当前位置: 仪器信息网 > 行业主题 > >

色谱峰面积化合物分子量

仪器信息网色谱峰面积化合物分子量专题为您提供2024年最新色谱峰面积化合物分子量价格报价、厂家品牌的相关信息, 包括色谱峰面积化合物分子量参数、型号等,不管是国产,还是进口品牌的色谱峰面积化合物分子量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱峰面积化合物分子量相关的耗材配件、试剂标物,还有色谱峰面积化合物分子量相关的最新资讯、资料,以及色谱峰面积化合物分子量相关的解决方案。

色谱峰面积化合物分子量相关的资讯

  • 月旭UHPLC色谱柱再添两员!极性化合物快速分析不是梦想
    在科技高速发展的今天,无论工作和生活都不断追求着更快速、更高效。我们分析测试领域中,对实验的时间要求也越来越短,来达到更快的研发速度、更高的按时交付率、更高的人均产出等目标。特别是走在科技发展前沿的一些新药研发单位、高校,以及对交付率要求极高的第三方检测单位等,会优先选用超高压液相进行测试,比普通液相检测要快3~4倍。然而,这么昂贵的UHPLC色谱仪已经买来了,却发现可选择的UHPLC色谱柱的种类很少,那怎么行呢?柱子问题,月旭解决!welch月旭科技在已成功推出10种UHPLC键合相后(*详见文末注释),随着工艺技术更加成熟,现新推出Amide(聚丙烯酰胺)和HILIC Amphion Ⅱ(两性离子)两款键合相。这两款新键合相将为您解决以下问题:● 在HILIC模式下,对糖类、多肽、以及低分子量的极性药物进行快速而有效的分离!● 在HILIC模式下,不需要使用离子对试剂,即可对大多数极性化合物进行快速分离! Ultimate UHPLC Amide 色谱柱简介“产品特点1)采用键合了聚丙烯酰胺官能团的硅胶填料作为固定相,特别适合亲水性化合物的分离;2)对中小分子的极性化合物有很好的保留;3)具有优异的化学稳定性;4)适合针对水溶性极性化合物进行LC/MS的分析。“色谱柱性能参数色谱柱:Ultimate UHPLC Amide。键合相:聚丙烯酰胺;粒径:1.8μm;pH范围:2.0-8.0;载碳量:6%;孔径:120&angst ;比表面积:320㎡/g;最高耐受温度:60℃;最高耐受压力:60MPa。“应用案例检测项目:蛋氨酸色谱条件色谱柱:Ultimate UHPLC Amide,1.8μm,2.1×100mm。流动相:乙腈/25mM磷酸二氢氨,pH=4.87(75/25);检测波长:210nm;柱温:35℃;流速:0.2mL/min;进样量:1.0μL;样品配置:2mg/mL,流动相溶解。Ultimate UHPLC HILIC Amphion Ⅱ色谱柱简介Ultimate UHPLC HILIC Amphion Ⅱ是月旭科技开发的一种新型的两性离子键合硅胶HILIC色谱产品。它适合于大多数极性化合物的分离,一般用乙睛和水作为流动相,不需要使用离子对试剂。Ultimate UHPLC HILIC Amphion Ⅱ填料结构中同时含有阴阳离子,同时存在正电荷中心和负电荷中心,因而也可通过离子交换机制极大增强对酸碱化合物的保留。该色谱填料具有很好的亲水性,能以HILIC模式分离极性、亲水性的小分子目标物以及碱性化合物。与传统的硅胶和氨基等HILIC填料相比,该填料可提供更好的重现性和更为稳定的HILIC模式分离能力。“产品特点1)采用两性离子键合硅胶固定相;2)增强亲水性相互作用,对极性和亲水性化合物的保留能力强;3)填料同时含有阴阳离子,提供了离子交换机制,因此与普通HILIC填料相比具有不同选择性;4)不需要使用离子对试剂,采用简单的流动相(一般用乙腈和水)就能实现对极性目标物的分离。“色谱柱性能参数色谱柱:Ultimate UHPLC HILIC Amphion Ⅱ。键合相:两性离子;粒径:1.8μm;pH范围:2.0-8.0;载碳量:5%;孔径:120&angst ;比表面积:320㎡/g;最高耐受温度:60℃;最高耐受压力:60MPa。“应用案例检测项目:咖啡因色谱条件色谱柱:Ultimate UHPLC HILIC Amphion Ⅱ,1.8μm,2.1×100mm。流动相:乙腈/水 = 90/10;检测波长:254nm;柱温:30℃;流速:0.2mL/min;进样量:2.0μL;样品配置:0.5mg/mL,流动相溶解。 订货信息月旭科技已推出的10种超高压键合相概月旭超高压液相柱的键合相种类多样化,满足不同检测项目的结果和分离度要求时,检测时间能更快。
  • 分析利器丨MALDI-TOF 高效表征小分子化合物的分子量
    MALDI-TOF对小分子化合物分子量的快速确认小分子通常指分子量小于1000 Da(尤其小于400 Da)的有机化合物,包括天然产物(生物体合成)及各类人工合成的有机小分子。质谱技术由于可以精确测量各类化合物的质量,被广泛应用于小分子的分子量表征及结构鉴定工作。通常小分子分子量表征常用手段是LCMS,实则MALDI-TOF同样可以用于小分子化合物的分子量确认,且具有更高的效率。MALDI-TOF MS表征小分子分子量的方案特点:1快!每天可分析数千个样品2直接上样分析,无需样品分离3所需样品量较少,单次上样体积只需1 μL以内4除可溶性样品外,还能够分析难溶性样品MALDI-TOF分析小分子的工作流程小分子测试案例分享01各类化合物(原料、物料、产品)分子量及杂质检测在药品、化工品等产品生产过程中,对投入的原料、物料以及终产品进行分子量和杂质检测,是生产质量控制的重要内容。下图中,通过质谱信息可以直接了解寡核苷酸合成原料亚磷酰胺单体的分子量及杂质信息。寡核苷酸合成原料亚磷酰胺单体质谱图02小分子有机合成反应跟踪、产物确认在有机合成中,鉴定反应产物和了解反应进程极其重要。MALDI-TOF MS可以快速测量化合物进行半定量反应跟踪和产物确认。通过化合物单同位素峰的分布,还能轻松识别出溴和氯的存在与否。下图中原料双(氯甲基)苯的信号强度在反应18小时后降低,产物双(溴甲基)苯在反应18小时后强度增加。反应不同时间获得的反应产物的质谱图比较03有机功能材料合成确认有机功能材料包括有机光电材料、有机导电材料、有机磁性材料、有机催化材料等。MALDI-TOF MS可以快速进行有机功能材料的合成确认。下图中,通过样品同位素分布模式及质量数的实际检测结果与理论值的比较,可以准确判断产品合成是否成功。半导体材料及有机发光二极管材料的质谱图04难溶性颜料分子量分析颜料通常不溶于水和一般有机溶剂,常见的颜料包括无机颜料、偶氮颜料、钛菁颜料等。由于颜料的难溶解性,不能使用传统LCMS或GCMS方法进行分子量检测,而MALDI-TOF MS由于不需要分离,分析时不受溶解性限制,可以检测不溶性颜料的分子量,用于鉴别颜料种类或者颜料生产合成质控。难溶性颜料钛菁红的质谱图结语MALDI-TOF MS具有前处理简单、能够快速获取从低分子量到高分子量各类样品的分子量信息,无需分离、不受样品溶解性限制等优点,为医药行业药物发现、有机合成产物确认、化工领域颜料、乳化剂等各类化工产品分子量分析、有机功能材料的合成确认提供快速检测手段。撰稿人:顿俊玲本文内容非商业广告,仅供专业人士参考。
  • 5根Ascentis色谱柱,帮你搞定极性化合物从保留到样品制备
    我是一个从事液相色谱分析的实验猿,近期在我升职加薪的路上遇到了一些困难,使我夜不能寐… 一直以来,我对色谱柱的要求简简单单:保留目标化合物 满足分离度宽pH耐受 完美峰形高柱效 长寿命 但是近期我发现:放眼望去,实验室都是C18,换了一根又一根的C18,分不开还是分不开;遇到极性化合物,C18上难保留;碱性化合物,峰拖尾;色谱柱过载峰平头… … 在宝贵的人生旅程中,为了这些问题夜不能寐也太得不偿失了(保护好我方发量)。其实解决极性化合物从保留和样品制备并不难!我们可以针对化合物种类和所面对的不同分离目标和挑战,选择合适固定相的Ascentis系列色谱柱即可!瞧,这里就有5种供您选择:固定相化学美国药典USP代号主要竞争特征方式主要应用Ascentis C18L1高表面积惰性表面反相小分子和多肽Ascentis RP-Amide(反相-酰胺)L60化学相稳定,低固定相流失反相在常规反相方法开发中是C18柱的优选替代柱,用于极性分子,特别是酚类和其它氢键给予体,酸类,碱类(不带电荷),苯胺Ascentis Phenyl(苯基)L11化学相稳定,低固定相流失反相,HILIC环状化合物和强偶极子,π-酸类,π-电子接受体,芳杂环,硝基芳烃类Ascentis Silica(硅胶)L3高的装载容量,可控和一致的表面活性正相(非水),HILIC非极性化合物(在正相方式下)高极性化合物(在HILIC方式下),核苷类,氨基酸类Ascentis C8L7高表面积,惰性表面反相小分子和多肽Ascentis系列的HPLC色谱柱一般特征:1、高纯,B型硅胶,具有高惰性,重复性和稳定性 2、现代键合反应过程优化了键合相的覆盖率和稳定性,同时也减少了键合相的流失和降低了不需要的二级相互作用 3、多种键合相化学柱和硅胶柱提供了较宽的选择性 4、具有增强极性化合物保留的键合相化学 5、适用于LC-MS等当今所用的高灵敏仪器和方法 6、可选择从分析柱到制备柱的不同柱类型 7、高表面积硅胶拥有高的柱载量,有利于制备色谱Ascentis提供从分析柱到制备柱的放大分离硅胶基质的高比表面积可以提高色谱柱的载样量,用于样品的纯化制备,并且硅胶和键合相在不同粒径上完全一致。这样就使得分析柱上开发的方法可以放大到制备柱上进行分离;同样,制备柱上开发的方法也可以转移到分析柱上进行快速分析。 Ascentis系列色谱柱兼容通用型检测器(比如质谱检测器或CAD检测器)在使用通用型检测器时,固定相和键合相流失都会带来很大的背景干扰,引起检测灵敏度的下降,也会增加仪器维护成本。Ascentis系列色谱柱通过采用硅胶处理工艺和现代键合方法,降低了固定相的流失,能够很好得兼容通用型检测器。 不知道这一期Ascentis系列色谱柱有没有打动您呢?下一期我们将为您分别介绍每一个系列的应用和选择性,尽请期待哦。 如果您对Ascentis系列色谱柱有需求,扫描下方二维码简单登记,我们将尽快与您联系。感谢您对默克分析化学的支持!
  • 【瑞士步琦】不同类型化合物应用的最佳条件
    不同类型化合物应用的最佳条件现如今,Flash 及 Prep HPLC 色谱已经成为许多分离应用的首选方式。就像我这种“厨房小白”,黑暗料理界殿堂级人物,在做饭时,如果盐放多了都会不禁在想:是不是可以通过色谱分离的方式去除多余的盐?然而,尽管这些分离技术是化学的基础,但它们仍然难以捉摸,因为没有通用的一种方法可以适用于所有的样品。不同行业研究或感兴趣的化合物是多样性的,这些化合物理化性质差异性很大。幸运的是,前人们已经通过多年的经验总结出了对不同分子类型化合物最有效的纯化条件。所以,如果您在进行样品分离时,对流动相或固定相以及检测器的选择感到迷茫时。或许本篇文章会对您有些许的启发。第一阶段是流动相:样品一定要可溶于待选溶剂;其次是固定相:对您的样品要有保留。有两种色谱类型适用于这里:正相(NP)色谱和反相(RP)色谱。这两大色谱类型也是很多小伙伴在日常科研当中用到最广泛的。接下来是需要确定样品溶解度,判断是否可以液体进样?如果不可以,可以考虑固体上样的方式(Flash色谱)。最后一步是检测,包括需要了解样品是否具有紫外吸收,这将决定哪种检测方法对特定化合物最有效,之前“小步”同学也有给大家分享过关于检测器的选择,没有看过的同学可以点击这里,为了帮助快速进行 Flash 和 Prep HPLC 应用的开发,“小步”同学给出一些化合物类型适用的最佳条件。蛋白质和多肽蛋白质由氨基酸组成,在溶液中形成与它们的生物功能密切相关的高度有组织三维结构。多肽则是蛋白质的小版本,通常由含有 2-50 个氨基酸组成。就流动相而言,它们大多溶于水。反相(RP)色谱法适用于多肽或更小、更稳定的蛋白质,它们在纯化后会重新折叠。这需要含有较少极性溶剂的水混合物,如乙腈、异丙醇或乙醇。乙腈是最受欢迎的溶剂,因为它易挥发,很容易从收集的馏分中去除,除此之外,它还具有低粘度和低紫外线吸收等特点。对于多肽的分离,传统的三氟乙酸(TFA)被添加到流动相来进行pH控制(缓冲)和离子配对(与相反带电的离子团形成复合物以增强保留)。固定相是根据样品的分子量和极性进行选择。Prep HPLC 色谱法由于其可以搭配更小粒径尺寸色谱柱(柱效更高),所以成为分离极性相近或相似或化合物的首选纯化方法。对于 Prep HPLC 来讲,样品进样方式必须为液体进样。所以对于疏水性样品,使用低级性溶剂(乙腈),亲水性样品使用乙醇或丙醇最佳。对于高度亲水的样品,可以适当的加入微量二甲基亚砜(DMSO)或二甲基甲酰胺(DMF)提高整体溶解能力,这使得样品可在最小溶剂体积内溶解,最大化减小溶剂扩散现象。如果需要使用固体上样,则更适用于 Flash 色谱。紫外检测器通常作为检测蛋白质或多肽最常用的方式,检测波长一般设为 280nm。这一波长已被证明特别有用,因为可以直接从蛋白质序列当中预测 280nm 处的摩尔吸收系数(消光系数),当然,这只适用于含有色氨酸或酪氨酸残基的蛋白质。如果芳香族氨基酸含量低或没有芳香族氨基酸,则推荐使用 205nm 作为检测波长。天然产物/提取物活的有机体,如植物、微生物或动物,通过初级或次级代谢途径产生这些代谢产物。初级代谢产物是生物体生长所必需的,次级代谢产物是初级代谢产物的最终产物。流动相的选择基于提取时所使用的溶剂类型,如果采用正相色谱(NP)纯化,则使用正己烷,石油醚,二氯甲烷(DCM),乙酸乙酯(EtAc),或其他与水不互溶的溶剂;反相色谱(RP)则采用乙醇和水进行提取,分离纯化流动相一般为甲醇/水或乙腈/水。对于固定相来说,所有的 NP(硅胶,二醇基,氨基等)和 RP(C18 等)均可被使用。天然产物的样品成分通常非常复杂,所以往往需要采用组合分离技术:通过 Flash 色谱进行前期预处理粗分,再经过 Prep 色谱对样品进行单体化合物分离。样品的载样量取决于天然产物提取物的体积,通常来讲提取物量都比较大。样品可以通过注射器或注射泵的方式注入到 Flash 色谱柱中,如果样品体积过大,则建议采取固体上样的方式,因为如果溶剂体积过大会导致色谱峰谱带变宽,进而影响分辨率。Flash 色谱预分离的样品后续可以在 Prep 上进一步纯化。天然产物样品的多样性和未知性决定了其被检测的方法。通常来讲,蒸发光散射检测器(ELSD)与紫外检测器(UV)的组合可以最大化保证样品检测的全面性。对于 NP 色谱,建议使用二极管阵列检测器(DAD)来对样品进行检测。碳水化合物碳水化合物可分为低分子量(单糖和双糖)和更复杂的重碳水化合物(寡糖和多糖)。单糖(葡萄糖)二糖(蔗糖)多糖(直链淀粉)碳水化合物都是亲水性的,流动相一般选择水/甲醇或水/乙腈进行搭配作为洗脱剂。在 RP 条件下,使用 C18 填料作为固定相可以降低高极性碳水化合物的保留。相反,氨基柱已经被证明是最适合作为分离碳水化合物的固定相。因为它不像 C18 那么非极性。上样方式方面,碳水化合物在 RP 条件下通常是可溶的,所以一般采用液体进样的方式进行上样。碳水化合物和脂类一样,缺乏发色团 目前,ELSD 是主要的检测方法。传统上使用示差折光检测器(RI),低波长 UV (190-205 nm),并通过薄层色谱进行纯化后分析。小分子药物这些化合物被定义为有机化合物,通常通过有机合成的方式获得。具有基本化学结构的小分子,分子量一般在 0.1-1kDA 之间。Flash 和 Prep HPLC 通常都可以在 NP 和 RP 条件下条件。小分子药物的目标通常是使用 RP,因为对它们来说水溶性是至关重要的。NP 只能在 RP 不可能的情况下使用或后续通过结构修饰等方式使其能具有更高的成药性。下表为正相色谱(NP)与反相色谱(RP)的对比:_优点缺点正相色谱(NP)__流动相有机试剂溶剂挥发试剂昂贵,安全与环保问题固定相二氧化硅填料便宜填料仅适合一次性使用最佳反相色谱(RP)__流动相水/醇混合物较便宜浓缩较慢(水沸点较高)固定相C18 填料可重复使用C18 填料较昂贵上样方式由样品的极性和纯化方式有关,高压不锈钢柱和 Flash 色谱柱可以液体和固体上样(只能 Flash 色谱使用)。液体注射进样是首选的方式,但是如果样品在方法的起始流动相梯度时溶解性不好,则需要采取固体上样。检测器方面,紫外检测器依然是首选,因为大多数的小分子药物都具有紫外吸收。然而,在某些情况下,如果化合物紫外吸收较弱,那么 NP 色谱所使用的有机溶剂会给其吸收带来干扰,进而影响实验人员对样品分离效果的判断。其他样品可能会是半挥发性的。基于此,在室温条件下使用 ELSD 检测器是最适的,因为高温条件下有机试剂的挥发顺带将化合物带走的情况时有发生,这会导致样品检测灵敏度降低。维生素/脂质由于维生素/脂质的性质多样性,以及篇幅原因。我们后续会专门出一期关于它们的文章,有相关研究的小伙伴可以持续关注哦。好了,现在您应该知道了不同类型化合物需要使用哪些色谱类型应用方法了吧。希望这篇文章能对您接下来的实验有所帮助!我是“小步”同学,我们下期再见!
  • 参考指南 | 胺类化合物全流程分析方案
    胺类化合物 众所周知,胺类化合物是医药、环境、食品以及化工等领域极其常见的目标分析物。这类碱性物质的高活性也常常使气相分析面临重重困难,并夹杂着如拖尾,吸附,响应低等一系列问题。为此,安捷伦技术团队针对以上问题痛点研究出一整套消耗品方案,能有效解决或改善以上问题,从而帮助您更好地应对胺类分析挑战。 这本快速参考指南将帮助您,选择适用的应用色谱柱及工作流中所涉及的相关耗材。 应对胺类分析的安捷伦 J&W 气相色谱柱组合用于胺类分析的 Agilent J&W 气相色谱柱经过开发和测试,4 款色谱柱组合提供了从非极性到极性的宽固定相极性选择范围,满足不同样品的分离优化。无论是简单样品还是复杂样品,我们全面的创新型色谱柱系列产品都可助您实现快速、准确且可重现的分离。 胺类化合物方法开发色谱柱优选组合如果您的实验室工作涉及胺类化合物的方法开发,您可选择以上推荐的四款不同极性色谱柱的组合。这四款气相色谱柱的固定相皆有所不同,可提供不同的分离选择性,且都具有低流失和稳定耐用的特点,是理想的胺类化合物分析的色谱柱优选组合。 选择合适您样品的色谱柱对于胺分析检测,除气相色谱柱需要惰性处理外,如果整个流路不具备适当的惰性,使用气相色谱分析胺类化合物依然具有一定难度。在对活性化合物进行分析时,重要的是所选的所有部件能够在流路中提供尽可能高的惰性,以确保峰形尖锐、对称,并保持高灵敏度。 使用安捷伦惰性流路备件分析胺类化合物本订购指南提供了该分析所需产品的指导。单击“我的列表”标题将打开安捷伦在线商城* 中可编辑的预填充购物车,以便您轻松挑选所需的产品。 用于小分子挥发性胺类化合物的进样口衬管 用于分子量较大的胺类化合物,盐酸盐形式或中和后的碱性物质 安捷伦超高惰性进样口备件 安捷伦气体管理 安捷伦高品质样品瓶及瓶盖 来源:安捷伦视界
  • 【ISCO 制备色谱仪】快速色谱法在简单碳水化合物纯化中的应用
    01 摘要碳水化合物化合物可利用 RediSep Gold Amine 色谱柱结合蒸发光散射检测(ELSD)进行简便的纯化。该色谱柱采用亲水相互作用液相色谱(HILIC)梯度洗脱法,以乙腈或丙酮与水的梯度进行操作。将待纯化的样品溶解于 DMSO 中,不仅允许大量样品加载,同时还能保持良好的分辨率。02 背景碳水化合物通常采用氨基柱进行分析,该方法具有良好的分辨率。这种分析方法一般使用乙腈和水作为流动相,样品通常溶解在水中。由于样品注射量较小,样品有机会吸附在固定相上。在制备色谱中,相对于色谱柱尺寸而言,样品负载和注射体积要大得多,因此将样品溶于水中注射可以防止碳水化合物吸附在柱子上,导致它们在空隙处洗脱。干法加载样品到固体装载小柱上通常用于快速色谱,但用户需要自己用氨基介质填充他们的小柱。样品仍然溶解在水中进行加载,这需要很长时间才能在运行样品前蒸发。二甲基亚砜(DMSO)常用于反相色谱的样品溶解,因为它能溶解大多数化合物。DMSO 能够溶解碳水化合物,但在 HILIC 中是一种弱溶剂,因此它允许样品吸附在柱子上。在使用氨基柱时,DMSO 在洗脱早期被洗脱;然而,在采用非氨基介质的其他 HILIC 运行中,它可能在梯度洗脱的后期才被洗脱。03 结果与讨论虽然亲水相互作用液相色谱(HILIC)属于正相色谱,但它使用的溶剂通常适用于反相色谱,因此需要根据表 1 中的设置调整蒸发光散射检测器(ELSD)的参数,以保持基线稳定的同时维持灵敏度。表1. 纯化碳水化合物的蒸发光散射检测器(ELSD)设置。ELSD控制设置值Spray Chamber20℃Drift Tube60℃Gain1SensitivityHigh样品均溶解于 DMSO 中。如有必要,将样品在热水浴中加热以促进溶解。使用 PeakTrak Flash Focus 梯度生成器在系统上开发方法。运行了一个亻贞查梯度以验证样品能够被洗脱,并证明化合物之间有足够的分辨率以实现成功的纯化。所需化合物的保留用于计算聚焦梯度的溶剂组成。所有运行均使用 RediSep Gold 氨基柱。运行完成后,用2-丙醇洗涤并储存柱子,2-丙醇与有机溶剂混溶,可实现较少极性化合物的快速纯化。第一个实例使用了核糖和葡萄糖。亻贞查梯度和聚焦梯度都使用乙腈作为弱溶剂。亻贞查运行只用了少量几毫克,并且为了提高这个小样品负载的灵敏度,ELSD 增益被调高到 3。第二个洗脱峰用于聚焦梯度;计算梯度后,ELSD 增益被重置为 1 以保持 ELSD 响应在量程内。总样品负载为 100 毫克,使用 50 克 RediSep Gold Amine 柱。果糖和蔗糖通常一起出现在样品中。图 2 展示了从葡萄糖杂质中纯化果糖的过程。该混合物以与核糖-葡萄糖样品类似的方式运行,梯度聚焦于葡萄糖。在约 1.8 柱体积(CV)出现的峰是用于溶解样品的 DMSO。图1. 核糖和葡萄糖在 5.5 克 RediSep Gold Amine 柱上运行亻贞查方法(上图),并聚焦到 50 克 RediSep Gold 胺柱上。样品总负载量为核糖和葡萄糖各 50 毫克。聚焦梯度中约 1.8 柱体积处的小峰是 DMSO。图2. 使用 RediSep Gold Amine 柱和乙腈/水梯度从蔗糖中纯化不纯的果糖。04 丙酮作为弱溶剂丙酮也是 HILIC 的弱溶剂,可以替代乙腈使用。尽管醇类可以用于 HILIC,但这些溶剂对于在胺柱上纯化碳水化合物来说太强了。使用丙酮纯化了一个果糖和葡萄糖的样品。该混合物的纯化方式与之前的例子相似,除了亻贞查梯度使用了一根 15.5 克的 RediSep Gold Amine 柱,因为 PeakTrak 允许使用任何尺寸的 Teledyne ISCO 柱进行亻贞查运行。聚焦梯度使用了一根 50 克的 RediSep Gold Amine 柱,但计算出的梯度需要较低的水浓度来纯化葡萄糖,这表明对于这些化合物,丙酮是比乙腈更强的溶剂。图3. 使用丙酮/水梯度纯化的果糖和蔗糖。亻贞查运行使用了一根 15.5 克的 RediSep Gold 胺柱。05 结论使用 NextGen 300+ 配备蒸发光散射检测器(ELSD)和 RediSep Gold 胺柱,通过 HILIC 梯度方法可以高效纯化碳水化合物。使用 DMSO 溶解样品既保证了高样品负载量,又保持了良好的分辨率。PeakTrak Flash Focus 梯度生成器使得 Teledyne ISCO 制造的所有色谱柱都能快速开发和放大方法。
  • 水质49种全氟和多氟化合物,一针进样全搞定
    导读全氟和多氟烷基化合物(per-and polyfluoroalkyl substances, PFAS)是一类新型持久性有机污染物(POPs),广泛应用于日常生活和工业用品中。研究表明这些化合物易于生物累积,且可能导致肝毒性、致癌性、生殖毒性以及干扰内分泌等特性。如今,天然环境中化学抗性PFAS的排放量不断增加,同时这些人为污染物在天然和处理水域、人类和动物生物体中的存在都构成了巨大的环境挑战。 全氟辛酸小档案中文名:全氟辛酸英文名:Perfluorooctanoic AcidCAS号:335-67-1分子式:C8HF15O2分子量:414.07 PFAS法规要求及分析特点PFAS含有几乎无法被破坏的C-F键,被称为“永生的分子”,由于其没有显示出任何被生物降解的迹象,因此也被称为“永久性化学品”。 斯德哥尔摩公约于2009年通过了全氟辛烷磺酸及其盐类和全氟辛烷磺酰氟成为持久性有机污染物(POPs)的一个重要检测项目。2010年3月17日,欧盟委员会发布2010/161/EU号议案,建议对食品中全氟烷基化合物进行监控。 PFAS的检测面临诸多挑战,一是来源于玻璃器皿和实验器材的本底污染,这对前处理耗材、检测仪器纯净的要求极高,简单的前处理步骤也更有利于降低干扰;二是浓度低,美国EPA于2016年发布的水质安全建议中,要求水质中PFOA和PFOS的限量是70 ppt,因此要求仪器具备较高灵敏度。 岛津解决方案岛津超高效液相色谱-质谱联用仪LCMS-8050 参考美国ASTM D7979标准水质PFAS的分析方法,采用岛津超高速LC-MS/MS(UFMSTM)技术,建立了快速、稳定、高灵敏度的49种PFAS(30种目标物和19种内标)分析方法,为客户提供环境中PFAS痕量分析的全方位解决方案。 表 1 PFAS检测标准比较 样品前处理分析条件 表2 梯度条件干扰的消除PFAS可能存在于溶剂、玻璃器皿、移液管、导管、脱气机和LC-MS/MS仪器的其它部件中。为了避免来自系统的干扰,在溶剂和样品阀之间放置一个延迟柱,延迟来自系统的PFAS出峰时间,从而消除系统的干扰。图1 PFOA色谱图:(a)无延迟柱(b)使用延迟柱 绘制9点校准曲线对PFAS目标物进行校准,线性范围5 ppt-200 ppt,所有化合物线性回归系数R20.99。各标准品校准误差均在±30%以内。 图2 49种混标溶液(100 ppt)TIC图(黑色)和MRM图(其它颜色) 表3 保留时间、检出限、线性范围、准确度、精密度*FHEA, FOEA ,FDEA使用400 ng/L计算准确度和精密度 结语 随着PFAS的不断向全球扩散,或许我们已经找不到一片极净之境。在你所不知道的隐秘角落,这种 “永生的分子”正在威胁着人类赖以生存的水源安全。淘汰有害PFAS制品的活动正在一步一步推进,在这个过程中,岛津公司愿与所有致力于地球和人类健康的人们一道,利用科学、高效、灵敏的分析手段共同守护我们的生命之泉。 *数据来源于岛津科学仪器-美国 参考资料: 1.U.S. Environmental Protection Agency, "US EPA Method 537: Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography / Tandem Mass Spectrometry (LC/MS/MS)," Washington D.C., 2009.2.ASTM International, "ASTM D7979-17: Standard Test Method for Determination of Perfluorinated Compounds in Water, Sludge, Influent, Effluent and Wastewater by Liquid Chromatography Tandem Mass Spectrometry (LC/MS/MS)," West Conshohocken, 2017.3.ASTM International, "ASTM D7968-17a: Standard Test Method for Determination of Perfluorinated Compounds in Soil by LIquid Chromatography Tandem Mass Spectrometry (LC/MS/MS)," West Conshohocken, 2017.United States Environmental Protection Agency, "US EPA - PFAS Research and Development," 14 August 2018.
  • 非变性质谱代谢组学鉴定金属结合化合物
    大家好,本周为大家介绍的是一篇发表在Nature Chemistry上的文章Native mass spectrometry-based metabolomics identifies metal-binding compounds1,文章通讯作者是来自美国加州大学斯卡格斯药学和药物科学学院的Pieter C. Dorrestein教授。生命活动的正常运行离不开金属的帮助,微生物获取金属的一种常见策略是通过生产小分子电离团来结合金属并形成非共价复合物。尽管结合金属的小分子具有各种生理功能和潜在的药学应用,在复杂生物成分(如微生物培养提取物)中找到金属结合化合物仍具有挑战。由于小分子-金属结合位点是多样的,金属结合情况必须通过实验来确定,常用的实验方法有电感耦合等离子体质谱(ICP-MS)、原子吸收光谱(AAS)、X射线荧光光谱(XRF)、紫外-可见吸收光谱和核磁共振(NMR)等方法,这些方法通常通量较低,且在小分子成分不确定和金属种类复杂的情况下无法判断小分子-金属结合情况。为了发现新的小分子-金属复合物,本文开发了一种非靶向LC-MS/MS方法,结合非变性质谱(native MS)和一种新的计算工具离子识别分子网络,通过相关性分析、用户定义的质量差异和MS/MS相似性匹配相关化合物。该方法能够在复杂的生物样品中筛选金属结合化合物,作者把这个方法称为非变性质谱代谢组学。一、非变性代谢组学概念小分子非靶向分析采用的萃取、样品制备和LC-MS/MS方法通常在低pH值、高比例有机相和低金属浓度的条件下,这些条件不利于金属络合。因此作者采用了非变性质谱的实验思路,考察了在较高的pH值下,小分子与金属的结合比例较高,并开发了一个两步非变性ESI-LC-MS/MS工作流程,该流程具备在线柱后pH调节和金属引入的能力(图1),在金属引入后有足够的时间形成小分子-金属复合物。使用MZmine和GNPS中的计算离子身份分子网络(IIMN)来分析数据。该实验流程是作者开发的第二代方法,此前的第一代方法使用的是双管注射泵(double-barrel syringe pump)注射氢氧化铵溶液,随后注射一种或多种金属盐。二代方法与一代的区别在于使用了HPLC二元泵进行乙酸铵溶液的补液过程,使溶剂组成和梯度更稳定。图1. 基于非变性质谱的代谢组学实验流程。二、方法考察作者首先制备了市售的铁载体标准混合物,即耶尔森菌杆菌素(1)、弧菌杆菌素(2)、肠杆菌素(3)、高铁环六肽(7)和红酵母酸(6),编号与图2相对应。标准品通过HPLC分离,然后通过第一代装置进行液相色谱后pH调节和过量(毫摩尔)氯化铁注入,仅在铁注入后观察到每种铁载体的三价铁加合物(图2a)。随后,作者进行了以下的考察:①考察了加和物峰面积呈现铁的浓度依赖性,但不完全与铁载体本身对铁的亲和力相对应,这可能由于每种载体的电喷雾效率不同以及流动相溶液组成的变化,因此作者开发了带有补流泵的第二代装置,可减少由梯度导致的溶剂组成的变化,并将有机溶剂浓度降低约50%。②考察了铁载体与铁的加和是否是非特异性加和,将能与铁结合的高铁色素分子与一系列不能结合铁的其他分子混合,同样实验流程下发现只有高铁色素结合了铁,证明加和物的形成是特异性结合(图2b)。③考察了载体的金属选择性,向载体加入生理水平(微摩尔)的金属混合物,包括铁、铜、钴、镍、锌和锰盐,发现载体对金属的选择性与文献报道一致,例如两种铁载体对铁的选择性都高于其他金属;两个相似的物质的区分,去铁胺B(DFB)可与铜结合,而去铁胺E(DFE)不能。图2. 液相后注入金属法在标准铁载体样品中的测试。接着,作者将此方法应用于谷氨酰杆菌JB182的培养提取物。该微生物是从液体奶酪培养基中分离出来的,而奶酪是一个缺铁的环境。作者利用非变性代谢组学工作流程,从培养提取物中观察到未结合铁的去铁胺E和结合了三价铁的铁胺E。去铁胺E是使用IIMN观察到的唯一结合铁的分子(图3),检测到的其他分子都不是铁结合的。图3. 谷氨酰杆菌JB182培养提取物的非变性代谢组学测试。a. 去铁胺E是使用IIMN观察到的唯一结合铁的分子;b. 标准液相方法鉴定到的去铁胺E大多没有结合金属,其3.03分钟处的MS1为图d;c. 液相后注入铁鉴定到的去铁胺E结合了金属,其3.05分钟处的MS1为图e。作者用同样的方法测试了大肠杆菌Nissle 1917提取物,并在液相后将pH调整为7(模仿大肠杆菌胞质pH),发现了一些结合铁的载体分子(图4a)及其相应的铁复合物(图4b-d),除图4标注的三种,还存在一些yersiniabactin和aerobactin的衍生物也能结合铁,共发现了至少15种额外的铁载体。衍生物的发现也说明了IIMN识别结构相似性的能力,且修饰也通常与生物合成或代谢有关。除了研究生理条件下的铁结合外,作者也尝试鉴定了锌结合分子,因为大肠杆菌Nissle的锌获取机制尚未完全阐明。使用本文的方法,作者发现了yersiniabactin及其许多衍生物也与锌结合,包括HPTzTn-COOH,这种结合也通过NMR进行了辅助验证。由此可推断yersiniabactin通过获取锌来逃避抗菌蛋白对锌的螯合,增强大肠杆菌Nissle在发炎的肠道中繁殖的能力。此外,作者还测试了比大肠杆菌Nissle基因组大十倍的酒用真菌Eutypa lata,也发现了结合铁的分子衍生物(图4e-f)图4. 非变性代谢组学方法用于鉴定细菌和真菌培养提取物。最后,作者将本方法应用到环境样品中,测试该方法是否可以在超复杂样品中识别金属结合化合物。作者分析了2017年6月浮游植物爆发期间在加州海流生态系统中收集的固相萃取的表层海洋样本。表层海水中的溶解有机质(dissolved organic matter,DOM)是十分复杂的样本,在液相后调节pH至8后,鉴定到了软骨藻酸为铜结合分子,与文献报道的一致。IIMN还分析到软骨藻酸以二聚体的形式与铜离子结合(图5),可能以类似于EDTA的构型与铜配位。图5. 非变性代谢组学方法用于鉴定表层海水中的溶解有机质。总结:本文开发的非变性代谢组学方法通过液相后补充金属或调节pH,可以从复杂的样本中识别已知的和新的金属离子载体。1.Aron, A. T. Petras, D. Schmid, R. Gauglitz, J. M. Büttel, I. Antelo, L. Zhi, H. Nuccio, S.-P. Saak, C. C. Malarney, K. P. Thines, E. Dutton, R. J. Aluwihare, L. I. Raffatellu, M. Dorrestein, P. C., Native mass spectrometry-based metabolomics identifies metal-binding compounds. Nature Chemistry 2022, 14 (1), 100-109.
  • 安捷伦高分辨气相色谱-质谱分析方案 | 针对持久性全氟化合物(PFAS)的分析
    什么是 PFAS?它具有哪些功能?又存在哪些危害?1PFAS 即全氟/多氟烷基类物质,是一系列人工合成的有机化合物,主要由碳原子和氟原子构成。2凭借其优异的高热稳定性和化学稳定性,PFAS 在纺织、表面活性剂、食品包装、不粘涂层、防水涂层和灭火泡沫等领域广泛使用。3“成也萧何,败也萧何”,PFAS 进入环境之后,由于极其稳定,几乎不被生物降解,它可在环境中持久存在。而作为一种典型的内分泌干扰物,极微量的 PFAS 暴露就可能带来健康风险;同时考虑到不同人的体质,其安全水平难以预测。已经成为重点关注的环境新污染物之一。PFAS 监测的难点是什么?1目标化合物的数量庞大,已经报告的超过 6000 多个;且标准品不易获得;2涵盖不同的挥发性、极性和官能团。无法使用一种设备或者一个方法分析所有化合物;3浓度低(通常为低 ppt 和亚 ppt 级),要求设备有较高检测灵敏度;虽然高倍富集可以提高检测灵敏度,但同样会带来严重干扰;4实际环境中存在的 PFAS 化合物的种类和含量尚不清楚。安捷伦 7250 气相色谱-高分辨质谱联用仪具有灵敏度高、扫描速率快,高分辨抗干扰,精确质量数采集定性准确的特点,非常适合环境样品当中挥发性和部分半挥发性 PFAS 化合物的检测。因此安捷伦公司与美国加州大学戴维斯分校用户合作建立了包含上百种不同类型的 PFAS 化合物的气质高分辨谱库,包含全氟烷基碘化物(PFAIs)、氟聚物碘化物(FTIs)、氟聚物醇(FTOHs)、含氟聚物烯烃(FTO)、含氟聚物丙烯酸酯(FTAC)、含氟聚物甲基丙烯酸酯(FTMAC)和全氟烷基羧酸(PFCAs)等(图 1)。除了化合物高分辨质谱图、每个碎片的精确质量数及对应化学组成,谱库当中还包括了每个化合物的分子式、结构式、特定分析条件下的保留时间等信息(图 2)。图 1. 不同类型 PFAS 化合物的高分辨质谱图 图 2. 谱库当中 PFAS 化合物的高分辨质谱图、分子式、结构式、保留时间等信息基于 PFAS 气质高分辨质谱库、7250 SureMass 算法和安捷伦未知物分析软件,对饮用水和土壤样品当中的 PFAS 化合物进行了检测。图 3 显示的是样品高分辨质谱图经解卷积后通过与高分辨质谱库比对和保留时间辅助确认,对样品当中包含的 PFAS 化合物进行准确定性的结果(分别以一个化合物示例)。图 3. A:土壤当中检测到乙基全氟丁基醚;B:饮用水当中检测到甲基全氟辛酸数据结果表明:7250 高分辨气质和 PFAS 化合物高分辨质谱库的配合使用相得益彰,能够显著降低对 PFAS 这类复杂化合物的分析难度,提高定性准确性,加快分析速度。结 语 在上述实验过程中,7250 工作的扫描范围是 50-1200m/z,在这样宽广的范围内采集的质谱数据的分辨率和准确性不会受到影响,方便对环境当中各种类型的污染物进行大范围的筛查检测。利用 7250 这一优势,除了 PFAS 化合物,上述水样当中还检测到了包括消毒副产品、个人护理产品中的化学品、药物、杀虫剂等环境污染物,真正体现了 7250 高分辨质谱“一网打尽”的强大能力。
  • ChromCore T3色谱柱上市啦!极性&亲水化合物反相分析利器!
    在液相色谱分析中,极性和亲水化合物的有效保留和分离是一个难点和热点。常见的应对手段是使用亲水分离模式(HILIC),但该模式平衡时间较长、作用机理复杂以及分离能力有限。反相(RPLC)是应用最多的一种分离模式:1.优异普适性;2.柱效高,重现性好;3.平衡时间快。目前常见的C18色谱柱对极性化合物的保留较弱,导致分离能力有限。开发一款能够有效提升极性和亲水化合物保留和分离的C18色谱柱,具有重要的应用价值。因此,纳谱分析研发团队凭借深厚的专业知识以及对色谱分析技术领域的不懈的创新精神,经过精心研发与严格测试,推出了全新的ChromCore T3色谱柱!下面跟着小编,一起来目睹下纳谱分析的这款重磅新品吧!纳谱分析ChromCore T3色谱柱基于孔道结构特殊设计的单分散、多孔、硅胶微球,表面键合十八烷基,优化装填而成,适用于反相模式下极性和亲水化合物的保留和分析。 对极性和亲水化合物表现优异的反相保留耐受100%水相柱流失低,质谱兼容性良好柱间一致性佳由以上测试数据和应用案例可知,ChromCore T3色谱柱表现出良好的100%水相耐受性和批次间一致性,能够有效实现极性和亲水化合物保留,对三种中药配方颗粒的分析结果完全满足国家标准要求,表面该款色谱柱在极性和亲水化合物在内的小分子化合物分析方面具有广阔的应用前景。产品名称粒径(µ m)柱长(mm)内径 (mm)4.6ChromCore T3 5250A711-050012-04625S150A711-050012-04615S100A711-050012-04610S50A711-050012-04605SGuard Cartridge510A711-050012-04601SGuard Holder (Stand-alone)/10 Guard-04601S-C1*更多产品详情,欢迎咨询我司当地销售人员或拨打400 808 3822服务热线,纳谱分析将竭诚为您服务。
  • 使用ASTM方法对碳氢化合物的单一组分分析(DHA)
    在石油化工行业的各种分析实验室里,为了对一个特定的样品里的单个组分进行分析和鉴定以及对碳氢化合物的混合物进行表征,通常会用到碳氢化合物的单一组分分析(DHA)这种分离技术。多组分分析主要是检测汽油中的主体组分:石蜡,烯烃,萘和芳香族化合物和其他分子中碳原子数介于1到13的的可燃烧化合物,以确定汽油样品的总体质量。我们在这篇文章里所用到的氢气发生器设备是 Peak Precision 500 Hydrogen Trace Generator.对汽油中包含的易燃烧组分进行分析对于汽油的质量控制十分有必要。由于汽油样品的成分复杂,各组分的特性十分接近,为了将各个组分分离开,通常需要很长的色谱柱(100米)。碳氢化合物的单一组分分析的时候,多种方法通常会被用到,依据这些方法要用到的柱箱升温速率和色谱柱长度不同而将这些方法分开。这些方法各有利弊,有些方法对低沸点化合物的响应灵敏,分辨率高;有些方法对分子量大,出峰很晚的化合物有很好的分辨率。由于分析方法的性质复杂,再加上使用很长的色谱柱,在用氦气作载气的时候,气相色谱的测试时间往往会超过两个小时。但是,用氢气来做载气可以极大的提高测试的速度,因为氢气的高线性速率让它做载气时十分高效。这对石油分析实验室而言,无疑是一个十分吸引人的优点,因为样品的高通量意味着实验室的赢利水平提升。用氢气来做载气可加快气相色谱的分析速率,再加上当前氦气的供应紧张,价格上涨,这意味着那些从氦气切换到氢气做载气的气相色谱实验室不仅赢利水平会增加,同时分析的结果可以符合行业的标准。这篇应用文献阐明用氦气作载气时,按照ASTM的标准检测方法D67291来分析汽油样品的结果和利用毕克科技的Precision氢气发生器Trace生产出来的氢气未经过过滤来做载气,按照ASTM标准检测方法D67291 附录X2的汽油样品分析结果时的对比。通过对比,我们可以看到气相色谱跑样时间的减少,同时,对特定组分的分离效果保持不变。 结果与讨论对汽油进行碳氢化合物的单一组分分析显示:混合物中最后一个洗脱出来的化合物-正十五烷,当用氢气来替代氦气做载气时,它的出峰时间从125分钟减少到74分钟。(如图1所示)尽管分析的时间不同,但是,对汽油中的主要组分的分析(石蜡,烯烃,萘和芳香族化合物)显示使用氢气和氦气作载气时,测量出来的主要组分含量差异不明显。尽管用氢气来做载气时需要更高的气体流速,但是,在大多数情况下混合物的各组分分离的效果依旧很不错,甚至在某些时候,分离的效果得到了改善。对1-甲基环戊烯和苯的分离和检测,在汽油样品分析中有严格的规定,因为苯的碎片物质的分析十分重要。用氢气做载气的时候,尽管该有机物的洗脱时间变短了,但是,气相色谱对此有机物的分离效果却提高了。(如图2所示)对于甲苯和2,3,3-三甲基戊烷的分离,在用氦气作载气时可以实现,用氢气做载气时,这两个物质同时出峰(如图3所示)用氢气做载气时,若要将这两种物质进行分离,需对方法进行改进。用氢气或氦气作载气的时候,气相色谱对十三烷和1-甲基萘的分离效果都很好,不相上下。(如图4所示)碳氢化合物的单一组分分析结果显示,利用氢气做载气时,按照ASTM标准方法 D6729 附录X2的方法来进行汽油样品的分析既可以极大地减少分析的时间,同时,对特定关键组分的分离效果和分辨率依旧十分理想。表1 指定的ASTM标准检测方法在装有100米长毛细色谱柱高分辨率气相色谱仪的协助下,可以确定发动机燃料中易燃物的单一组分的含量。(ASTM 国际2002) 表2 对汽油中主要组分的定量分析及结果图1 利用氦气和氢气分别做载气时,对汽油样品进行碳氢化合物单一组分分析时的气相色谱图图2 利用氢气和氦气分别做载气时,对1-甲基环戊烯和苯的分离效果对比图3 利用氢气和氦气分别做载气时,对甲苯和2,3,3-三甲基戊烷的分离效果对比图4 利用氢气和氦气分别做载气时,对十三烷和1-甲基萘的分离效果对比 参考1. 指定的D6729-01标准检测方法需要用到装有100米长毛细色谱柱高分辨率的气相色谱仪,来确定发动机燃料中的易燃物的单一组分。 ASTM国际2002.2. 指定D6729-01附录X2,用氢气来做载气时,碳氢化合物的分析数据。ASTM国际2004
  • 使用质谱引导的Prep100SFC系统的叠加进样和收集功能而实现手性化合物纯化
    Steve Zulli、Dan Rolle、Ziqiang Wang(博士)、Timothy Martin、Rui Chen(博士)和Harbaksh Sidhu Waters Corporation, Milford, MA, U.S.应用效益使用叠加进样模式进行手性化合物纯化证明了质谱引导的Prep 100 SFC系统所提供的收集方案具有多用性和灵活性。大气压条件下的开放床式收集平台在同时使用包括质谱检测器在内的多种检测器进行触发收集时,可提供更高的效率及成功率。沃特世解决方案质谱引导的Prep 100 SFC系统,2998型光电二极管阵列(PDA)检测器,3100型质谱检测器,2767型样品管理器MassLynx&trade 软件,FractionLynx&trade 应用管理程序,叠加进样模块关键词手性,Prep 100 SFC,叠加进样,质谱引导,开放床式收集引言根据FDA的规定1,手性色谱已经成为药物开发早期为通过药理学、毒理学和临床信息准确鉴定单一纯对映体并进行分离的首选工具。 超临界流体色谱(SFC)因其具有更高的效率、更大的通量和更宽的适用性而被证实成为手性化合物分离的一种主流技术。手性SFC越来越受到关注并且其应用范围不断扩大,在一些情况下逐渐成为首选方法。 通常情况下,对映体混合物含有一定数量的杂质,对于常用的叠加进样和基于信号阈值的收集策略而言(例如UV/ PDA检测),这些杂质可降低实际纯化过程的效率。多数情况下,进行一步预净化是必要的,但因存在资金和工作量限制却是不实际的。这需要一种能将对映体与其它杂质鉴别开来的多功能检测方案。除了UV/PDA检测器之外,3100型质谱检测器是一种可广泛用于手性分离的理想选择。 在本应用文献中,展示了质谱引导的Prep 100 SFC系统及其在开放床式平台上进行叠加进样和收集的功能,并被证实是一种手性化合物纯化的有效工具。下文回顾并描述了用于手性分离案例的系统配置和方法。 试验 化学品CO2由Airgas(Salem,NH,USA)公司提供,并以加压液体的形式在大约1100 &ndash 1300 psi的条件下,通过内置管道供应给质谱引导的Prep 100 SFC系统。甲醇和反式芪氧化物(T SO,MW:196)由Sigma-Aldrich(St.Louis,MO ,USA)提供。SFC色谱柱ChiralPak AD-H和ChiralCel OD-H(均为 21 mm x 250 mm、5 &mu m)由Chiral Technologies公司(West Chester,PA,USA)提供。SFC系统质谱引导的Prep 100 SFC系统配备一个附加的叠加进样器。2767型样品管理器配置为一个简化型重复馏分收集器。 方法条件SFC梯度和流速程序对于所述的全部数据而言,100 g/分钟的最大总流速与各种等度的改性剂程序配合使用。质谱检测器的条件用于各种试验的3100型质谱检测器标准ESI模式使用以下关键参数:毛细管电压: 3.5 KV锥孔电压: 40.0 V二级锥孔电压: 3.0 V射频透镜电压: 0.1 V源温度: 150 ˚ C脱溶剂气温度: 350 ˚ C脱溶剂气体流速: 400 L/小时锥孔气体流速: 60 L/小时0.1%的甲酸-甲醇溶液用作补偿液流进入质谱,以提高电离效率。数据管理MassLynx/FractionLynx,第4.1版 结果和讨论叠加进样模式下的纯化放大手性分离中通用的最佳做法是利用叠加进样模式进行样品进样和馏分收集,这可实现效率最大化并降低生产成本。 在含有一定杂质的复杂体系中,质谱引导的系统可以鉴定和选择性的收集感兴趣的目标化合物,并正确的忽略不需要杂质。因而,该系统对于手性化合物的SFC纯化,具有高效、适用范围广的特点,并成为手性药物开发的常规主流工具。 我们对质谱引导的Prep100 SFC系统进行了一定的改造,以便将该系统用于手性化合物分离纯化时达到其最大效益,其中包括添加了一个专用进样器并改变了收集床布局以容纳更大的容器,从而可重复收集对映体的馏分。 层叠进样/进样器的启用Prep 100 SFC系统整合了一个沃特世叠加进样模块,用户选择&ldquo 进样类型&rdquo 并输入叠加进样的总次数以及软件程序中的其它相关参数,如图1和图2所示。以叠加进样的模式,运行一个自定义的进样序列,该进样器可从单一样品容器中抽取多份等量样品。 未使用叠加进样模式时,2767型样品管理器能继续按照&ldquo 样品列表&rdquo 所定义的顺序从样品架上逐个进样单一样品。 图3显示了对一种双峰混合物进行叠加进样后得出的典型色谱图。紫外和质谱对所需物质的检测结果均是正确的,从而确保了通过紫外或质谱触发可进行可靠而成功的馏分收集。在本例中,紫外信号用作收集触发;必要时也可使用质谱信号。 自定义用于单个样品瓶的收集床布局质谱引导的Prep 100 SFC系统使用2767型样品管理器作为专用馏分收集器。在手性化合物纯化中,由于馏分收集数为两份(或者在某些情况下可能多达四份),因此需要用更大容器及重复式前后收集模式取代一对一模式下的常规类型试管架。 所以,2767型样品管理器可通过定义收集的位置及更大容器而进行定制。从而可对同一个对映体的所有叠加进样序列结果,通过重复式的前后收集方式,收集到相同的收集瓶中。如图3所示,两种对映体馏分分别被收集进1号瓶(粉红色条带)和2号瓶(绿色条带)。这在2767型样品管理器上以反复模式根据序列内的单一进样管线而完成。这表明使用Masslynx软件和Fractionlynx样品管理器进行样品收集的过程是成功的,并且满足了依据对映异构体对的信号强度水平进行正确鉴定和收集的关键标准。 图4所示,是对一个包含无关杂质峰与对映异构体对的体系进行分离和选择性收集的实例。如彩色条带所示,通过目标化合物的质谱引导,只有两个分离开的目标化合物被收集,而第三个峰(无关的杂质)没有被收集。 MassLynx/FractionLynx AutoPurify&trade 平台拥有众多高级、适用于复杂工作流程的检测和收集算法,例如,使用多种检测器信号进行触发的布尔逻辑算法。如果样品已足够纯净,那么用户可选择使用UV/ PDA进行检测;如果样品包含相当数量的杂质,那么用户可选择使用组合型信号和斜率算法以及特定的目标分子量,以确保得到更纯的收集馏分。 结论已经证实质谱引导Prep 100 SFC系统在不同药物的开发过程中具有高效、适用性强及用途广的特点。本文所述的质谱引导Prep 100 SFC系统叠加进样和收集的附加特点使其对手性分离具有更强的定制能力,从而可为纯化实验室的色谱分析师带来效益,例如:■ 多重、多功能检测模式实现了更高的成功率;■ 基于开放床式平台的相同叠加进样和收集模式简化了使用方法;■ 能提供一个遵从行业和政府规定的更安全的实验室环境。沃特世质谱引导的Prep 100 SFC系统是一种在药物发现以及其它制备型色谱中进行手性纯化的强有力工具,可满足实现更大产能和更高成功率的需求。参考文献[1] http://www.fda.gov/cder/guidance/stereo.htm 关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。
  • 超高效液相色谱串联质谱法测试20种全氟烷基类化合物测定
    全氟烷基类化合物(PFAS)是一类人造化学物质,是指有机物分子中碳链上连接的氢原子被氟原子全部或部分取代后形成的含有C-F键的化合物。PFAS因其独特的情性、疏水疏油性、及良好的滑动性、拒污性等,自1940年以来被广泛应用于化工、纺织品、纸张和包装、涂料、建筑产品和医疗保健产品等工业和消费品领域。PFAS能够经受很强的热、光照、化学、微生物作用和高等脊椎动物的代谢而不降解,可以随食物链的传递在生物机体内富集和放大至相当高的浓度, PFAS具有诱发肝中毒、发育毒性、免疫毒性、内分泌干扰以及潜在致癌性等毒理效应。HPLC-MS/MS技术具有高的灵敏度选择性和重现性,是目前分析PFAS常用的方法。✓色谱条件色谱柱:Ultimate UHPLC XB-C18(2.1×150mm,1.8μm)。流动相:A相:5mmol/L乙酸铵水溶液;B相:5mmol/L乙酸铵甲醇溶液;柱温:40℃;流速:0.3mL/min;进样体积:1μL;梯度洗脱程序见下表:✓质谱条件电离模式:ESI-;毛细管电压:1KV;脱溶剂气温度:350℃;脱溶剂气流速:900L/H;锥孔气流速:100L/H;离子源温度:100℃。✓谱图和数据(1)20种混标中各目标物定量离子图(2)20种混标中各目标物色谱结果叠加图全氟烷基化合物主要质谱参数:
  • 广西环境科学学会《水质 醚类化合物的测定 吹扫捕集/气相色谱-质谱法》等两项团体标准的立项公告
    各有关单位:根据《广西环境科学学会团体标准管理办法》的有关规定,《土壤和沉积物 醚类化合物的测定 吹扫捕集/气相色谱-质谱法》《水质 醚类化合物的测定 吹扫捕集/气相色谱-质谱法》等两项团体标准,经我会评审,予以立项。现进行公示,公示时间为2023年3月13日~3月28日。公示期内,如有单位或个人对拟立项标准存在异议,可将意见书面反馈至广西环境科学学会团体标准技术委员会。联系人:谢佳凝电话:18978888192 广西环境科学学会2023年3月13日广西环境科学学会关于2023年第一批团体标准立项的公告.pdf
  • 广西环境科学学会关于《水质 醚类化合物的测定 吹扫捕集/气相色谱-质谱法》等两项团体标准的立项公告
    各有关单位:根据《广西环境科学学会团体标准管理办法》的有关规定,《土壤和沉积物 醚类化合物的测定 吹扫捕集/气相色谱-质谱法》《水质 醚类化合物的测定 吹扫捕集/气相色谱-质谱法》等两项团体标准,经我会评审,予以立项。现进行公示,公示时间为2023年3月13日~3月28日。公示期内,如有单位或个人对拟立项标准存在异议,可将意见书面反馈至广西环境科学学会团体标准技术委员会。联系人:谢佳凝电话:18978888192广西环境科学学会2023年3月13日广西环境科学学会关于2023年第一批团体标准立项的公告.pdf
  • 安捷伦科技的超临界流体色谱质谱联用解决方案简化了复杂化合物的高通量分析
    安捷伦科技的超临界流体色谱质谱联用解决方案简化了复杂化合物的高通量分析 2014 年 6 月 16 日,北京 — 安捷伦科技公司(纽约证交所:A) 今日宣布该公司的所有液质联用仪包括软件支持对于超临界流体色谱 (SFC/MS) 的控制。这一增强型功能有助于加快分离速度、降低有机溶剂用量,并实现液相色谱的正交选择。这种硬件-软件高度整合的SFC/MS解决方案,进一步简化了复杂化合物的高通量分析过程,使其成为适合于多种行业的理想产品。 制药、食品科学、脂质组学、代谢组学、环境和石化实验室可使用 SFC/MS 分析一系列的化合物(例如,手性、非手性、极性和非极性化合物),包括复杂基质中高度类似的化合物。SFC与液相色谱质谱的大气压电离源完美兼容,通过与质谱联用,提高了峰的分离能力,使 SFC 的应用范围更广。 “以前安捷伦的LCMS产品 6400 系列 QQQ 和 6200/6500 TOF/Q-TOF与SFC联用时需要使用两个软件平台,”安捷伦的 LC/MS 产品市场部总监 Lester Taylor 说道,“现在安捷伦 MassHunter 软件能完美控制 Agilent 1260 Infinity 分析型 SFC 系统。使用这个单一软件平台将仪器控制、数据采集和分析过程集于一身,将使我们的客户收益。” 除了分析型 SFC 系统,安捷伦还是唯一可提供混合型 SFC/UHPLC系统的公司,该系统可在两种模式间进行无缝转换,使方法开发变得更加快速简单。SFC 和 SFC/UHPLC 系统均可与安捷伦液质联用。 现在,SFC/MS 的集成软件为方法开发和日常分析提供了可靠的仪器控制。仅使用有限的有机溶剂,SFC/MS 即可对用液相色谱方法难以分离的化合物进行快速高效的分离。 更多信息,请访问安捷伦的在线资源,了解扩展的液相色谱系统工作流程解决方案。您还可以访问安捷伦的 2014 ASMS 媒体资料包以获取更多产品相关信息,并了解安捷伦公司的 ASMS 会议活动安排。关于安捷伦科技公司 安捷伦科技公司(纽约证交所:A) 是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20600 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2013 财年,安捷伦的净收入达到 68 亿美元。如欲了解关于安捷伦的详细信息,请访问:www.agilent.com。 2013 年 9 月 19 日,安捷伦宣布将通过对旗下电子测量公司进行免税剥离,分拆为两家上市公司的计划。分拆后的电子测量公司命名为是德科技 (Keysight Technologies, Inc.),此次分拆预计将于 2014 年 11 月初完成。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 毛细管电泳-质谱技术在手性化合物分离分析中的研究进展
    手性是自然界和生命体的基本属性之一,诸如生物结构中的核酸、蛋白质及糖类等都具有手性。目前绝大多数药物都是以手性形式存在,这些药物在生命体内的药理活性、代谢作用和速率及毒性等方面均存在显著差异,比如一种对映体有活性,而另一种无显著的药理活性,甚至有毒副作用或可发生拮抗作用。除了旋光性上的差异,手性药物具有相同的物理和化学性质,故对其分离分析一直都是药物分析、分离纯化领域研究的重点和难点。新药的研发和应用亦需要研究人员继续开发新的高效手性分析方法,以实现高选择性和高灵敏度的手性化合物定量和定性分析。高效液相色谱-质谱(HPLC-MS)具有较高的灵敏度和重现性,是目前手性药物分离分析的主要方法。然而,HPLC-MS需要昂贵的手性柱和与MS兼容的色谱柱流动相,而且手性色谱填料的柱效和拆分能力仍有待提高。毛细管电泳(CE)技术凭借其高效、低样品消耗、分析快速、分离模式多样化等诸多优势,已经发展成为手性分离研究领域极具吸引力和应用前景的分析方法之一。紫外可见检测器(UV-Vis)是CE最常用的检测器,但是毛细管的光程长度较短,导致灵敏度较低,因此难以满足生物样品中痕量手性化合物的分析要求。激光诱导荧光检测器(LIF)可以提高检测的灵敏度,但是只适用于本身带有荧光或被荧光标记的物质。而毛细管电泳-质谱联用技术结合了CE的分离效率高、分析速度快、样品消耗低以及MS的高灵敏度和强结构解析能力,近些年来在蛋白质组学和代谢组学等领域发挥了重要作用。CE杰出的手性拆分能力与MS优势的结合,亦使CE-MS成为实现手性化合物高效分离分析的完美组合,尤其是在复杂生物基质中手性化合物分析的灵敏度和分辨率方面,为药物、医学以及食品科学等领域重要手性分子分析提供了新视角。手性CE-MS联用技术,在一次分析中能同时得到样品的迁移时间、相对分子质量和离子碎片等定性信息,解决了实际样品中未知手性化合物(包括无紫外吸收基团或荧光基团的手性化合物)的识别问题,在减少生物样品基质效应的同时,可以对多组手性对映体实现高通量分析。在过去的十几年里,基于不同CE-MS分离模式的高性能手性分析体系层出不穷,并成功应用于医药、生物、食品和环境科学等领域的手性化合物分析中。这篇综述着重评述了电动色谱-质谱(EKC-MS)、胶束电动色谱(MEKC-MS)和毛细管电色谱-质谱(CEC-MS)手性分离模式从2011年到2021年的最新发展和应用。综述介绍了CE-MS各种手性分析模式下的分离原理、手性选择剂以及在医药等领域中重要手性化合物的分析应用,并讨论了不同手性分析模式的局限性。最后总结了CE-MS联用模式在手性化合物分离分析中的应用前景。相比于广泛应用的HPLC-MS, CE-MS凭借其高效率、低消耗、高选择性、分离模式多样化等诸多优势,已发展成为手性分析领域应用前景广阔的分析方法之一,并且已成为HPLC-MS等其他经典手性分离方法的一个强有力补充技术。目前CE-MS手性分析的研究挑战之一是实现快速和超灵敏的手性分析。采用基于短毛细管的快速毛细管电泳(HPCE)结合在线样品富集有望解决这个难题。此外,CE-MS的不同手性分析模式大多数采用的是三管设计的鞘状流动界面,灵敏度较低。新进研发的新型界面技术,如通过微瓶辅助的界面流动、无套多孔尖端的设计以及CE-MS离子源的引入等,在提高手性化合物分析灵敏度方面显示出巨大应用前景。另一方面,开发同时对多种手性药物进行对映体分离、检测和定量的CE-MS手性分析方法,也是目前研究的重点和难点。这些研究将对开发制药工业中的通用方法和高通量分析生物样品中的手性药物及其手性代谢物具有重要意义,对手性药物和代谢物的药物-药物相互作用和毒性研究也具有指导价值。EKC-MS和MEKC-MS应用中的手性选择剂具有多样性,使其在新药开发和药物质量控制、药代动力学以及药效学研究中具有巨大的潜力。进一步开发MS友好、绿色和高选择性的手性选择将拓宽待分离手性化合物的应用范围。目前,CEC-MS手性分析研究中,研究者更多致力于开发用于整体柱或填充柱的新型毛细管手性固定相。使用功能化纳米颗粒增加CEC手性柱表面积以及CE-MS的微型化微芯片设备的研发,目前仍是尚未充分探索的领域,尤其在实际应用方面与相对更加通用的手性分离模式相比仍有较大差距。文章信息:色谱, 2022, 40(6): 509-519DOI: 10.3724/SP.J.1123.2021.11006迟忠美1, 杨丽2*1. 渤海大学化学与材料工程学院, 辽宁 锦州 1210132. 东北师范大学化学学院, 吉林 长春 130024
  • 基于国产液相色谱技术的有机化合物监测技术获技术进步奖二等奖
    在20位院士、30多家提名机构和100余位提名和评审专家的大力支持下,2022年“环境技术进步奖”圆满完成,27个项目获得一等奖和二等奖。   据不完全统计,2022年的获奖成果包括国际专利21项、发明专利530项、实用新型专利等其他知识产权538项;2019-2021年,相关产值高达642亿元,实现利润126亿元,充分体现了我国环境技术创新实力。   中国环保产业协会将陆续发布获奖项目简介,供社会各界人士参考。   (注:所有发布材料均由获奖单位提供。)   项目名称:基于国产液相色谱技术的有机化合物监测技术体系的建立   项目编号:HJJS-2022-2-16   获奖等级:二等奖   完成单位:辽宁省生态环境监测中心、中国环境监测总站、辽宁省沈阳生态环境监测中心、华谱科仪(大连)科技有限公司、山东悟空仪器有限公司、丹东瑞特科技有限公司   完成人:刘枢、杨婧、卢迎红、袁俊斌、彭跃、赵丽娟、王锷一、曲健、魏杰 项目团队照片   项目简介:   该项目构建了水、气等多环境介质、多目标化合物、质控指标全面的有机化合物液相色谱法监测技术体系,并针对国产液相色谱仪在环境介质中多目标化合物的检测分析技术落后的情况,开展对国产液相色谱仪关键技术研究,进一步发展色谱分离技术和完善应用软件,打破了液相色谱长期被国外品牌高度垄断的局面。主要创新性成果如下:   1.国产液相色谱关键技术研究   研发具有自主知识产权的高效液相色谱仪,推动监测装备的发展和国产化。开发2种国产液相色谱柱材料及固定相制备技术,解决了色谱分离度差,方法灵敏度低等关键技术瓶颈,提出2种实用的聚合反应釜技术方案解决生产实际问题,解决泵材料、耐磨性、密封性,保证输液的精度和稳定性。进行了色谱柱材料及固定相制备技术的攻关,解决了色谱分离度差,方法灵敏度低等关键技术瓶颈。采用低残留的法兰针头与阀上进样设计、帕尔贴柱温箱温控技术、机械镌刻光栅紫外检测器提高分析的精密度、灵敏度。   2.开展气态样品采集、水质样品富集和复杂样品净化等关键技术研究,构建多环境介质、多目标化合物、质控指标全面的有机化合物监测技术体系,制订发布5项国家环境保护标准分析方法,有力支撑监测技术规范化、业务化。具体包括:   (1)研发了一系列采样设备关键技术   开发了废气排放管道中半挥发性有机物采样、高负载气体颗粒物及有害气体采样等关键技术,建立多环境介质中有机化合物的采集、提取、净化和分析测试的先进技术。   (2)样品前处理技术研究   重点突破分析测试回收率低、重复性差、萃取溶剂毒性大且用量多、操作繁琐等关键技术。该技术分别从不同类型水体、空气和废气等不同类型环境介质方面进行深入研究。   (3)建立了一套有机污染物分析测定质量保证和质量控制技术   质量控制内容涵盖从样品采集、运输保存、前处理过程、样品净化、仪器分析及结果处理全程序质量相关每一个节点。通过空白测定、平行样分析、样品加标、基体加标、替代物加标等具体控制参数,对人员、环境、仪器、试剂及操作方法程序进行监控,以保证获得高精密度、准确度、灵敏度分析测试结果为核心,研究了构建科学、完善、高效的质量保证和质量控制指标体系。   (4)构建了一套完整的不同类型环境介质中多环芳烃、醛酮类化合物、酰胺类化合物、奥昔嘌醇监测技术体系,并采用国产液相色谱技术进行了方法的建立和验证。   通过创新、集成并对接目前国内外对多环芳烃、醛酮类化合物、酰胺类化合物、奥昔嘌醇的质量标准和排放标准等技术需求,优选了色谱柱、优化了分离条件;对空气和水质开展了实验室内和实验室间的检出限、精密度和准确度验证、并建立了科学完善质量控制的指标体系,在使用国产液相色谱的用户中得到广泛应用。   项目成果获得发明专利4项、实用新型专利14项,软件著作权1项,发表SCI论文4篇,国内核心期刊发表论文16篇,形成国家环境保护标准6项(有1项在研)、地方标准5项。该项目在近百家环境监测机构和商业实验室获得推广应用,液相色谱及依据该项目专利生产的采样器经济效益可观。该技术为全国监管新有机污染物、打赢污染防治攻坚战提供了关键技术支撑,社会效益显著。 仪器研制技术路线图   获奖感言:刘枢 辽宁省生态环境监测中心 中心副主任   “十四五”期间要求大力支持绿色技术创新,全面提升生态环境科技创新能力。营造良好创新生态,激发创新主体活力,推进技术创新成果应用是我们科研人员不懈努力的方向。本项目针对国产液相色谱仪在环境介质中多目标化合物的检测分析技术落后的情况,重点研发具有先发优势的关键技术和引领未来发展的基础前沿技术,打破了液相色谱长期被国外品牌高度垄断的局面。路虽远,行则将至;事虽难,做则必成。我们将继续围绕深入打好污染防治攻坚战,为建设天蓝地绿水清的美丽中国不懈奋斗。
  • 超短链全氟烷基化合物“三氟乙酸”分析利器——超临界流体色谱质谱联用技术
    近年来,以三氟乙酸(TFA)为代表的超短链全氟烷基化合物(超短链PFAS)大量赋存于城市河水中这一问题已对城市生态及饮用水生产带来了巨大挑战,监测和精确定量饮用水源中的超短链PFAS已经迫在眉睫。针对高极性的超短链PFAS,高效环保的超临界流体色谱质谱联用技术可以提供良好保留和高灵敏度检测结果。背景介绍PFAS是一类广泛用于消费品和工业生产的含氟有机化合物。全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)是两种含八个碳的全氟烷基酸类化合物(PFAA),因具有较高的环境持久性和毒性,已在全球范围内逐步淘汰。然而,取而代之的是一些超短链(C1&minus C3)(图1)和短链(C4&minus C7)PFAA,其在环境、血液及尿液样本中正在被广泛检出【1,2】,引发了人们对健康影响的担忧。图1 超短链(C1&minus C3)全氟烷基化合物特别是含量较高的三氟乙酸被认为含有损坏生育能力和儿童发育毒性,正在全球范围内引起广泛关注。据欧洲新闻网报道,欧洲农药行动网络(PAN Europe)及其成员于5月27日联合发布了一项研究报告,对来自10个欧盟国家的23个地表水样本和6个地下水样本的联合调查发现,所有检测的水样中均检测到PFAS,其中23个样本(79%)的TFA浓度超过了欧盟饮用水指令中“PFAS总量”的拟议限值;而在检测到的总PFAS中,TFA占总量的98%以上【3】。TFA是含有两个碳的全氟羧酸,属于超短链(C1&minus C3)全氟烷基化合物。其在环境中普遍存在,主要来源包括PFAS农药、氢氟碳化物制冷剂、污水处理和工业污染(图2)。尽管目前对TFA的生物毒性效应研究有限,考虑到其持久性和全球传播特性,正在引起全球多国的密切关注【4,5】。图2 杀虫剂、杀菌剂和药品中的碳键全氟甲基在环境条件下通过氧化裂解转化为TFA特色应用方案使用高效环保的超临界流体色谱(SFC)分离技术,结合超高灵敏度三重四级杆质谱检测器,岛津中国创新中心开发了包括TFA在内的五种超短链PFAS快速分析方法。与反相液相色谱不同,SFC可以充分保留仅有一到三个碳的超短链PFAS,有效降低基质的干扰(图3)。图3 SFC-MS/MS和LC-MS/MS分析超短链PFAS色谱对比图(1ng/mL标液)使用SFC-MS/MS对纯水配置的系列标准溶液进行分析,可得到良好线性和较低检测限(见表1),进一步,对不同地表水样品进行检测,结果发现,均检测到一定量TFA,使用内标法定量,分别为几百个到几千个ppt,说明TFA在城市水体都存在较为严重的污染(图4、图5)。图4 SFC-MS/MS分析地表水样品1中超短链PFAS图5 SFC-MS/MS分析地表水样品2中超短链PFAS表1 SFC-MS/MS分析水样中超短链PFAS线性和检出限总结采用超临界流体色谱串联三重四极杆质谱仪(SFC-MS/MS)建立超短链(C1&minus C3)全氟烷基化合物的快速分析方法。由于超临界流体色谱独特的分离选择性,使用SFC-MS/MS分析种类繁多的PFAS,可以得到与反相色谱截然不同的溶出顺序和出峰行为。SFC-MS/MS可作为反相液相色谱质谱联用技术一种有力补充,对超短链PFAS进行更准确定量。随着对PFAS及其降解产物(TFA等)认识的不断深入,全球各国需要加强对这些持久性化学品的监管和限制, 旨在减少PFAS污染,保护生态系统和人类健康。超临界流体色谱串联三重四极杆质谱仪(SFC-MS/MS)注解*:超临界流体色谱(SFC):使用超临界流体作为流动相的色谱分离技术。以超临界流体CO2为流动相的SFC分离技术不仅高效而且节能环保,作为一种绿色分离技术在制药、食品和石油领域得到越来越广泛的应用。参考文献1. Guomao Zheng, Stephanie M. Eic, Amina Salamova. Elevated Levels of Ultrashort- and Short-Chain Perfluoroalkyl Acids in US Homes and People. Environ. Sci. Technol. 2023, 57, 42, 15782–15793.2. Isabelle J. N., Daniel H., Hanna L. W., Vassil V., Ulrich B., Karsten N., Marco S., Sarah E. H, Hans P. H. A., and Daniel Z., Ultra-Short-Chain PFASs in the Sources of German Drinking Water: Prevalent, Overlooked, Difficult to Remove, and Unregulated. Environ. Sci. Technol. 2022 56, 10, 6380-6390.3. 欧洲水体中的PFAS污染引发关注:塞纳河等河流中令人惊讶的三氟乙酸浓度.【微信公众号:新污染物监测与分析】4. Cahill, T. M. Increases in Trifluoroacetate Concentrations in Surface Waters over Two Decades. Environmental Science & Technology, 2022, 56,9428-9434.5. Thomas M. Cahill. Assessment of Potential Accumulation of Trifluoroacetate in Terminal Lakes. Environ. Sci. Technol. 2024, 58, 6, 2966–2972.本文内容非商业广告,仅供专业人士参考。
  • 样品前处理技术及其小分子化合物的液相色谱-质谱分析
    Tutorial 1: 样品前处理技术及其小分子化合物的液相色谱-质谱分析——2010年慕尼黑上海分析生化展同期论坛  时间:2010年9月17日  地点:上海新国际博览中心W2号馆,W2-M2会议室  主办单位:德国慕尼黑大学医疗中心医疗化学研究所生物分离实验室  演讲嘉宾:Dr. Karl-Siegfried Boos, Dr. Rosa Morello  参会方式:免费注册参会  会议网址:http://www.a-c.cn/ac/0126_2.html  该课程主要针对方法开发技术人员、化学分析师、实验室主管和生物、制药以及治疗等领域的科学家。课程包括复杂体液处理仪器介绍、操作程序和应用准则等。 其中主题之一为液态分离(SPE)与耦合串联质谱LC系统的整合应用。参加者将能了解多维度SPE在高度选择性样本清理中的应用和原则。课程将就详细介绍各类SPE材料(如限制查阅材料、RAM、分子印记聚合物、MIP、混合模式材料等)的特性和表现以及SPE-LC的产出提高方式与小型化手段。除尿液和离子样本直接注入和在线SPE分析外,课程还将介绍全血直接注入和整体处理。 我们还将讨论干血点(DBS)样本制备和分析的优缺点。课程将就LC-MS/MS生物分析离子抑制/基质效应的理解和监控做简要介绍,主要关注通过样本预处理和分离消除离子抑制的方法。在此背景下,我们将重点介绍优化液相色谱(POPLC)工具,以及该方法在各种生物分析中的广泛应用,如治疗药物监测、生理监测、环境和医疗化学分析。课程将在开放和交互的氛围中进行。  2010年慕尼黑上海分析生化展(analytica China 2010)  时间:2010年9月15日-17日  地点:上海新国际博览中心 (上海市浦东新区龙阳路2345号), W1-W2馆  更多同期活动:  第五届上海国际分析化学研讨会  “蛋白质组学与疾病”专题研讨会  色谱技术中德论坛:复杂样品的分离分析  FDA/EU认证:实验室质量控制  样品前处理技术及其小分子化合物的液相色谱-质谱分析  代谢组学在生物技术和生命科学上的进展  展商技术交流会  主办方联系方式:  慕尼黑展览(上海)有限公司  赵晨光 洪燕  电话:86-21-2020 5500  传真:86-21 2020 5688  邮箱:zhao.chenguang@mmi-shanghai.com hong.yan@mmi-shanghai.com  网站:www.a-c.cn
  • 傅若农:珠联璧合功能尽显的金属有机框架化合物(MOFs)吸附剂
    往期讲座内容见:傅若农老师讲气相色谱技术发展    金属有机框架化合物(Metal Orgaic Framework)(MOFs)是由无机金属离子和有机配体,通过共价键或离子共价键自组装络合形成的具有周期性网络结构的晶体材料,其中,金属为顶点,有机配体为桥链。MOFs结构中的金属离子几乎包含了所有过渡金属离子。配体,通常分为含氮杂环有机配体、含羧基有机配体、含氮杂环与羧酸混合配体三种类型。MOFs具有独特的孔道,可设计和调控它的尺寸和几何形状,并在孔道内存在开放式不饱和金属配位点,使其可用于吸附或分辨不同的气体或离子,MOFs非常适合于辨识特定的小分子或离子,在多相催化、气体分离和储存等方面有着广泛的应用。由于MOFs具有优异的性质,如比表面高、热稳定性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在分析化学领域有广泛的应用前景。  在20世纪前,多孔材料一般有两种类型:无机材料和碳质材料。无机材料中以沸石分子筛为代表,而活性炭是在1900年之后才发现的,因其优良的吸附功能,在20世纪后半叶广泛用于各个领域。但是在多种多样的要求下。这些材料已经不能满足人们的需要,于是就有新型的无机-有机杂化金属有机骨架材料的诞生。  1995年亚希(Yaghi)研究组在Nature上报道了第一个MOFs的材料,它是具有二维结构的配位化合物,由刚性的有机配体均苯三甲酸与过渡金属 Co 形成,成为这类化合物发展史上的一个里程碑(Yaghi O M,et al,,Nature,1995,378:703-706)。图1是Yaghi 研究组合成的MOFs。图1 Yaghi 研究组合成的MOFs  1999年,Yaghi研究组在Science 杂志上报道了在原有的基础上进行的改进、以刚性有机配体对苯二甲酸和过渡金属Zn合成的具有简单立方结构的三维 MOF 材料(Li H,et al, Nature,1999,402:276- 279)。2002年,Yaghi研究组通过拓展有机配体的长度合成了一系列与M0F-5具有相同拓扑网络结构的金属-有机骨架多孔材料IRMOF( Isoreticular Metal-organic Framework ),IRM0F-8(N. L. Rosi, et al, Science,2003,300:1127-1129。 这一系列晶态孔材料的合成,成为有纳米孔洞MOF材料的第二次飞跃。  2004年,Yaghi研究组又以三节点有机羧酸配体BTB构筑了MOFs材料MOF-177, 因相对于传统材料的大分子骨架和高比表面积使它的应用范围和吸附性大大增加(Chae H K,Nature,2004,427:523-527)。  2005年法国Férey 研究组在Science发表具有超大孔特征的类分子筛型MOFs 材料——MIL-101。  2006年,Yaghi 研究组合成出了十二种类分子的咪唑骨架(ZeoliticImidazolate Frameworks,ZIFs)材料 (Férey G ,et al, Science,2005,309:2040-2042)。ZIFs具有与沸石相似的拓扑结构,它所展现出的永久孔性质和高的热化学稳定性引起了人们很大的注意,ZIFs的优越性能使其成为气体分离和储存的一类新型材料。2010年,又在 Science杂志上提出了一个新的概念——多变功能化金属有机骨架(MVT-MOFs)材料,即在同一个晶体结构的孔道表面同时修饰上不同种类功能团的 MOFs 材料,并报道了十八种MVT-MOF-5材料。  2013年Yaghi研究组在Science 上以“金属-有机骨架材料的化学和应用”为题总结了金属-有机骨架材料在化学及应用反面的发展,他们涉及了图2所列的材料(SCIENCE, 2013,341:1230444-1-1230444-12)。图 2 MOFs 分子中的无机单元(A)和有机配体(B)的结构  图中颜色:黑—C,红—O,黄—S ,紫—P,浅绿—Cl, 氯—N,蓝--多面体,金属离子,  AIPA, 三(4-(1H-咪唑-1- )苯基)胺 ADP, 脂肪酸 TTFTB4– --4,4′ ,4′ ′ ,4′ ′ ′ -([2,2′ bis(1,3- dithiolylidene)] -4,4′ ,5,5′ -tetrayl)tetrabenzoate.  1. MOFs 在吸附剂中的应用  MOFs 已经有众多应用领域,在分析化学中的应用如下图所示。在分析化学的应用中,很多过程都涉及使用吸附剂(如样品收集、贮存、固相萃取、固相微萃取、色谱分离等)。Zhi-Yuan Gu, Cheng-Xiong Yang, Na Chang, and Xiu-Ping Yan*Acc. Chem. Res., 2012, 45 (5):734–745图 3 MOFs 在分析化学中的应用  MOFs材料分为微孔、介孔、和大孔。介孔材料在有腔尺寸范围2-50 nm,这一尺寸相当于典型有机物分子大小(除了聚合物)。因此,介孔材料是特别有前途的吸附剂,用于许多领域。图3是2002-2015年间发表的有关MOFs介孔材料的文章数据(Chem. Eur. J. 2015, 21:16726 – 16742)。近年发表的有关MOFs介孔材料的文章急剧上升,到2014年后大顶峰,如图3所示。图3 2002-2015年间发表的有关MOFs介孔材料的文章数据  MOFs 比一般吸附剂具有更大的比表面和可调的孔径,图 4是近年合成的MOFs材料比表面和孔径逐年提高的情况。图 4 近年合成的MOFs材料比表面和孔径逐年提高的情况(括号中的数据是孔容(cm3/g)  2010年 A Samokhvalov 的综述“溶液中芳烃和杂环芳烃在介孔金属-有机框架化合物上的吸附”(Adsorption on Mesoporous Metal–Organic Frameworks in Solution: Aromatic and Heterocyclic Compounds)。系统地分析了在溶液中介孔材料的吸附/解吸研究的化学机制,讨论了介孔材料在水中稳定性、吸附容量和选择性。((Chem. Eur. J. 2015, 21:16726-16742)  2012年,中科院大连化学物理研究所孙立贤应邀为Energy & Environmental Science杂志撰写了题为:介孔金有机框架化合物:设计和应用(Mesoporous Metal Organic Frameworks: Design and Applications)的综述文章,详细介绍了介孔金属有机骨架材料的设计合成、研究进展及其在气体储存、催化、传感、VOC吸附和药物释放等领域的潜在应用。介孔MOFs的设计合成方法主要包括:(1)通过延长配体的长度,调节次级结构单元大小,从而提高MOFs孔径 (2)采用混合配体,构筑新型次级结构单元,获得介孔MOFs (3)利用表面活性剂作为模板,合成介孔MOFs材料 (4)设计合成次级结构配体,构建中孔MOF材料。  (http://www.cas.cn/ky/kyjz/201203/t20120331_3547949.shtml)(Energy Environ. Sci. 2012, 5:7508–7520.)  同年上海交通大学崔勇等也发表了” 介孔MOFs材料“(Mesoporous metal–organic framework materials)的总综述章,讨论了介孔材料的设计与合成,孔隙率、活化和表面改性,以及在贮存与分离,催化,药物输送及影像学的应用。其特性是依赖于笼形或通道的孔形状、大小和化学环境。(Chem Soc Rev , 2012, 41:1677–1695)。  2 典型的介孔MOFs材料  MOFs材料有很多很多,有代表性的介孔MOFs见下表1.  表1 有代表性的介孔MOFs介孔MOFs/分子式比表面积/ (m2 /g)窗口或孔道/?孔容/(cm3 /g)结构类型拓扑的符号g文献BETLangmuirCd-MOF/Cd(NH2BDC)? (4,4,-bpy)?4.5H2O?3DMF——18x23—3D通道kagJ. Am. Chem. Soc.,2010, 132:5586CMOF-2/[Zn4O(L4)3] ?22DEF?4H2O——26,20x16—3D通道pcu J. Am. Chem. Soc., 2010, 132:15390.CMOF-3/[Zn4O(L5)3] ?42DMF——20,15x7—3D通道pcu同上CMOF-4/[Zn4O(L5)3] ?37DMF?23EtOH?4H2O——32,25x23—3D通道pcu同上CMOF-2a/Cu2L1a(H2O)2?15 DMF?11 H2O0—22x15—3D通道{43 62 8}n Nat. Chem., 2010,2: 838CMOF-3a/Cu2L2a(H2O)2?12 DEF?16 H2O240—30x20—3D通道{43 62 8}同上CMOF-4a/Cu2L3a(H2O)2?10 DEF?14 DMF?5 H2O0—32x24—3D通道{43 62 8}同上CMOF-2b/Cu2L1b (H2O)2?11 DEF?3 H2O0—22x15—3D通道{43 62 8}同上CMOF-3b/Cu2(L2b) (H2O)2?13 DMF?11iPrOH?4.5 H2O0—30x20—3D通道{43 62 8}同上CMOF-4b/Cu2(L3b) (H2O)2?6.5 DEF?19DMF?8.5iPrOH?2 H2O0—32x24—3D通道{43 62 8}同上IRMOF-12/Zn4O(HPD)3?10DEF?H2O—175024.5 0.613D通道pcuScience, 2002, 295, 469.IRMOF-14/Zn4O(HPD)3?6DEF?5H2O—193624.50.693D通道pcu同上IRMOF-16/Zn4O(HPD)317DEF?2H2O1910—28.8—3D通道pcu同上JUC-48/[Cd3(BPDC)3(DMF)] ?5DMF?18H2O62988021.1x24.90.191D通道etbAngew. Chem., Int. Ed., 2007, 46: 6638mesoMOF-1/Cu3(TATAB)2(H2O)38DMF?9H2O729—22.5x26.13D通道borJ. Chem. Soc., 2006, 128:16474.MIL-100(Cr)/Cr3FO(H2O)3(BTC)2?nH2O(n=28)—310025,291.16笼型MTNAngew. Chem., Int. Ed., 2004, 43: 6296.MIL-101(Cr)/Cr3F(H2O)2(BDC)3?25H2O4200b, 2800-4230c5900 b 4000-5900 c29,34 b2.01笼型MTN16, Science, 2005, 309, 2040;49MOF-180/Zn4O(BTE)2(H2O)3?H2O15x231.37-2.15笼型qomScience, 2010, 329, 424MOF-200/Zn4O(BBC)2(H2O)3?H2O45301040018x283.59笼型qom同上MOF-210/Zn4O(BTE)4/3(BPDC)62401040026.9x48.33.9笼型toz同上NOTT-116(PCN-68)/Cu3(PTEI)(H2O)3?16DMF?26H2O4664d 5109c6033c12.0,14.8,23.2e2.13d,2.17笼型rhtJ. Am. Chem. Soc., 2010,132:409219NU-100(PCN-610)/Cu3(H2O)3(TTEI)?19H2O?22DMFa6143f—13.4,15.4,27.4f 12.0,18.6,26c28.2 f笼型rhtAngew. Chem., Int. Ed.,2010, 49:535720PCN-100/Zn4O(TATAB)2?17DEF?3H2O—86027.30.58笼型pyrInorg. Chem., 2010, 49:11637PCN-101/Zn4O(BTATB)2?16DEF?5H2O—11400.75笼型pyr同上UMCM-1/Zn4O(BDC) (BTB)4/34160650024x291D通道—Angew. Chem., Int. Ed.,2008, 47:677ZIF-95/Zn(5-氯代苯并咪唑)21050124025.1x14.3 30.1x200.43笼型pozNature, 2008, 453:207ZIF-100/Zn20(5-氯代苯并咪唑)39 OH59578035.60.37笼型moz同上Cu6O(TZI)3(H2O)9(NO3)?15H2O2847322312.088 13.077 20.2471.01笼型rthJ. Am. Chem. Soc., 2008, 130: 1833Cu2(L7)(H2O)2?14DMF?5H2O1020112721.2x3.5—3D通道ptsAngew. Chem., Int. Ed., 2009, 48: 9905.JT-1/{Cu7(OH)2(L6)3}{Cu6(OH)2(SO4)-(S3O10)2}?10H2O375—23.6—笼型f—Angew. Chem., Int. Ed., 2011,50:1154JT-2/{Cu7(OH)2(L6)3}2{Cu6(OH)2- (SO4)6 (S2O7)}{Cu3(SO4)(H2O)6} ?18H2O421—18.23—笼型f—同上  a --同一化合物会有不同的名称 b --数据源于文献:Science, 2005, 309: 2040 c--数据源于文献Angew.Chem., Int. Ed., 2006, 45: 8227 d--数据源于文献: J. Am. Chem. Soc., 2010,132:4092 e--数据源于文献: Angew. Chem., Int. Ed.,2010, 49:5357 f--数据源于文献:20 Nat. Chem., 2010, 2: 944 g—要理解拓扑符号参阅 http://rcsr.anu.edu.au/ and http://www.iza-structure.org/databases/ h—Schlafli 符号 i—手性MOF  2. 介孔MOFs材料在水中的稳定性  MOFs材料常用于吸附水中的物质,所以它在水中的稳定性至关重要。许多MOFs在水中是不稳定的,这是由于金属和配体的连接的配合物遇水会水解。在水中稳定的MOFs可用于水的净化,表2是这类MOFs。  表2 MIL-101 家族在水中的稳定性MOF后改性液体/蒸汽液相测试条件a吸附的表征结构文献MIL-100(Cr)(F)无蒸汽--变温T, RHXRD325 ℃ 稳定20. J. Am. Chem. Soc. 2009, 131: 15834–15842MIL-101(Cr)(F)无液体水50 ℃XRD,吸附 N2,24 h 稳定18.Microporous Mesoporous Mater. 2009, 120:325–330MIL-101(Cr)(F)无液体水100 ℃XRD,吸附 N2,吸附 H2O7天 稳定17,Adv. Funct. Mater. 2009, 19:1537–1552.MIL-101(Fe)-NH2无液体水中PBS 或 EDTA37 ℃XRD不稳定34,J. Am. Chem. Soc. 2009, 131, 14261–14263MIL-101(Cr)-SO3H无液体水100℃ 24h元素分析,滴定,XRD, N2吸附稳定25,Adv Mater, 2011, 23:3294–3297MIL-101(Cr)(F)无蒸汽-40–140℃ , 5.6 kPaH2O and N2吸附稳定21,Eur. J. Inorg. Chem, 2011, 471–474MIL-101(Cr)(F)无液体NaOH 或 HCl水中RTXRD, ζ -电位在pH 2-10稳定,pH 12不稳定22,Chem Eng J, 2012, 183: 60–67MIL-101(Cr)-X X=-H X=-NO2 X=-NH2 X=-SO3H 无 无 还原 无蒸汽--25℃同步辐射XRD,吸附水, TGA稳定26,Microporous Mesoporous Mater,2012, 157: 89–93MIL-101(Cr)(F) MIL-101(Cr)无蒸汽--100℃XRD, TGA,吸附稳定24,Energy Fuels 2013, 27: 7612–7618MIL-101(Cr)(F) MIL-101(Cr)-NO2 MIL-101(Cr)-NH2无HNO3/H2SO4 还原蒸汽--40–140℃TGA, DSC, XRD, BET反复40次,稳定15,Chem Mater,2013, 25:790–798MIL-101(Fe)-NH2无液体水RT,24 hXRD--33,Chem Commun,2013, 49:143–145.MIL-101(Al)-NH2无液体水50 ℃XRD稳定 12 h28,J Mater Chem A, 2014, 2:193–203.MIL-101(Al)-NH2无液体水RTXRD,NMR, AAS稳定,5 min30,Chem Eur J, 2015, 21:314–323MIL-101(Al)-URPh异氰酸苯酯 液体水RTXRD,NMR, AAS稳定 7天30,Chem Eur J, 2015, 21:314–323  4 MOFs 用作分离富集吸附剂  MOFs具有比表面积大、孔道和性质可调等的特点,非常适合于气态样品的采样和预富集。Yaghi研究较早合成的的MOF-5其比表面积约为3 000 m2/g,2004年,他们合成报的MOF-177,比表面积可达到4 500 m2/g,而2010年合成出MOF-210,以BET法测定比表面积可达6 240 m2/g,这为从混合物中分离富集微量目标物提供了很好的条件。  2007年 Ji Woong Yoon 等合成了 [Co3(2,4-pdc)2(μ 3-OH)2]?9H2O (2,4-pdc =嘧啶-2,4-二羧酸二价阴离子, NC5H3- (CO2)2-2,4) (CUK-1),以CUK-1作填充气相色谱柱,可以很好地分离几种永久气体组成(氢、氧、氮、甲烷和二氧化碳)[B-4],这样要比无机分子筛要优越多了(二氧化碳不会在低温下永久吸附)。  2010年严秀平研究组就研究了 MOF-5[ Zn4O(BDC)3, BDC =对苯二甲酸]和MOF-5单斜(沸石咪唑酯骨架结构材料ZIF-8 的吸附性能,用脉冲气相色谱、静态蒸气吸附、穿透吸附方法研究二了甲苯位置异构体和乙苯混合物在这两种金属框架配位化合物上的吸附行为。他们合成MOF-5的方法: Zn(NO3)26H2O(600 mg,2mmol)和对苯二甲酸(170mg,1mmol)溶解在DMF(20mL) 混合转移到一个聚四氟乙烯衬里的小反应釜中,密封后在120℃烘箱中加热21 h后,冷却至温,过滤得到的混合物为无色立方晶体。用DMF洗涤合成的MOF-5,在室温下干燥后再在减压下于250℃烘干, MOF-5在真空下储存以免受潮水解破坏结构,BET法测得比表面积773 m2/g。他们测得MOF-5吸附剂对乙苯、二甲苯异构体的漏出曲线,见图 5.图 5 MOF-5吸附剂对乙苯、二甲苯异构体的漏出曲线  2010年年严秀平研究组利用MOF-5吸附剂现场对大气中的甲醛进行吸附取样预浓缩,然后直接热脱附,用GC-MS进行分析。这一吸附剂比Tenax TA(有机聚合物)吸收效率高53-73倍。 取样和分析过程如图5所示(Anal Chem,2010,82:1365-1370)。图6用MOF-5吸附剂现场取样分析大气中的甲醛  2012年扬州大学曾勇平研究组用巨正则蒙特卡罗模拟法考察金属有机框架IRMOF-1和Cu-BTC吸附噻吩和苯的问题,仿真结果表明,吸附质与之间的静电相互作用主导吸附机制。结果表明,噻吩分子优先被吸附 IRMOF-1比Cu-BTC[ BTC =均苯三甲酸]有较高的吸附容量(Sep Pur Tech,2012,95:149–156)。  2013年同济大学乔俊莲研究组合成了MOF MIL-53(Al){Al(OH)[O2C-C6H4-CO2]}和MIL-53(Al)-F127{Al(OH)[O2C-C6H4-CO2]} 用作吸附剂去除水样品中双酚A(BPA)。BPA的吸附动力学数据符合拟二级动力学模型,二者对BPA的平衡吸附量达到329.2± 16.5和472.7± 23.6mg/g,远高于活性炭(从129.6到263.1 mg/g),可以快速去除水中的BPA,所需的接触达到平衡的时间约 90 min (J Colloid Interface Sci,2013,405:157–163)。双酚A吸附情况如图7所示。图 7 在MIL-53(A)上吸附双酚A的示意图 2014年江苏大学的刘春波和南京师大的张继双研究组用Cu-BTC [ BTC =均苯三甲酸](MOF HKUST-1)去除染料废水中的亚甲基蓝,Cu-BTC具有中孔,高表面积和大孔隙体积,具有很好的吸附能力(Micropor Mesopor Mater,2014,193 :27–34)。Cu-BTC的晶体结构如图6所示。Cu-BTC能用乙醇溶液再生,并保留吸附能力。因此,作者们认为这些Cu-BTC MOFs材料为载体可以成为最有前途的分离污染物的吸附剂,其晶体结构如图8。图8 Cu-BTC的晶体结构  4 小结  MOFs具有优异的性质,比如比表面高、热稳定性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在吸附剂应用领域有广泛的应用前景。MOFs在固相萃取中的应用下一篇讨论。
  • 中国科大等实现金属间化合物燃料电池催化剂的普适性合成
    近日,中国科学技术大学教授梁海伟课题组与北京航空航天大学教授水江澜课题组等合作,发展了一种高温硫锚定合成方法学,实现了小尺寸金属间化合物(IMCs)燃料电池催化剂的普适性合成,成功构建出由46种Pt基二元和多元IMCs催化剂组成的材料库,并基于该材料库发现了IMCs电催化氧还原活性与其二维晶面应力之间的强关联性。该项研究成果发表在国际期刊《科学》上。  金属间化合物又称原子有序合金,具有规整的表面或近表面原子有序排列结构和独特的电子特性,在众多化学反应中表现出优异的催化性能并因此受到广泛关注。特别是在质子交换膜燃料电池领域中,Pt基IMCs有望成为新一代低Pt阴极氧还原催化剂并大幅降低燃料电池核心部件膜电极的成本。虽然在热力学上,IMCs结构相对于传统的无序固溶体合金结构是稳定相,但IMCs的合成往往需要高温热处理来克服固相中原子有序化重排的动力学能垒(图2A)。然而,高温热处理不可避免会造成金属颗粒的严重烧结和活性金属表面积的降低(图2B),并最终导致Pt利用率的下降和燃料电池成本的大幅提升。因此,发展小尺寸Pt基IMCs催化剂的合成方法是大幅降低燃料电池成本的关键所在。  在该项工作中,研究人员基于梁海伟课题组近期在金属—碳载体强相互作用领域取得的系列成果,使用硫掺杂碳(S-C)为载体,发展了一种高温硫锚定合成策略(图2C),构建出由46种小尺寸Pt基IMCs催化剂组成的材料库,包括20种二元(囊括了所有3d过渡金属元素和数种p区元素)以及26种多元IMCs(图3)。系列谱学表征证实Pt和碳载体中掺杂的硫原子之间存在强键合作用,该作用极大程度上抑制了合金颗粒在高温下的烧结,从而能够在高温下形成平均尺寸小于5纳米的IMCs催化剂。X射线衍射和球差电镜表征证明了IMC物相的成功合成、小尺寸性、高度有序性以及规整的原子有序排列结构(图4)。  基于构建的庞大、完备的材料库,研究人员发现IMCs电催化氧还原本征活性与其二维晶面应力存在强关联性:在很宽的压缩应变范围内,其氧还原活性随着压缩应变的增加呈现单调上升趋势(图5A、B)。该现象不同于现有经典理论预测的火山关系趋势。研究人员猜测,由于存在压缩应变弛豫现象,最外层原子的真实压缩应变会显著小于测量值,从而无法表现出存在峰值的火山曲线关系。基于此,研究人员进一步预测:若能进一步通过减小IMCs的晶格常数增大压缩应变,将有望将催化活性推向峰值。  研究所制备的部分IMCs催化剂表现出优异的电催化氧还原性能。特别是氢氧燃料电池测试表明,PtNi IMC催化剂展现出记录性催化活性(0.9V电压下,质量活性高达1.84 A/mgPt)(图5C)。在氢空燃料电池测试中,尽管Pt用量比商业Pt/C催化剂低10倍以上,PtCo IMCs催化剂表现出与Pt/C催化剂相当的电池性能(图5D)。具有超低Pt负载的PtCo IMC阴极在高化学计量比气流下达到了1.08 W/cm2的峰值功率密度,展现出优异的应用前景。未来通过对碳载体的多孔结构和表面化学性质进行优化改性,有望降低局部氧传输阻抗来进一步提高氢空燃料电池性能。  本项工作的合作者还包括中科院高能物理研究所副研究员储胜启、中国科大同步辐射国家实验室教授朱俊发、电子科技大学教授崔春华以及中国科大微尺度理化中心博士林岳。该项工作得到了国家重点研发计划、国家自然科学基金、中央高校基本科研业务费专项基金、北京市自然科学基金重点研究专题以及中科院青促会的资助。  论文链接
  • 岛津Crude2Pure系统在有机合成化合物纯化中的应用
    制备液相分离技术广泛应用于合成化合物分离纯化,天然产物制备,代谢产物研究和生物制品纯化等领域。目前一般的操作流程是待分离的样品溶液经过高效液相制备系统,以紫外吸收特性或者质谱响应作为触发信号,在信号超过设定参数时引起馏分收集器收集,得到含有目标产物的溶液,后续通过旋转蒸发或者冷冻干燥等手段使得含有目标化合物的溶液浓缩、干燥,最终得到目标产物的固体状态。这种传统的工作流程在相关领域得到广泛使用。 然而,相对于前期的制备纯化工作,目标馏分的后处理经常是费时又费力的过程。含有大量水的样品往往需要12-24小时甚至更长的时间进行处理。流动相中加入的甲酸、三氟乙酸、氨水、乙酸铵等添加剂会与化合物上的官能团成盐或者以游离态存在而不能完全去除进而影响目标产物的纯度和后续生物活性实验的结果。并且更为严重的是,由于化合物的结构特性和制备色谱柱的柱效影响,在制备纯化过程中往往需要在流动相中添加易挥发的酸或者碱来调节流动相的pH 值以改善色谱峰峰形进而提高分离效率。但在分离完成后对馏分进行旋转蒸发或者冷冻干燥的过程中,随着溶剂的逐渐去除,剩余溶液中的酸或碱的浓度相对提高,当pH 变化到超过目标化合物能够稳定存在的条件时,化合物结构发生变化,造成目标产物损失,使得前期的分离工作功亏一篑。 岛津公司的全自动纯化系统Crude2Pure系统(以下简称C2P 系统)提供了一种全新的制备分离所得馏分后处理模式,可在短暂的时间内完成从馏分溶液到目标物固体粉末的获得。并且在这一过程中,有效地除去了流动相中加入的添加剂,即便是已经和化合物结合成盐的,也可以通过置换的手段得到满足后续实验要求的盐的形态,有效降低了目标化合物分解的危险。由于可以直接生成固体粉末,免去了转移等操作,极大程度的降低了由于多步骤操作而引入杂质或损失产物的风险。 C2P 系统由捕集系统和回收系统组成(图1)。捕集系统根据化合物的极性和疏水特性通过一定比例和组成的流动相将馏分溶液输送通过C2P 捕集柱,目标化合物将被保留在捕集柱中。将该捕集柱转移至回收系统,选择需要的化合物形态(盐,游离碱等)后,回收系统通过冲洗C2P 捕集柱去除多余的流动相添加剂,转化成盐形态,除水等步骤后,以二氯甲烷-甲醇溶剂洗脱目标化合物,同时辅以加热和氮气干燥,进而在3小时内得到目标化合物的固体粉末。 图1 C2P 系统的捕集系统(左)和回收系统(右) 岛津Crude2Pure 系统提供了一种快速、安全、有效的全新分离制备后处理方法。使用Crude2Pure 系统,可以在3 小时内快速完成目标化合物馏分的自动粉末化操作,同传统的样品分离纯化后处理方法相比,节省处理时间3倍以上;该系统对样品的处理过程不受样品结构特点和性质的影响,实验证明可以适合大多数化合物的处理;样品回收过程是针对每个样品的独立过程,减少转移操作,避免了相互污染的产生;待制备样品被捕集的同时,馏分溶液中的流动相添加剂在回收过程中被有效的去除,不仅可以消除阻碍粉末化的因素并且可以根据样品最终回收形态的需要选择前处理溶剂,最终得到高纯度的化合物粉末,平均回收率在90%以上。基于以上特点,C2P 系统在天然产物提取分离纯化和合成有机化合物的研究中有广泛的应用前景。 了解详情,请点击《Crude2Pure 系统在有机合成化合物纯化中的应用》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 【行业应用】赛默飞发布气相色谱法测定工业用异戊烯中含氧化合物解决方案
    科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布气相色谱法测定工业用异戊烯中含氧化合物的解决方案。高纯度异戊烯是一种重要的精细化工中间体,主要用于生产频哪酮、异戊二烯和叔戊醇,也可作为合成橡胶、树脂的中间体等。采取醚化法生产的异戊烯产品中通常含有甲醇、二甲醚、TAME等含氧化合物杂质,这类杂质对产品质量影响很大,因此在生产过程中要控制它们的含量。本实验采用Trace 1310气相色谱仪,配合AS 1310自动进样器,参考石油化工行业标准送审稿《工业用异戊烯中含氧化合物的测定(气相色谱法)》,测定工业用异戊烯中浓度不低于0.001%(质量分数)的甲醇、甲基叔戊基醚、叔戊醇等含氧化合物,以外标法计算各组分的含量。Thermo Scientific的Trace 1310色谱仪配合Thermo AS 1310液体自动进样器,在测定异戊烯中含氧化合物分析时,方法可靠、操作简单、结果准确。更多产品信息,请查看:气相色谱(trace1310)https://www.thermofisher.com/order/catalog/product/14800302#/legacy=thermoscientific.cn?CID=search-PR 应用方法下载,请查看:https://www.thermofisher.com/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/Chrom/petrochemical/documents/Industrial%20Isopentenyl%20oxygenates%20Measurements%20using%20Gas%20Chromatography.pdf?CID=search-PR ---------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com请扫码关注:赛默飞世尔科技中国官方微信
  • 总站召开《背景大气中受控卤代化合物 低温预浓缩/气相色谱-质谱法 连续自动监测技术规范(送审稿)》(
    为支撑我国《关于消耗臭氧层物质的蒙特利尔议定书》履约监测工作,规范大气中消耗臭氧层物质(ODS)和氢氟碳化物(HFCs)自动监测,中国环境监测总站(以下简称总站)及时开展《背景大气中受控卤代化合物 低温预浓缩/气相色谱-质谱法 连续自动监测技术规范》(试行)的编制研究工作。在前期大量扎实工作的基础上,经公开征求意见后形成了《背景大气中受控卤代化合物 低温预浓缩/气相色谱-质谱法 连续自动监测技术规范(送审稿)》(试行)。2022年2月15日,受生态环境部生态环境监测司委托,总站召开送审稿专家论证会,来自北京大学、复旦大学、国家环境分析测试中心、天津市生态环境监测中心、上海市环境监测中心的专家,以及生态环境部生态环境监测司、大气环境司的相关负责同志参会。与会领导和专家充分肯定了总站编制组开展的大量细致的研究工作,并建议修改完善文本材料后,尽快发布试行。以便早日将该项技术规范用于指导实际监测工作中,使背景大气中受控卤代化合物监测有据可依。下一步,总站将持续做好大气中受控卤代化合物监测相关工作,为有效支持履约管理决策及成效评估做好技术支持。来源:“中国环境监测总站”公众号
  • 生态环境部发布《土壤和沉积物 13种苯胺类和2种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法》等5项国家生态环境标准
    为支撑相关水污染物排放标准、土壤风险管控标准实施与重点流域水生态监测,服务固体废物处理处置,近日,生态环境部发布《土壤和沉积物 13种苯胺类和2种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法》(HJ 1210-2021)、《固体废物 无机元素的测定 波长色散X射线荧光光谱法》(HJ 1211-2021)、《水质 可吸附有机卤素(AOX)的测定 微库仑法》(HJ 1214-2021)、《水质 浮游植物的测定 滤膜-显微镜计数法》(HJ 1215-2021)、《水质 浮游植物的测定 0.1 ml计数框-显微镜计数法》(HJ 1216-2021)等5项国家生态环境标准。  《土壤和沉积物 13种苯胺类和2种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法》(HJ 1210-2021)为首次发布,适用于土壤和沉积物中13种苯胺类和2种联苯胺类化合物的测定,支撑《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)等土壤风险管控标准实施。本标准的发布实施填补了我国土壤和沉积物中苯胺类和联苯胺类化合物监测分析方法标准的空白,可为建设用地土壤风险管控、土壤污染修复提供监测技术支撑。  《固体废物 无机元素的测定 波长色散X射线荧光光谱法》(HJ 1211-2021)为首次发布,适用于污泥、污染土壤、粉煤灰、烟尘、尾矿废石和冶炼炉渣等固体废物中16种无机元素和7种氧化物的测定,支撑《农用污泥污染物控制标准》(GB 4284-2018)、《水泥窑协同处置固体废物环境保护技术规范》(HJ 662-2013)等标准实施。与已有固体废物无机元素的监测分析方法标准相比,本标准适用范围增加了污泥、污染土壤等介质,前处理方法简单、分析速度快,有助于提高分析效率。  《水质 可吸附有机卤素(AOX)的测定 微库仑法》(HJ 1214-2021)为首次发布,适用于地表水、地下水、生活污水和工业废水中可吸附有机卤素(AOX)的测定,支撑《污水综合排放标准》(GB 8978-1996)等实施。与《水质 可吸附有机卤素(AOX)的测定 微库仑法》(GB/T 15959-1995)相比,本标准调整了适用范围,细化了校准、样品测定和结果表示等内容,增加了干扰和消除、质量保证与质量控制等内容,更好地满足生态环境监测实际工作需要。  《水质 浮游植物的测定 滤膜-显微镜计数法》(HJ 1215-2021)、《水质 浮游植物的测定 0.1 ml计数框-显微镜计数法》(HJ 1216-2021)均为首次发布,适用于地表水中浮游植物的测定。浮游植物是水生生物的组成部分,作为一个重要的营养级代表,是水生态监测中不可缺少的内容。浮游植物密度也是地表水水质表征、水华预警等的重要指标之一。上述两项标准作为地表水中浮游植物的监测方法,可为开展水生态监测,服务流域生态环境保护工作提供支撑。  上述五项标准的发布实施,进一步完善了生态环境监测标准体系,将为规范开展生态环境监测工作,为深入打好污染防治攻坚战提供相关监测方法支撑。
  • 文献解读丨GC×GC-MS结合化学计量学测定草鱼不同部位挥发性化合物
    GC×GC-MS结合化学计量学 | 测定草鱼不同部位挥发性化合物Doi: 10.1016/j.fbio.2023.103403研究背景淡水鱼的香气是富含多种挥发性分子的混合物,具有令人不悦的泥土气味。这些挥发性分子来源于各种生化反应。因此,人们对鱼的气味研究越来越感兴趣。目前,用于阐明非靶向香气特征的常用分析技术是GC-MS。然而,由于生物样品的复杂性,可能含有成百上千种挥发性成分。传统的一维GC-MS由于其分离能力不足,可能会出现共洗脱等问题。为了识别重叠峰,引入了全二维气相色谱质谱(GC×GC-MS)联用技术。GC×GC-MS由于具有优越的分离能力和更高的峰容量,能够生成大量的数据,这对处理和分析气相色谱数据提出了巨大的挑战。对于有针对的靶向研究,质谱解卷积工具足以使研究人员从所需化合物中有效地提取信息。相比之下,在无针对的非靶向研究中,研究者缺乏关于样品成分和相关化合物的先觉知识。因此,先进的数据处理工具对于处理GC×GC-MS数据是非常重要的。本研究改进并建立了一种检测草鱼挥发性化合物的新方法。采用具有高分辨率的GC×GC-MS完全分离挥发性化合物,使用基于Matlab编写的脚本、PCA、OPLS-DA等化学计量学方法对挥发性成分进行大规模、非靶向的研究,鉴定出了用于区分草鱼不同部位的51种关键挥发性候选物。方法和结论采用GCMS-TQ8050全二维气相色谱质谱系统,配备AOC-5000注射器、双级环型单调制器:DB-5MS色谱柱1(30 m × 0.25 mm × 0.25 μm)和BPX-1色谱柱2 (2.5 m × 0.1 mm × 0.1 μm),系统由Cycle Composer软件控制。配备65 μm PDMS/DVB(poly-dimethylsiloxane-divinylbenzene)萃取头的AOC-5000注射器自动执行HS-SPME过程。将色谱图数据文件加载到GC image软件中进行处理,生成省略S/N值小于100的blob表,该表包含如化合物ID、化合物名称、两根色谱柱的保留时间和RI、峰面积、blob体积等信息。由于不同样品的相同化合物在blob表中的ID是不同的,因此编写了基于Matlab的脚本来自动比较不同样品的相同物质。一个化合物种类最多的blob表被用作模板,其他blob表与其比较,以生成包含不同样品的相同化合物的矩阵。该矩阵被提交给Malab和SIMCA分别进行PCA和OPLS-DA分析,利用VIP值找出区分草鱼不同部位的关键挥发性成分(图1)。图1. 技术路线图2比较了来自相同样品的两个色谱图,其是使用相同仪器获得的。图2a显示了GC×GC曲线,图2b是1D GC(冷喷涂装置关闭,其他条件相同)。图2a的相应强度是图2b的3倍以上,这意味着GC×GC-MS比常规GC-MS更灵敏。图2. 相同样品的GC×GC (a)和1D GC (b)的 TIC色谱图图3展示了某一草鱼样品的GC×GC-MS指纹图谱(a: 1D-GC, b: GC×GC, c: 3D-GC)。可以看出,色谱柱1出现了峰重叠等现象,许多blob均在色谱柱2上分离。此外,在GC箱温度程序中,加热速度非常慢(2 ℃/min),这意味着这些重叠峰很难通过优化色谱柱来分离。由此得出结论,相对于传统一维GC-MS,岛津的GC×GC-MS(GCMS-TP8050)能够检测出更多的挥发性化合物。以图2b为例,共检测出8749个blob,当S/N50时有3042个blob,当S/N100时有1469个blob。显然,一维GC是不能分离这么多峰的。图3. 某一背肉样品的1D-GC (a), GC×GC (b), 3D-GC (c) 指纹图谱表1展示了体积最大的前100种挥发性化合物,包括8种醇、7种醛、3种酮、33种烷烃、7种烯烃、21种酯、2种吡啶、1种酸、1种酚和17种其他化合物。其中,63种首次在草鱼中发现,44种首次在鱼和相关鱼制品中鉴定。表1. 体积最大的前100种挥发性化合物(部分)表2展示了51种关键挥发性候选物,这些化合物被认为是区分草鱼不同部位的最有影响的变量。热图(图4)表明大多数化合物浓度较低,这表明化合物浓度越高,不代表其区分草鱼各部分的能力就越强。文献调研表明,51种关键挥发性候选物除了可能来自于鱼或鱼产品,也可能来自于植物、杀虫剂、环境污染物等。表2. 51种关键挥发性候选物(部分)图4. 51种挥发性候选物的热图文献题目《Determination of volatile compounds in different parts of grass carp using GC✕ GC-MS combined with chemometrics》使用仪器岛津GCMS-TQ8050全二维气相色谱质谱联用仪(GC×GC-MS)岛津AOC系列多功能自动进样器作者赵国强, … , 江勇*等 江西科技师范大学Guoqiang Zhao, Ya Yuan, Hong Zhou, Li Zhao, Yong Jiang*
  • 沃特世科技举办极性化合物分析网络讲座
    色谱条件优化之极性化合物分析挑战--沃特世全面解决方案    仪器信息网讯 随着液相色谱技术的发展,色谱柱技术也得到了迅速发展。针对常规色谱柱无法检测的极性化合物,waters 的宋兰坤博士利用仪器信息网的网络讲堂在12月23日为大家带来了一场非常精彩的在线讲座,她详细讲解了极性化合物分析带来的挑战和解决方案。本次讲座吸引了来自科研院所、检测机构及医药领域的专家学者等共计79人参加。  宋兰坤博士在讲座中首先介绍了反相色谱分析极性化合物时容易遇到的疏水塌陷问题。她指出疏水塌陷是和色谱柱固定相的设计有关,Waters的Atlantis T3亲水性化合物保留专用柱是采用三官能键合和封端技术,在增强极性化合物保留能力的同时,维持了对中等和强疏水化合物的适度保留能力。  Atlantis T3色谱柱分析极性化合物的机理为疏水作用力,可以采用纯水为流动相,最大程度的增加样品保留 其次通过减少填料上C18的覆盖率,使得样品更容易与残留硅羟基相互作用,也起到增加样品保留的效果。图 使用Atlantis T3 柱检测尿嘧啶  随后,宋兰坤博士指出如果反相色谱条件下仍没有好的保留或者MS响应很低,可以尝试选用HILIC柱。HILIC也叫亲水作用色谱,是正相色谱的一个“变种”,它避免了使用与水不相容的有机溶剂,流动相中含有水,又称“水相正相色谱”。  HILIC模式的三大优势在于:1、与反相色谱互补,可以检测在反相色谱柱中没有保留的强极性化合物 2、高比例的有机相可以增加ESI-MS响应,增强质谱的灵敏度 3、增加样品的高通量,通过PPT,LLE和SPE净化提取后为高比例有机相,HILIC模式不需要挥干和复溶,可以采用直接进样。  HILIC模式的保留机理,是极性待分析物在HILIC填料表面的水层和乙腈/水流动相之间进行分配,带电荷的极性分析物同带电荷的硅羟基发生阳离子交换作用,在带正电的分析物和带负电的硅胶表面存在氢键作用力。同时介绍了分析极性化合物时不同流动相的溶剂选择性和洗脱强度,并总结到随着溶剂极性的减弱,化合物的保留是在增加的。图 HILIC模式的保留机理  同时宋兰坤博士为大家对比了杂化颗粒和硅胶基质的HILIC色谱柱,在PH为5.5的条件下,进样2000针后,Xbridge HILIC 色谱性能仍然完好,硅胶基质HILIC色谱性能则有相当大的退化。图 杂化颗粒VS.硅胶基质HILIC的色谱柱化学稳定性  在将近1个小时的讲座之后,仪器信息网的网络讲堂进入在线提问环节,与会者踊跃提出问题,宋兰坤博士一一为大家做了详细解答。
  • 《土壤和沉积物 9种酯类化合物的测定》6项团标征求意见
    按照青海省标准化协会团体标准工作程序,标准起草单位已完成《土壤和沉积物 9种酯类化合物的测定 吹扫捕集/气相色谱-质谱法》、《水质 9种酯类化合物的测定 吹扫捕集/气相色谱-质谱法》、《土壤和沉积物 吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定 高效液相色谱法》、《水质 吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定 高效液相色谱法》、《水质 22种挥发性有机物(VOCs)的测定 吹扫捕集/气相色谱-质谱法》、《土壤和沉积物 13种挥发性有机物(VOCs)的测定 吹扫捕集/气相色谱-质谱法》等6项团体标准征求意见稿的编制工作,现公开征求意见。《土壤和沉积物 9种酯类化合物的测定 吹扫捕集/气相色谱-质谱法》本标准规定了测定土壤和沉积物中9种酯类化合物的吹扫捕集/气相色谱-质谱法。方法原理:试样经前处理后有电感耦合等离子体全谱直读光谱仪测定。将待测溶液引入高温等离子炬中,待测元素被激发成离子及原子,在特定的波长处测量各元素离子及原子的发射光谱强度,特征光谱的强度与试样中待测元素的浓度在一定范围内呈线性关系而进行定量关系。仪器和设备:1.样品瓶:具聚四氟乙烯-硅胶衬垫螺旋盖的60mL棕色广口玻璃瓶(或大于60mL其他规格的玻璃瓶)、40mL棕色玻璃瓶和无色玻璃瓶。2.采样器:一次性聚四氟注射器或不锈钢专用采样器。3.气相色谱仪:具分流/不分流进样口,能对载气进行电子压力控制,可程序升温。4.质谱仪:电子轰击(EI)电离源,1s内能从35u扫描至270u;具NIST质谱图库、手动/自动调谐、数据采集、定量分析及谱库检索等功能。5.吹扫捕集装置:吹扫装置能够加热样品至40℃,捕集管使用1/3Tenax、1/3硅胶、1/3活性炭混合吸附剂或其他等效吸附剂。若使用无自动进样器的吹扫捕集装置,其配备的吹扫管应至少能够盛放5g样品和10mL的水。6.毛细管柱:30m×0.25mm,1.4μm膜厚(6%腈丙苯基、94%二甲基聚硅氧烷固定液);或使用其他等效性能的毛细管柱。7.天平:精度为0.01g。8.气密性注射器:5mL。9.微量注射器:10μL、25μL、100μL、250μL和500μL。10.棕色玻璃瓶:2mL,具聚四氟乙烯-硅胶衬垫和实芯螺旋盖。11.其他:一次性巴斯德玻璃吸液管、铁铲、药勺(聚四氟乙烯或不锈钢材质)及一般实验室常用仪器和设备。本标准适用于土壤和沉积物中9种酯类化合物(乙酸乙酯、丙烯酸甲酯、乙酸异丙烯酯、丙烯酸乙酯、甲基丙烯酸甲酯、甲基异丁基酮、乙酸丁酯、丙烯酸丁酯、丙烯酸异辛酯)的测定。若通过验证本标准也可适用于其他挥发性有机物的测定。当样品量为5g,用标准四极杆质谱进行全扫描分析时,目标物的方法检出限为1.2 μg/kg-1.5μg/kg,测定下限为4.8μg/kg -6μg/kg ,见附录A。《水质 9种酯类化合物的测定 吹扫捕集/气相色谱-质谱法》本标准规定了测定水质样品中9种酯类化合物的吹扫捕集/气相色谱-质谱法。方法原理:样品中的挥发性有机物经高纯氦气(或氮气)吹扫富集于捕集管中,将捕集管加热并以高纯氦气反吹,被热脱附出来的组分进入气相色谱并分离后,用质谱仪进行检测。通过与待测目标化合物保留时间和标准质谱图或特征离子相比较进行定性,内标法定量。仪器和设备:1.样品瓶:40 ml 棕色玻璃瓶,具硅橡胶-聚四氟乙烯衬垫螺旋盖。2.气相色谱仪:具分流/不分流进样口,能对载气进行电子压力控制,可程序升温。3.质谱仪:具70eV的电子轰击(EI)电离源,每个色谱峰至少有6次扫描,推荐为7-10次扫描;产生的4-溴氟苯的质谱图必须满足表 1 的要求。具NIST质谱图库、手动/自动调谐、数据采集、定量分析及谱库检索等功能。4.吹扫捕集装置:吹扫装置能直接连接到色谱部分,并能自动启动色谱,应带有5ml的吹扫管。捕集管使用1/3Tenax、1/3硅胶、1/3活性炭混合吸附剂或其他等效吸附剂,但必须满足相关的质量控制要求。5.毛细管柱:30m×0.25mm,1.4μm膜厚(6%腈丙苯基、94%二甲基聚硅氧烷固定液);或使用其他等效性能的毛细管柱。6.气密性注射器:5mL。7.微量注射器:10μL、25μL、100μL、250μL和500μL。8.棕色玻璃瓶:2mL,具聚四氟乙烯-硅胶衬垫和实芯螺旋盖。9.其它:一般实验室常用仪器和设备。本标准适用于地下水、地表水、生活污水和工业废水中9种酯类化合物(乙酸乙酯、丙烯酸甲酯、乙酸异丙烯酯、丙烯酸乙酯、甲基丙烯酸甲酯、甲基异丁基酮、乙酸丁酯、丙烯酸丁酯、丙烯酸异辛酯)的测定。若通过验证本标准也可适用于其他挥发性有机物的测定。当样品量为5ml,用标准四极杆质谱进行全扫描分析时,目标物的方法检出限为1.2g/L -1.5g/L,测定下限为4.8g/L -6.0g/L ,见附录A。《土壤和沉积物 吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定 高效液相色谱法》本标准规定了测定土壤和沉积物中吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的高效液相色谱法。方法原理:土壤和沉积物样品用20mL甲醇(1:1甲醇和水溶液)振荡提取,经离心提取上清液后,用高效液相色谱分离,紫外DAD检测器检测,根据保留时间定性,外标法定量。仪器和设备:1.高效液相色谱仪:具紫外检测器或二极管阵列检测器。2.色谱柱:十八烷基硅烷键合硅胶柱(C18),填料粒径5.0μm,柱长250 mm,内径4.6mm,或其他等效色谱柱。3.样品瓶:不小于 60 ml 具聚四氟乙烯-硅胶衬垫螺旋盖的棕色广口玻璃瓶。4.振荡器:水平振荡器或翻转振荡器。5.恒温振荡器:温度精度为±2℃。6.天平:感量为 0.01 g。7.提取瓶:不小于40ml,具聚四氟乙烯-硅胶衬垫螺旋盖的棕色广口玻璃瓶。8.平底烧瓶:1000 ml,具塞平底玻璃烧瓶。9.离心机:转速≥3500r/min。本标准适用于土壤和沉积物中吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定。若通过验证本文件也可适用于其他吡啶、酰胺类物质的测定。当样品量为10g,定容体积为20mL时,目标物的方法检出限为、测定下限见附录A。《水质 吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定 高效液相色谱法》本标准规定了测定饮用水、地下水、地表水、工业废水及生活污水中吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的高效液相色谱法。方法原理:土壤和沉积物样品用20mL空白试剂水振荡提取,经离心提取上清液后,用高效液相色谱分离,紫外DAD检测器检测,根据保留时间定性,外标法定量。仪器和设备:1.高效液相色谱仪:具紫外检测器或二极管阵列检测器。2.色谱柱:十八烷基硅烷键合硅胶柱(C18),填料粒径5.0μm,柱长250 mm,内径4.6mm,或其他等效色谱柱。3.样品瓶:500mL具聚四氟乙烯-硅胶衬垫螺旋盖的棕色广口玻璃瓶。4.天平:精度为0.01g。5.平底烧瓶:1000 mL,具塞平底玻璃烧瓶。本标准适用于饮用水、地下水、地表水、工业废水及生活污水中吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定。若通过验证本文件也可适用于其他吡啶、酰胺类物质的测定。直接进样法,目标物的方法检出限为0.01mg/L,测定下限为0.04mg/L,见附录A 。《水质 22种挥发性有机物(VOCs)的测定 吹扫捕集/气相色谱-质谱法》本标准规定了测定土壤和沉积物中水质中22种挥发性有机物的吹扫捕集/气相色谱-质谱法。方法原理:样品中的挥发性有机物经高纯氦气(或氮气)吹扫富集于捕集管中,将捕集管加热并以高纯氦气反吹,被热脱附出来的组分进入气相色谱并分离后,用质谱仪进行检测。通过与待测目标化合物保留时间和标准质谱图或特征离子相比较进行定性,内标法定量。仪器和设备:1.样品瓶:40 mL棕色玻璃瓶,具硅橡胶-聚四氟乙烯衬垫螺旋盖。2.气相色谱仪:具分流/不分流进样口,能对载气进行电子压力控制,可程序升温。3.质谱仪:具70eV的电子轰击(EI)电离源,每个色谱峰至少有6次扫描,推荐为7-10次扫描;产生的4-溴氟苯的质谱图必须满足表 1 的要求。具NIST质谱图库、手动/自动调谐、数据采集、定量分析及谱库检索等功能。4.吹扫捕集装置:吹扫装置能直接连接到色谱部分,并能自动启动色谱,应带有5mL的吹扫管。捕集管使用1/3Tenax、1/3硅胶、1/3活性炭混合吸附剂或其他等效吸附剂,但必须满足相关的质量控制要求。5.毛细管柱:30m×0.25mm,1.4μm膜厚(6%腈丙苯基、94%二甲基聚硅氧烷固定液);或使用其他等效性能的毛细管柱。6.气密性注射器:5mL。7.微量注射器:10μL、25μL、100μL、250μL和500μL。8.棕色玻璃瓶:2mL,具聚四氟乙烯-硅胶衬垫和实芯螺旋盖。9.其它:一般实验室常用仪器和设备。本标准适用于地下水、地表水、生活污水和工业废水中22种挥发性有机物(二氯二氟甲烷、氯甲烷、氯乙烯、溴甲烷、氯乙烷、三氯氟甲烷、碘甲烷、二硫化碳、乙酸甲酯、甲基叔丁基醚、乙酸乙烯酯、2-丁酮、四氢呋喃、环己烷、乙酸异丙酯、乙酸丙酯、甲基异丁基酮、乙酸异丁酯、2-己酮、1,1,2-三氯丙烷、甲基丙烯酸丁酯、乙酸戊酯)的测定。若通过验证本标准也可适用于其他挥发性有机物的测定。当样品量为5mL,用标准四极杆质谱进行全扫描分析时,目标物的方法检出限为1.5-5.0g/L,测定下限为6.0g/L -20.0g/L,见附录A。《土壤和沉积物 13种挥发性有机物(VOCs)的测定 吹扫捕集/气相色谱-质谱法》本标准规定了测定土壤和沉积物中13种挥发性有机物的吹扫捕集/气相色谱-质谱法。方法原理:样品中的挥发性有机物经高纯氦气(或氮气)吹扫富集于捕集管中,将捕集管加热并以高纯氦气反吹,被热脱附出来的组分进入气相色谱并分离后,用质谱仪进行检测。通过与待测目标物标准质谱图相比较和保留时间进行定性,内标法定量。仪器和设备:1.样品瓶:具聚四氟乙烯-硅胶衬垫螺旋盖的60mL棕色广口玻璃瓶(或大于60mL其他规格的玻璃瓶)、40mL棕色玻璃瓶和无色玻璃瓶。2.采样器:一次性聚四氟注射器或不锈钢专用采样器。3.气相色谱仪:具分流/不分流进样口,能对载气进行电子压力控制,可程序升温。4.质谱仪:电子轰击(EI)电离源,1s内能从35u扫描至270u;具NIST质谱图库、手动/自动调谐、数据采集、定量分析及谱库检索等功能。5.吹扫捕集装置:吹扫装置能够加热样品至40℃,捕集管使用1/3Tenax、1/3硅胶、1/3活性炭混合吸附剂或其他等效吸附剂。若使用无自动进样器的吹扫捕集装置,其配备的吹扫管应至少能够盛放5g样品和10mL的水。6.毛细管柱:30m×0.25mm,1.4μm膜厚(6%腈丙苯基、94%二甲基聚硅氧烷固定液);或使用其他等效性能的毛细管柱。7.天平:精度为0.01g。8.气密性注射器:5mL。9.微量注射器:10、25、100、250和500μL。10.棕色玻璃瓶:2mL,具聚四氟乙烯-硅胶衬垫和实芯螺旋盖。11.其他:一次性巴斯德玻璃吸液管、铁铲、药勺(聚四氟乙烯或不锈钢材质)及一般实验室常用仪器和设备。本标准适用于土壤和沉积物中13种挥发性有机物(乙酸甲酯、甲基叔丁基醚、乙酸乙烯酯、氯丁二烯、四氢呋喃、环己烷、乙酸异丙酯、乙酸丙酯、顺-1,3-二氯丙烯、乙酸异丁酯、反-1,3-二氯丙烯、乙酸戊酯、甲基丙烯酸丁酯)的测定。若通过验证本标准也可适用于其他挥发性有机物的测定。当样品量为5g,用标准四极杆质谱进行全扫描分析时,目标物的方法检出限为1.6 μg/kg -2.2μg/kg,测定下限为6.4 μg/kg -8.8μg/kg,见附录A。
  • 广东省质量检验协会立项《豆芽中12种植物生长调节剂和喹诺酮类化合物的测定 液相色谱-质谱质谱法》团体标准
    各有关单位:按照有关法律法规和《广东省质量检验协会团体标准管理办法》规定,结合行业发展需要,经审核,同意《豆芽中12种植物生长调节剂和喹诺酮类化合物的测定 液相色谱-质谱质谱法》团体标准立项。联系人:招原春(020)38835232邮箱:gdaqi@gdaqi.org广东省质量检验协会2024年6月13日关于《豆芽中12种植物生长调节剂和喹诺酮类化合物的测定 液相色谱-质谱质谱法》团体标准立项的通知.pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制