降低成像质量和深度。自适应光学(AO)是一种校正光波波前畸变的方法,最早用于大型天文望远镜排除大气产生的像差实现高分辨成像。近10多年 AO 已被应用于光学显微镜领域,通过校正组织像差来提高成像分辨率。然而,传统 AO 技术的波前测量精度和像差矫正准确性都随着成像深度的增加迅速下降。因此,如何在弱信号和大散射情况下准确测量并矫正像差对于在组织深层实现高分辨成像是一个巨大的挑战。近日,香港科技大学瞿佳男/叶玉如研究组在 Nature Biotechnology 期刊上在线发表了题为:Deep tissue multi-photon imaging using adaptive optics with direct focus sensing and shaping 的研究论文研究团队在近年发展了多项 AO 显微成像技术的基础上,开发了一种新型活体自适应光学三光子显微成像(AO-3PM)系统。该系统结合全新自适应光学技术和三光子显微成像,实现了穿过活体小鼠完整头骨在大脑深层的高分辨率大视场成像。AO-3PM 大幅提升了非侵入式活体成像的图像质量,为无损研究大脑结构和功能提供了又一强有力的工具。在这项工作中,研究团队发明了一种称为 analog lock-in phase-detection for focus sensing and shaping(ALPHA-FSS 或 -FSS)的 AO 技术,对激发光的相位进行特定调制,再利用相敏探测方法对生物组织引入的低阶和高阶像差进行快速精确测量及矫正(图1)。实验证明-FSS 技术能够在大背景噪声情况下显著提高测量的信噪比,直接得到激发光在显微镜焦面的电场幅值和相位,并用于准确校正小鼠头骨及大脑组织产生的像差和部分散射。不仅如此,AO-3PM 系统还包括另一套共轭自适应光学技术,用于克服矫正波前和生物组织像差随着扫描角度变大迅速解耦的问题,显著扩大了-FSS 的矫正有效范围和高分辨成像的视场。图1:-FSS-3PM系统及对100um厚小鼠头骨引起的像差矫正。(A) AO-3PM系统结构图。(B) 100um厚的头骨下300um深处荧光珠在X-Y平面和X-Z平面的图像,未矫正组织像差(左),-FSS矫正组织像差(右)。(C) 空间光调制器上的矫正图案。(D) B图中沿虚线荧光信号轮廓。比例尺:(B) 2um。研究人员使用1300nm波长的飞秒脉冲激光作为激发光验证了 AO-3PM 的成像性能,展示了穿过小鼠完整头骨的体内和体外成像。与传统的三光子显微成像相比, AO-3PM 能够获得更高的空间分辨率,并提升在小鼠大脑深层荧光信号强度最高达数百倍。凭借对低阶和高阶像差的矫正能力,AO-3PM 可以在保留完整头骨的情况下能够清晰分辨深皮质区的神经元胞体和树突以及微血管的精细结构,实现了穿过小鼠完整头骨在软脑膜下方750 µm深处的无损高分辨率成像(图2)。研究团队还发现 AO-3PM 在大幅提升神经元胞体钙离子信号的同时,更能清晰提取出单独树突钙离子信号,从而可以同步记录神经元胞体树突间的电信号关联。在去除头骨后 AO-3PM 还可获得在软脑膜下方达1.1 mm 深度的海马体高分辨率结构图像。图2:AO-3PM实现活体穿过头骨对大脑皮质的大范围高分辨成像。(A) Thy1-YFP转基因小鼠大脑内150X150X780um^3范围内对黄色荧光蛋白(YFP)标记的神经元(橙色)和Texas Red Dextran标记的微血管(红色)的高分辨成像。(B) 椎体神经元的最大强度投影(脑膜下方545-555um),未矫正组织像差(上),-FSS矫正组织像差(下)。比例尺:(B) 大图20um,小图5um最后,研究人员利用 AO-3PM 在保留完整头骨情况下实现了精密激光损伤,并以此研究了微小损伤后大脑皮质内小胶质细胞的响应过程(图3)。结果显示 AO-3PM 成像可清晰分辨小胶质细胞突起向微米级激光损伤点伸张和包裹的完整过程,有助于研究活体状况下免疫细胞对大脑环境变化的动态反应。同时,研究还表明 AO-3 PM产生的精密微小激光损伤只引起局部免疫细胞的迅速反应,而100微米外相邻大脑皮质的小胶质细胞并不会发生形态和位置的变化。为了验证在更大像差和散射情况下 AO-3PM 的性能,研究人员进一步对老年阿兹海默症老鼠大脑的小胶质细胞和淀粉样斑块进行活体成像。结果显示穿过其140um 厚的完整头骨,AO-3PM 仍然能清晰分辨胶质细胞的精细形态和与淀粉样斑块的相互作用。图3:AO-3PM实现活体穿过头骨精确激光手术以及老年阿兹海默症老鼠大脑内对小胶质细胞高分辨成像。(A) 激光手术后对Cx3Cr1-GFP转基因老鼠内被绿色荧光蛋白标记的小胶质细胞间隔时间成像。(B) 空间光调制器上的矫正图案。(C) A图中沿虚线荧光信号轮廓。(D) 在12个月大的老年阿兹海默症老鼠大脑对小胶质细胞和淀粉样斑块的双色成像。比例尺:(A) 20um;(D) 10um。总体而言,这项研究结果表明,AO-3PM 技术在促进活体生物高分辨成像特别是在活体大脑无创成像研究方面具有巨大潜力。
  • 发布气体监测成像预警系统新品
    一、产品介绍我国首产并有自主知识产权的气体远距离监测红外光谱仪系统,该红外监测系统可对气体远距定性、定量识别分析;可成像预警直观溯源;可在线监测、巡航、便携使用;广泛用于石油、化工、环保、安监、消防、科研等领域有毒有害气体遥测预警成像系统利用气体红外指纹光谱对气体云团进行遥感探测,通过识别软件实现对危险气体的快速定性识别和半定量反演,配合扫描云台和同轴可见-红外相机实现检测区域的扫描成像,依据气体的种类和浓度,分别以不同的颜色和深浅与可见图像或视频进行伪彩叠加,可以直观快速的核定危险气体源头、给出其在大气中的分布和扩散趋势。产品由集成了同轴相机的可见-红外相机的傅里叶红外光谱仪、扫描云台及配套的识别反演软件组成,如图 1所示。产品可以固定架设,也可采用车载方式。该检测方法与常规技术相比,具有以下特点:(1) 对现场气体远距离进行探测;(2) 不需采样,无需繁琐和危险的取样手续;(3) 检测种类多(涵盖了绝大多数易燃易爆和有毒气体种类);(4) 自动识别气体种类、反演浓度、自动报警;(5) 快速进行危险气体源头的定点定位、核定污染范围及其在空气中的分布和扩散趋势;(6) 快速分析多组分混合物;(7)监测范围广、速度快、灵敏度高。灵敏度高,可达到ppm.m级别,检测速度快,3秒钟内给出检测结果。二、测量成分:◆ 化学毒剂:沙林(GB)、芥子气(HD)、维埃克斯(VX)、索曼(GD)、环沙林(GF)、塔崩(GA)、路易斯气(Lewisite)等;◆有害气体:二氧化硫、硫化氢、氮氧化物、一氧化碳、氯化氢、苯、甲苯、二甲苯、 苯系物、多氯联苯、砷化氢 、磷化氢、光气、氯化氰、氰化氢等200多种气体;◆挥发有机物(VOCs);三、应 用:◆港口、海事局应用方式:高处架设或船载流动检测目的:针对进港船舶是否更换清油及排放超标的监测◆环保执法大队应用方式:高处架设或车载流动检测目的:提高环保部门针对排污企业超标排放的监测及执法技术手段◆化工园区管委会、安监局应用方式:高塔或高处架设,针对园区整体24小时监测目的:拓展政府部门对于化工园区的安全管理手段,监控偷排,防止爆燃类生产事故◆中海油、中石油、中石化应用方式:高塔或高处架设,无人车载巡检目的:防止爆燃类、中毒等生产事故◆消防大队、安监局应用方式:车载流动检测目的:火灾现场、危化品事故现场的应急处置支援,协助定性污染物种类、空气中分布及扩散趋势 创新点:用途:远距离360° 无死角扫描化工区气体泄露,覆盖从地到空的排放;可同时识别几十种气体,定性物种和定量数据可视化的输出。助力园区安全预警、泄露点快速溯源。 1、进入2017年国家重点研发计划,应急管理部“卡脖子”重大工程之一,公安部“十三五”反恐专项入选装备,军转民高科技产品,几十项专利支撑。2、测量距离覆盖几十米到5km,无需采样,原位秒级快速测定几十种VOCs和无机有毒有害气体。3、360度无死角大范围扫描:可实现水平360° 、仰俯 -30° ~ 45° ,1~ 5公里范围监测,空间覆盖度高。 4、可视化输出模式,助力溯源:将肉眼看不到的气体可视化,颜色表示浓度高低;自带可见光相机和红外相机,气体的图像叠加于相机图片上,使用人一眼就能看到污染排放的位置、具体物种和大致浓度,并了解扩散趋势和范围。。 5、应用场景多样:可便携、车载、船载,可连续自动和无人值守,提高工作效率。气体监测成像预警系统
  • 激光多普勒测速技术发展及应用漫谈(1)
    仪器信息网讯 2020年 12月1日23时11分,嫦娥五号探测器稳稳软着陆在月球,落月过程中,中国科学院上海技术物理研究所研制的激光测距测速敏感器发挥着重要作用,该多普勒激光测速精度可达0.1米/秒,将三个方向的多普勒激光测速的结果反馈给导航系统,确保航天器着陆更平稳。据悉,这也是多普勒激光测速技术首次在太空导航上得到应用。嫦娥五号激光测距测速敏感器和激光三维成像敏感器激光多普勒测速是什么?激光多普勒测速仪发展史又是怎样?本期,我们邀请北京航天光新科技有限公司 CEO 杨开健分享激光多普勒测速技术发展及应用。杨开健 北京航天光新科技有限公司 创始人兼CEO 1.激光多普勒测速仪原理激光多普勒测速仪基于光学多普勒效应利用多普勒频移实现对物体线速度的非接触测量。多普勒效应(Doppler effect)主要内容为:当声源与接收器(或观察者)之间存在相对运动时,使得接收器(或观察者)收到的声音频率,和声源发出的声音频率不同(出现频差)的现象。接收器接收的频率和声源发出的声波频率之间的差值就叫多普勒频率,其大小同声源与接收器之间的相对运动速度的大小、方向有关。多普勒效应不仅仅适用于声波,它也适用于所有类型的波,包括电磁波。当然光波也具有多普勒效应。如图所示,激光多普勒测速仪出射的激光束入射到运动物体上,部分散射光仪器接收。由于仪器相对于物体有一定的运动速度,根据多普勒效应可知,仪器接收到散射光的频率与出射激光的频率不同,分别是和,这里指仪器出射激光的频率,指多普勒频率。多普勒频率与物体的运动速度有关,通过探测多普勒频率即可计算出物体的运动速度。激光多普勒测速仪原理示意图2.激光多普勒测速仪发展史——解决不同时代用户的需求痛点1964年Yeh和Commins首次观察水流中粒子的散射光频移,并证实了可利用激光多普勒频移技术来确定流动速度,Foreman和George,Golesfecion和Kreid,Pike,Huffaker等人进一步论述了多普勒技术原理、特点及其应用,使该项技术初步得以实用化,不仅可以测量液体流速,还可以测量气体的流速。70年代是激光多普勒技术发展最为活跃的一个时期,Durst和Whitelaw提出的集成光单元有了进一步的发展,使得该系统的光路结构更为紧凑。光束扩展、偏振分离、频率分离、光学移频等近代光学技术在激光多普勒技术中得到了广泛的应用,信号处理采用了计数处理、光子相关及其它一些方法使激光多普勒技术测量范围更广泛,它的精度高、线性度好、动态响应快、测量范围大、非接触测量等优点得到了长足的发展。1975年在丹麦首都哥本哈根举行的“激光多普勒测速国际讨论会”标志着这一技术的成熟。80年代,激光多普勒技术进入了实际应用的新阶段,它在无干扰的液体和气体测量中成为一种非常有用的工具。可应用于各种复杂流动的测试,如:湍流、剪切流、管道内流、分离流、边界层流等。随着大量实际工程、机械测试的需要,目前,固态表面的激光多普勒技术也越来越受到重视:A. E. Smart,C. J. Moore等把该项技术应用到航空发动机的研究上 清华大学利用激光多普勒技术分析磁头的运行姿态溯;美、德开始激光光栅多普勒测量的研究,由光栅衍射主极大光束形成的多普勒信号,具有信噪比高、抗干扰能力强等优点,可用于各种机械的振动测量,但使用时须将光栅和测量目标相连接,限制了它的适用范围;F. Durst和M. Zare提出了PDA(相位多普勒)技术;他们研究发现,球形粒子对两束相交光束散射,会在周围光场形成明暗相间的干涉条纹。当用两个探测器接收多普勒信号时,两路信号之间存在的相位差与粒子大小成呈线性关系。这一技术被广泛应用于粒子大小的测量中,目前也被用于折射率的测量中;天津大学进行将激光多普勒技术用于固体表面面内位移远距离测量研究。3.从应用有限到技术逐渐商品化激光多普勒技术虽被证明是一种非常有用的技术,但它的仪器化产品在过去相当一段时期内受气体激光器体积庞大、信号处理技术相对落后的限制,在机械工业和大型工程领域的实际应用比较有限。近年来,许多微光学元件己经商品化,激光二极管的应用也为实现仪器小型化提供了便利条件,微小透镜取代了传统的透镜。计算机和数字信号处理技术的结合增大了振动量测量和分析的实时性和自动化程度,信号时域波形分析法、函数分析法、调和分析法等技术的成熟大大提高了测量的准确性和实用性。特别是随着传感技术和信息技术的发展,产生了一些新的测量方法,将多传感数据实时综合处理及分析变为可能,信号处理过程实现了信息化和综合化。半导体技术使得信号处理器体积减小的同时可靠性得到大大增强。这些技术的涌现,使得激光多普勒技术向着小型化、数字化、多维化、实用化、商品化等方向发展。目前,世界上许多国家已经有成熟的激光多普勒测速产品,如美国、德国、英国、丹麦、瑞典、新加坡等。应用于工业测量领域的光路结构大部分是双光束差动结构,该结构具有易对准、接收口径大等优点。该技术已经可以在钢铁、有色金属的轧机生产线的在线测量,或者用在线缆、造纸、印刷等行业的生产线的速度测量和长度累计。补充:国内激光多普勒技术研究现状据公开资料表明,国内目前从事激光多普勒技术研究的单位越来越多,清华大学、中国科学技术大学、大连理工大学、电子科技大学、国防科技大学、中国科学院上海技术物理研究所等单位都展开了激光多普勒测速技术研究。本网根据相关资料整理如下:(图源网络公开整理)欢迎广大业内人士分享更多科学技术干货内容,请投稿至liuld@instrument.com.cn
  • 广西大学预算809万元购买1台离子源-高分辨质谱分子成像仪
    8月24日,广西大学公开招标购买1台离子源-高分辨质谱分子成像仪,预算809万元。  项目编号:GXZC2021-G1-003071-KLZB  项目名称:专用仪器设备采购  预算总金额(元):8090000  采购需求:  标项名称:广西大学激光离子源-高分辨质谱分子成像  数量:1  预算金额(元):8090000  简要规格描述或项目基本概况介绍、用途:技术参数  1、离子源  ★1.1 具有ESI和MALDI双离子源  1.2 ESI和MALDI离子源可通过软件全自动切换  ★1.3双激光器,主激光频率:10,000Hz 后电离激光1,000Hz  1.4 MALDI离子源:样品盘采用工业标准的微滴定盘设计,可点384个样品,最多能够放1536个样品  1.5 ESI离子源:离子漏斗传输技术,柔和的离子聚焦和高效离子传输,且不受质量大小的影响  1.6 ESI和MALDI离子源可通过软件全自动切换,时间不超过1分钟  1.7 具备捕获离子淌度谱功能,产生高分辨率离子淌度数据  1.8 具有平行累加连续碎裂功能,几乎达到100%工作周期  1.9 进样口喷针部分电压为零  1.10 玻璃毛细管,起到将大气压与真空系统隔离和产生电压差的目的  2、飞行管  2.1 同轴、快速高灵敏度的检测器系统,飞行中重聚焦离子光学系统,提供高灵敏度  2.2正负离子切换  ★2.3飞行管配有水冷恒温温控装置和智能化温度补偿装置,在MS和MS/MS模式下质量准确度具有长时间的超稳定性。  2.4 采用ADC模拟数字化转换器,确保得到准确的真实同位素分布  2.5 CID离子碎裂功能  2.6四极杆质量过滤器,质量范围20-3000m/z  3、技术指标  ★3.1 具备离子淌度功能,离子淌度分辨率≥150,可计算CCS值  3.2 分辨率:高达 50 Hz 采集速度下不损失分辨率,TOF分辨率≥60,000  3.3 准确度:内标校准:平均误差 ≤ 0.8 ppm 外标校准:平均误差 ≤ 2 ppm  ★3.4 采样频率:  QTOF和TIMS模式:MS和MS/MS均为 50 Hz  PASEF模式:MS/MS 100 Hz  3.5 质量范围:20-20,000 m/z,可由软件自动设定  3.6 灵敏度:1pg/uL利血平,信噪比100: 1  3.7 具备基质成像分析的样品制备、信号采集和数据分析处理功能。  3.8 具备常规和纳升流速的ESI离子源。  3.9 在断电的情况下维持仪器持续运行1小时以上。  设备清单:见招标文件  最高限价(如有):8090000  合同履约期限:自签订合同之日起120历日内整体完成供货安装调试  本标项(否)接受联合体投标  开标时间:2021年09月15日 09:00G1-003071招标公告附件.docx
  • 全方位完美组合:FLIR创新型热成像解决方案
    在实际的工业、实验室等应用场景中,常常能够见到一种现象:由于测温设备的选用不当,导致产品、实验等无法满足需求,甚至产品召回以及返工,造成经济损失的同时也对产品本身产生恶劣影响。为了避免这种情况的出现,一直以来,热成像技术的研究者都在专注研发一款能够提供最佳解决方案的测温工具。  传统的测温工具诸如红外点温枪、热电偶等基础、单一的测温工具已经完全不能满足工业生产的需要。热电偶仅局限于大致确定可能正确的测温点,并且常常会产生不必要的散热,改变待测目标的热属性 点温仪每次只能测量一个温度点,只能探测某一区域的平均温度,而且离目标物越远,偏差越大。为此,美国菲力尔公司( FLIR Systems) 推出一套全方位组合的创新型替代方案。  美国菲力尔公司( FLIR Systems) 此次推出的红外热像仪台架试验套件包括FLIR A65/35红外热像仪台架试验套件、FLIR E40红外热像仪台架试验套件、FLIR T420红外热像仪台架试验热套件三款全方位的组合套装。  红外热像仪台架试验套件选用光学镜头,采用即时非接触式读数,在每幅热图像中生成高达327,680个可重复、精确的温度测量值,准确检测,可同步在热像仪上显示测量分析结果,并支持视频录制与数据记录,通过USB数据线或以太网与计算机之间进行数据传输,结构轻巧,易于操作,满足测温工具的一切功能需求。  美国菲力尔红外热像仪台架试验热套件提供最可靠的热成像解决方案,配备工业和研发实验室使用的不同镜头与先进红外分析软件,帮助还原全幅画面,在第一时间分析出问题所在,帮助确切了解测量位置,精确测量结果,大幅提升工作效率,可完美应用于入门级研发应用、工业实验室、培训以及印刷电路板(PCB)和电路板分析等应用领域。  其中,FLIR ResearchIR软件面向使用带有制冷或非制冷型探测器的红外热像仪的研发科研工作者而开发,能够充分发挥红外热像仪的优势,进行高速视频录制与高级热图像分析,是适用于工业研发实验室的理想工具。  众所周知,美国菲力尔公司(FLIR Systems)作为全球热成像技术的领导者,在红外热像仪、航空摄像机和机械检测系统等产品领域取得了举世瞩目的成果。值得注意的是,美国菲力尔不仅全力生产最高性能的红外热像仪系统,更致力于为所有的红外热像仪系统用户提供最专业的红外热像仪与软件的组合解决方案,帮助提高工作效率与生产率。   关于热成像  热成像是使用由特殊传感器构成的成像仪&ldquo 看到&rdquo 物体所释放的能量。由于热能或红外光线的波长过长而无法侦测,因此人眼无法看到。我们作为热能所感知到的实际是电磁波谱的一部分。红外线能帮助我们看到肉眼无法看到的物体。热像仪生成不可见红外或&ldquo 热&rdquo 辐射形成的图像。根据不同物体之间的温差,热成像技术可生成清晰的图像。这是适用于预见性维护、建筑检查、研发以及自动化应用的绝佳工具。热成像能够在完全漆黑的环境下、夜间、透过灰雾、烟雾以及从远距离看到所观察的物体。该技术还可用于安防、海事、自动化、消防以及其他众多应用中。  关于FLIR Systems  FLIR Systems是为广泛应用领域设计和制造热像仪的世界领先公司。该公司拥有50多年的行业经验,目前已生产出几千款热像仪用于世界各地的预见性维护、建筑检查、研发、安防、海事、自动化以及其他夜视应用领域。FLIR Systems共有七大制造工厂,位于美国(波特兰、波士顿、圣巴巴拉和波兹曼)、瑞典斯德哥尔摩、爱沙尼亚塔林、和法国巴黎附近。其办事处分布于澳大利亚、比利时、巴西、中国、迪拜、法国、德国、香港(中国)、印度、意大利、日本、韩国、荷兰、俄罗斯、西班牙、英国和美国。公司拥有3000多位红外专家,通过国际分销商网络提供当地销售和支持功能,服务于全球市场。(美国菲力尔公司 供稿)
  • FluorCam荧光成像系统落户中国科学院分子植物科学卓越创新中心
    近日,北京易科泰生态技术有限公司在中国科学院分子植物科学卓越创新中心安装了FluorCam封闭式GFP/Chl. 荧光成像系统,用于植物叶绿素(Chl)荧光成像分析和GFP绿色荧光蛋白成像分析。FluorCam封闭式叶绿素荧光成像系统是目前世界上功能最为完备的叶绿素荧光成像设备,其主要功能特点如下:?是唯一可以进行OJIP快速荧光动力学及QA再氧化成像分析的叶绿素荧光成像系统?可运行如下protocols:üFv/FmüKautsky诱导效应(Kautsky induction)ü荧光淬灭分析(Quenching analysis)ü光响应曲线(Light curve)üQA再氧化动力学(QA-reoxidation)üOJIP快速荧光动力学(OJIP fast fluorescence induction with 1 μs resolution)ü多光谱荧光成像分析(Multi-color fluorescence)?可同时进行GFP荧光成像分析(选配)?可进行紫外光激发多光谱荧光成像分析易科泰生态技术公司提供植物表型组学研究全面解决方案:l从FKM细胞亚细胞水平叶绿素荧光成像、便携式FluorCam,到大型FluorCam叶绿素荧光成像平台l从台式、模块式FluorCam叶绿素/多光谱荧光成像,到移动式、样带式及自动扫描式叶绿素荧光成像
  • 中科院“光谱椭偏成像系统”研制成功
    纳米薄层解析的新锐器——光谱椭偏成像系统研制成功  在中国科学院重大科研装备研制项目的资助下,力学所国家微重力实验室靳刚课题组成功研制出“光谱椭偏成像系统”及其实用化样机。  该研究是利用高灵敏的光学椭偏测量术,同时结合光谱性能及数字成像技术,具有对复杂二维分布的纳米层构薄膜样品的快速光谱成像定量测量能力。在中科院专家组对仪器性能和各项技术指标进行现场测试的基础上,4月1日,验收专家组一致认为:系统为复杂横向结构的大面积多层纳米薄膜样品的快速表征和物性分析提供了有效手段,是一种纳米薄膜三维结构表征的新方法。  光谱椭偏成像系统的特点在于:信息量大,可同时测量大面积样品上各微区的连续光谱椭偏参数,从而可以获得相关材料物理参数(如厚度、介电函数、表面微粗糙度、合成材料中的组分比例等)及其空间分布 空间分辨率高,对纳米薄膜的纵向分辨和重复性均达到0.1nm、横向分辨达到微米量级 检测速度快,单波长下获得图像视场内各微区(42万像素以上)的椭偏参量(ψ和Δ)的采样时间达到7秒,比机械扫描式光谱椭偏仪提高2-3个量级 结果直观,形成视场内对比测量,可准确定位和排除伪信号,这是单光束光谱椭偏仪所不具备的 并且系统自动化程度高,操作简便。  该系统既可应用于单光束光谱椭偏仪所覆盖的领域,也可应用于单波长或分立波长的椭偏成像仪所涉及的领域,适合同时需要高空间分辨和光谱分辨测量的纳米薄膜器件测量的场合,这将为椭偏测量开拓新的应用方向。已成功应用于“863”项目“针对肿瘤标志谱无标记检测蛋白质微阵列生物传感器的研制”等研究工作中,并将在微/纳制造、生物膜构造、新型电子器件、生物芯片及高密度存储器件等领域中发挥重要作用。
  • 成都一家红外热成像技术服务商完成A+轮融资
    近日,红外热成像技术服务商:成都晶林科技完成A+轮融资,本轮投资方为初尧基金。关于晶林科技成都市晶林科技有限公司(简称:晶林科技)是一家红外热成像技术服务商,可为用户提供扩展型红外应用方案、红外ASIC单芯片手持方案、ASIC芯片热成像机芯方案及智能红外防火系统等产品。晶林科技于2010年注册成立,是一家正处于高速成长阶段的国家级高新技术企业。 多年厚积薄发,晶林科技已逐渐掌握了包括红外图像处理算法、集成电路技术、红外热成像系统和相关物联网应用的核心技术,申请专利100 余项,授权80余项,其中发明专利近30项。公司集中优势资源,潜心钻研关键技术,于2016年10月推出业界第一款红外热成像专用图像处理芯片JL7603T,以其高性能、小体积、低功耗、自主可控等特点赢得了业界的认可。随后,晶林科技第二代改进型红外图像处理芯片(JL7603B3、JL7603B6)量产上市,目前已广泛应用于车辆辅助驾驶、侦察观瞄、电力检测等领域。 为共同推动相关技术发展,晶林科技于2012年牵头成立了成都市晶林电子技术有限公司,负责晶林产业孵化器项目建设管理和运营,该项目位于成都市西航港开发区物联网产业园,紧邻天府新区核心区,为一类工业用地,规划总建筑面积约117131平方米。 晶林科技聚焦红外热成像技术,以“合作、共赢、开放”的经营理念,以满足客户需求为目的,旨在成为一流的红外热成像关键技术方案提供商和产业推动领跑者。 来源:晶林科技官网
  • 中科院研制成功光谱椭偏成像系统
    据中国科学院力学研究所消息 在中国科学院重大科研装备研制项目的资助下,力学研究所国家微重力实验室靳刚课题组成功研制出“光谱椭偏成像系统”及其实用化样机。 该研究是利用高灵敏的光学椭偏测量术,同时结合光谱性能及数字成像技术,具有对复杂二维分布的纳米层构薄膜样品的快速光谱成像定量测量能力。在中科院专家组对仪器性能和各项技术指标进行现场测试的基础上,验收专家组一致认为:系统为复杂横向结构的大面积多层纳米薄膜样品的快速表征和物性分析提供了有效手段,是一种纳米薄膜三维结构表征的新方法。 光谱椭偏成像系统的特点在于:信息量大,可同时测量大面积样品上各微区的连续光谱椭偏参数,从而可以获得相关材料物理参数(如厚度、介电函数、表面微粗糙度、合成材料中的组分比例等)及其空间分布;空间分辨率高,对纳米薄膜的纵向分辨和重复性均达到0.1nm、横向分辨达到微米量级;检测速度快,单波长下获得图像视场内各微区(42万像素以上)的椭偏参量(ψ和Δ)的采样时间达到7秒,比机械扫描式光谱椭偏仪提高2~3个量级;结果直观,形成视场内对比测量,可准确定位和排除伪信号,这是单光束光谱椭偏仪所不具备的,并且系统自动化程度高,操作简便。 该系统既可应用于单光束光谱椭偏仪所覆盖的领域,也可应用于单波长或分立波长的椭偏成像仪所涉及的领域,适合同时需要高空间分辨和光谱分辨测量的纳米薄膜器件测量的场合,这将为椭偏测量开拓新的应用方向。目前已成功应用于“863”项目“针对肿瘤标志谱无标记检测蛋白质微阵列生物传感器的研制”等研究工作中,并将在微/纳制造、生物膜构造、新型电子器件、生物芯片及高密度存储器件等领域中发挥重要作用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制