当前位置: 仪器信息网 > 行业主题 > >

色谱检测模拟油中噻吩量

仪器信息网色谱检测模拟油中噻吩量专题为您提供2024年最新色谱检测模拟油中噻吩量价格报价、厂家品牌的相关信息, 包括色谱检测模拟油中噻吩量参数、型号等,不管是国产,还是进口品牌的色谱检测模拟油中噻吩量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱检测模拟油中噻吩量相关的耗材配件、试剂标物,还有色谱检测模拟油中噻吩量相关的最新资讯、资料,以及色谱检测模拟油中噻吩量相关的解决方案。

色谱检测模拟油中噻吩量相关的资讯

  • 安捷伦科技推出可模拟沃特世 Alliance 液相色谱系统的新版智能系统模拟技术
    安捷伦科技推出可模拟沃特世 Alliance 液相色谱系统的新版智能系统模拟技术 2012 年 12 月 6 日,北京&mdash &mdash 安捷伦科技公司(纽约证交所:A)宣布了推出最新版革命性的智能系统模拟技术。新版的 ISET 可以模拟沃特世 Alliance 液相色谱系统。 拥有 ISET,科学家们能够将沃特世 Alliance 液相色谱系统所使用的传统方法无缝转移至最新的 Agilent 1290 Infinity 液相色谱平台上。利用这种独一无二的性能,Alliance LC 的用户现在可以用 Agilent 1290 Infinity 液相色谱系统更换他们的旧仪器,并能继续使用他们的传统方法获得相同的色谱结果。 1290 Infinity 液相色谱与 ISET 的联合可使用户:只需单击鼠标,即可模拟其他 (U)HPLC 仪器。运行现有 (U)HPLC 方法,无需修改方法或系统。与现有变通方法(例如,增加一个等度保持)相比,方法模拟更为出色,可得到相同的保留时间和峰分离度。 对于需要在使用不同液相色谱仪器的不同部门和地点之间进行液相色谱方法转移的实验室来说,仪器到仪器的方法转移就显得特别重要。在严格监管的环境中,例如制药行业的质量控制,液相色谱方法的转换可能是一个挑战,因为需要避免对原始方法作出任何修改。 &ldquo 我们已经售出了 1000 多份 ISET 许可证,目前正在处理我们客户工作流程中的主要差距,&rdquo 安捷伦 1290 Infinity 液相色谱产品经理 Christian Gotenfels 说道。&ldquo 我们将通过模拟其他供应商(例如岛津和戴安)的液相色谱仪器继续扩展 ISET 的性能。&rdquo 关于安捷伦科技 安捷伦科技 (NYSE:A)是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20,500 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2012 财年,安捷伦的净收入达到 69 亿美元。如欲了解关于安捷伦的详细信息,请访问:www.agilent.com.cn。
  • 我国研发的模拟移动床色谱分离技术酝酿新突破
    我国自主研发的模拟移动床色谱分离技术继成功用于天然产物活性成分提取后,又在酝酿新的突破。日前,黑龙江省八一农垦大学与上海石油化工研究院、华东理工大学石油研究所签订了模拟移动床设备研发合作协议书,将研制适合高温高压条件下使用的烃类化工设备,石油化工、生物产业将成为这一精细分离技术的又一个用武之地。  模拟移动床色谱分离技术是一种高效、先进的分离纯化技术,应用领域遍及石油化工、食品、精细化工、生物发酵和医药等。利用模拟移动床技术可以实现石油化工分离的连续性,提高产品纯度和收率,使原料、副产品得到充分利用,能耗大幅度下降。  隶属黑龙江省八一农垦大学的黑龙江省农产品加工工程技术研究中心自主研发的模拟移动床色谱分离实验设备,采用了旋转分配阀,分离精度高,柱外死体积少,自动化程度高,可实现连续分离操作。同时该设备也可根据不同工艺要求调整组合分离柱,任意设置料液进出口位置,灵活多变以适应分离各种不同产品的分离工艺。  该设备分离效率较一般色谱高出40%,设备投资少,运行成本低,可使加工成本降低50%以上。目前,黑龙江省农产品加工工程技术研究中心已掌握了模拟移动床色谱分离的产业化设备制造技术,研发出高纯度甜叶菊甙产业化分离技术、玉米蛋白抗氧化肽纯化技术以及果糖、山梨醇等十余项的分离纯化技术。目前,该中心正在与三家企业洽谈技术与装备配套转化的意向。  记者了解到,模拟移动床色谱分离技术在我国的发展尚处于起步阶段,且研究进展较为缓慢。其原因是涉及到这一技术应用的实验设备极为稀少,我国自制的模拟移动床色谱分离关键部件及配套设备几乎是空白,其核心技术配件都要依靠进口。我国目前仅有几台进口的实验型模拟移动床色谱分离设备售价极高,且物料分离提取的试验具有专一性,不能广泛应用于各种生物、药物活性成分的分离纯化研究。  新闻链接:  模拟移动床(SMB)色谱分离技术是一种现代化分离技术,具有分离能力强,设备体积小,投资成本低,便于实现自动控制并特别有利于分离热敏性及难以分离的物系等优点,在制备色谱技术中最适用于进行连续性大规模工业化生产。  SMB技术的兴起是化工技术中的一次革新,其应用范围也不断扩大,目前已遍及石油、精细化工、生物发酵、药、食品等很多生产领域,尤其在同系化合物、手性异构体药物、糖类、有机酸和氨基酸等混合物的分离中显示出其独特性能。  在石油化工领域,该技术在上世纪70~80年代主要用于石油产品的分离,其本身就是在研究分离石油产品的过程中发展起来的。1969年美国UOP公司将模拟移动床色谱技术用于分离对二甲苯和间二甲苯,该分离过程被其称为Parex过程。同时UOP公司还将该技术应用于其他工业级的石油产品的分离过程中,如对甲苯酚和间甲苯酚的分离,从C8芳香族化合物中分离乙苯,从煤油C4烯烃混合物中分离丁烯-1,从蒎烯混合物中分离β-蒎烯等。Toray工业公司建造了年产p-二甲苯10万吨的模拟移动床装置,他们将该分离过程称为Aromax过程。
  • 变压器油检测专用气相色谱仪的主要特点与参数
    变压器油检测专用气相色谱仪的简介    变压器油分析气相色谱仪是根据电力部部颁标准,广泛吸收国内外同类仪器的优点而创新设计的多用途气相色谱仪。仪器采用双柱并联分流柱系统,具有热导和双氢焰三检测器及转化炉,能一次进样实现油中溶解气体组分的全分析。仪器主要应用于电力系统充油电气设备内部故障检测,仪器兼有一机多用功能,可用于六氟化硫杂质分析,氢冷发电机冷却介质分析,锅炉烟气分析,天然气分析和环境检测分析等。另外,还广泛应用于石油.化工.矿山等系统的气体分析。    变压器油检测专用气相色谱仪的主要特点    1、采用微机控制,键盘设定,液晶显示,有随即记忆功能;    2、检测器的信号,加热器的数值,加热炉温度,流量传感器读数或储存的柱补偿基线的信号都可以分配到一个模拟的输出通道;    3、自机检测及故障诊断,断电保护储存的实验数据,秒表和运转定时器,键盘锁定功能;    4、氢火焰离子检测器容易拆卸和安装,便于清洁或更换喷嘴,操作简单;输入信号可进行对数放大,减少了干扰,灵敏度高,线性好,量程宽。可安装美国HP-5890气相色谱仪微型热导检测器,实现完全对接;    5、高性能检测器及甲烷转化器,检出能力完全满足电力部对变压器油中气体组分含量的测定及环保监测对微量CO,CO2检测;    6、采用二次分流柱系统,分析速度快,重现性好;    7、双氢焰设计,使低含量的烃类和高含量的CO,CO2分别检测,避免相互干扰,提高了检测灵敏度;    8、可安装本公司生产的顶空进样器,减少了对样品的污染;    9、采用新型柱填料,双柱温流程,使C2H2检出时间提前,灵敏度提高,分析周期缩短。    10、测定组分:TCD:H2,O2。    变压器油检测专用气相色谱仪的技术参数    1、柱室温度:室温+5℃~400℃,控温精度±0.05℃    2、检测室温度:室温+15℃~400℃,控温精度±0.05℃    3、转化炉温度:室温+15℃~360℃,控温精度±0.1℃    4、TCD灵敏度,对H2的最小检测浓度5ppm    5、FID检测限    对C2H2的最小检测浓度0.1ppm;对CO,CO2的最小检测浓度2ppm    6、电源条件:220V±10%,50±0.5HZ    7、功率:约2kw
  • 如何高效准确地进行矿物油含量检测分析?
    近日,新京报报道指出,部分罐车在卸载煤制油后,未进行清洗便直接用于装载食用油,此事件迅速引起社会各界的广泛关注,油脂质量和我国人民群众身体健康之间的关系极为密切。◀ 矿物油组成及毒性▶ 01矿物油是C10-C50烃类化合物的总称,主要由饱和碳氢化合物(mineral oil saturated hydrocarbons, MOSH)、芳香族碳氢化合物(mineral oil aromatic hydrocarbons,MOAH)以及少量的多环芳烃(PAH)和含硫、含氮化合物构成。矿物油可以通过多种途径进入食品,传统的包括环境污染、采收运输、生产加工、包装销售等,整个产业链均可能发生矿物油迁移,从而污染食品。有毒理学研究表明,MOSH是人体中累积量最大的污染物,主要来源于食物的摄入。进入体内的矿物油,在小肠和肝脏被代谢为脂肪酸和脂肪醇后,部分MOSH会蓄积在人体的皮下脂肪、肝脏、肾脏、脾脏和肠系膜淋巴结等器官和组织中。相比MOSH,MOAH虽然没有蓄积效应,但其毒性很大,其中含3个以上苯环的MOAH具有遗传毒性和致癌性。◀ 矿物油检测方法分析▶ 01目前,高效液相色谱-气相色谱-氢火焰离子化检测器在线联用技术(HPLLC-GC-FID)是测定食品中矿物油的理想方法(DIN EN 16995-2017),原因是FID对所有烃类化合物的响应几乎完全一样,相同浓度的任一碳氢化合物的FID响应信号(峰高或峰面积)接近,因此,无需寻找与目标物对应的参考标准,仅采用任一内标物即可对不同化学组成的矿物油进行准确定量。气相色谱的作用是可以将矿物油按照沸程由低到高分离,从而可以通过色谱图了解矿物油的碳数范围信息。然而,仪器复杂且造假昂贵导致改方法普及程度不高。国内的两个标准GB/T 5539和GB/T 37514,采用了皂化法和氧化铝薄层色谱法,方法不足之处在于方法只能用于定性, 不能用于定量,而且检测限较高。02ISO 17780:2015,GC-FID(离线方法)装填的层析柱或SPE柱借助硝酸银渍来提高MOAH和烯烃的保留能力,使得MOSH分段流出。该方法与食品接触领域,相关检测标准SN/T4895-2017《食品接触材料 纸和纸板 食品模拟物中矿物油的测定气相色谱法》相近。SN/T4895-2017的检测原理是:经迁移试验获得的食品模拟物,经正已烷萃取富集,用固相萃取柱洗脱分离矿物油MOSH部分和MOAH部分,浓缩定容后,采用气相色谱火焰离子检测器(FID)测定,用内标物定量计算。依据此标准,睿科集团推出的0.3% AgNO3-Silica Glass, 3g/6mL(P/N:RC-204-AS306)定制固相萃取柱,可以较好分离MOSH和MOAH。◀ 仪器设备和耗材解决方案▶ 仪器设备检测项目设备类型技术性能设备型号矿物油含量全自动浓缩设备全自动的水浴氮吹浓缩仪-Auto EVA 60高通量全自动平行浓缩仪-Auto EVA 80高通量全自动平行浓缩仪耗材检测项目耗材矿物油含量固相萃取柱:0.3%硝酸银硅胶玻璃柱货号:RC-204-AS306◀ 样品制备自动化实验流程▶
  • 高灵敏设备模拟犬类嗅觉检测爆炸物
    据物理学家组织网11月20日报道,美国加州大学圣巴巴拉分校(UCSB)研究人员研制的一种便携、准确、高灵敏设备,可嗅探出从炸药和其他物质发出的蒸汽。  研究人员使用微流体纳米技术设计的该探测器,能模拟隐藏在犬类嗅觉受体后的生物机制。该设备既对追踪特定蒸汽分子高度灵敏,又能明确将某一特定物质与相似分子区别开来。  研究人员表示,狗仍然是利用气味检测爆炸物的黄金标准。但就像人一样,狗也有状况好或坏的一天,也有疲累或烦躁的时候。新研制的设备有着与狗鼻相同或更高的灵敏度,反馈回计算机的数据可显示其检测到了何种类型的分子。  此项技术的关键在于融合了机械工程学和化学的原理。发表在本月《分析化学》上的该研究成果表明,该设备可检测一种化学名为2,4-二硝基甲苯的空气分子,这是TNT炸药散发出蒸汽的主要成分。人鼻无法探测到微量的这种物质,一直以来主要依靠嗅探犬跟踪此类分子。该技术的灵感就来自于生物学设计乃至犬类嗅觉黏液层的微尺度。  该设备能实时检测和识别浓度在1ppb(十亿分之一)或以下的某类分子,其特异性和灵敏度是无与伦比的。包装在一个指纹大小硅微芯片中的该设备,其底层技术结合了自由表面微流体学和表面增强拉曼光谱学,用以增强捕获和识别分子的能力。  一个微尺度流体通道最多能吸收和汇聚6个数量级的分子。蒸汽分子一旦被吸收进微通道,在激光激励下就与能放大其光谱特征的纳米粒子相互作用,装有光谱特征数据库的计算机就能识别捕获到的分子类型。研究人员表示,该项技术也能扩展到某些疾病的诊断或毒品检测等。
  • 海洋光学发布RaySphere系统用于太阳光模拟器的质量检测
    美国海洋光学(www.oceanopticschina.cn)近日推出一款 RaySphere 光学测量系统,用以测量太阳光模拟器和其他辐射源的绝对辐照度。RaySphere系统可测量从紫外线到近红外光谱(380-1700nm)的不同光谱范围的绝对辐照度(mW/cm2/nm)。下载高清晰图像:http://halmapr.com/oo/RaySphereRelease.jpg (图片说明:海洋光学 RaySphere 系统评估并判定太阳能闪光灯和太阳光模拟器的光谱分布是否合格)作为一种用于验证已安装的太阳能闪光灯输出的工具,RaySphere 特别适用于太阳光模拟器制造商以及研发实验室。太阳光模拟器的闪光可用于目的为根据光谱反应组合细胞像素的光电制造流程、以及目的为测量最终光电效能的光电制造流程。RaySphere 的系统具有必要的精确度和分辨率,以测量和分析闪光器的性能和稳定性,并通过高级的低频抖动方式触发电子设备为闪光测量计时。RaySphere 的刻度经过公认的认证实验室的确认,以确保精确的探测,并使太阳能闪光灯和太阳光模拟器的评估和资格认证符合由 ASTM 和 IEC(IEC60904-9 2007)等标准制定机构制定的标准。两台热电冷却探测器使太阳能闪光灯的光谱分析(380-1700nm)可复验性高且准确。第二种型号的 RayShere 含有一个冷却探测器,以测量最多 1100nm 的光谱。该系统同时包含高级、高速的电子设备,以及直观、强大的软件界面。极少的测量次数可实现在闪光期间,甚至于闪光间隔期间的完整光谱检测。此外,测量还可以由一个快速反应的发光二极管促发。该二极管可在百万分之一秒内通过增加闪光强度而做出反应。关于海洋光学(Ocean Optics)和豪迈(HALMA):总部位于美国佛罗里达州达尼丁市的海洋光学(www.OceanOpticsChina.cn)是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球范围内共售出了超过150,000套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤、薄膜和光学元件等等。洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛,公司隶属英国豪迈集团。创立于1894年的豪迈(HALMA www.halma.cn)是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有3700多名员工,约40家子公司。豪迈目前在上海、北京、广州、成都和沈阳设有代表处,并且已在中国开设多个工厂和生产基地。
  • 河南大学宋金生团队通过宏环封装策略实现四噻吩非全融合型有机太阳能电池15.1%高效率
    【重点摘要】提出了宏环封装策略,通过在四噻吩外围导入融合烷基侧链实现。将该策略应用于非全融合四噻吩类受体材料。实现了高达15.1%的转化效率。【宏环封装策略实现高效有机太阳能电池】有机光伏一直被视为下一代可再生能源的重要候选技术。但是其光电转换效率一直无法达到与无机光伏装置媲美的水平。非全融合四噻吩类受体材料被认为是实现高效有机太阳能电池的一个有前景的方法。【宏环结构限制分子构象,提升分子堆积效率】在美国伯明翰南方研究院的最新研究中,通过在四噻吩外围导入环烷基侧链,形成宏环封装结构。这种设计可以锁定中央分子部分的构象,生成平面分子骨架,有利于分子的高效堆积。【对照组件构象扭曲,分子堆积效率降低】相比之下,没有宏环封装限制的对照分子则出现了扭曲变形的构象。这种构象变化会降低分子堆积的有效性,进而影响相关器件的性能。【噻吩宏环受体器件效率达15.1%】基于四噻吩宏环受体R4T-1的有机太阳能电池成功实现了15.1%的高效率。【宏环封装策略指明下一步优化方向】这项研究为构建高性能有机太阳能电池提供了新的思路。随着在分子设计和器件工程方面的持续优化,有机太阳能电池20%效率的目标指日可待。研究使用光焱科技太阳光模拟器SS系列 与量子效率测试系统 QE-R来协助量测。通过在简单的四噻吩上进行宏环封装设计出非全融合受体R4T-1,该结构实现了构象的单一性,消除了分子中心的电子跨效应,并保证了高效电荷传输通道的形成。因此,实现了高达15.10%的转化效率,短路电流密度显著提高至25.48 mA/cm2。图S7. JD40:4T-5和JD40:R4T-1的J1/2-V曲线,(a)空穴型器件和(b)电子型器件。
  • Thermo Scientific色谱耗材助力地沟油检测
    地沟油,泛指在生活中存在的各类劣质油,长期食用可能会引发癌症,对人体的危害极大。由于存在不小的经济诱惑,仍有人铤而走险销售地沟油。针对民众反映强烈的地沟油问题,国务院办公厅2010年7月发布文件,决定组织开展地沟油等城市餐厨废弃物资源化利用和无害化处理试点工作。2011年9月13日,中国警方全环节破获特大利用“地沟油”制售案。在打击“地沟油”过程中,由食品安全监控单位开发的地沟油检测指标体系发挥了重大的作用。检测人员综合运用色谱分析、光谱分析、理化分析及基因鉴定技术等现代分析测试手段,先后对80余个技术指标进行了全方位的筛选,确定了多环芳烃、胆固醇、电导率、特定基因等四大类、20余项有重要鉴别意义的项目。据此建立起来的检测体系,为人民群众的食用油安全,提供了有效的技术保障。赛默飞世尔科技公司,作为色谱产业的领导者,致力于让世界更清洁、更安全、更健康。对于食品安全作力所能及的贡献是我们义不容辞的责任和义务。因此,赛默飞世尔科技对地沟油检测所涉及的色谱耗材制定了最优惠的促销方案,为检测人员提供高效、经济的检测产品。一、多环芳烃前处理耗材固相萃取柱: HyperSep C18 2g/15ml。货号:60108-701。 HyperSep Florisil 500mg/3mL。货号:60108-405。方法:GB/T 24893-2010方法。二、多环芳烃检测方法及耗材色谱柱:Hypersil Green PAH 5µ m 250mm x 4.60mm(多环芳烃专用柱)。货号:31105-254630。方法:GB/T 24893-2010方法色谱图:如图1。 图 1 16种多环芳烃色谱图(1.萘2.苊烯3.苊4.芴5.菲6.蒽7.荧蒽8.芘9.苯并(a)蒽10.屈11.苯并(b)荧蒽12.苯并(k)荧蒽13.苯并(a)芘14.茚并(1,2,3-cd)芘15. 苯并(g,h,i)苝16. 二苯并(a,h)蒽)三、胆固醇检测方法及耗材色谱柱:Hypersil BDS C18,5μm,150mm×4.6mm。货号:28105-154630。方法:GB/T 22220-2008方法色谱图:如图2。
  • 电位滴定在油品中硫醇硫含量检测中的应用
    一、油品中硫醇硫是什么?硫醇是含巯基官能团(-SH)的一类非芳香化合物。结构上相当于醇类中的氧被硫替换形成,例如乙醇(俗称酒精)CH3CH2OH,乙硫醇CH3CH2SH。石油产品中有少量硫醇化合物,硫醇的存在不仅会使油品具有令人讨厌的气味,同时在燃烧时转变为有毒、腐蚀性的二氧化硫和三氧化硫,对燃料系统的弹性材料有害,并对燃料系统的构件产生腐蚀,影响相关机械寿命,例如汽车发动机。因此控制石油产品中的硫醇含量是相当重要的。油品中的硫醇含有的硫,称为硫醇硫含量。国家标准强制规定了汽油柴油、煤油、馏分燃料、喷气燃料等一系列油品中硫醇硫的含量。那么该如何测定油品中硫醇硫的含量呢?二、硫醇硫的测定方法目前硫醇硫测定有2种常用方法,一种是定性检测的博士试验,另一种是定量检测的电位滴定法。 方法原理优点缺点博士试验(NB/SH/T 0174-2015)振荡加有亚铅酸钠溶液的试样,并观察混合溶液,从外观来推断是否存在硫醇、硫化氢、元素硫或过氧化物。再通过添加硫磺粉,振荡并观察最终混合溶液外观的变化来进一步确定是否存在硫醇操作流程简单只能定性检测硫醇含量是否超过临界值。通常作为硫醇定量测定法的一种替代方法。二硫化碳会干扰测定。过氧化物和酚类物质大于痕量的情况不适用。电位滴定(GB/T 1792-2015)将无硫化氢的试样溶解在乙酸钠的异丙醇滴定溶剂中,以玻璃参比电极和银/硫化银指示电极之间的电位作指示,用硝酸银醇标准溶液通过电位计进行滴定。在滴定过程中,硫醇硫沉淀为硫醇银,而滴定终点通过电池电位上的突变显示出来。测量快速,准确。有机硫化物,如硫化物、二硫化物及噻吩不干扰测定。质量分数小于0.0005%的元素硫不干扰测定。需要脱除硫化氢。要求工作人员有较高的专业水平。 三、使用电位滴定仪测定油品中硫醇硫含量(1)仪器:雷磁ZDJ-5B自动电位滴定仪(2)电极:216型银电极和231-01型pH玻璃电极。(3)试剂:超纯水、1-丁硫醇、1-庚硫醇、碘化钾、浓硝酸、异丙醇、乙酸钠、硫化钠、硝酸银等(4)样品:市售汽油;丁硫醇标准溶液(5)测定流程如下: 丁硫醇滴定曲线 汽油滴定曲线 汽油加标滴定曲线 *天然气中的硫醇硫也采用类似方法检测。参考标准《GB/T 11060.6-2011》(6)依据滴定终点计算出样品中硫醇硫的含量 四、仪器及配套电极ZDJ-5B型自动滴定仪l 7寸彩色触摸电容屏,导航式操作;l 支持电位滴定;l 实时显示测试方法、滴定曲线和测量结果;l 可定义计算公式,直接显示计算结果; l 支持滴定剂管理功能;l 支持pH的标定、测量功能;l 支持USB、RS232连接PC,双向通讯;l 可直接连接自动进样器实现批量样品的自动测量。 216银电极l 温度范围:0~50℃l 工作电极材料:银l 外壳尺寸:ABSl 外形尺寸:12×120mml 接插件:U型叉片 相关应用和产品详情,欢迎致电400-827-1953、关注雷磁公众号或浏览雷磁官网http://www.lei-ci.com
  • 分析检测新标准拟定
    近来一段时间,看到各行业 分析检测新标准拟定 现已放出意见征集公告。为大家汇总整理下,看看有没有涉及到大家关注的领域吧!纳米技术石墨烯材料的化学性质表征电感耦合等离子体质谱法 标准意见征求标准中所使用的方法,需要用到的测试仪器有以下几种:可对无机元素进行痕量定量测试的电感耦合等离子体质谱仪、能对被测样品进行消解的微波消解仪、能去除消解后样品溶液中浓硝酸的赶酸仪。标准也详细叙述了样品前处理的各项步骤,并推荐同时处理4-6个平行样进行ICP-MS测试分析,其中1-2个样品中应加入含有特定元素的标准溶液用于后续计算加标回收率。小麦粉的测定高效液相色谱法 三项补充方法发布《小麦粉中三聚硫氰酸三钠盐的测定》(BJS 202001)规定了小麦粉中三聚硫氰酸三钠盐的高效液相色谱测定方法,适用于小麦粉中三聚硫氰酸三钠盐的测定。在检测中,除了需要用到高效液相色谱之外,还需要用到 电子天平、涡旋混合器、高速冷冻离心机等仪器,待试样中检出三聚硫氰酸三钠盐后还需要采用液相色谱-质谱/质谱法进行确证。《小麦粉及其面粉处理剂中苯甲羟肟酸的测定》(BJS 202002)规定了小麦粉及其面粉处理剂中苯甲羟肟酸的高效液相色谱测定方法,适用于小麦粉及其面粉处理剂中苯甲羟肟酸的测定。检验过程中需要用到高效液相色谱仪、电子天平、pH计、涡旋振荡器、超声波发生器、高速离心机等,结果确认使用液相色谱-质谱/质谱法。《小麦粉中曲酸的测定》(BJS 202003)规定了小麦粉中曲酸的高效液相色谱测定方法,适用于小麦粉中曲酸的测定。液相色谱仪:配有二极管阵列检测器或紫外检测器。检测中,用纯水提取试样中曲酸,用配有二极管阵列检测器或紫外检测器的高效液相色谱仪检测,外标法定量。此外还需要用到分析天平、pH计、超声波水浴、离心机等仪器。化妆品中壬二酸的检测气相色谱法 意见征集《化妆品中壬二酸的检测 气相色谱法》中所规定的检测方法原理是试样在浓硫酸和乙醇条件下衍生,用正己烷萃取,浓缩后经气相色谱分离,再使用氢火焰离子化检测器检测,之后根据保留时间定性,外标法定量即可。标准中也显示本方法的检出限为15mg/kg,定量限为50mg/kg。而实验需要用到的仪器设备包括有配备氢火焰离子化检测器的气相色谱仪、分析天平、离心机、涡旋振荡器、刻度管、氮吹仪等。化妆品中禁用物质三氯乙酸的测定气相色谱质谱法 意见征集《化妆品中禁用物质三氯乙酸的测定》引用了《分析实验室用水规格和试验方法》,规定了气相色谱质谱法测定化妆品中三氯乙酸含量的方法,而方法的原理是样品在酸性条件下用甲基叔丁基醚萃取,在萃取液经氮气吹干后,用硫酸乙醇溶液衍生,使样品中的三氯乙酸形成三氯乙酸乙酯,之后用正己烷萃取并注入气相色谱-质谱联用仪分析,用外标法定量即可。该标准所规定使用的方法需要用到的仪器设备有配备电子轰击电离源的气相色谱-质谱联用仪、分析天平、涡旋振荡器、氮吹仪、离心机、水浴锅。因仪器设备具有多样性,为确保实验顺利进行,标准征求意见稿中还规定了仪器的色谱柱固定相应当是含有5%苯基的甲基聚硅氧烷石英毛细管柱或性能相当者。天然气加臭剂四氢噻吩含量的测定气相色谱法 意见征集标准中规定了用气相色谱法在线测定天然气中加臭剂四氢噻吩的试验方法。而该方法的原理是具有代表性的天然气样品和已知含量的四氢噻吩气体标准物质在同样的操作条件下,经色谱柱分离后进入热导检测器后就能对四氢噻吩含量进行测定,而四氢噻吩含量与峰高或峰面积成正比,通过对比标物和天然气样品的四氢噻吩峰高或者峰面积,即可获得天然气样品中四氢噻吩的含量。标准中还明确表明了使用的便携式气相色谱仪的进样系统应当选用对四氢噻吩无吸附性或经惰性化处理的材料,而色谱柱的材料也应对四氢噻吩呈惰性和无吸附性,或者色谱柱内壁要经惰性化处理,柱内填充物也可以对被检测的四氢噻吩进行有效分离。
  • 四方光电标准呼吸模拟器,多重质控满足肺功能检查仪临床检测/计量校准要求
    肺功能检查仪进行检测校准的必要性    慢性呼吸系统疾病排在心脑血管病、癌症之后,成为我国居民慢性病致死的第三位死因。肺功能检查作为慢性气道等呼吸疾病诊断的金标准之一,是慢性阻塞性肺疾病防治和检查的关键。肺功能检查仪是检测肺脏吸入、呼出气体容量和速率,从而了解呼吸生理和呼吸功能是否正常的一种设备,主要由肺量计、气体分析器等部件组成。肺功能检查仪对于早期检出肺及气道的病变,诊断病变部位和评估疾病的严重程度具有重要的临床意义。    在钟南山院士、王辰院士等国内权威专家的推动下,“要像测量血压一样,测量肺功能”近年来得到社会各界的广泛关注和认可。2019年推出的《健康中国行动(2019—2030年)》明确提出将肺功能检查纳入40岁及以上人群常规体检内容。随着2020年国家基层呼吸系统疾病早期筛查干预能力提升项目在各地的实施落地,以及社区居民对呼吸系统慢性疾病早防早治意识的增强,不同原理类型的肺功能检查仪在全国各地基层医疗卫生机构得到了广泛配置及使用。    但肺功能检查仪的检测结果容易受多方面因素影响。比如不同肺功能检查仪的生产厂家采用的检测原理和设备结构不一样,会导致性能有较大差异,加上仪器设备在使用过程中因磨损或受环境因素而影响其正常使用,将出现检测结果的不准确。所以临床上常见发生同一个患者在不同医院所进行的肺功能测试结果有较大的偏差,给诊断造成很大影响。因此,对肺功能检查仪进行定期检测校准等质量控制、确保其测量的准确性极为重要。    肺功能检查仪检测校准的标准要求    校准是肺功能检查设备质控的关键措施,国际上美国胸腔协会(ATS)、欧洲呼吸协会(ERS) 、英国标准协会(BSI)分别发布的肺功能检查技术指南中,均提出了肺功能检查设备的技术性能标准和质控规范,我国也于2008年颁布了JJF 1213-2008 《肺功能检查仪校准规范》,解决肺功能检查仪的质量控制和量值溯源问题。    对肺功能检查仪肺量计的检测通常采用标准呼吸模拟器进行校准,要求必须能模拟人体器官肺的基本运动模式,标准规范主要参考美国胸腔协会(ATS)肺功能检测标准的内容。该标准对肺功能检查仪性能指标、测定方法、校准装置、BTPS修正、对FVC及PEF等指标检测的操作方法作了具体的要求和说明,并提供了24条标准波形检测肺功能检查仪的FVC指标,26条流量标准波形检测PEF指标。    (表:校准用设备性能表)    肺功能检查仪检测校准质控设备的选择    肺功能检查仪校准用标准呼吸模拟器必须能够精确模拟人体器官肺的运动模式,特别是模拟输出ATS推荐的标准波形,因此普通气体流量计计量标准和肺量计定标筒,不适合用于肺功能检查仪的量值传递。    四方光电呼吸模拟器是一款肺功能检查仪校准专用设备,由气缸、交流伺服电机、伺服电机控制器、专用控制卡和计算机组成。通过计算机控制软件驱动控制卡进而驱动伺服电机转动,推动活塞作往复运动,压出或者吸入气缸中的空气,从而模拟人的平静呼吸、深吸气、用力快速吹气等呼吸动作,为检验肺功能检查仪 VC、FVC、MVV 等测试指标提供了标准方法。    四方光电呼吸模拟器不但可精准输出ATS的24条标准FVC及26条PEF波形曲线,还可用于智能检测分析被校正肺功能检查仪的准确度和频率速度响应情况,有助于医生对肺功能检查仪所测定的病人肺功能状况的数据指标作准确判断。产品符合多重质控标准,满足临床检测/计量校准要求,可为《呼吸学科医疗服务能力指南(2018年版)》、《健康中国行动(2019—2030年)》的实施提供装备支撑。    ■ 设备标准质控    符合美国胸科学会发布的“肺活量测定的标准化”(2005)    符合ISO 23747:2015(ATS)    符合EN ISO 26782:2009    ■ 模拟波形质控    ATS标准24个容量-时间波形    ATS标准26个流量-时间波形    13项波形符合EN ISO 26782:2009附录C要求的标准波形    10项波形符合EN ISO 23747:2009附录C外形A要求的标准波形    用户还可自定义波形    ■ 使用过程质控    为所有类型的呼气曲线提供完整的BTPS模拟    根据ATS全面支持人体差异测试    全自动测试程序可由用户定义,如自定义容量、自定义流速、自定义运行次数    ■ 结果判读质控    所产生波形的参数均可完全溯源至国家标准    根据ATS评估测试结果并进行错误分析    四方光电标准呼吸模拟器应用领域及技术参数     计量院肺功能检查仪年检手段     科研单位呼吸模拟测试研究     肺功能检查仪企业溯源设备    关于四方光电    四方光电股份有限公司(以下简称“四方光电”)是一家从事智能气体传感器和高端气体分析仪器的科创板上市企业(股票代码688665)。公司2003年成立于武汉“光谷”,形成了包括光学(红外、紫外、光散射、激光拉曼)、超声波、MEMS金属氧化物半导体 (MOX)、电化学、陶瓷厚膜工艺高温固体电解质等原理的气体传感技术平台。这个平台为四方光电开发基于呼气分析的医疗器械应用提供和强有力的技术保障。    四方光电建设有省级企业技术中心和湖北省气体分析仪器仪表工程技术研究中心。同时公司积极融入国家技术创新体系,先后获得国家重大科学仪器设备开发专项、工信部物联网发展专项、工信部强基工程传感器“一条龙”、科技部科技助力经济2020重点专项、湖北省技术创新重大项目等多个项目的支持,被国内外行业权威机构列为中国气体传感器主要厂商和代表性企业,并荣获中国物联网产业联盟“最具影响力物联网传感企业奖”。     在健康医疗领域,四方光电超声波肺功能检查仪是一款用于肺通气功能和肺活量检查的高新技术产品,是检查哮喘、COPD、其它呼吸病患者以及评估吸烟者、慢性咳嗽和多痰者的肺功能的有力测定仪器。同时公司开发的肺功能检查仪定标筒、制氧机用氧气传感器、呼吸机用流量及气体成分传感器、监护仪用红外EtCO2传感器在国内外医疗机构及设备中得到广泛应用。未来,四方光电还将大力开拓基于呼吸监测的智能医疗健康板块,加大在呼吸机、麻醉机、监护仪等更广阔医疗器械开拓力度,推动提升肺功能检测仪在医疗机构、社区及家庭的配置率。
  • 1220万!山东大学快速转盘共聚焦显微镜、大型模拟移动床连续色谱等采购项目
    一、项目基本情况1.项目编号:SDJDHD20230655-Z412/SDAK-GK-2023088项目名称:山东大学快速转盘共聚焦显微镜采购项目预算金额:450.000000 万元(人民币)最高限价(如有):450.000000 万元(人民币)采购需求:本项目山东大学快速转盘共聚焦显微镜,预算金额:人民币450万元(包含外贸代理和汇率浮动费用)。本项目共分为 1个包,投标人不得对包中所投货物和服务分解后进行响应。合同履行期限:详见招标文件要求。本项目( 不接受 )联合体投标。2.项目编号:SDJDHD20230653-Z410/SDAK-GK-2023089项目名称:山东大学小动物能量代谢系统采购项目预算金额:370.000000 万元(人民币)最高限价(如有):370.000000 万元(人民币)采购需求:本项目为山东大学小动物能量代谢系统,预算金额:人民币370万元(包含外贸代理和汇率浮动费用)。本项目共分为 1个包,投标人不得对包中所投货物和服务分解后进行响应。合同履行期限:详见招标文件要求。本项目( 不接受 )联合体投标。3.项目编号:SDQDHD20230088-H054/QCZ2023-131647048项目名称:山东大学(青岛)大型模拟移动床连续色谱采购项目预算金额:400.000000 万元(人民币)采购需求:标包货物名称数量简要技术要求1大型模拟移动床连续色谱1台详见公告附件或招标文件 合同履行期限:详见招标文件要求。本项目( 不接受 )联合体投标。二、获取招标文件1.时间:2023年12月01日 至 2023年12月07日,每天上午8:30至12:00,下午12:00至17:00。(北京时间,法定节假日除外)地点:山东大学招标采购管理系统方式:在线下载(投标人在山东大学采购网,点击“投标人注册”,完成后,通过“校外用户登录”,报名并免费下载招标文件电子版。未报名的投标人,不能参加本项目采购活动)。本项目为资格后审,投标人获取招标文件不代表资格审查通过。售价:¥0.0 元,本公告包含的招标文件售价总和2.时间:2023年12月01日 至 2023年12月07日,每天上午8:30至11:30,下午13:30至17:00。(北京时间,法定节假日除外)地点:山东大学(青岛)招标采购管理系统在线下载方式:登录山东大学(青岛)招标采购网站(http://www.zbcg.qd.sdu.edu.cn/zb/index.chtml)进行供应商注册,注册完成审核通过后,在获取招标文件截止时间前再次登录系统在线报名本项目,报名审核成功后自助下载招标文件售价:¥0.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:山东大学     地址:山东大学中心校区明德楼        联系方式:马老师 0531-88365560      2.采购代理机构信息名 称:山东安康建设项目管理有限公司            地 址:山东省济南市历下区经十路17175号            联系方式:唐老师0531-88909828            3.项目联系方式项目联系人:唐老师电 话:  0531-889098284.采购人信息名 称:山东大学     地址:青岛市即墨区滨海路72号        联系方式:李老师0532-58630095      5.采购代理机构信息名 称:青岛采购招标中心有限公司            地 址:青岛市市南区延安三路220号邮政大厦16层            联系方式:张锡杰、张光旭 15265262977、0532-58760960            6.项目联系方式项目联系人:张锡杰、张光旭电 话:  15265262977、0532-58760960
  • 酱油中氯丙醇含量的测定 气相色谱质谱法
    前言氯丙醇(Chloropropanols)是是一种在化学制作豉油的过程中所产生的毒性致癌物,同时具有抑制雄性激素生成的作用,使生殖能力减弱。对人体危害极大。日常比较常见的为以下三种:1-氯-2-丙醇 (ClCH2CHOHCH3);3-氯-1,2-丙二醇 (3-MCPD)及1,3-二氯-2-丙醇 (1,3-DCP)。本文参考《GB/T 5009.191-2006 食品中氯丙醇含量的测定》,进行了酱油中3-氯-1,2-丙二醇(3-MPCD)的测定,优化改进了用于样品预处理的硅藻土材料,调整活度,成功开发了Cleanert MCPD氯丙醇专用柱,结果表明满足实验要求,并大大简化了材料预处理过程,提高工作效率。 1 仪器及材料仪器:Agilent GC-MS 7890-5975c;涡旋混合器;超声仪;氮吹仪;恒温箱。材料: 3-氯-1,2-丙二醇(3-MPCD)标准品;乙酸乙酯、丙酮、正己烷为色谱纯;七氟丁酰基咪唑;无水硫酸钠;超纯水;氯化钠。固相萃取柱:Cleanert MCPD (氯丙醇专用柱),2.5g/12mL,P/N:LBC2500122 实验方法2.1 标准溶液配制准确称取0.1g氯丙醇标准品于100mL容量瓶中,用乙酸乙酯定容到刻度,得到浓度为1mg/mL的储备液。用丙酮将储备液逐渐稀释,得到1&mu g/mL标准工作液。2.2 饱和氯化钠溶液称取氯化钠290g,加水溶解并稀释至1000mL,超声20min。2.3 GC-MS操作条件色谱柱:DA-5MS 30m*0.25mm*0.25&mu m进样口:230℃,不分流进样程序升温:50℃(1min)2℃/min 82℃进样量:1&mu L流速:1 mL/min接口温度:250℃电离方式:EI电离能量:70eV溶剂延迟:7min离子源:230℃四级杆:150℃检测模式:选择离子检测,SIM离子:253/275/289/291/4532.4 样品处理称取2.5g酱油直接上样Cleanert MCPD固相萃取柱,静置平衡10min,用15 mL乙酸乙酯洗柱,收集洗脱液。将洗脱液在35℃下氮气吹至近干(不可全干)。加入2 mL正己烷,摇匀,快速加入50&mu L七氟丁酰基咪唑,将样品瓶拧紧,涡旋20秒,将样品瓶置于70℃恒温箱中反应30min,取出冷却至室温,向样品瓶中加入2 mL饱和氯化钠溶液,涡旋1min,静置2min,取上层有机相至另一干净的样品瓶中,重复1次洗涤操作以除去杂质。将有机相经少量无水Na2SO4除水后转移至进样样品瓶中,待GC-MS检测3 实验结果3.1 标准溶液色谱图在GC-MS操作条件下(4),得到标准溶液色谱图如图1.图1 标准溶液色谱图(浓度为50ng/mL)3.2 样品色谱图准确称取6份酱油,其中5份分别加入浓度为1&mu g/mL的标准溶液0.1mL,按照样品处理方法(5),将6份样品进行净化衍生,得到酱油样品加标色谱图及酱油样品色谱图如图2、图3.图2 酱油样品加标色谱图(浓度为50ng/mL)图3 酱油样品色谱图3.3 加标回收率及精密度 表1 加标回收率及精密度 1#2#3#4#5#平均回收率(%)RSD(%)n=5回收率(%)88.083.990.583.692.187.603.84 4 结论实验结果表明,Cleanert MCPD氯丙醇专用柱适用于酱油中氯丙醇的预处理,能净化酱油样品,实验加标回收率及RSD能满足定量实验的要求。本实验方案与国标方法相比更简便,使用的化学试剂量仅为国标方法的1/20,有利于操作人员的身体健康及环境;实验时间较国标方法短,更加适合于大批量酱油样品的前处理。 订货信息 产品名称规格、包装订货号价格Cleanert MCPD2.5g/12mL, 20支/包LBC250012580DA-5MS30m*0.25mm*0.25&mu m;1支1525-30024200
  • 国家市场监督管理总局对《粮油检验 粮食中γ-氨基丁酸的测定 高效液相色谱法》等266项拟立项国家标准项目公开征求意见
    有关单位:经研究,现对《糖果术语》等266项拟立项国家标准项目公开征求意见,征求意见截止时间为2024年5月12日。请登录请登录标准技术司网站征求意见公示网页http://std.samr.gov.cn/gb/gbSuggestionPlan?bId=10001738,查询项目信息和反馈意见建议。2024年4月12日相关项目如下:#项目中文名称制修订截止日期1糖果术语修订2024-05-122葵花籽油修订2024-05-123粮油检验 粮食中γ-氨基丁酸的测定 高效液相色谱法制定2024-05-124粮油检验 油菜籽水分、芥酸、含油量测定 近红外法制定2024-05-125全麦粉制定2024-05-126蛹虫草制定2024-05-127糌粑制定2024-05-128植物油脂 叶绿素a和叶绿素a'降解产物的测定(脱镁叶绿素a,a'和焦脱镁叶绿素)制定2024-05-129动植物油脂 生育酚及生育三烯酚含量测定 高效液相色谱法修订2024-05-1210动植物油脂 特级初榨橄榄油中羟基酪醇和酪醇含量的测定 反相高效液相色谱法制定2024-05-1211基于区块链的冷链食品追溯平台应用制定2024-05-1212果蔬全产业链废弃物综合利用技术导则制定2024-05-1213病媒生物密度控制水平 蝇类修订2024-05-1214病原感染动物实验生物安全控制技术规范制定2024-05-1215畜禽品种(配套系) 华西牛制定2024-05-1216畜禽品种(配套系)木里牦牛制定2024-05-1217东毕吸虫病诊断技术制定2024-05-1218肥料中石油烃总量的测定 红外吸收光谱法制定2024-05-1219肥料中芸苔素内酯的测定 高效液相色谱法制定2024-05-1220蜂品种 意大利蜜蜂制定2024-05-1221高标准农田气象观测系统建设技术要求制定2024-05-1222鸡红螨病诊断技术制定2024-05-1223挤奶和冷却设备 散装乳冷却罐监测装置 要求制定2024-05-1224家畜遗传资源保护区保种技术规范制定2024-05-1225家禽生产性能术语制定2024-05-1226洁净室及相关受控环境 运维服务制定2024-05-1227利什曼原虫病诊断技术制定2024-05-1228粮油机械 产品包装通用技术条件修订2024-05-1229粮油机械 磨辊修订2024-05-1230粮油机械 组合清理筛修订2024-05-1231牛冠状病毒感染诊断技术制定2024-05-1232牛泰勒虫病诊断技术制定2024-05-1233农业灌溉设备 承压灌溉系统实施指南 第1部分:灌溉通则制定2024-05-1234农业灌溉设备 承压灌溉系统实施指南 第2部分:滴灌制定2024-05-1235农业机械北斗自动驾驶系统制定2024-05-1236农业机械作业北斗监测系统制定2024-05-1237农业拖拉机 通用技术条件 第3部分:130 kW以上轮式拖拉机修订2024-05-1238农业拖拉机和自走式机械 操作者操纵装置 操纵力、位移量、操纵位置和方法修订2024-05-1239农用挂车和农用牵引车许用机械连接组件制定2024-05-1240农用喷雾器 喷雾飘移参数的记录制定2024-05-1241片形吸虫病诊断技术制定2024-05-1242起重机 吊装工和指挥人员的培训修订2024-05-1243起重机 司机室和控制站 第4部分:臂架起重机修订2024-05-1244起重机 载荷与载荷组合的设计原则 第4部分:臂架起重机修订2024-05-1245饲草种质资源圃建设技术规范制定2024-05-1246卫生杀虫剂现场药效测定及评价 喷射剂修订2024-05-1247小鹅瘟诊断技术制定2024-05-1248小反刍兽疫诊断技术修订2024-05-1249小麦制粉企业节能技术规范制定2024-05-1250血矛线虫病诊断技术制定2024-05-1251蝇类抗药性检测方法 家蝇生物测定法修订2024-05-12
  • 新品上市|涂料管道模拟方案---剪切应力模拟器
    剪切应力模拟器polyshear----模拟液体涂料和油漆的剪切效应在涂装车间或喷涂线上,涂料需从不同口径、不同排布的管道、减压器和泵中输送。此过程中会产生剪切力,这些剪切力可能会导致涂料的降解,变质,粘度和色彩的改变。通过使用德国orontec公司生产的polyshear剪切应力模拟器,可以判断某种涂料原料是否会在输送管道和搅拌中产生问题,降低风险。德国orontec公司制造的polyshear剪切应力模拟器可模拟合理测试时间中的剪切应力。包括与工业环境相关联的涂料管道。剪切应力模拟器polyshear仅使用确定的剪切力元件,装置体积小巧且有优秀的重复性。剪切应力模拟器polyshear客户剪切应力模拟器polyshear广泛运用在涂料,汽车油漆,以及工业喷涂线等领域,发挥出重要的作用。部分客户如下:polyshear剪切应力模拟器工作原理---泵跟剪切应力元件是剪切应力两个重要影响因素油漆在喷漆车间的管道中循环时,会在管道内的各种元件流动,在剪切力的作用下发生粘度和颜色改变,从而造成喷涂时的质量问题。使用剪切应力模拟器,可以重现这过程,为进料检验,产品优化提供快速有效的方法。☞ 泵以活塞泵为例,如下图所示,剪切应力总是发生在重要部位上(直径最小的位置),剪切率可以达到15000 1/s。以齿轮泵为例,如下图所示,剪切应力总是发生在重要部分上(齿轮口边缘),剪切率可以达到10000 1/s。☞ 剪切应力元件德国orontec的剪切应力模拟器中有个重要的剪切应力元件,可以模拟涂料在管道中受到的压力情况,如下图左所示,关闭剪切应力元件上的膜时引起的压力变化。压力的变化会改变流速,如下图右所示,剪切应力元件上膜关闭后,流速为0.12kg/s。剪切应力元件也可以很好的模拟涂料在管道中受到的剪切率,如下图所示,剪切应力元件可以达到大于10000 1/s的剪切率。涂料的颜色受到剪切应力的影响,如下图所示,在泵的作用下,涂料颗粒大小的分布发生了变化,因此模拟涂料在管道中受到的剪切应力,可以帮助客户对进料进行检验。剪切应力模拟器polyshear的基础模块由一个小机动柜组成,只需一个6条的压力线即可运行。喷涂材料充满小罐(1l)后,在泵的作用下通过剪切应力元件流动。其循环流动次数与涂装输送管道有良好的相关性,且相关性已被研究证明。在测试过程中或在测试后,都可以检测样品的粘性和颜色(使用液体涂料色浆测色系统lcm),由此可得出剪切应力与材料降解的相关性。与此同时,在基础模块上可额外添加额外的配件,例如有自动停功能的循环次数计数器、温度传感器。此外,还有另一型号可测试5升样品,此型号可装在手推车上并可以移到如喷涂机器人等装置上。剪切应力模拟器polyshear特点✔专为实验室研制,机动性强且占用空间小。✔涂料测试量仅为1l✔高重复性与与重现性✔与工业喷涂线有优秀的关联性(例如automotive oem paint shops)✔较短的循环周期✔模块化安装,基础模块可以通过更高级的在线测量传感器扩展✔可实现与模拟软件相结合✔可与lcm液体测色系统实现无缝联接✔德国fraunhofer ifam, bremen开发并获得专利剪切应力模拟器polyshear基础型号内部结构说明剪切应力模拟器polyshear基础型号技术参数材质不锈钢外壳和连接器用于测试观察和控制的玻璃窗尺寸长: 400 mm,宽: 660 mm,高: 640 mm重量约56kg压力锅体积约1 l最大压力输入6 bar最大材料压力21 bar泵比约3.5:1翁开尔是德国ORONTEC中国总代理,欢迎咨询剪切应力模拟器更多产品信息和技术应用
  • GC×GC油品检测应用:煤基费托合成润滑油基础油中芳烃含量的测定
    煤基费托合成润滑油基础油中芳烃含量的测定盖青青,朱加清,艾军,赵帅,申巧玲,刘聪云(北京低碳清洁能源研究所,北京,102209)费托合成是煤间接液化过程中的关键技术,是以合成气(CO+H2)为原料,在催化剂上转化生成液体烃类燃料和其他化学品的工艺过程[1]。与传统石油基产品相比,费托合成油(蜡)产品具有硫、氮和芳烃含量低,链烷烃含量高的特性,满足清洁油品的环保要求,是生产优质高端润滑油基础油的原料[2]。费托合成蜡生产的润滑油基础油产品黏度指数高,蒸发损失低,可作为超高黏度指数的润滑油基础油应用于各类发动机油、齿轮油、液压油、压缩机油、润滑脂等。与目前市场上主要润滑油基础油产品 I、II 类油相比,该类产品具有更好的黏温特性,在节能减排、延长机械使用寿命等方面可发挥更大作用。费托合成润滑油基础油以链烷烃为主,芳烃含量低,现有的方法标准NB/SH/T 0966和GB/T 11081均是以紫外分光度法测定芳烃含量,由于液体样品分子间的相互作用,以及多普勒变宽和压力变宽等效应,使液体样品的光谱精细结构变得模糊甚至消失,该方法测定芳烃含量的方法误差大。全二维气相色谱技术(comprehensive two-dimensional gas chromatography,GC×GC)是近年兴起的一种多维色谱分离技术,它将两种极性不同的毛细管色谱柱通过调制器串联形成二维气相色谱系统对样品组分进行分析。与常规一维气相色谱相比,全二维气相色谱以其分辨率高、峰容量大、灵敏度好、谱图分布规律性强等优点,广泛应用于石油馏分的分析中[3],是实现复杂样品中挥发性组分分离鉴定的有力工具,尤其适合极性不同化合物的族分离。由于润滑油基础油的粘度和馏程范围较高,目前鲜有全二维气相色谱对费托合成基础油润滑油组成分析的研究报道。本文采用全二维气相色谱与质谱(GC×GC-MS)联用技术,建立了费托合成润滑油基础油中芳烃含量测定的分析方法。首先通过顶空固相微萃取将芳烃萃取吸附到萃取头上,然后在气相色谱进样口进行热解析进样,再用全二维色谱进行分离,质谱仪检测,内标法定量。采用最佳的固相微萃取条件和色谱分离条件,GC×GC MS对不同加氢异构条件下得到的费托合成润滑油基础油A样品和B样品进行分析。根据质谱解析结果得到族分离条带,由于是反相二维系统,化合物的极性从上到下越来越强,色谱条带分别是烷烃和芳烃,其中烷烃含量居多,有少量芳烃,见图1。图1 费托合成润滑油基础油的全二维色谱三维图Fig. 1 3D surface plot of GC × GC for Fischer-Tropsch synthetic lube base oil由图1可知,由于两个样品的加氢异构条件不同,其组成也有明显的差别,主要是芳烃含量的差异。在定性分析中,自动识别信噪比大于10的色谱峰,通过自动解卷积和NIST 2014质谱库比对检索,筛选相似度大于750的组分,确认样品中芳烃组分。A样品中检测到极少量的芳烃,分别是二甲苯和三甲苯,内标法定量芳烃的总量为0.126 mg/L;B样品中检测到二十多种芳烃组分,均为单环芳烃,内标法定量芳烃的总量为10.651 mg/L。A、B样品中芳烃含量的差别反映到样品的外观上,A样品无色透明,B样品呈现黄色。这些结果也表明在生成B样品的加氢异构反应过程中发生了明显的芳构化副反应,生成了较多的芳烃。由此可知, GC×GC MS相结合的方法不仅可以快速准确地分析费托合成润滑油基础油中芳烃的组成和含量,而且也为润滑油生产优化操作和先进控制提供了可靠的质量检测手段,在分子水平上准确地获得润滑油基础油组成信息提供了参考。参考文献[1] Xiong H F,Motchelaho M A,Moyo M, et al. Effect of Group I alkali metal promoters on Fe/CNT catalysts in Fischer–Tropsch synthesis[J]. Fuel, 2015,150: 687-696.[2] 张雅琳,张占全,王燕,等. 费托合成油和石油基加工产品对比分析[J],化工进展,2018,37(10)3781-3786[3]刘明星,刘泽龙,李颖,等. 固相萃取法/全二维气相色谱-飞行时间质谱测定柴油及其加氢产品中的含硫化合物[J]. 石油炼制与化工, 2020, 51(4): 96-103.本文作者:北京低碳清洁能源研究所 盖青青聚焦气相色谱及相关技术在能源化工领域的技术及应用进展,本网特别策划了“助力双碳 气相色谱在能源领域的应用”主题约稿活动,欢迎业内相关专家学者、一线用户、厂商积极投稿。联系人:赵编辑word图文投稿邮箱:zhaoy@instrument.com.cn微信/电话:15650766910
  • 应用案例I热带水产养殖中模拟和实测的水流与氧气
    在热带鱼养殖场中,尖吻鲈鱼受到越来越多人的欢迎。该鱼类能够在温水环境和含氧量相对较低的环境中存活,但当氧含量降至约3毫克/升以下时,它们的生长速度会减缓,如果氧含量迅速下降,有可能会导致鱼类死亡。本研究的目的是为了更好地了解对于养鱼场的日常操作和环境影响最重要的现场海洋条件。另一个方面是将来自预测模型的模拟水流与实测水流进行对比。围栏里面的氧气含量取决于水流循环和鱼类的本地氧气消耗,以及鱼类食物和排泄物(粪便颗粒)残留物对有机物质的降解。将两个安得拉海洋卫士II(Aanderaa SeaGuardII)多参数系统部署在围栏的外围和内部。在上游部署中,第一个系统放置在系泊中,向上并靠近底部。在下游的部署中,系统颠倒放置,靠近水面(图[1])。测量的参数是水柱中的水流(1米层)、波浪、氧气、盐度、温度和浊度。此外,在其中一个围栏内还安装了测量氧气、温度和盐度的链系统,测量深度分别为水面以下5米和9米。【1】在位置A、B和C安装和部署的安得拉海洋卫士II(Aanderaa SeaGuardII)DCP。A和B用于评估鱼笼对水流速度的影响。第二个系统放置在一个围栏里面, 位置C(红色),用于监测2个不同深度处的氧气盐度和温度。结果表明:在这一位置,水流由潮汐驱动以0至100cm/s的速度运动,在整个水柱的东南方向有一个相当均匀的主水体运移,在有鱼笼的情况下,围栏下游的位置B水流速度出现了很大程度的减缓。【2】位置A和B中预测水流速度(红色)和实际现场测量的水流速度(蓝色)之间的对比。在此位置,渔场运营团队从模型公众号中接收整个水柱的平均水流速度信息。为便于比较,对所有在1m测量单元处测量的水流速度进行了平均,并与模拟结果进行了对比(图[2])。渔场上游的模拟和实测速度对比结果较好,但是当水流速度较大时,模型低估了水流的速度。因为没有考虑到渔场,因此,下游的模型完全高估了下游的水流速度。在此位置,整个水柱在一个主方向上运移,建模相对容易。如果某个位置的水流在不同的深度朝着不同的方向流动,那么此位置的建模将会变得比较困难。在两个不同深度处对溶解氧(DO)进行了测量。在两周的部署期间中,溶解氧主要随潮在60%至100%的空气饱和度之间变化。与9米的深度相比,5米深度处的溶解氧含量有较低的趋势,这可能是由于鱼类喜欢在较浅的深度处聚集。8月12日测得的氧气含量最低,在水深5米和水深9米深度处测得的浓度分别为3.88毫克/升和5.64毫克/升。在同一时期,温度读数和盐度读数没有出现任何的异常[图[3]),这意味着溶解氧水平的下降可能是由于鱼笼内外溶解氧交换不良所致。这种较大的差异表明了连续监测相对于点测量的重要性。在这种研究,溶解氧没有下降到临界水平以下,但监测时间较短。【3】安得拉(Aanderaa)链系统在水面下5米深度处和9米深度处监测到的氧气、温度和盐度
  • ​整合结构质谱法和计算模拟法探究糖原磷酸化酶中磷酸化介导的蛋白变构调控和构象动态性
    大家好,本周为大家介绍一篇本课题组发表在ACS Chem. Biol.上的文章,Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling1。变构调节在自然界中广泛存在,可以用于调控细胞过程。糖原磷酸化酶(GP)是第一个被鉴定出的与变构调节相关的磷酸化蛋白。GP是一个分子量约196kD的同源二聚体蛋白,是糖代谢中重要的组分,也是2型糖尿病及癌症的靶点。AMP结合以及Ser14的磷酸化介导了GP的变构调节,使其构象从非活化的T-state GPb(未磷酸化状态)转变为活化的R-state GPa(磷酸化状态)。即使目前X-射线晶体学法解析出了GP的原子级蛋白结构,但受限于较大分子量,其结构动态性的检测较为困难,因此与GP变构调节相关的结构动态变化过程仍较为模糊。核磁共振(NMR)谱及分子动力学(MD)模拟等是探究蛋白质结构动态性的常用方法,但NMR分析存在分子量上限,且样品消耗量大,MD模拟的时间尺度和力场准确度有限。质谱(MS)法具有快速、灵敏的特点,是蛋白质结构、动态性以及构象变化分析中强有力的一款技术。氢氘交换质谱(HDX-MS)通过监测蛋白骨架酰胺氢原子与溶液中氘的交换来反映蛋白质构象动态性,因此适用于探究由配体、蛋白结合或共价修饰引起的蛋白质构象变化。同时,多个软件实现了由HDX-MS数据计算保护因子(PFs)和吉布斯自由能,从而提取残基水平的蛋白动态性信息。此外,在先前的工作中2, 3,我们整合了native MS和top-down方法(native top-down,nTD-MS技术),成功实现了多个蛋白复合物的一级序列到高阶结构等多方面信息的检测(包括测序、翻译后修饰、配体结合、结构稳定性、朝向等)。整合多种结构质谱法(整合结构质谱法)可以有效填补传统生物物理法中结构到动态性联系中的空缺,更好地表征变构调控现象。本文整合了HDX-MS、nTD-MS、PF分析、MD模拟以及变构信号分析检测了磷酸化介导的GP变构调控的结构和动态性基础,为GP的变构调控过程提供了见解。根据X-射线晶体学结构报道(图1a),T-state GPb转变为R-state GPa时,二聚体界面中N-末端尾部、α2、cap’(图1b)以及tower-tower helices区(图1c)发生了明显的结构重排,导致催化位点开放,从而底物磷酸吡哆醛(PLP)可以结合。尽管有晶体学报道,但与变构调控关联的构象动态性仍有待探寻。图1.(a)磷酸化介导T-state GPb(PDB:8GPB)向R-state GPa(PDB:1GPA)的构象转变;亚基相互作用界面:(b)C端区域和(c)tower-tower helices,GPb为蓝色,GPa为绿色。首先我们通过nTD-MS进行了检测。如图2a、b,谱图中观察到了GPb的单体和二聚体信号,其中二聚体为主要形式;GPa除了单体和二聚体外,谱图中还存在少量四聚体,但仍以二聚体为主要形式。当增加sampling cone(SC)电压时,GPb、GPa保留了其二聚体形式(图2c、d)。随后我们选择离子(29+)并在trap池中进行了碎裂(图2e、f、g、h),谱图低质荷比区GPa的碎片相对峰强度较GPb高,说明GP的二聚体互作界面较为稳定,且GPb亚基结构较GPa稳定。nTD-MS不仅能够探究GPb、GPa的结构差异,也能够为接下来的HDX-MS实验做好前期样品质量检查工作。图2.不同活化条件下GPb、GPa的nTD-MS谱图。(a、b)SC=40V;(c、d)SC=150V;(e、f)SC=150V、trap=100eV;(g,h)SC=150V、trap=200eV。左侧为GPb,右侧为GPa。随后我们进行了HDX-MS实验。图3a中展示了五个时间点的HDX heat map。图3b为通过PyHDX软件计算产生的PF值。其中N-端(1-22)以及tower helix前的loop区域(256-261)的氘代值较高、PF值较低,说明这些区域较为柔性或是结构较为无序。此外我们发现,tower-tower helices(262-276)区域的氘代值较低、PF值较高,表明helices的旋转可能是由前端可塑性铰链区触发的,而非helices本身的变形和重塑引起的,这些发现在晶体结构数据中均有吻合之处。除这两个区域外,GPa和GPb基本保持了稳定的整体结构。而从1μs原子级MD模拟计算得到的均方根波动(RMSF)和溶剂可及表面(SASA)中我们也发现(图3c),这两个区域数据与HDX-MS信息有所吻合,但MD模拟中部分区域未和HDX-MS相吻合的区域可能跟序列覆盖不足相关。图3. (a、d)GPb和GPa在不同标记时间下的氘代热图并映射到结构中(PDB: 1GPA)。(b、e)基于HDX-MS数据计算得到的PF值并映射到晶体结构中。(c、f)MD模拟中RMSF和SASA值并映射到结构中。从氘代差异图(图4a)中可以看出,4个区域呈氘代降低趋势(红色方框),多个区域呈氘代上升趋势(蓝色方框)(GPa-GPb)。而PF差的变化趋势与氘代变化趋势基本一致(图4b)。由数据可知,N-端和tower-tower helices的变化说明磷酸化介导的变构稳定了这两个区域,α1-cap-α2区域的动态性轻微下降。除此之外多个区域(尤其是tower-tower helices序列后的区域)均表现为PF值下降,说明相比于GPb,GPa催化位点附近的区域动态性增强了。接下来我们根据HDX kinetic plot特征将其进行了分类,并详细讨论了所属区域的变化。图4.(a)GPa-GPb HDX-MS的氘代差异图。(b)GPb到GPa PF的变化。 首先是N-端和C-端的变化(图5)。N-端残基1-22表现氘代下降,这说明N-端具有一定可塑性。受N-端区域磷酸化和结构变化影响,C-端区域也产生了一定的变化。此外,残基30-50(cap区)和残基111-117(α4back-loop)区表现氘代下降,而103-109(α4front)表现氘代上升。根据晶体结构推测,cap区和α4back-loop的氘代变化受N-末端变化影响,原有的残基相互作用被打破,形成新的残基间相互作用,同时这两个区域也经历了结构重排,因此表现出较明显的氘代变化。残基88-99(β2-α3)和残基125-141(β3-L-α6)氘代上升。总的来说,磷酸化使得cap′/α2界面互作增强了,同时磷酸化基团和精氨酸残基的静电相互作用是cap区产生变化的主要原因,而α1和α2起到锚定作用,其相对位置基本保持不变。图5.GPb(a)和GPa(b)的N-端和C-端区域的局部结构和HDX动力学曲线(c)。 此外,tower-tower helices(α7,残基262-278)区的变化同样值得关注(图6)。250s loop是表面暴露区域,未与其他区域发生接触,其氘代下降可能是因为自身结构的收缩。而肽段262-267和268-274氘代下降提示该区域可能发生了低周转率或强互作的结合反应。280s loop区氘代值上升。这些变化均说明,tower-tower helix的角度的改变不仅影响了二聚体界面结构,而且还影响了其靠近催化位点的周围区域。因此我们结合晶体结构推测,磷酸化和N-端相对位置的改变,使250s loop自身结构收缩,从而打破了Tyr262' -Pro281和Tyr262-Tyr280′之间的相互作用,导致两个亚基的tower helices发生相对滑动,倾斜角度增加。图6.GPb(a)和GPa(b)tower helix区域的局部结构和HDX动力学曲线(c)。 最后是催化位点、PLP结合位点和糖原存储位点的变化情况(图7)。催化位点周围多数区域均表现氘代上升趋势。我们推测,随着Pro281、Ile165和Asn133间的相互作用被打破,Arg569与Ile165、Pro281、Asn133间的互作也随之打破,因此催化位点和PLP结合位点周围的残基溶剂可及性上升,局部区域结构变得更为灵活,催化位点开放并转变为活化构象。糖原储存位点位于GP表面,距离催化位点30Å,除了α23(残基699−708)外,HDX-MS在糖原存储区没有观察到明显的变化。图7.GPb(a)和GPa(b)的催化位点和PLP(橙色)结合位点的局部结构和HDX动力学曲线(c)。结合以上所有数据,我们对磷酸化调节的动态机制进行了推测(流程图1)。磷酸化后,N-端尾部残基与acidic patch的互作被打破,也导致N-端尾部的有序化以及C-端尾部的无序化以及伴随的其他结构变化。通过在pSer14和Arg69和Arg43′之间形成新的盐桥,N-端残基被重定位,随之带来的是Asp838和His36′间的盐桥断裂。随着三级和四级结构的转变,250s loop收缩并发挥类似“门环”的作用,当其收缩时,Tyr262′-Pro281与Tyr262-Tyr280′之间的相互作用、276-279区与162-164区之间的氢键也被打破,导致tower helix发生相对滑动,tower-tower helices之间的作用被打破,同时将结构变化传递到催化位点。最后,280s loop和催化位点以及PLP结合位点附近的残基松动,通往催化位点和底物磷酸盐识别位点的通道打开,酶得以活化。流程图1.GP变构调节过程中,被打破(蓝色)或新形成的(红色)关键残基相互作用。 本文整合nTD-MS、HDX-MS、PF分析和MD模拟检测了GP磷酸化变构调节过程的结构和动态基础,通过该整合结构手段揭示了GP构象柔性、局部动态性以及长程变构调控构象变化中值得关注的信息。各个方法具有各自的优势,但也在一定层面存在局限,我们期待将HDX-MS信息与计算模拟信息进行更深度的整合以实现二者对蛋白质结构更精确的分析。撰稿:罗宇翔编辑:李惠琳原文:Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling李惠琳课题组网址:https://www.x-mol.com/groups/li_huilin参考文献1.Huang, J. Chu, X. Luo, Y. Wang, Y. Zhang, Y. Zhang, Y. Li, H., Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling. ACS Chem. Biol. 2022.2.Li, H. Nguyen, H. H. Ogorzalek Loo, R. R. Campuzano, I. D. G. Loo, J. A., An integrated native mass spectrometry and top-down proteomics method that connects sequence to structure and function of macromolecular complexes. Nat. Chem. 2018, 10 (2), 139-148.3.Li, H. Wongkongkathep, P. Van Orden, S. L. Ogorzalek Loo, R. R. Loo, J. A., Revealing ligand binding sites and quantifying subunit variants of noncovalent protein complexes in a single native top-down FTICR MS experiment. J. Am. Soc. Mass Spectrom. 2014, 25 (12), 2060-8.
  • 气相色谱仪检测分析绝缘油/绝缘油检测分析仪器厂家直销
    南京科捷是检测分析绝缘油/绝缘油检测分析气相色谱仪的厂家,联系电话:尹先生13951792301,欢迎来电咨询、购买! 绝缘油一种润滑油。通常由深度精制的润滑油基础油加入抗氧剂调制而成。主要用作电器设备的电介质。电器绝缘油的主要性能是低温性能、氧化安定性和介质损失。绝缘油检测分析仪专用气相色谱仪性能: GC5890型气相色谱仪 :全兼容惠普HP5890II气相色谱仪,可直接接驳HP5890微型单丝热导检测器、氢火焰离子化检测器及相关检测器控制板.可同时安装两种进样系统:填充柱、毛细管分流/不分流进样系统(具有隔膜清扫功能);可同时安装两种相同或不同的检测器:氢火焰离子化检测器(FID)、热导检测器(TCD).可选配自动/手动气体六通进样阀进样器、顶空进样器、热解析进样器、裂解炉进样器、甲烷转化炉. 更多检测分析绝缘油/绝缘油检测分析气相色谱仪详情可登录www.kj17.com了解!
  • 锂电池安全性多尺度研究策略:实验与模拟方法
    作者:甘露雨 1,2 陈汝颂 1,2潘弘毅 1,2吴思远 1,2禹习谦 1,2 李泓 1,2第一作者:甘露雨(1996—),男,博士研究生,研究方向为锂离子电池安全性,E-mail:ganluyu@qq.com;通讯作者:禹习谦,研究员,研究方向为高比能锂电池关键材料、电池先进表征与失效分析,E-mail:xyu@iphy.ac.cn。单位: 1. 中国科学院物理研究所,北京 100190;2. 中国科学院大学材料科学与光电技术学院, 北京 100049DOI:10.19799/j.cnki.2095-4239.2022.0047摘 要 作为新一代电化学储能体系,锂离子电池在消费电子产品、交通动力系统、电网储能等领域具有重要的应用价值。然而,在锂离子电池的商业化进程中,安全性事故时有发生,影响了锂离子电池的大规模应用。本文从电池安全性的三个研究尺度:材料、电芯、系统,综述了与之对应的重要研究方法,其中每个尺度均包括基于物理样品的实验方法和基于计算机数学模型的模拟方法。本文介绍了这些方法的基本原理,通过典型案例展示了这些方法在安全性研究中的适用场景和作用,并探讨了实验和模拟方法之间的联系,着重介绍了材料热分析、材料加热过程中结构分析、电芯加速度量热分析、电芯安全性数值模拟等方法。基于对多尺度研究策略的系统综述,认为安全性研究需要在各个尺度联合同步开展。最后,展望了下一代锂电池,如固态电池、锂金属电池等,可能面临的电池安全性问题。这些新体系的安全性研究仍处于早期,其材料和验证型电芯的安全性研究是当前阶段值得关注的重要课题。关键词 锂离子电池;安全性;实验方法;数值模拟;固态电池;锂金属电池锂离子电池的研究始于1972年Armand等提出的摇椅式电池概念,商业化始于1991年SONY公司推出的钴酸锂电池,经历超过三十年的迭代升级,已经成熟应用于消费电子产品、电动工具等小容量电池市场,并在电动汽车、储能、通信、国防、航空航天等需要大容量储能设备的领域中展现出了巨大的应用价值。然而,自锂离子电池诞生开始,安全性便一直是限制其使用场景的重要问题。早在1987年,加拿大公司Moli Energy基于金属锂负极和MoS2正极推出了第一款商业化的金属锂电池,该款电池在1989年春末发生了多起爆炸事件,直接导致了公司破产,也促使行业转向发展更稳定地使用插层化合物作为负极的锂离子电池。如图1所示,锂离子电池进入消费电子领域后,多次出现了因电池火灾隐患而开展的大规模召回计划,2016年韩国三星公司的Note7手机在全球发生多起火灾和爆炸事故,除了引起全球性的召回计划外,“锂电池安全性”再次成为广受关注的社会话题。在电动交通领域,动力电池的安全性事故伴随着新能源汽车销售量的提升逐渐增加,据统计,中国在2021年有报道的电动车火灾、燃烧事故超过200起,电动汽车安全性成为消费者和电动车企最关心的问题之一。在储能领域,韩国在2017—2021年期间发生了超过30起储能电站事故,2021年4月16日北京大红门储能电站爆炸事故除导致整个电站烧毁外还造成2名消防员牺牲、1名员工失踪。随着锂离子电池的应用场景日益扩大,其安全性在工业界和学术界均引发了广泛的讨论和研究。图1 锂离子电池近年引起的安全事故在锂电池发展的早期阶段,产业界和学术界更关注锂电池发生安全性事故的本质原因,基于长期的认识积累,锂电池发生安全事故的本质可以总结为:电池在过充、过热、撞击、短路等异常使用条件下温度异常升高,引发内部一系列化学反应,引起电池胀气、冒烟、安全阀打开,同时这些反应会大量释放热量使整个电池温度进一步升高,最终各个化学反应剧烈发生,电池温度不可控地迅速上升,引起燃烧或爆炸,导致严重的安全事故,这一过程也被称为电池的“热失控”。电池从异常升温到热失控过程中存在多个重要的化学反应,它们与温度的对应关系如图2所示。图2 锂离子电池热失控的诱发机制随着锂离子电池的广泛应用,关于锂离子电池安全性的研究逐渐深入,从早期简单的描述现象和定性预测,发展为在多个尺度、采用多种手段研究安全性机理,基于精准测量和数值化模型准确预测电池安全性表现,最终提出应用化解决方案的综合性研究策略。如图3所示,目前对于电池安全性的研究一般从理解锂离子电池电芯的热行为出发,包括利用各类滥用条件测试确定电池的安全使用极限和失效表现,利用绝热量热等手段具体分析电池的热失控行为和特征温度,以及利用热失控数值模拟方法模拟电池的热失控表现;在认识电芯热行为的基础上,需要深入材料本质,利用热分析、物质结构和化学成分分析、理论计算等方法理解电芯发生热失控在材料层面的反应机制,从而为设计制造高安全性的电池提供基础理论的指导;此外,电芯作为电池系统的基础,其热失控行为的精准测量和准确模拟也为在系统层面设计更高安全性的电池系统和管理预警方案提供了理论指导。本文从材料热稳定性、电芯热安全性和大型电池系统热安全性三个尺度介绍安全性研究策略,着重介绍几种实验和模拟方法。基于商用体系锂离子电池的研究策略和成果,进一步探讨了这些方法对于产学研各界研发下一代锂电池所具有的重要意义。图3 锂离子电池安全性研究策略1 材料热稳定性研究锂离子电池发生热失控的根本原因是电池中的材料在特定条件下不稳定,从而发生不可控的放热反应。目前商业化使用的电池材料中,与安全性关系最密切的主要是充电态(脱锂态)过渡金属氧化物正极、充电态(嵌锂态)石墨负极、碳酸酯类电解液和隔膜,其中前三者在高温下均不稳定且会发生相互作用,在短时间内释放大量的热量,而现行常用的聚合物隔膜则会在140~150 ℃熔融皱缩,导致电池中的正负极直接接触,以内短路的形式快速放热。研究人员自20世纪末开始进行了大量材料热稳定性的研究工作,发展了以热分析认识材料热行为,结合形貌、结构、元素成分和价态表征综合研究内在机理的研究方法。近年来计算材料学的发展也为从原子尺度模拟预测材料的稳定性提供了新的方法和手段。1.1 热分析方法热分析是最直接和直观认识材料热行为的方法,指在一定程序控温(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术。对于电池材料来说,一般关注其质量、成分、吸放热行为随温度的变化关系。质量与温度的关系可通过热重分析获得,吸放热与温度的关系可通过差示扫描量热法获得,TG和DSC可以设计在同一台仪器中同步测试,该种方法又被称为同步热分析。TG、DSC、STA等仪器通常采用线性升温程序,通过热天平、热流传感器等记录样品的质量、吸放热变化,由于发展时间较早,测试技术和设备工程化水平较为成熟,已成为认识材料稳定性最重要的测试手段之一。基于热分析结果可以确定材料发生相变、分解或化学反应的起始温度、反应量和放热量,但在锂离子电池中,往往更关心充电态材料在电解液环境下的稳定性和反应热。良好的热稳定性是电池材料进入应用的必要条件,而产热量和产热速度则影响电池热失控的剧烈程度。用于常规热分析样品的坩埚一般为敞口氧化铝材质或开孔的铝金属材质,为了研究材料在易挥发电解液中的热表现,需要使用自制或设备厂商专门提供的密封容器。Maleki等通过STA系统研究了钴酸锂/石墨圆柱电池中各种材料的热分解行为,由于电解液采用高沸点的EC溶剂,所以仅在敞口容器中便可以测试,研究发现全电池截止电压4.15 V时,脱锂态钴酸锂在178 ℃发生分解,产生的氧气和电解液反应释放大量热量,释放的能量达到407 J/g,嵌锂态负极的SEI会优先分解,温度在125 ℃之前,之后会出现持续的放热反应,释放能量为697 J/g,而当负极发生析锂后释放能量会上升到827 J/g,这一结论有力支持了近年来析锂电池安全性下降的报道。Yamada等利用DSC确认了充电态磷酸铁锂(LiFePO4)的稳定性很好,与电解液的反应温度大于250 ℃,放热量仅为147 J/g,显著低于层状氧化物材料。Noh等利用密封容器系统研究了不同Ni含量的三元正极材料Li(NixCoyMnz)O2,比较热分析结果发现脱锂态三元材料的热稳定性与Ni含量呈现负相关性,且在x0.6之后加速下降。材料经过改性后,其稳定性需要通过热分析进行确认,研究人员基于DSC发现核壳浓度、包覆等方法均能不同程度地提高正极材料的热稳定性。需要注意的是,热分析的数据质量与实验条件、样品制备方法密切相关,目前并没有严格一致的测试规范,文献中不同单位之间的测试结果横向对比性很差,很多电池材料的热稳定性尚缺乏准确定量的结论。除了DSC、TG外,还有一类特殊的热分析方法是利用加速度量热仪研究反应的起始温度。与常规热分析采用线性升温不同,ARC使用的升温程序是加热-等待-检索模式,即步进式地在每个温度点保持恒温,如果检索程序发现样品的升温速率超过0.02 K/min,则通过同步样品的升温速率保持样品处于绝热状态,从而跟踪样品的自加热升温过程,否则开始加热至下一个温度点进行恒温、检索。不难发现,ARC获取的是样品近似热力学上的失稳温度,由于检测精度高,获得的失稳温度往往比DSC、TG等方法获得的低很多。Dahn课题组基于ARC测试了大量材料-电解液体系的反应起始温度,基本均低于DSC数据中的放热主峰。事实上,Wang等在低升温速率的DSC测试中也发现充电态材料与电解液的放热起始点远早于剧烈的放热峰。这些信息表明材料失稳到完全失控的过程并不是突变式的,整个体系动态演变的过程仍然缺乏深入的研究认识。图4 (a) DSC基本原理;(b) 脱锂态正极-电解液的DSC测试结果1.2 物相分析技术电池材料在升温过程中发生相变和化学反应,其形貌、结构、成分和元素价态都有可能发生变化,这些变化需要基于对应的方法进行表征分析,如利用扫描电子显微镜观察材料热分解前后的形貌变化,利用X射线衍射和光谱学研究材料结构和元素价态演变。由于材料热分解和热反应存在显著的动力学效应,在加热过程中原位测试可以最大程度地还原物相变化的真实过程。目前较为成熟的原位表征技术主要有两类:一类是与热分析仪器串联使用的质谱、红外光谱等,可以实时监测物质分解产生的气体类型,判断材料加热过程中化学组成的变化;另一类是原位X射线衍射技术,通过特制的样品台,可以在升温过程中实时、原位测定材料的结构变化,目前全球多数同步辐射光源和一些实验室级的X射线衍射仪上都可以实现原位变温XRD测试。Nam等利用变温XRD发现脱锂态LiNi1/3Co1/3Mn1/3O2结构在350 ℃向尖晶石转变,而加入电解液后该转变温度会下降至304 ℃。Yoon等在LiNi0.8Co0.2O2中发现了类似的规律,并发现MgO包覆可以改善脱锂态正极在电解液中的相变。图5展示了变温XRD和MS的联用技术,系统研究了不同Ni含量的脱锂态NCM三元正极在升温过程中的结构和成分变化,研究发现三元正极失稳释放氧气的过程与结构在高温下转化为尖晶石相的行为直接对应,且这一过程的起始温度随镍含量的上升显著下降,NCM523的起始相变温度约为240 ℃,NCM811则小于150 ℃,从体相结构的本征变化解释了高镍正极在电池应用中热安全性差的原因。以上工作都是基于同步辐射光源实现的,由于同步辐射提供的光源质量高、扫谱速度快,更适用于研究与时间相关的动力学问题。除此之外,近年来基于X射线谱学以及拉曼光谱实现同步表征的方法均有所发展。结合通过热分析手段观察得到的材料热行为信息,并对升温过程中材料物相变化的研究,可以更深刻地理解材料演变以及电池体系热失稳的动力学过程,为材料的安全性改良提供理论指导。图5 基于原位XRD和质谱对镍钴锰酸锂结构稳定性的研究1.3 计算材料学基于材料原子结构计算预测材料的全部性质是计算材料学家的终极追求。材料的热力学稳定性可以基于密度泛函理论计算。DFT中判断材料稳定性的依据是反应前后的能量差ΔE是否小于0,如果ΔE小于0,反应能发生,则反应物不稳定,反之同理。Ceder等在1998年就计算了LiCoO2脱锂过程结构相变的过程,计算结果与实验结果吻合良好。然而目前大多数热力学计算不考虑温度效应,且热力学只能作为反应进行方向的判据,无法预测反应速率等动力学问题,考虑温度和动力学计算则需要使用成本较高的分子动力学、蒙特卡洛或者过渡态搜索方法。相对于材料本身的稳定性,计算材料学对于计算预测两种材料间的界面稳定性存在一定优势。Ceder等计算了不同正极和固态电解质之间的稳定性,为选取界面包覆的材料提供理论指导。Cheng等利用AIMD模拟Li6PS5Cl|Li界面,发现界面副反应会持续发生,材料界面之间的副反应是自发发生的,与通常认为的界面钝化效应有所差异。此外,正极材料中的相变析氧、过渡金属迁移等问题的计算模拟也都处于初期开发阶段,仍需持续探索。总的来说,目前阶段材料层级的理论模拟技术与实验技术的差距仍然较远,需要研究人员的持续努力。2 电芯热安全性研究电芯指电池单体,是将化学能与电能进行相互转换的基本单元装置,通常包括电极、隔膜、电解质、外壳和端子。电芯的热安全性特征是电池工业界最关注的内容之一,它是电池材料热稳定性的集中表现,也是制定规模化电池系统安全预警和防护策略的基础。由于电芯内部具有一定的结构,其安全性会呈现一些在纯材料研究中不被讨论的特点,使得电芯安全性具有更广泛的外延和认识角度。工业上一般通过滥用实验来研究和验证电芯产品的安全性,近年来基于扩展体积加速度量热仪(又称EV-ARC)的安全性测试方法有较快发展,此外电芯安全性模拟方法也从早期的定性分析发展到可以准确仿真预测热失控进展的水平。2.1 滥用测试国际电工委员会(IEC)、保险商实验室(UL)和日本蓄电池协会(JSBA)最初定义了消费电子产品电芯的滥用测试,模拟电芯工作可能遇到的极端条件,通常分为热滥用、电滥用和机械滥用。常见的热滥用为热箱实验,电滥用包括过充电和外部短路实验,机械滥用包括针刺、挤压、冲击和振动等。企业和行业标准一般将电池对滥用测试的响应描述为无变化、泄漏、燃烧、爆炸等,也可基于附加的传感器和检测系统记录温度、气体、电压对滥用的响应。电芯通过滥用测试的标准是不燃烧、不爆炸。锂电池应用早期研究人员大量研究了电池对各类滥用测试的响应与使用条件、材料体系、充电电量等的影响,提出了各类滥用机制引发电池热失控的机理。滥用测试中最难通过的项目是针刺测试,近年来关于针刺测试的存废引起了较大争议,但提高电芯的针刺通过率仍是锂电池安全性研究的重要课题之一。由于滥用测试针对的是商用成品电芯和贴近真实的使用条件,目前更多作为电池行业的安全测试标准而非研究手段。2.2 EV-ARC测试早期的ARC只适用于研究少量材料样品的热失控行为,Feng等发展了利用EV-ARC研究大体积电芯绝热热失控行为的方法,研究的方法原理和结论如图6所示,由于EV-ARC的加热腔更大,所以需要更精准的控温技术和更严格的校准方案。基于EV-ARC测试可以定量标定出电芯热失控的特征温度T1、T2和T3,分别对应电芯自放热起始温度、电芯热失控起始温度和电芯最高温度,为评价电芯安全性提供了更精确定量的评价指标,标准化的测试条件可以帮助建立统一可靠的电芯热失控行为数据库,分析了不同体系电芯的热失控机理。Feng等利用EV-ARC首次提出正负极之间的化学串扰会引起电芯在不发生大规模内短路的情况下热失控,说明脱锂正极释氧是现阶段影响电芯安全性的关键因素。Li等研究快充后的电芯发现快充析锂导致T1大幅下降,说明析锂同样是电芯安全监测中需要重点关注的问题。以上这些问题都是在常规的滥用测试中难以定量验证的。图6 基于EV-ARC对电芯热失控的研究相比于普通的加热滥用实验,EV-ARC实验环境的温度由程序精确控制,获得的测试结果重复性更好、数据可解读性更高,近年来已成为评价和研究电芯安全性的重要手段。然而EV-ARC模拟的绝热热失控环境与真实的电池滥用工况仍有所差异,评价电芯的实际安全性仍需大量模拟真实严苛工况的测试手段。2.3 高速成像技术为了更直观地理解热失控过程中电池内部物质、结构的演化,研究人员发展了结合红外测温以及原位针刺等辅助功能的透射X射线显微方法如图7(a)~(c)所示。由于热失控往往是在极短的时间内发生剧烈的反应,同时伴随剧烈的物相、结构变化。这一特点给TXM表征方法提出了相当高的时间分辨率的要求。实验室X光源能够发射出的X射线光电子数量有限,采集一组TXM影像数据需要较长的时间。为了观察剧烈变化的热失控过程,Finegan等在欧洲同步辐射实验室(ESRF)使用同步辐射光源将TXM的曝光时间降低至44 μs,配合针内预埋的热电偶温度传感器,实现了对针刺发生时电池内部形貌与刺入点温度的同步监控。该团队利用这种手段研究了刺针纵向与径向刺入18650商业圆柱电池时电池内部热失控行为的差异。Yokoshima等采用实验室光源进行连续实时的透射X射线照相技术,也得到了软包电池在针刺过程中结构随时间变化的一组透射投影图。该方法以4 ms的时间分辨率较为清晰地观察到了针刺入软包电池后电池内部每一层材料的形变过程,以及针刺深度与热失控程度的对应关系。图7 基于X射线成像技术对电芯热失控的研究由于透射投影图只能反映某一方向上二维的信息,如果要对真实三维空间中物质的分布做精确地定量,需要借助计算机成像技术。如图7(d)所示,Finegan等利用同步辐射光源X射线高亮度的特征,在欧洲同步辐射装置(ESRF)的线站上搭建了一套集合原位红外加热、红外测温与高速CT的装置。使用红外加热,实现在线的18650电池升温,同时进行连续的X射线CT成像。连续扫描的TXM投影图能够反映极高时间分辨率的热失控电池内部情形。基于每500张TXM重构得到1个X射线CT结果能够达到2.5帧每秒,实现了一定时间分辨率的电池内部空间分布成像。通过CT结果能够清晰地看到热失控过程中各个阶段的电池材料变化,如电极活性物质层破损、铜集流体融化再团聚等。结合TXM技术获得的投影图和高速X射线CT结果,可以清晰认识热失控过程中电池内部不同位置各个材料的反应、产气、结构破坏等失效行为。另一方面,配合诸如针刺、红外加热、挤压、拉伸等原位实验,可以帮助研究与理解电池的各类宏观失效行为。2.4 电芯热失控数值模拟电芯安全测试的维度广、涉及的测试项目多,通过实验评价电芯安全性需要大量样品和时间成本。同时,产品级电芯的研发周期长、成本高,安全性评估往往处于电芯研发周期的后端。通过数值模拟方法预测电芯安全性测试表现可以大幅度降低实验成本,且在产品研发的前期便对体系的安全性做出判断,大大提高研发效率。电芯热失控数值模型的核心是准确描述电芯热失控过程中的化学反应及吸放热量,从而基于能量守恒模拟电池温度在不同条件下的动态变化。化学反应的吸放热一般通过Arrhenius公式描述 (1)式中,图片指反应的产热量;图片为反应物的质量;图片为反应单位质量的吸放热;α为反应的归一化反应量;图片为机理函数;图片为反应的指前因子;图片为反应活化能。通过热分析实验可以测定求解以上参数,这也是热分析动力学的基本问题。电芯升温过程中内部会发生多个反应,它们对电芯升温的贡献可以看作线性叠加,通过准确描述所有反应即能较为精准地预测电芯在不同条件下的温度变化行为 (2)上述方程中,图片为电芯密度;图片为等压比热容;图片、图片、图片为电芯中沿各个方向的热导率;图片为对所有化学反应的产热速率求和;图片为电池与环境换热所引起的能量变化。预测温度变化需要求解二阶含时偏微分方程,如果认为电池中的反应和空间无关,电芯温度均匀上升且电芯体系与外界无热交换,也可简化为一阶微分方程 (3)基于该理论,Hatchard等将电池中主要的化学反应总结为SEI分解、负极-电解液反应、正极-电解液反应、电解液分解反应,计算了方形和圆柱电芯在热箱中的热行为。Spotnitz等总结了早期文献中的反应动力学参数,并基于均一电芯模型系统预测了不同材料体系的电芯在各类滥用测试中的表现。通过理论模拟,可以仅基于少量小规模实验数据对实际电芯的安全性表现进行系统预测。Feng等、Ren等基于热分析动力学和非线性优化算法重新标定了电池中关键反应的动力学参数并进行了更准确的热失控模拟,他们的模型利用DSC测试获得的参数准确预测了电池在ARC中的热失控表现,可以进一步用于预测热箱、短路等条件下的安全性。需要指出的是,不同材料体系、配方和工艺的电芯中涉及的反应机制和动力学可能存在差异,如近年来电芯内短路、正极-电解液反应和正负极化学串扰三者是否均在热失控过程中主导发生的问题引起了广泛争论,安全性的数学模拟并非空中楼阁,而是建立在具体实验和对电池内部化学反应深刻理解的基础上。由于算力的限制,早期的安全性仿真工作大多不考虑温度空间分布或只计算一维分布,而空间分布在大容量电池和真实工况中是不可忽略的,Kim等、Guo等较早提出了描述热失控温度分布的三维电池模型。近年来数值计算方法的发展和商业计算软件的成熟大幅降低了安全性模拟仿真的难度,Feng等利用商业化的有限元计算软件Comsol Multiphysics建立了大容量三元方形锂离子电芯的热失控仿真模型,可以模拟电芯在短路状态下热失控过程和温度的分布,与实测有较好地拟合结果。除了电芯的热行为,电滥用和力学失效对安全性也存在一定的影响,目前,通过构建电-热耦合模型研究电池非等温电化学性能和短路热失效表现的方法目前已较成熟[59-60],而力学失效如碰撞、针刺等引起热失控的数值模型仍需要持续地开发。3 系统热安全性研究电池系统的安全性是目前锂电池应用面临的最直接问题,其研究重点是系统中热失控的扩展规律与抑制、预警措施。目前商品化电芯的热失控无法完全避免,在系统层面防止热失控扩展是可能的安全性解决方案。在系统层级开展实验研究的成本较高,但难以避免,在模拟仿真的辅助下可以提前预测优化系统设计,降低实验成本。3.1 热失控扩展和火灾危险性测试电池系统热扩展的实验研究成本和危险性较高,主要方法是通过加热、过充、针刺等方式诱发电芯单体的热失控,并利用接触式热电耦、红外测温等手段研究温度在系统中的分布和变化,这种方式只能获得局部多点的热失控信息。Wang团队在国内首次开发了全尺寸锂离子电池火灾危险性测试平台,用来测量大尺寸动力电池及电池组的燃烧特性,除了可以获得电池温度变化外,还可以获得电池组失控过程中的质量变化、火焰温度等信息,同时基于锥形火焰量热等技术可以测定大型电池系统宏观燃烧所释放的能量。与电芯EV-ARC等方法获得的信息不同,在真实环境下实验得到的电池系统燃烧行为往往更加复杂,包含多个加速失重和喷射火焰的阶段。通过以上测试可以在实用层面评价大型电池组的安全性和失控风险,为安全性改良、预警、消防和灾害处置提供重要信息。3.2 灾害气体研究和预警方案设计电池实际使用和安全失效的过程中,气体的成分与生成规律是重要的研究课题,与电池热失控早期预警、爆炸、火灾蔓延等表现密切相关。从材料本质上看,电池中的有机电解液在高温下气化、活性组分高温副反应均会释放气体,加热条件下产生的混合气体可以通过气相色谱-质谱联用技术、傅里叶变换红外光谱等手段分析成分。目前这些气体检测技术已较为成熟,但在安全性研究过程中,气体的收集和定量仍需要特制的容器或取样器辅助实现。一般来说,电池热失效气体组分中除了惰性的CO2外还包括大量未完全反应的电解液溶剂、CO、H2和有机小分子,兼具可燃性和生物毒性,Ahmed等发现可燃气体的释放是加剧锂电池系统热失控扩散、诱发大规模火灾事故的重要原因。由于气体的扩散速度快,检测手段较成熟,气体监测有望成为电池系统安全预警的关键手段,Cui等利用同位素标记-质谱技术发现充电态电池在加热失控的早期负极的SEI分解会产生H2,促进电池的热失控。Jin等发展了一种通过小型MS监测H2实现模组过充热失控早期预警的手段,在8.8 kWh的磷酸铁锂-石墨电池包中进行了实验验证,发现可以在产生烟雾的10分钟之前发出安全预警。3.3 系统安全性模拟仿真相对于实验研究,模拟仿真消耗的实物资源少,在系统安全性研究中更具优势。系统热安全模拟一般建立在完备准确的电芯热失控数值模型的基础上,在由多个电芯单体构成的复杂电池系统中,每个单体内部温度均独立地遵循前文所述的电芯热失控模型,电芯之间交换热量通过热传导、对流和辐射形式进行,可以分别通过相应的公式进行描述,电芯热失控产热方程和传热方程共同构成了描述整个系统空间的温度场的数学模型。通过求解建立的数学模型,研究人员和工程师可以研究系统大小、空间布局、热管理模式等对电池系统稳定性、安全极限温度、热失控扩散表现等的影响。由于电池系统的结构往往较复杂,系统热安全模型往往需要在成熟的商业模拟仿真软件中进行,常用的软件平台有Comsol Multiphysics、ANSYS、Siemens Star-ccm+等。Feng等利用Comsol Multiphysics构建了由6个标准方形电芯组成的小型模组的热失控规律,研究了不同参数对热失控扩展的影响,提出了4 种抑制热失控扩展的方案,并对增加隔热层的方案进行了实验验证。Zhai等提出了18650锂离子电池模组热失控传播的多米诺预测模型,在Matlab中构建了较为简化的二维模型,预测模组中热失控传播的路径和概率,解释了模组中不同热失控初始位置对热失控传播行为的影响。目前学术界关于大型电池系统热安全性的研究仍然较少,作为一个工业界和学术界共同关心的问题,系统层级的安全性研究需要产学研的深入合作。4 下一代锂电池的安全性研究电池安全的预防、预警、预测依赖对从系统到电芯再到材料热失控构效关系的深刻理解。纵观近年来引起广泛关注的锂电池起火事件,大部分发生在新技术和新材料的初步应用阶段,如近几年多起采用高镍三元电池的电动汽车起火事件,而当大量事故引起广泛关注后,关于该电池体系的安全性研究才随之增多,电池安全研究于电池电化学性能研究的滞后性是电池安全研究中的一个鲜明特点。为了满足电动化浪潮带来的高安全、高能量密度要求,人们期望在锂离子电池中采用不可燃电解质或固态电解质,以彻底解决电池的安全性问题同时达到高能量密度。然而,电池安全性不仅与电池内部材料本身的热稳定性相关,还与材料之间的相互作用、电池内部的复杂环境息息相关。近期中国科学院物理研究所Chen等的工作显示,即使是采用了具有高热稳定性的固态电解质,在与金属锂接触的情况下,高温依然会发生热失控,且金属锂会受到温度的驱动,向固态电解质内部生长,进一步降低热失控的临界温度。清华大学Hou等报道了采用不可燃新型电解液的电池,由于锂盐和嵌锂态负极的剧烈反应,电池在高温下依然会发生热失控。这些结果说明,单维度提升锂电池安全性的设想往往是片面的,新体系的引入很有可能导致电池热失控反应链条的重构,从而使原本的安全预防预警措施不再生效,也很可能是新型锂电池体系容易出现安全事故的深层次原因之一。综上所述,为了在发展高能量密度电池的同时保证电池的安全性,研究者们需要在优化电芯电化学性能的同时,尽快同步地开展前瞻性电池安全性验证和研究。只有清晰全面地认识电池热失效机制和各个维度安全性的影响因素,才能在应用阶段做好电池的有效安全预防。图8给出了电池领域新材料和新技术从基础研究到规模量产的技术成熟周期。可以看出,一个新型技术的大规模应用需要投入巨额的人力物力,花费数十年的时间,才能真正实现量产。然而,电池的安全性验证却往往在电池接近量产的阶段才展开,且往往以通过电池安全测试标准为目的,无法系统深入地了解电池在全生命周期、实际复杂工况下的安全行为和内在机理,为日后的安全事故埋下隐患。对于早期的电池体系,由于能量密度不高,安全性问题并不突出,而最新的锂离子电池电芯能量密度已经可以达到300 Wh/kg以上,产学界广泛关注的锂电池新技术和新体系能量密度更高。这些具有高能量密度特性的新技术和新体系面临着更为严峻的安全性挑战,因此,将电池的安全性研究和验证步骤尽可能提前,在基本确定电芯结构后尽可能早地开展电池安全测试与机理研究工作,才有望在真实量产阶段前期就做好准备,摸清其安全性特征与行为,设计好对应的防护、预警措施。图8 电池领域新技术的成熟周期与高能量密度新体系的安全性研究目前,下一代化学储能电池的材料体系尚未有定论,可能用于新一代锂离子电池的新材料包括富锂材料、无锂高容量正极材料、硅基负极材料、锂金属负极材料、固态电解质等,如果考虑使用锂金属负极,锂电池概念的外延还可进一步扩展。然而从学术报道来看,与新材料热行为和新体系实用安全性相关的内容却鲜有报道,目前对绝大部分新型锂电池体系的安全性认知尚处于未知或初期阶段。本文所综述的研究方法既可以用于研究现有商业化锂离子电池的安全性,也可以从材料层级提前理解新型锂电池材料体系的热稳定性,并基于模拟仿真方法预测其电芯和系统的安全性,这对选定下一代锂电池的技术路线,保障高能量密度锂电池新技术平稳落地,具有重要指导意义。
  • 创新进展|单进军、谢彤团队构建模拟谱库快速表征一类特殊复杂脂质——心磷脂及其氧化产物
    创新进展近日,南京中医药大学单进军、谢彤团队在Analytica Chimica Acta(分析化学一区,IF: 6.558)正式发表了题为In-silico-library-based method enables rapid and comprehensive annotation of cardiolipins and cardiolipin oxidation products using high resolution tandem mass spectrometer的研究性论文。该文章基于Orbitrap高分辨质谱平台,创新性的通过计算机模拟方式,建立了心磷脂及其氧化产物的质谱谱库。凭借高分辨质谱平台的超高分辨率、亚ppm级质量精度,及Stepped NCE 高能碎裂模式(HCD)获得的丰富二级碎片信息,使得该方法获得模拟谱图与真实检测样本的谱图匹配一致性高。该创新分析方法的建立,对于解决以心磷脂及其氧化物为代表的、具有结构多样性及低丰度分析挑战的代谢物/脂质,进而研究其在疾病发生发展过程中的生物学效应,都有着广泛而深远的参考与借鉴价值,为探索全新的疾病生物标志物带来可能!(点击查看大图)文章赏析心磷脂(CL)是含有3-4个脂肪酰基侧链的独特磷脂。在真核生物中,它主要分布在线粒体内膜,占线粒体内膜磷脂总量的10-25%。心磷脂独特的锥状结构能稳定线粒体膜结构,参与维持线粒体正常的嵴形态。大量文献报道心磷脂参与细胞色素c、电子呼吸链蛋白的正常功能。异常的心磷脂含量、结构和心磷脂氧化会促使细胞凋亡并触发免疫炎症反应。在非靶向脂质组学研究中,发现并快速注释心磷脂及其氧化产物有助于探索心磷脂代谢在疾病发生发展过程中的生物学效应。然而,由于心磷脂及其氧化物的结构多样性及低丰度特征,给其分析鉴定带来极大的挑战。为了解决这一问题,团队在色谱和质谱条件优化的基础上,基于计算机模拟方法建立了心磷脂及其氧化产物的质谱谱库。谱库中涵盖了31578个单溶血心磷脂、52160个心磷脂以及42180个氧化型心磷脂的质谱谱图(谱图数据基于Q-Exactive-MS/MS质谱方法裂解模拟)。该模拟谱库具有较好的兼容性,且谱库中的模拟谱图与真实检测样本的谱图匹配度好,匹配度得分值高,并成功地运用于线粒体非靶向心磷脂表征以及人工氧化心磷脂的研究中。(点击查看大图)该研究列出了样品与模拟谱库的匹配结果,并附上了谱图相似性评分(所有模拟谱库的二级碎片和丰度均来源于标准品模拟)。在优化的色谱条件下,模拟谱库涵盖了三个常规前体离子[M-2H]2-、[M-H]-和[M+NH4]+的二级谱图,扩充了质谱谱库中心磷脂特异性谱图的数量。三种前体离子的模拟谱库谱图相似性评分较高,均表现出较好的匹配度,体现了该方法的优势。(点击查看大图)运用此方法,该研究对心、肝、脾、肺、肾、大脑、小脑、回肠、结肠、十二指肠以及Hep2、A549两种细胞系中的心磷脂进行了定性定量分析。为了评估匹配结果、验证该数据库的可靠性,对不同谱图相似性得分段的谱图数进行统计,结果显示谱图得分值均较高。在10种动物组织线粒体和细胞系样品中,一共鉴定出392种心磷脂。通过新建的计算机模拟心磷脂谱库,能够很好的区分样本中单溶血心磷脂和心磷脂,实现对复杂生物样本中心磷脂的准确测量。(点击查看大图)该研究还建立了心磷脂氧化产物的模拟谱库,并成功对小鼠心脏和肝脏线粒体中的氧化型心磷脂进行了归属。比较了两种人工氧化方式氧化产物的偏好,发现Fenton反应易于生成+O或者+2O的氧化产物,而过氧化叔丁醇的氧化反应倾向于产生+3O或者+4O的氧化产物。通过对氧化碎片个数的统计,发现占比最多的氧化碎片是C18-OH和C18-OOH,提示含有十八个碳的脂肪酰基更易被氧化。有趣的是,在过氧化叔丁醇的反应中,肝脏线粒体中的心磷脂似乎表现出更高的氧化产率,虽然没有进一步的验证,但是推测这种氧化效率的差异可能源于肝脏和心脏不同的代谢能力。团队介绍单进军,博士,教授南京中医药大学中医儿科学研究所副所长,江苏省儿童呼吸疾病(中医药)重点实验室副主任,南京中医药大学——UC Davis医学代谢组学联合实验室中方负责人。江苏省“333高层次人才培养工程”中青年学术技术带头人,江苏省“六大人才高峰”高层次人才选拔培养对象,NIH West Coast Metabolomics Center访问学者。研究方向:代谢组学与中医药;复杂疾病代谢调控机理及中药防治作用。先后主持国家自然科学基金、江苏省自然科学基金、江苏省“333”工程科研项目和江苏省高校自然科学研究重大项目等课题;以第yi或(共同)通讯作者在Gut Microbes,Pharmacol Res,Anal Chim Acta,Phytomedicine和药学学报等国内外期刊发表学术论文60余篇;获国家发明专利3项;获教育部科学技术进步二等奖、世界中联中医药国际贡献奖-科技进步二等奖和江苏中医药科学技术奖一、二等奖。现为世界中联儿童医药健康产品产业分会常务理事兼副秘书长、世界中联儿科专业委员会常务理事、中华中医药学会中药实验药理分会青年委员, 中国中医药信息研究会儿科分会理事、中国研究型医院学会儿科学专业委员会青年委员,《世界科学技术-中医药现代化》杂志中青年编委。谢彤,博士,副教授江苏省儿童呼吸疾病(中医药)重点实验室骨干成员。2012年毕业于中国药科大学药学(药物代谢动力学)专业。美国NIH West Coast Metabolomics Center (UC Davis)访问学者。近年来主持国家自然科学基金等厅局级以上课题研究8项;以第yi作者或者通讯作者在Anal Chim Acta,J Chromatogr A等杂志发表SCI论文10篇。现为世界中医药学会联合会儿科专业委员会理事。研究方向:运用代谢组学/脂质组学技术研究(1)呼吸疾病发病机制及中药干预作用;(2)中药复杂组分的体内外物质基础研究;(3)药物安全性。如需合作转载本文,请文末留言。
  • SoilScope生态水文过程观测模拟设施在红壤地区观测农作物蒸散量中的应用
    SoilScope生态水文过程观测模拟设施在红壤地区观测农作物蒸散量中的应用一、观测背景季节性干旱缺水严重制约着我国红壤区农业的可持续发展。在江西省水土保持科学研究院位于九江市德安县的生态科技园内,利用SoilScope自动称重式蒸渗仪,为红壤地区水文循环过程中的土壤下渗、地下径流和蒸散发等精确测定提供数据支持;为南方红壤蒸发和植物蒸腾研究提供试验手段;为四水(大气水、地表水、土壤水和地下水)转化、SPAC(土壤-作物-大气连续体)系统水分循环研究提供支撑。图1 SoilScope生态水文过程观测模拟设施顺利验收二、观测系统布设 SoilScope自动称重式蒸渗仪以第四纪红壤为研究对象,整套系统由罐体、称重系统、地下水连通系统、产流系统、土壤传感器、溶液取样系统和数据采集系统组成图2 SoilScope生态水文过程观测模拟设施外观 三、观测数据采集罐体高2m,面积1㎡,称重范围0-10t,称重系统精度0.1mm。数据每10min自动实时测定和采集,如下图3所示,通过称重数据的变化就可以计算出实时蒸散量图3 称重系统精度和数据实时测定展示 • 采用TDR水分传感器、水势传感器观测20cm、40cm、80cm和180cm深度土壤水分、水势、温度和电导率数据,如下图4所示,数据每60min自动实时测定和采集。图4 自动实时测定和采集不同层次的传感器数据展示• 采用澳作公司自主研发,集数据传输与远程诊断于一体的云服务中心软件Envidata,如下图5所示,独特的多参数曲线同时显示功能,能更好的展示出环境因子的相互作用和影响。图5 云服务中心软件Envidata多参数曲线同时显示功能展示四、观测数据分析以花生为例,在2019年5月8日至8月24日期间,开展了土壤蒸发和植物蒸腾的研究。试验设置2个处理,裸地对照和种植花生处理。图6 SoilScope生态水文过程观测模拟设施观测案例结果显示,降雨过后,土壤含水量增加,而降雨停止,随着时间的延长,土壤含水量逐渐减少。累计降雨量数据和累计罐体重量变化量关系发现,二者具有很好的一致性,降雨增加,累计罐体变化量随之增加。作物蒸散发根据水量平衡公式进行计算,计算方程如下: ET = I + P - R - D + ΔWET是作物蒸散发,mm; I是灌溉水量,mm;P是降雨量,mm R是地表径流量,mm;D是深层渗漏量,mm;ΔW是土壤水分变化量。图7 SoilScope生态水文过程观测模拟设施观测结果结果显示,裸地处理总蒸散量是264mm,而花生则高达392mm,结果符合物理常识。五、观测应用扩展SoilScope蒸渗仪不仅能够为研究作物生长过程进行长期有效的监测,提供完整的和精确度高的数据支撑,而且能够结合气象站、水势仪等设备进行联动试验和拓展运用。目前已经广泛运用于水势调节观测系统、水文观测系统、气象蒸散观测系统和森林生态观测系统等众多领域。图8 SoilScope蒸渗系统工程项目全国分布图更多详情请关注北京澳作生态仪器有限公司网站:www.aozuo.com.cn查询相关仪器资料。更多详细信息请联系 sales@aozuo.com.cn 索要相关资料。
  • 模拟性质:聚环氧乙烷中的剪切诱导相变
    多年来,蜘蛛丝一直是仿生研究的主题。众所周知,它具有令人难以置信的拉伸强度和生物相容性。因此,基于各种材料的人工模拟例子数不胜数。研究较少但却同样有趣的是丝纤维的形成机制。蛛丝是在蛛丝导管对储存在蜘蛛体内的液体蛛丝的剪切力作用下形成的固体纤维。这些剪切力促使晶核的形成,材料在晶核上进一步结晶。有趣的是,相应的合成过程需要的活化能要比蛛丝形成的活化能高得多。谢菲尔德大学的G.J. Dunderdale等人现在已经成功地开发了一种节能程序,通过诱发剪切应力来诱导聚环氧乙烷水溶液(PEO)的结晶。 结晶的形成是通过加热溶液来获得均匀样品,然后通过冷却和剪切溶液来进行关键的具体工作。在小角和广角X射线散射(SAXS和WAXS)原位模式下收集到的图谱,以及当溶液被Linkam CSS 450剪切池剪切时,清楚地显示了结晶的开始。这不仅体现在散射强度的稳步增加,而且Herman定向函数P2(见上图2D SAXS图谱和演变的图像)的上升也表明了样品的方向。同时采集的2D WAXS图谱也清楚地显示了peo72螺旋结构形成的反射特性。 这些结果与剪切诱导偏振光成像(SIPLI)非常吻合,在SIPLI中Maltese Cross图谱的形成表明了结晶的开始。通过这种技术的结合,研究人员已经清楚地证明了在剪切过程中模拟聚合物水溶液到固体材料相变的能力。
  • 标准解读|橄榄油中脂肪酸乙酯含量的测定 气相色谱-质谱法
    一、制定背景我国是食用油大国,随着经济发展,我国对橄榄油的需求量不断增加,仅 2017 年总消费量约为 60 万吨。然而,我国消费者对橄榄油系列产品认识有限,且特级初榨橄榄油产量少,价格高,经销商为了推销产品和谋取暴利,对橄榄油进行夸大宣传或以劣充好的现象屡见不鲜。尤其进口的橄榄油几乎一律标称“特级初榨橄榄油”,这种以次充好的橄榄油不仅严重侵害了消费者的权益,还可能影响消费者的身体健康。因此,建立一套能对橄榄油等级进行准确鉴定,尤其是对特级初榨橄榄油等级进行准确鉴定的方法,对保障消费者权益、打击不法行为和更好地把关国门,均具有重要的意义。此标准拟建立特级初榨橄榄油中脂肪酸乙酯的精准检测方法,为特级初榨橄榄油的等级鉴别,遏制普通初榨橄榄油充当特级初榨橄榄油这类以次充好的乱象提供技术支撑。二、与我国有关法律法规和其他标准的关系现行有效的橄榄油产品标准为《GB/T 23347 橄榄油、油橄榄果渣油》,该标准首次制定于 2009 年,经历了一次修订,修订后于 2021 年 10 月 11 日发布, 2022 年 5 月 1 日实施,在新修订的版本中新增加了特级初榨橄榄油中脂肪酸乙酯的限量要求为≤35mg/kg,对其他等级的橄榄油没有明确要求。但国内暂无橄榄油中脂肪酸乙酯的检测方法标准。三、国外有关法律、法规和标准情况的说明 自 2011 年欧盟和国际橄榄理事会第一次对特级初榨橄榄油中脂肪酸甲酯和乙酯含量提出限量要求以来,随着研究的深入和实践的发展,近几年持续对该指标进行了适时的修订。比如,在 (EU)2015/1830 中,欧盟规定 2013-2014 年收成, 2014-2016 年收成和 2016 年以后的特级初榨橄榄油中脂肪酸乙酯含量分别 ≤40mg/kg,35mg/kg 和 30mg/kg;而到了 2016的修订版本中,再次将特级初榨橄榄油中脂肪酸乙酯含量统一修订为≤35mg/kg;而后最近的 2019修订版本继续维持了这一限量要求。 针对脂肪酸乙酯检测,国际橄榄理事会 2017 年修订发布 COI/T.20/Doc. no.28/Rev.2 Determination of the content of waxes, fatty acid methyl esters and fatty acid ethyl esters by capillary gas chromatography。该方法采用气相色谱法同时检测橄榄油样品中的蜡含量,以及脂肪酸甲酯和乙酯含量,该方法前处理需自制硅胶柱,操作繁琐、耗时、且样品平行性较差,定性方面容易有干扰、定量方法不够精准。本标准通过对前处理进行适当的改进,建立前处理更加简单,操作更加简便,分析更加精准的的分析方法。四、标准主要内容方法检出限和定量限:本文件的检出限,棕榈酸乙酯为 0.4 mg/kg,亚油酸乙酯为 0.5 mg/kg,油酸乙酯为 0.5 mg/kg,硬脂酸乙酯为 0.4 mg/kg。本文件的定量限,棕榈酸乙酯为 1.2 mg/kg,亚油酸乙酯为 1.7 mg/kg,油酸乙酯为 1.6 mg/kg,硬脂酸乙酯为 1.3 mg/kg。分析过程:展望:本标准的检出限、精密度等性能指标能满足相应要求,相信该标准正式出台后,会使特级初榨橄榄油的等级鉴别有据可依,并为相关分析检测人员提供新的思路和手段。
  • 30项粮油标准公开征求意见 半数涉液相色谱等检测方法
    12月1日,国家粮食局连发公告,对《进口大米粒型分类与检验方法》等22项粮油标准和《油茶籽》等8项行业标准公开征求意见,其中半数涉及液相色谱、液质联用与石墨炉原子吸收光谱法等检测方法。  标准名单如下:征求意见标准目录和相关信息.rar征求意见标准相关材料.rar征求意见反馈表.rar
  • 中国科大在拓扑相变量子模拟上取得重要进展
    中国科学技术大学中科院微观磁共振重点实验室杜江峰、林毅恒等人与中科院量子信息重点实验室罗希望等合作,在拓扑相变量子模拟方面取得重要进展。通过发展高自旋离子阱体系的调控技术,实现了对三重简并拓扑单极子的量子模拟,观测到具有不同拓扑荷的单极子之间的相变,并展示了自旋张量在其中的重要作用。该研究结果于2022年12月14日以“Observation of Spin-Tensor Induced Topological Phase Transitions of Triply Degenerate Points with a Trapped Ion”为题,发表在《物理评论快报》上[Phys. Rev. Lett. 129, 250501 (2022)] 。   拓扑物态是当前物理研究的前沿和主流领域之一,为新材料、新器件的设计带来了新的思路,乃至对我们深入理解宇宙基本粒子的性质都具有重要的意义。2016年,诺贝尔物理学奖便授予了在拓扑物理学方面做出开创性贡献的三位科学家。拓扑源自于数学,指在局部的连续变化下保持不变的整体性质。比如面包圈和茶杯拓扑等价,这是由于他们都有一个穿透的洞,而洞的个数是一个拓扑性质,对应拓扑荷。科学家发现,拓扑在凝聚物质的一些物理特性上也起到关键作用,这些物理特性不依赖样品的细节,完全由系统状态的整体拓扑性质确定。而拓扑相变——具有不同拓扑性质的状态之间的转变——一定是不连续的跃变。例如在一些半金属材料中,能带简并点形成的类似单极子的拓扑结构可以具有不同的拓扑荷,探索他们之间的拓扑相变是目前的前沿研究方向之一。同时,简并点附近的准粒子激发表现出类似基本粒子的行为,探索其拓扑相变对于探索新型粒子也具有重要意义。   此项研究针对拓扑相变中的一类重要的费米子——三重简并费米子模型进行实验模拟。该模型对应自旋为1的拓扑单极子,在近期的研究中受到广泛关注。然而,在固体材料体系中,直接观测这种三重简并点的拓扑相变需要复杂的调控,目前难以实现。因此,高度可控的量子模拟器为研究拓扑现象提供了新的途径。这项研究中,通过使用在超高真空环境束缚的铍离子,结合微波、射频等的精准调控,构建多能级的量子体系,可以有效的观测自旋为1的拓扑单极子的行为。通过调控实验参数,研究人员清晰的观测到量子态的拓扑相变,并且提取出高阶自旋张量在其中的贡献(图1所示)。该工作发展出的高度可调控的多能级束缚离子系统,为研究高自旋物理提供了良好的平台,并为进一步研究新奇高阶拓扑简并态以及其他拓扑单极子现象铺平了道路。图1. 自旋为1的拓扑量子模拟实验结果。左图:实验观测到的拓扑相变行为,其中 β-2 对应拓扑荷为2, β-2 对应拓扑荷为0;不同颜色的数据代表拓扑相变中各种分量的贡献,其中黄色数据代表张量部分的贡献,实线为对应的理论预测结果。右图:实验观测张量椭球在拓扑相变点 β≈-2 附近的几何环绕行为。自旋张量椭球在参数空间中特定回路的演化,可以清晰的反应张量对拓扑荷的贡献。研究中使用的离子阱实验系统属于近几年迅速发展起来的高自旋量子模拟器。中科院微观磁共振重点实验室杜江峰院士、林毅恒教授带领团队从无到有搭建了实验平台,并成功发展了一系列新型的高自旋操控技术,包括使用动力学去耦将三能级状态相干时间提高一个数量级[Phys. Rev. A. 106, 022412 (2022)];通过解析模型辅助的形状脉冲,以实现四能级系统的两个近邻跃迁之间的快速普适调控[Phys. Rev. Applied. 18, 034047 (2022)]。上述工作为本文的研究奠定了核心实验基础。中科院量子信息重点实验室罗希望教授、美国德克萨斯大学达拉斯分校张传伟教授为本文的工作提供核心理论支持。   审稿人高度评价该工作,指出“...importantly, the spin-tensor-momentum-coupling could be generated for spin-1 systems and induce intriguing quantum phenomena different from spin-1/2 ones. This work is of interest and importance.”(“……重要的是,自旋-张量-动量的耦合可以通过自旋为1的系统生成,导致与自旋1/2不同的有趣的量子现象。这个工作是有意思的和重要的。”)   中科院微观磁共振重点实验室博士研究生张梦翔、李岳以及袁新星博士为该论文共同第一作者,杜江峰院士、林毅恒教授和罗希望教授为共同通讯作者。该研究得到国家自然科学基金、中科院、科技部、安徽省的资助。
  • 《粮油检验 粮食中硫酰氟残留量的测定 气相色谱法》征求意见发布
    由国家粮食和物资储备局组织起草的《粮油检验 粮食中硫酰氟残留量的测定 气相色谱法》标准已形成征求意见稿,现向社会公开征求意见,截止日期为2023年7月19日。意见反馈邮箱:tc270sc1@ags.ac.cn。粮食中硫酰氟的测定方法现状及分析硫酰氟(Sulfuryl fluoride,简称 SF)是国际上常用的一种广谱熏蒸剂,分子式 SO2F2,由于其具有杀虫效果好、渗透性强、杀虫谱广、杀虫速度快、散气时间短、对发芽率没有影响、毒性中等、不燃、不爆、不腐蚀、没有残渣、使用温度范围广等优点,通过直接或与磷化氢气体混合使用的方式,用于粮食害虫熏蒸。美国环境保护局(EPA)、食品法典委员会(CAC)、欧盟、日本和加拿大等规定了粮油中硫酰氟残留限量,GB 2763-2016 中规定粮食中最大残留为 0.1mg/kg,但没有提供相应的检测方法标准,经检索,未找到相关的国家和行业方法标准,仅有测氟离子残留的标准,但不能直接测定粮食在熏蒸后对硫酰氟的吸附造成的残留含量。随着硫酰氟熏蒸剂使用的逐渐增多,残留检测需求也逐渐增多,急需制定相应的检测标准方法,用于实验室准确定量检测。本标准的制定将填补我国粮食中硫酰氟残留量定量检测标准的空白,可以为中国好粮油行动计划提供标准支持,从根本上保障我国粮食中硫酰氟残留量的检测和监测,提升我国粮食质量安全检测的水平。本标准的试验原理试样在密闭容器中经加热使硫酰氟释放,经过一定时间后可达到平衡,采用顶空进样注入具有电子捕获检测器的气相色谱仪分析测定,以保留时间定性,外标法定量。 检出限及定量限本方法检出限为3 μg/kg,定量限为10 μg/kg。粮油检验 粮食中硫酰氟残留量的测定 气相色谱法.pdf2 粮油检验 粮食中硫酰氟残留量的测定 气相色谱法-编制说明.pdf
  • 《粮油检验油料和植物油中多种农药残留量的测定气相色谱-质谱/质谱法》等10项标准公开征求意见
    各有关单位:   我们组织起草的《粮油检验油料和植物油中多种农药残留量的测定气相色谱-质谱/质谱法》等5项行业标准和5项国家标准已形成征求意见稿,现向社会公开征求意见,截止日期为2023年8月29日。请将意见和建议反馈至全国粮标委油料及油脂分技术委员会(TC270/SC2)秘书处。   联系人:田华13308655730   电子邮箱:oilfatbz@163.com 关于公开征求《粮油检验 油料和植物油中多种农药残留量的测定 气相色谱-质谱质谱法》等10项标准意见.pdf    附件.rar:1.《粮油检验油料和植物油中多种农药残留量的测定气相色谱-质谱/质谱法》(征求意见稿)文本及编制说明   2.《粮油检验亚麻籽油中环肽A和环肽E的测定》(征求意见稿)文本及编制说明   3.《粮油检验高温溶剂萃取快速测定油料、饼粕的粗脂肪含量滤袋法》(征求意见稿)文本及编制说明   4.《转基因大豆油检测DNA提取和SYBRGreenI实时荧光定量聚合酶链式反应(PCR)检测方法》(征求意见稿)文本及编制说明   5.《乳木果油》(征求意见稿)文本及编制说明   6.《动植物油脂折光指数的测定》(征求意见稿)文本及编制说明   7.《动植物油脂氧化稳定性的测定(加速氧化测试)》(征求意见稿)文本及编制说明   8.《动植物油脂紫外吸光度的测定》(征求意见稿)文本及编制说明   9.《特级初榨橄榄油中脂肪酸乙酯含量的测定气相色谱-质谱法》(征求意见稿)文本及编制说明   10.《粮油检验GC/MS法测定3-氯丙醇脂肪酸酯和缩水甘油脂肪酸酯》(征求意见稿)文本及编制说明   11.意见反馈表   国家粮食和物资储备局标准质量管理办公室   2023年6月28日
  • 岛津原子力显微镜——模拟石墨负极的导电性分析
    锂离子电池是一种以嵌锂化合物为正负极材料的二次电池,在充放电过程中,锂离子在两个电极间往返脱嵌和嵌入。目前主流的锂离子电池负极材料是天然石墨与人造石墨。在锂离子电池研发与生产过程中,需要对石墨负极的导电性进行分析。 原子力显微镜可以在获得高分辨形貌图像的同时获得表面电流分布图,因此被广泛应用于分析石墨负极材料微观结构与导电性。对于原子力显微镜而言,传统的电流模式是基于接触模式进行的。当样品表面非常不规则,表面粘度高或者有较强的毛细力时,由于探针针尖此时受到与扫描方向相反的外力较大,探针无法保证垂直于样品表面,因此电流的测量会产生很大的误差。 岛津尝试用独特的ZXY扫描技术对电流分布进行测量,在每一个测试点,探针均处于垂直运动状态,因此它可避免那些影响其测试状态的外力的干扰。 因此,使用ZXY扫描技术对石墨负极进行表面电流分布测试,可以获得更真实更清晰的图像。制备模拟电池电极的石墨样品,该样品是将石墨和树脂用模具定型,然后加热烧结,最终用油浸制。这样制备的样品可以模拟真实的石墨负极。 用ZXY扫描技术同时获取石墨负极表面形貌图像和表面电流分布图像如下。左图为表面形貌图像,可清晰观察到石墨的鳞片状结构,右侧的表面电流分布图像可观察到同一区域的接触电流分布。在表面形貌图像中,可以观察到表面上分布着不规则的高约1.5 μm 的鳞片石墨。在以往的接触模式下,如果样品的表面起伏超过1μm,就很难测量电流,但使用ZXY扫描技术可以进行高分辨的观测。 而且在扫描技术下,除了可以同时获取表面形貌图像,还可以获得多种互不影响的表面属性分布。在对石墨电极进行测试时,可设定同时获得表面形貌图像,表面电流分布图像和表面力学属性分布。 扫描模拟石墨负极表面5 μm的区域,获得以下图像。4幅图像分别为表面形貌图(探针最初检测到力的形貌面)、表面形貌图(探针到达设定斥力的形貌面)、表面电流分布图像、表面吸附力分布图像。 在前2幅图中,虽然都是表面形貌图,但有明显不同。这是因为第1张图为探针接近样品表面刚刚获得力反馈信号时的位置,第2张图为探针达到设定的斥力时的位置。在两幅图相同位置的剖面线叠加分析。 从上图中可见,底部的黑色区域为样品的固体,白色虚线为表面形貌图(探针到达设定斥力的形貌面)的剖面线,也是石墨的真实表面。而蓝色虚线为表面形貌图(探针最初检测到力的形貌面)的剖面线。白色虚线和蓝色虚线中间区域内,探针检测到的力为吸引力,可判断产生的原因是样品表面的油。因此第1张图和第2张图的差别区域就是油吸附的区域。 更有趣的是,在电流分布图的剖面线中,发现电流也会因油层的存在随高度发生变化。如下图所示。电流的变化有些地方和油层的分布非常吻合,有些地方则不相同。 比较同一个点的力-距离曲线和电流-高度曲线,如下图。可见吸引力位置(油层区域)和电流高度变化区域间的相关性。 由以上数据可推断,电流的变化和油层的分布不吻合的区域,是因为表面覆盖有电阻很大的树脂,而电流的变化和油层的分布吻合的区域,则是因为油层的电阻小于树脂,提高了导电性。 综合本次测试的数据,可以发现,ZXY扫描技术不仅有效提高了对电流的检测分辨率,而且可对样品表面的各种属性进行统一分析,更有助于真实判断样品的性能及影响因素。 本文内容非商业广告,仅供专业人士参考。
  • 美海底18米深建实验室 模拟执行太空任务
    两名宇航员、一名海底工程师和一名经验丰富的科学家将会置身于佛罗里达东海岸的宝瓶座海底实验室,模拟执行太空任务。  新浪科技讯 北京时间5月8日消息,据美国太空网报道,美国宇航局计划于近期展开一次海底实验,模拟执行太空任务。届时,两名宇航员、一名海底工程师和一名经验丰富的科学家将会置身于佛罗里达东海岸的海底,模拟执行太空任务,从而检验外太空探测的新理念,掌握更多有关在极端恶劣环境下进行工作的知识。  美国宇航局5月4日宣布,将于本月10日开始进行第14次海底实验,为期14天。这次实验是NASA名为“极限环境任务实施”(NEEMO)项目的一部分。  加拿大宇航局宇航员克里斯-哈德菲尔德是此次海底实验的领导者。克里斯是一名资深宇航员,有过多次太空行走经历。从本月10日起,克里斯将带领其他参加实验的人员,在“宝瓶宫”海底实验室体验太空生活环境,展开模拟执行太空任务的实验。  据悉,美国宇航局(NASA)在佛罗里达州Key Largo附近的海底建立了一个名为宝瓶宫(Aquarius)的海底模拟实验室。这个能容纳6个人的实验室能够训练宇航员在模拟的环境下熟悉太空飞行,并开展一系列科学实验训练。宝瓶宫模拟器长14米,宽3米,装备有全套的设备,位于海面一下18米。借助于这个模拟器,宇航员不必要再等候轮到登上航天飞机或者进入国际空间站的机会去体验太空生存环境。  本月10日开始的此次海底模拟实验,将会利用海床模拟其他行星的表面和低重力环境。为准备此次海底实验,2009年10月潜水员在宝瓶宫模拟器附近放置了着陆器、探测车和模拟机械臂的小型吊车。  模拟执行太空任务  据悉,执行此次海底模拟实验的成员将会在宝瓶宫海底实验室内生活、进行模拟太空行走、操纵小型吊车来移动实验室,这同在外星球上搭建宿营地非常相似。  当潜水员执行操作并检测这些技术时,将会为美国宇航局工程技术人员提供非常有价值的信息和反馈。预计在此次的海底实验中,实验人员将会从着陆器上取下一个模拟月球车、从着陆器上取下少量荷载并模拟将一名失去行动能力的宇航员从海床转送回舱内。  据了解,此次试验的着陆器和探测车模拟器同美国宇航局考虑用于未来行星探测的着陆器和探测车大小相仿。模拟着陆器的宽度比一辆校车的长度还要大,几乎是其三倍高。宽13.7米,高8.5米,有一个3米高的吊车。模拟探测车比一辆SUV稍大,高2.4米,长4.3米。  训练海中溅落  哈德菲尔德2001年4月份航天飞机执行STS-100任务时,执行过两次太空行走任务,操纵国际空间站的Canadarm2机械臂。1995年他还在STS-74任务中,执行过大量操纵航天飞机Canadarm的任务。其他参加此次海底实验的人员包括,美国宇航局宇航员兼太空飞行医生托马斯-马斯伯恩,“月球车”副项目经理安德鲁和科学家史蒂夫-夏贝尔。北卡罗来纳大学的詹姆斯和内特-本德是建设外星球露营地的技术人员,他们将会提供工程技术支持。  在宝瓶宫实验室内时,实验小组将会进行生命科学实验,主要关注在极端环境下人们的行为、表现和心理。此次实验还将对自动开展工作展开研究。也就是说,实验中将会有一段时间成员间的通信和任务控制中心的通联将受到限制,这中状况在未来人类探索火星或月球时也将会遇到。  据悉,宝瓶宫实验室归属于美国国家海洋和大气管理局,由北卡罗来纳大学操作运行。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制