当前位置: 仪器信息网 > 行业主题 > >

铬镁橄榄石飞秒太瓦系统

仪器信息网铬镁橄榄石飞秒太瓦系统专题为您提供2024年最新铬镁橄榄石飞秒太瓦系统价格报价、厂家品牌的相关信息, 包括铬镁橄榄石飞秒太瓦系统参数、型号等,不管是国产,还是进口品牌的铬镁橄榄石飞秒太瓦系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合铬镁橄榄石飞秒太瓦系统相关的耗材配件、试剂标物,还有铬镁橄榄石飞秒太瓦系统相关的最新资讯、资料,以及铬镁橄榄石飞秒太瓦系统相关的解决方案。

铬镁橄榄石飞秒太瓦系统相关的资讯

  • TF-SPME萃取法帮你分析,你的橄榄油品质是否过关?
    特级初榨橄榄油EVOO是在果实处于*成熟阶段时通过机械和其他物理方法从橄榄中获得的,无需任何进一 步提炼即可食用。橄榄油富含但不饱和脂肪酸,对心脑血管健康有一定作用,定期食用 EVOO 对健康有益。西班牙的橄榄油产量占全球的45%,被西班牙人誉为“黄金液体”。 由于其挥发性化合物,EVOO 还是一种具有极佳感官香气的植物油,香气是食品的主要质量指标之一。同时EVOO的特征挥发化合物会受气候、土壤、地理来源、橄榄品种、果实成熟度或其储存条件等因素影响。EVOO 香气由大量挥发性化合物构成,如醇类、酯类、醛类、酮类、呋喃类、碳氢化合物等。挥发性化合物的主要前体是脂肪酸,因为在榨油过程中, 内源性酶的作用通过降解多不饱和脂肪酸形成这些挥发性化合物。在以下实验中,我们采用两种不同技术进行对比:HSSE-PDMS和TF-SPME。对比实验过程01 样品制备:5g橄榄油,放置在20mL顶空瓶中,分别使用TF-SPME固相微萃取薄膜和磁力搅拌吸附萃取搅拌子顶空式萃取,37℃恒温水浴萃取60min;02 涂层:薄膜固相微萃取 (TF-SPME),采用两种不同的涂层,二乙烯基苯/聚二甲基硅氧烷涂层 (DVR/PDMS) 或羧烯/聚二甲基硅氧烷 (CAR/PDMS) 作为萃取相,PDMS Twister长度为10 mm,涂层为24µ L EG/S Twister长度为10 mm,涂层为32µ L TF-SPME装置为20 × 4.8 mm碳网片,浸渍有涂层相。分析使用了Agilent 6890气相色谱系统和Agilent 5975惰性四极杆质谱仪(Agilent, Santa Clara, CA, US),配备了Gerstel热解吸系统(TDS2)和CIS-4PTV进样口冷却系统。03 解吸温度程序如下:温度保持在 35℃ 0.1 分钟,然后以 60℃/min 的速度升温至 220℃并保持 5 分钟; 色谱柱:50 m × 0.25 mm×0.20 µ m J&W CPWax-57CB 载气:He; 流速:1ml /min; 气相色谱升温程序如下: 35℃保持 4分钟,然后以2.5℃/min升至220℃(保持15分钟) ; 四极杆、离子源和传输线温度分别维持在150℃、230℃和280℃。实验结果在70 eV的全扫描模式下记录了电子电离质谱,电子能量在29 ~ 300 m/z之间。在Picual品种EVOO中,用2TF-SPME和hsse - pdms分别测定了49个和43个化合物)。在Hojiblanca品种EVOO中,HSSE-PDMS提取的化合物数量(34)与2TF-SPME(32)相似。然而,在这两种情况下,使用2TF-SPME方法获得的总面积值最高(如图1所示)。 图1:通过 HSSE-PDMS 和 2TF-SPME 获得的 EVOO Picual 和 Hojiblanca 品种的总峰面积值(除以 107)和挥发性化合物的数量。误差条显示标准偏差 (SD) 值在 Picual 橄榄油的醛和内酯采样技术与 Hojiblanca 的萜烯采样技术之间观察到了统计学上的显着差异。在所有情况下,均使用 2TF-SPME 方法达到最高值(如图 2所示)。2TF-SPME装置是检测以下8种挥发性化合物的*方法:丙酸、1-丙醇、2-甲基-2-戊烯醛、5-羟甲基糠醛、4-己烯-1-醇乙酸、2-环戊烯- 1,3 -二酮和对花癸烯。 图2:通过HSSE-PDMS和2TF-SPME获得的EVOO Picual和Hojiblanca品种主要化学基团的总峰面积值的百分比总结两种提取方法均可根据橄榄品种对EVOO样品进行分离和区分。然而,考虑到线性和获得的峰面积值,以及测定的挥发性化合物的数量,2TF-SPME方法更适合于最好地表征这些类型的EVOO。薄膜固相微萃取 薄膜固相微萃取,简称TF-SPME或ThinFilm SPME,是把吸附相涂在碳网片上的固相微萃取新技术,由加拿大皇家科学院院士以及滑铁卢大学的JanuszPawliszyn教授发明,德祥科技旗下品牌INNOTEG英诺德和JanuszPawliszyn教授一起合作研发,用于分析痕量的VOSs和SVOCs等挥发性有机物。TF-SPME通过增加萃取相体积和表面积,不牺牲分析时间的同时,大大提高了灵敏度,解决了传统固相微萃取过程中所存在的吸收速率和吸收能力限制的问题,是一种应用广泛的提取浓缩新技术,与GC/MS联用,特别适用于食品、香料、饮料和环境监测等行业。固相微萃取 固相微萃取(SPME)由手柄和萃取头或纤维头 (fiber)构成。萃取头是一根1cm/2cm长的熔融石英纤维头,涂有不同的固定相和吸附剂,是一种集采样,萃取,浓缩和进样于一体的无溶剂萃取技术。操作更简单,携带更方便,操作费用也更加低廉;另外克服了传统样品前处理所存在的 回收率低、吸附剂孔道易堵塞的缺点。 可以与气相、气相-质谱联用,广泛应用于环保及水质处理、食品香精、公安法检分析、临床 药理、制药、化工等领域。应用范围产品涂层应用范围TF-SPMEPDMS适用于非极性化合物SVOCs分析PDMS/DVB适用于非极性化合物VOCs和SVOCs分析PDMS/HLB (1um)对极性和非极性化合物具有平衡亲和力,适用于极性和非极性VVOCs,VOCs,SVOCs分析PDMS/HLB (5um)对极性和非极性化合物具有平衡亲和力,适用于极性和非极性VVOCs,VOCs,SVOCs分析SPME94um聚二甲基硅氧烷(PDMS)挥发性物质,胺类,硝基芳香类化合物44um聚二甲基硅氧烷(PDMS)非极性半挥发性、挥发性物质空针(无涂层,可定制) _德祥科技德祥集团成立于1992年,总部位于香港特别行政区。作为卓越的科学仪器供应商和服务商,德祥服务于大中华区和亚太地区,每年都为数以千计的客户提供全套解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。作为深耕科学仪器行业的供应商与服务商,德祥现已服务于政府、高校、科研、制药、检测、食品、医疗、工业、环保、石化以及商业实验室等众多领域。公司目前在亚太地区设有13个办事处和销售网点,3个维修中心和1个样机实验室。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度*代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为*的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每*都在使这个世界变得更美好!INNOTEG英诺德INNOTEG英诺德是德祥科技旗下一家专业从事科学仪器设备研发生产的高科技企业,是集实验室设备研发生产、方法开发、实验室仪器销售和技术服务为一体的专业厂家。公司十分重视技术的研究和储备,一直保持高比例研发投入,创建了一支由博士、硕士和行业专家等构成的经验丰富,技术精湛的研发团队,在仪器分析技术领域开展了卓有成效的研究开发工作。此外,INNOTEG英诺德还与各大科研院所、高校合作,积极推进科技成果项目的产业化。INNOTEG英诺德凭借强大的研发能力,注重前瞻性技术研发,已推出多款科学仪器设备及实验室耗材产品。
  • 10月1日起啤酒饮用水橄榄油“国标”实施
    从10月1日起,关于啤酒、饮用水、橄榄油的3条重要国家标准将实施,其中,《啤酒》国家标准和《饮用天然矿泉水》国家标准为代替原有国标的新国标,而《橄榄油、油橄榄果渣油》国家标准为酝酿多年首次实施。  酒精度小于0.5度为“无醇”  新《啤酒》国家标准由中国酿酒工业协会修订。  与原国标相比,新标准修改了干啤酒、冰啤酒、低醇啤酒、小麦啤酒、浑浊啤酒的定义,并增加了无醇啤酒和果蔬类啤酒的定义。新国标中无醇啤酒的定义为:酒精度小于等于0.5%vol(升),原麦汁浓度大于等于3.0°P(原麦汁浓度)的啤酒,又称脱醇啤酒。  资料显示,英、美等国也将“0.5%”作为无醇门槛。  专家提醒消费者,“无醇啤酒”依然是啤酒,也含有低浓度酒精。无论酒精度数多低,还是不要酒后驾驶。  溴酸盐限量0.01毫克  新《饮用天然矿泉水》国家标准最显著的特点是:取消菌落总数指标,新增溴酸盐指标限量。此外还规定,饮用天然矿泉水须在标志中标示水源点名称,除非经国家有关部门审批认可,否则不得标“医疗作用”。  新国标规定每L(升)饮用天然矿泉水中的溴酸盐含量须小于0.01mg(毫克)。同时,新国标还取消了在我国饮用水指标中居重要位置的“菌落总数”指标。在取消菌落总数指标的同时,新国标增加了3项微生物的指标限量,规定取样250毫升饮用天然矿泉水中,粪链球菌、铜绿假单胞菌和产气荚膜梭菌等 3项致病菌含量均为“0”。  果渣油不算橄榄油  橄榄油国标此番是首度实施,之前已酝酿多年。  《橄榄油、油橄榄果渣油》国家标准首次明确油橄榄果渣油不能算是橄榄油。国标也对包括反式脂肪酸、油橄榄果实年份的标注作了规定。  据悉,果渣油是一种从油橄榄果渣中获得的油脂。果渣油和初榨橄榄油的进口差价很大,前者离岸价不到30元/公斤,后者超过60元/公斤。  另外,在我国市场上曾出现商家将进口分装日期(二次灌装日期)标为生产日期的情况,损害了消费者利益。针对这一现象,国标规定,进口分装产品在标注分装日期的同时必须标注原产国生产日期,生产日期是指用各种加工工艺从油橄榄鲜果中提取油脂的时间。
  • 我国首个橄榄油实验室揭牌
    4月25日,中国首个国际橄榄理事会(IOC)认证实验正式落户上海,IOC官员亲自到场祝贺并参加了“中国首个橄榄油实验室”的揭牌仪式,该实验室是由国内橄榄油领导者品牌欧丽薇兰(Olivoila)引入,是亚洲唯一获得IOC认证的橄榄油实验室,标志着中国在世界高端食用油橄榄油领域的品质技术研究和分析检测能力取得重大突破,意味着中国在橄榄油的科研技术能力将跃升至欧洲发达国家水平。  国际橄榄理事会(IOC)专家评审组、意大利驻沪总领事馆、国家商务部、中国疾病预防控制中心食品安全与营养研究所等国内外领导、行业代表均到场祝贺,共同见证了中国橄榄油科技进步的里程碑时刻。  据悉,IOC(International Olive Council)即国际橄榄理事会,素有橄榄油世界的“联合国”之称,是促进橄榄油种植和产业发展、制定和实施欧盟橄榄油贸易标准化、促进技术研发、橄榄油分析检测实验室认证的最权威、最高级别的非营利性国际政府组织、由联合国赞助于1955年在西班牙成立。截至目前,国际橄榄理事会下设的成员国已覆盖了世界98%的橄榄油种植和生产地区。据了解,在欧洲有上千家橄榄油生产商实验室,但能通过IOC认证的也不到50家,认证标准及其严苛。  欧丽薇兰能引入我国首个IOC认证的实验室,说明其科研、检测等各项能力均达世界一流水平,IOC代表Conte指出:“IOC认证实验室落户中国,有利于深化橄榄油理论科研成果及检测标准、技术共享,推动中国等亚洲国家加强与国际间的交流合作。”对此,商务部官员表示:“食品安全与质量问题,历来受到中国政府的高度重视。此次中国首个国际橄榄理事会认证实验室的成立,适应了形势发展之需要,填补了国家质量标准之空缺,为加强我国橄榄油行业的国际多边贸易合作与交流,打下了重要的工作基础。”  作为国内橄榄油领导品牌,欧丽薇兰一直致力于国内地中海膳食文化的推广和普及,引领世界橄榄油的品质创新。据了解,欧丽薇兰是目前国内橄榄油市场销售份额第一的品牌,其市场份额超过40%。  活动现场还同时举行了“橄榄油与中国膳食健康消费者调研项目启动暨国际橄榄油高峰论坛”,来自国内外多个科研、油脂领域的专家参加了此次盛会,大会宣布,中国疾病预防控制中心营养与食品安全所将与欧丽薇兰展开合作,并联合丰益全球研发中心,就中国橄榄油的消费状况、橄榄油的公众营养价值和需求、以及橄榄油对于中式烹饪的应用等方面展开联合调研,为中国居民在正确选择橄榄油和营养摄入方面提供合理的建议。
  • 我国首获国际橄榄理事会认证实验室
    4月25日,中国首个国际橄榄理事会(IOC)认证实验正式落户上海,该实验室是由国内橄榄油领导者品牌——欧丽薇兰(Olivoila)引入,是亚洲唯一获得IOC认证的橄榄油实验室。标志着中国在世界高端食用油——橄榄油领域的品质技术研究和分析检测能力取得重大突破,意味着中国在橄榄油的科研技术能力将跃升至欧洲发达国家水平。  国际橄榄理事会(IOC)专家评审组教授、意大利驻沪总领事馆领事、国家商务部流通业发展司、中国疾病预防控制中心食品安全与营养研究所等国内外领导、行业代表均到场祝贺,共同见证了中国橄榄油科技进步的里程碑时刻。  在欧洲有上千家橄榄油生产商实验室,但能通过IOC认证的也不到50家,认证标准及其严苛。据AC尼尔森连续3年来对橄榄油销售市场的数据发布,欧丽薇兰以42%(2011年11月-2012年11月发布数据)的销售市场份额遥遥领先,是国内第一销量品牌。  据了解,中国疾病预防控制中心营养与食品安全所将与欧丽薇兰橄榄油实验室合作,并联合多个国际组织,就中国橄榄油的消费状况、橄榄油的营养价值、以及橄榄油对于中式烹饪的应用等方面展开联合调研。
  • 调和油调出橄榄油 不法厂家玩花招
    橄榄油在中国消费量快速增长,不法厂家开始玩花招  “不能什么都山寨,一桶油里加一点点橄榄油弄成‘调和橄榄油’,以低廉的价格争抢正规橄榄油市场,这样下去会毁掉正在成长中的中国橄榄油行业,最后吃亏的还是广大消费者。”深圳巨万阳光食品股份有限公司董事长林进锋拿着在市场上买到的山寨橄榄油直摇头,“希望消费者能睁大眼睛抵制‘山寨橄榄油’!”  “调和油”调出山寨橄榄油  几乎一夜之间,深圳超市里,冒出了很多品牌的“橄榄调和油”。不明真相的消费者一下子搞不清橄榄调和油与橄榄油的区别,受橄榄调和油价格低廉的诱惑,将调和油误认为是橄榄油买回家。  “尽管有橄榄的字样,调和油与橄榄油完全是两码事。”林进锋说,调和油的组成油料由三四种到八九种不等,各品牌调和油对构成油料成分标注得比较详细,却没有一个调和油品牌在标签上标注了各种油料的配方比例。  记者在多家超市采访发现,橄榄调和油与目前市场上的调和油乱相有很大关系。由于调和油没有行业标准,一些企业将多种材料合在一起搞成的调和油只强调一种油的名称。如某种花生浓香调和油的配料中就标注了大豆油、玉米油、菜子油、花生油、芝麻油,只笼统以花生调和油取名,对各种油的比例却忽略不提。一些二三线调和油品牌除了在名字上标注了是哪种调和油外,甚至都没有标注其他油料,也就更不知道各种油所占的比例是多少了。  “现在出现的橄榄调和油,玩的就是调和油在原材料配方上的花招。”林进锋说,由于食用调和油缺乏明确的国家标准,使得市场上流通的调和油具体成分让人无法明晰。高端的橄榄调和油和茶籽调和油里面橄榄油和茶籽油的成分能占到多大比例,消费者完全无法知道。  专家告诉记者,市场上的茶籽油或橄榄油每吨的价格在4万元左右,而棕榈油或者大豆油的价格在每吨6000~8000元。2009年国内消费油脂2300万吨,棕榈油进口800~900万吨,中国菜籽的产量的1200~1400万吨,菜籽油的产量是200~300万吨,大豆每年大约有800万吨用于榨油,产量为150~160万吨。目前市场上销售的油类中大多都是标称大豆油或菜籽油,却很少见棕榈油产品,那进口的棕榈油都去了哪里?因为基本上都掺兑做了调和油,是调和油中主要的成分。有业内人士表示,现在的餐馆用油基本都是棕榈油,占到70~80%。  富裕人群青睐“液体黄金”  调和油争打“橄榄”牌的背后,与国内富裕人群越来越喜欢食用橄榄油密切相关。随着国人对食用油的重视,橄榄油在中国的消费量快速增长。  据介绍,目前世界橄榄油主产国集中在地中海沿岸国家,主要为西班牙、意大利、希腊、突尼斯、土耳其、叙利亚、摩洛哥,这7个国家橄榄油产量占世界橄榄油总产量的90%。西班牙、意大利、希腊为世界最大的三大橄榄油生产商和出口商。西班牙橄榄油产量居世界之首,但出口量排在世界第二位,居意大利之后 意大利橄榄油产量居世界第二位,但却是最大消费国、最大的出口国,同时也是最大的进口国。全世界橄榄油的年产量目前只有250万吨左右,而我国目前的花生油、大豆油等草本植物油年产量已经超过1700万吨。橄榄油因其产量和上佳的营养成分成为世界稀缺资源。  目前在中国市场上销售的橄榄油品牌有几十个,价格差异却是非常明显的。一位从事橄榄油业务的人士披露,与橄榄调和油市场的混乱相比,橄榄油市场也是有过之而不及。橄榄油国标于2009年10月份开始实施,然而很多消费者还是很容易被误导。橄榄油的等级一共有8个,最高等级的为特级初榨橄榄油,价格相对较高。  制定标准规范橄榄油市场  “将棕榈油里添加一点橄榄油后号称是调和橄榄油的做法是错误的,我们希望加快橄榄油行业标准制定,认真维护橄榄油消费者的合法权益。”林进锋说。  中国是调和油的发源地,目前市场上销售的调和油只有企业标准,没有国家标准。2008年食用调和油国家标准开始向社会各界公开征求意见,但至今食用调和油国家标准仍未出台。  对于食用调和油市场目前的乱相,业内人士表示,不公开调和油比例是侵犯消费者知情权的行为,鱼龙混杂的贴牌企业、小作坊以次充好、随意勾兑,扰乱了食用调和油市场,最终将伤害食用油行业的整体利益。标准缺失甚至可能带来行业风险,奶粉界的三聚氰胺就是前车之鉴。  相关链接  橄榄油的等级分类  1.特级初榨橄榄油:酸度不超过0.8的特级初榨橄榄油是质量最好的橄榄油。用橄榄鲜果在24个小时内压榨出来的纯天然果汁经油水分离制成。其压榨方法采用纯物理低温压榨方法,无任何防腐剂和添加剂。生化指标和感官特性也必须达到相关标准。  2.中级初榨橄榄油:榨取获得的橄榄油酸度不超过2.0,符合规定的食用标准。  3.初榨油橄榄灯油:榨取获得的橄榄油酸度大于2.0,只用于提炼精炼橄榄油。  4.精炼橄榄油:用低级初榨橄榄油提炼的无色无味的橄榄油。酸度不超过0.3。  5.混合橄榄油:精炼橄榄油与初榨橄榄油不同比例的合成油,酸度不超过1.0。  6.粗提油橄榄果渣原油:不能食用,可提炼精炼橄榄果渣油。  7.精炼油橄榄果渣油:用橄榄果渣油原油提炼的酸度不超过0.3果渣油。  8.混合油橄榄果渣油:精炼橄榄果渣油和初榨橄榄油混合油,酸度不超过1.0。
  • 标准解读|橄榄油中脂肪酸乙酯含量的测定 气相色谱-质谱法
    一、制定背景我国是食用油大国,随着经济发展,我国对橄榄油的需求量不断增加,仅 2017 年总消费量约为 60 万吨。然而,我国消费者对橄榄油系列产品认识有限,且特级初榨橄榄油产量少,价格高,经销商为了推销产品和谋取暴利,对橄榄油进行夸大宣传或以劣充好的现象屡见不鲜。尤其进口的橄榄油几乎一律标称“特级初榨橄榄油”,这种以次充好的橄榄油不仅严重侵害了消费者的权益,还可能影响消费者的身体健康。因此,建立一套能对橄榄油等级进行准确鉴定,尤其是对特级初榨橄榄油等级进行准确鉴定的方法,对保障消费者权益、打击不法行为和更好地把关国门,均具有重要的意义。此标准拟建立特级初榨橄榄油中脂肪酸乙酯的精准检测方法,为特级初榨橄榄油的等级鉴别,遏制普通初榨橄榄油充当特级初榨橄榄油这类以次充好的乱象提供技术支撑。二、与我国有关法律法规和其他标准的关系现行有效的橄榄油产品标准为《GB/T 23347 橄榄油、油橄榄果渣油》,该标准首次制定于 2009 年,经历了一次修订,修订后于 2021 年 10 月 11 日发布, 2022 年 5 月 1 日实施,在新修订的版本中新增加了特级初榨橄榄油中脂肪酸乙酯的限量要求为≤35mg/kg,对其他等级的橄榄油没有明确要求。但国内暂无橄榄油中脂肪酸乙酯的检测方法标准。三、国外有关法律、法规和标准情况的说明 自 2011 年欧盟和国际橄榄理事会第一次对特级初榨橄榄油中脂肪酸甲酯和乙酯含量提出限量要求以来,随着研究的深入和实践的发展,近几年持续对该指标进行了适时的修订。比如,在 (EU)2015/1830 中,欧盟规定 2013-2014 年收成, 2014-2016 年收成和 2016 年以后的特级初榨橄榄油中脂肪酸乙酯含量分别 ≤40mg/kg,35mg/kg 和 30mg/kg;而到了 2016的修订版本中,再次将特级初榨橄榄油中脂肪酸乙酯含量统一修订为≤35mg/kg;而后最近的 2019修订版本继续维持了这一限量要求。 针对脂肪酸乙酯检测,国际橄榄理事会 2017 年修订发布 COI/T.20/Doc. no.28/Rev.2 Determination of the content of waxes, fatty acid methyl esters and fatty acid ethyl esters by capillary gas chromatography。该方法采用气相色谱法同时检测橄榄油样品中的蜡含量,以及脂肪酸甲酯和乙酯含量,该方法前处理需自制硅胶柱,操作繁琐、耗时、且样品平行性较差,定性方面容易有干扰、定量方法不够精准。本标准通过对前处理进行适当的改进,建立前处理更加简单,操作更加简便,分析更加精准的的分析方法。四、标准主要内容方法检出限和定量限:本文件的检出限,棕榈酸乙酯为 0.4 mg/kg,亚油酸乙酯为 0.5 mg/kg,油酸乙酯为 0.5 mg/kg,硬脂酸乙酯为 0.4 mg/kg。本文件的定量限,棕榈酸乙酯为 1.2 mg/kg,亚油酸乙酯为 1.7 mg/kg,油酸乙酯为 1.6 mg/kg,硬脂酸乙酯为 1.3 mg/kg。分析过程:展望:本标准的检出限、精密度等性能指标能满足相应要求,相信该标准正式出台后,会使特级初榨橄榄油的等级鉴别有据可依,并为相关分析检测人员提供新的思路和手段。
  • 布鲁克NMR Olive Oil-Profiling 1.0™橄榄油分析模块全新上线
    近日,布鲁克推出了全新的NMR Olive Oil-Profiling 1.0™ 核磁共振橄榄油分析模块,用于全球掺假最多的食品之一——橄榄油的真实性验证和质量控制。这进一步扩大了布鲁克食品分析解决方案组合,并将在两个核磁共振(NMR)平台上提供,即成熟的400 MHz NMR FoodScreener™ 平台,以及无需制冷剂的Fourier 80™ 台式核磁共振系统。这两种解决方案可以满足橄榄油行业从业者的不同需求。台式核磁共振解决方案针对橄榄油装瓶商、测试实验室和卫星实验室。而NMR FoodScreener™ 的目标则是政府和私人测试实验室,用于分析广泛的复杂食品基质。该平台允许在一个系统上对各种核磁共振食品分析解决方案进行内容堆叠。Olive Oil-Profiling 1.0:布鲁克首个由全新的Fourier 80台式核磁共振系统支持的食品分析解决方案核磁共振的橄榄油分析解决方案易于使用且完全自动化,可对国际橄榄油理事会(IOC)规定的参数进行量化,并通过将样品的指纹图谱与参考数据库进行比较,验证其地理来源。非靶向分析可以检测出异常情况,这也可以指出质量问题或掺假。布鲁克BioSpin产品经理Lea Heintz评论道:“当掺假产品充斥市场时,橄榄油供应链正在受到破坏。消费者需要信任橄榄油的来源和完整性,而这需要强有力的分析证据来补充感官小组的专业知识。通过验证识别橄榄油产地和纯度的独特签名,我们的核磁共振解决方案提供了快速和准确的验证,易于实施和使用;而直观的界面和分析报告则不需要用户具备任何核磁专业知识。”布鲁克BioSpin食品分析高级市场经理Thomas Spengler补充道:“作为一种高价值的食品,橄榄油特别容易受到出于经济目的的掺假行为的影响,这会削弱消费者对品牌的信任。我们很高兴推出Olive Oil-Profiling 1.0™ 橄榄油分析模块,这是布鲁克首个基于台式核磁共振系统的食品分析解决方案。这个具有成本效益的解决方案支持橄榄油装瓶商在短短12分钟内进行质量和真实性控制。该解决方案增强了供应链的完整性,特别是对于那些非垂直整合的装瓶商,它在橄榄油的卖家和买家之间建立了信任。”
  • ISO将发布橄榄油检测标准
    ISO/TC34/SC11秘书处于2010年4月12日向其所属的各成员国发出通报,对最终国际标准草案FDIS 12871《橄榄油和橄榄果渣油:毛细管气相色谱法测定蜡含量》、《橄榄油和橄榄果渣油:毛细管气相色谱法测定蜡含量》和《橄榄油和橄榄果渣油:毛细管气相色谱法测定脂肪族醇含量》的投票结果进行了通报。截止4月12日关闭投票,秘书处共收到16个国家成员体的投票,其中P-成员国13个。投票结果为:所有13个P-成员国均赞成,赞成率为100%(ISO要求≥66.66%),所有成员国反对率为0%(ISO要求≤25%),因此该最终国际标准草案获得一致通过,并将于近日出版为正式国际标准。
  • 中意合作加强橄榄油检测技术
    中国国家质量监督检验检疫总局代表团4日与意大利农业食品和林业政策部签署合作备忘录,加强两国在橄榄油质量和技术方面的合作。  双方草签《中意橄榄油合作备忘录》,确定不定期会晤机制,以召开橄榄油质量安全和技术交流会议的方式沟通合作交流信息。另外双方计划每年组织培训,加强橄榄油真伪、优劣鉴别和分析等方面的检测技术。  在意方陪同下,国家质检总局代表团参观了意大利橄榄油检测相关实验室。  除橄榄油检测,双方当天还磋商意大利对华出口大米事宜。意方介绍了意大利大米产量、质量等情况,并称意对华出口大米不会出现植物检疫方面问题。
  • 美科学家证实生命可在火星恶劣环境下生存(图)
    火星上的奥林匹斯山,是太阳系内的最大火山。在美国俄勒冈州的山区,细菌以在火山岩橄榄石中发现的铁为食。火星上也存在橄榄石 俄勒冈州的熔岩管。科学家在高海拔山脉的冰冷熔岩管内发现细菌。这种细菌生活在冰冷且含氧量较低的环境下,以铁为食,而不是正常食物  北京时间12月22日消息,生命能够在冰冷的火星繁衍生息吗?美国俄勒冈州大学的一组科学家给出了肯定的答案。研究过程中,他们从俄勒冈州山区的冰冷溶岩管——环境与红色星球表面类似——收集细菌样本,结果发现细菌能够在这种恶劣环境下繁衍生息。  这些细菌以在岩石中发现的橄榄石中的铁为食,能够在氧量较低和完全没有有机食物存在情况下生存。在火星岩石中,科学家同样发现了橄榄石。研究论文作者、美国俄勒冈州大学的博士生艾米-史密斯表示:“这些细菌来自于地球上一个最常见的细菌家族。你可以在洞穴,自己的皮肤上,海底或者任何地方发现这个家族的成员。这一次发现的细菌拥有惊人的生存能力,能够在类似火星的环境下繁衍生息。”  科学家证实,经过长时间的进化,这种细菌能够适应严酷的生存环境。在室温和正常的氧水平条件下,这种细菌以糖等有机物质为食。在移除这些食物同时将温度降至接近零度和降低氧水平后,这种细菌开始以在熔岩管中发现的橄榄石作为能量之源。橄榄石是存在于地球和火星火山岩中的常见矿物。  研究论文作者、俄勒冈州大学地球、海洋与大气科学学院教授马丁-菲斯克表示:“在此之前,我们从未发现细菌以在火山岩中发现的一种常见矿物为食的现象。在火山岩直接暴露在空气中和温度较为温暖情况下,大气中的氧抢在细菌之前让铁发生氧化。”在熔岩管中,细菌被冰覆盖,与大气隔绝开来,铁不会发生氧化,最后成为细菌的食物。  用于收集细菌样本的熔岩管是在俄勒冈州卡斯卡德山脉Newberry陨坑附近发现的,海拔高度大约在5000英尺(约合1524米)左右。这些细菌生活在熔岩管内大约100英尺(约合30米)处的岩石的冰中,所处环境含氧量极低,温度接近零度。包括菲斯克在内的科学家表示,火星地下可能存在类似环境,细菌能够在这种环境下生存。  菲斯克曾对来自火星的一颗陨石进行分析,结果发现了细菌新陈代谢迹象。不过,他并没有在陨石中发现任何生命体。他指出在Newberry陨坑的熔岩管中也发现类似迹象。他说:“熔岩管内的环境并不像火星那么恶劣。在火星上,温度几乎达到冰点,氧水平更低,液态水无法在地表上存在。根据科学家的假设,温度较高的火星地下可能存在水。虽然不太可能在火星上复制这项研究发现,但研究表明细菌能够在类似环境下生存。根据直接观测和卫星图像,我们在火星岩石中发现橄榄石。我们的研究显示橄榄石能够支持微生物存在。”
  • 基于扫描电镜-拉曼联机系统的微细矿物快速识别与定量分析技术
    扫描电子显微镜(SEM,简称扫描电镜)是观测物质表面形貌的基础微束分析仪器,具有分辨率高、景深长、样品制备简单等特点,已成为地球和行星科学研究领域最常用的仪器之一。近年来,扫描电镜的空间分辨率已大幅度提升,分辨率优于1纳米,附属硬件的集成(如背散射电子探头、X 射线能谱仪、拉曼光谱等)和软件的开发极大地拓展了扫描电镜的功能,显著提高了人们认知矿物组成和微观结构的能力,促进了固体地球科学、行星科学等多个学科的发展。复杂样品的三维重构,微细复杂矿物的快速精准识别、定位以及定量分析,是扫描电镜分析技术的前沿发展方向。   中国科学院地质与地球物理研究所电子探针与扫描电镜实验室团队原江燕工程师、陈意研究员和苏文研究员等,基于2020年购置的扫描电镜-激光拉曼联机系统(RISE),开展了一系列技术研发工作。该仪器可快速精准地实现扫描电镜与拉曼光谱仪之间的切换,采集样品同一微区的形貌、成分及三维结构信息。克服了传统扫描电镜对熔体包裹体、有机质和同质多像矿物识别的困难,并将拉曼光谱分析拓展至亚微米和纳米尺度。   铌(Nb)是医疗、航空航天、冶金能源和国防军工等行业不可缺少的重要战略性金属资源。我国白云鄂博是超大型稀土-铌-铁矿床,氧化铌的远景储量达660万吨,占全国储量的95%。对富铌矿物的赋存状态开展研究,有助于查明铌的分布规律,提高铌矿床选冶效率。然而,白云鄂博矿床的铌矿物种类繁多,且具分布分散、粒度小、成分和共伴生关系复杂等特点,如何精准识别和定位这些矿物并进行分类,往往给科研人员带来困扰。该团队针对这一问题,在白云鄂博碳酸盐样品的基础上,建立了铌矿物快速识别、精准定位和定量分析方法。通过电子背散射图像灰度阈值校正、两次图像采集和两次能谱采集,极大地缩短了对铌矿物识别和定量分析的时间,15分钟即可实现118平方毫米区域内微米级铌矿物的快速识别和精准定位,整个薄片尺度可在3小时内完成。基于自动标记区域的能谱定量分析数据,结合主成分分析(PCA)统计学方法,即可实现不同铌矿物的准确分类。该方法也可用于稀土矿床中稀土矿物、天体样品中微细定年矿物等在大尺寸范围内的快速识别、精准定位和分类。   嫦娥五号月壤具有细小、珍贵、颗粒多、成分复杂等特点,平均粒径不足50微米。获取如此细小颗粒的全岩成分,是对微束分析技术的一次挑战。传统方法通常运用电子探针分析获取矿物平均成分,用面积法统计矿物含量,再结合矿物密度,计算出月壤的全岩成分。然而,月壤矿物(如橄榄石和辉石)普遍发育显著的成分环带,为矿物平均成分统计带来很大的不确定性。因此,传统方法不仅效率低,误差也大。   针对这一问题,该团队建立了单颗粒月球样品全岩主量元素无损分析方法。他们首先使用 MAC国际标准矿物为能谱定标,检测限为0.1 wt%,对于含量1 wt%的元素, 分析精度优于2-5%。在此基础上,通过能谱定量mapping技术,直接准确获得矿物的平均成分,再结合矿物含量与密度,最终可确定单颗粒月壤的全岩成分。将新方法运用于月球陨石NWA4734号样品,在误差范围内与其他化学分析方法的推荐值一致。该新方法已成功应用于嫦娥五号月壤样品研究。由于该方法不受样品形状的限制,不仅可用于月球、小行星、火星等珍贵样品的全岩成分分析,还可以针对薄片尺度内任意形态微区开展局部全岩成分分析。   扫描电镜技术在地球和行星科学领域分析仪器中具有不可替代的地位,随着搭载附件和软件的提升,其分析技术开发和应用将具有无限可能。将扫描电镜与大数据分析技术相结合,建立更为高清、高效、精确的图像和成分分析方法,是扫描电镜技术发展的重要方向。   研究成果发表于国际学术期刊Microscopy Research and Technique, Atomic Spectroscopy,Journal of Analytical Atomic Spectrometry上。研究受中科院地质与地球物理研究所重点部署项目(IGGCAS-201901、IGGCAS-202101)、实验技术创新基金(E052510401)和中科院重点部署项目(ZDBSSSW-JSC007-15)联合资助。
  • AS专辑丨微区微束新技术助推嫦娥五号月壤研究
    微区分析是目前各研究领域常用的研究方式,岛津可提供多维度的解决方案,部分解决方案如下:❖岛津扫描探针显微镜SPM-Nanoa★自动观察★功能先进★省时高效 ❖岛津场发射电子探针EPMA-8050G★优越的空间分辨率:二次电子图像分辨率3nm★大束流更高灵敏度分析:加速电压30kV时可达3μA,特有的52.5°高X射线取出角设计,大幅提高测试灵敏度★高分辨率分析:Johanson型全聚焦晶体,无像差 ❖岛津Kratos全自动、多技术成像型X射线光电子能谱仪(XPS)Axis Supra+★优秀的元素化学状态分析能力★卓越的元素化学状态成像空间分辨率-1um★自动化技术 ❖岛津多功能X射线衍射仪XRD-7000★高精度垂直测角仪★高稳定性X射线发生器★X射线防护本质安全★丰富的配 ❖激光剥蚀-电感耦合等离子体质谱联用仪(LA-ICP-MS)★原位元素成像分析 ★高灵敏度★ICP-MS软件直控LA产品 以下内容转载自公众号:Atomic Spectroscopy 2020年12月17日凌晨,中国嫦娥五号返回器在内蒙古四子王旗着陆,这是继美国阿波罗(Apollo)和前苏联月球号(Lunar)计划后,时隔44年人类再次从月球带回珍贵样品,举国欢腾,举世瞩目! 2021年7月12日,首批嫦娥五号月壤样品正式发放,拉开返回样品精细研究的序幕!截至目前,月壤样品已发放了三个批次,国内30多家科研单位共计获得44.8577克样品,正相继开展科学研究工作。 2021年10月8日,中国地质科学院在国际学术期刊《Science》上发布首个嫦娥五号月球样品研究成果。2021年10月19日,中国科学院发布首批嫦娥五号月球样品研究系列成果,3篇《Nature》论文当天同期上线! 科学引领,技术先行!嫦娥五号月壤研究成果的快速产出,既依赖于中国科学家对月球演化等前沿科学问题的精准把控,也得益于多种微区微束分析方法的精妙组合和应用。为助推中国嫦娥五号月壤研究,在《Atomic Spectroscopy》主编李献华院士提议和指导下,由杨蔚研究员、李金华研究员、李雄耀研究员和何永胜教授共同担任Guest Editors,以“Microanalytical Techniques for Extraterrestrial Samples”(地外样品微区微束分析技术)为主题,在AS上连续组织两期相关专辑(2022, Issue 43, No.1 和 No. 2),详细地论述这些先进的微区分析技术,并通过实例展示其在嫦娥五号月壤和陨石等珍贵地外样品研究中的潜力。 2022年2月25日正式出版的第一期“Microanalytical Techniques for Extraterrestrial Samples (Part I)” (www.at-spectrosc.com),包含 9篇Articles和1篇Review。 AS 封面:月壤及地外样品微区分析专辑(Part I) 01光学成像方法具有非接触、快速、高精度等优点,一直是生物标本和矿物材料测试的主要工具之一。西安交通大学雷铭团队自2015年首次提出了高分辨全彩色三维光切片结构光照明显微系统,其凭借空间分辨率高、成像速度快、光毒性小、三维成像能力强等优点,迅速成为活体生物组织超分辨动态成像和结构观察中真彩色三维快速成像的有力工具,受到了国内外众多科研机构的广泛关注。在《Reconstructing the Color 3D Tomography of Lunar Samples(月球样品的彩色三维光学切片重建)》一文中,雷铭教授及其团队成员改进了高分辨彩色三维显微系统(专利号ZL202010061033.2),实现了对具有复杂突变结构样品的高动态彩色三维成像。利用系统特有的宽动态范围、低热损伤效应和高速三维成像能力,首次对模拟月壤和月球陨石NWA 11474标本进行了大视场彩色三维成像,获得了样品表面的高分辨彩色三维形貌(图1)。该技术为无损分析嫦娥五号月壤提供了一种新思路,有望成为进一步探究月球地质演化过程的新工具。 全文下载https://doi.org/10.46770/AS.2022.009 图1. 月球陨石NWA 11474的彩色光切片三维成像结果。(a)-(c)上视图、左视图和正视图 (d)三维形貌分布和沿直线处的高度曲线 (e)-(n)局部放大图及其三维形貌分布。 02原子力显微镜(AFM)是一种观察微观表面形态的有力工具,还用于探测电、磁、范德华、粘附和化学相互作用。AFM是少数能够在微观尺度上测量颗粒粘附力的方法之一:通过将颗粒修饰至AFM探针针尖,可测量颗粒与界面接触时二者间的相互作用力,已广泛应用于微纳尺度颗粒与界面粘附特性研究中。受限于大气环境中气体吸附的干扰,传统AFM粘附力测量实际上得到的是颗粒-吸附气体-界面三者之间的粘附力,极大地限制了其在行星科学领域的应用,也阻碍我们正确认识无大气行星或小行星表面细粒风化物的粘附特性。在《An Improved Method of Adhesion Force Measurement by Atomic Force Microscopy (AFM) (一种改进的AFM测量粘附力的方法)》文章中,中国科学院地球化学研究所李雄耀团队提出了一种基于高真空AFM设备排除颗粒表面气体吸附物对其粘附特性影响的新技术(图2)。在保持颗粒物性不变的前提下,详细地探讨了环境压力与温度对颗粒表面吸附物的影响,在优化的温压条件(排除气体吸附物所需)下,模拟样品测量结果与理论模型预测值具有高度的一致性,表明该技术可准确测定无大气星体表面颗粒粘附力。该方法可应用于嫦娥五号月尘的粘附特性研究,为进一步认识月球表面尘埃环境提供关键数据支撑。 全文下载https://doi.org/10.46770/AS.2022.011 图2 排除吸附气体干扰后,在控温控压条件下使用AFM测量颗粒粘附力 03原位微区X射线衍射技术(In-situ Micro-XRD)具有无损、准确、制样灵活和空间分辨率高等优点,非常适合珍贵地外样品(如月壤)的分析研究。现有对于月球陨石、阿波罗样品的研究和月球模拟场计算均表明,非晶态物质是月球表层土壤的重要组成部分。月壤中玻璃组分的成因及分布,对深入了解和认识月球的起源和演化、月表太阳风和微陨石轰击等作用具有重要意义。但其粒径细小、来源多样以及共生关系复杂等特点,目前仍没有很好的手段和方法可对其进行系统地研究。在《In-situ Micro-XRD Methods for Identifying Glass and Minerals in Extraterrestrial Samples(原位微区XRD鉴定地外样品中玻璃和矿物)》一文中,中国科学院广州地球化学研究所马灵涯团队基于Rigaku D/MAX RAPID-V微区衍射技术对包括月壤样品集合体、似单晶颗粒及制靶样品在内的多种形态的月壤样品(No. CE5C0000YJYX023 和 No. CE5C0000YJYX125)进行了原位分析,探究不同类型样品最佳的制样和测试方法(图3),并对大量测试结果进行归类分析和总结。发现在嫦娥五号月壤中非晶物质与辉石、长石等矿物广泛共生,且玻璃质以覆层或基质的形式充填于矿物碎屑之间。作者认为月壤样品中的玻璃可能是在月球经历的频繁和强烈的撞击事件中,由冲击变质熔融或蒸发沉积等过程产生。上述研究表明样品颗粒不同的有序度和玻璃含量,可作为推断撞击中心或火山喷发中心的证据之一。 全文下载 https://doi.org/10.46770/AS.2022.016图3 两种微区衍射放样方法及其2D-1D衍射结果 04电子探针显微分析(EPMA)可用于微小固体物质的原位化学组分分析,具有高空间分辨率(~1 μm)、快速、无损和基体效应小等优点。经过70年软硬件的蓬勃发展,EPMA已成为研究地球与行星物质组成最有效的微束分析技术之一。微量元素和铁价态分析是当前EPMA显微分析的两类国际前沿技术。在文章《High-Precision Measurement Of Trace Level Na, K, P, S, Cr, And Ni In Lunar Glass Using Electron Probe Microanalysis(电子探针高精度测试月球玻璃珠中微量Na、K、P、S、Cr和Ni)》中,中国科学院地质与地球物理研究所电子探针与扫描电镜实验室的陈意团队建立了EPMA测试月球玻璃珠微量Na、K、P、S、Cr和Ni的分析方法(图4)。在最佳测试条件下(加速电压20 kV、束流100 nA、束斑直径10 μm、线性背底模式、大晶体和多谱仪计数方式、总分析时间10 分钟等),获得了优异的分析性能:检测限降低至17-96 ppm (3σ)、分析精度优于10% (2σ)。该无损高分辨技术可同时获得月球玻璃珠样品中主量和部分微量元素含量,为嫦娥五号月球及地外样品的地球化学组成和演化研究提供高质量基础数据。 全文下载 https://doi.org/10.46770/AS.2022.001 图4 电子探针高精度测试月球玻璃珠成分的方法示意图 05Fe3+/∑Fe分析是电子探针显微分析(EPMA)的另一项前沿技术,该技术与微量元素分析技术相对独立,需对同一矿物进行多次分析分别获得微量和价态信息。在中国科学院地质与地球物理研究所陈意团发表另一篇电子探针分析技术文章《Simultaneous In-Situ Determination Of Major, Trace Elements And Fe3+/∑Fe In Spinel Using EPMA(电子探针同步分析尖晶石主量、微量元素和Fe3+/∑Fe)》中,作者全面评估了七件尖晶石的成分均一性,并利用不同测试方法(EPMA、LA-ICP-MS、XRF和穆斯堡尔谱)对该套尖晶石标样进行主量、微量元素和Fe3+/ΣFe进行定值(图5)。在此基础上,研发了尖晶石微量元素(Zn、Co、Ni、Mn、V、Ti)高精度EPMA方法,该方法合理地提高加速电压和束流,延长测试时间,并对分光晶体的分配、峰值背景值的设定、峰位干扰校正以及标准物质的选用等方面进行了系统优化,将微量元素的检出限进一步降低至16-55 ppm (3σ),微量元素分析精度优于6% (1σ)。同时依据该套尖晶石标样的铁价态信息(Fe3+/ΣFe介于 0.073~0.271),利用二次标样校正法获得了未知尖晶石样品的Fe3+/ΣFe比值,其精度(±0.04,2σ)明显优于已有的文献报道。该方法可为月球、火星和小行星等地外样品和地球样品中的尖晶石提供高精度的化学成分信息(主量、部分微量和Fe3+/ΣFe比值),用于研究行星氧逸度、物质源区和岩浆演化等关键科学问题。 全文下载https://doi.org/10.46770/AS.2022.002 图 5 电子探针同步分析尖晶石主量、微量元素和Fe3+/∑Fe。a. 月壤颗粒的聚焦离子束(FIB)制样位置;b. np-Fe0的俄歇电子能谱图;c. FIB超薄片的扫描透射明场电子图像 ;d. 月壤颗粒中不同含铁相的电子能量损失谱图。 06纳米级单质金属铁(nanophase iron particles, np-Fe0) 是太空风化作用的特征产物,对月球的反射光谱遥感探测具有重要影响。然而,对于np-Fe0的形成原因,当前的研究结果主要基于Apollo样品与少量月球角砾岩陨石,并归结于陨石、微陨石撞击引起的蒸发沉积作用以及可能的太阳风粒子辐射引起的溅射离子沉积作用。在中国科学院地球化学研究所李阳团队的一篇文章《In Situ Investigation Of The Valence States Of Iron-Bearing Phases In Chang’E-5 Lunar Soil Using FIB, AES, And TEM-EELS Techniques (应用FIB、AES和TEM-EELS联合技术原位测定嫦娥五号月球土壤中含铁相的价态)》中,作者分析和排除了地球环境对嫦娥五号月壤(No. CE5C0400YJFM00505)中含铁相的污染和氧化,并利用透射电子显微镜-电子能量损失谱仪对np-Fe0及其周围铁镁硅酸盐矿物与玻璃基质中Fe2+与Fe3+的纳米级尺度分布与赋存特征开展了深入分析,获得了np-Fe0歧化反应成因的初步证据(图6)。该技术对np-Fe0成因机制,铁元素的微区地球化学行为以及氧化还原环境演变过程的研究具有重要意义,可广泛应用于月壤等地外样品以及传统地球样品的分析和研究中。 全文下载 https://doi.org/10.46770/AS.2022.014 图6. 应用FIB、AES和TEM-EELS联合技术原位测定嫦娥五号月球土壤中含铁相的价态。a. 月壤颗粒的聚焦离子束(FIB)制样位置;b. np-Fe0的俄歇电子能谱图;c. FIB超薄片的扫描透射明场电子图像 ;d. 月壤颗粒中不同含铁相的电子能量损失谱图 07月球样品形成年龄(包括月球陨石和太空任务期间收集的月球样本)对确定地月系统的演化历史至关重要。采用微区分析技术测定富U矿物相(如斜锆石或磷灰石等)的U-Pb年龄是目前获得月球或其他地外样品年龄的主要手段,但大多数陨石样品是超镁铁质或镁铁质成分,富U矿物相在样品中稀少且微小。而地外样品中主要矿物相,如斜长石、辉石、钛铁矿或玻璃质等则可以考虑利用Rb-Sr放射性衰变体系获取其Rb-Sr等时线年龄。在In Situ Rb-Sr Dating Of Lunar Meteorites Using Laser Ablation MC-ICP-MS(激光剥蚀MC-ICP-MS原位Rb-Sr定年分析月球陨石样品)》一文中,中国地质大学(武汉)张文和胡兆初团队系统地研究了LA-MC-ICP-MS微区原位Rb-Sr测年技术用于月球陨石定年的可行性(图7)。实验结果表明斜长石、辉石、钛铁矿或玻璃质等主要矿物具有含量低且变化大的87Rb/86Sr比值,在古老陨石样品中(1Ga)可以积累一定的放射性成因87Sr。所开发的LA-MC-ICP-MS技术可准确地识别出由87Rb衰变引起的87Sr/86Sr变化,并结合本课题组开发的数据处理技术(Iso-Compass)建立了样品剥蚀区域内87Rb/86Sr与87Sr/86Sr的线性关系,实现了低Rb/Sr样品的微区原位Rb-Sr等时线年龄测定。该方法应用于两块不同岩性的月球陨石(玄武质陨石NWA 10597和橄榄辉长岩NWA 6950)中的斜长石、辉石、钛铁矿和玻璃等矿物相年龄测定,所获得Rb-Sr等时线年龄(2984 ± 43 Ma for NWA 10597 和3149 ± 20 Ma for NWA 6950)与文献报道采用SIMS使用其他放射性测年体系的结果(2990-3032 Ma for NWA 10597 and 3210-3187 Ma for NWA 6950)相一致。该技术可为未来开展地外天体样品年代学研究提供新的技术手段。 全文下载 https://doi.org/10.46770/AS.2022.007 图7 激光剥蚀MC-ICP-MS原位Rb-Sr定年分析月球陨石样品 08大型二次离子质谱(LG-SIMS)具有微米级高空间分辨率(~1 μm)、近无损剥蚀和高的质量分辨率(可达4万)等优越性能,被誉为微区地球化学分析界的“核武器”。二十年来中国的LG-SIMS分析技术发展迅速,在含U-Th矿物定年、稳定同位素及低含量挥发份等方面均达到了世界同类实验室的先进水平。在《SIMS Zircon Hydrogen Isotope And HO Content Analyses And Reference Material Development(二次离子质谱测定锆石氢同位素组成和水含量及标准物质开发)》一文中,中国科学院广州地球化学研究所夏小平团队报道了新开发的SIMS超低背景下锆石氢同位素和水含量同时测定技术,并新研制成功的国际上第一套锆石氢同位素参考物质(D15395和D15814)(图8)。该技术为研究地外样品的挥发份,尤其是水的含量和来源提供了新的研究手段。 全文下载 https://doi.org/10.46770/AS.2022.006 图8 锆石Temora 2的H2O含量与δD值的LG-SIMS测量结果。不确定度为±1SE(标准误差) 09纳米离子探针(NanoSIMS)是具有极高空间分辨率的二次离子质谱仪,在橄榄石等样品的水含量分析中具有不可替代的优势。橄榄石是上地幔的主要组成矿物,对橄榄石中水含量的研究有助于理解行星演化的动力学过程。它属于名义无水矿物(水含量为ppm级),并且多发育成分环带(典型宽度为5~20μm),对橄榄石中水含量的研究有助于理解行星演化的动力学过程。因此,精准测定橄榄石中的水含量需要具有低本底和高空间分辨特征的原位分析方法。对于二次离子质谱而言,所采用的一次束流能量越低,得到的束斑尺寸越小,仪器的空间分辨率就越高;但是,获得的测试本底也越高。可想而知,同时保有低本底和高空间分辨具有极大的挑战性。以往的NanoSIMS研究可以满足低本底(10 ppm)条件下10~30 μm的空间分辨。在《High-Spatial-Resolution Measurement of Water Content in Olivine Using NanoSIMS 50L(利用NanoSIMS 50L建立高空间分辨的橄榄石水含量分析方法)》一文中,中国科学院地质与地球物理研究所的郝佳龙和杨蔚团队利用CAMECA NanoSIMS 50L,将橄榄石水含量分析方法的空间分辨提高至6 μm(提高了~2倍)。该方法通过优化纳米离子探针的一次离子束参数和分析条件,测试了水含量为11.2~70.6 ppm的橄榄石标准样品(KLB-1、ICH-30和Mongok),并将San Carlos橄榄石作为本底监测标样,获得了~6 μm的空间分辨率和6±2 ppm的水含量本底(图9)。该方法是当前低本底(10 ppm)水含量原位分析方法中的空间分辨率最优者,已应用于嫦娥五号月壤样品中橄榄石微细区域的水含量分析,并可借鉴于其他名义无水矿物的水含量分析中。 全文下载 https://doi.org/10.46770/AS.2022.004 图9 高空间分辨率低本底的橄榄石水含量NanoSIMS分析技术 10同步辐射光具有超高亮度、高准直性和宽频谱等特性,被誉为认识微观世界的“人类神光”。经过60多年发展,同步辐射装置已历经三代,成为材料、信息、生命和地球科学等领域前沿科学研究强有力工具。在众多同步辐射X-射线技术中,扫描透射X-射线显微学(STXM)技术,因其高空间分辨率(10-30 nm)、高能量分辨率(0.05 eV)和低辐射损伤等特点,可在常温、常压、冷冻或液态等多种测试条件下,对样品在纳米分辨率下开展二维和三维的形貌结构、化学成分(包括元素种类及价态鉴定)和磁学性质等分析,成为最具代表性的同步辐射线站技术,也是极富发展潜力的显微谱学分析技术。在《Scanning Transmission X-Ray Microscopy at the Canadian Light Source: Progress and Selected Applications in Geosciences(同步辐射扫描透射X-射线显微学最新进展及应用)》的综述文章中,加拿大国家光源(CLS)的王建博士和中国科学院地质与地球物理研究所李金华教授,以世界领先的第三代同步辐射光源CLS的STXM线站(加拿大)为例,首先给出了同步辐射STXM技术的工作原理和仪器配置(图10),重点介绍了该线站最新的冷冻STXM和扫描相干衍衬成像STXM技术,详细地综述了多种同步辐射STXM技术在复杂的地质微生物样品(趋磁细菌生物矿化和磁学)和地质样品(土壤微团聚体)研究中的应用实例和成果。两位作者还总结和讨论了第四代光源同步辐射STXM的技术发展趋势,并提出将同步辐射STXM技术用于嫦娥五号月壤样品精细化研究的预案。 全文下载 https://doi.org/10.46770/AS.2022.008 图10 同步辐射扫描透射X-射线显微镜工作原理及应用领域 嫦娥五号圆满完成了我国探月工程“绕、落、回”三步走战略的最后一步,使中国科学家第一次拥有属于自己的1731克地外天体返回样品,在行星科学发展史上具有里程碑意义的重大事件。月壤样品极其珍贵,多数为亚毫米和微米大小的颗粒。如何利用有限的珍贵样品获得尽可能多的基础数据,同时开展高效高质量的科学研究,对我国科研人员提出了巨大挑战,这也是获取重大原创成果的前提。 在未来十年,中国已经布局了嫦娥六号月球南极采样、小行星采样和火星采样等一系列重大任务。毫无疑问,随着嫦娥五号月壤样品研究的持续深入以及更多类型的地外天体样品被陆续带回,中国的行星科学将迎来新的时代。制定合理的科学目标,建立高效的工作流程,按照“先无损,后微损”、“先单颗粒,后微纳米尺度,最后原子水平”、“先侧重表面,后开展内部结构”的分析思路,将现有的多种显微学和显微谱学技术,在分析的时间节点上进行了排列组合,可对同一个样品获得不同尺度下多种信息,是开展珍贵地外天体样品研究的客观需求,也是未来行星科学发展的大趋势。 [主要参考文献]1. Jin-Hua Li*, Wei Yang*, Xiong-Yao Li*, and Yong-Sheng He*, The Chang’e-5 Lunar Samples Stimulate the Development of Microanalysis Techniques, At. Spectrosc., 2022, 43, 1–5. https://doi.org/10.46770/AS.2022.0102. X. C. Che, A. Nemchin*, D. Y. Liu*, T. Long, C. Wang, M. D. Norman, K. H. Joy, R. Tartese, J. Head, B. Jolliff, J. F. Snape, C. R. Neal, M. J. Whitehouse, C. Crow, G. Benedix, F. Jourdan, Z. Q. Yang, C. Yang, J. H. Liu, S. W. Xie, Z. M. Bao, R. L. Fan, D. Peng Li, Z. S. Li, and S. G. Webb, Science, 2021, 374, 887–890. https://doi.org/10.1126/science.abl79573. S. Hu*, H. C. He, J. L. Ji, Y. T. Lin*, H. J. Hui, M. Anand, R. Tartèse, Y. H. Yan, J. L. Hao, R. Y. Li, L. X. Gu, Q. Guo, H. Y. He, and Z. Y. Ouyang, Nature, 2021, 600, 49–53. https://doi.org/10.1038/s41586-021-04107-94. Q.-L. Li, Q. Zhou, Y. Liu, Z. Y. Xiao, Y. T. Lin, J.-H. Li, H.-X. Ma, G.-Q. Tang, S. Guo, X. Tang, J.-Y. Yuan, J. Li, F.-Y. Wu, Z. Y. Ouyang, C. L. Li*, and X.-H. Li*, Nature, 2021, 600, 54–58. https://doi.org/10.1038/s41586-021-04100-25. H.-C. Tian, H. Wang, Y. Chen, W. Yang*, Q. Zhou, C. Zhang, H.-L. Lin, C. Huang, S.-T. Wu, L.-H. Jia, L. Xu, D. Zhang, X.-G. Li, R. Chang, Y.-H. Yang, L.-W. Xie, D.-P. Zhang, G.-L. Zhang, S.-H. Yang, and F.-Y. Wu, Nature, 2021, 600, 59–63. https://doi.org/10.1038/s41586-021-04119-56. J.-H. Li*, Q.-L. Li, L. Zhao, J.-H. Zhang, X. Tang, L.-X. Gu, Q. Guo, H.-X. Ma, Q. Zhou, Y. Liu, P.-Y. Liu, H. Qiu, G. Li, L. Gu, S. Guo, C.-L. Li, X.-H. Li, F.-Y. Wu, and Y.-X. Pan, Geosci. Front., 2022, 13, 101367. https://doi.org/10.1016/j.gsf.2022.101367 [本期原文]Special Issue: Microanalytical Techniques for Extraterrestrial Samples (Part I)Atomic Spectroscopy, 2022, 43(1), 1-98.www.at-spectrosc.com Guest EditorsWei Yang is a Professor at the Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS), operating a NanoSIMS laboratory. He received his B.S. (2001) and Ph.D. (2007) degrees in geochemistry from the University of Science and Technology of China. After completing his Ph.D., he came to IGGCAS for post-doctoral research and joined the comparative planetary science group as an Associate Professor in 2011. His main interest in the past decade was Mg isotope geochemistry and its application in tracing the deep carbon cycle. He is currently working on instrumentation developments on secondary ion mass spectrometry and its application in Earth and planetary sciences, the formation and evolution of the Moon based on the exploration data and returned samples of the Chinese Lunar Exploration Program. He has published over 70 peer-reviewed scientific papers in ISI-indexed journals. Jin-Hua Li is a full professor of Biogeomagnetism and Geobiology at the Institute of Geology and Geophysics, Chinese Academy of Sciences (IGG-CAS). He received his B.S. degree in Biology from Northwest University (NWU, Xi’an city) in 2001, M.S. degree in Microbiology from Shandong University (SDU, Jinan city) in 2006, and completed Ph.D. in Solid Earth Geophysics from the IGG-CAS in 2010. He worked as postdoctoral research fellow at the IGG-CAS (2010-12) and the Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (Paris, France) (2012-14), associate professor from 2013 to 2016 and full professor after 2017 at the IGG-CAS. From 2019, he started to work as director of Electron Microscopy Lab at the IGG-CAS. His research focused on biomineralization and magnetism of magnetotactic bacteria, microbial biomineralization, experimental fossilization of microorganisms and biominerals, and the identification of microfossils (nano fossils) and fossil biominerals in ancient rocks, and the applications of microbes in bioremediation and biomimetics. He has extensive experience with high-resolution Micro X-ray Fluorescence (μXRF), electron-microscopy (SEM, TEM, FIB), Scanning Transmission X-ray Microscopy (STXM) at international light sources, and rock magnetism and microbiology. He published over 90 papers. Xiong-Yao Li is a research professor of planetary science at the Institute of Geochemistry, Chinese Academy of Sciences (IGCAS) in Guiyang, China. He is the director of the Center for Lunar and Planetary Sciences, IGCAS. He completed his Ph.D. in cosmochemistry from the University of Chinese Academy of Sciences in 2006. His research focused on lunar surface environment, lunar soil properties and space weathering. He published over 100 papers in SCI journals. Yong-Sheng He is a Professor at the Institute of Earth Sciences, China University of Geosciences, Beijing (CUGB), leading a group focusing on Fe, Ca and Mg isotope geochemistry. He received his B.S. (2005) and Ph.D. (2011) degrees in geochemistry from the University of Science and Technology of China. After completing his Ph.D., he came to CUGB for post-doctoral research and joined the Isotope Geochemistry Lab as a faculty in 2013. His main interest was petrogenesis of adakitic rocks and their implication on evolution of orogenic crust. He currently focuses on methodology developments on metal stable isotope geochemistry and its application in tracing key geological and planetary processes, e.g., deep carbon and oxygen cycles, changes in paleo-environment, and the formation and evolution of the Moon. He has published over 50 peer-reviewed scientific papers in ISI-indexed journals. 国际SCI期刊Atomic Spectroscopy (AS) 由Dr. Walter Slavin于1962年创办,2020年1月转至中国团队全权负责,由Atomic Spectroscopy Press Limited, Hongkong, P.R. China出版发行,2020年影响因子为2.04。AS密切关注原子光谱(AAS, AFS, ICP-OES, ICP-MS, GD-MS, TIMS, SIMS, AMS, LIBS, XRF, SEM-EDS, EPMA,NAA, SR-based techniques等)新方法及其在各学科领域中新应用、仪器/部件研发、元素同位素样品前处理技术、标准物质开发等。AS编委会由来自10多个国家的60余位知名学者组成,中国科学院地质地球所李献华院士担任主编,中国地质大学(武汉)郭伟教授任执行主编,厦门大学杭纬教授、中国地质大学(武汉)胡兆初教授、德国Justus Liebig University Giessen大学Michael Dürr教授任副主编。AS期刊主页: www.at-spectrosc.com。 本文内容非商业广告,仅供专业人士参考。
  • 研究揭示嫦娥四号红外成像光谱地面验证实验对月球SPA表面物质组成的约束
    玉兔二号巡视器已在月球表面工作超过40个月昼,其搭载的红外成像光谱仪(VNIS)随着巡视器的行走路线已测得多个位置的红外成像光谱数据。VNIS是用于研究着陆区月壤和月表岩石成分并追溯其来源的主要方法。然而,太空风化、颗粒大小与多次散射、仪器的光谱响应和观测条件等因素均会影响光谱特征,并导致由月球表面光谱数据计算得到的矿物成分存在较大不确定性。  为了定量评估不同 VNIS 数据处理方法的可靠性,中国科学院地质与地球物理研究所地球与行星物理院重点实验室博士生常睿在导师研究员杨蔚、副研究员林红磊的指导下,选择一块矿物组成与月球高地岩石相似的苏长-辉长岩进行光谱地面验证实验(图1)。地面验证实验研究的岩石(CR-1)由扫描电镜测得其实际矿物模式含量为12.9%橄榄石、35.0%辉石和52.2%斜长石。为了更准确计算CR-1的光谱结果,研究者将CR-1中的橄榄石、低钙辉石、高钙辉石和斜长石从岩石样品中研磨并分选出来,由地物光谱仪(TerraSpec-4,ASD)测得各单矿物的可见-近红外光谱结果(图2a),单矿物均具有各自的光谱吸收特征。由VNIS鉴定件测得的CR-1的光谱在971(±1)nm和1957(±8)nm波段处表现出明显的吸收特征(图2b)。该吸收特征与玉兔二号巡视器上VNIS在第3月昼探测到的岩石吸收特征相似。CR-1的VNIS光谱用Hapke模型计算出样品中矿物模式含量为7.5%橄榄石、39.3%辉石和53.2%斜长石,与其真实结果在误差范围内一致。  根据该研究中数据处理方法并结合Yang et al.(2020)对嫦娥四号月表数据的光度校正,玉兔二号巡视器在第3月昼探测到的岩石更准确的矿物模式含量应为11.7%橄榄石、42.8%辉石和45.5%斜长石。巡视器在第26月昼又发现一块状月表岩石,其光谱吸收特征与第3月昼发现的岩石类似,其中矿物模式含量为3.2%橄榄石、24.6%辉石和72.2%斜长石。两月表岩石在“斜长岩-苏长岩-橄长岩”(Anorthosite-Norite-Troctolite, ANT)体系中均属于苏长岩范畴(图3)(Heiken G, 1991),意味着嫦娥四号着陆区月壤下的岩层主要为ANT岩石。玉兔二号巡视器在第26月昼探测到的岩石含有更多的斜长石,并且更接近平均月壳的矿物组成。  综上所述,嫦娥四号着陆区域的月球表面存在苏长质和斜长质的石块,分别代表了撞击熔融池中快速结晶形成的物质与平均月壳的成分。一方面,有撞击事件将月壤下伏层位物质挖掘至月球表面,这些被挖掘出来的物质具有南极艾特肯盆地(the South Pole Aitken, SPA)熔融池结晶深成岩的特征。另一方面,形成于SPA大撞击事件前的初始月壳物质也可以保留在SPA中。  相关研究成果发表在Remote Sensing上。研究工作得到中科院战略性先导科技专项,中科院重点部署项目,中科院创新交叉团队,国家航天局民用航天预先研究项目以及中科院地质与地球物理研究所重点部署项目的资助。图1.(a)嫦娥四号第3月昼探测的月表岩石图像;(b)月表岩石的光谱探测状态(黄色圆圈代表近红外波段光谱探测视场);(c)本研究地面验证实验使用的岩石(CR-1)图2.(a)CR-1中单矿物可见-近红外光谱;(b)嫦娥四号第3月昼所测岩石与CR-1的VNIS测得光谱图3.嫦娥四号测得月表岩石中橄榄石-辉石-斜长石矿物组成分布(Heiken G, 1991)。图中标注了月球样品采样点,例如:A-11是Apollo 11,L-16是Luna 16,(H)和(M)分别表示高地和月海月壤
  • 瑞士步琦参加第十四届国际高端食用油暨橄榄油(北京)博览会
    第十四届国际高端食用油暨橄榄油(北京)博览会即将于2016.4.14-16日在北京中国国际展览中心举行。 此次展会吸引了来自世界各地300多家企业参展,展出规模超过15000多平米。此次展会得到国家领导重视尚属,被列为国家扶持引导性行业历展创下了油脂产业高规格高品质展会。行业巨头将在这里云集,国内各省市地区茶油协会组团在这里碰面,更为独特的地方特种高端油品纷纷响应本届国家油博会。 Global Oil 自2006年成功创办以来,已连续举办13届,是中国区规模较大、具有影响力、高规格的食用油行业展会,得到各级领导及国际组织的鼎力相助。展会规模日渐壮大,展出产品不断出新,参观人数逐年创高,得到了企业、社会及消费者的共同认可。瑞士步琦作为油脂检测设备的领先的供应商,也参加了此次展会。 届时,我们讲展出的仪器有:近红外、在线近红外、微胶囊、熔点仪等仪器,欢迎广大客户前来参观。时间:2016.4.14-16地点:北京中国国际展览中心(北三环东路6号)展位号:P389
  • 《橄榄油中脂肪酸乙酯含量的测定 气相色谱-质谱法》征求意见
    近日,由 TC270(全国粮油标准化技术委员会)归口,南京海关动植物与食品检测中心起草的国家标准计划《橄榄油中脂肪酸乙酯含量的测定 气相色谱-质谱法》已完成征求意见稿编制,现公开征求意见。  橄榄油(Olive Oil)是以油橄榄树的果实为原料制取的油脂。根据加工工艺不同,可以分为初榨橄榄油和果渣油,初榨橄榄油又可根据品质分为不同等级,其中以特级初榨橄榄油营养价值最高。我国是食用油大国,随着经济发展,我国对橄榄油的需求量不断增加,仅 2017 年总消费量约为 60 万吨,其中 80%依赖进口。  然而,我国消费者对橄榄油系列产品认识有限,且特级初榨橄榄油产量少,价格高。经销商为了推销产品和谋取暴利,对橄榄油进行夸大宣传或以劣充好的现象屡见不鲜。尤其进口的橄榄油几乎一律标称“特级初榨橄榄油”,这种以次充好的橄榄油不仅严重侵害了消费者的权益,还可能影响消费者的身体健康。因此,建立一套能对橄榄油等级进行准确鉴定,尤其是对特级初榨橄榄油等级进行准确鉴定的方法,对保障消费者权益、打击不法行为和更好地把关国门,均具有重要的意义。 本文件规定了脂肪酸乙酯含量的气相色谱-质谱联用测定方法。本文件适用于特级初榨橄榄油中脂肪酸乙酯含量的测定。  方法提要:  试样中脂肪酸乙酯用正己烷溶解,经硅胶固相萃取柱净化,气相色谱-质谱联用仪分析,内标法定量。  仪器和设备:  1.气相色谱-质谱仪,配置有电子轰击(EI)源。  2.分析天平:感量 0.0001 g、0.00001 g。  3.固相萃取装置。  4.涡旋振荡器。  5.旋转蒸发仪。  色谱条件: 1.载气流速:1 mL/min。  2.进样口温度:300 ℃。  3.进样模式:不分流进样,分流阀打开时间为 1.00 min。  4.载气:氦气(纯度≥99.999 %)。  5.柱温:初始温度 150 ℃,以 20 ℃/min 升至 200 ℃,以 2.5 ℃/min 升至 240 ℃,保持 1.5 min,以 35 ℃/min 升至 310 ℃,保持 2 min。  6.进样量:1 μL。  质谱条件:  1.电离方式:电子轰击电离源(EI 源,电子能量 70 eV)。  2.离子源温度:230 ℃。  3.接口温度:280 ℃。 4.溶剂延迟时间:5 min。  5.数据采集方式:选择离子检测(SIM)模式。定量离子、定性离子和保留时间参考值详见表 1。  检测方法的灵敏度、准确度和精密度:  1.灵敏度  本文件的检出限,棕榈酸乙酯为 0.4 mg/kg,亚油酸乙酯为 0.5 mg/kg,油酸乙酯为 0.5 mg/kg,硬脂酸乙酯为 0.4 mg/kg。  本文件的定量限,棕榈酸乙酯为 1.2 mg/kg,亚油酸乙酯为 1.7 mg/kg,油酸乙酯为 1.6 mg/kg,硬脂酸乙酯为 1.3 mg/kg。  2.准确度  本文件在添加水平为 4.00 mg/kg~20.00 mg/kg 时,回收率范围为 90.7 %~106.6 %,参见附录 C。  3.精密度  在重复性条件下获得的 2 次独立测定结果的绝对差值不得超过算术平均值的 10%。  更多详情请见附件。 征求意见稿.pdf 编制说明.pdf
  • 国际色谱耗材商Restek向国产仪器企业抛出橄榄枝
    p  日前,借第十六届北京分析测试学术报告会暨展览会(BCEIA 2015)召开之际,仪器信息网采访了瑞思泰康(RESTEK)中国区总经理朱卫,畅谈了RESTEK直接进入中国市场后的新策略。/pscript type="text/javascript" src="https://p.bokecc.com/player?vid=408CDB536A2E43D49C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=true& width=600& height=490& playerid=621F7722C6B7BD4E& playertype=1"/scriptp  两年前,RESTEK选择直接进入中国市场,直销、代理“两手抓”。对此朱卫认为,作为全球第二大气相色谱耗材供应商,RESTEK选择在中国建立直接机构是一个共赢的策略。中国用户现在面临的不是缺少仪器的问题,而是如何用好仪器的问题,RESTEK愿意帮助用户实现更高效、更专业、更快速进行仪器分析工作的心愿。同时,RESTEK参考了很多中国用户的反馈建议,明年将推出一系列专门针对中国市场研发的新产品,敬请期待!/pp  采访中,朱卫还向国产仪器制造商抛出了合作的橄榄枝 他表示,RESTEK拥有40多项专利技术以及30多年的市场经验,希望与国内知名仪器企业合作,将中国民族品牌仪器推向国际市场。/p
  • 嫦娥四号红外成像光谱地面验证实验结果公布
    玉兔二号巡视器已在月球表面工作超过40个月昼,其搭载的红外成像光谱仪(VNIS)随着巡视器的行走路线已测得多个位置的红外成像光谱数据。VNIS是用于研究着陆区月壤和月表岩石成分并追溯其来源的主要方法。然而,太空风化、颗粒大小与多次散射、仪器的光谱响应和观测条件等因素均会影响光谱特征,并导致由月球表面光谱数据计算得到的矿物成分存在较大不确定性。为了定量评估不同 VNIS 数据处理方法的可靠性,中国科学院地质与地球物理研究所地球与行星物理院重点实验室博士生常睿在导师研究员杨蔚、副研究员林红磊的指导下,选择一块矿物组成与月球高地岩石相似的苏长-辉长岩进行光谱地面验证实验(图1)。地面验证实验研究的岩石(CR-1)由扫描电镜测得其实际矿物模式含量为12.9%橄榄石、35.0%辉石和52.2%斜长石。为了更准确计算CR-1的光谱结果,研究者将CR-1中的橄榄石、低钙辉石、高钙辉石和斜长石从岩石样品中研磨并分选出来,由地物光谱仪(TerraSpec-4,ASD)测得各单矿物的可见-近红外光谱结果(图2a),单矿物均具有各自的光谱吸收特征。由VNIS鉴定件测得的CR-1的光谱在971(±1)nm和1957(±8)nm波段处表现出明显的吸收特征(图2b)。该吸收特征与玉兔二号巡视器上VNIS在第3月昼探测到的岩石吸收特征相似。CR-1的VNIS光谱用Hapke模型计算出样品中矿物模式含量为7.5%橄榄石、39.3%辉石和53.2%斜长石,与其真实结果在误差范围内一致。根据该研究中数据处理方法并结合Yang et al.(2020)对嫦娥四号月表数据的光度校正,玉兔二号巡视器在第3月昼探测到的岩石更准确的矿物模式含量应为11.7%橄榄石、42.8%辉石和45.5%斜长石。巡视器在第26月昼又发现一块状月表岩石,其光谱吸收特征与第3月昼发现的岩石类似,其中矿物模式含量为3.2%橄榄石、24.6%辉石和72.2%斜长石。两月表岩石在“斜长岩-苏长岩-橄长岩”(Anorthosite-Norite-Troctolite, ANT)体系中均属于苏长岩范畴(图3)(Heiken G, 1991),意味着嫦娥四号着陆区月壤下的岩层主要为ANT岩石。玉兔二号巡视器在第26月昼探测到的岩石含有更多的斜长石,并且更接近平均月壳的矿物组成。综上所述,嫦娥四号着陆区域的月球表面存在苏长质和斜长质的石块,分别代表了撞击熔融池中快速结晶形成的物质与平均月壳的成分。一方面,有撞击事件将月壤下伏层位物质挖掘至月球表面,这些被挖掘出来的物质具有南极艾特肯盆地(the South Pole Aitken, SPA)熔融池结晶深成岩的特征。另一方面,形成于SPA大撞击事件前的初始月壳物质也可以保留在SPA中。相关研究成果发表在Remote Sensing上。研究工作得到中科院战略性先导科技专项,中科院重点部署项目,中科院创新交叉团队,国家航天局民用航天预先研究项目以及中科院地质与地球物理研究所重点部署项目的资助。图1.(a)嫦娥四号第3月昼探测的月表岩石图像;(b)月表岩石的光谱探测状态(黄色圆圈代表近红外波段光谱探测视场);(c)本研究地面验证实验使用的岩石(CR-1)图2.(a)CR-1中单矿物可见-近红外光谱;(b)嫦娥四号第3月昼所测岩石与CR-1的VNIS测得光谱图3.嫦娥四号测得月表岩石中橄榄石-辉石-斜长石矿物组成分布(Heiken G, 1991)。图中标注了月球样品采样点,例如:A-11是Apollo 11,L-16是Luna 16,(H)和(M)分别表示高地和月海月壤
  • 科学仪器助力嫦娥五号月球土壤样品表面微结构研究
    数十亿年来,月球上的土壤受到微陨石轰击、太阳风、宇宙射线中的带电粒子辐射等太阳风化的作用,其表面微结构和化学组分与地球土壤有较大区别。我国嫦娥五号采集的月壤样品属于最年轻的玄武岩,且取样点的纬度最高,为探究月壤在太空风化作用下的物质和结构演化提供了新机会。  近日,中国科学院物理研究所科研团队,与国家纳米科学中心、国家天文台、广州地球化学研究所等合作,对月壤中主要矿物铁橄榄石、辉石和长石开展了系统的表面微结构表征。在25个尺寸较小和外形规则的不同矿物样品中,科研团队仅在铁橄榄石表面观察到非常薄的SiO2非晶层(厚度约10纳米),其中包裹着大小为2-12纳米的晶粒。辉石和长石表面的化学组分与内部相同,表面不存在明显的非晶层。  在铁橄榄石边缘,最外层区域I是SiO2非晶层,区域II是SiO2非晶和FeO共存,区域III是SiO2非晶和铁橄榄石共存,这是首次在月球土壤中观察到此种特殊的微结构。  前期研究表明,太空风化使月球上的铁橄榄石和其他矿物表面形成厚的非晶层,厚度为50-200纳米,层内包裹着大量尺寸为2-10纳米的金属Fe颗粒。目前,关于金属Fe的形成机理存在争议,主要存在两种观点即铁橄榄石受微陨石等轰击直接热分解和带电离子辅助下的分步还原。  本研究发现的FeO纳米晶粒和分层的边缘微结构表明所研究的铁橄榄石可能处于热分解的中间阶段,支持了铁橄榄石在太阳风化作用下发生分步还原的观点。此外,化学元素和形貌分析发现辉石和长石的表面不包含非晶层和易挥发的外来元素(如硫、氯等),样品内部也没有出现太阳耀斑穿过的痕迹,表明所研究的样品可能处于太阳风化的中早期阶段。
  • 科学家在嫦娥五号月壤中发现歧化反应成因的单质金属铁
    关于Apollo等月壤样品的研究认为,月壤中的纳米级单质金属铁(nanophase iron particles,np-Fe0)主要形成于陨石、微陨石轰击引起的汽化沉积作用(vapor deposition)或者太阳风主要组分H+注入引起的还原作用。前者得到大量月壤样品分析及模拟实验结果的验证而被学术界广泛认同,而后者迄今为止尚缺少充足的直接证据与机理解释。嫦娥五号月壤是人类44年以来再次获得的月球返回样品,与Apollo和Luna样品具有不同的采样位置、矿物组成与演化历史,故或为探究单质金属铁的形成机制提供新证据。  中国科学院地球化学研究所与昆明理工大学合作,针对嫦娥五号表取月壤粉末(CE5C0200YJFM00302)中的铁橄榄石颗粒开展了深入细致的分析工作,在亚微米级尺度的二次撞击坑中发现了歧化反应成因单质金属铁的可靠证据。同时,理论计算结果显示该二次撞击坑的形成速度低于3.0km/s。歧化反应成因纳米级单质金属铁的发现与证实,革新了数十年来学术界对月壤中单质金属铁形成机制的既有认知。同时,由于低速撞击作用广泛存在于太阳系中,因而对于探索月球特别是两极永久阴影区、小行星以及外太阳系固态天体表壤中单质金属铁的形成机制具有参考与借鉴意义。9月1日,相关研究成果(Impact-driven disproportionation origin of nanophase iron particles in Chang' E-5 lunar soil sample)以长文(article),在线发表在Nature Astronomy上。  铁橄榄石是嫦娥五号月壤的主要含铁矿物之一,且少见于Apollo等月壤之中,故被选择为重点研究对象。科研团队在部分铁橄榄石颗粒表面非晶层中发现原位热分解成因的单质金属铁,为嫦娥五号月壤中存在新的成因机制的纳米金属铁提供了直接证据,相关成果发表在Geophysical Research Letters(2022年2月)上。随着工作的推进,研究人员在一颗铁橄榄石颗粒的表面发现分布有亚微米级尺度的微型撞击坑,同时表面熔融溅射物较少,保存了较好的撞击改造的特征。  研究团队使用聚焦离子束对两个选定的微撞击坑制备了超薄切片,进一步的透射电镜(Transmission Electron Microscope,TEM)研究表明,这两个不同直径的微撞击坑具有相似的结构特征:撞击过程中惯性力产生的凹陷区和撞击坑;橄榄石在撞击体的动能产生的温度和压力作用下形成的非晶层;非晶层中np-Fe0含量丰富,浅层直径较大≈10 nm,深层直径较小≈3 nm;非晶区域边缘的单晶橄榄石的晶体结构中产生晶格缺陷;冲击延伸方向产生的附加非晶区;撞击坑周围存在溅射沉积物;表面覆盖的外来撞击体残余物。  透射电镜明场图像显示太阳风注入形成的缺陷层的厚度为60-80 nm,并没有完全非晶化而是具有辐射损伤的特征。此外,缺陷层作为一个整体仍遵循基底橄榄石的晶体取向。这表明太阳风和宇宙射线辐射尚未完全破坏橄榄石的晶体结构或使其重新结晶。同时,橄榄石颗粒表面没有太阳风离子大量注入形成的气泡等结构特征,由此认为这些微撞击坑受太阳风改造的程度较为微弱。  在微撞击坑的高角度环形暗场扫描透射电子显微镜(HAADF-STEM)图像和能量色散X射线光谱(EDS)图中,微撞击坑最外层存在富Al、Ca、Si的撞击体残留物,同时,微撞击坑底部非晶层中的np-Fe0中不含有S和Ni元素。这表明np-Fe0既不是来自撞击体也不是来自其他撞击溅射物,可能原位形成于橄榄石熔融层中。此外,两个微撞击坑表层撞击体残留物的成分相近表明这组微撞击坑可能具有相同的起源,即形成于同一次的撞击事件,而撞击体则为斜长质溅射物。      透射电镜的分析结果表明,微撞击坑中的np-Fe0均属于α-Fe。此外,靠近微撞击坑表层的np-Fe0具有较大的粒径(约10 nm),而在非晶层深处具有较小的粒径(约3 nm)。Fe的电子能量损失谱(EELS)的L2,3谱线表明橄榄石颗粒母体和微撞击坑熔融层中均有Fe2+的谱峰(707.5 eV)。此外,在冲击层和非晶层的混合区存在Fe3+峰(709.5 eV),证明这些np-Fe0形成于撞击引发的橄榄石熔体中Fe2+的歧化反应。反应方程式为3Fe2+in melts = Fenanophase + 2Fe3+in melts。热力学计算结果显示,撞击过程中的高压能够有效促进Fe2+歧化反应的发生和进行,但当压强达到5×1010Pa以上后则对反应几乎无影响。研究通过能量守恒定律联立撞击体动能与基底的改造焓变,结合重积分的体积估算,可以得到撞击体的速度与粒径的关系。研究进一步通过惯性力产生的额外非晶区的撞击方向直径来获得撞击体粒径即可得到撞击速度小于3 km/s,撞击最大动压力可以满足歧化反应条件。  综合以上太阳风改造特征、撞击体残留物以及撞击坑底部熔融层中铁元素价态的分析结果,研究推断微撞击坑底部熔融层中np-Fe0的形成过程为:来自斜长岩的撞击溅射物(速度小于3km/s)在撞击铁橄榄石的过程中,形成了多个二次微撞击坑,撞击过程的高温与高压引发铁橄榄石发生熔融,同时,Fe2+发生歧化反应形成Fe0与Fe3+,Fe0在高温下进一步生长形成np-Fe0。由于温度的不均一性,靠近撞击坑顶部的np-Fe0粒径较大,而靠近底部的np-Fe0粒径较小。  研究工作得到中国国家航天局嫦娥五号月壤样品、中科院类地行星战略性先导科技专项、国家自然科学基金重点基金、国防科工局民用航天项目、中科院青年创新促进会、中科院前沿科学重点研究计划等的支持。    图1.a、d:嫦娥五号月壤铁橄榄石颗粒表面微型撞击坑的二次电子图像(Second Electron Image,SE);b、c:聚焦离子束(Focus Ion Beam,FIB)制备的微撞击坑超薄切片。  图2.a:微撞击坑超薄切片的透射电镜明场图像;b-d:微撞击坑边缘及内部分布的非晶层、纳米级单质金属铁颗粒以及晶格损伤;e-f:微撞击坑底部的纳米级单质金属铁和晶格缺陷。  图3.a-d:超薄切片中两个微撞击坑的剖面结构与元素组成的透射电镜分析结果,证明表面分布有来自于斜长石质撞击体的残留组分;e:二次微撞击坑形成过程的示意图。  图4.a-e:微撞击坑底部橄榄石熔融层中不同粒径np-Fe0的晶面间距与电子能量损失谱分析结果;f-g:FeO发生歧化反应与分解反应的吉布斯自由能计算结果。
  • 显微FTIR光谱仪助力嫦娥五号月壤样品研究
    嫦娥五号任务成功从月球正面返回了1.73 kg表面与钻取样品,其采样区域比以往的Apollo及Luna任务的采样区域都要年轻。目前已经报道的样品分析结果表明,着陆区的物质组成是比较复杂的,因此对大尺度遥感探测数据的解译要格外慎重。准确的物质组成信息对行星地质演化历史的解译十分关键,而遥测光谱技术是目前获取这些信息最有效的手段之一。可见-近红外或中红外波段的一些独特的吸收特征可以用来识别行星表面矿物组成。其中可见-近红外光谱的吸收特征主要是由矿物中过渡性金属离子(Fe2+)如外层电子跃迁产生,而中红外光谱中的吸收则主要是由矿物晶体晶格振动(如硅酸盐矿物中Si-O的伸缩振动等)产生。在中红外谱段,光谱特征更为丰富,可以对可见-近红外光谱无法区分的物质类型进行有效判别。由于月球等地外样品比较珍贵,以往的行星光谱学研究大多是基于地球矿物或模拟物开展的,科学家通过在地面实验室开展控制性实验测量,分析不同类型物质的光谱特征变化规律,然后应用到行星遥测数据的反演分析中。地球上的模拟物虽然丰富,但是真实月壤的很多性质依然无法完美复制。尤其是发生于月表的太空风化作用,会对月表物质的光学特性产生显著影响。嫦娥五号采样任务的成功为利用真实月壤样品开展光谱分析提供了重要机遇。中国科学院国家空间科学中心太阳活动与空间天气重点实验室副研究员杨亚洲、研究员刘洋等从嫦娥五号返回的表层月壤样品中挑选出了一些粒径在200-500 μm之间的颗粒,其中包含了典型的月球矿物(橄榄石、辉石、斜长石)与玻璃球粒等(图1),并利用显微FTIR光谱仪测量了这些颗粒的中红外反射光谱。在中红外光谱中,Christiansen特征(CF)、剩余射线带(RB)、透明特征(TF)是硅酸盐矿物中最为显著的几个特征,借助这些特征可以对矿物的类型及具体成分进行判别。在反射光谱中,CF表现为反射率的最小值,硅酸盐矿物的主CF通常出现在7.5-9.0 μm波段范围内,主要与晶体中Si-O伸缩振动有关。月球主要矿物中,斜长石的CF峰位一般在波长较短位置(~8 μm),而橄榄石的CF峰位则出现在波长较长位置(~9 μm),辉石的CF峰位则在前两者之间。基于CF峰位与RB特征,以及显微镜下的矿物形貌特征,研究人员对挑选出的月壤颗粒类型进行初步判别(图2),然后对不同矿物与玻璃端元的显微红外光谱特征进行对比分析。图1(a)立体显微镜下月壤颗粒影像;(b)显微红外光谱仪获取的影像拼接图;(c)典型月壤矿物与玻璃颗粒影像放大图。图2 所测颗粒样品的CF峰位分布图通过与Apollo返样及月球陨石中不同矿物及玻璃端元的红外光谱进行对比(图3a),研究人员发现与常规FTIR测量相比,利用显微FTIR技术测量的红外反射光谱中没有透明特征(TF)。这主要是因为显微FTIR通常测的是单个颗粒,所测反射信号中没有颗粒之间的多重散射的贡献。但是CF峰位等特征不会受到这两种不同测量技术的影响。对于用常规FTIR方式测量的粉末样品光谱,其近红外波段的反射率通常要比中红外波段高很多,但是随着样品尺寸的增加,两个谱段之间的差异逐渐变小(图3a)。除了颗粒尺寸外,太空风化作用也会降低近红外与中红外谱段的光谱对比度,因为风化作用会使近红外谱段的反射率显著降低,但是对中红外谱段的影响很有限,这主要是因为两个谱段的光谱吸收特征的产生机制完全不同。月表的太空风化作用机制主要有太阳风注入与微陨石撞击等,在人们以往的研究中曾利用脉冲激光照射的方式来模拟微陨石撞击过程,以制备具有不同风化程度的模拟样品。通过对比嫦娥五号橄榄石颗粒与经过不同程度脉冲激光照射的地球橄榄石样品的光谱(图3b),可以看到,随着风化程度的增加,橄榄石近红外波段与中红外波段的反射率差异逐渐减小。在后续研究中,若能对更多具有不同风化程度的月壤矿物颗粒样品进行显微红外光谱分析,则有可能构建一个近红外-中红外光谱对比度与风化成熟度的关系模型,从而应用到更多样品的分析上。橄榄石是岩浆冷却过程中结晶最早的矿物之一,其晶体中Mg与Fe的相对含量(Fo,镁值)对于指示原始岩浆的成分具有重要意义。橄榄石RB特征中的几个反射峰的峰位会随着镁值的变化而发生系统的偏移。基于嫦娥五号橄榄石显微光谱中的RB峰位,研究人员反演得到了这些橄榄石的镁值,结果与先前报道的实验室测量结果相一致(图3d),表明该方法虽然是基于常规FTIR测量的红外光谱建立的,但是在显微红外光谱分析中也是可行的。除了矿物颗粒外,月壤中通常还含有丰富的玻璃质物质,这些玻璃物质主要有撞击与火山活动两种成因。该研究分析结果表明,这些玻璃大多属于月海撞击成因玻璃,但有少数可能具备火山成因。图3 (a)CE-5橄榄石颗粒显微红外光谱与Apollo返样中橄榄石粉末样品红外光谱对比图;(b)CE-5橄榄石颗粒与经过不同脉冲激光照射的地球橄榄石样品的光谱对比;(c)利用5.6-μm与6.0-μm波段峰位反演的橄榄石样品Fo值结果;(d)利用RB波段发峰位反演橄榄石Fo值结果。在行星光谱学研究中一直存在一个难题,就是实验室测量的光谱与遥测光谱之间往往存在较大差异,因为即使有了月壤样品,在实验室内也无法完全复制月表原始的堆积状态。因此实验室测量光谱往往无法直接应用于遥测数据的解译上,尤其是显微光谱分析结果。而通过反演光学常数(或折射率)的方式,可以将实验室测量结果与遥测分析很好的衔接起来。光学常数是光谱模型的重要输入量,有了不同矿物端元的光学常数,再结合给定的颗粒尺寸、孔隙度及各端元的含量等参数,就可以生成模型光谱。利用该模型对实际遥测月表光谱进行拟合,就可以实现对观测区域矿物组成的定量反演。目前的光学常数库中,基于真实地外样品的光学常数还比较匮乏。虽然地球上的矿物种类非常丰富,但是与地外样品相比,即使是同种类的矿物,其在具体成分上也存在一定差别。比如地球上的橄榄石大多Mg含量比较高,而月球上的橄榄石通常Mg含量比较低。因此,尽可能的扩充基于真实地外样品分析得到的光学常数库是很有必要的。该研究中,研究人员基于显微红外反射光谱,对挑选出的一些典型橄榄石、斜长石、辉石及玻璃端元的光学常数进行了反演(图4),这些结果将对现有的或将来的月球及其他小行星的光谱分析产生很大帮助。图4 基于反射光谱反演得到的典型矿物与玻璃端元的光学常数论文链接:https://doi.org/10.1029/2022JE007453
  • 嫦娥五号月球样品证明月球晚期玄武岩富含富铁高钙辉石
    14日,记者从中科院国家天文台获悉,基于嫦娥五号月球样品的实验室分析结果,并结合遥感探测数据,国家天文台李春来、刘建军研究员领导的团队证明,嫦娥五号月壤的光谱特征主要是由其富含的富铁高钙辉石引起,而非此前认为的富含橄榄石所致。相关研究成果在线发表于《自然通讯》杂志。“我们的研究解答了过去对月球晚期玄武岩遥感光谱解译的疑惑,纠正了月球晚期玄武岩独特遥感光谱特征的物质成分解译结果。”中科院国家天文台研究员李春来告诉记者。基于以往地基望远镜和月球轨道器遥感光谱数据,曾经天文学家普遍认为,月球正面西部晚期月海玄武岩覆盖的区域富含橄榄石。因此,富含橄榄石是理解月球晚期玄武岩成因的重要因素。然而,由于缺乏实际样品,这一推论的正确性一直无法得到证实。嫦娥五号任务采集的月球样品,为解答这一问题提供了宝贵的机会。利用嫦娥五号返回样品纠正月球晚期玄武岩的遥感光谱解译(图片由中科院国家天文台提供)通过对带回的月球样品开展实验室光谱和X射线衍射分析,同时,与以往获取的月球样品进行对比,并结合电子探针分析的数据结果,研究团队证明,嫦娥五号月壤的光谱特征主要是由其富含的富铁高钙辉石引起,而非富含橄榄石所致。“由于国外历次月海采样任务鲜有以富铁高钙辉石为主的月球样品,加之富铁高钙辉石晶体结构的特点在光谱特征上与月球上常见的橄榄石光谱相近,导致了月球晚期玄武岩的遥感光谱被错误地解译为富含橄榄石。”李春来说。研究团队进一步分析显示,月表其他被认为是晚期玄武岩覆盖的区域与嫦娥五号着陆区有着相似的光谱学和地球化学特征。这说明,它们可能具有与嫦娥五号样品相似的岩石矿物学组成,都应是以富铁的高钙辉石为主,而非过去遥感光谱推测的橄榄石为主。李春来表示,这项研究对回答月球晚期玄武岩物质组成问题,深化对月球热演化历史,特别是月球晚期火山活动特点的认识具有重要意义。
  • 惊叹!地震竟已可精确预测,用的竟是扫描电镜?
    地幔岩石中的晶体缺陷对地震活动至关重要,电子背散射衍射图可提供了下一次地震何时何地发生的线索。英国和美国的研究人员已经表明,来自地球表面深处的岩石晶体中的微观缺陷在大地震后地面如何缓慢移动和重置方面起着决定性的作用。来自洛斯阿拉莫斯国家实验室的 Ricardo Lebensohn 及其同事使用电子背散射衍射 (EBSD) 绘制了受到极端类似地幔的压力和温度的岩石晶体中的缺陷和周围应力的图谱。结果表明,地球表面在地震后沉降以及在重复事件之前储存应力的方式最终可以追溯到这些晶体缺陷。“晶体缺陷和应力非常小,我们只能用最新的显微镜技术观察它们,”Lebensohn 的同事,来自剑桥大学地球科学的 David Wallis 博士说。“但很明显,它们可以显著影响岩石移动的深度,甚至决定下一次地震发生的时间和地点。”通过了解这些晶体缺陷如何影响地球上地幔中的岩石,研究人员可以更好地解释地震后地面运动的测量结果,这些测量结果提供了压力在哪里积聚的信息,以及未来可能发生地震的位置。 缺陷和地震为了研究岩石晶体应力,Lebensohn 及其同事将橄榄石晶体(上地幔最常见的成分)置于一系列压力和温度下,以复制地球表面以下100公里的条件。研究人员使用配备牛津仪器 AZtec 采集软件和 NordlysNano 探测器的两台场发射扫描电镜对岩石晶体进行了研究,并使用高角分辨率 ESD 绘制了位错缺陷和晶内应力图。根据研究人员的说法,这些结果揭示了上地幔中的热岩石如何神秘地从地震后几乎像糖浆一样流动,随着时间的推移变得又厚又迟钝。粘度的这种变化将应力传递回上方地壳中寒冷而脆性的岩石——这种应力会累积到下一次地震。几何必要位错的密度和应力异质性 a 根据 HR-EBSD 测量的晶格旋转估计的几何必要位错密度b 通过减去每个晶粒内的平均值而归一化的 σ12 样品 MN1 和 San382t 是单晶,而所有其他样品都是聚集体“我们早就知道微尺度过程是控制地震的关键因素,但很难足够详细地观察这些微小的特征,”沃利斯说。 “多亏了最先进的显微镜,我们已经能够观察到炽热深岩的晶体框架,并追踪这些微小缺陷的真正重要性。”结果还表明,位错会产生应力,随着时间的推移,这些应力会在位错中累积,导致岩石变得更加粘稠。直到现在,人们一直认为这种粘度的增加是由于晶体相互竞争的推拉,而不是由晶体内的微观缺陷和相关的应力场引起的。研究人员希望将他们的工作应用于改进地震危险地图,这些地图通常用于南加州等构造活跃地区,以估计下一次地震发生的地点。目前的模型只考虑了断层带上更直接的变化,没有考虑在地球深处流动的岩石中的逐渐应力变化。Wallis 还计划与乌得勒支大学的同事合作,将他们新的实验室限制应用于 2004 年印度尼西亚发生危险地震和 2011 年日本地震后的地面运动模型。每一次都引发了海啸并导致数万人丧生。“如果你能了解这些深层岩石的流动速度有多快,以及在断层带不同区域之间传递应力需要多长时间,那么我们可能能够更好地预测下一次地震将在何时何地发生,”沃利斯说。文章源自 Nature Communications.(编译:符斌 北京中实国金国际实验室能力验证研究中心研究员)
  • 中国地质大学开发同时测定嫦娥五号月壤粒度和矿物组成的新方法
    月壤的粒度和矿物组成对于解释轨道遥感光谱数据和理解月球岩浆活动和空间风化过程具有重要意义。自20世纪70年代以来,科学家开始使用各种手段来研究月壤样品,但前人所采用的方法通常需要消耗较多样品,并且难以同时获得矿物组成和粒度、形貌等方面的信息。近日,《中国科学:地球科学》中、英文版同时在线发表了中国地质大学(武汉)佘振兵和汪在聪教授团队对嫦娥5号月壤粒度和矿物组成的研究成果,第一作者为博士生曹克楠。该研究团队基于拉曼光谱微颗粒分析技术,开发了以极低的样品消耗量同时测定颗粒样品粒度和矿物组成的新方法,并成功运用于嫦娥5号月壤样品的研究(图1)。图1 用拉曼光谱自动微颗粒分析技术同时测定月壤粒度和矿物组成的流程研究人员将约30μg的嫦娥5号样品分散于镀铝载玻片上(图1a),然后用用50倍物镜在暗场反射光模式下对月壤颗粒进行大面积图像拼接和景深合成,根据获得图像中不同位置的亮度来自动识别颗粒并重建颗粒分布图(图1b)。获得了粒度信息后,选择其中1~45μm的月壤颗粒进行自动拉曼分析获得高信噪比的光谱(图1c),并通过团队自建的月壤矿物光谱数据库对颗粒进行自动识别,获得每一种矿物相的粒度和体积等信息(图1d, 图2),计算得出矿物模式丰度。图2 对6mm×3mm范围内7307个月壤颗粒矿物组成和分布的重建结果不同颜色代表不同的矿物对24881个颗粒的分析结果显示,嫦娥5号月壤平均粒度为3.5μm,并且呈单峰式分布(图3a),表明其具有较高的成熟度。尽管大多数颗粒的粒径很少(6μm),但大于8μm的颗粒占总体积的90%以上(图3b)。图3 嫦娥5号月壤粒度分布特征在对嫦娥5号月壤的矿物模式丰度进行研究后,研究人员发现在1~45μm粒度范围内的矿物组成为:辉石(39.4%)、斜长石(37.5%)、橄榄石(9.8%)、铁钛氧化物(1.9%)、玻璃(8.3%)等(图4a),该结果与前人通过x-射线粉晶衍射分析所得出的结果基本一致。此外,还发现随着粒度变小,月壤中的橄榄石和辉石含量逐渐减少,而斜长石含量增加:粒径在20~45μm之间的月壤样品中辉石含量最高(49%), 其次是斜长石(32%)、橄榄石(11%)和玻璃(8%),而铁钛氧化物、磷酸盐和硅质矿物则未出现;随着粒度的减少,斜长石的丰度逐渐增加, 而辉石和橄榄石的丰度显著下降(图4b-4c)。这种趋势在阿波罗样品中也普遍存在(图4d),可能是在空间风化过程中(如微陨石撞击),斜长石比镁铁质矿物更容易破碎所导致的。图4 嫦娥5号月壤的矿物组成((a)~(c))及其与阿波罗月壤对比(d)该研究还识别出了月壤中的一些微量矿物相,例如磷灰石、石英、方石英和斜方辉石等,其中斜方辉石的发现为首次报道,这表明嫦娥5号月壤中可能含有极少量来自于月球高地的物质。上述成果为解译嫦娥5号着陆的风暴洋北部地区光谱遥感数据提供了地面真值参考,为理解月球该区域深部和表面演化历史提供了新的视角。该方法优点在于:(1)每次仅需约30μg样品,在获取多维度信息的同时将样品损耗降到了最低,并且样品制备流程简单,极大地降低了该环节可能带来的样品污染问题;(2) 可以在短时间内快速建立一个矿物粒度和组成的多元化信息数据库,有助于发现稀有的矿物相;(3) 进一步发展将为未来火星和小行星等其他天体返回的微颗粒样品进行快速分析提供技术支撑。致谢 该研究使用的样品由中国科学院国家天文台提供,分析测试在中国地质大学(武汉)生物地质与环境地质国家重点实验室完成,所采用的仪器为WITec α300R型共聚焦拉曼光谱和ParticleScout(v5.3.14.106)自动微颗粒分析系统。研究得到了国家航天局民用航天技术预研究项目(D020205)、国家自然科学基金项目(42172337)和生物地质与环境地质国家重点实验室项目(GBL12101)的支持。
  • 农药残留检测仪:为甘蓝安全保驾护航
    农药残留检测仪:为甘蓝安全保驾护航在食品安全的领域里,农药残留问题一直是公众关注的焦点。甘蓝作为一种常见的蔬菜,其农药残留情况同样不容忽视。为了确保甘蓝的食用安全,农药残留检测仪成为了我们不可或缺的得力助手。农药残留检测仪是一款先进的食品安全检测设备,它集成了多种高科技检测技术,可以快速准确地检测出食品中的农药残留量。这款仪器能够准确检测出甘蓝中的农药残留成分,为我们的餐桌安全提供有力保障。在甘蓝的种植过程中,为了防治病虫害、提高产量,农民往往会使用一定量的农药。然而,如果农药使用不当或过量使用,会导致甘蓝中的农药残留超标,给消费者的健康带来潜在威胁。因此,对甘蓝进行农药残留检测显得尤为重要。农药残留检测仪采用先进的检测技术,可以快速检测出甘蓝中的多种农药残留成分,如有机磷、有机氯等。通过简单的操作,我们就可以获得准确的农药残留检测结果,了解甘蓝的安全状况。除了准确检测农药残留量,农药残留检测仪还具有操作简便、检测速度快等优点。它不需要专业的技术人员操作,普通消费者也可以轻松上手。通过使用农药残留检测仪,我们可以在购买甘蓝时进行快速检测,确保所购甘蓝的安全性。当然,我们不能仅仅依靠农药残留检测仪来保障食品安全。在日常生活中,我们还应该选择可靠的食品来源,尽量购买有机、绿色、无公害的甘蓝。加强食品安全知识的学习和传播,提高公众的食品安全意识,共同维护我们的餐桌安全。总之,农药残留检测仪是保障甘蓝食用安全的重要工具。通过它,我们可以更加放心地享受甘蓝的美味,同时为家人的健康保驾护航。让我们共同努力,为食品安全事业贡献自己的力量!
  • 郭建刚:新时代“晶体人”
    晶体学,这个最初为窥探物质原子结构和排列方式而形成的一门学科——至今有100余年历史,且已获颁23项诺贝尔奖。然而,这门学科的基础研究犹如科学界的一门“古老手艺”,人才渐缺、关注渐少。  郭建刚是个“逆行者”。这个中国科学院物理研究所“80后”研究员执着地相信:百余年来沉淀下的晶体学知识在当今依然具有强大生命力,“认识全新物质体系,要回到最根本、最基础的结构。虽越基础、越困难,但也越重要。”  传统科学与新月的碰撞  正如月球研究,晶体科学就提供了新视角,而后获得了新发现。  2020年,我国嫦娥五号从月球背面带回1731克的月壤样品。经过激烈地竞争答辩,郭建刚所在的先进材料与结构分析实验室获得了1.5克的月壤样品。  拿到珍贵的最新月壤样品,郭建刚抑制不住内心地兴奋,这是他的研究课题第一次触及“太空”。  “月球土壤与我们在地面上看到的土壤类似,是一些矿石经过不断风化,逐渐变成细碎的土壤。”郭建刚介绍。  与大多形态形貌研究不同,他们想借助自身优势,在更深、更细处探索未知,剖析月壤内部结构与原子分布状态,试图“见微知著”,了解太阳风化和月球演变等。  装在白色透明小瓶里,月壤犹如碳粉一般,呈黑色粉末状。郭建刚首先要做的是“挑样”——在数十万个颗粒中挑出微米级大小的晶体,这是项考验耐心的技术活。  晶体的大小约等于一根头发丝直径,郭建刚站在手套箱前、紧盯着显微镜,寻找着在特殊灯光照射下反射亮光的晶体,然后屏住呼吸,利用一根纤细挑样针的静电效应,小心翼翼“粘”出。  他和学生两人一组,反复这一连串动作,每次需要持续3小时。为保证安静环境,他们常常在深夜工作,结束时身体僵直、眼睛酸胀、几近“崩溃”。  实验室窗台上的几盆被拔“秃头”的仙人球见证着他们的付出,他们需要使用仙人球的刺来“粘”住微米级晶体,放置在四圆衍射仪和高分辨透射电镜上测试晶体结构。  郭建刚知道,我国嫦娥五号采集的月壤样品属于最年轻的玄武岩,且取样点的纬度最高,为探究月壤在太空风化作用下的物质和结构演化提供了新机会。挑选样品的质量,在一定程度上或许决定了能否把握住这次机会,因此,必须仔细再仔细。  郭建刚和团队在月壤样品中找到了铁橄榄石、辉石和长石等晶体,经过测试,在铁橄榄石表面发现了非常薄的氧化硅非晶层,这其中包裹着大小为2到12纳米的晶体颗粒,通过系统的电子衍射及指标化、高分辨原子相和化学价态分析,确认它们是氧化亚铁,并非此前在其他月壤样品中发现的金属铁颗粒。  他们还在铁橄榄石中还观察到了分层的边缘结构,这种特殊的微结构首次在月球土壤中看到。  扎实的数据得到了美国行星之父、匹兹堡大学地质与行星科学系教授Bruce Hapke的肯定:“这种橄榄石晶体的边缘结构是独特的。”  “我们确认了铁橄榄石在太空风化作用下出现了分步分解现象。通过表面微结构和微区晶体结构分析,我们首次在铁橄榄石的边缘确认了氧化亚铁的存在,表明矿物在风化过程中,经历了一个中间态,而非一步到金属游离铁,这将有利于进一步理解月球矿物的演变历史。”郭建刚说。  越基础,越重要  2008年,从吉林大学硕士毕业,郭建刚来到物理所跟随陈小龙研究员攻读博士学位。在团队里,他感受到的第一个研究“逻辑”就是,要想得到或利用一个材料,首先要想办法弄清楚材料最基本的晶体结构,理解原子之间的排布与结合方式。  “是什么、为什么、能做些什么,这是我们要探索全新体系时要回答的三个基本问题。”他至今记得,博士期间,按照这条“底层逻辑”,做出了第一个让他惊奇的超导新材料。从此,他便更加热爱晶体科学。  “晶体,尤其是超导这类单晶,非常重要,在电力运输、磁悬浮等有着广泛应用,若原子微观结构不清楚,很难理解和优化其物性,离应用就更远了。”郭建刚说。  的确,对物质晶体结构的了解,有助于在物质内部微观结构、原子水平的基础上,阐明物质各种性能,并为改善材料的性能、探索新型材料和促进材料科学的发展提供重要科学依据。  10余年来,郭建刚一直牢记着这个“逻辑”。他以探索电磁功能材料和生长晶体为主要方向,以理解晶体结构为出发点,研究材料的物性和晶体结构之间的关系,取得了诸多重要成果。  2010年,还在读博期间,郭建刚在国际上最早制备出了碱金属钾插层铁硒超导体系,其最高超导转变温度为30 K,创造了当时常压下FeSe基化合物超导转变温度的最高纪录。  该成果开辟了国际铁基超导研究的新领域,所开创的研究方向‘Alkali-doped iron selenide superconductors’被汤森路透《2013研究前沿》和《2014研究前沿》列为物理学10个最活跃前沿领域之首和第7名,将其发展成了与铁砷基并列的第二类铁基高温超导体。  他成功地解决了较小尺寸碱金属钾插层铁硒的难点,制备出了纯相的钠插层铁硒超导体,进一步将超导转变温度提高至37 K。  弄清晶体结构,会大大缩短新型材料探索时间、加速解决实际问题。  郭建刚介绍,用传统方法合成一个新材料,需要不断地试,因为不知道哪些组分、温度等合适,试的足够多,可能会碰到一个新的,但试错法效率低、成本高。而弄清楚了晶体结构,就能了解某一类材料中物性的决定性单元(也称功能基元),再以此为基础,发展新的材料体系,“比如要制备一个新材料,有3个组分,通过晶体结构分析,我们能发现决定材料物性的功能基元,就能够以相应的物性为导向,高效地探索新材料和新效应。”  即以不同功能基元为基础,调控基元的排列方式,或通过调控功能基元里配位的原子种类和数目来改变其电子结构,制备新高温超导晶体体和诱导新效应。  基于这一思路,由陈小龙牵头,郭建刚作为第2完成人所承担的挑战性课题“基于结构基元的新电磁材料和新效应的发现”,荣获2020年度国家自然科学二等奖,这项成果解决了由功能基元出发、高效探索新材料和新效应的若干关键科学问题,推动了无机功能材料科学的研究与发展。  肩负重任的新生力量  在先进材料与结构分析实验室,作为青年科学家的郭建刚,肩负延续学科发展与服务国家需求新的重任。  “老一辈科学家的事迹和精神始终鼓舞着我。”郭建刚说。“陆学善院士和梁敬魁院士分别是中国著名的晶体物理学家和晶体物化学家,导师陈小龙除了在晶体结构分析和单晶生长具有深厚的学术功底,也是推动碳化硅晶体从基础研究到产业化的先行者之一。  让郭建刚感触最深的是,老师们总是以一丝不苟的态度,对待基础研究,即使看似很小的工作也做得非常扎实、严谨。  他一直记得陆学善先生和梁敬魁先生的一个科研故事,上世纪60年代,梁敬魁回国来到物理所,与陆学善合作开展了铜-金二元体系超结构研究,为了达到合金的平衡态,需要诸多工艺,单是退火处理这一个工艺过程,就需要六个月或者一年时间。他们耐住寂寞,几年之后,获得了一系列长周期的超结构相,其中有的是国外研究者已经研究多年,却始终没有观察到的现象。  “在很多人看来,这样的研究方法可能比较‘原始’,但恰是这种方法,为科研打下了扎实的基础,产出了诸多原创性成果。”郭建刚说,耐心、潜心是他从老先生那里学到的科学精神。  在郭建刚看来,今天,研究组在晶体生长领域产生了多项引领性的工作,尤其在碳化硅宽禁带半导体生长与新功能晶体材料探索方面,都是在多年的基础研究积累上取得的。  碳化硅是一种重要的宽禁带半导体,具有高热导率、高击穿场强等特性和优势,是制作高温、高频、大功率、高压以及抗辐射电子器件的理想材料,在军工、航天、电力电子和固态照明等领域具有重要的应用,是当前全球半导体材料产业的前沿之一和国内“十四五”规划重点攻关的半导体材料之一。  然而,一直以来,用于应用研究的大尺寸单晶存在较多难以突破的关键科学和技术问题,严重影响器件性能,诸多关键技术和设备面临着国外封锁。  近年来,针对相关难题,在陈小龙的带领下,郭建刚在扎根基础研究的同时,与团队共同推动研究成果产业转化,获得了2020年度中国科学院科技促进发展奖。  “最大的挑战是基础研究领域的突破,在晶体研究领域,我们还需要更细致、更系统和更‘原始’的研究。”郭建刚深知,基础科学问题的突破将会极大地提高晶体的质量和应用范围,给学术和产业界带来巨大变革,但攀登科学高峰这条路必定不轻松,还好,有热爱,可抵漫长岁月。
  • ASD | 好想看看月壤长啥样!
    2020年11月24日4时30分长征五号遥五运载火箭点火升空托举嫦娥五号探测器送入预定轨道意味着人类时隔44年再次从月球带回了岩石和土壤样品上一次月球采样返回任务是1976年苏联的月球24号美国在阿波罗十一号成功登月之后,进行了6次发射任务,其中有5次都获得了成功,一共将12名宇航员送上了月球,带回来了382公斤的月球土壤。中美两国于1979年1月1日正式建交;而就在这前夕的1978年,美国国家安全事务顾问布热津斯基访华时,为表示友好,向中国赠送了1克月岩。地质学家将1g月壤等分成两份,每份重量0.5g,一份用于研究,另一份用来展览。如今,我们自己从月球带回1731克月壤!北京时间2022年10月10 日,国际科学期刊《自然 通讯》(Nature Communications)在线发布我国嫦娥五号样品的一项研究成果。中国科学院国家天文台李春来、刘建军研究员领导的团队,结合嫦娥五号月球样品的实验室分析结果和遥感探测数据,解答了过去对月球晚期玄武岩遥感光谱解译的疑惑,纠正了月球晚期玄武岩独特遥感光谱特征的物质成分解译结果。根据以往地基望远镜和月球轨道器遥感光谱数据的分析,普遍认为月球正面西部晚期月海玄武岩覆盖的区域富含橄榄石,这是约束月球晚期玄武岩成因的重要因素。然而该推论是否正确,由于缺乏实际样品的分析而无法证实。嫦娥五号成功着落于月球风暴洋东北部的玄武岩平原,返回样品的研究显示其玄武岩的年龄仅为20亿年,是月球上最年轻的玄武岩地层。嫦娥五号任务采集的月壤样品,作为从月球晚期玄武岩区域返回的唯一地面真值,为我们研究月球晚期火山活动提供了宝贵的机会。基于此,中国科学院国家天文台李春来、刘建军研究员团队结合嫦娥五号月球样品的实验室分析结果和遥感探测数据(ASD FieldSpec 4),解答了过去对月球晚期玄武岩遥感光谱解译的疑惑,纠正了月球晚期玄武岩独特遥感光谱特征的物质成分解译结果。研究团队通过对返回月壤样品开展实验室光谱和X射线衍射分析,与以往获取的月球样品进行对比,并结合电子探针分析的数据结果,证明嫦娥五号月壤的光谱特征主要是由其富含的富铁高钙辉石引起,而非富含橄榄石所致。由于国外历次月海采样任务鲜有以富铁高钙辉石为主的月壤样品,加之富铁高钙辉石晶体结构的特点在光谱特征上与月球上常见的橄榄石光谱相近,导致了月球晚期玄武岩的遥感光谱被错误地解译为富含橄榄石。为了解决富铁钙辉石与富橄榄石月壤光谱的易混性,研究团队基于大量地面实测的橄榄石和辉石混合物光谱数据,提出了一种新的基于光谱参数判别月壤中橄榄石含量的遥感光谱反演方法,能够有效地解决月表富橄榄石区域和富铁钙辉石区域的区分和圈定问题,为利用遥感光谱数据探测月表主要矿物成分和分布提供了新的方法。【结果】嫦娥五号与LSCC土壤样品的光谱形状比较。嫦娥五号样品与纯辉石、以前的月壤和玄武岩样品的光谱参数比较,以及月球矿物绘图仪(M3)轨道光谱。【结论】月表其他被认为是晚期玄武岩覆盖的区域与嫦娥五号着陆区有着相似的光谱学和地球化学特征(如铁、钛含量),这说明它们可能具有与嫦娥五号样品相似的岩石矿物学组成,都应是以富铁的高钙辉石为主,而非过去遥感光谱推测的橄榄石为主。结合月球晚期玄武岩的分布范围、持续时间及覆盖厚度的特点,晚期玄武岩的热源在强度上较弱,但可能在很大范围内长期稳定和活跃,形成该热源的机制可能包括月球表面厚风化层(megaregolith)的覆盖和地球与月球之间的潮汐作用。本研究对回答关于月球晚期玄武岩物质组成的问题,深化对月球热演化历史,特别是月球晚期火山活动特点的认识具有重要意义。
  • 刚公布的中国科学十大进展,七项仪器检测技术站了“C位”
    p style="text-indent: 2em "span style="text-indent: 2em "2月27日,科技部高技术研究发展中心(基础研究管理中心)发布2019年度中国科学十大进展。探测到月幔物质出露的初步证据、揭示非洲猪瘟病毒结构及其组装机制、首次观测到三维量子霍尔效应等10项重大科学进展,从30个候选项目中脱颖而出。/span/pp style="text-indent: 2em "十大进展中,科学仪器检测技术身影频现,其中的七项进展,科学仪器检测技术已经默默站了“c位”,下面我们就一起走进这些仪器技术:/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "strong▋进展一:探测到月幔物质出露的初步证据/strong/span/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "strong仪器技术:/strong/spanstrong玉兔2号上配置的可见光和近红外光谱仪(简称VNIS)/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 253px " src="https://img1.17img.cn/17img/images/202003/uepic/e5193f09-a9bf-423c-aee6-6e5d805a7f7c.jpg" title="1.png" alt="1.png" width="450" height="253" border="0" vspace="0"//pp/pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "嫦娥四号降落位置以及VNIS探测/span/pp style="text-indent: 0em text-align: center "span style="color: rgb(127, 127, 127) "(来源https://www.nature.com/articles/s41586-019-1189-0)/span/pp style="text-indent: 2em "月壳和月幔都是在月球演化的最初阶段形成的,撞击增生过程产生的能量造就了熔融的岩浆洋,较轻的富钙的斜长石组分上浮形成月壳,而诸如橄榄石、低钙辉石等较重的铁镁质矿物结晶下沉形成月幔。然而,从阿波罗(Apollo)和月神(Luna)探测任务返回的月球样品中没有发现与月幔准确物质组成有关的直接证据,关于月幔物质组成的推论至今没有被很好地证实。直径非常大的撞击坑有可能穿透月壳,使月幔物质被挖掘出来并可能被探测及取样。位于月球背面的南极-艾特肯盆地(SPA)直径约为2500公里,是月球表面最古老、最大的撞击构造,最有可能撞穿月壳。然而,从现有月球轨道器获得的遥感数据表明,虽然SPA区域的铁镁质矿物含量偏高,但并没有橄榄石广泛出露的证据。这些物质是否可能来源于月幔还存在争议。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 321px " src="https://img1.17img.cn/17img/images/202003/uepic/f7a3d122-2dad-40a1-b442-cc0a43129da8.jpg" title="2.png" alt="2.png" width="450" height="321" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "嫦娥四号VNIS仪器探测结果/span/pp style="text-align: left text-indent: 2em "span style="color: rgb(127, 127, 127) "(来源https://www.nature.com/articles/s41586-019-1189-0):在两个探测点获得了质量良好的光谱数据,而这些光谱数据可以用于分析月壤成分。分析发现,嫦娥四号着陆区的月壤成分明显不同于嫦娥三号着陆区的月海玄武岩,其中含有低钙辉石,并可能有大量橄榄石存在,这就与科学家以往对于月幔成分的分析符合的非常好。/span/pp style="text-indent: 2em "中国的嫦娥四号探测器最近成功着陆在月球背面SPA区域的冯· 卡门撞击坑内,并利用搭载的月球车——玉兔2号开展了巡视探测。中国科学院国家天文台李春来研究组与合作者,报告了玉兔2号上配置的可见光和近红外光谱仪(VNIS)的初步光谱探测结果,分析发现了低钙(斜方)辉石和橄榄石的存在,这种矿物组合很可能代表了源于月幔的深部物质。进一步的地质背景分析表明,这些物质是由附近直径72公里的芬森撞击坑挖掘出来、并抛射到了嫦娥四号着陆地点的月幔物质。这一工作的意义在于揭示了月幔的物质组成, 为月球早期岩浆洋研究提供了新的约束条件,加深了对月球内部形成及演化的认识。“玉兔2号”将继续探索冯· 卡门撞击坑底部的这些物质,以了解它们的地质背景、起源和组成,为未来开展月球样品采样返回任务提供依据。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "strong▋进展三:提出基于DNA检测酶调控的自身免疫疾病治疗方案/strong/span/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "strong仪器技术:/strong/spanstrong质谱技术鉴定到cGAS的关键调控因子——G3BP1/strong/pp style="text-indent: 2em "病毒的种类成千上万,其感染特点和致病方式也是千变万化,但是万变不离其宗的是,当病毒入侵时,其自身的遗传物质会不可避免地被带入到宿主细胞中。机体针对这些外源遗传物质(如DNA等)迅速做出反应,甚至不惜以伤及自身为代价,这是病毒感染导致致死性炎症的主要原因。关于外源DNA诱发免疫反应的认识可以追溯到上百年之前,然而其背后的机理并不清楚。2013年,这一领域国际上取得了重要突破,科学家鉴定发现蛋白质cGAS(环鸟苷酸-腺苷酸合成酶)是胞内DNA病毒感受器。随着cGAS被揭示,科学家发现在检测病毒入侵以外,cGAS的异常激活也直接导致一类自身免疫疾病。因此,寻找有效控制cGAS活性的手段并探究其调控机理,对抵抗病毒感染及自身免疫疾病的治疗都至关重要。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/44c32549-3ea3-4f04-977b-ea3294f093eb.jpg" title="3.jpg" alt="3.jpg"//pp style="text-align: center text-indent: 0em "span style="text-indent: 2em color: rgb(0, 176, 240) "cGAS结构及其3个关键乙酰化位点/span/pp style="text-indent: 2em "军事医学研究院(国家生物医学分析中心)张学敏和李涛研究组与合作者发现,乙酰化修饰是控制cGAS活性的关键分子事件,并揭示了其背后的调控规律。研究人员鉴定了cGAS的3个关键乙酰化位点(K384、K394和K414),发现其中任何一个位点发生乙酰化修饰,都可以致使cGAS失去活性。进而,研究者发现乙酰水杨酸(阿司匹林)可以强制cGAS在上述关键位点上发生乙酰化从而抑制其活性。此外,对cGAS调控机制的进一步探究发现,cGAS在胞内是以复合物形式存在并发挥功能的。研究人员利用蛋白质质谱技术鉴定到了cGAS的关键调控因子——G3BP1。机制研究揭示G3BP1与cGAS结合,通过帮助cGAS形成多聚物确保其能更高效地识别DNA。在缺失G3BP1的情况下,细胞中cGAS的活性明显降低。重要的是,绿茶茶多酚的主要成分、天然小分子化合物EGCG是G3BP1的抑制剂。研究人员发现EGCG能够通过干扰G3BP1与cGAS的相互作用,抑制cGAS激活。上述研究不但揭示了机体抗病毒感染的关键调控机制,还发现了有效的cGAS抑制剂,为AGS(艾卡迪综合征)等自身免疫疾病提供了潜在治疗策略。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "strong▋进展四:破解藻类水下光合作用的蛋白结构和功能/strong/span/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "strong仪器技术:/strong/spanstrong冷冻电镜技术解析硅藻光系统复合体3埃分辨率结构/strong/pp style="text-indent: 2em "中国科学院植物研究所沈建仁、匡廷云研究组报道了海洋硅藻——三角褐指藻FCP的高分辨率晶体结构,揭示了蛋白支架内的7个叶绿素a、2个叶绿素c、7个岩藻黄素以及可能的1个硅甲藻黄素的详细结合位点,从而揭示了叶绿素a和c之间的高效能量传递途径。该结构还显示了岩藻黄素与叶绿素之间的紧密相互作用,使能量通过岩藻黄素高效地传递和淬灭。该研究团队进一步与清华大学生命科学学院隋森芳研究组合作,解析了硅藻的光系统II(PSII)与FCPII超级复合体的分辨率为3.0埃的冷冻电镜结构。该超级复合体由两个PSII-FCPII单体组成,每个单体包含了1个具有24个亚基的PSII核心复合体和11个外周FCPII天线亚基,其中的FCPII天线以2个FCPII四聚体和3个FCPII单体存在。整个PSII-FCPII二聚体包含230个叶绿素a分子、58个叶绿素c分子、146个类胡萝卜素分子以及锰簇复合物、电子传递体和大量脂分子等。该结构揭示了硅藻PSII核心中特有亚基的特点及其与高等植物PSII-LHCII复合体明显不同的天线亚基排列方式,以及硅藻巨大的色素分布网络,为阐明硅藻高效的蓝绿光捕获、能量转移和耗散机制提供了坚实的结构基础。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/494e40f3-2fb2-477a-9a38-942e1dc0942b.jpg" title="4.jpg" alt="4.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "硅藻捕光天线复合体晶体结构/span/pp style="text-indent: 2em "为了更进一步理解水下光合作用,研究人员还基于冷冻电镜技术解析了广泛存在的与高等植物具有相似光合作用的水生生物——绿藻(假根羽藻)光系统I(PSI)-捕光复合体I(LHCI)超级复合体的结构,分辨率达到3.49埃。该结构揭示了包含有原核生物和真核生物亚基特性的13个PSI核心亚基,以及10个LHCI天线亚基的结构(其中8个形成一个双半环结构,其余2个形成一个额外的LHCI二聚体)。并与浙江大学医学院张兴研究组合作,解析了绿藻——莱茵衣藻完整的C2S2M2N2型PSII–LHCII超级复合体的冷冻电镜结构,分辨率为3.37埃。该结构显示,绿藻C2S2M2N2超级复合体是一个二聚体,每个单体由位于中央的PSII核心复合体和环绕该核心的3个LHCII三聚体、1个CP26和1个CP29外围天线亚基所构成。该工作还揭示了多个与高等植物不同的绿藻PSII核心和捕光天线LHCII的结构特征。以上研究为揭示绿藻中光能的高效吸收、传递和猝灭机制提供了坚实的结构基础,并为揭示PSI–LHCI和PSII-LHCII超分子复合体在进化过程中发生的变化提供了重要线索。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/248e5780-d6a7-4b6d-ab25-d4795f3b6c79.jpg" title="5.jpg" alt="5.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "绿藻的光系统II和捕光天线超级复合体的结构/span/pp style="text-indent: 2em "上述研究进展率先破解了硅藻、绿藻光合膜蛋白超分子结构和功能之谜,不仅对揭示自然界光合作用的光能高效转化机理具有重要意义,也为人工模拟光合作用、指导设计新型作物、打造智能化植物工厂提供了新思路和新策略。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "strong▋进展七:青藏高原发现丹尼索瓦人/strong/span/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "strong仪器技术:/strong/spanstrong古蛋白质分析法、铀系法测年等揭秘历史/strong/pp style="text-indent: 2em "丹尼索瓦人是一支已经消失的神秘古人类,过去对他们的了解主要基于仅出土于西伯利亚丹尼索瓦洞的少量化石碎片以及保存在其中的高质量的古基因信息。遗传学研究显示,丹尼索瓦人对一些现代低海拔东亚人群和高海拔现代藏族人群有基因贡献,对现代藏族人群的高海拔环境适应有重要意义。由于缺乏化石形态学信息,科学家很难评估丹尼索瓦人与分散在亚洲和其他地区的丰富的古人类化石之间的联系,也很难准确理解丹尼索瓦人与现代亚洲人群的关系。此外,现代藏族等青藏高原人群特有的高海拔环境适应基因来源,特别是其是否继承自丹尼索瓦人等,是非常重要而亟待解决的科学问题。/pp style="text-indent: 2em "中国科学院青藏高原研究所陈发虎研究组、兰州大学张东菊研究组联合德国马普学会进化人类学研究所Jean-Jacques Hublin研究组等合作者,报道了一个利用古蛋白质分析方法鉴定为丹尼索瓦人的下颌骨,该下颌骨来自于中国甘肃省夏河县的白石崖溶洞。研究人员通过对化石上附着的碳酸盐结核进行铀系法测年,确定下颌骨至少有16万年的历史。该化石标本是丹尼索瓦洞以外发现的首件丹尼索瓦人化石证据,对标本的全面分析也为丹尼索瓦人研究提供了丰富的体质形态学信息,包括下颌和牙齿形态等信息。该项研究表明,早在现代智人到来之前,丹尼索瓦人在中更新世晚期就已经生活在青藏高原高海拔地区,并成功地适应了高寒缺氧环境。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "strong▋进展八:实现对引力诱导量子退相干模型的卫星检验/strong/span/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "strong仪器技术:/strong/spanstrong“墨子号”量子科学实验卫星,对穿越地球引力场的量子纠缠光子退相干情况进行测试/strong/pp style="text-indent: 2em "量子力学和广义相对论是现代物理学的两大支柱。然而,任何试图将量子力学和广义相对论进行融合的理论工作都遇到极大困难。目前关于如何融合量子力学和引力理论的讨论,模型众多,但都普遍缺乏实验检验。/pp style="text-indent: 2em "中国科学技术大学潘建伟及其同事彭承志、范靖云等与合作者,利用“墨子号”量子科学实验卫星,在国际上率先在太空中开展了引力诱导量子纠缠退相干的实验检验,对穿越地球引力场的量子纠缠光子退相干情况进行测试。根据“事件形式”理论模型预言,纠缠光子对在地球引力场中的传播,其关联性会概率性地损失;而依据现有的量子力学理论,所有纠缠光子对将保持纠缠特性。最终,卫星实验检验结果并不支持“事件形式”理论模型的预测,而与标准量子理论一致。这是国际上首次利用量子卫星在地球引力场中对尝试融合量子力学与广义相对论的理论进行实验检验,将极大地推动相关物理学基础理论和实验研究。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/98ad3a75-0c4d-4566-bc07-effa665b2ff1.jpg" title="6.jpg" alt="6.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "实现对引力诱导量子退相干模型的卫星检验/span/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "strong▋进展九:揭示非洲猪瘟病毒结构及其组装机制/strong/span/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "strong仪器技术:/strong/spanstrong冷冻电镜解析非洲猪瘟病毒衣壳的三维结构/strong/pp style="text-indent: 2em "非洲猪瘟病毒(ASFV)是一个巨大而复杂的DNA病毒,能够引发家猪、野猪患急性、热性、高度传染性疾病,发病率和死亡率可高达100%,对生猪养殖产业链造成巨大经济损失,目前尚未有可用的疫苗。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/bfeb80c7-f0ef-413a-bb51-26c0dcfafdfe.jpg" title="7.jpg" alt="7.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "非洲猪瘟病毒衣壳蛋白结构及其组装/span/pp style="text-indent: 2em "中国科学院生物物理研究所饶子和王祥喜团队和中国农业科学院哈尔滨兽医研究所步志高团队联合上海科技大学等单位,在上海科技大学冷冻电镜中心连续收集了高质量数据,采用一种优化的图像重构策略,解析了非洲猪瘟病毒衣壳的三维结构,其分辨率达到4.1埃。该衣壳颗粒体型巨大且结构复杂,由17,280个蛋白亚基组成,其中包括1种主要(p72)和4种次级衣壳蛋白(M1249L、p17、p49和H240R),它们组装成五重对称体和三重对称体的复合结构。主要衣壳蛋白p72原子分辨率结构展示出非洲猪瘟病毒潜在的构象型抗原表位,与其他的核胞质大DNA病毒(NCLDV)显著不同。次级衣壳蛋白在衣壳内表面形成了一个复杂的蛋白相互作用网络,通过调控相邻的病毒壳微体之间的作用力介导衣壳的组装并稳定了衣壳的结构。作为核心的组织者,100纳米长的M1249L蛋白沿着三重对称体的每个边缘桥接了两个相邻的五重对称体,与其他衣壳蛋白形成了延伸的分子间网络,驱动了衣壳框架的形成。这些结构细节揭示了衣壳稳定性和组装的分子基础,对非洲猪瘟疫苗的研发具有十分重要的理论指导意义。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "strong▋进展十:首次观测到三维量子霍尔效应/strong/span/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "strong仪器技术:/strong/spanstrong低温、极低温和强磁场系统设备为观测霍尔效应提供必备环境/strong/pp style="text-indent: 2em "在二维电子体系中发现量子霍尔效应使得拓扑学在凝聚态物理学中发挥了核心作用。30多年前,Bertrand Halperin等人从理论上预言可能在三维电子气体系中产生量子霍尔效应,但迄今为止,还没有从实验上观测到“三维量子霍尔效应”。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/c069e222-b7ce-479f-8144-18e629922ef6.jpg" title="8.jpg" alt="8.jpg"//pp/pp style="text-align: center text-indent: 0em "span style="color: rgb(0, 176, 240) "三维量子霍尔效应span style="text-indent: 2em " /span/span/pp style="text-indent: 2em "南方科技大学物理学系张立源研究组、中国科学技术大学物理学系乔振华研究组及新加坡科技设计大学杨声远等合作,在块体碲化锆(ZrTe5)晶体中首次实验实现了“三维量子霍尔效应”。研究人员对碲化锆体单晶进行了磁场下的低温电子输运测量,在一个相对低的磁场下达到了极端量子极限状态(只有最低朗道能级被占据的)。在该状态下,研究人员观测到了一个接近于零的无耗散纵向电阻,并沿着磁场方向形成了一个正比于半个费米波长的很好的霍尔电阻平台,这些是三维霍尔效应出现的确凿标志。理论分析还表明,该效应源于在极端量子极限下电子关联增强产生的电荷密度波驱动的费米面失稳。通过进一步提高磁场强度,纵向电阻和霍尔电阻都极具增加,呈现出金属-绝缘体相变。该研究进展提供了三维量子霍尔效应的实验证据,并提供了一个进一步探索三维电子体系中奇异量子相及其相变的很有前景的平台。/pp style="text-indent: 2em "strong附: “2019年度中国科学十大进展”名单/strong/pp style="text-indent: 2em "1.探测到月幔物质出露的初步证据/pp style="text-indent: 2em "2.构架出面向人工通用智能的异构芯片/pp style="text-indent: 2em "3.提出基于DNA检测酶调控的自身免疫疾病治疗方案/pp style="text-indent: 2em "4.破解藻类水下光合作用的蛋白结构和功能/pp style="text-indent: 2em "5.基于材料基因工程研制出高温块体金属玻璃/pp style="text-indent: 2em "6.阐明铕离子对提升钙钛矿太阳能电池寿命的机理/pp style="text-indent: 2em "7.青藏高原发现丹尼索瓦人/pp style="text-indent: 2em "8.实现对引力诱导量子退相干模型的卫星检验/pp style="text-indent: 2em "9.揭示非洲猪瘟病毒结构及其组装机制/pp style="text-indent: 2em "10.首次观测到三维量子霍尔效应/pp style="text-indent: 2em " /ppbr//p
  • 日本加强对中国产羽衣甘蓝中六氯苯的监控检查
    2013年8月15日,日本厚生劳动省医药食品局食品安全部监视安全课发布食安输发0815第1号:加强对中国产羽衣甘蓝中六氯苯的监控检查,取消对中国产乌龙茶中苯胺灵除草剂的强化监控检查。  根据2013年度进口食品等的监控检查计划,按2013年3月29日发布的食安输发0329第3号(最终修正:2013年8月14日发布的食安输发0814第9号),对中国产生鲜羽衣甘蓝实施检查时,发现其违反了食品卫生法。因此,将对其残留农药六氯苯的监控检查频率提高到30%。具体如下记:强化检查日期国家检查对象检查项目2013年7月10日中国羽衣甘蓝及其加工品(限简单加工)残留农药(六氯苯)  同时,根据迄今为止的检查结果,取消对中国产乌龙茶中苯胺灵除草剂、尼日利亚产芝麻籽中黄曲霉毒素的强化监控检查。  来源:http://www.forth.go.jp/keneki/kanku/syokuhin/tsuuchi/2013/8/15_1.pdf  【原标题】日本加强对中国产羽衣甘蓝中六氯苯的监控检查,取消对中国产乌龙茶中苯胺灵除草剂的强化监控检查
  • 梅特勒托利多发布X33 系列散料检测系统
    英国罗伊斯顿 2013 年 9 月 &ndash 梅特勒托利多 X 射线推出了 X33 系列散料检测系统,可对干燥和粘状散装食品进行最佳污染检测,检查产品的污染物,如玻璃、金属碎片、钙化骨、矿物石和高密度塑料等。从事散装主食,如麦片、葡萄干、橄榄、干果、甚至虾或肉末等工作的食品制造商很早就不得不采用繁琐费时的冲洗程序,以保护其生产线免受这些产品造成的潮湿和灰尘。X33 系列散料检测系统专门开发来处理原始和未成形食品原料,结合卫生设计和增强型输送机制,以便于操作和冲洗。 X33 系列散料检测系统还具有梅特勒托利多 X 射线于 2012 年开发的革命性节能 X 射线发电机。此技术可提供与标准系统一样的出色污染检测水平,但却只使用五分之一的电力,从而降低能源消耗并降低总拥有成本 (TCO)。它还通过可根据应用定制的机器剔除系统最大限度地减少产品浪费,使用四轨道翻板或吹气式剔除系统将污染产品转移到可上锁收集箱。这样,仅少量产品被剔除。同时,超大视频窗口有利于直接校准剔除系统,并允许操作人员快速查看产品是否顺利通过。机器包括可以抬起的外壳,以方便接触所有组件、两个进料选件、一个传送带和一个可移动料斗,从而实现深入清洁并遵守 IP69K 冲洗规定。料斗采用独特的分体式设计,使其重量更轻更容易取出,并使其更容易接触并清洗。 &ldquo 卫生是散料检测系统食品制造商的一个关键问题,因为他们寻求向消费者提供高品质即食产品,&rdquo 梅特勒托利多 X 射线产品工程主管 Anthony Darragh 解释说。&ldquo 利用新的 X33 系列散料检测系统设计,我们侧重于确保粘状或干燥颗粒剂的任何残留物或灰尘可轻松去除,从而保障企业散装产品的质量和安全。&rdquo X33 系列散料检测系统卫生设计和冲洗能力可根据一系列重要的食品安全标准,如欧洲卫生工程设计集团 (EHEDG) 的指导方针,美国 3-A 卫生标准和 NSF 食品安全标准等,在产品检验过程中防止任何污染。此外,像 X33 系列的所有机器,散料检测系统配备了标准的 20瓦 X 射线发电机,而不是传统 X射线系统使用的 100 瓦发电机。这意味着,在典型的操作条件下,机器消耗低于 20% 的能量,有助于最大限度地降低生产成本。详细了解X33系列X射线检测系统 关于梅特勒-托利多 X 射线检测部门梅特勒托利多是食品和制药行业金属检测与 X 射线检测解决方案的全球领先供应商。金属检测机、X 射线检测系统、自动检重秤和视觉检测解决方案共同构成了梅特勒托利多产品检测部门。更多信息梅特勒托利多官方网站www.mt.com梅特勒托利多客服热线4008-878-788
  • 上海凯来助力学术研究,国产飞秒激光剥蚀系统再现科技魅力
    点击蓝字 关注我们在刚刚结束的第十三届全国同位素地质年代学与同位素地球化学学术讨论会上,上海凯来仪器有限公司携带国产自研的GenesisGEO新型飞秒激光剥蚀系统大放异彩!这款新品凭借其尖端科技和卓越性能,一经亮相便成为全场焦点。在展示过程中,专家老师们亲自上手体验,通过对石英等具有挑战性的样品进行操作,专家老师们均可以轻松打出了圆形或矩形平顶坑。与传统飞秒激光和193nm相比,GenesisGEO新型飞秒激光剥蚀系统显示出绝对的领先优势,极大拓展了飞秒激光剥蚀的应用领域,为同位素地质年代学和同位素地球化学领域的研究提供更加高效、精确的工具。专家们纷纷围绕GenesisGEO展开热烈讨论,探索其在地质年代学与地球化学领域的深远应用。无疑,它已成为推动学科进步的重要力量。分享汇报,助力科研上海凯来在专题五上进行了精彩的分享汇报,主题为"国产新型飞秒激光剥蚀系统的最新研究进展及其应用领域"。传统飞秒存在非平底坑、光斑范围小、光斑类型有限等瓶颈;而193nm激光在剥蚀过程中存在明显热效应。两者限制了激光剥蚀技术在地学研究中的应用范围。上海凯来完全自主研发的GenesisGEO新型飞秒激光剥蚀系统通过全新的技术路线,实现了关键突破:平底坑、束斑范围广(1~500μm)、矩形/圆形光斑任选、高能量密度≥50J/cm2等,为地学研究工作提供了新型的科研利器和新的视角与方法。本次报告不仅为我们带来了最新的技术进展,也为地质等相关领域的研究和应用提供了更多的思路和可能性。在汇报中的提问环节,大家响应热烈,许多专家老师听了汇报后前往上海凯来展台进行参观,积极交流新型飞秒激光前沿应用。GenesisGEO新型飞秒激光剥蚀系统的优异性能获得了众多专家的一致认可,认为GenesisGEO是国产仪器的翘楚,为国争光!从上世纪90年代中期至今,中国学者见证了激光剥蚀与质谱联用技术在地学领域的蓬勃发展。上海凯来自成立至今已20余年的时间,随着凯来自研新型飞秒的顺利落地,相信国产新型飞秒将给用户提供更强大、有效的分析工具。我们坚信中国人可以制造出自己的完全自主创新研发的分析仪器,助力相关领域的蓬勃发展,再次感谢各位专家学者及新老用户的关注和支持!专业认可,品质保证GenesisGEO新型飞秒激光剥蚀系统“ 开拓性的设备感受高质量剥蚀效果 ”GenesisGEO新型飞秒激光剥蚀系统为上海凯来全自研自主创新技术,无美国技术,无卡脖子风险。其全新的技术理念颠覆了人们对传统激光剥蚀技术的认知,即将带来全新的激光剥蚀技术革新,很快将在地球化学、环境科学、生命科学、新材料及半导体等关键领域的核心技术重点突破。仪器特点:平底坑,低分馏超大范围光斑,1-500μm无需ArF气体,光路无需N2保护全中文界面,无人值守操作3D动态变焦No Defocussing!左为不变焦剥蚀,右为变焦剥蚀,变焦速率可自定义样品类型:玻璃新型飞秒剥蚀坑形貌钠钙玻璃样品,从左向右尺寸依次为10μm, 20μm, 30μm, 40μm, 50μm, 60μm, 70μm, 80μm, 90μm, 100μm, 200μm, 300μm, 400μm, 500μm微量打点分析石英样本打点信号曲线GenesisGEO新型飞秒激光剥蚀系统采用高功率飞秒激光源,能够提供更高的能量密度,能够对花岗岩类石英轻松剥蚀,检出限≤3ppb。其产生的热效应更小,基体效应弱且脉冲宽度极短,可以实现更高的时间分辨率和更精确的样品剥蚀。碳酸盐岩定年分析Tarim下交点年龄:211.5±3.1Ma(参考年龄:208.5±0.6Ma)GenesisGEO飞秒激光剥蚀系统与Agilent8900三重四级杆联用,对Tarim样品进行碳酸盐岩定年分析,光斑大小为100μm,数据结果与参考年龄一致。流体包裹体分析单个流体包裹体分析GenesisGEO飞秒激光剥蚀系统具有新型观察系统,可清晰观察单个包裹体10μm,采用低温冷冻附件(冷冻池),目前最低温度可稳定在-160℃。高空间分辨率成像分辨率down to 500nm!鲕粒样品成像锆石成像光斑大小1-500μm连续可调,最低可至500nm!可实现高空间分辨率成像。关于凯来上海凯来成立于2004年,起始于专业代理国际先进分析仪器,定位为专业技术服务商,聚焦专业细分市场,目前已经成为多个领域的领导者。上海凯来总部位于上海临港新片区海洋科技创业园,设有应用演示及服务实验室,客户定制产品及研发中心,专注于推广和研发前沿的元素分析测试解决方案。目前在北京,武汉,成都,深圳,青岛设有应用实验室,并处于快速扩展中。公司文化:“只有精英才能生存”。END
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制