当前位置: 仪器信息网 > 行业主题 > >

质谱测得结果理论分子量

仪器信息网质谱测得结果理论分子量专题为您提供2024年最新质谱测得结果理论分子量价格报价、厂家品牌的相关信息, 包括质谱测得结果理论分子量参数、型号等,不管是国产,还是进口品牌的质谱测得结果理论分子量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱测得结果理论分子量相关的耗材配件、试剂标物,还有质谱测得结果理论分子量相关的最新资讯、资料,以及质谱测得结果理论分子量相关的解决方案。

质谱测得结果理论分子量相关的资讯

  • 小身材大智慧丨检测器级MS助力寡核苷酸和多肽药物分子量测定
    导读随着生物医药技术的发展,越来越多的生物药陆续上市,如治疗慢性疾病的寡核苷酸药物Leqvio,“一年只需注射两针”就可以长效持久的降低血液中胆固醇含量,以及用于治疗II型糖尿病的多肽类药物Mounjaro。在寡核苷酸和多肽药物的质量控制中,分子量测定是定性表征中不可缺少的一部分,而单四极杆液质联用仪(LCMS)是测定分子量的利器。但与小分子药物相比,多肽和寡核苷酸药物极性和分子量均较大,在LCMS中带多电荷,所以分子量测定时可能会存在分子量测定范围窄、灵敏度低等问题。小身材大智慧 LCMS-2050岛津最新款单四极杆质谱仪LCMS-2050兼顾小型化和高性能,其离子源为加热型ESI/APCI(DUIS)源,使得寡核苷酸和多肽药物等分子量较大的极性化合物更容易电离,所以LCMS-2050具有分析灵敏度高,分子量测定范围广的特点。此外,岛津LabSolutions软件自带分子量解卷积功能,可以快速对多电荷质谱图进行解卷积,获得分子量相关信息。分子量测定案例分享寡核苷酸药物本方案中寡核苷酸药物为小干扰核苷酸(siRNA),是一类双链RNA分子(正义链和反义链),长度为20-25个碱基对。通过流动相的调整和质谱参数的优化,LCMS-2050(负模式)检测得到了siRNA多电荷质谱图,质荷比为600~1700。此时质谱图中无其他加和离子干扰,且高质荷比也有明显响应。通过岛津LabSolutions软件自带的多电荷解卷积功能,计算得到siRNA正义链电荷数量为4~11,分子量为6631.64 Da,反义链电荷数量为4~10,分子量为6637.66 Da,与理论值的偏差均小于0.4 Da。siRNA色谱图正义链质谱图正义链分子量解卷积结果反义链质谱图反义链分子量解卷积结果多肽药物此多肽药物为一种生长抑素,其理论分子量为1637. 72 Da。LCMS-2050(正模式)检测得到质荷比为546.76~1638.47,通过LabSolutions解卷积功能计算得到分子量为1637.45 Da,与理论值偏差为0.27 Da。多肽药物色谱图多肽药物质谱图多肽药物分子量解卷积结果结语岛津最新款单四极杆质谱仪LCMS-2050兼顾小型化与高性能,适用于多肽、寡核苷酸等化合物分子量测定,具有灵敏度高、分子量测定范围广的优势。了解更多详情,敬请下载《LCMS测定小干扰核苷酸siRNA分子量》《LCMS-2050在多肽分子量定性分析检测中的应用》本文内容非商业广告,仅供专业人士参考。
  • 赛默飞:DMT+Orbitrap质谱 实现超大分子量的蛋白直接检测
    质谱仪器作为一种质量检测仪器,被应用到各个学科领域中,尤其是在化学化工、环境能源、医药、生命及材料科学等领域发挥着重要作用。在常规质谱分析中,被分析物质首先被离子化,随后各种离子被引入真空中的质量分析器,在分析器中的电场或磁场作用下,离子的运动特性随其质荷比不同而产生差异,因而造成时空上的分离,并由检测器依次检测出来。而在这种原理下,质谱仪测量的是离子的质荷比(m/z),而不是质量本身。利用质谱仪器对样品的分析过程中,样品的雾化过程十分关键。目前,常用的电喷雾技术原理是由John Fenn提出的电喷雾电离(ESI)技术,这一理论也获得了2002年的诺贝尔化学奖。通常对蛋白质这种大分子来说,ESI质谱中都会呈现多种价态的谱峰群,群落中的每一组为某个电荷态该蛋白质的各个同位素峰、盐峰以及加合物峰等。由于电荷态z通常是连续的整数分布(例如z = 11,12....21,22...),人们可以通过计算不同电荷数对应的群落m/z的间隔来推算各组的电荷数z,进而求出实际的质量m的分布,也可以使用软件进行解卷积得到m分布。这种分析手段对于分析分子量较小(分子量在5万以下)、简单纯净的蛋白样品还是很有效的。然而,在实际应用中对天然蛋白和病毒颗粒的分析却不那么简单。随着分子量上升,分子结构越来越复杂,各种翻译后修饰使被测蛋白的分子量出现差异化,很宽的质量分布(可达上千Da)使得不同价态的峰群连接在一起。如图1所示,这种缺少电荷状态以及同位素峰的“死亡驼峰”,我们很难通过解卷积的形式进行分析。并且,对于很多糖蛋白,分子量超过3、4万就出现峰群交叠,无法用解卷积软件来获得分子量的分布信息。因此,对于大生物分子的质谱分析,仅靠提高仪器的分辨率是无济于事的。在这种情况下,电荷检测质谱(CDMS)技术便成为了我们的“救命稻草”。电荷检测质谱(CDMS)通过同时测量单个离子的质荷比和电荷数,进而计算获得离子质量m。因此,相较于其他类型质谱,CDMS技术的关键是如何准确地测量单个离子的电荷。目前,电荷检测质谱技术还没有现成的商品化仪器,只有能够自己开发质谱仪器硬件,或自己改编FTMS软件的专家才能进行这样的实验。而在今年的ASMS会议上,赛默飞公司重磅推出了直接分析质谱技术(DMT),并将其结合在了Orbitrap上,这使得超大分子量的复杂蛋白的直接质谱检测成为了可能。直接分析质谱技术其原理是:在Orbitrap中检测来自离子沿中心电极的中心轴旋转的轴向频率,进而确定离子的m/z信息;与此同时,来自外电极上的感应电荷振幅也会被检测,从而确定离子的电荷z的信息。直接分析质谱技术模式为 Orbitrap 质量分析仪增加了电荷检测功能,能够同时测量数百个单个离子的质荷比 (m/z) 和电荷数 (z)。这使得 Orbitrap 质量分析仪可以直接计算分析物的质量,而不需要根据 m/z 去卷积。根据 m/z 去卷积的方法依赖于测量结果中已分辨的电荷状态和/或同位素分辨的信号。直接分析质谱技术模式提高了分辨率,并且扩展了动态范围,提高了可获得的质量测量结果的上限,同时由于单个离子测量的灵敏度较高,可以从浓度明显较低的样品中采集到更有价值的数据。
  • 液相干货分享 | 如何正确测量聚合物的分子量
    当我们从上游厂家买回一批聚合物样品时,测得的分子量却与厂家提供的不同,那这是怎么回事呢?在弄清楚原因之前,不妨先来一起学习下凝胶渗透色谱/体积排阻色谱( GPC/SEC )的基本原理和应用。GPC 色谱柱为多孔填料,当样品与填料无吸附、排斥等相互作用时,分子体积越大的组分能够穿过的孔越少,行走的路程越短,也就越早从色谱柱中洗脱出来。图为 Agilent Infinity II 多检测器 GPC 系统图为 Agilent 高温 GPC系统 PL220根据 GPC 应用的方向,通常可以归纳为以下三种:样品前处理(去除大分子基质)组分分离定量聚合物分子量/结构检测表1. GPC 三种应用方向对比使用 GPC 来测量聚合物分子量和分子量分布,除了将不同聚合度的组分分离之外,我们还需要另外两点信息:不同保留时间流出组分的浓度和分子量。浓度的信息可以通过浓度型检测器得到,如示差折光检测器和紫外检测器。各保留时间流出组分的分子量信息的得到却不是特别容易,常规 GPC 是选用一组不同分子量的窄分子量分布标准品,来对色谱柱进行标注,得到保留时间 - 分子量的曲线,再由校正曲线来计算样品的分子量。常用的标准品种类很少,如果标准品和样品的化学结构、拓扑结构不同,得到的样品分子量就不是样品的绝对分子量,而是相对于标准品的相对分子量。图为常规 GPC 分子量计算原理示意图由此看来,标准品的选择是造成计算结果差异的可能原因之一。为了解决这部分带来的差异,确认与上游产家使用相同的标准品类型。当然如果上游厂家与我们都能得到样品的准确分子量,也可以减小数据的差异,普适校正是一种方式。普适校正就是通过 Mark-Houwink 方程和 Flory 特性粘度理论,建立起分子量与分子体积的数学关系,从而建立保留时间 - 分子体积的曲线。说起来有些复杂,操作很简单,只需要在 GPC 软件输入样品和标样的两个参数 K,α 就可以了。但这种方法不适用于所有样品,比如不同支化程度的样品是无法查到其在不同溶剂/温度下的K,α。图为不同支化程度样品的合成(控制 AB2 单体加入量)还有一个更加直接得到绝对分子量的方式,就是使用静态激光光散射检测器,根据瑞利散射原理直接得到样品的绝对分子量;如果再搭配特性粘度检测器,可同时得到样品的特性粘度信息,建立 Mark-Houwink 曲线,用于判断样品的支化情况。图为不同支化程度样品通过 Agilent 激光光散射-示差-粘度三检测器联用 GPC 得到的 Mark-Houwink 曲线(蓝色、红色、绿色曲线对应样品的支化度依次增高) 除了标准品的选择以外,色谱柱的选择、校正曲线的拟合次数以及积分起终点的判断等都可能引起结果的差异。扫描下方二维码,关注“安捷伦视界”公众号,获取更多资讯。
  • 分析利器丨MALDI-TOF 高效表征小分子化合物的分子量
    MALDI-TOF对小分子化合物分子量的快速确认小分子通常指分子量小于1000 Da(尤其小于400 Da)的有机化合物,包括天然产物(生物体合成)及各类人工合成的有机小分子。质谱技术由于可以精确测量各类化合物的质量,被广泛应用于小分子的分子量表征及结构鉴定工作。通常小分子分子量表征常用手段是LCMS,实则MALDI-TOF同样可以用于小分子化合物的分子量确认,且具有更高的效率。MALDI-TOF MS表征小分子分子量的方案特点:1快!每天可分析数千个样品2直接上样分析,无需样品分离3所需样品量较少,单次上样体积只需1 μL以内4除可溶性样品外,还能够分析难溶性样品MALDI-TOF分析小分子的工作流程小分子测试案例分享01各类化合物(原料、物料、产品)分子量及杂质检测在药品、化工品等产品生产过程中,对投入的原料、物料以及终产品进行分子量和杂质检测,是生产质量控制的重要内容。下图中,通过质谱信息可以直接了解寡核苷酸合成原料亚磷酰胺单体的分子量及杂质信息。寡核苷酸合成原料亚磷酰胺单体质谱图02小分子有机合成反应跟踪、产物确认在有机合成中,鉴定反应产物和了解反应进程极其重要。MALDI-TOF MS可以快速测量化合物进行半定量反应跟踪和产物确认。通过化合物单同位素峰的分布,还能轻松识别出溴和氯的存在与否。下图中原料双(氯甲基)苯的信号强度在反应18小时后降低,产物双(溴甲基)苯在反应18小时后强度增加。反应不同时间获得的反应产物的质谱图比较03有机功能材料合成确认有机功能材料包括有机光电材料、有机导电材料、有机磁性材料、有机催化材料等。MALDI-TOF MS可以快速进行有机功能材料的合成确认。下图中,通过样品同位素分布模式及质量数的实际检测结果与理论值的比较,可以准确判断产品合成是否成功。半导体材料及有机发光二极管材料的质谱图04难溶性颜料分子量分析颜料通常不溶于水和一般有机溶剂,常见的颜料包括无机颜料、偶氮颜料、钛菁颜料等。由于颜料的难溶解性,不能使用传统LCMS或GCMS方法进行分子量检测,而MALDI-TOF MS由于不需要分离,分析时不受溶解性限制,可以检测不溶性颜料的分子量,用于鉴别颜料种类或者颜料生产合成质控。难溶性颜料钛菁红的质谱图结语MALDI-TOF MS具有前处理简单、能够快速获取从低分子量到高分子量各类样品的分子量信息,无需分离、不受样品溶解性限制等优点,为医药行业药物发现、有机合成产物确认、化工领域颜料、乳化剂等各类化工产品分子量分析、有机功能材料的合成确认提供快速检测手段。撰稿人:顿俊玲本文内容非商业广告,仅供专业人士参考。
  • 基质升华重结晶法进行低分子量代谢产物质谱成像分析
    p style="text-align: justify text-indent: 2em line-height: 1.75em "自质谱成像技术于二十世纪80年代前半期诞生以来,至今为止不断持续着技术改革,并被广泛运用于以新药研究和代谢产物研究领域为首的众多领域中。如今仍以提升灵敏度和空间分辨率、重现性等为目标,不断进行着技术改良。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "同时,也开发出多种离子化所需的基质,如何从这些基质中选出适用于检测目标化合物的基质成为重点。span style="text-indent: 2em "除基质选择外,其涂布方法也会对分析结果造成很大影响,因此,现有多个应用于检测目标化合物的基质涂布方法正在研究中。大致可分为喷雾法和升华法两种方法,两种涂布方法均有自己的优缺点,现阶段经常会同时使用两种方法。本公司开发了能控制基质膜厚的基质升华涂布装置iMLayer(图1),对涂布方法进行研究。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "我们针对以往难以重结晶的基质9AA,开发了升华后重结晶的方法,并在此进行报告。此外,还将对小鼠肝脏中低分子量代谢产物的MS成像结果示例进行介绍。/pp style="text-align: right text-indent: 2em line-height: 1.75em "——R.Yamaguchi, E.Matsuo, T.Yamamoto/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="color: rgb(0, 112, 192) "strong1、不同基质涂布方法对MS成像分析造成的影响/strong/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "基质涂布方法对基质的结晶形成和MS成像分析造成的影响如表1所示。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "与升华法相比,通过喷雾法生成的基质的结晶较粗,并可能因样本中所含成分的渗漏导致空间分辨率降低。均匀性较差,基质溶液干燥后结晶时会依赖湿度和温度等周围环境,因此重现性也会变差。另一方面,样本中所含化合物的提取效果较好,可能提高检测灵敏度。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "相比之下,升华法具有结晶较细、难以渗漏、均匀性好、重现性良好的特点,是高空间分辨率成像所不可或缺的方法。但相对的,其样本中成分的提取效果不佳,在灵敏度上可能存在不利的一面。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "实际的测量灵敏度依赖于检测化合物的结构。例如,在分析磷脂质等时,采用升华法便具有足够的灵敏度,诸如胺碘酮等药物可以足够的灵敏度完成MS成像(参考应用文集B61)。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "另一方面,在检测小鼠肝脏等器官中含有的ADP 和ATP 等低分子量代谢产物时,通过升华法进行基质涂布,由于没有任何提取效果,无法得到足够的灵敏度。因此,绝大多数例子都是通过喷雾法涂布9AA来实施MS成像,但其空间分辨率相对较低。于是,我们对将DHB和CHCA上使用的升华后重结晶法涂布9AA所需的条件进行了研究。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/0178e2f4-5edd-42fd-ab37-3b27f1e3173b.jpg" title="微信截图_20200619165723.png" alt="微信截图_20200619165723.png"//pp style="text-align: center text-indent: 2em line-height: 1.75em "图1 基质升华装置iMLayer/pp style="text-align: center "表1 基质涂布方法对结晶形成和MS成像分析造成的影响/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/962223c2-c637-4894-9498-e953c6d6b688.jpg" title="2.png" alt="2.png"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="color: rgb(0, 112, 192) "strong2、基质升华后重结晶法/strong/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "对9AA进行升华后重结晶。如图2所示,将含有5%甲醇的滤纸和升华处理后的样本放入相同容器中,于37℃的恒温环境下静置5分钟。此时,滤纸中的5%甲醇蒸发,渗入样本中,在提取样本中化合物的同时会使少许9AA结晶溶解。之后将其真空干燥器内干燥10分钟,使溶解的9AA进行重结晶。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/b1b946ad-81b9-4670-bd42-0b2b1b03f739.jpg" title="33333333333333.png" alt="33333333333333.png"//pp style="text-align: center text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "图2 9AA升华后重结晶的方法/span/pp style="text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/8767d240-e8eb-44fc-8470-cff5822571a1.jpg" title="444444444.png" alt="444444444.png"//pp style="text-align: center "图3 成像质谱显微镜iMScopeTRIO/pp style="text-align: center "表2 iMScope iTRIO/i测量参数/pp style="text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/69636f83-0667-4f8a-a02b-4d1c757bc977.jpg" title="55555555555.png" alt="55555555555.png"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="color: rgb(0, 112, 192) "strong3、使用升华后重结晶法提高MS成像灵敏度/strong/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "对9AA升华后重结晶的小鼠肝脏样本,使用成像质谱显微镜iMScope iTRIO/i(图3),根据表2的参数进行质谱成像分析。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "对比升华法进行基质涂布样本与升华后重结晶样本的分析结果、比较其分析区域的平均质谱图(图4)。仅采用升华法时、能强烈检测到基质9AA的峰(m/z 385.14)(图4▼),基本上检测不到低分子量代谢产物的峰,但通过实施升华后重结晶,使来自低分子量代谢产物的峰强度增加(图4▼等),确认其提升检测灵敏度的效果。此外,其他多个低分子量代谢产物的MS图像,通过升华后重结晶的处理,能够获得更为清晰的MS图像(图5)。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "针对难以重结晶的9AA开发的升华后重结晶方法,充分利用升华法的优势成功实现了无损且高灵敏度的MS成像分析。/ppspan style="text-indent: 2em "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/0bbf3127-6052-4b6a-af7e-a0c6fc57f542.jpg" title="6.png" alt="6.png"//pp style="text-align: center "图4 质谱图(升华法和升华后重结晶法的比较)/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/de208828-8702-40d6-8202-037e64b3f190.jpg" title="7.png" alt="7.png"//pp style="text-align: center "图5 MS图像(升华法和升华后重结晶法的比较)/ppbr//p
  • 非变性质谱在生物制药完整蛋白分析中的应用
    p  何为非变性质谱?就是选用温和的溶液体系及质谱条件,使蛋白保持在非变性状态下被分析。听到这,有些小伙伴可能会一头雾水:师兄师姐教我处理蛋白质样品的时候,第一步就是要变性啊,怎么现在又不要变性了?/pp  在通常的蛋白质相关分析中,为了破坏蛋白质的三维立体空间结构,便于酶解等操作,会通过加热或是加入高浓度的变性试剂(如尿素、盐酸胍等),使蛋白质变性 另外,对于常用的分离手段——反相色谱来讲,其流动相的酸性pH条件与高有机相同样也会使蛋白质变性。当需要对蛋白质中的非共价结合进行研究时,为了避免非共价结合被强烈的变性条件所破坏,则需在非变性的液相-色谱条件下(通常为50mM醋酸铵,pH=7的中性体系)进行研究 另外,对于组成较为复杂的蛋白样品,在非变性条件下分析时,由于体系中质子数减少,所以蛋白电荷态数目也会相应减少,电荷态之间的相互重叠度也会下降,进而减少复杂组分之间的相互影响,从而能够得到复杂蛋白样品中每个组分的分子量信息(图1)。/pp style="TEXT-ALIGN: center"img title="图1_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/56171fe8-be7c-4cc8-a672-814a9fe87e30.jpg"//pp style="TEXT-ALIGN: center" strong图1/strong 同一样品分别于变性及非变性条件下进行分子量测定的原始谱图/pp  目前,strong非变性质谱技术主要应用在两个方面/strong:一是strong生物制药领域/strong,通过打开单克隆抗体链间二硫键后在Cys位点上偶联小分子药物(Cys-ADC)的完整分子量分析,此类药物的链间仅靠非共价力结合,故变性条件下各条链会分离,无法测得其完整状态的分子量 另一应用方向为strong研究蛋白质多聚体/strong,非变性条件下不仅可以保持各个亚基间的非共价相互作用,同时由于中性条件更接近生理状态,得到的结果更具意义。/pp  现在,非变性质谱与氢氘交换、X-ray衍射、核磁共振、冷冻电镜和cross-linking等技术联合使用、互为补充,已经越来越多的被应用在结构生物学、生物医药等领域的研究中。本期文章将会重点介绍非变性质谱在治疗性生物医药制品完整分子量测定中的研究,下期文章将会侧重介绍非变性质谱用于蛋白复合物的研究进展。/ppspan style="COLOR: #002060"strongOrbitrap超高分辨质谱:非变性质谱研究的理想平台/strong/span/pp  古人云:工欲善其事,必先利其器。要想研究做得好,趁手工具不可少!针对于非变性质谱研究中的需求,我们在Orbitrap质谱平台上对相关参数进行了优化,包括离子源区脱溶剂能量、质量范围的扩展以及高质荷比离子传输效率的优化等,使Orbitrap在固有的高分辨率、高质量精度及高灵敏度基础上,在非变性质谱领域也能有出色表现。/pp style="TEXT-ALIGN: center"img title="图2_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/caeec8f3-896f-4e02-a44a-84aae9ecd287.jpg"//pp style="TEXT-ALIGN: center"  strong图2/strong Orbitrap质谱平台用于非变性质谱分析/pp  上文中提到,在生物制药领域中,会通过分子工程设计,在单克隆抗体的特定氨基酸上通过化学反应,偶联上小分子治疗药物,通过单克隆抗体的靶向识别功能将小分子药物精确带至病变细胞处并释放,达到精确给药、减少毒副作用的目的,这类药物被称作抗体药物偶联物(Antibody Drug Conjugates,ADCs)。在这类药物中,通过将单抗链间二硫键打开从而在Cys位点上偶联药物的Cys-ADC,由于其链间仅靠非共价力结合,故需在非变性质谱条件下才能对其完整分子量进行测定(图3)。/pp style="TEXT-ALIGN: center"img title="图3_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/270ff8dd-d5c1-442b-baf1-f287fcb557b9.jpg"//pp style="TEXT-ALIGN: center" strong 图3/strong Cys-ADC结构示意图/pp style="TEXT-ALIGN: center"  图4展示了使用非变性质谱平台对Cys-ADC进行完整分子量测量的结果。由图中不难发现,使用体积排阻色谱(SEC),可以将单克隆抗体与其他杂质分离开,而Orbitrap质谱平台能够得到基线分离、信噪比高的原始谱图。经数据处理软件解卷积处理后,可见偶联了0/2/4/6/8个小分子药物的簇峰分布,符合Cys-ADC的典型分布特征 解卷积后计算所得该ADC的药物/抗体比值(Drug to Antibody Ratio, DAR),与之前报道过的DAR值相符。/pp style="TEXT-ALIGN: center"img title="图4_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/b494de8a-6ac5-42cf-ad12-d84637e32bef.jpg"//pp style="TEXT-ALIGN: center"  strong图4 /strong使用非变性质谱平台对Cys-ADC进行完整分子量测量。/pp style="TEXT-ALIGN: center"  (上),原始色谱/质谱图 (下),解卷积后谱图。/pp  作为对照,在变性条件下也对同一个样品进行了分子量测定(图5),发现链间的非共价结合在强烈的变性条件下均被破坏,只能观察到部分ADC的分子量信息。该实验进一步说明了在非变性条件下对Cys-ADC进行分子量测定的必要性。/pp style="TEXT-ALIGN: center"img title="图5_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/46b85220-b769-47dc-b534-f92c93b56cff.jpg"//pp style="TEXT-ALIGN: center"  strong图5/strong 变性质谱条件下对Cys-ADC进行分子量测量。/pp style="TEXT-ALIGN: center"  (上),原始色谱/质谱图 (下),解卷积后谱图。/pp  对于常见的另外一种ADC——Lys-linked ADC,虽然其小分子药物与单克隆抗体是通过共价键相结合,但偶联上小分子药物后,ADC的复杂度大大增加,此时若在非变性条件下进行分子量测定,可以减少信号之间的干扰,得到更加准确的测量结果(图6)。/pp style="TEXT-ALIGN: center"img title="图6_20170406090915_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/7c9e60f0-f01a-45eb-85eb-f9dceece9c46.jpg"//pp style="TEXT-ALIGN: center"  ▲非变性条件可减少复杂组分间信号重叠/pp style="TEXT-ALIGN: center"img title="非变性2_20170406090518_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/e634be51-bf68-49f2-b7be-e205227a7242.jpg"//pp style="TEXT-ALIGN: center"  ▲非变性条件下Lys-ADC完整分子量测量结果/pp style="TEXT-ALIGN: center"  strong图6 /strong使用非变性质谱平台对Lys-ADC进行完整分子量测量。/pp  strong小结/strong/pp  本期我们对非变性质谱技术的原理、适用范围进行了介绍,并以Cys-ADC与Lys-ADC样品的完整分子量测量为例展示了该方法的应用,不知道小伙伴们有没有对非变性质谱技术有个初步的了解呢?下期我们将会介绍该技术在蛋白复合物研究中的应用,各位看官走过路过不要错过,我们下期见!/pp  参考文献/pp  [1] Dabaene et al., Anal Chem. 2014, Nov 4 86 (21):10674-83./pp /p
  • 电荷检测质谱是什么?为何如此引得质谱巨头关注?
    质谱法是一种强大的分析工具,其原理是测量带电粒子质量的方法,当分析样品进入质谱仪后,首先在离子源处使分析物进行游离化以转换为带电离子,进入质量分析器后,在电场、磁场等物理力量的作用下,探测器可测得不同离子的质荷比(m/z),从而从电荷推算出分析物的质量。传统质谱法难以分辨质量大于几百千道尔顿的物质(例如蛋白质复合物)的电荷状态。然而近些年,一种新的质谱方法出现,即电荷检测质谱 (Charge Detection Mass Spectrometry,CDMS) 。CDMS 是一种通过同时测量单个离子的质荷比(m/z)来确定单个离子质量的单粒子技术。确定数以千计的单个离子的质量,然后将结果合并提供质谱图。使用这种方法,可以测量通常不适合传统质谱分析的异质和高分子量样品的准确质量分布。最新发表的CDMS技术的应用就包括了高度糖基化的蛋白质、蛋白质复合物、蛋白质聚集体(如淀粉样蛋白纤维)、传染性病毒、基因疗法、疫苗和囊泡(如外泌体)。虽然到目前为止,CDMS 仍然是少数能够自制仪器的科研人员在应用。而随着生物医学的快速发展,研究人员分析分子量超大样品的需求快速增长,传统的质谱方法面临一定的限制,以CDMS为焦点的分析技术也许将成为下一个里程碑。前沿技术发生革新,行业巨头公司一定是反应最快的。日前,全球著名的质谱仪器公司Waters便发布公告,成功收购了一家专攻电荷检测质谱技术(CDMS)的初创企业,Megadalton Solutions。该公司由美国印第安纳大学的Martin Jarrold和David Clemmer两位教授于2018年创立。笔者进一步查询到,Martin F. Jarrold 本人在过去十年一直致力于 CDMS技术的研究,也于2015年发表了“Charge Detection Mass Spectrometry with Almost Perfect Charge Accuracy”相关文章。(DOI:https://doi.org/10.1021/acs.analchem.5b02324)。2021年还发表了关于CDMS在生物分子学和生物技术相关的应用进展文章“Applications of Charge Detection Mass Spectrometry in Molecular Biology and Biotechnology”。(DOI:https://doi.org/10.1021/acs.chemrev.1c00377)2018年,Martin Jarrold和David Clemmer教授因在离子淌度质谱技术上的开创性发明,共同获得了美国质谱学会颁发的质谱杰出贡献奖。不仅如此,David Clemmer教授还曾获得2006年的Biemann奖章。2018年ASMS质谱杰出贡献奖可以说,Megadalton Solutions公司是由两位质谱界大佬为了研发CDMS仪器创立的,技术实力很强硬。Waters公司的眼光也非常独到,于2021年就已经将Megadalton的CDMS技术引进到了Waters的Immerse Cambridge创新和研究实验室,并应用于各项先进检测及研发工作。(相关链接:沃特世收购电荷检测质谱技术 扩大细胞和基因治疗领域应用)此外,笔者还注意到了另外一家基于CDMS技术的初创企业,荷兰公司TrueMass。TrueMass 于 2020 年在荷兰成立,并在英国曼彻斯特设有制造工厂。这家私营投资公司已从天使投资人获得大量资金,公司的使命是提供新技术,帮助全球研究人员和临床实验室推进药物开发和材料技术的研究。该公司于2021年10月26日在宾夕法尼亚州费城举办的ASMS上推出了其研发的CDMS仪器。笔者也搜索了TrueMass创始人 John Hoyes博士相关的信息,以飨读者。TrueMass创始人 John Hoyes博士TrueMass 创始人 John Hoyes 博士在质谱行业拥有 30 多年的从业经验。他于 1989 年在曼彻斯特大学完成了激光物理学博士学位,并在该大学科学技术学院仪器与分析科学系 (DIAS) 担任了一年的博士后研究助理。 Hoyes博士1990 年首次加入 VG Analytical,担任曼彻斯特工厂的开发物理学家。在头两年致力于改进磁扇磁场质谱仪器后,他开始研究飞行时间 (TOF) 质谱仪器。他是 VG Analytical 第一台 TOF 仪器的项目负责人,该仪器采用了 MALDI 离子源。 1995 年,他领导开发了世界上第一台商用 Q-TOF 仪器,该仪器于1996 年底由Micromass(后被Waters收购)推出。 2000 年,他发明了高分辨率光学 TOF 几何结构,并被纳入下一代 Q-TOF 仪器的改进。 2003 年,Hoyes博士离开 VG,成立了一家名为 MS Horizons 的新公司,专门提升该领域现有 Q-TOF 仪器的性能。在此期间,Hoyes博士对离子淌度和飞行时间杂合质谱仪器产生了兴趣,并为此申请了专利。他于 2006 年回到 Micromass(后被Waters收购) 担任研究总监,并于 2010 年成为技术总监。在他任职期间,公司推出了 SYNAPT G2、Vion 仪器和 StepWave 离子源等产品。 2013 年,他成为Waters科学研究员,并于 2016 年在 HUPO(人类蛋白质组组织)获得“科学技术奖”。2018 年 4 月,Hoyes博士离开公司,成立了 HGSG Ltd咨询公司。2020年Hoyes博士创立了 TrueMass公司以实现他对商业电荷检测质谱仪器的想法。总体看来,CDMS技术在复杂生物分析中能够发挥质谱技术的精确性优势,不久之后,质谱巨头们关于CDMS技术一定会动作频频,仪器信息网也将持续带来最新报道,敬请关注。
  • 高分辨率质谱在阿达木单抗表征中的应用
    p  单克隆抗体的生产方式赋予了它们复杂且具有异质性的分子特点。通常需要借助多种正交分析技术才能全面表征各种变体。 在本应用纪要中,我们使用质谱这种强大的工具对阿达木单抗进行了表征。/pp  strongspan style="color: rgb(0, 112, 192) "简介/span/strong/pp  Humira® (阿达木单抗)是一种FDA和EMA批准的抗TNFα抗体,被用于治疗多种炎症性疾病,包括类风 湿性关节炎、幼年特发性关节炎、银屑病关节炎、银屑病和克罗恩病。它是2014年销量最高的单克隆抗体产品,全球销售额超过130亿美元。/pp  阿达木单抗是由CHO细胞表达的完全人重组抗体。 和所有通过重组DNA技术制备的蛋白质一样,其最终产品是不同变体的混合物。我们必须全面表征产品的异质性,因为这会影响其安全性和功效。/pp  质谱是目前被广泛使用的生物药物表征技术之一。得益于硬件和软件的创新,该技术现已得到常规应用。在本应用纪要中,我们将使用质谱对Humira® 进行不同水平的表征。/pp  strongspan style="color: rgb(0, 112, 192) "完整阿达木单抗的表征/span/strong/pp  利用质谱分析单克隆抗体最简单的方式就是测定完整蛋白质的分子量。该检测可提供有关蛋白质鉴定和糖基化谱图的有用信息。/pp  测定时需要对抗体脱盐,去除制剂缓冲液中的非挥发性盐类。脱盐步骤可使用超滤装置离线完成,但该过程非常耗时。配备反相色谱柱的液相色谱是一种替代方法:盐类在死体积内洗脱并被导入废液,然后用乙腈水溶液梯度将单克隆抗体洗脱到质谱仪的离子源中。/pp  典型分析条件如表1所示。应当注意,考虑到传质限制,须采用较高的柱温以改善峰形,进而提高MS灵敏度。/pp style="text-align: center "  span style="color: rgb(0, 112, 192) "表1:阿达木单抗完整质量数测定的分析条件/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/83d0cd65-f7b9-4177-b0f7-5ff513e8505b.jpg" title="1_副本.jpg"//pp  所得电喷雾质谱图为包络迹线,其中包括不同电荷态的蛋白质。使用MaxEnt® 算法进行去卷积处理,得到更容易解析的谱图(见图1)。通过去卷积谱图可轻松确定糖基化谱图。/pp  在阿达木单抗上观察到的主要糖型为G0F/G0F和G0F/G1F,质量精度通常低于20 ppm。/pp  如果需要测定不含糖基的蛋白质的分子量,为了简化谱图,可进行去糖基化。通常采用PNGase F酶去糖基化,但反应时间相当长(需要数小时甚至过夜)。为了加快分析速度,我们选用了Rapid PNGase F酶(纽英伦生物技术公司)。在50 ° C下温育10~15 min后, 获得完全去糖基化的抗体。该反应可在大多数制剂缓冲液中直接进行,无需更换缓冲液。对应的质谱图如图2所示。由于质谱图得以简化,我们可轻松观察到其它修饰,例如C端赖氨酸剪裁。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/da262e93-2bdb-4c3b-b5df-dfcf6b1eb709.jpg" title="2_副本.jpg"//pp style="text-align: center "  span style="color: rgb(0, 112, 192) "图1:完整阿达木单抗的电喷雾质谱图(A)和MaxEnt® 去卷积质谱图(B)。/span/ppstrongspan style="color: rgb(0, 112, 192) "/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/175a864c-b84f-4c37-bd2f-de937b179ade.jpg" title="3_副本.jpg"//pp style="text-align: center " strong span style="color: rgb(0, 112, 192) "/span/strongspan style="color: rgb(0, 112, 192) "图2:N-去糖基化阿达木单抗的电喷雾质谱图(A)和MaxEnt® 去卷积质谱图(B)。/span/pp  strongspan style="color: rgb(0, 112, 192) "IdeS酶解后的阿达木单抗亚基分析/span/strong/pp  尽管完整质量数测定(经过或不经过去糖基化处理)已经能够快速简单地鉴定抗体及确定糖基化分布,高分离度对于色谱分离和质谱测定而言通常也很有价值。/pp  完整抗体的大小(约150 kDa)限制了分离度。还原二硫键可得到轻链和重链,但在低丰度变体的测定中,重链(约50 kDa)仍然是一个问题。/pp  IdeS酶(Genovis,商品名FabRICATOR® )是采用质谱法表征单克隆抗体时的重要工具。酶解并还原二硫键之后得到的肽段(见图3)分子量约为25 kDa,因此可采用LC/MS分析,而且色谱分离度和质量精度极佳。 此外,样品制备仅需不到一小时。该方法通常被称为 “自中而上”策略。/pp  或者,也可使用IdeS和Rapid PNGase F(后者须在还原条件下反应)进行连续酶解,获得去糖基化的肽段。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/b21e335e-8fd8-445a-a855-c340edabcbd1.jpg" title="4_副本.jpg"//pp style="text-align: center "  span style="color: rgb(0, 112, 192) "图3:用IdeS酶解mAb之后还原二硫键/span/pp  为了大限度提高色谱分离度,我们优化了分析条件。 最关键的参数是色谱柱的性质以及流动相中所用的改性剂。 使用不同色谱柱获得的色谱图如图4所示。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/d4c71121-5a2b-4cc0-b26d-53ba57dfce8f.jpg" title="5_副本.jpg"//pp style="text-align: center "  span style="color: rgb(0, 112, 192) "图4:使用不同HPLC色谱柱分离经IdeS酶解和二硫键还原所得的阿达木单抗肽段的结果比较/span/pp  由图可观察到明显差异,购自Thermo的MabPac RP色谱柱所得的结果最佳。我们在该色谱柱上测试了两种改性剂: 甲酸(FA)和三氟乙酸(TFA),以及这两种改性剂的混合物。/pp  最佳分析条件如表2所示。图5展示了用IdeS酶解阿达木单抗之后,还原或不还原二硫键所得的色谱图。测得分子量的质量精度低于1 Da。得益于良好的色谱分离度,我们还可分离并定量各种变体,例如N端焦谷氨 酸、无糖基化变体或氧化物质。/pp style="text-align: center "  span style="color: rgb(0, 112, 192) "表2:阿达木单抗亚基分析条件/span/pp style="text-align: center"br//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/6afe117f-4c86-4523-8404-641d94e12497.jpg" title="无标题_副本.jpg"//pp style="text-align: center "  span style="color: rgb(0, 112, 192) "图5:经IdeS酶解和DTT还原的阿达木单抗样品的LC/MS分析结果/span/pp style="text-align: left "  该方法还可用于研究抗体氧化。我们使用不同浓度的H2O2 进行了强制氧化研究。在20 ° C下温育45分钟后, 用IdeS酶解样品,然后用DTT还原,最后通过LC/MS 进行分析。所得液相色谱图如图6所示。/pp  不同峰的质谱鉴定非常简单直接。可明确测得Fc/2和 F(ab’)2 区域的氧化物质浓度增加。/pp  在稳定性研究中,这种分析方法非常适用于监测单克隆抗体的氧化。亚基水平的分析能够粗略定位氧化位点。更精确的定位可通过肽图分析实现。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/e3b20720-c738-41e3-91c0-9912e87e02a5.jpg" title="6_副本.jpg"//pp style="text-align: center " span style="color: rgb(0, 112, 192) " 图6:色谱图随H2O2 浓度增加发生的变化/span/pp  strongspan style="color: rgb(0, 112, 192) "通过UPLC-UV-MSsupE/sup肽图分析对阿达木单抗进行鉴定和目标纯度分析/span/strong/pp  肽图分析策略涉及使用特定的蛋白酶(例如胰蛋白酶) 得到小分子肽,再利用LC与UV和/或MS检测联用的方法分析所得的肽混合物。/pp  随着液相色谱和质谱技术不断进步,采用肽图分析法分析单克隆抗体现在已经能够达到接近100%的序列覆盖率,同时详尽表征翻译后修饰。 如今,人们在常规分析中使用亚2 µ m色谱柱获取高分离度肽图,而借助高分辨率质谱则能够以低于 5 ppm的质量精度实现肽的鉴定。/pp  除了质量测定以外,还可使用MSE模式记录碎片数据。 在MSE采集模式下,仪器每秒交替采集低能量和高能量谱图,因此几乎可以同时获得分子质量和序列信息 (图7)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/fbe321ec-3274-4d6b-acb9-2fe1c51b3e85.jpg" title="7_副本.jpg"//pp style="text-align: center "  span style="color: rgb(0, 112, 192) "图7:MSE采集模式的原理。/span/pp  过去MS检测通常仅用于方法开发,但随着功能强大且经过验证的软件被开发出来,质谱法现在也被应用于常规分析中。/pp  放大后的阿达木单抗肽图分析基峰离子(BPI)色谱图如图9所示。这些数据使用表3所列的分析条件获得。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/4fac9c35-d14d-446a-89bb-bbf9abfa6226.jpg" title="yaji_副本.jpg"//pp style="text-align: center "  span style="color: rgb(0, 112, 192) "表3:阿达木单抗肽图分析的分析条件/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/d1e374ea-bc16-4db0-a1c8-2da8667c190f.jpg" title="8_副本.jpg"//pp  使用UNIFI软件解决方案(沃特世)基于分子量对每个峰进行鉴定(质量数容差5 ppm),进而计算出序列覆盖率 (图8)。 必要时,可使用碎片数据(MSE)确证胰蛋白酶肽的鉴定结果。图10展示了碎片离子谱图的一个示例(MSE-高 能量)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/b0cc8c39-7298-4968-af6d-87b4ec76d53a.jpg" title="9_副本.jpg"//pp style="text-align: center "  span style="color: rgb(0, 112, 192) "图8:利用UPLC-UV-MSE对阿达木单抗进行肽图分析并采用UNIFI软件解决方案处理数据之后所得的序列覆盖图/span/pp  肽图分析法还可用于评估单克隆抗体的纯度。完整质量数测定和亚基分析能够提供单克隆抗体纯度的大体情况,肽图分析法则能够进行目标纯度分析。可评估的主要修饰包括:/pp  ■ 脱酰胺化/pp  ■ 氧化/pp  ■ 糖基化/pp  ■ N端焦谷氨酸/pp  ■ C端赖氨酸截断/pp  即使UPLC肽图的分离度再高,色谱分离度通常也不足以通过UV检测对修饰进行相对定量。因此,我们使用MS数据进行定量分析。该过程可使用UNIFI等软件解决方案完全自动化地完成。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/daf3b1a7-ab1b-4c9c-ac80-08dea0ac6ed9.jpg" title="10_副本.jpg"//pp style="text-align: center "  span style="color: rgb(0, 112, 192) "图9:阿达木单抗的肽图(BPI色谱图)/span/pp  使用该方法分析阿达木单抗样品,获得了如下结果:/pp  ■ 序列覆盖率:100%(质量数容差10 ppm)。/pp  ■ 使用更苛刻的标准(质量数容差5 ppm, 至少以2b/y碎片离子确证鉴定结果)所得的序列覆盖率仍然非常高(93%)。/pp  ■ 重链上2.9%的N端谷氨酸以焦谷氨酸形式存在。/pp  ■ 大部分重链都不含C端赖氨酸(89%)。/pp  ■ 在轻链的152N上观察到了显著的脱酰胺化。/pp  ■ 观察到的主要糖型为G0F、G1F和G2F,相对强度分别为75%、23%和2%(基于糖肽EEQNSTYR)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/93a63c98-dd03-4921-a7cf-236379984a3c.jpg" title="11_副本.jpg"//pp style="text-align: center "  span style="color: rgb(0, 112, 192) "图10:阿达木单抗轻链T1肽的高能量MSE谱图(带标注)/span/pp  利用UPLC与荧光检测和高分辨率质谱检测联用的方法对阿达木单抗进行N-糖分析/pp  大多数治疗性单克隆抗体都是IgG类抗体,在重链的Fc 区氨基酸297N处有一个糖基化位点(见图11)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/30b15311-c672-40c6-aa50-920177aaee2e.jpg" title="12_副本.jpg"//pp style="text-align: center "  span style="color: rgb(0, 112, 192) "图11:单克隆抗体中常见的N-糖/span/pp  糖基化是单克隆抗体的一项关键品质属性,因为Fc区 域的N-糖特征可影响抗体与Fc受体的结合,从而调控 ADCC和ADCP活性。末端半乳糖对于补体依赖性细胞毒性(CDC)也很重要。最后,糖基还会影响治疗性抗体的安全性。/pp  因此,必须采用灵敏且可重现的方法来表征单克隆抗体的糖基化以及批次间一致性。得益于优异的分离度和重现性,使用亚2 µ m色谱柱分析2-AB标记的N-糖成为了表征单克隆抗体的首选方法。不同游离寡糖的相对定量通常采用荧光检测法。/pp  该方法的两个缺点是样品制备时间长(通常为2~3天), 且很难鉴定低丰度游离寡糖。/pp  我们对方案进行了优化,将样品制备时间缩短为不到一天,并结合高灵敏度MS/MSE和荧光检测建立了自动化MS工作流程。包括数据处理和报告在内的整个流程可在24小时内完成(见图12)。表4汇总了分析条件。/pp  阿达木单抗的UPLC/FLUO色谱图如图13所示。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/448b85af-dfca-4b58-a3af-3513a8a0c928.jpg" title="13_副本.jpg"//pp style="text-align: center "  span style="color: rgb(0, 112, 192) "图12:N-糖分析工作流程/span/pp  span style="color: rgb(0, 112, 192) "表4:阿达木单抗游离N-糖的分析条件/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/df32e840-8042-4c12-a9a9-bffa7781485a.jpg" title="Ntang_副本.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/8bd603a8-3e4d-4b31-8107-a23999844b42.jpg" title="15_副本.jpg"//pp style="text-align: center "  span style="color: rgb(0, 112, 192) "图13:阿达木单抗N-糖分析所得的UPLC/FLUO色谱图/span/pp  鉴定不仅基于游离寡糖的分子量,还基于“葡萄糖单元 ”(GU)校准。大多数情况下,将这两种方法相结合都能准确鉴定N-糖。必要时,可使用MSE模式下采集的碎片数据来确证鉴定结果,或者在两个假定结果之间做出选择。GlycoWorkbench应用程序可用于解析碎片谱图。带标注的MSE谱图示例如图14所示。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/3092e407-ec1b-42c8-b670-c1ca726e5f52.jpg" title="16_副本.jpg"//pp style="text-align: center "  span style="color: rgb(0, 112, 192) "图14:分析阿达木单抗样品中的2-AB标记G0F游离寡糖所得的高能量MSE谱图(带标注)/span/pp  检出的主要N-糖(占所有检出N-糖的95%)列于表5中。/pp style="text-align: center "  span style="color: rgb(0, 112, 192) "表5:阿达木单抗样品中检出的主要N-糖/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/de10208a-c2b3-41e2-91a2-acf08569e5c8.jpg" title="17_副本.jpg"//pp  有趣的是,使用本应用纪要所列的不同方法测得的要糖型比率非常一致(仅考虑所有方法都能检出的糖型,即G0F、G1F和G2F),如表6所示。/pp  表6:使用不同方法获得的阿达木单抗糖型测定结果比较/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/753139b8-e6e8-4a94-9a6e-a0411df6303b.jpg" title="18_副本.jpg"//pp  strong注:本文引自Quality Assistance的应用文章。/strong/ppbr//p
  • 2016长春国际质谱研讨会:深谈质谱基础理论 聚焦生物样本分析
    p span style="FONT-FAMILY: times new roman" strong仪器信息网讯/strong 2016长春国际质谱研讨会于2016年7月30日-31日在吉林大学召开(a title="" href="http://www.instrument.com.cn/news/20160730/197869.shtml" target="_self"strong相关新闻:2016长春国际质谱研讨会开幕 专家共贺吉林大学70周年庆/strong/a)。探讨气体相离子化学、离子化和离子碎裂机理等质谱基础理论是此次研讨会的核心主题。来自美国、加拿大、 韩国、香港及国内高校、研究所的著名质谱理论和应用专家围绕17个分享报告展开了深入研讨。吉林大学化学学院的硕、博研究生们也参与到了本次活动的学习和交流中。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"img title="IMG_0220_副本.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/e334e3ed-60ae-4ba0-8f8c-654b48cc8388.jpg"//span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"strong研讨会现场/strong/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"strongimg title="IMG_9990_副本.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/bffed2c5-4e13-4b27-b7e9-a46655acc265.jpg"//strong/span/pp style="TEXT-ALIGN: center"span style="COLOR: rgb(0,32,96)"strongspan style="FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"美国加利福尼亚大学Joseph A. Loo 报告题目《Native Mass Spectrometry and Top-Down MS for the Characterization of Protein Interaction》/span/strong/span/ppspan style="FONT-FAMILY: times new roman"  采用ESI在非变形溶液条件下用质谱分析生物分子被称为“native”MS。Joseph认为自上而下质谱是分析蛋白序列的好方法。“我们用FT-ICR MS分析配体结合位点,得到大量数据信息用以分析大蛋白复杂化合物。我们团队通过ECD/FT-ICR MS研究在神经组织退化疾病如阿耳茨海默症、帕金森症中化合物分子的反应机理。除此之外,红外多光子解离(IRMPD)、紫外光解离(UVPD)、电子离子化解离(EID)等方法能够从不同侧面提供更全面的结构信息。” Native 自上而下MS分析得到了蛋白质的很多复杂信息,虽然膜蛋白的确给Native MS分析带来了不小的挑战,但FT-ICR MS的多种灵活使用方法使得膜蛋白精确分析问题得到了解决。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"img title="IMG_0013_副本.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/2ca1f12f-0dd5-4193-8d8a-d872077a85f7.jpg"//span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"strong美国北伊利诺伊大学Victor Ryzhov 报告题目《Metal ion complexes of amino acid and peptide radicals: Structure and reactivity》/strong/span/ppspan style="FONT-FAMILY: times new roman"  蛋白质中的半胱氨酸能够从Cα获得氢原子的自由基的能力。由于移动质子的释放,使用金属离子作为电荷来源具有一定优势。Victor团队的研究,包含表征氨基酸和肽段中的金属离子对半胱氨酸自由基的阳离子化过程。复合物的反应过程通过离子分子反应(IMR)经四极杆串联离子阱质谱等仪器设备来监测。通过IMR和IRMPD分析,该团队的研究者发现了Cys自由基与Li+、NA+、K+的复合物。这些物质仍保留了硫基自由基,(N,O,S)可与金属离子配位。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"img title="IMG_0042_副本.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/7e41db80-fdce-4fc4-838f-610da3bae1c8.jpg"//span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman" span style="FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"strong香港大学Ivan K. Chu 报告题目《Radical-Mediated Peptide Tyrosine Nitration: Fundamental, Bioanalytical and Neurodegenerative Proteomics》/strong/span/span/ppspan style="FONT-FAMILY: times new roman"  经Ivan介绍, PTN是一种在活体硝化应激条件下蛋白质自由基介导翻译后修饰。团队对导致邻位酪氨酸硝化位点特异性的详细机理进行了研究探索。该团队通过一套包括离子化学、以MDLC-MS为基础的蛋白组学研究、MRI成像、免疫组学研究等在内的综合方法研究了自由介导酪氨酸硝化理论。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"img title="IMG_0096_副本.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/41bd6ac4-f383-4b95-9d46-a77134855e8b.jpg"//span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman" span style="FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"strong北京大学刘虎威教授 报告题目《Lithium-rich composite metal oxide used as SALDI-MS matrix for the determination of small biomolecules/strong/span》/span/ppspan style="FONT-FAMILY: times new roman"  刘虎威研究团队成功合成了分析生物小分子的富锂金属氧化物SALDI基质,并成功采用SALDI-MS分析了Lisub1./subsub2/sub、Mn sub0.54/sub、Nisub0.18/sub、Cosub0.13/sub、Osub2/sub五种生物小分子。SALDI基质需要同时满足离子化辅助试剂和能量传导体的身份。该团队还通过SALDI和新基质研究了药物、低聚糖、脂类和肽等小分子生物物质,均得到了满意的信号。此方法快速简单,仅需将待测物与分析溶液混合,滴在MALDI靶板上测定即可。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"img title="IMG_0103_副本.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/acf5c7dc-e183-4035-b20c-e336079261b5.jpg"//span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"strongspan style="FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"东华理工大学Konstantin Chingin 报告题目《On the Preservation of Noncovalent Protein Complexes During Electrospray Ionization》/span/strong/span/ppspan style="FONT-FAMILY: times new roman"  ESI-MS在蛋白质配合物的定量分析仍存在一定争议,使用ESI-MS和使用其他方法得到结果不同。同样蛋白配合物在实验室间得到的结果也常常不一致。Konstantin通过分析几种液滴离子化技术讨论了非共价键蛋白配合物的离子化过程。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"img title="IMG_0114_副本.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/4199ed3a-3fb0-44aa-8e6a-08a53f89c7fe.jpg"//span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"strongspan style="FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"南开大学孔祥蕾教授 报告题目《IRPD Spectroscopy of Metal Cationized Ions Generated by MALDI Source》/span/strong/span/ppspan style="FONT-FAMILY: times new roman"  孔祥蕾教授介绍了一种MALDI与IRPD技术结合得到阳离子化金属离子IRPD信息的新方法。石墨烯是此方法中的MALDI基质。该方法与H/D交换结合,通过观察IR峰识别发色基团。研究发现,相比ESI方法产生的[Arg+Rb]+,该方法中产生的[Arg+Rb]+含更高的内能。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"img title="IMG_0118_副本.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/88b28ef6-1a10-49d8-b90a-0a55cee71432.jpg"//span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"strongspan style="FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"韩国延世大学Myeong Hee Moon 报告题目《Field-flow fraction with MS for Proteomic Analysis: Glycoproteins, Subcellular Organelles,& Exosomes》/span/strong/span/ppspan style="FONT-FAMILY: times new roman"  FFF是一种可以分离以大小分类的物质的方法,包括蛋白质、DNA、细胞等在内的巨型生物分子的分离。FIFFF是FFF的一种变化形式。Myeong介绍了以颗粒大小分离糖蛋白的FIFFF法的应用,反应利用中空纤维酶反应器与nLC-ESI-MS/MS实现在线消化和定量。报告中还探讨了将该方法用于前列腺癌尿样的胞外体、细胞外分泌物分析。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"img title="IMG_0126_副本.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/caa327cf-5945-4890-94aa-e9b79bf19b38.jpg"//span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"strong南京大学刘震教授 报告题目《Molecularly Imprinted Materials-based Extraction: Ideal Partner of Mass Spectrometry for Efficient Identification of Targeted Proteins in Complex Biological Samples》/strong/span/ppspan style="FONT-FAMILY: times new roman"  用质谱做蛋白质定量时,表面蛋白种类多,从而会大大影响目标蛋白的离子化效率,故采用质谱分析蛋白质时样品前处理过程非常重要。分子印迹方法在亲和分离、疾病诊断、化学传感等应用中非常受欢迎。刘震教授介绍了团队在含糖化合物印迹方面研究的几种新方法。这些方法能够通过分子印迹鉴别一类而非一种特定蛋白质。分子印迹材料可在特定蛋白样品处理时有效地吸附。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"img title="IMG_0133_副本.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/b0101ddd-b807-483f-b4cb-d7a3d9e9625a.jpg"//span/pp style="TEXT-ALIGN: center"span style="COLOR: rgb(0,32,96)"strongspan style="FONT-FAMILY: times new roman"北京大学副教授白玉 报告题目《Metabolomic Analysis of Mouse Embryonic Fibroblast Cell in Response to Acute Starvation with and without Atg7》/span/strong/span/ppspan style="FONT-FAMILY: times new roman"  Atg7(自噬相关蛋白质)在自噬过程中起着重要作用。Atg7在反应中的信号通路已经有研究阐明,而Atg7对细胞饥饿条件下代谢组学反应的影响尚不清楚。白玉副教授介绍了通过分析MEFs(鼠胚胎纤维源细胞)探索依靠Atg7的自噬代谢机理,并发现了30多种与细胞饥饿相关的代谢产物。该研究还表明,自噬的缺乏会引起TCA循环的钝化,这导致细胞会在突然饥饿情况下迅速衰亡。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"img title="IMG_0140_副本.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/555c3154-06a7-409c-bb46-9948f25c19cd.jpg"//span/pp style="TEXT-ALIGN: center"span style="COLOR: rgb(0,32,96)"strongspan style="FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"中国科学院大连化学物理研究所许国旺教授 报告题目《LC-MS based Metabolomics Method for Large Scale Sample Analysis and Metabolite Identification》/span/strong/span/ppspan style="FONT-FAMILY: times new roman"  UPLC-MS是当今最为普遍的代谢组学分析途径,但其常规分析的效率和重现性并不能满足分析需求。筛查中仅有1.8%的物质质谱信息能得到准确鉴定。面对这情况,许国旺团队开发了面对大规模代谢组学样品时,通过UPLC-MS的代谢组学综合分析方法,这其中包括前处理中去除蛋白质的方法。快速UPLC-MS分析方法每天能分析96个样品并得到大量的组学数据。分析得到的代谢组学数据库包括2000种常见代谢物的保留时间、MS和MS/MS信息,可用于代谢产物鉴定分析。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"img title="IMG_0151_副本.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/afe72a17-191b-45b8-8b5d-a5fea2a7bbc5.jpg"//span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"strongspan style="FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"中国科学院大连化学物理研究所张丽华教授 报告题目《Improved Accuracy, Coverage and Throughput for Proteome Quantification》/span/strong/span/ppspan style="FONT-FAMILY: times new roman"  张丽华教授在报告中介绍了几种蛋白质组学研究中的定量新方法。免标记法蛋白组学定量中该团队在样品处理中采用辅助离子液过滤,并用C12Im-Cl代替SDS提取蛋白质,随后做变性、过滤烷化、消化和脱盐过程。由于 C12Im-Cl的提取效果、增溶效果和消化效果都优于SDS得到的蛋白质量和定量精确度都得到了明显提高,而前处理也更加省时。另外,在化学标记蛋白组学定量中,团队还分析了pLDL方法以及其在区分Csub12/sub/Csub13/sub、sub1/subH/sub2/subH的微小区别时的定量情况。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"img title="IMG_0216_副本.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/9d6b867a-a69b-4590-8162-912cb9c4eb2f.jpg"//span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"strongspan style="FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"加拿大温莎大学K.W.Michael Siu 报告题目《Loss of Water from protonated Polyglycines》/span/strong/span/ppspan style="FONT-FAMILY: times new roman"  Siu团队从多甘氨酸探索多肽质子化失水机理。试验将O18标记聚甘氨酸的特殊肽键替换为王(Wang)树脂。研究发现80%质子化的四甘氨酸从第一肽键失水。肽链增长会增加从第二肽键失水的可能。研究发现,从第二肽键失水的多肽失水产物是质子化唑,或将重排成唑结构。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"img title="IMG_0224_副本.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/080b4693-205a-456c-9883-3175cd713000.jpg"//span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"span style="FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"strong美国华盛顿大学Frantisek Turecek 报告题目《Gas-Phase Footprinting of Peptide Ions in Non-Covalent》/strong/span/span/ppspan style="FONT-FAMILY: times new roman"  软电离使多原子离子能够从压缩相过渡到气态相,很多研究开始了通过MS、NMR等技术探索复合离子的3D结构。Franti?ek团队采用气体相印迹法分析由ESI得到的非共价肽-肽离子复合物。对光不稳定的Diazirine ring在355nm分解形成高活性碳烯中间物 ,作用于非共价复合物中的肽配合物形成共价键。/span/pp style="TEXT-ALIGN: center"img title="IMG_0231_副本.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/0c9d2485-e6c2-4c59-a05c-8b042d87c26d.jpg"//pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"strongspan style="FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"中国科学院武汉植物园郭明全研究员 报告题目《Biomarker Discovery: from proteins to Endogenous Lipids》/span/strong/span/pp  span style="FONT-FAMILY: times new roman"郭明全团队通过2-D 凝胶电泳和LC-MS/MS等技术研究了HMSCs在电离辐射(IR)下的蛋白组/磷脂蛋白组变化。研究显示,IR对磷脂蛋白组带来了显著变化,研究还发现了一些潜在的蛋白标记物。另外,该团队还发展了基于MDME 结合UPLC-MS的新方法用于分析研究血浆中的内源性大麻素(eCBs)。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"/spanimg title="IMG_0246_副本.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/1aa78873-e868-486c-9628-4234fc6fbe18.jpg"//pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"strongspan style="FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"美国加利福尼亚大学Rachel R. Ogorzalek Loo 报告题目《Are High Charge States Destabilized by Like-Charge Repulsion or are Low Charge States Stabilized by Opposite-Charge Attraction (Salt Bridges)?》/span/strong/span/ppspan style="FONT-FAMILY: times new roman"  碰撞活化非共价多聚体常会产生不对称解离,逐出单个亚单元,也因此承受电荷过剩。库伦排斥令亚单元带走更多的电荷。Rachel在报告中探讨了盐桥反应的衍生物以及用盐桥理论解释活化作用、解离作用和碰撞截面测量。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"img title="IMG_0255_副本.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/1d7b0ca8-d235-4603-9157-bc0a0f2a89a3.jpg"//span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"  /spanspan style="FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"span style="LINE-HEIGHT: 0px DISPLAY: none" id="_baidu_bookmark_end_13"?/spanstrong吉林/strongspan style="FONT-FAMILY: times new roman"strong大/strong/span/spanspan style="FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"strong学国新华教授 报告题目《Characteristic Peptide Fragment Ions Formed by Charge-Remote Fragmentation Pathways upon Low-energy CID》/strong/span/ppspan style="FONT-FAMILY: times new roman"  国新华教授在报告中介绍了采用MS/MS分析bsubn/sub-44、cn、bsub2/sub+H2O等一系列特征离子。该团队对特征离子的形成机理做了深入研究,包括N端固定电荷、电荷态、氨基酸组成、碱金属离子等对反应的影响。该研究尝试了对含Thr/Ser肽中bsubn/sub+H2O的构想重组。N→O的酰基转化得到了脂质中间物,酯的产物进一步裂解促使bsubn/sub+H2O离子的形成。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"img title="IMG_0171_副本.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/418217b8-3384-4595-8fe3-f4fd6cae9037.jpg"//span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"span style="FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"strong赛默飞世尔科技工程师吴泽明 报告题目《Novel informatics tools for small molecule research with orbitrap Technology》/strong/span/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"span style="FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"strongimg title="IMG_0258_副本.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/39938951-24b0-41f5-bd0c-ce9d18b0fa83.jpg"//strong/span/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"span style="FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"strong长春中医药大学刘淑莹教授总结致辞/strong/span/span/ppspan style="FONT-FAMILY: times new roman"  经过两天的活跃讨论,此次研讨会的报告研讨阶段结束。刘淑莹教授在总结致辞中,介绍了目前中国中医药大学对人参生物活性物质的探索,也邀请到场嘉宾共同加入到人参成分质谱分析中来。刘淑莹教授代表本届研讨会组织委员会表示,此系列的研讨会将继续下去,也许在两年之后将举办下次活动。目前国内外使用质谱的人越来越多,而质谱操作者中大多数对质谱理论和研究机理并不了解。刘淑莹教授表示应鼓励质谱基础知识的传播,质谱机理的交流学习对提高质谱操作者的理论能力非常有帮助。至此,2016长春国际质谱研讨会圆满落幕。/span/pp style="TEXT-ALIGN: right"span style="FONT-FAMILY: times new roman"编辑:郭浩楠/spanbr//p
  • 厉害了!我的质谱仪
    你可能很难将小小的纳米发电机和质谱仪关联起来,但聪明的科学家们怎么能放过任何一个解决问题的机会?我们先来一小波关于质谱仪的科普:  质谱仪主要进行成分和结构分析,可以准确测定物质的分子量以及根据碎片特征进行化合物的结构分析。  分析时首先要将分子离子化,然后利用离子在电场或磁场中运动的性质,把离子按质荷比大小排列成谱,这就是质谱。然后利用不同离子的质荷比的不同,就能将不同分子分开啦。  那么问题来了,如何将分子离子化呢?简单的说,可以通过失去或者捕获电荷的方式生产力子,例如:电子发射、质子化或去质子化的方式。  但是这个步骤并不容易,首先效率很低,非常低,如果利用传统的高压电源,99%的能量是被浪费掉的,那都是钱啊!!!更重要的是,目前所有的离子化方法都无法对离子数量进行精确地控制,也就是说,精度不高。这就尴尬了!  摩擦纳米发电机有一个很重要的特性,它可以实现固定电荷量的高压输出。也就是说,如果能将它与质谱仪结合,不仅仅能够准确控制离子数量提高精度,设备的耗能也会大大降低,仪器可以小型化,进而应用于航天和军事等领域。  说起来容易,但解决这个问题,需要国际化的顶尖团队。在佐治亚理工学院、中国科学院北京纳米能源与系统研究所王中林院士和 FacundoFernández 教授共同指导下,李安寅博士和訾云龙博士组成的合作团队,用摩擦纳米发电机(TENG)驱动离子源,实现了离子源在电荷数量、正负极性、信号长短等诸多方面的精确控制,这项工作发表在 Nature Nanotechonlogy 上,思路之巧妙,控制之精确,请看下文!  首先,他们利用摩擦纳米发电机(TENG)将电喷雾离子化和等离子体放电离子化。由TENG提供的固定电荷量可以实现对离子化过程前所未有的精确控制,可以进行纳库精度(nanoColoumb)的可控离子产生。  另外样品消耗也大大减小,通过纳米发电机的驱动,离子脉冲的持续时间、频率、带电性都可以得到有效控制,这样就能将样品消耗降到最小。  与传统高电压技术相比,由于纳米发电机产生的电荷很少,避免了质谱分析中DC高电压下常见的电晕放电现象,首次实现了超高电压(5-9千伏)纳电喷雾(nanoESI)。  这篇 Nature Nanotechonlogy 对工作进行了非常详细的介绍,以下是简单的图文导读:     图1. 离子喷雾枪图片  摩擦纳米发电机所产生的离子源用于分析极其微量的化学和生物样品,其精度可以达到几百个分子。     图2. 通过 TENG实现离子化示意图。  a)实现接触-分离式摩擦发电机(CS)的力学图示。  b) 独立滑动式摩擦发电机(SF)的力学图式。  黄色:Cu电极层  蓝色:FEP层( ?uorinatedethylene propylene)  红色箭头:摩擦发电机电极的移动方向  脉冲:电子向离子源移动方向(e?,I)  尖针:纳米电雾发射枪  垂直方块:用于接受电子束的钢板,电流值可以用皮安电流表测得(图中的“A”)  c).纳米电子发射枪的暗场图像可以看到摩擦发电机发射的羽毛状电子束,长度单位:1毫米  d).在等效电路中,TENG用电容器(C1)和其他原件来表示(左虚线框)。nanoESI发射枪等效于电容器(C2),可以按设定值发射出电荷,用右虚线框表示。发出的电荷(产生的离子)穿过发射枪和质谱仪(或皮安电流表A)之间的间隙。  另外,CS-TENG电极(a)接在一侧,可以在接触位置重设静电状态,图d中用开关CS表示。     图3. TENG对纳米电子喷雾的离子化实现精确控制  a)代表TENGs控制离子束过程VOC -QSC线代表TENGs提供一定电荷后的电压-电荷关系。当纳电喷雾接上时,只有当电压达到特定电压Vonset,电荷才会传递到这个离子源(Cion source)  接着,大量电荷以电喷雾的离子化形式释放,直到TENG电压降到设定值以下,用绿线Qpulse表示  b)时间-电荷图描述了单CS-TENG驱动的纳米喷雾发射器的离子化脉冲。四条线是使用了不同电阻的结果( 0 GΩ (黑), 0.5GΩ (蓝),1 GΩ (红) 和 1.25 GΩ (绿)),用于调控电荷。绿线对应一种设定条件,约50%电荷并能变成电子喷雾。  c)长时或短时的总离子时间记录图 。使用 SF-TENG得到按需产生的高频脉冲: 5 s (黑), 600 ms (蓝), 300 ms (红) and 60 ms (绿)。  d) 一次实验中交变极性喷雾脉冲(红+绿)的总离子时间记录。in one experiment and 另一实验中校正的单极脉冲(黑)。  纳米发电机可以帮助质谱仪提高在低浓度下的电喷雾离子源的灵敏度,并将样品的利用率最大化,而且,该纳米发电机已经成功检测各种有机小分子和生物大分子,并达到了可以检测到几百个分子的灵敏度。此外,纳米发电机驱动的交流离子喷雾还可以用于在绝缘表面进行沉积离子材料。  其实,该研究的意义并非如此,这项突破对摩擦纳米发电机(TENG)也同样具有开创性意义,这是第一次将纳米发电机用于设备仪器中,为以后类似的研究提供了思路。TENG取代了质谱设备上原有的离子喷雾电源,为小型质谱设备实现便携化并在极端条件下(例如军事或航天上)应用提供了可能,为了开展空间实验提供了极大地便利。
  • 使用BiopharmaLynx软件分析蛋白完整分子量
    贾伟 沃特世科技(上海)有限公司实验中心对蛋白药的分子量进行测定,可以在完整蛋白水平,对其进行宏观表征,以初步确定蛋白的表达是否正确。BiopharmaLynxTM软件中,专门设计了对蛋白整体分子量测定及表征的多种功能,它具有以下特点。 ■ 通过原始质谱数据,计算出蛋白分子量。■ 自动标注蛋白的各种不同修饰形态。■ 以直观方式,比较样品与标品间差异。■ 自动计算蛋白质的各种修饰形式间的峰强度比例。■ 界面友好、直观,操作简单。 通过原始质谱数据,计算分子质量,是蛋白分子量测定的基本功能。图1中左上为免疫球蛋白IgG的原始质谱数据,右下为软件分析后,得出的IgG分子质量信息。通过BiopharmaLynx软件的自动计算功能,复杂的质谱数据成为了直观的分子量形式。图1中,绿底色图为标准品蛋白的分子质量分布数据,蓝底色图为样品蛋白的分子质量分布图。在BiopharmaLynx给出的结果中,IgG的具有多个分子质量形式,这是由于其含有多种糖基化修饰的原因。图1. BiopharmaLynx软件的完整蛋白质量分析界面。 图中的紫色线条直观地显示出了样品蛋白与标品的质量分布差异差异。观察紫色线条形态可以发现,样品IgG具有更多的大分子量糖基化修饰形式,而标品蛋白中的小分子量糖型修饰较多。当将鼠标指针放置于峰尖时,将自动出现此处蛋白名称、修饰种类、峰强度、色谱保留时间等信息。通过以上两种信息,可以简单、直观地找到两者的差异之处了。 BiopharmaLynx软件可根据用户设置,对蛋白的不同修饰情况,自动标注。除内置的90种修饰外,用户还可根据需要自行创建修饰方式。特别是,考虑到生物蛋白药的一些具体情况,BiopharmaLynx内置了一些蛋白表达药品常见的蛋白改变修饰,如蛋白C端的Lysine缺失等(图2红色箭头指向)。这些细节设计,会帮助使用者极大地提高工作效率,节省精力。图2. 使用BiopharmaLynx软件的修饰设置界面。 BiopharmaLynx软件对蛋白各种修饰间的比例也可以直观地给出初步分析结果(图3)。 作为一家在液相与质谱技术都占有领先优势的企业,沃特世更提供了全面的蛋白分子量分析方案,包括色谱柱、色谱梯度方法、质谱条件等一系列已优化完成的实验操作流程(图4)。使用此整体解决方案,仅仅使用0.5微克的IgG蛋白,在4分钟内,就可完成液质数据采集全过程。此方案也包括对还原后IgG的分析方法(图4右上)。图4. 完整及还原后IgG质量测定解决方案示意图。参考文献(1) Rapid Profiling of Monoclonal Intact Antibodies by LC/ESI-TOF MS. Waters Application Note, 2007, 720002393 EN(2) Rapid Screening of Reduced Monoclonal Antibodies by LC/ESITOF MS. Waters Application Note, 2007, 720002394 EN(3) Characterization of an IgG1 Monoclonal Antibody and Related Sub-Structures by LC/ESI-TOF MS, 2007, 720002107 EN(4) Assessing the Quality and Precision of T herapeutic Antibody LC/MS Data Acquired and Processed using Automated Workflows. Poster presented at the ASMS meeting. 2008, 720002687 EN(5) Efficiently Comparing Batc hes of an Intact Monoclonal Antibody using t he Biop harma Lynx Software Package. Waters Application Note, 2008, 720002820 EN 联系方式: 叶晓晨沃特世科技(上海)有限公司 市场服务部xiao_chen_ye@waters.com 周瑞琳(GraceChow)泰信策略(PMC)020-8356928813602845427grace.chow@pmc.com.cn
  • 岛津特色质谱技术丨多维液相色谱质谱解决复杂体系分离难点
    药物分析方法开发共性难点岛津技术团队在与行业用户专家和用户交流中,收集以下共性难点反馈:1、基质化合物组成极性范围宽,色谱峰容量不够。2、中药基质复杂,在对特征峰鉴定时可能受到目标物附近其他峰干扰,影响鉴定准确度。3、聚合物杂质检测通常采用排阻色谱法,对聚合物杂质进行笼统的总量控制,定量不准确,且无法鉴定聚合物杂质的结构。4、采用HPLC-UV法进行杂质测定,但该方法无法将HPLC中使用的不挥发性流动相直接应用到LC/MS分析中,或者流动相与质谱不匹配。针对以上行业分析难点,岛津多年来持续致力于多维色谱质谱联用解决方案开发,将多类型色谱分离优势和质谱分析优势进行结合。岛津多维液相色谱质谱解决方案全二维液质联用系统&中心切割1二维液质联用系统Nexera-e 全二维液相色谱仪《中国药典》0512高效液相色谱法通则:二维液相色谱可以分为差异显著的两种主要类型:中心切割式二维色谱和全二维色谱。中心切割式二维色谱是通过接口将前一级色谱中某一(些)组分传递到后一级色谱中继续分离,面对复杂基质环境时,将一维目标峰切到二维进行更好的分析。全二维色谱是通过接口将前一级色谱中的全部组分连续地传递到后一级色谱中进行分离,如此两个独立的分离模式正交组合可实现尽可能高的峰容量。二维色谱可以是相同的分离模式和类型,也可以是不同的分离模式和类型,二维色谱可以和质谱联用。详情参考:https://www.shimadzu.com/an/products/liquid-chromatography/hplc-system/nexera-e/index.html2全谱二维液质联用系统极性覆盖范围宽:可一针实现宽极性多目标物的同时分析,可以胜任绝大多数分析项目中宽极性、多组分分析的要求。该系统和岛津最新推出的LCMS-9050高分辨质谱正负极离子同时采集功能结合,能得到4in1技术优势--相比岛津前一代方案,可以节省3/4的样品、分析时间,并减少3/4的质谱污染。3 SEC-RPLC-QTOF二维液相色谱-高分辨质谱为了解决前述聚合物杂质鉴定难题,岛津与北京新领先医药科技发展有限公司合作搭建了SEC-RPLC-QTOF二维液相色谱-高分辨质谱检测平台。基于该平台二维杂质动态上样、在线脱盐等技术,以及岛津高分辨质谱仪的高质量准确度和高质量稳定性等性能特点,目前双方的研发人员共同参与完成了十四种β-内酰胺类抗生素的聚合物杂质的全面解析,并建立质谱数据库。详情参考:https://mp.weixin.qq.com/s/etytDIXLjrICzsNfHOKgAw。4 Trap-Free 二维液质联用系统Trap-Free 2DLC系统是一套支持在线流动相转换的二维液相与色谱-质谱联用仪的组合系统,系统结构示意图见图 1。本系统的第一维液相色谱系统,可使用非挥发性流动相或者与质谱分析不匹配的流动相体系,通过系统中切换阀、程序命令的组合,对第一维液相色谱系统分离的组分进行分馏。本系统的第二维液相色谱系统,可以采用适合 LCMS 分析的液相色谱条件,针对分馏的组分,进行针对性的质量分析。详情参考:https://support.shimadzu.com.cn/pdfweb/web/viewer.html?file=https://support.shimadzu.com.cn/an/downa/AP_News_LCMS-QTOF-053.pdf全谱二维液相色谱与四极杆飞行时间质谱联用分析不同产地当归的活性成分a) 正模式火山图结果 b)负模式火山图结果根据多元统计分析OPLS-DA 结果的 VP 值,可以初步筛选出甘肃产当归和云南产当归的差异活性物质,进一步筛选则通过结合单变量统计火山图结果(P-value 与Fold change) 进行。最终正模式下筛选得到 1351 个差异物质,负模式下筛选得到1716 个差异物质。通过 MSDIAL软件,对化合物进行鉴定,共鉴定出 43种差异性化合物,包括藁苯内酯类有机酸类等天然活性物质,下表为部分差异性化合物鉴定结果表。详情参考:https://support.shimadzu.com.cn/pdfweb/web/viewer.html?file=https://support.shimadzu.com.cn/an/downa/AP_News_LCMS-QTOF-073.pdf岛津携手阳光诺和揭示头孢西丁钠新颖聚合方式图1 头孢西丁钠破坏样品检测色谱图本方案一维采用HPSEC系统,磷酸盐流动相定位头孢西丁钠中的聚合物杂质,然后采用阀切换技术,使用500 μL定量环将聚合物峰全部转移至二维反相色谱,脱盐、分离并质谱鉴定。其中聚合物C1分子量较2分子头孢西丁少2个H(Mr. 852.09),根据其同位素比例和特征碎片离子信息,推断其为一分子头孢西丁7-位侧链与另一分子头孢西丁7-位噻吩环联结形成的,该新颖聚合方式尚未见文献报道。本研究建立了注射用头孢西丁钠聚合物检测的反相色谱方法,并探索其用于日常检验的可能性。C1一级质谱图(A)和母离子m/z 870的二级质谱图(B)(ESI+)详情参考:《Characterization of polymerized impurities in cefoxitin sodium for injection by two-dimensional chromatography coupled with time-of-flight mass spectrometry》.https://doi.org/10.1016/j.talanta.2023.125378二维液相色谱联用四极杆飞行时间质谱仪对赤芍配方颗粒特征图谱2号峰鉴定配方颗粒特征图谱(1D) 配方颗粒特征图谱(2D)一维液相特征图谱中的2号特征峰切入至 50 μL定量环进行收集,再由二维流动相进行洗脱,该组分在二维液相上的保留时间为 35.267 min。采用岛津 2DLC+LCMS-QTOF对赤芍配方颗粒特征图谱中2号特征峰进行了高分辨质谱定性研究。经 MS1、MS2质谱图信息、相关文献信息以及标准品确认,最终鉴定2号特征峰为原花青素 B1。本研究为中药配方颗粒特征成分研究提供了思路,为赤芍中药配方颗粒特征图谱标准制定提供参考依据。Trap-Free 2D LC Q-TOF 定性分析宫缩抑制剂阿托西班中的多聚体杂质阿托西班二聚体的[M+3H]3+峰分子式预测结果 阿托西班二聚体解卷积分析结果阿托西班三聚体的[M+2H]2+峰分子式预测结果 阿托西班三聚体解卷积分析结果针对多肽药物中的由两个或多个多肽组成的稳定的多聚体杂质,可利用体积排阻色谱法(SEC)分离相关杂质。本案例采用岛津Trap-free 2DLC+LCMS-9030,既能避免SEC的色谱条件与质谱离子源不匹配,也能有效解决液相色谱分析浓度过高而导致的质谱信号饱的问题。结果显示阿托西班二聚体和三聚体的 MS1的离子质荷比同理论值均小于1mDa。使用 Insight Explore 软件中解卷积功能预测目标物的分子量,预测分子量和理论分子量的误差小于3ppm。详情参考:https://support.shimadzu.com.cn/pdfweb/web/viewer.html?file=https://support.shimadzu.com.cn/an/downa/AP_News_LCMS-QTOF-053.pdf注:本文中所用数据均为岛津实验室特定条件下的测试数据,结果可能随实际情况变动文中涉及最佳、最低类描述,限于实验组别对比结果。本文内容非商业广告,仅供专业人士参考。
  • 脂溶性聚合物环氧树脂及甲基硅油分子量分布测定
    脂溶性聚合物环氧树脂及甲基硅油分子量分布测定刘兴国 熊亮 曹建明 金燕美丽而寒冷的冬天又到了,室外大雪纷飞,喜欢运动的小伙伴们由户外转战室内,场馆内羽毛球、乒乓球、篮球大战相继上演,运动的身姿和蓝绿色地面、明亮的篮板构成了一道道靓丽的风景线。你可知道这漂亮的场地和器材是用什么材料制造的吗?学化学的你可能回答:“有机材料。”其实这些都是聚合物材料,绿色和蓝色的防滑地面材料为环氧树脂,有机玻璃的篮板材料为聚甲基丙烯酸甲酯。这些均为脂溶性聚合物材料的产品,它们已渗透到日常生活和高端科技的方方面面,从每天要用到的塑料袋到航天材料都可看见它们的身影。 今天,飞飞给大家重点介绍两种脂溶性聚合物。一种是低分子型环氧树脂,是由双酚A和环氧丙烷在氢氧化钠作用下缩聚而成,室温下为黄色液体或半固体,耐热、耐化学药品、电气绝缘性好,广泛用于绝缘材料、玻璃钢、涂料等领域,是常用的基础化工材料。另外一种为甲基硅油,它具有突出的耐高低温性、极低的玻璃化温度、很低的溶解度参数和介电常数等,在织物整理剂、皮革涂饰剂、化妆品、涂料和光敏材料等领域广泛应用。 分子量分布是表征聚合物的重要指标,对聚合物材料的物理机械性能和成型加工性能影响显著。常用测定方法有:粘度法、激光光散射法、质谱法和体积排阻色谱法 (SEC法),其中凝胶渗透色谱法(GPC法)作为体积排阻色谱法的一类,方便快捷、设备普及,具有广泛适用性。通过本文,飞飞给大家介绍以聚苯乙烯为标样,GPC法测定低分子量环氧树脂以及甲基硅油分子量的方法,通过对分子量分布的准确控制可以很好地保证产品的质量。变色龙软件GPC扩展包可以非常方便地将采集的GPC数据进行处理,快速地得到分子量分布的信息,而且该扩展包完全免费。 本实验仪器配置如下:仪器:赛默飞 U3000高效液相色谱仪泵:ISO3100 Pump自动进样器:WPS 3000SL Autosampler柱温箱:TCC3000 Column Compartment检测器:ERC 521示差检测器变色龙色谱管理软件 Chromeleon CDS 7.2 1. 环氧树脂分子量测定双酚A型环氧树脂基本结构及以它为材料制造的体育馆环氧地坪见图1:图1 双酚A型环氧树脂基本结构及体育馆环氧地坪色谱条件如下:分析柱:TSKgel G2500HXL 300*7.8mm,P/N:0016135(适用分子量范围100-20000);TSKgel G3000HXL 300*7.8mm,P/N:0016136(适用分子量范围500-60000);TSKgel G5000HXL 300*7.8mm,P/N:0016138(适用分子量范围1000-4000000);三根色谱柱串联分析。柱温:25℃RI检测器:过滤常数:2s,温度:35℃流动相:四氢呋喃,流速1.0mL/min进样量:15µL 对照品为聚苯乙烯,分子量分别为162,370,580,935,1250,1890,3050和4910;称取适量对照品用四氢呋喃超声溶解,浓度0.02mg/mL。样品用四氢呋喃溶解,浓度0.1mg/mL,测定谱图见图2。 图2不同分子量聚苯乙烯对照品测定谱图注:580和370两个对照品出厂报告上polydispersity多分散系数分别为1.13和1.15,分子量集中度差,所以峰形呈现为多簇小峰。其余对照品多分散系数均小于1.05,峰形呈对称单峰。 校正曲线及相关系数如下: 图3 校正曲线校正曲线方程y=-0.0006x3+0.0502x2-1.5496x+20.4439,相关系数R=0.9998。不同厂家不同批次环氧树脂样品测定结果如下: 表1 环氧树脂样品测定结果样品名称 重均分子量Mw样品-1 387样品-2 401样品-3 396 2. 甲基硅油分子量测定测试甲基硅油的分子量及其分布,常用的GPC方法是采用甲苯或四氢呋喃作为流动相,但是由于甲苯属于管制类试剂,不易购买,因此飞飞采用四氢呋喃(THF)作为流动相来测定硅油的分子量及其分布,结果显示分离与色谱峰形均较好。对照品为聚苯乙烯,分子量分别为1210,2880,6540,22800,56600和129000;称取适量对照品用四氢呋喃超声溶解,浓度约1.0mg/mL。样品用四氢呋喃溶解,浓度1mg/mL。色谱条件如下:分析柱:Shodex KF-805L 8.0*300mm(适用分子量范围300-2000000);柱温:30℃RI检测器温度:31℃流动相:四氢呋喃,流速0.8mL/min进样量:100µL 对照品测定谱图及校正曲线如下:图4 对照品测定谱图及校正曲线 校正曲线方程y=-0.0182x3+0.5987x2-7.1522x+34.6655,相关系数R=0.9996。甲基硅油样品测定结果数均分子量为20727,重均分子量为36273,Z均分子量为59280,Z+1均分子量为91320。总结到这里,飞飞给大家介绍了采用U3000液相结合变色龙软件采集和处理数据,分析低分子量环氧树脂和甲基硅油分子量的方法,由于两者分子量范围差异较大,实验采用了两组不同分子量的聚苯乙烯标准品作为对照品。对于环氧树脂由于需要测定的是低分子量聚合物且对照品分子量接近,所以采用了三根截留分子量不同的凝胶柱串联进行测定,结果更为准确。变色龙GPC分子量计算扩展包功能强大,导入和使用方便,为广大变色龙工作站用户扩展使用GPC功能带来便利。本文介绍的为脂溶性聚合物的分子量测定,对于水溶性聚合物的分子量分布测定,飞飞这里有较多应用文章供大家参考,感兴趣的朋友可联系我索取,这里给大家提供一篇最常用的,右旋糖酐40的分子量分布测定,扫描以下二维码既可查阅。
  • Orbitrap高分辨质谱助力mRNA疫苗表征
    今日看点mRNA疫苗在新冠疫情中得到了广泛关注,Moderna及Pfizer/BioNTech的mRNA疫苗获得FDA的紧急使用授权,掀起新一轮的mRNA疫苗研发热潮。与依靠抗原或减毒病毒刺激免疫系统产生免疫反应的传统疫苗不同,mRNA疫苗本身并不含有抗原,而是以编码抗原的mRNA为主要成分。这些编码抗原的mRNA能在细胞内被翻译为抗原蛋白,从而引发免疫反应。相比传统疫苗,mRNA疫苗成本低、研发灵活性高、生产效率高,且具有相对较高的安全性,应用前景广阔[1]。对于此类新型疫苗,需严格的质量控制以确保产品的安全性尤为重要。其质量属性包括稳定性、完整性、纯度和同质性等。如图1所示,从mRNA构造、体外翻译及转染,到体内免疫,色谱、质谱、qPCR、电泳等多种表征手段被用于质量评估[2]。其中高分辨质谱技术对于mRNA的深入表征(加帽效率、修饰、测序等)、杂质分析(siRNA、DNA、宿主残留蛋白)有着重要应用。图1:mRNA疫苗的质量控制和基于细胞的功能评估的工具(点击查看大图)01mRNA的加帽反应效率评估mRNA前体的加工包括了在其5' 端加上7-甲基鸟苷(m7G),称之为“帽”。这种加帽步骤可增加mRNA稳定性,使其避免被核糖核酸酶降解。加帽步骤会产生多种结构(如图2a),最常见的被称为“Cap0结构”(只含m7G),即鸟嘌呤环上的N-7位置甲基化;而如果下游邻位核苷酸上的核糖也被甲基化,则为“Cap1”,再下游的则为Cap2”(甲基化均发生在核糖的2' 羟基上)。在脱磷酸的过程中,也会产生单磷酸、双磷酸、三磷酸等多种相关杂质。图2a.加帽反应(点击查看大图)Oribitrap高分辨质谱由于其高分辨率、高灵敏度及高质量精度可以准确地对mRNA加帽效率进行评估。全长的mRNA直接通过LC-MS分析往往由于分子量太大而无法得到精确表征,通常会使用RNAse酶切结合磁珠分离的方法获得5’端的加帽短链,如图2b所示[3]。图2b.mRNA分离纯化步骤(点击查看大图)RNAseH酶切及磁珠纯化分离后,所得的5’端mRNA酶解片段经过Orbitrap高分辨质谱分析,结果检测到未加帽组分、加帽1组分及少量在第二个A酶切位点得到的加帽1组分,包括单磷酸、二磷酸及三磷酸修饰杂质,且得到同位素基线分离的高质量谱图(如图3a、3b所示)。图3a.5’端mRNA 酶解片段TIC及质谱图(点击查看大图)图3b.5’端mRNA 酶解片段理论及实测质量(点击查看大图)通过加入内标未加帽三磷酸mRNA,确认了质谱定量方法的可行性及准确性。对各加帽组分及未加帽组分形态进行质谱峰面积定量,从而得到5’加帽比例(图3c)。图3c.质谱非标定量法计算mRNA加帽比例(点击查看大图)MRM方法用于mRNA加帽定量分析质谱MRM方法可用于组织及细胞培养基中的mRNA加帽修饰检测,具有高通量及高灵敏等优势。组织或细胞培养基中的mRNA经过nucleaseP1酶解及磁珠纯化,可得到加帽二核苷酸,(m7)GpppN(m)[4]。对11个帽二核苷酸修饰变异体建立MRM方法(图4a),可实现每种变异体的色谱分离及质谱定量(图4b)。图4a.MRM质谱方法参数(点击查看大图)图4b.11个帽二核苷酸修饰变异体的提取离子流图(点击查看大图)其中,对于m7GpppG及GpppGm形式的同分异构体,在液相及一级质谱上均无法分辨,而m7GpppG的特征子离子m/z635.9可将其区别于GpppGm,从而建立MRM方法定量分析,且方法灵敏度高(图5)。图5:(a)连续稀释的合成帽二核苷酸的峰面积测量;(b)连续稀释的合成帽二核苷酸GpppA的峰面积;(c) m7GpppG和GpppGm子离子信息;(d)连续稀释的合成帽二核苷酸m7GpppG的峰面积;(e)补偿m7GpppG和GpppGm的共享离子.(点击查看大图)该方法可快速准确定量细胞中存在的mRNA帽结构,评估不同的加帽结构形态在不同组织或细胞中的含量变化(图6)。Orbitrap的定量能力可与三重四极杆相媲美,其PRM定量灵敏度高、准确性好,也可用于mRNA帽结构的定量分析中。图6:从小鼠肝脏、活化的CD8T细胞、心脏和大脑分离的mRNA帽二核苷酸的丰度(点击查看大图)02mRNA末端多聚腺苷酸Poly A 尾检测真核mRNA通常在其3' 末端带有一段多聚腺苷酸尾(PolyA tail),根据种类的不同,其长度可能在20到200多个碱基之间变化。PolyA tai会被多聚腺苷酸结合蛋白(poly(A)+ tail-binding protein,PABP)辨识并保护住,因此在mRNA的翻译和稳定性中也起着重要的调节作用。通常是在体外转录过程中直接从编码DNA模板或通过使用polyA聚合酶将最jia长度的polyA添加到mRNA中。PolyA的提纯方法类似5’加帽核酸片段,具体步骤可参考文献[5]。纯化后的polyA通常是含有不同长度腺苷酸的混合物,随着碱基个数的增加,HPLC液相方法的分辨率很难将不同长度的polyA完全分开,而Orbitrap高分辨质谱可以准确对其长度分布进行表征和相对定量。图7a.不同碱基长度的PolyA色谱图(b)理论100-merPloy A质谱解卷积结果(点击查看大图)如图7a所示,当PolyA碱基个数在27时,液相色谱能将相差单个腺苷的polyA分开,随着碱基个数的增加,液相色谱很难实现相差单个腺苷的分辨。图7b显示理论100个碱基polyA的质谱表征结果,可准确得到每个不同长度polyA的质量数,其分布约为97-110个碱基,图中的每个质谱峰相差329Da,代表单个腺苷的差值,通过峰强度的信息,可对polyA长度分布进行相对定量。图8.85-mer RNA质谱图(点击查看大图)对于碱基长度小于100的RNA(图8),Orbitrap高分辨质谱可实现同位素峰的基线分离,得到精确单同位素分子量信息(masserror3ppm)。作者将经过前处理纯化后的PolyA(理论117-mer)进行质谱分析,得到不同长度的PloyA与质谱强度的关系图,其碱基长度分布在109-122之间,与Sanger测序结果一致(图9)。图9:(a)质谱强度与PolyA长度的关系图(理论117-mer的PolyA)(b)用于合成mRNA的质粒模板的Sanger测序结果(点击查看大图)从临床的角度来看,评估体外转录mRNA中polyA尾的异质性很重要,而高分辨质谱可以作为一种高效的表征手段用于工艺研发和质量评估中。03RNA Mapping相比二代测序,高分辨质谱作为互补表征技术,能够快速准确地分析RNA序列,同时对于翻译后修饰的种类、位点及含量进行深入表征。此外,也能对RNA代谢产物进行定性及定量分析。更多细节可直接点击以下标题查看相关文章:合成类寡核苷酸的杂质、降解产物的鉴定和相对定量质谱方法优化/寡核苷酸药物序列、修饰和异构体的鉴定对于长链RNA(100mer),如dsRNA,可以先用特定酶将RNA酶解成更小的片段,再通过类似肽图分析的方式对碎片进行归属组合,确证序列覆盖度。如图10所示,dsRNA经过RNaseA/T1酶解,色谱分离后通过orbitrap高分辨质谱检测,得到RNA片段的精确一级分子量及丰富的二级碎片离子信息,从而获得全序列分析结果,正反义链序列覆盖度分别为82%及77%[6]。图10a.ds RNA酶解片段液相色谱图(点击查看大图)图10b.ds RNA正义链及反义链序列覆盖图(点击查看大图)基于Orbitrap高分辨质谱的HCD碎裂方式能够获得RNA丰富的碎片离子,有效提高鉴定序列覆盖度,结合Thermo BioPharma Finder 4.0软件能够批量自动化的对碎片进行归属。在刚发布的BioPharma Finder 4.1版本中,加入了RNA Mapping功能,在方法编辑中可选择多种常见的RNAse酶,对于几十万分子量的长链RNA或DNA,可进行自动化全序列表征(图11)。图11:BioPharma Finder 4.1软件RNA Mapping功能(点击查看大图)本文小结mRNA作为一种新型疫苗平台具有广阔的前景,对其质量控制的法规要求也会愈加严格。Orbitrap高分辨质谱的高分辨、高灵敏度及高质量二级谱图等优异性能,能够更高效及深入地分析mRNA结构、修饰变异体及相关杂质,可用于mRNA疫苗的工艺优化及质量评估,提高其安全性及有效性。参考文献[1]Norbert, P. et al. Defining the carrierproteome limit for single-cell proteomics. Nat Rev Drug Discov17(4), 261-279(2018)[2]Cristina, B. et al. Establishing PreferredProduct Characterization for the Evaluationof RNA Vaccine Antigens. Vaccines 7, 131 (2019)[3]Beverly M. et al. Label-free analysis of mRNA cappingefficiency using RNase H probes and LC-MS.Anal Chem 91, 13119-13127 (2019)Anal Bioanal Chem408(18), 5021-30(2016)[4]Galloway A. et al. CAP-MAP: capanalysis protocol with minimal analyteprocessing, a rapid and sensitive approachto analysing mRNA cap structures.Open Biol 10, 190306 (2020)[5]Beverly M. et al. Poly A tail lengthanalysis of in vitro transcribed mRNA by LC-MS. Anal BioanalChem (2018)[6] Alison O. et al. Purification and characterisation of dsRNA using ion pair reversephase chromatography and mass spectrometry. J.ChromA 12, 062 (2016)如需合作转载本文,请文末留言
  • 食品检测实验室气相色谱质谱仪的选型
    p style="text-indent: 2em "现在绝大多数食品检测实验室均是配置色-质联用仪,单独使用质谱仪检测的已经非常少了。唯一单独使用的是应用同位素质谱仪检测蜂蜜等食品中的同位素比,以确定产品是否掺伪。本文主要介绍一下GC-MS购置时需要考虑的主要性能及功能。/pp  GC-MS是高分离功能的GC与能提供被测物质分子信息的MS联用分析仪器。两种仪器功能互补,使仪器的分析功能更强大。例如:质谱能提供被测物的特定分子信息,对化合物的定性更加准确。但是,质谱无法区分同分异构体,而色谱分离同分异构体很容易。所以,色-质联用仪的功能是 1+1 2。/pp  现在GC-MS的GC部分均采用高分离性能的毛细管色谱,可以选配不同类型的进样口,如:最常用的分流/不分流进样口和(温度/压力)可编程控制进样口。柱箱多级程序升温控制。在谈到气质联用性能时,现在国内市场上比较常见品牌的主流型号GC的性能、功能并无多大差异。故在GC方面不再做比较。/pp  MS的类型有多种,通常是按照分析器的类型来分,有四极杆质谱、离子阱质谱、飞行时间质谱、四极杆串联质谱、高分辨磁质谱等。不同厂家的不同型号的MS性能、功能、价格或者说性价比都存在较大差异。所以,本文将主要围绕MS进行论述。目前食品检测实验室配置使用的GC-MS联用仪多配置低分辨MS,这类仪器以目标化合物的定性、定量为主,兼有一定的未知物定性功能。选用这类仪器有两个目的:/pp  第一, 也是主要目的,是对食品中残留物进行分析。/pp  既然是用于残留物分析,仪器的灵敏度至关重要,也是选仪器时首先应考虑的。但这不是唯一的指标(特别是不能仅看标称指标),还要综合考虑仪器的分辨率、质量稳定性、质量范围、动态线性范围、抗污染能力(包括仪器离子源、预四极等部件的清洗维护是否方便)、以及软件操作是否方便等。/pp  GC-MS在残留物的分析中应用愈来愈普遍,是因为MS是一个通用型检测器,对大多数有机化合物都有比较好的响应。另一方面,四极杆质谱检测时有一个选择离子方式(SIM方式),与全扫描方式相比可以提高检测灵敏度2、3个数量级,检测灵敏度较氢火焰检测器(FID)、火焰光度检测器 (FPD)、氮磷检测器(NPD)高,稍逊于电子俘获检测器(ECD)对有机多卤素化合物的检测。残留物分析多为目标物检测,所以,用SIM方式检测既有广谱性(对化合物的响应而言),又有特异性(对不同化合物各自的特征离子而言),因而特别适合用于多种残留物的检测,提高分析效率。/pp  现在仪器公司买仪器时所列出的技术指标有:灵敏度、分辨率、质量稳定性、质量范围、动态线性范围等。/pp  市场上厂家标称的灵敏度为什么这么高?/pp  现在表述灵敏度是用八氟萘(OFN),如:EI+,1pg OFN信/噪(S/N) 100。现在的信/噪比是RMS(均方根)方式,数值上与过去的灵敏度值相比高了很多。过去信/噪比是峰-峰比,即:信号的峰高/基线噪音的峰高,比较一目了然,自己拿尺子量都能量出来。但据厂家说,在选择基线噪音时有人为误差。现在厂家将信/噪比编成固定的程序,比如信号值与固定时间段(如1~2min,其实这段时间的基线是比较平的)噪音的比值。但现在的测定方式厂家其实同样有很多偷手,比如测试时用厂家自带的短测试柱 (10m或15m),质量的扫描范围减少,进样量增加(过去是空气-样液-空气绝对1μL,而现在1μL是包括针头死体积)。没办法,现在厂家为了竞争都这样做,用户也只好跟着走。所以,现在仅看厂家的标称指标是不够的。/pp  做灵敏度指标时应该注意几个问题:/pp  (1)应该先做分辨率,在保证单位质量分辨时,再做灵敏度。如下图所示,可以采用一种近似方法,即,半峰高处的峰宽不小于1/2峰宽(此图转载自www.antpedia.com网dingdang的“谈谈有机质谱的分辨率”一文。在此表示感谢。)。灵敏度与分辨率成反比,若为了灵敏度而损失分辨率,会降低了质谱定性功能。/pp  (2)质量扫描范围也应有规定,比如:OFN,200-300amu,扫描范围减小也能提高信/噪比。这些限制性条件应在谈合同时就确定下来。/pp  (3)检测电压应该是正常检测时的工作电压,不同型号的质谱仪因参数表示的含义有差异,所以,各家仪器推荐使用的检测电压值也不同。但是,做灵敏度测试时的电压不应高于推荐正常使用时的工作电压。否则在实际工作时就会有问题,因为实际样品检测时是有基质干扰的,高电压不能提高信/比,而且还会使电子倍增器寿命降低。/pp  现在国内出现了一些过分强调,或者说厂家过分宣传自己仪器灵敏度高的现象,导致现在标称的灵敏度越来越高,听说RMS信/噪比都有给出 1000的了。其实做标准品的指标只是个参考,将来做基质复杂的实际样品(如动物内脏)能得到好的、稳定的结果才是关键。现在有仪器的单位越来越多了,可以在购仪器前做一个实际样品到各家仪器上实测一下,并且了解一下各种仪器用户的反应,这比仅仅比指标更好。/pp  仪器的其它指标一般不会有太大问题。/pp  对于低分辨质谱,分辨率达到单位分辨一般没有问题。/pp  质量范围现在多标称为2~1025(或1500)u,这个质量范围对于GC-MS够用了。因为,GC-MS分析物是挥发或半挥发物质,分子量一般不会太大。唯一要注意的是若做污染物十溴联苯(MW 954)和十溴联苯醚(MW 970)检测,不能选质量数小于1025u的(个别厂家的MS质量范围最高只有800u)。/pp  质量的稳定性一般在0.1amu/8hr,这个指标其实也挺重要的。好的仪器几个月校正一次质量数即可,差的每周都要校正。虽不影响检测,但增加操作者的工作量。/pp  线性范围大于10e4,对残留分析够用了。这些指标验收仪器时均需要按照合同的规定认真做。/pp  此外,仪器的一些功能在验收仪器时也一定要都亲手做一遍,比如:化学电离源(CI)的更换、直接进样杆的操作、复合电离切换方式 (EI/CI)、复合扫描方式(TIC/SIM)等。许多农药含有卤素和电负性基团,因此有电负性。负化学源(NCI)检测这类物质可以获得较高灵敏度,这是由于NCI的本底较低,检测电负性物质时可以获得更高的信/噪比。对于定性也可以起到补充确证的作用。做NCI时需要通入反应气,所以,要求仪器的真空系统要比较好。现在厂家提供的GC-MS配置是可以选配的,若配NCI就一定要配置大抽率的真空泵,起码大于250L/min,最高配置有2× 200L /min。另外,还应考虑更换离子源的方便性,有的型号仪器更换离子源可以不破坏真空。/pp  残留分析通常是目标物检测,目标物多为农药、兽药、添加剂、化学污染物等。这里的定性仅仅是对目标物进行确证。对于这种定性可以用两种方法,一是与仪器自带的NIST谱库(2006版提供约14万多张)的质谱图进行比对,二是与对应的标准品的质谱图进行比对。实际检测时后者的比对方法更好、更准确。因为,被测物经过前处理和毛细管柱后,基质的干扰会使被测物质谱图的离子碎片和丰度比与NIST谱库的质谱图(通常是由纯品直接进样得到的) 产生偏差。而且,定量时也需要有标准品。/pp  第二个分析功能是对未知物分析/pp  这里的未知物并非真正意义上完全未知的物质,若真是那种完全未知的物质仅仅靠MS,特别是低分辨的MS对其准确确证还是很难做到。这里的所谓未知物其实是已被人们认知的物质,该物质的质谱信息已被收录在了NIST谱库中,只是我们检测的物质中不知含有这些物质中的那一种。比如,不同地域的同一种天然产物产品的成分是不太一样的,同为玫瑰精油,国产的和进口的成分组成存在差异,通过MS分析及与NIST谱库比对,就能找出两种精油特征物质是什么,量有多少差异,不同在那里。再如,养鱼塘里的鱼突然死了,搞不清是什么原因,那么就取鱼塘里的水化验一下,水里含有什么物质并不清楚,这时我们就认为水里含有某种未知物。拿到实验室化验,经质谱NIST谱库检索比对,初步认为验出了甲胺磷。为保险起见,再打一针甲胺磷的标准品,结果保留时间、离子的丰度比都一致,最终确定水里含有的甲胺磷是致鱼死亡的原因。这类工作在日常工作中遇到的比较少,其对仪器的要求就是检测得到的质谱图与NIST谱库的尽可能相近,这样得到的结果会更准确些。所以,这种最好选择四极杆质谱、飞行时间质谱或高分辨磁质谱。而离子阱质谱,特别是内源式离子阱质谱得到的谱图与 NIST库谱图差异要大些。/ppbr//p
  • 破解国际难题!工程热物理所原创质谱定量分析理论实现气相组分产率实时原位检测
    p  利用气相组分的变化分析反应过程特征广泛应用于众多领域,如能源、材料、医药、化工等等,目前普遍采用的气相组分检测参数是“浓度”,然而其作为相对值,无法真实地反映出反应过程质量的动态变化 而物质质量的变化率(产率)虽能够客观代表反应动态特征,但实现多组分气体产率的同步实时精确检测一直是国际性技术难题。/pp  研究所创新提出了质谱定量分析的多输入多输出非线性系统理论模型,发展为多组分气体产率的质谱定量测试分析方法-等效特征图谱法(ECSA)。该方法遵循质谱检测工作原理与气体流动过程特点,基于气体动力学、热力学、信号处理等多学科、领域的基础理论,通过建立气体流动、采样、电离、质量分析等多环节相耦合无量纲参数,自适应消除检测过程的温度依赖特性、压力变动造成的信号漂移,实现复杂多组分气体产率的同步原位检测。在国际上首次破解了质谱检测信号从理论上未能与气体参数建立定量物理关系的核心科学问题。/pp  在研究活性焦的吸附与再生性能的典型应用实例中,通过吸附前、后活性焦的燃烧特性研究,利用吸附气体污染物组分的释放产率,可以准确定量获得活性焦自身吸附气相污染物的能力、确定再生工艺条件,检测结果实现了物料、组分、元素的质量三平衡,具有高度的重复性与再现性,充分体现了等效特征图谱法对气相组分产率实时分析的可靠性。/pp  目前等效特征图谱法(ECSA)已经在能源、地质、医药、材料、环境、化工等多领域支持国内外的科学研究与技术发展,支持了中科院过程所的有机物质检测、中国医学科学院药物所的心脑血管药物及辅料分析、北京有色金属研究院的金属氢化物特性分析、北京化工大学的石墨烯催化特性研究等,相关成果已发表在Nature Chemistry、Carbon、Fuel、Fuel Processing Technology等国际期刊 并针对上百种气体已完成标定并形成标准的三维指纹信息图谱库,与国际知名设备企业如日本理学公司、德国耐驰公司等形成了良好的合作关系。/pp style="text-align: center "img width="500" height="276" title="质谱定量分析理论-等效特征图谱法ECSA模型.png" style="width: 500px height: 276px max-height: 100% max-width: 100% " alt="质谱定量分析理论-等效特征图谱法ECSA模型.png" src="https://img1.17img.cn/17img/images/202004/uepic/4cb3a8b9-6756-4c4b-8ba7-3636b9132754.jpg" border="0" vspace="0"//pp style="text-align: center "图1. 质谱定量分析理论-等效特征图谱法ECSA模型/pp style="text-align: center "img width="500" height="335" title="气相组分产率实时分析在活性焦的吸附特性与再生工艺条件研究中的应用.png" style="width: 500px height: 335px max-height: 100% max-width: 100% " alt="气相组分产率实时分析在活性焦的吸附特性与再生工艺条件研究中的应用.png" src="https://img1.17img.cn/17img/images/202004/uepic/513873ab-bb56-47f8-ada1-68bafbd277a5.jpg" border="0" vspace="0"//pp style="text-align: center "图2. 气相组分产率实时分析在活性焦的吸附特性与再生工艺条件研究中的应用/pp  strong背景资料:/strong/pp  热重质谱联用TG-MS:/pp  热重分析法(TG)是应用热天平在程序控制温度下,测量物质质量与温度关系的一种热分析技术,具有仪器操作简便、准确度高、灵敏快速以及试样微量化等优点,因此广泛应用于无机、有机、化工、冶金、医药、食品、能源及生物等领域。但热重分析法无法对体系在受热过程中逸出的挥发性组分加以检测,这给研究反应进程,解释反应机理带来了一定的困难。质谱具有灵敏度高,相应时间短等突出优点,在确定分子式方面具有独特的优势。通过TG-MS联用,可以扩大分析内容,是现代热分析仪器的发展趋势。/pp  具体仪器信息请点击查看:a href="https://www.instrument.com.cn/zc/68.html" target="_self"热分析联用仪专场/a/pp  TG-MS系统的等效特征谱分析方法(ECSA):/pp  在ECSA中,对所有被测气体的特征光谱和相对灵敏度进行了标定。该方法有效地分离了质谱,消除了特征峰重叠时的质量分辨和温度依赖效应。在碳酸钙和碳酸钙分解的基础上,动态测定了实际气体流量和单个组分浓度,分析的逸出气体质量流量与ECSA和TG分析的实验数据吻合较好。/pp  日本理学:/pp  理学公司的前身是理学电机制作所,创立于1923年,是世界上研制和生产X射线科学分析仪器的开拓者之一。1951年正式创立理学电机株式会社,十年后1962年又创立理学电机工业株式会社,此后又相继创立了理学计测株式会社、日本仪器株式会社、理学服务株式会社和株式会社理学等机构。半个多世纪以来,理学公司一直致力于研制和开发X射线科学分析仪器,并为世界科学分析仪器的发展做出了重要的贡献。/pp  德国耐驰:/pp  德国耐驰仪器制造有限公司(NETZSCH Scientific Instruments Trading (Shanghai) Ltd.)是世界著名的分析仪器制造厂商之一,其产品主要包括热分析仪器、导热分析仪与树脂固化监测仪三大类。 在热分析仪器领域,耐驰公司拥有60余年的软、硬件研制及应用经验,其产品覆盖了热分析的各个分支领域。/pp  相关文献:/pp  Equivalent characteristic spectrum analysis in TG–MS system, Thermochimica Acta 602 (2015) 15–21./pp  Quantitative Study on Adsorption and Regeneration Characteristics of Activated Coke using Equivalent Characteristic Spectrum Analysis [J]. Ind. Eng. Chem. Res. 2019 58 5080-5086./ppbr//p
  • MS新功能:Mass-it™提升质谱解析效率
    液相色谱通常使用紫外-可见光(UV-Vis)吸光度检测器或光电二极管阵列(PDA)检测器。然而,光吸收检测器不适合检测无紫外光吸收的化合物、低浓度存在的化合物或没有充分分离的化合物(共洗脱化合物)。对于此类化合物,质谱仪可以用作补充检测器。由于质谱仪基于不同的测定原理,因此可以测定无紫外吸收的化合物。此外,质谱仪可以提供有关化合物的质量信息,从而可以获得更准确的定性结果。LCMS-2050单四极杆质谱仪具有Mass-it&trade 功能,可以将质谱获得的化合物质量数(m/z)信息叠加到紫外色谱图上,以支持补充使用紫外检测器获得的定性分析结果。SPD-M40 PDA检测器(左)和 LCMS-2050 MS检测器(右)PART 1液相色谱(LC)工作原理液相色谱(LC)是一种使用检测器监测色谱柱分离化合物的分析技术。它可以提供有关样品中所含化合物的各种信息。根据定性信息(如化合物保留时间)和定量信息(如检测器信号强度)的组合,对样品进行定性和定量分析。如果使用光电二极管阵列(PDA)检测器,则可以同时分析多个波长,以获得每个单位时间的紫外吸收光谱。由于每种化合物都具有独特的紫外光谱,因此它们提高了识别化合物成分的能力(定性分析性能)。使用PDA检测器获得的LC分析结果如上图所示。254nm波长处吸光度的紫外色谱图包括4种化合物的峰。PART 2质谱(MS)工作原理质谱(MS)是连续电离化合物以获得化合物质量信息(m / z)的仪器。体积紧凑且操作简单的LCMS-2050是一款单四极杆型质谱检测器,可用作LC检测器,其操作方式与使用PDA检测器相同。PDA检测器扫描紫外波长,MS检测器扫描一系列m/z值,并将响应显示为质谱图。或者,可以指定某个m/z值并将响应强度绘制为时间的函数,以将数据显示为定量色谱图。使用MS检测器获得的TIC分析结果如上图所示。除了紫外色谱图上看到的4种化合物的峰以外,还有化合物A的峰。PART 3结合使用PDA和MS检测器,获得丰富信息下图中结合了从PDA检测器获得的的3D图形数据和从MS检测器获得的质谱数据。并列出了化合物信息(化合物名称和理论m/z值)和每种组分的质谱图。因此,结合使用PDA和MS检测器可以提供大量定性信息,这对于确定样品中包含的所有成分非常有用。通过MS检测器获得的信息,可以清楚的看到没有紫外吸收的化合物,以及没有充分分离的共流出化合物。从PDA检测器获得的3D数据和从MS检测器获得的质谱数据什么是Mass-it&trade 功能?Mass-it&trade 可以将从质谱检测器获得的化合物 m/z 信息自动叠加在相应的紫外色谱图中,从而提高紫外色谱图中化合物鉴定的可靠性和整体可见性。Mass-it&trade 功能的应用Mass-it&trade 可以将从质谱检测器获得的化合物 m/z 信息自动叠加在相应的紫外色谱图中,从而提高紫外色谱图中化合物鉴定的可靠性和整体可见性。01使用Mass-it&trade 功能检测无紫外线吸收的化合物在上述案例中,保留时间0.8min左右的苯海拉明在254nm处吸光度较低,PDA检测器未检出,但MS检测器检测到了峰。因此,使用Mass-it&trade 功能将m/z信息添加到紫外色谱图中,可以防止漏检无紫外吸收的化合物。02使用Mass-itTM功能检查合成产物的分子量在化学合成或药物发现研究中,使用紫外检测器定量分析目标物时,通常希望同时获得目标物的质量信息以验证合成路线是否正确。Mass-it&trade 对于这一类分析应用特别有帮助。下图显示了分析含有杂质的阿托伐他汀样品测定结果,主成分峰的保留时间约为10.6 min。Mass-it&trade 功能会自动将质谱图中获得的信息(m/z 559.3)添加到紫外色谱图中,从而一目了然地看到阿托伐他汀是主峰。m/z信息也可以添加到峰面积为主峰0.1%或更小的峰上,有助于分析杂质。03使用质谱功能检测共洗脱峰对于色谱柱无法完全分离的多种化合物,则它们在紫外色谱图中显示为一个峰(共洗脱峰)。如果这些化合物保留时间特别接近,则很难发现这是一个共洗脱峰。然而,共洗脱可以从质谱信息中确定。Mass-it&trade 功能通过在UV色谱图上显示从质谱获得的m/z信息,为发现共洗脱化合物提供支持。下图显示了7种药物同时分析的案例,其中劳拉西泮和奥沙西泮没有完全分离,该共洗脱峰的保留时间为4.9min。鉴于劳拉西泮和奥沙西泮分别在m/z 320.8和286.8处被检测到,Mass-it&trade 将m/z信息添加到同一位置的紫外色谱图中,并以黄色箭头标识,从而轻松发现共洗脱化合物。此外,岛津PDA检测器具有i-PDeA II功能,利用智能峰解卷积技术可以从未分离色谱峰中提取目标峰。同时使用i-PDeA II和Mass-it&trade 功能可以提供更可靠的分析结果。小结Mass-it&trade 功能通过在紫外色谱图上显示MS获得的m/z信息来帮助识别化合物。它对于检查合成化学品中的分子量或杂质分析特别有用。即使检测到没有紫外吸收的化合物,质量数信息也会显示在紫外色谱图上,这有助于防止忽略部分化合物。对于共洗脱的未充分分离色谱峰,质量数信息将显示在同一位置,以提示用户注意共洗脱化合物。本文内容非商业广告,仅供专业人士参考。
  • 国家市场监督管理总局关于对《蛋白质分子量测定 液相色谱-飞行时间质谱联用法》等225项拟立项国家标准项目公开征求意见的通知
    各有关单位:经研究,国家标准委决定对《焊缝无损检测 磁粉检测 验收等级》等225项拟立项国家标准项目公开征求意见,征求意见截止时间为2023年7月5日。请登录请登录标准技术司网站征求意见公示网页http://std.samr.gov.cn/gb/gbSuggestionPlan?bId=10001282,查询项目信息和反馈意见建议。2023年6月5日相关标准如下:#项目中文名称制修订截止日期1蛋白质分子量测定 液相色谱-飞行时间质谱联用法制定2023-07-052肝素酶活性的测定制定2023-07-053硫酸软骨素酶活性的测定制定2023-07-054葡萄糖氧化酶活性检测方法制定2023-07-055包装袋 试验条件 第1部分:纸袋制定2023-07-056产品几何技术规范(GPS) 坐标测量机(CMM)确定测量不确定度的技术第3部分:应用已校准工件或标准件修订2023-07-057产品召回 生产者安全管理韧性评价制定2023-07-058电梯、自动扶梯和自动人行道的电气要求 信息传输与控制安全制定2023-07-059电梯安全要求 第2部分:满足电梯基本安全要求的安全参数修订2023-07-0510工业废硫酸的处理处置规范修订2023-07-0511工作场所环境用气体探测器 第1部分:有毒气体探测器性能要求制定2023-07-0512工作场所环境用气体探测器 第2部分:有毒气体探测器的选型、安装、使用和维护制定2023-07-0513合格评定 管理体系审核认证机构要求 第 14 部分:文件管理体系审核与认证能力要求制定2023-07-0514化学品 快速雄激素干扰活性报告(READR)试验制定2023-07-0515化学品 水-沉积物系统中穗状狐尾藻毒性试验制定2023-07-0516化学品 液态粪肥中的厌氧转化试验制定2023-07-0517化学品 鱼类细胞系急性毒性:RTgill-W1细胞系试验制定2023-07-0518环境试验 第2部分:试验方法 试验:温度/湿度/静负载综合制定2023-07-0519家用燃气快速热水器 通用技术规范制定2023-07-0520腈水合酶纯度和活性的测定制定2023-07-0521跨境电子商务 海外仓服务质量评价指标制定2023-07-0522实验动物 动物模型鉴定与评价技术规范制定2023-07-0523塑料 丙烯腈-丁二烯-苯乙烯(ABS) 模塑和挤出材料 第1部分:命名系统和分类基础修订2023-07-0524塑料 聚醚醚酮(PEEK)模塑和挤出材料 第1部分:命名系统和分类基础制定2023-07-0525搪玻璃层试验方法 第6部分:高电压试验修订2023-07-0526无损检测仪器 超声检测设备的性能与检验 第1部分:仪器修订2023-07-0527无损检测仪器 超声检测设备的性能与检验 第2部分:探头修订2023-07-0528无损检测仪器 超声检测设备的性能与检验 第3部分:组合设备修订2023-07-0529项目、项目群和项目组合管理 项目管理指南修订2023-07-0530项目成本管理制定2023-07-0531消费品缺陷工程分析 危险温度点测量方法制定2023-07-0532消费品缺陷线索采集与评估规范制定2023-07-0533医疗器械 制造商的上市后监督制定2023-07-0534邮政业术语修订2023-07-0535真空技术 真空计 皮拉尼真空计的规范、校准和测量不确定度制定2023-07-05
  • 干货分享:色谱图/质谱图傻傻分不清楚
    p  LC-MS/MS作为蛋白组学分析的主要手段,所分析的样品分子过于微小肉眼不可见,需要借助色谱图、质谱图判断其表现,但你看到文章里的质谱图是否感觉迷惑不解,甚至色谱图和质谱图傻傻分不清呢?文章返修编审让补充的有注释信息的二级质谱图究竟是个什么东东?今天小编带你一起解密。/pp  我们常说的图谱分为两类,色谱图与质谱图。色谱图评价的是母离子在色谱上的表现,质谱图则是一级母离子和二级碎片子离子在质谱里的信号表现。这里小编跟你分享一个区分两种图谱的秘密,那便是看横坐标,横坐标是时间轴的为色谱图,横坐标是质荷比的那就是质谱图了,不管色谱图还是质谱图,纵坐标都是信号强度!/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/d2a264a0-7451-4f84-98dc-0b5062ac709e.jpg" title="1.jpg"//pp  常见的色谱图有Basepeak图、TIC图、XIC图 质谱图经常提到的是一级质谱图,二级质谱图,b,y离子匹配图(有注释信息的二级质谱图),下面我们逐一看过来。/pp  strong【色谱图】/strong/ppstrong  Basepeak 图:/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/363edb6d-6fda-4948-81e5-4c0da2a627b5.jpg" title="2.jpg"//pp  看到上图,做过LC-MS/MS实验的童鞋是不是有一种似曾相识的感觉?你肯定在哪里见过。/pp  Basepeak图是色谱分离过程中将每个时间点质谱检测信号最强的肽段的强度值连续描绘得到的图谱。图中峰多信号强说明样品复杂度高量也足。由于上机的样品是蛋白质酶解后的肽段,所以如果你要问小编能否将鉴定到的蛋白质在basepeak图上标出来,答案是不能!!!/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/0e1dca0d-99a3-4c0d-83e6-259c06cc0fd8.jpg" title="3.jpg"//ppstrong  TIC图:/strong/pp  全称为Total ion chromatogram,即总离子流图,相比Basepeak图是用每个时间点质谱信号强度最高的母离子绘制的图谱,TIC是样品中所有离子的色谱图。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/8d76db07-faf1-4889-a7a7-d28156306780.jpg" title="4.jpg"//ppstrong  XIC图:/strong/pp  全称是Extracted ion chromatogram,即提取离子流色谱图,为某个特定母离子的色谱图,XIC图的峰面积可以用于蛋白定量分析。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/30b83abf-94dc-44f3-a7c4-305e22fc80fa.jpg" title="5.jpg"//pp  strong【质谱图】/strong/pp  一级质谱图是一次质谱全扫描内所有母离子的信号分布图,二级质谱图是特定母离子在高能碎裂后产生的二级离子的信号分布图,样品经质谱鉴定后生成的质谱文件实质是数万张一级质谱图和二级质谱图的叠加。/pp  原始二级质谱图,如下图(m/z=377.54),为实际检测到的二级离子的质荷比的分布图,只有一个个孤独的峰,代表一个个孤单的子离子,没有归属,只有将其大小与宗氏族谱(理论的肽段序列碎裂后生成的二级离子分布)匹配后,方能知道其名姓(肽段序列)。匹配后的图就是文章里提到的有注释信息的二级图,也叫做b,y离子匹配图。修饰组学及一段肽的蛋白发文章时可能会被要求提供b,y离子匹配图。/pp style="text-align: center "strongimg src="http://img1.17img.cn/17img/images/201706/insimg/741b86e1-6126-4e8e-a498-782c779009ae.jpg" title="6.jpg"//strongbr//pp style="text-align: center "  B,y离子匹配图/pp  将实际检测到的二级离子的质荷比分布与肽段序列断裂后理论形成的子离子匹配后的图谱。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/383ca26b-e241-4004-8430-5f9ab963f299.jpg" title="7.jpg"//pp  肽段在能量作用下断裂后会生成一个个b,y离子对。左面的碎片为b离子,右边的碎片为y离子,以上图为例,KTQAASVEAVK理论生成的b,y离子对为:/pp  第一个氨基酸与第二个氨基酸中间断开(K|TQAASVEAVK),则生成b1=K(从左往右数1),y10=TQAASVEAVK(从右往左数10) /pp  第二个与第三个氨基酸中间断开(KT|QAASVEAVK),生成b2=KT,y9= QAASVEAVK 其他位置断开,依次类推……。/pp  本肽段中如果第一个氨基酸K上发生了泛素化修饰(已经标红),我们应该如何找出该位点被修饰的证据呢?请往下看。(哎哎继续往下看,别走神儿!)/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/e98257d8-53f4-496b-9f0e-c37fb645c9ce.jpg" title="8.jpg"//pp  肽段碎裂后检测的b3(KTQ),b4(KTQA)离子可能带有修饰集团,以b3为例,如果K上发生修饰,则b3的分子量应该比不带修饰的b3(KTQ)理论分子量(376.22-18.01(QA连接是脱了水的)=358.21)多一个修饰集团glygly-的分子量(114.04),即=358.21+114.04=472.25,而我们检测到的b3离子的分子量刚好为472.25,说明b3(KTQ)离子携带了泛素化修饰集团.因泛素化常发生在K上,推测应为K发生了泛素化修饰。/ppbr//p
  • 沃特世推出更快速可靠的自动化解决方案,助力生物药物分子量和纯度分析
    沃特世公司(纽约证券交易所代码:WAT)近日推出全新软件和分析柱产品,旨在助力生物分子药物发现和开发。使用waters_connect平台新增的Waters Intact Mass应用程序,科学家们能够在BioAccord LC-MS系统上快速确认合成或重组工艺生成的生物分子和杂质分子量,其分析速度可达市场上其他产品的近两倍 i。图. Waters BioAccord LC-MS系统的完整分子量分析在几分钟内为生物工艺工程师提供有关药物和工艺质量的关键信息沃特世公司高级副总裁Jon Pratt表示:“采集生物分子的质量数和纯度数据相当耗时。复杂的质谱数据需要由具备一定技能水平的人员来分析,因此这项工作通常会交给远程专业分析实验室。借助这款新的Waters Intact Mass应用程序,生物工程师和生物化学家使用简单的技术就可以加快药物发现和开发,在几分钟或几小时内即可自行生成质量数确认数据,不再需要花费长达数天乃至数周的时间。”完整分子量分析是在蛋白质、肽、寡聚核苷酸治疗药物和偶联药物等生物药物开发的各个阶段都会开展的一项常规分析。在药物发现的早期阶段,生物化学家每周需要分析数百甚至数千个不同的样品。为了加快分析速度,Waters Intact Mass应用程序提供了一套快速可靠的自动化解决方案,旨在助力新型生物治疗药物的质量数确认和纯度测定。这款应用程序特有的智能自动解卷积功能让用户在减少指令输入的情况下,在采集样品数据后几分钟内即可完成处理。沃特世推出MaxPeak Premier BEH C4 300Å蛋白分析专用柱,助力完整蛋白和亚基分析与Intact Mass应用程序一同推出的还有全新分析柱系列,将在完整生物分子及其亚基分析中发挥关键作用。用于BioAccord LC-MS系统的ACQUITY Premier和XBridge Premier BEH C4 300Å蛋白分析专用柱采用MaxPeak高性能表面(HPS)技术,能阻止样品中的磷酸化和羧基化分子被LC系统和色谱柱的金属表面吸附,进而避免样品分析物损失。得益于此,低浓度完整分子量分析的灵敏度可提高达3倍,磷酸化蛋白完整分子分析和低浓度单克隆抗体亚基分析的灵敏度则可提高达2倍ii 。目前,新购BioAccord LC-MS系统的waters_connect平台已预置Intact Mass应用程序,已安装的系统可通过版本升级获取此应用程序。沃特世现已面向全球供应MaxPeak Premier BEH C4 300Å蛋白分析专用柱。其他参考资料- 阅读博客文章:Automating Intact Mass Deconvolution: It' s About Time(《完整分子量的自动化解卷积:时机已到》)- 阅读沃特世应用纪要:Intact Mass - A Versatile waters_connect Application for Rapid Mass Confirmation and Purity Assessment of Biotherapeutics(《Intact Mass - 用于生物治疗药物快速质量数确认和纯度评估的多功能waters_connect应用程序》)- 欢迎您通过www.waters.com关注和联系沃特世。关于沃特世公司(www.waters.com)沃特世公司(纽约证券交易所代码:WAT)是全球知名的专业测量仪器公司,作为色谱、质谱和热分析创新技术的先驱,沃特世服务生命科学、材料科学和食品科学等领域已有逾60年历史。公司在全球35个国家和地区直接运营,下设14个生产基地,拥有约7,400名员工,旗下产品销往100多个国家和地区。关于沃特世中国自上世纪80年代进入中国以来,沃特世的规模与实力与日俱增,在大陆及香港、台湾均设有运营中心,拥有近700名本地员工,并在上海、北京、广州、成都设立实验中心和培训中心。自2003年成立沃特世科技(上海)有限公司以来,今天的中国已成为沃特世全球营收仅次于美国的第二大市场。作为分析科学家的理想合作伙伴,沃特世始终坚持提高本地技术能力、支持本地技术人才培育,并推动制药、食品安全、健康科学、环境保护等相关行业标准和法规的建立和完善。凭借出众的人才与全球布局,沃特世已经为其商业合作伙伴创造了显著的价值,并致力于满足广大中国消费者对更美好生活的需求。 i“两倍”估计值基于96个样品的分析,比较了Waters BioAccord系统配合Intact Mass运行“并行采集和处理”工作流程与市场上其他产品运行“先采集后处理”工作流程的速度。 ii基于MaxPeak Premier BEH C4 300Å蛋白分析专用柱与ACQUITY 300Å蛋白分析专用不锈钢柱的比较结果。
  • QuanID突破微生物质谱鉴定的局限性
    近日,国家卫健委对《临床微生物检验基本技术要求》卫生标准征求意见。该征求意见稿规定了临床微生物学(细菌学、真菌学)检验基本技术的要求,适用于开展临床微生物学检验的各级医疗机构及其临床微生物学实验室。小融了解到,征求意见稿中对微生物鉴定技术进行了规范,其中就包括基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)鉴定技术。征求意见稿首先对MALDI-TOF MS技术鉴定微生物给予了肯定,指出MALDI-TOF MS鉴定系统扩展了对常见菌、苛养菌、厌氧菌、丝状真菌以及分枝杆菌、奴卡菌等难鉴定微生物的鉴定谱,目前数据库可鉴定300多个属2000余种菌,远高于自动化、半自动化鉴定系统及手工鉴定方法。然而,并没有一种鉴定方法是完美的,每种方法都有自身的局限性。征求意见稿也指出了MALDI-TOF MS鉴定技术的局限性,即系统数据库的完整程度,包括覆盖的菌种数、每种菌所用的建库菌株数量和来源、以及图谱采集的质量,都会造成鉴定性能的差异,导致对大肠埃希氏菌和志贺氏菌属、沙门氏菌属、肺炎链球菌和缓症链球菌群等等给出错误的鉴定结果。图片来源于:国家卫健委,《临床微生物检验基本技术要求》征求意见稿有这样的局限性,MALDI-TOF MS技术用于微生物鉴定,还香吗?别慌,新一代的MALDI-TOF MS来破局!硬件加持,QuanID微生物质谱更准确融智生物致力于将高端生命科学仪器推向临床实际应用中,研发的新一代宽谱定量飞行时间质谱平台QuanTOF(新一代MALDI-TOF MS),采用了自主知识产权的离子源与探测器电耦合技术,结合更高频率、更高精度的半导体激光解析电离系统及全新设计的混合探测器,实现了MALDI-TOF MS革命性的技术创新。QuanTOF在世界上首次实现在宽质量范围内(10-1000,000Da)保持较高分辨率和灵敏度(中国分析测试协会2019年验证结果,10fmol信噪比大于200,BSA),全扫描范围内的高重现性,使得其可满足定量应用,且定量精度达95%以上,远高于传统MALDI-TOF MS仪器。也就是说,在硬件方面,QuanTOF质谱平台的强大性能决定了以此为依托的QuanID微生物质谱系统鉴定结果的高准确性。QuanTOF新一代宽谱定量飞行时间质谱平台数据库出击,QuanID微生物质谱更强大当然了,对于微生物质谱的鉴定结果起到决定性作用的非数据库莫属。传统微生物质谱系统的建库方法是将收集来的菌株进行筛选,用不同培养基进行培养后,上机采集质谱图,建立微生物数据库。这种建库方法选取蛋白质作为建库依据,容易受细菌培养条件的影响,增加了菌库的不确定性。最准确的细菌鉴定方法是基因测序,然后和Gene bank进行比对鉴定。但这种方法耗时、耗财、耗力。QuanID微生物质谱数据库采用正向建库、反向验证的方法进行数据库的建设。先进行基因组测序,然后翻译成蛋白信息,挑选保守稳定的核糖体蛋白和一些对鉴定有意义的结构蛋白,得到其氨基酸序列,计算氨基酸理论分子量,从而建好数据库;最后用质谱采集标准菌株获得的蛋白谱进行数据库验证。QuanID微生物质谱数据库建库步骤QuanID建库方法考虑了生成蛋白过程中氨基酸的各种修饰(如甲基化、乙酰化等),得到的数据库鉴定结果更准确,而且省去了测序的时间和成本。第三方的验证结果表明,QuanID微生物质谱在种水平和属水平鉴定准确率上均优于国际同类产品。微生物质谱鉴定产品间比较,种水平和属水平准确率统计截止到目前,QuanID微生物质谱数据库可对超过500属、4500余种的微生物进行鉴定(可扩展);拥有一级、二级两个数据库,独有的二级库可对基因型相近的难分辨微生物(如:大肠杆菌和志贺氏菌等)做出准确鉴定,目前已涵盖100多种相似病原体。另外,融智生物还与国内知名菌种保藏机构合作,不断对中国特有的微生物质谱数据库进行完善。以志贺氏菌为例,同类仪器检出结果均报为大肠埃希氏菌,融智生物QuanID 数据库可以直接鉴定到种水平。QuanID微生物质谱系统给出的志贺氏菌鉴定结果QuanID微生物质谱系统给出的大肠埃希氏菌鉴定结果MALDI-TOF MS微生物鉴定方法已经越来越被广泛接受,这也间接说明了其在微生物鉴定方面的巨大优势。虽然微生物质谱技术有其自身的局限性,但是相信随着质谱技术的进步以及微生物数据库的不断完善,其局限性也会趋于消弥。
  • 使用超高效聚合物色谱系统对低分子量聚合物进行快速高分辨率分析
    使用超高效聚合物色谱(APC)系统对低分子量聚合物进行快速高分辨率分析Mia Summers和Michael O&rsquo Leary沃特世公司(美国马萨诸塞州米尔福德)应用优势■ 既能对聚合物进行快速表征又不会降低性能水平■ 与常规GPC分析相比,可提高对低分子量低聚物的分辨率■ 与常规GPC分析相比,可提高校准水平并由此对低分子量低聚物进行更准确的测定■ 可对聚合物进行快速监测,从而能提早发现产品开发过程中出现的变化 沃特世提供的解决方案ACQUITY 超高效聚合物色谱(APC&trade )系统ACQUITY APC XT色谱柱沃特世聚合物标准品带有GPC选项的Empower 3色谱数据软件关键词聚合物、SEC、GPC、APC、聚合物表征、低分子量聚合物、低聚物、环氧树脂 引言凝胶渗透色谱(GPC)是一种广泛认可并行之有效的聚合物表征方法。然而,尽管使用此技术可获得大量信息,但这类分析本身仍存在缺陷。色谱柱通常填充苯乙烯-二乙烯基苯,同时需要进行适当老化并应在低背压下运行以确保其长期稳定。填充颗粒通常较大(&ge 5 &mu m),分辨率一般会因此而受影响。填充较小颗粒(5 &mu m)的色谱柱已投放市场,并能提高GPC分离速度,但分离速度会因色谱柱本身的最大工作压力偏低而受限。此外,常规GPC仪器的系统体积较大,这需要使用较大直径的色谱柱以减缓可能导致分辨率降低的系统峰展宽。沃特世ACQUITY超高效聚合物色谱(APC)系统与亚3 &mu m杂化颗粒色谱柱相结合,可增强系统稳定性并能在更高压力下确保流速准确性。此外,APC系统的总体扩散度低,能显著提升分辨率,在分析低分子量低聚物时尤为明显。提高分离低分子量低聚物的分辨率并缩短运行时间能对聚合物工艺开发进行快速监测,提早检测出新的聚合物类型并从总体上加快聚合物新产品的上市进程。这篇应用纪要将基于ACQUITY APC系统的分离与基于常规GPC的分离进行了比较。本文将会说明使用一种采用亚3 &mu m杂化颗粒技术色谱柱的低扩散系统能加快分析速度,提高分辨率并有助于对低分子量低聚物进行校正。综合使用这些技术能够更稳定、更精确地测定低分子量聚合物样品的分子量参数。提早识别某种聚合物所出现的甚至比较细微的改变都能明显加快化学和生物材料应用中聚合物的开发速度。 实验Alliance GPC系统条件检测器: 2414 RI (示差折光检测器)RI流通池: 35 ℃流动相: THF流速: 1mL/min色谱柱: Styragel 4e,2和0.5,7.8 x 300 mm(3根串联)柱温: 35 ℃样品稀释剂: THF进样量: 20 &mu LACQUITY APC系统条件检测器: ACQUITY RI(示差折光检测器)RI流通池: 35 ℃流动相: THF流速: 1 mL/min色谱柱: ACQUITY APC XT 200 Å 柱和两根45 Å 柱,4.6 x 150 mm(3根柱串联)柱温: 35 ℃样品稀释剂: THF进样量: 20 &mu L数据管理Empower 3色谱数据软件样品1 mg/mL的沃特世聚苯乙烯标准品(100K、10K和1K)环氧树脂(2 mg/mL)结果与讨论为了使用SEC对聚合物进行适当表征,重要的是要使用适当的标准品生成一条校准曲线以确定当前所用色谱柱的分离范围。使用常规GPC分析标准品和样品相当耗时,运行时间可长达1小时(或更长)。由于样品所产生的数据将与经校准的标准品进行比较以确定分子量,因此标准品分析结果的准确度对获得关于聚合物样品的准确结果而言具有至关重要的作用。除了GPC本身的运行时间较长之外,常规GPC系统的额外柱体积较大也会导致峰展宽,从而降低分辨率并由此降低校准数据点的准确度。与常规GPC系统相比,ACQUITY APC系统的扩散度更低,因此产生的峰展宽就更少,并且窄分布标准品的色谱峰也明显更清晰,如图1所示。此外,低扩散性APC系统与支持更高流速和背压的稳定的亚3 &mu m APC色谱柱柱技术相结合也能提高对1K聚苯乙烯标准品的分辨率,并使分析时间缩短至原来的1/5。图1. 比较在常规GPC系统和ACQUITY APC系统中分析聚苯乙烯标准品(Mp:100K、10K和1K)的运行时间和分辨率使用APC系统所提高的分辨率为确定1K聚苯乙烯标准品分子量增添了更多可识别的色谱峰。如图2所示,通过使用标准品供应商提供的数值或根据外部方法得出的标准品测定值而确定的分子量信息,更多的数据点由此可被添加到校准曲线上,从而为根据这条曲线所计算出的样品结果增加了可信度。图2. 使用ACQUITY APC系统时,因对1K低分子量标准品的分辨率提高而在校准曲线上得出关于聚苯乙烯标准品(100K、10K和1K)的更多数据点一般说来,需要运行一系列标准品以得出用来生成校准曲线的数据点。使用常规GPC时,平衡、配制并分析每种标准品可能需要数小时至数天的时间。因此,通常不进行校准并根据原有校准曲线确定分析结果。ACQUITY APC系统因其系统滞留体积低而使平衡速度明显加快,并且因在更高流速下使用更小的颗粒而使运行时间明显缩短。运行时间的缩短使得平衡和校准操作可在一小时内轻松完成。最后,得益于分辨率的提高,可能只需要配制并进样检测更少的标准品,就能获得一条可用来进行校准的稳定曲线。分析样品时,校准操作的稳定性提高使得对低分子量低聚物的分子量测定具有更高的可信度。图3显示出一份环氧树脂样品相对于用聚苯乙烯标准品校准的分析结果。该结果表明使用三根ACQUITY APC XT 4.6 x 150 mm串联柱可在不到5分钟的运行时间内分辨出不同低聚物。图3. 使用配有ACQUITY RI检测器的三根ACQUITY APC XT 4.6 x 150 mm串联柱对溶于四氢呋喃的一份环氧树脂样品进行分析。低分子量低聚物(显示为峰尖分子量)可在不到5分钟的时间内被分辨开来。APC可缩短运行时间的特点有助于在工艺开发过程中进行反应监测。分辨率提高能够促进对合成应用或降解研究中可能出现的聚合物改变进行更快速的鉴别。通过监测各种分子量而提早发现工艺改变有助于更好地了解聚合物及其预期属性,从而可促进新型聚合物的开发并加快产品上市进程。结论由于超高效聚合物色谱系统的扩散度更低并能承受更高的背压以允许使用更小的杂化颗粒,因此该系统明显优于常规GPC系统。通过与最新的色谱柱技术相结合,APC系统与常规GPC相比也提高了对低分子量低聚物的分辨率。APC在性能方面的优点包括校准结果更可靠,这对生成用于聚合物表征的准确测定值而言是必不可少的。低分子量聚合物检测速度和分辨率的同时提高可在开发过程中实现对聚合物的快速且可靠的表征,从而促进对新型聚合物进行密切的上市跟踪。
  • 质谱国产替代之路是否存在换道超车?——皖仪分析事业部总经理程小卫
    “或许流式质谱是一个独特的赛道,其技术和应用都在同一起跑线上,或者说我们并没有被拉下很长的距离,就类似传统汽油轿车和电动轿车一样。”——程小卫 皖仪分析事业部 总经理继上期《聚浪成潮 以待花开|质谱国产替代之路有多长?》(点击查看),本文皖仪分析事业部总经理程小卫将围绕质谱流式技术展开阐述。 7. Q-TOF了解一下 7.1 基本原理和结构TOF飞行时间质谱,是原理最简单的质谱。就是施加到离子的电势能转化为动能,基本公式就是m为离子的质量;z为离子所带的电荷数目;V为施加到离子的电势,脉冲电压,它对于所有质量的离子是相同的;v为离子的飞行线速度,离子质量越大,飞行速度就越慢。离子飞行的线速度v等于飞行距离L除以飞行时间tL为由仪器的飞行管所决定的常数。所以,上述基本公式可以转化为m/z=2Vt2/L2因而离子质荷比正比于飞行时间的平方。比如,m/z为3000的分子,飞行时间才1微秒。图:系统结构图示意图(资料来源:安捷伦用户培训资料)离子源:产生离子化,并将产生的离子在电场的作用下进入毛细管。毛细管/锥孔:离子导入通道,将离子源产生的离子传输进入质谱。同时,隔离外部的常压与质谱内部的高真空。离子光学组件:包括Skimmer 1,八极杆以及Lens 1 和Lens 2。进一步除去溶剂和中性分子,高效的离子传输组件,并聚焦随机运动的离子进入四极杆。四极杆:质量过滤器,双曲线的四极杆优化离子传输和质谱分辨率。可以选择让某些质荷比的离子依次通过或者所有的离子全通过。碰撞池:线性加速的高压碰撞池。优化质谱/质谱分裂,从而在一个短的停留时间仍可消除交叉干扰。六极杆设计有助于捕获碎片离子。离子束整形器:将随机运动的离子压缩为一个薄层,进入脉冲发生器。减少离子在纵向的扩散,提高分辨率。脉冲发生器:以一定的频率在纵向施加高压,将从离子束整形器过来的离子快速抛入飞行管。飞行管:离子在飞行管内纵向飞行,不同质荷比的离子通过飞行管的时间不同。检测器:包括微通路板、闪烁器和光电倍增器。高增益,寿命长,线性范围宽。Q-TOF 的真空系统由一个前级真空泵(机械油泵)和两个分子涡轮泵组成。前级真空一般在 1.8-2.5 Torr 之间,不同型号的 Q-TOF,高真空的范围不同。 7.2 Q-TOF的工作方式 Q-TOF 有三种不同的工作方式:• TOF 模式:这种模式下,可以得到离子的一级质谱图。四极杆处于离子全通过状态(TTI, Total Transmission Ion),所有的带电离子都会通过四极杆,碰撞池不施加碰撞能量,带电离子不会裂解,TOF 工作在扫描模式下,直接检测得到一级质谱图。这种操作模式下Q-TOF 的行为与单TOF 类似。• 自动 MS/MS (Auto MS/MS) 模式:这种模式下,根据用户设定的条件,对符合条件的离子自动做二级质谱。当某个或某些离子满足用户的预设条件时,四极杆处于 SIM(选择离子监测)模式,碰撞池施加碰撞能量将离子撞碎,而 TOF 仍然工作在扫描模式,得到符合设定条件的离子的二级谱图。当没有离子满足用户预设的条件时,Q-TOF 仍工作在TOF 模式下。这种工作模式比较常用于方法开发,未知物质鉴定以及结构解析。在自动 MS/MS 模式中,仪器根据操作者设定的规则自动决定哪些质荷比的母离子通过四极杆,在碰撞池中被打碎然后由 TOF 进行全扫描分析。Q-TOF 首先进行 TOF 模式扫描出一级质谱,然后根据离子的强度和设置的其他规则参数来选择母离子,进行MS/MS 分析。对于自动MS/MS 模式,仪器用下列的逻辑程序判断是否对某离子进行MS/MS 分析。• 目标 MS/MS (Targeted MS/MS)模式: 在这种操作模式下,只有用户指定的离子,可以得到二级质谱图。仪器只对操作者输入的目标离子进行MS/MS分析。对于用户选定的目标离子,四极杆进行选择离子监测,运行 SIM 模式,碰撞池施加碰撞能量将离子撞碎,而 TOF 仍然工作在扫描模式,得到选定离子的二级质谱图。这种工作模式比较常用于定量分析,已知物质的鉴定和结构阐明。目标 MS/MS 模式通常用于已知物的分析。操作者需要预先知道它们的母离子以及各自的保留时间 。对于目标 MS/MS 模式,仪器使用以下程序来判断是否对离子进行 MS/MS 分析。• 软件的重要性前面提及Q-TOF是原理最简单的质谱,受限于计算机的发展,言即表达的是软件的重要性。QqQ和Q-TOF质谱软件除了基本的数据采集、控制仪器、定性分析、定量分析,还有锦上添花的小工具软件为的是更友好更方便更智能。比如:安捷伦的Optimizer 标配给QqQ,优化质谱参数,优化好的参数放在一个dMRM database里;Study Manager for QqQ and TOF/Q-TOF 小工具,编样品信息和序列,适用于大批量样品处理;Dynamic MRM database Kit wl method for QQQ;Easy-Access 软件(岛津公司称为Open Solution软件),用于插队样品,合成实验室的样品多的情况;个性化定制化合物库软件personal compound database library(e.g. PCDL) 作为高分辨定性质谱Q-TOF在定性相关的软件需求上更加突出:比如:分子特征提取软件(MFE, Molecular Feature Extractor) 外源代谢物鉴别软件(Metabolite ID)用于药物代谢物鉴定 蛋白质分析软件,用于大分子,计算分子量和序列匹配;代谢组学软件,区别于外源性代谢物,鉴定内源性代谢变化;数学统计学软件,比如PCA主成分分析,方差分析等等。以及各种数据库软件,比如毒物、滥用药物数据库;农药、兽药数据库;内源/外源代谢物数据库等等。• 不得不提到的OrbitrapOrbitrap(静电场轨道阱)是一种拥有超高分辨率的质量分析器,由俄罗斯科学家 Makarov 于 2000 年发明。该发明专利被赛默飞公司收购,目前是赛默飞专利独有的高分辨质谱技术。Orbitrap 是继磁质谱质量分析器、飞行时间质量分析器(TOF)、傅里叶变换离子回旋共振质量分析器(FT-ICR)这些高分辨质谱技术之后,发明原理完全创新的高分辨质谱技术,克服了既往高分辨质谱技术的诸多不足,是具有划时代意义的新一代高分辨质谱技术。从 2005 年 LTQ Orbitrap 推出以来,随着 Makarov 团队不断优化,Orbitrap 系列产品凭借其卓越的分辨率、灵敏度、多项创新技术,逐渐成为高端质谱领域的代表者。图:Orbitrap 系列产品的核心优势图(资料来源:赛默飞世尔官网)因为Orbitrap是赛默飞的独家技术且因作者水平有限,所以不做过多阐述。 8. 流式质谱要知道 无论称作流式质谱,还是叫作质谱流式,其中质谱是检测手段,流式是方法学,一种细胞定量分析和分选技术。无论是低分辨的离子阱、四极杆质谱,还是Q-TOF、IM-QTOF、Orbitrap等高分辨质谱技术上,无论是无机质谱还是有机质谱,要想突破质谱的卡脖子技术,都有很大挑战和难度。但,或许流式质谱是一个独特的赛道,其技术和应用都在同一起跑线上,或者说我们并没有被拉下很长的距离,就类似传统汽油轿车和电动轿车一样。8.1 传统流式和流式质谱的区别在学习了解流式质谱前,简单温习一下流式荧光技术和光谱流式的概念。流式荧光技术:是基于编码微球和流式技术的一种临床应用型的高通量发光检测技术。相较于传统化学发光法,流式荧光技术能够支持多指标检测,具有通量高、速度快、操作简便等特点,但存在荧光标签的串色问题、受限于稀有荧光素的供应。光谱流式:每个荧光染料的发射光谱在定义的波长范围内被一组检测器所捕获,这样每个荧光染料的流式荧光光谱都可以被识别、记录其光谱特征,并在多色实验中充分使用。流式细胞仪的检测器可以检测到每个细胞或颗粒的散射光信息和多个荧光信号,最终分析细胞或颗粒上的信息。光谱流式通过光谱拆分技术部分解决了荧光补偿问题,但需要难度较大的配色方案,试剂成本高,通道数量较流式质谱相比较少。鉴于此,流式质谱应需而生。流式质谱:是结合传统流式和质谱两个平台的技术,能够同时获得单个细胞的多种参数。流式质谱作为定量手段的优势在于其高分辨率,并且克服了传统流式荧光发射基团光谱重叠的问题。流式质谱仪可提供过百个检测通道,可以同时对更多的细胞特征进行分析。通过标记稳定的金属标签,流式质谱仪可以在不同的通道生成信号,识别不同靶向蛋白的标记,并且各参数之间几乎没有重叠。相较于传统流式,流式质谱是采用金属元素对抗体进行标记,因此通道数量会受限于金属标签的供应;另一方面,受采样速度的影响,流式质谱对样本的处理速度相较于传统流式而言较慢。图源:宸安生物包括经典流式和光谱流式在内的荧光流式利用荧光基团标记抗体,再利用抗体结合抗原的方法标记细胞,用激光激发荧光基团,通过检测发射出的荧光信号的波长和强弱实现参数的定量检测。而质量流式用稳定的金属标签代替荧光基团来标记抗体,通过质谱检测细胞上金属元素的含量实现参数的定量检测。这也是质谱流式的这个名称的由来。图源:宸安生物我们可以看到在荧光流式中,不同荧光素的发射光谱存在大量重叠,不仅限制了检测通道的数量,而且为配色和后续的数据分析带来了困难,不同荧光信号之间的串扰,必须在数据分析过程中调补偿的方式来消除,这样的操作非常依赖于操作人员的经验,也为不同的设备、实验室数据之间的标准化带来了很大的难度。另外,一些生物样本中的自发荧光作为背景也会干扰数据的分析。而质谱流式极大程度地解决了这些问题,在质谱流式检测范围内的金属元素信号几乎没有重叠,不需要为此调补偿,并且这些金属元素正常情况下在生物体内极少存在,因此质谱流式信号几乎没有背景。这些特点带来的直接优势是检测通道数量的提升和数据分析上的便捷,更多参数的同时检测也可以为我们提供更高维度的数据结构和信息。8.2流式质谱的基本原理流式质谱技术 (Cytometry Mass)结合了传统流式技术高效的单细胞研究能力和飞行时间质谱的全谱高分辨率优势,采用金属标记抗体与待测抗原结合,理论上可提供140个检测通道,并且克服了传统流式荧光发射基团光谱重叠的问题,实现了单细胞水平的高通量分析。图源:宸安生物质谱流式技术采用金属标记的抗体识别细胞表面或胞內的抗原,标记后的细胞经雾化后进入电感耦合等离子体矩管中进行离子化,离子云随后被传输至飞行时间质量分析器中,在飞行时间质谱分析器中,金属离子质量越大,飞行时间越长,检测器依次记录各种金属离子到达的时间,检测出细胞中各种标签金属的含量,最终形成不同的金属离子信号峰。检测产生的高维数据通过分类、聚类和降维算法进行处理,结果可以反映基于靶蛋白丰度的各种细胞群体的表型和功能。金属离子的信号强度可以代表蛋白分子的表达丰度。可以实现对目标蛋白的全面覆盖和批量分析。单个样本中可以实现细胞表面蛋白,胞内蛋白,和分泌型分子的同步检测。对样本单细胞水平的深度解析可以提供从未被挖掘的信息,作为伴随诊断参考,揭示新的分子机制。图源:宸安生物这张图描述了质谱流式的样本从金属抗体染色到上机检测的流程。细胞被染上金属抗体后会经历雾化、电离形成一团离子云、离子云在经过过滤和筛选之后只剩下抗体上的金属离子,随后这些离子通过飞行时间质谱依据质荷比不同形成分散的离子峰,结合金属元素和抗体及抗原一一对应的信息,我们最终得到不同抗原在细胞上的丰度。这些数据会经过处理转化成荧光流式通用的FCS格式的流式标准文件,可以使用一些熟悉的流式数据分析软件,比如FCS express, Flowjo等对数据进行传统的圈门分析,或者使用聚类降维等高维数据分析方法挖掘更多的信息。图源:宸安生物质谱流式的上样形式与荧光流式一样,都是处理好的单细胞悬液。在开始检测后,质谱流式首先通过雾化将样本转换为大量的微小液滴,细胞悬液以30uL每分钟左右的速度被压入如图所示的雾化器中,雾化器中央是一根水平悬空的毛细管,毛细管外是用于辅助雾化的氩气,当样本流出右侧毛细管末端时,会被周围喷出的雾化气散成大量呈雾状的小液滴,细胞被包裹在这些小液滴当中。图源:宸安生物接下来这些小液滴会被180℃的雾化室中,随后液滴蒸发,尺寸缩小,被氩气携带进入离子源进行电离,在离子源位置氩气在高频切换电磁场作用下被加热产生温度极高的等离子体火焰,而细胞在等离子体中经历去溶剂、解离、原子化和电离等一系列变化,最终变成一团离子云。图源:宸安生物这些在等离子体外生成的离子云通过金属锥,从低真空度进入高真空度的环境,随后在四极杆质量选择器中经历引导和筛选,排除低质量的背景离子,只留下抗体上高质量金属离子进入后续的检测器。图源:宸安生物质谱流式使用TOF作为检测器。检测离子云时,所有离子被正交加速电场施加一个相同的初始动能,随后在反射场中作回返运动,由于不同离子的质荷比不同,在加速之后获得的初速度不同,这导致不同离子回返到达检测器的时间不同,检测器通过到达的时间差别区分不同的离子,在这里有两个质谱流式中很重要的概念:Push和Event Length。Push是指每次正交加速电场将离子加速进入回返场的时间间隔,即TOF的检测周期。Event Length是指一个细胞产生的完整离子云被检测完所需要的Push个数。可以表达成“检测一个细胞经历的Push数量=Event Length”这也是一个在之后的圈门过程中很重要的一个参数。 8.3 流式质谱的主要应用领域 新药开发是一项复杂、昂贵、耗时的工作,需要解决来自各领域的技术难题。流式质谱技术可以在管线的各个阶段协助做出以数据为导向的决策,从而将安全有效的疗法成功地推向市场。药物发现阶段:提供免疫分型深度分析,信号通路检测、细胞因子检测、T细胞激活\耗竭分析和新生抗原筛选。临床前开发阶段:提供免疫分型、细胞因子、PK/PD动态分析。临床试验阶段:单细胞水平的蛋白组学可对患者精准分群,进行免疫治疗反应的监测。批准和上市后:作为辅助诊断的工具,实现高效快速检测、指导治疗方案的选择和进行疗效监测。在血液系统疾病、基于高维免疫评估的感染性疾病、自身免疫性疾病、肿瘤免疫、基于高维免疫评估的细胞治疗等皆是流式质谱的用武之地。
  • 汇集结构质谱尖兵,开拓蛋白质结构生物学的新天地——第十四届质谱网络会议报告推荐
    随着生命科学研究的深入开展,科学界对解析复杂生物大分子结构以揭示生命现象的渴望日益增加。在各种结构生物学技术快速发展的背景下,结构质谱技术凭借其独特的优势,日益成为连接静态结构与动态功能、实现从分子到细胞的跨尺度研究的重要手段。在12月12-15日即将召开的“第十四届质谱网络会(iCMS 2023)”同期,特别新增了“结构质谱新方法”主题专场,来自全国的顶尖科学家团队将汇聚一堂,围绕氢/重氢交换质谱、化学交联质谱、原位质谱等前沿技术,报告他们在蛋白质结构生物学研究中的最新进展。本次主题会议的召开,恰逢结构质谱技术发展的重要机遇,必将推动该领域技术的重要突破及交叉创新,开启生命科学研究的新篇章。热忱欢迎质谱界的科技工作者报名参会交流、了解前沿动态、开拓合作视野。部分报告预告如下,点击报名  》》》会议主持人:中山大学 教授 李惠琳中山大学药学院教授,博士生导师。主要从事生物质谱新技术的开发及应用,侧重于(1)开发整合结构质谱技术(包括native top-down MS, HDX-MS, CX-MS等),用于药物作用分子机制及蛋白复合物结构研究;(2)Middle-down/top-down蛋白质组学新技术的开发及应用。共发表SCI收录论文40篇,其中第一作者或通讯作者15篇,主要发表在Nat. Chem.、Anal. Chem.等期刊;2014年获得American Society of Mass Spectrometry Postdoctoral Career Development Award;2019年入选“珠江人才计划”青年拔尖人才;主持国家自然科学基金项目3项。报告人:香港理工大学 教授 姚钟平报告题目:氢氘交换质谱揭示β-内酰胺酶与抑制剂相互作用的动态构象复旦大学学士及硕士,香港科技大学博士,香港理工大学应用生物及化学科技学系教授。长期从事质谱、分析化学、化学生物学、组学的交叉学科研究,主要发展和应用质谱技术解决化学、生物、食品安全、信息科学等领域的基础和应用问题,在Nature Communications, PNAS, JACS等期刊发表论文100多篇。现任香港研究资助局专家委员会委员、深圳市中药药学及分子药理学重点实验室副主任、中国化学会有机分析专业委员会委员、Frontiers in Chemistry副主编以及Analytica Chimica Acta, Rapid Communications in Mass Spectrometry,《中国质谱学报》,《分析测试学报》等期刊编委。会上,姚钟平教授将作主题为《氢氘交换质谱揭示β-内酰胺酶与抑制剂相互作用的动态构象》的报告。利用氢氘交换质谱(HDX-MS)并结合原态离子迁移质谱(Native IM-MS)以及分子动态(MD)模拟,发现不同亚型的A型β-内酰胺酶在几个主要的结构域存在显著的动态构象差异。进一步研究了A型β-内酰胺酶与抑制蛋白结合界面的动态结构变化,结果揭示了H10区域是一个可调节β-内酰胺酶抑制作用的别构部位。报告人:浙江大学 研究员 周默为报告题目:非变性质谱剖析异质性蛋白复合体结构和功能信息浙江大学首位“求是实验岗”研究员,分析化学专业,长期从事前沿生物质谱技术和仪器的开发工作。2008年本科毕业于武汉大学,2013年博士毕业于美国俄亥俄州立大学,之后两站博士后分别在美国FDA和西北太平洋国家实验室PNNL。2018年成为PNNL的研究员开展独立研究,培养多名博士后和学生。2023年加入浙江大学。截至目前共发表60余篇学术论文,代表作包括在Angewandte Chemie, Nature Communications, Analytical Chemistry等期刊的论文。现任自上而下蛋白组协会(Consortium for Top Down Proteomics)的青年委员会主席,曾担任美国质谱协会(ASMS)的出版委员会委员、短课程讲师、评审委员等学术任职,努力推动新分析测试技术的开发和跨学科领域的应用研究。本次会议中,周默为研究员将为介绍题为《非变性质谱剖析异质性蛋白复合体结构和功能信息》的报告。精准表征生物大分子的微观结构对各类生物工程、生物医药领域的研究至关重要。由于大部分质谱检测到的分子量范围有限,在分析之前生物大分子需要先被剪切为分子量更小的片段。但是剪切和碎片化的过程中会丢失一些关键的结构信息。前沿质谱技术提高了仪器的分子量上限,使非变性条件“自上而下”研究完整的生物大分子更加容易。我将以具体案例,阐述自上而下非变性质谱技术在异质性蛋白质复合体结构和功能解析中的贡献,以及与其他方法的互补性。报告人:北京大学 研究员 王冠博报告题目:生物样本中蛋白高级结构的质谱分析北京大学生物医学前沿创新中心研究员。北京大学学士,美国马萨诸塞大学博士,曾于荷兰乌特勒支大学暨荷兰蛋白组学中心从事博士后研究;曾任南京师范大学教授、博士生导师。主要从事免疫反应相关蛋白质的高级结构及相互作用研究,以生物质谱为核心工具,结合新型分析设备研发,应用于生物物理学、蛋白质药物分析等领域。长年与国际药企合作研发新型药物表征技术并应用于新药研发。获国际国内授权专利,出版《Mass Spectrometry in Biopharmaceutical Analysis》等专著、译著、合著多部。任中国生物化学与分子生物学会蛋白质组学专业分会委员、国际学术组织Consortium for Top-Down Proteomics青委会委员。本次会议中,王冠博研究员将围绕生物样本中蛋白高级结构的质谱分析主题分享报告。生物质谱已成为蛋白质多次结构表征的重要工具。为将蛋白结构质谱技术的应用拓展至生物样本乃至临床样本中,我们针对背景基质复杂、糖基化等修饰异质性高、超大分子量颗粒结构层次多样等问题,以非变性质谱等质谱手段为核心工具开发了一系列组合策略,提供生物样本乃至临床样本中的蛋白高级结构和相互作用关系信息。报告人:中国科学院大连化学物理研究所 研究员 王方军报告题目:高能紫外激光解离-串联质谱仪器研发和应用2011年于中科院大连化物所获博士学位,师从邹汉法研究员。研究工作致力于生物大分子质谱新仪器、新方法及其在生命健康领域的应用研究,搭建了世界首台50-150 nm可调波长极紫外激光超快解离-串联质谱;提出了位点光解离碎片产率和原位化学标记效率定量表征蛋白质结构变化的两种质谱分析新原理,实现亚微克蛋白质复合物序列和结构变化单氨基酸位点分辨表征;发展了蛋白质-纳米材料界面相互作用精细结构的质谱分析新方法等。在Nat. Protoc.,J. Am. Chem. Soc.,Cell Chem. Biol.,Chem. Sci.,Anal. Chem.等期刊发表论文130余篇,他引5000余次。本次会议中,王方军研究员将分享题为《高能紫外激光解离-串联质谱仪器研发和应用》的报告。高能/真空紫外激光解离是表征生物大分子序列和动态结构的前沿结构质谱表征技术,但相关仪器和理论都亟待发展。报告人将介绍近年来自主研发的皮秒脉冲极紫外激光解离装置和蛋白质原位光化学标记仪器的原理、主要参数、与商品化质谱对比、及在蛋白质瞬态结构表征、蛋白-蛋白识别和相互作用机制分析等方面的应用情况。报告人:中国科学院大连化学物理研究所 研究员 赵群报告题目:活细胞内蛋白质原位构象和相互作用规模化解析新方法研究中国科学院大连化学物理研究所研究员,博士生导师。本科毕业于西北大学化学基地班。同年进入大连化学物理研究所攻读博士学位,师从张玉奎院士和张丽华研究员,2014年获得理学博士学位。毕业后留所工作至今,主要从事蛋白质组定性定量及相互作用分析新技术研究,共发表学术论文62篇,其中近五年以通讯/第一作者(含共同)在Nat. Commun., Angew. Chem. Int. Ed.,Anal. Chem.等SCI期刊发表论文23篇;已获20项发明专利授权。作为课题负责人承担国家重点研发计划,作为项目负责人承担国家自然科学基金面上基金等,2023年获国家自然科学基金优秀青年基金支持;2018年入选大连市科技之星,2020年入选中国科学院青年促进会会员,2023年获中国化学会菁青化学新锐奖;兼任《色谱》青年编委、中国化工学会理事、中国蛋白质组学会青年委员、中科院青促会沈阳分会委员等。本次会议中,赵群研究员将围绕题为《活细胞内蛋白质原位构象和相互作用规模化解析新方法研究》的报告。作为生命活动的执行者,蛋白质通过相互作用形成复合体等形式行使其特定的生物学功能。不同于细胞外的离体环境,细胞内的限域效应、拥挤效应和细胞器微环境等对于维持蛋白质复合体的结构和功能起着至关重要的作用。因此,实现细胞内蛋白质相互作用的精准解析对于深入研究其生物学功能,进而理解生命现象本质具有重要意义。近年来,化学交联质谱技术已逐渐成为蛋白质复合物解析的重要手段。它是利用化学交联剂将空间距离足够接近的蛋白质内/间的氨基酸以共价键连接起来,再利用质谱对交联肽段进行鉴定,进而实现蛋白质相互作用的组成、界面和位点的解析。现有化学交联技术主要用于解析体外表达纯化的或细胞裂解液中的蛋白质复合物,而在细胞内蛋白质复合物的原位构像解析方面仍处于起步阶段。 针对上述问题,我们团队发展了一系列新型高生物兼容性的可透膜多功能化学交联剂,实现了活细胞内蛋白质复合物构像的原位交联捕获;建立了多种高选择性的低丰度交联肽段的富集方法和高可信度的交联肽段鉴定方法,显著提高了原位交联信息的鉴定灵敏度、覆盖度和准确度;进而,通过靶向富集特定亚细胞器内的交联蛋白质复合物,实现了亚细胞器空间分辨的蛋白质相互作用精准解析;在上述基础上,利用基于化学交联距离约束的分子动力学技术获得了蛋白质复合物的动态系综构像,实现了活细胞微环境下蛋白质复合物组成、相互作用界面及作用位点的规模化精准解析,为规模化地揭示蛋白质复合物功能状态下的结构调控机制提供了重要的技术支撑。为了分享质谱技术及应用的最新进展,促进各相关单位的交流与合作, 仪器信息网与北美华人质谱学会(CASMS)将于2023年12月12-15日联合举办第十四届质谱网络会议(iCMS2023)  。以上仅是部分报告嘉宾的分享预告,更多精彩内容请参加会议页面:https://www.instrument.com.cn/webinar/meetings/iCMS2023/ (点击下图去报名)》》》
  • 铂电极与参比电极测得的电位不是ORP值
    通常用铂电极作为指示为电极,银-氯化银或饱和甘汞电极作为参比电极测得的电位为平衡电位,这个电位往往被人误认为ORP电位(氧化还原电位)。平衡电位加上该温度下参比电极的电位值,才是氧化还原电位(ORP)值,这个电位是铂电极相对于氢电极的电位值。 FJA系列ORP去极化自动测定仪中在测得平衡电位后自动加上当前温度下的饱和甘汞电极或银-氯化银电极的电位值,结果是氧化还原电位(ORP)值。 有些用户购了我们ORP去极化法自动测定仪测定样品的ORP值与传统的方法测得的平衡电位相比较,就得出结论,两种方法结果对不上,相差甚大。 后来 我们要用户把样品寄过来用两种方法测定,结果如下: ORP去极化法自动测定仪测定结果为 -422.9mV -423.4mV 传统的方法测得的平衡电位为 -632mV, 如果加上银-氯化银电极的电位204mV,则样品的氧化还原电位(ORP)值为-428mV。 这说明两种方法完全对得上。www.kew.cn
  • 质谱技术的新方向—电荷检测质谱法(CDMS)
    电荷检测质谱法是通过同时测量单个离子的质荷比和电荷数,进而算得离子质量m的单粒子统计方法,在测定超大分子离子的质量分布方面有独特的优势。现有质谱仪在超大分子量测量方面面临的挑战在质谱仪中,被分析物质首先被离子化,随后各种离子被引入真空中的质量分析器,在分析器中的电场磁场作用下,离子的运动特性随其质荷比不同而产生差异,因而造成时空上的分离,并由检测器依次检测出来,因此形成质谱。所以,目前的质谱仪测量的是离子的质荷比(m/z),而不是质量本身。经过一个多世纪的发展,质谱仪从原先只能分析无机元素和小分子,逐步发展到能够分析有机物分子、生物大分子直至具备生命体特征的病毒颗粒。2002年诺贝尔化学奖之一授予了用电喷雾电离(ESI)进行蛋白质质谱分析的创始人John Fenn。在电喷雾质谱对蛋白质进行分析时,溶液中的蛋白质样品被传送到加有高压的毛细管尖端,强电场促使样品溶液喷雾,喷雾中的液滴通过蒸发,库仑爆炸等过程,形成带有多个电荷的蛋白质离子,被引入处于真空中的质谱分析器。每个离子所带的电荷数的多少,取决于分子的大小、分子在溶液中的几何构象(折叠或打开)以及电喷雾尖端处的电压和气流等参数。通常对蛋白质这种大分子来说,ESI质谱中都会呈现多种价态的谱峰群,群落中的每一组为某个电荷态该蛋白质的各个同位素峰、盐峰以及加合物峰等。由于电荷态z通常是连续的整数分布(例如z = 11,12....21,22...),人们可以通过计算不同电荷数对应的群落m/z的间隔来推算各组的电荷数z,进而求出实际的质量m的分布,也可以用电脑程序退卷积得到m分布。对于分析较小(分子量在5万以下)、较简单纯净的蛋白样品,退卷积还是很有效的。然而,在实际应用中对蛋白和蛋白组的分析,特别是对天然蛋白和病毒颗粒的分析却不那么简单。随着分子量上升,分子结构越来越复杂,各种翻译后修饰使被测蛋白的分子量出现差异化(heterogeneity),很宽的质量m分布(可达上千Da)使得不同价态的峰群连接在一起。图1中,用高分辨质谱仪对二种病毒壳体的质量进行测定,由于各种价态的质谱峰群连城一片,根本无法辨别谱峰,得到样品分子的质量。同时,实际样品也可能因处理不善或自然裂解,使谱图混杂着不同大小的分子离子,它们各自的价态z分布可能导致它们的峰群在m/z轴上交叠在一起。目前对于很多糖蛋白,分子量超过3、4万就出现峰群交叠,无法用退卷积软件来获得分子量的分布信息。事实说明,对于大生物分子的质谱分析,仅靠提高仪器的分辨率是无济于事的。图1 ESI质谱对大型病毒壳体质量测定的困难。(a,b)晶体结构效果图 (c,d) 的“高分辨”质谱分析图。(摘自:Kafader, J. O., Nature methods, 17(4), 391-394)糖蛋白是生物制品中比例最大的一类药物,其糖修饰对其功能非常关键,准确解析此类药物的糖修饰是药物研发、报批和质量监控的关键内容。但它们在ESI-MS的质谱中,看到的好像是一堆杂草,无法辨别有什么蛋白组分。将一个糖蛋白药物中的各组分进行高分辨检测,是当前生物质谱面临的巨大挑战。电荷检测质谱仪的提出与技术发展早在上世纪90年代,美国西北太平洋国家实验室R.D.Smith组的 Bruce, J. E等就提出可以在傅里叶变换质谱仪中同时测量单个离子的电荷和质荷比,从而算出离子的质量m。随后,美国劳伦斯伯克利国家实验室W. H. Benner 发明了一种线形的静电离子阱,并用其测量单个高价离子的电荷数和质荷比,进而得到单个事件中的离子质量m。只要连续不断地进行大量的单个离子测量,就可以把总离子事件统计出来,形成按质量分布的直方图,而这就是一张电荷检测质谱。图2,Benner小组采用的直线形静电离子阱进行CDMS测量的原理图CDMS技术的关键是如何准确地测量单个离子的电荷。测量中,离子在静电离子阱内进行周期性运动并在电极上感应出“镜像电荷”信号。通过对信号的傅里叶变换,得到离子信号的频率从而决定离子的质荷比,而由频谱峰的强度得到离子所带的电荷数。虽然单个离子的镜像电荷频谱的峰强度与离子的电荷数成正比,它也同时与离子在阱内的轨道形状、离子存活时间有关,而这些参量都存在不定性;并且由于镜像电荷信号强度极弱,回路中的电子噪声对精确测量镜像电荷产生很大的影响,因此早期的电荷测量的RMS误差达2.2e以上,由此计算出的质量精度只比凝胶电泳好一点。近年来随着人们对天然、复杂蛋白分析的需求日益显现,CDMS技术也进一步得到了发展。美国印第安纳大学Jarrold小组通过对线形静电离子阱分析器的不断改进,特别是采用了低温前级信号放大器等优化设计后,实现了最小RMS 0.2 e的电荷测量误差,测量的样品包括2 MDa以上的蛋白复合体(protein complex)和20 MDa以上的病毒外壳。在这个RMS误差下,通过电荷数取整可以大概率获得精准的电荷值,从而得到精准的质谱分布。图3给出了用普通ToF质谱仪和CDMS测量天然态丙酮酸激酶(PKn)多聚体的效果比较。当3个以上四聚体组装在一起时,ToF质谱完全无法辨别其质量分布,而CDMS可以看到近10个四聚体组合的质量峰。图3.用常规ToF质谱(左)和用CDMS测量的丙酮酸激酶(PK)多聚体,使用相同样品和相同电喷雾条件。(摘自D. Keifer: Analyst, 2017,142,1654)目前,虽然用线形静电阱结合傅里叶变换可以得到较好的电荷测量精度,但该方法每次只能测一个离子,否则库伦相互作用会影响测量。在实际测试中,每次引入的离子数是随机分布的,需要用软件鉴别超过一个离子注入的事件,也要发现因为和残余气体碰撞而半路夭折的事件,并把这些“不良”记录剔除。考虑单次分析时间大约需要1s,得到一张良好统计的CDMS谱图需要几个小时甚至一天的数据积累。加利福尼亚大学E. Williams团队对线形静电离子阱分析器的设计和的数据处理方法进行了创新,能让宽能量范围的离子同时进入离子阱进行分析,避免了离子之间的空间电荷作用,可以在一个测量周期内测量10-20个离子,进而有望提高了检测效率。与此同时,其他尝试使用商业傅立叶FT质谱仪进行CDMS的研究团体也逐步浮现。美国西北大学Kelleher团队、荷兰乌得勒支大学的A.R.Heck团队先后使用热电公司的静电场轨道阱(Orbitrap) 系统,通过更新数据处理软件,对CDMS进行了应用研究。除了Orbitrap是成熟的商业化仪器这一优点外,轨道静电离子阱内的离子由于其轨道运动,导致电荷分布在中心电极周围,因此其空间电荷相互作用较小。Kelleher 在Nature Method上的论文声称,基于Orbitrap的CDMS可以同时分析100个离子。不过,在电荷测量精度上,Orbitrap-CDMS目前只达到RMS 1 e左右,较Jarrold的线形静电阱还有一定的差距,但Orbitrap对m/z的测量精度、分辨率远远超过ELIT,一定程度上帮助消除在多离子同时分析时可能出现的m/z相近离子的信号干涉效应。笔者在岛津公司的欧洲研发团队去年也在JASMS发表了用CDMS测量糖蛋白的尝试。该工作采用了一种盘状平面静电离子阱分析器,如图4,而这种分析器也能像Orbitrap那样获得超高分辨质谱。通过对测量硬件和软件进行改进,实现了CDMS实验。该报道给出了一种全新的CDMS数据处理方法,能够克服离子在分析过程中因碰撞夭折造成测量不准的问题,同时实验验证了该方法的有效性,还对多个离子同时分析时的信号干涉等问题提出分析和研判,为深入研究CDMS技术,消除造成电荷测量误差的障碍打下了基础。图4,用于CDMS 实验的平面静电离子阱系统 (A. Rusinov, L. Ding, JASMS, 32, 5, 2021)CDMS技术的应用现状目前,电荷检测质谱技术还处于早期发展阶段,还没有现成的商品仪器出售,只有能够自己开发质谱仪器硬件,或自己改编FTMS(含Orbitrap)软件的专家才能进行这样的实验。 今年初美国沃特世公司宣布成功收购专攻电荷检测质谱技术(CDMS)及服务的初创企业Megadalton Solutions Inc. Megadalton Solutions是由美国印第安纳大学的Martin Jarrold和David Clemmer两位教授于2018年创立,他们目前是研发的CDMS仪器最长久的团队并拥有最成熟的技术。沃特世曾于2021年将Megadalton的CDMS技术引进到了沃特世Immerse Cambridge创新和研究实验室,并应用于各项先进检测及研发工作。沃特世公司首席执行官Udit Batra博士表示要进一步开发Megadalton的CDMS技术并将其商业化。在国内,CDMS无论是仪器技术开发还是应用都属空白。虽然国内在复杂生物大分子结构与功能的研究、病毒载体空壳率监测方面对CDMS已经产生需求,但我们在高端质谱仪器研制方面远远落后于西方。CDMS在技术上是基于FTMS分析原理而演化产生的,但国内目前对FT类型的质谱仪器研究,除了少量理论分析与离子光学仿真工作外,还没有实质性的进展,也没有企业能够提供FTMS类商品仪器。针对这些需求,笔者打算在前期研究工作的基础上,研究开发静电离子阱分析器,并进一步结合开发CDMS特定的数据处理软件,建成一套拥有自主知识产权的新型质谱仪器。同时建立国内的研发应用合作机制,解决目前国内超大分子蛋白质生物药剂质量分析的问题。预测CDMS技术未来的市场空间如前所述,目前对复杂蛋白等大型生物分子进行质谱分析时,由于其分子量的差异性(heterogeneity), 存在着严重的多价态峰群重叠问题,导致无法通过质谱仪获得这些大分子在样品中的质量分布。而用电荷检测质谱仪,无需对电荷态退卷积,可以直接得到蛋白质、蛋白复合体、各种转译后修饰造成的特定质量分布图。因此,该仪器的发展在天然蛋白质、糖蛋白、病毒颗粒的成分和结构研究,抗原-抗体作用机理研究和疫苗研发方面有很大的未来市场空间,具体可以列举以下几个方面:(1)新型电荷检测质谱仪可实现复杂样品的蛋白离子精确分析,可时提供复杂样品中各蛋白分子的结构,密度分布等。(2)可直接测定糖蛋白及其它各种转译后修饰造成的特定质量分布图,为解释蛋白大分子及其转译后修饰分子量或结构表征变化信息等之间的关系,从而对糖蛋白相关的疾病诊断具有重要意义。(3)通过研究DNA等生物大分子离子的电荷分布,以及质量与电荷的关联,可以推断这些大分子的结构,比如它的聚合程度、纤维股数等。(4)在病毒研究中,可以用来确定病毒衣壳的蛋白复合体结构及其组装反应的过程,这将在抗病毒药物的研究中发挥作用。(5)在基因疗法研究和产品质控中,本项目研制的电荷检测质谱仪可以用来测定腺病毒载体的空壳率,检查载体内的基因完整度。推动现代临床医学的发展;(6)电荷检测质谱仪还可以用来测定纳米聚合物分子的聚合度和分散指数,推动材料科学的发展。值得关注的是新冠疫情给质谱分析带来了全新机遇,除了对新冠病毒本身的蛋白进行分析研究以外,也可以在灭活疫苗、病毒载体疫苗以及核酸疫苗产品的质量控制、效果评价、免疫机制研究以及载体类疫苗的体外模拟产物的评价等方面发挥优势。关于笔者:宁波大学材料科学与化学工程学院/质谱技术研究院 丁力1990年于复旦大学物理系获理学博士学位。先后工作于复旦大学材料科学系,以色列魏兹曼科学研究所,英国贝尔法斯特女王大学纯粹与应用物理系。1998年加入岛津欧洲研究所。2007年至2011年任岛津分析技术研发(上海)有限公司总经理。2011-2020年任岛津欧洲研究所高级研究员,研发二部经理。主要领导了多项质谱仪器的研发,是国际上数字离子阱质谱技术的创始人,在离子源,四极场离子阱,静电离子阱,飞行时间等分析器技术及其联用技术方面有很多创新和突破。发表论文、报告、专著一百余篇,有三十余项发明专利。领域:QIT、ToF、Quadrupole、MALDI、APMALDI、ESI、Digital Ion Trap、Linear Ion Trap、Electrostatic Ion Trap,FTMS、 CDMS、MSMS、ECD、Ambient Pressure Ion Sources 等。目前丁力在宁波大学组建团队,继续静电离子阱的设计和优化工作,已提出了静电“和谐阱”的设计概念,充分利用其高次谐波来提高质谱分析器的分辨本领。同时也在探索在国内实现这种精密分析器的加工和组装工艺,为下一步实现超高分辨质谱仪国产化做准备,也为在国内研制电荷检测质谱仪打好基础。
  • 液质联用(农兽残分析)2017年最新技术提高速成班(理论+实操+技能证书)
    p  想要get鸡蛋中氟虫腈和果蔬中多农残检测的最新液质联用技术吗?br/  想要亲自上机操作,专家老师手把跟着你一起做分析吗?br/  想要拿个有关液质联用技术方面的技能结业证书吗?br/br/  一切尽在“液质联用(农兽残分析)应用技术”专题培训班”:3天密集式培训,上千万的仪器设备全程学员开放,四位业内资深专家现场全程跟踪,20人小班授课,报名截止到9月30日!br/br/  strong培训背景:/strongbr/  液质联用(LC-MS)亦称液相色谱-质谱联用技术,它以液相色谱作为分离系统,质谱为检测及定性、定量分析系统。样品经色谱分离后,进入质谱离子源被离子化,并由质量分析器将离子化后的待分析物按m/z分开,经检测器获得MS质谱图。 液质联用充分体现了色谱和质谱技术优势互补,将色谱对复杂样品的高分离能力,与MS具有的高灵敏度、高特异性、高选择性且可提供分子量与分子结构信息的优势结合起来,在农兽残分析、食品分析和环境分析等众多领域得到了广泛应用。br/  应广大分析工作者需求,仪器信息网将联合中国检验检疫科学研究院于2017年10月18日-20日在北京举办液质联用(农兽残分析)应用技术培训班,集中讲解兽残的分析方法开发及应用技术,理论知识+上机实操授课模式。欢迎有志提高液质联用(LC-MS)分析技术水平的人员报名学习。br/strongbr/  课程安排:br/img title="01.png" src="http://img1.17img.cn/17img/images/201709/insimg/bb4465eb-f0ee-4eaf-964d-ee7f86d0523b.jpg"/br//strongstrongbr/  培训费用:br//strong  每人3860元(含报名费、培训费、教材料费,培训期间每日午餐费、上机操作实验所用分析标准品、样品前处理柱、试剂耗材费用等),食宿可统一安排,费用自理。br/strongbr/  优惠政策:br//strong  1、在校学生凭学生证件,每人2860元/人br/  2、3-5人组团报名,3060元/人br/  住宿协议酒店:中冀斯巴鲁大厦(标间380元/间 含早餐)br/  结业证书:br/  参加相关培训并通过考试的学员,可以获得:由信仪器信息网、检科院共同颁发授课老师签字的结业证书。该证书可作为有关单位专业技术人员能力评价、考核和任职的重要技术依据。br/strongbr/  报名咨询:br//strong  联系人:李老师 15910410867br/  电 话:010-51654077-8119br/  传 真:010-82051730br/  邮箱:liru@instrument.com.cnbr/  上课地点:亦庄经济技术开发区荣华南路11号(中国检验检疫科学研究院农产品安全研究中心)/p
  • 高分辨非变性质谱绘制人血清蛋白全貌图
    大家好,本周为大家介绍的是一篇发表在Analytical Chemistry上的文章Charting the Proteoform Landscape of Serum Proteins in Individual Donors by High-Resolution Native Mass Spectrometry1,文章通讯作者是来自荷兰乌得勒支大学的Albert J. R. Heck教授。  血清中大多数蛋白都是糖基化蛋白,这些糖蛋白对疾病诊断有着重要意义,基于质谱的糖链释放后分析和糖肽分析是目前普遍使用的糖蛋白分析方法,但仍存在一些局限,例如可能遗漏同时发生的翻译后修饰、缺乏对O-糖的研究、遗漏某些糖肽覆盖不到的糖基化位点等。高分辨非变性质谱为完整糖蛋白的分析提供了新的思路,本文开发了一种基于离子交换色谱的分离纯化方法,能够从150μL血清中分离和分析20多种血清(糖)蛋白,质量范围在30-190 kDa之间。  图1为血清糖蛋白的分离和分析方法。150μL血清首先经过亲和柱以快速去除大量的白蛋白、IgG和血清转铁蛋白等,这一步骤使用的是作者内部制造的机器人,可以加快过柱子的速度。接着血清被送入离子交换(IEX)色谱,使用40分钟的梯度时,大多数蛋白在14-27分钟内洗脱,故作者在13-30分钟内每隔0.5分钟收集一次级分,并将每个级分缓冲液换为乙酸铵溶液,最后进行Thermo Exploris Orbitrap质谱仪分析。    图1.血清糖蛋白非变性质谱分析方法  作者使用该方法分离了大约24种血清蛋白,并在文中详细介绍了其中4种蛋白的分析过程:α-1抗胰蛋白酶、补体C3、血红素结合蛋白、铜蓝蛋白。  (1)α-1抗胰蛋白酶(A1AT)是一种丝氨酸蛋白酶抑制剂,在呼吸系统的功能中起重要作用,作者使用唾液酸酶和PNGase F确认了蛋白上的糖型,又通过TCEP的还原处理发现大部分血清样品的A1AT都是半胱氨酸化的,也确认了A1AT存在N端截短的特征,综上,作者共统计出了13个A1AT异质体。针对捐献者提供的血清,作者区分出了携带V237A和E400D突变的A1AT蛋白的供体。  (2)补体C3蛋白在免疫调节过程中发挥作用,在血清中浓度相对较高,分子量为187kDa。与该蛋白共流出的还有两种约137kDa和80kDa的蛋白,在唾液酸酶处理后,只有80kDa的蛋白质量减少很多,证明其存在唾液酸,而C3和137kDa蛋白的糖型上无唾液酸。通过对级分的糖肽分析确定N糖位点在Asn 63和Asn 917。137kDa蛋白鉴定为C3缺失α链后降解而成。  (3)血红素结合蛋白(HPX)在血清中的主要功能是结合和运输游离的血红素,进行血红素和铁的再循环。非变性质谱显示HPX质量范围在58-63 kDa,而蛋白质主链质量仅50 kDa。本文首次解析了血清HPX的蛋白型谱,证明了4-5个N-糖和1个O-聚糖的存在,共17种独特的糖型。  (4)铜蓝蛋白(CER)负责在人体内转运大部分的铜,分子量132kDa,每个CER分子可以携带6-7个铜离子。CER在非变性质谱检测后的分子量比理论质量多409±5Da,作者将其归为6个铜离子和1个钙离子的结合所致,并发现了CER完全去糖后失去结合金属离子的能力。    图2.绘制血清糖蛋白组的全貌图。观察到的血清蛋白质量范围为30-190 kDa,浓度范围为0.2-50g/L  总结:本文开发了一种从少量人血清中分离多种糖蛋白的方法,并通过高分辨非变性质谱表征了蛋白型谱,为蛋白全貌提供完整视图。该方法的优势在于非变性质谱需要的样品处理步骤少,最大程度的还原了蛋白的生理状态,劣势在于目前通过完整质量只解析了20余种蛋白中的8种,后续需要结合自下而上或自上而下的蛋白质组学方法进行辨别。在未来的研究中,作者建议联用分子排阻色谱和离子交换色谱,实现高通量在线血清蛋白分离分析。  撰稿:英语佳 编辑:李惠琳  原文:Charting the Proteoform Landscape of Serum Proteins in Individual Donors by High-Resolution Native Mass Spectrometry
  • 高分辨质谱平台实现mRNA mapping流程化
    在之前的一篇微信稿中,咱们介绍了mRNA疫苗的质谱表征方法,“Orbitrap 高分辨质谱助力mRNA疫苗表征”,今天小编继续为大家详细拓展mRNA mapping的质谱表征应用。作为一种新的药物形式,mRNA在多个疾病领域具有显着的治疗潜力。进入细胞后,mRNA药物使用内源性细胞机制来表达预编程的蛋白质。这种表达的蛋白质可以实现多种目的,从促进特定的免疫反应到调节或恢复各种代谢过程等[1]。据WHO官网统计,全球目前正在临床试验阶段的mRNA药物已有几十种,应用方向覆盖传染性疾病、罕见病、肿瘤免疫学等。与大多数生物治疗药物一样,序列分析也是mRNA药物的一个关键质量属性(CQA)。经典的检测方法如Sanger测序和二代测序 (NGS)等已被用于核酸链高通量及大规模的测序。然而在生物制品的表征分析中,往往需要正交方法以获取更全面的信息。对于核酸分析,LC-MS 作为Sanger和NGS的正交方法,与传统测序技术相比具有独特的优势:可直接对核酸样品进行分析(无需扩增等处理步骤);更高的检测灵敏度(直接检测低水平的序列变异体或修饰杂质(1%丰度),且只需少量样品);更短的分析时间;可直接检测修饰核苷酸、自动识别修饰位点、种类和含量;避免传统测序过程中造成的碱基错误匹配[2]。由于核酸样品与蛋白样品的较大差异,其测序流程的前处理及LC/MS方法也大不相同。核酸仅有4个特定碱基,在组合形式上远小于蛋白序列,因此会有多个重复序列片段,需要酶解成较长的片段(通常大于15nt)以得到可用于序列覆盖的特征片段。此外核酸样品极不稳定,非常容易降解。基于此需求,我们在前处理上需要选择特异性较强的酶,并且减少酶解时间,得到具有漏切位点的较长片段。下图显示了优化后的核酸mapping分析流程,从前处理到液相分离、质谱检测、数据分析的一套完整方案。点击查看大图 No.01# 前 处 理Nuclease T1是一种真菌核酸内切酶,可切割鸟嘌呤残基后的单链RNA,具有较强的特异性,常用于核酸测序应用。但由于核酸内切酶效率很高,酶解时间较难控制,且传统的溶液酶解方法会使核酸酶残留在分析柱上造成污染。基于以上需求,赛默飞推出了一款前处理磁珠RNase T1 Mag Bulk Kit,将Nuclease T1酶固定在磁珠上,通过简单快速的磁铁吸附及可有效控制酶解时间,并去除溶液里的T1酶,该方式可以有效提高实验的重现性并降低酶的干扰(如下图)。有离线及在线两种方式可供选择:a) 将样品配成200 μL体积放于eppendorf管中(如下图a所示),置于酶解仪中震荡孵育(37-50℃, 2000 rmp)5min ,通过磁铁吸附的方式将酶解上清与磁珠分离,再加入1%甲酸终止反应;图a:手动前处理示意图(点击查看大图)b) 采用全自动磁珠纯化仪,反应、分离及纯化均可根据设置好的程序进行自动操作,适用于高通量前处理需求(图b)。图b: 全自动化在线前处理示意图(点击查看大图)反应条件的优化:a. 反应时间:酶解时间控制在5min 内,随着反应时间的增加(30min, 1h, 4h, overnight),序列覆盖度明显降低。对于修饰mRNA(如甲基化修饰),需要增加反应时间至30min.b. 反应温度:37℃与50℃的结果类似No.02# 色 谱 柱色谱分离采用一款专用于核酸分析的色谱柱,Thermo Scientific™ DNAPac™ RP,该色谱柱由球形宽孔径 4 µm 聚合树脂构成,可耐受极端 pH (0-14) 和温度 (5-110°C) 条件,在HPLC 和UHPLC仪器上均可使用,针对寡核苷酸可实现高分辨率和高通量,较小和极大的核酸链均可分辨(如下图A)。图A(点击查看大图)图B显示DNAPac™ RP色谱柱的各类型号,mRNA mapping建议选用2.1*100 mm型号。图B(点击查看大图)No.03# 液 相 系 统核酸样品吸附性强,而生物惰性液相系统吸附低;其次离子对试剂易腐蚀液相系统管路及接口,因此建议使用生物兼容的Vanquish UHPLC系统。液相方法如下图:No.04# 质 谱新一代Orbitrap Exploris系列产品具有体积小、性能高、操作简单等优势,扩展了Q Exactive系列质谱仪器的分析能力。如下图a所示,内置的AcquireX数据采集工作流程,为各种不同类型的应用设置参数模板,一键调用,可进行全面自动化的样品分析;且带有EASY IC离子源内标校正,保证仪器的高质量精度;更快的扫描速度可提高样品分析通量。图b显示mRNA mapping的方法模板:在peptide mode模式下,一级采用120,000分辨率,二级30,000分辨率;负离子扫描模式;stepped NCE 25,28,31 。该方法模板可一键调用,操作简便,且得到高质量的谱图。No.05# 数 据 分 析 软 件Biopharma Finder软件可实现核酸样品自动化数据分析,如下图a所示,软件支持DNA及RNA样品序列管理,可自定义核酸骨架和可变修饰,操作简便;对二级谱图进行自动化注释和解析;寡核苷酸杂质定性和相对定量分析;多批次样品含量变化趋势比对。图b 展示定结果图表,列表里的每一行代表一条鉴定的核酸链,右上方对应的理论及实测二级图谱,将图谱里响应很低的峰放大,可以清楚的看到碎片离子的同位素峰,结果可信度高。Biopharma Finder 4.1版本在寡核苷酸分析的基础上增加了长链mRNA mapping的功能,在数据处理方法中增加核酸酶模块,有常见的几种酶供选择,也可自定义添加酶。下图展示mapping分析结果,对于mRNA样品中每一条确证序列的片段,均可溯源详细信息,如在序列中的位置、一级和二级谱图、可信度、定量信息等。得益于Orbitrap仪器采集的高质量图谱,在核酸分析结果里几乎每一条链都可实现一百%序列覆盖(Average Structural Resolution=1.0),这对于区分同分异构体非常有帮助。前面我们提到mRNA由4个特定碱基构成,在其酶解片段中出现同分异构是常见的现象,如下图,当仪器检测到足够多的碎片离子,可以确证同分异构的两条链里的每一个碱基,即可轻松区分两条分子量相同,序列不同的片段。对于长链RNA片段,如下图具有13个漏切位点,48个碱基长度的片段,也可鉴定到每一个碱基,得到高可信度结果。酶解片段越长,其序列特异性越强,对于RNaes T1酶解无法覆盖的短片段,也可采用mazF酶解得到的更长片段作为互补信息。案例分享:编码新冠突刺蛋白的mRNA (3900nt)样品分析,首先用反相离子对色谱检测mRNA样品纯度,如下图a所示。采用上述mRNA mapping分析平台,从前处理到液质表征分析,得到如下结果:图b显示mRNA样品经过RNase T1酶解后的总离子流图,由于部分酶解,得到的片段较长,具有高特异性;对于长度3900nt的mRNA样品,在该分析流程下,仅用RNase T1酶,即可获得98.5%序列覆盖度结果。图a图b: Spike Protein mRNA digested with T1(点击查看大图)图c: Sequence Coverage of Spike Protein mRNA(点击查看大图) 基于Orbitrap高分辨质谱核酸分析平台,可以实现mRNA加帽效率、ployA尾分析、mRNA mapping、杂质鉴定及定量等功能,为疫苗开发和质控提供更精确可靠的数据。后续小编会持续更新mRNA表征相关内容,敬请关注。参考文献:[1]Jackson, N. et al. The promise of mRNA vaccines: a biotech and industrial perspective. Vaccines 11, (2020)[2]Jiang, T. et al. Oligonucleotide Sequence Mapping of Large Therapeutic mRNAs via Parallel Ribonuclease Digestions and LC-MS/MS. Anal. Chem. 91, 8500−8506 (2019)如需合作转载本文,请文末留言。
  • 【热点应用】高级多检测器GPC测量低分子量样品
    高级多检测器GPC测量低分子量样品凝胶渗透色谱(GPC)是测量天然和合成聚合物分子量和分子量分布的常见工具。先进的光散射检测器,越来越多地被用来克服传统GPC测量的局限性,准确提供绝对分子量以及分子尺寸。由于样品的光散射(Rθ)灵敏度会受到聚合物的分子量Mw、浓度(C)和折光指数增量(dn/dc)的影响,所以对于低分子量聚合物而言,准确测定分子量对大多数GPC/SEC系统来说是一个挑战。例如,PLGA等药物递送聚合物的dn/dc通常很低,而环氧树脂、多元醇等分子量可能极低。马尔文帕纳科最新GPC系统OMNISEC可用于克服测量低分子量聚合物测定的困难,这要归功于光散射和示差检测器灵敏度的提高。借助OMNISEC光散射灵敏度,您可以:以更高的准确度测量较低分子量的样品。可以较低样品浓度测量珍贵样品。以更高的准确度和灵敏度测量具有低dn/dc的样品。对环氧树脂、多元醇和PLGA样品的分析清楚地表明,先进的检测技术现在可以轻松地应用于低分子量等聚合物的表征。 环氧树脂双酚A用于生产双酚A二缩水甘油醚等环氧树脂,是一种低分子量样品,我们可以用OMNISEC在正常浓度下成功测量。在图1中,对浓度为3 mg/ml的双酚A(分子量为228 g/mol)进行分析,显示出示差RI检测器和光散射检测器LS都具有良好信噪比的信号响应。(图1)图1:双酚A(分子量228 g/mol)在THF中运行的多检测器色谱图(RI和RALS检测器)。样品浓度为3 mg/ml。用OMNISEC系统分析分子量为340g/mol的双酚A二缩水甘油醚,得到的色谱图(图2)显示了清晰的峰和良好的信号响应,尽管聚合物的分子量很低。图2:双酚A二缩水甘油醚(分子量340g/mol)在四氢呋喃中的多检测器色谱图(RI、RALS和粘度计检测器)。样品浓度为5 mg/ml。多元醇多元醇是具有多个羟基官能团的材料,通常用作合成其他聚合物(如聚氨酯)的反应物,或在食品工业中使用多元醇作为糖的替代品。了解这些材料的分子量分布对于监测它们在不同应用环境中使用是至关重要的。本文采用聚乙二醇(PEO)和聚丙二醇(PPG)为例进行分析。图3显示了极低分子量PEO的OMNISEC色谱图和结果。在RALS探测器中观察到良好的信噪比,使得对聚合物的全面表征成为可能。图3:多检测器SEC色谱图(RI、RALS和粘度计检测器)。分子量为196g/mo的聚乙二醇。样品浓度为3.9 mg/ml。在图4和表1中,您可以看到PPG的分析,它在THF具有非常低的dn/dc(0.045ml/g)。所有的检测器都有很好的响应,并且多次注射之间有很好的重复性。图4:聚丙二醇在THF中的多检测器色谱图(RI、RALS和粘度计检测器)。样品浓度为6 mg/ml。表1:三个聚丙二醇样品重复注射的分子量数据。样品浓度为6 mg/ml。聚乳酸-羟基乙酸 PLGA聚乳酸-羟基乙酸(PLGA)是一种生物相容性和生物可降解性聚合物,最常用于药物输送和组织工程应用。在药物输送应用中,PLGA用于配制药物和蛋白质在体内的受控输送装置。这些PLGA设备的工作方式是,当PLGA在体内降解时,它会释放与之相关的药物分子。PLGA给药装置的物理性能可以通过控制药物浓度、PLGA分子量以及组成PLGA的聚乳酸和乙醇酸的比例来调节。然而,由于PLGA在THF中的dn/dc非常低,约为0.05ml/g,因此SEC对PLGA的表征历来是非常困难的。如图5所示,使用OMNISEC系统在THF中按SEC分析PLGA 50:50后,每个检测器均可获得良好的信号响应和完整的样品表征。图5:PLGA 50:50多检测器SEC色谱图(RI、RALS、LALS和粘度检测器)。样品浓度为3.028 mg/ml。结论:与传统GPC相比,OMNISEC系统具有高灵敏度,因此可以在正常浓度下测量低dn\dc和低分子量样品,如环氧树脂、多元醇和PLGA,并具有极好的重复性。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制