当前位置: 仪器信息网 > 行业主题 > >

介质损耗角正切值测试仪

仪器信息网介质损耗角正切值测试仪专题为您提供2024年最新介质损耗角正切值测试仪价格报价、厂家品牌的相关信息, 包括介质损耗角正切值测试仪参数、型号等,不管是国产,还是进口品牌的介质损耗角正切值测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合介质损耗角正切值测试仪相关的耗材配件、试剂标物,还有介质损耗角正切值测试仪相关的最新资讯、资料,以及介质损耗角正切值测试仪相关的解决方案。

介质损耗角正切值测试仪相关的资讯

  • 技术更新|介损及体积电阻率测定仪可测介质损耗因数
    如今市场需求总体继续扩大,但增速下降。一方面,随着城镇化和基础设施建设的不断深入,基本原材料的需求还将保持一定增速,但增速会有所降低,人们日常生活用品也不会有太大的提高;另一方面,人们的消费升级以及生活方式和消费模式的改变,将提高或改变市场需求,促进与经济发展相配套的石化化工产品升级换代。因此,预计“十四五”期间,传统石化化工产品,如成品油、大宗化工产品等,在很长的一段时间内消费保持低速增长态势,甚至有些个别产品还会有略微下降;而在与智能制造、电子通信、中高生活消费品和医药保健等有关的化工产品,主要是电子化学品、纺织化学品、化妆品原材料、快餐用品、快递服务用品、个人防护和具备特殊功能的化工新材料等,都将会有很大增幅。同时安全生产、绿色发展的要求日益提高。石化化工生产“易燃、易爆、有毒、有害”特点突出,尤其是近几年,化工行业事故频发,特大恶性事故连续不断,给人们生命财产造成重大损失,在社会各界造成极其恶劣的影响。随着我国城镇化的快速推进,原来远离城市的石化化工企业已逐渐被新崛起的城镇包围,带来了许多隐患。“十四五”期间,社会各界将更加紧盯各地石化化工企业,石化化工企业进入化工园区,远离城镇布局将成为必然要求,安全生产也将是企业必须加强的一门必修课。绿色发展已经在社会上形成共识,坚持绿色发展是行业必须要强化的理念,一方面要补足以往的环保欠账;另一方面还要针对不断提高环保标准买单,这对行业来说,是一个巨大的挑战。A1170自动油介损及体积电阻率测定仪符合GB/T5654标准,用于测定在试验温度下呈液态的绝缘材料的介质损耗因数及体积电阻率,包括诸如变压器、电缆及其它电气设备内的绝缘液体。可广泛应用于电力、石油、化工、商检及科研等部门。仪器特点1、采用中频感应加热,室温加热至控温(90℃)并恒温自动测量仅需 15分钟。2、同时测量油介损及体积电阻率或任选一项。3、采用大屏幕液晶显示器,只需按照中文菜单提示,输入指令,仪器即可自动工作。4、具有通讯功能,可配置电脑进行实时监测,动态观察油介损值随油温变化并描绘成图。5、自动显示测量结果,并进行数据打印保存。6、具有过压、过流、短路保护,并具有高压指示,还具有报警提示功能。技术参数体积电阻率测量电压:DC500V±10%体积电阻率范围:2.5×106~2×1013Ω.m精度: 高于±10%电阻测量范围:2M~2TΩ介损测量范围:0.00001~1介损值分辨率:0.00001电容测量范围:10.0pF~200.0pF电容值分辨率:0.01pF空杯电容:60±5pF 介损值测量精度:±(1%读值+0.02%)电容值测量精度:±(1%读值+1pF)工作电源:AC220V±10%,50Hz测控温范围:室温~119.9℃测控温稳定度:±0.5 相对湿度:≤85%介损测量电压:1.5kV、2.0kV、2.5kV(常规使用2.0kV)(正接法) 环境温度:-5℃~50℃外形尺寸:480mm×400mm×420mm重  量:25.7kg
  • 国际光纤微弯损耗测试标准明年有望出台
    在近期举办的“国际光纤微弯损耗测试方法研讨会”上,帝斯曼光纤材料研发总监史蒂夫施密德向记者透露,帝斯曼在2009年提交了光纤微弯损耗测试方法和标准的立项工作,有望在2011年出台初步的测试标准。  随着光纤网络的不断发展,光纤微弯耗损已变得不容忽视。光缆的损耗,是导致网络故障发生的主要原因,网络故障很大程度上提升了运营商网络成本。  Telcordia公司的首席顾问奥斯曼盖比兹利奥卢博士在会上表示,中国通信业经过这么多年的发展,越来越多的光纤网故障证明了由于微弯和其他材料造成的损耗,对整个网络造成非常严重的损失。因此,在采购过程中必须建立一个光纤微弯测试标准,以此来保证所用光纤的性能。  据史蒂夫施密德透露,帝斯曼一直致力于光纤微弯标准制定,在北美,光纤微弯测试标准已提交TIA组织,目前在搜集及提交相关的数据 在欧洲,帝斯曼重新启动了微弯标准测试方法的探讨工作,工作有望与北美地区同步进行 而目前在国内,帝斯曼在2009年已向通信标准化协会提交了相应的测试方法和标准的立项工作,在2011年有望出台初步的测试标准。  另外,据帝斯曼迪索亚太区销售总监、总经理林为斌透露,目前帝斯曼在全球涂料市场的占有率已经达到了80%,抗微弯涂料的市场占有率目前也在50%以上。
  • 浅析高分辨率光学链路诊断仪(OCI)测试大插损光纤链路损耗
    武汉东隆科技有限公司自研的高分辨率光学链路诊断仪(OCI)是基于光频域反射技术(OFDR),单次测量可实现从器件到链路的全范围诊断,并且能轻松测试出光纤链路损耗情况。据了解,光频域反射技术(OFDR)测试插损方式是依据事件点两侧瑞利散射信号幅值差异,其高分辨率特性可以定位到厘米级损耗点。通常高分辨率光学链路诊断仪(OCI)插损测量动态范围为18dB,反射式测量方式动态范围为9dB。当待测链路中累积损耗超出9dB时,超出部分瑞利散射信号会被设备底噪淹没,给测试带来误差。针对上诉情况,本文借助光纤环形器测试出大插损光链路单向累积损耗。首先,测试样品为可调光衰减器,借助环形器测试大插损装置如图1,将光纤环行器2端口接到OCI设备DUT口上,1端口和3端口分别与可调衰减器进出口连接。OCI设备输出光从环形器2端口进入,3端口输出,经过待测样品后进入端口1,最后从端口2返回OCI仪器。图1.借助环形器测试大插损装置示意图OCI测试整个光链路结果如图2,距离-回损曲线在2.95719m位置出现最大回损峰值,对应整个光传输链路。由于OCI仪器默认显示为反射式测量,而本链路中借助环形器是透射式测量,所以实际链路长度为显示距离的两倍5.91438m。同时,该位置积分回损为-25.69dB,是环形器和可调光衰减器单向累积损耗总和。图2.OCI测试环形器连接可调光衰减器结果图第二,使用OCI单独测试光纤环形器,损耗测试装置如图3。图3.环形器损耗测试装置示意图图4.OCI测试环形器结果图测试结果如图4,从图中可以看出距离-回损曲线在1.86088m位置出现最大回损峰值(实际光纤环形器光链路长度为3.72176m),回损为-2.55dB,是环形器单向累积损耗总和。可调光衰减器插损为23.14dB (=25.69dB -2.55dB)。第三,使用功率计测试可调光衰减器插耗,测试装置如图5,测得可调光衰减器插耗为23.33dB,OFDR测量结果与功率计测量结果仅相差0.19dB。图5.功率计测试可调光衰减器损耗装置示意图改变可调光衰减器插损,按照上诉方法分别用OCI和功率计测试可调光衰减器插损值,下表为10次测量可调光衰减器插损值对比表。从对比表可以看出OCI和功率计测试可调光衰减器插损对比误差不超过0.3dB,且OCI测试值均比功率计测试值大,这是由于功率计测试链路时,比OCI测试链路多一个FC法兰。因此,借助光纤环形器,高分辨率光学链路诊断仪(OCI)可以透射式测量大插损链路总体损耗,测试结果和功率计测试结果对比准确。不同于OCI反射式测量光纤链路分布式损耗,OCI透射式测量光链路损耗是测试整个光纤链路的累积损耗总和。OCI透射式测量插损准确性依赖OCI测试回损(RL)的动态范围,动态范围高达60dB以上时,可实现超出动态范围的大插损光链路损耗测量,进一步扩展OFDR设备使用场景。
  • 电子探针丨带您走进光纤的微观世界-低损耗光纤
    导语信息关乎一切,为满足信息化数字化支撑新质生产力的创新发展目标和要求,国家层面在算力枢纽、大数据和云计算集群、“东数西算”等工程作了资源调配和长远的规划。用户层面对高质量视频和数据传输需求、对低时延的更苛刻要求、5G技术使用的接入,以及千兆光纤入户规划,对超高速互联网接入的追求似乎永无止境。低损耗光纤的研究正是为了满足高质量的数据接入需求。岛津电子探针通过搭配52.5°高取出角和全聚焦晶体波谱仪,具有高分辨率和高灵敏度的特征,可以为光通信企业及研究院的产品生产、研发、技术突破等方面,如未来的多芯或空芯的研究提供坚实的数据支持。光纤损耗小科普光纤损耗是指每单位长度上的信号衰减,单位为dB/km。光纤损耗的高低直接影响了传输距离或中继站间隔距离的远近,对光纤通信有着重要的现实意义。光纤之父高锟博士提出:光纤的高损耗并不是其本身固有的,而是由材料中所含的杂质引起的。之后,科研人员和光通信企业开始致力于光纤损耗降低的课题研究。根据光纤损耗,把光纤大致分为普通光纤、低损耗光纤、超低损耗光纤三类,其中,&bull 普通光纤衰减为0.20dB/km左右,&bull 低损耗光纤衰减小于0.185dB/km、&bull 超低损耗光纤的衰减小于0.170dB/km。长久以来,国外厂商在低损耗和超低损耗光纤的研究中保持领先地位。现在国内新建主干网络以及骨干网的升级改造中已有大规模低损耗光纤的部署。岛津电子探针的特点岛津电子探针EPMA通过配置统一四英寸罗兰圆半径的、兼具灵敏度和分辨率的全聚焦分光晶体,以及52.5°的特征X射线高取出角,使之对于微量元素的测试更具优势,不会错过微量元素的轻微变化。【注:从微米级别空间尺度产生的元素特征X射线经过全聚焦晶体衍射后还会汇聚到微米级别范围,不会有检测信号的损失,也无需在检测器前开更大尺寸的狭缝,从而具有更高的特征X射线检测灵敏度和分辨率。】【注:高取出角可获得特征X射线试样在基体内部更短的穿梭路径,减少基体效应的影响,即更少的基体吸收更少的二次荧光等,从而具有更高的特征X射线检测灵敏度。】在远距离传输中,由于光纤材料的吸收(材料本征的紫外和红外吸收以及金属阳离子和OH-等杂质离子吸收)和散射、光纤连接以及耦合等方面造成的衰减问题难以避免,低损耗光纤的推出则为解决这一难题提供了新的思路。在骨干网改造、超高速宽带网络的建设过程中,低损耗(Low-loss optical fiber, LL)、超低损耗(Ultra-low-loss optical fiber, ULL)光纤已有大规模部署。我们使用岛津电子探针EPMA-1720测试了两种低损耗光纤。&bull 第一种光纤为单模光纤,纤芯直径10μm,掺杂Ge+F。低损耗光纤元素分布情况测试结果如下:&bull 第二种光纤纤芯为比较高纯度的SiO2,在包层区掺氟降低折射率,未掺杂常规元素Ge。定量元素线、面分布特征分析见以下系列图。超低损耗光纤元素分布情况测试结果如下:结语信息通信是重要的国家级基础设施,通信光纤建设也是重要的民生工程,对高质量数据通信要求都在不断提高。目前骨干超高速400G、800G乃至1T的工程规划都给光通信企业带来机遇和挑战,研发和生产亦是永无止境。岛津电子探针有着高灵敏度和高元素特征X射线分辨率的特性,能够为光通信企业及研究院的产品开发、技术突破等方面提供可靠的检测和分析手段。本文内容非商业广告,仅供专业人士参考。
  • 极低损耗研究嫦娥五号月壤样品
    如何尽可能降低损耗,测试嫦娥五号月壤样品的粒度和矿物组成?7月4日,记者从中国地质大学(武汉)获悉,该校佘振兵、汪在聪教授科研团队在月壤研究中取得了新进展:该团队开发了一种样品消耗极低的新技术,可同时测定月壤的粒度和矿物组成,对于解释月球深空探测轨道遥感光谱数据、理解月球岩浆活动和空间风化过程具有重要意义。《中国科学:地球科学》杂志中英文版同时在线发表该研究成果,第一作者为该校地球科学学院博士生曹克楠,佘振兵教授为通讯作者,汪在聪教授等为合作作者。去年7月,该校地球科学学院教授汪在聪领衔的团队申请到嫦娥五号首批月球样品,共200毫克。汪在聪介绍,“这批样品非常珍贵,我们获取的样品极为有限,可允许的损耗量仅为50毫克,要出更多研究成果,需要我们尽可能降低损耗。”自1970年代以来, 科学家开始使用各种手段来研究月壤样品,但前人所采用的方法通常需要消耗较多样品,并且难以同时获得矿物组成和粒度、形貌等多方面的信息。该研究团队基于拉曼光谱微颗粒分析技术,开发了以极低的样品损耗量,同时测定颗粒样品粒度和矿物组成的新方法,并成功运用到嫦娥五号月壤样品的研究,这一研究技术在月壤研究中的应用在世界上尚属首次,以往的技术通常只能开展粒度或矿物组成其中一项研究。该研究每次仅需约30微克样品,在获取多维度信息的同时,将样品损耗降到最低,并且样品制备简单,极大地降低了该流程可能带来的样品污染问题。另外,该方法可在短时间内快速建立一个矿物粒度和组成的多元化信息数据库,有助于发现稀有矿物相。该方法的进一步发展,将为未来火星和小行星等其他天体返回的微颗粒样品,进行快速分析提供关键技术支撑。该研究发现嫦娥五号月壤样品平均粒度为3.5微米,且呈单峰式分布,表明其具有较高成熟度,即受到的太空风化强烈。“矿物粒度是指颗粒的直径,最细的面粉平均粒度超过100微米,嫦娥五号月壤样品比面粉还细几十倍”,汪在聪表示,月壤粒度的测定对于研究太空风化过程具有重要作用。此外,研究团队还建成了一个月壤矿物的光谱数据库,并用它所分析的颗粒进行自动识别,获得每一种矿物相的粒度和体积等信息,计算得出不同粒径下矿物的模式丰度。研究人员发现在1-45微米粒度范围内的矿物组成为:辉石、斜长石、橄榄石、铁钛氧化物、玻璃等。该研究还识别出月壤中的一些微量矿物相,例如磷灰石、石英、方石英和斜方辉石等,其中斜方辉石的发现为首次报道,这表明嫦娥五号月壤中可能含有极少量的月球高地物质。上述成果为解译嫦娥五号着陆区的风暴洋北部地区光谱遥感数据,提供了地面实况信息,并为理解该区域深部和表面演化历史提供了新视角。该研究使用的样品由中国国家航天局提供,分析测试由地大生物地质与环境地质国家重点实验室完成,研究得到了国家航天局民用航天技术预研究项目、国家自然科学基金和生物地质与环境地质国家重点实验室的支持。
  • 世界首台!我国成功研制双光子-受激发射损耗(STED)复合显微镜
    p  在常规光学显微系统当中,由于光学元件的衍射效应,平行入射的照明光经过显微物镜聚焦之后在样品上所成的光斑并不是一个理想的点,而是一个具有一定尺寸的衍射斑。在衍射斑范围内的样品均会发出荧光,导致这些样品的细节信息没有办法被分辨,从而限制了显微系统的分辨能力。随着扫描电镜、扫描隧道显微镜及原子力显微镜等技术的出现,实现纳米量级分辨率的观测已经成为可能,但是以上这些技术仍然存在对样品破坏性较大,只能观测样品表面等缺点,并不适合对于生物样品,特别是活体样品的观测。因此,研究人员们急需找到一种光学的超衍射极限显微方法。二十世纪九十年代以来,研究人员们陆续提出了多种超分辨显微技术来实现超越衍射极限的高分辨率。在这些方法之中,以德国科学家S.W.Hell在1994年提出的受激发射损耗显微术(Stimulated Emission Depletion Microscopy,STED)的发展最为成熟,应用也最为广泛。/pp  受激发射损耗显微术(STED)是通过受激发射效应实现减小有效荧光发光的面积。一般STED显微系统中包含两束照明光,一束为激发光,一束为损耗光。当激发光的照射使得衍射斑范围内的荧光分子被激发,其中的电子跃迁到激发态后,损耗光使部分处于激发光斑外围的电子以受激发射的方式回到基态,而位于激发光斑中心的被激发电子则不受影响,继续以自发荧光的方式回到基态。由于在受激发射过程中所发出的荧光和自发荧光的波长及传播方向均不同,因此探测器观测到的光子均是由激发光斑中心的部分荧光样品通过自发荧光方式产生的。通过这种方式可以减小有效荧光的发光面积,提高系统的分辨率。/pp  目前,受激发射损耗显微术的关键主要集中在损耗光斑的调制,激发光与损耗光激光类型和波长的选择等方面。/pp  根据国家科技部消息,近日,在国家重点研发计划“数字诊疗装备研发”专项的支持下,由苏州国科医疗科技发展有限公司、吉林亚泰生物药业股份有限公司、中国科学院物理研究所等多家单位共同承担的数字诊疗重点研发专项项目--双光子-受激发射损耗(STED)复合显微镜获得重要进展:成功研制出国内外首台双光子-STED复合显微镜样机。项目组完成了显微镜系统中核心部件的自主研制,成功研制出了具有自主知识产权的大面阵CMOS相机和长工作距离大数值孔径物镜等核心部件,打破了国外相关产品对我国的垄断。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/003b5e67-5cf9-4afd-8932-d8a32c788f59.jpg" title="首台复合显微镜.png" alt="首台复合显微镜.png"//pp style="text-align: center "strong国内外首台双光子-STED复合显微镜样机/strong/pp  在当今生物学及基础医学的研究中,超分辨显微光学成像是取得原创性研究成果的重要手段。国外双光子-STED成像技术研究开展的相对较早,德国、加拿大、法国、意大利等多个国家的科研机构都已经成功搭建了双光子-STED成像实验系统 而我国相关研究起步较晚,目前双光子STED成像技术仍停留在实验室研究阶段,国际上尚未出现相应的产品。因此,双光子-受激发射损耗(STED)复合显微镜的成功研制对于满足我国生物医学等前沿基础研究的定制化需求、提升创新能力以及推动我国显微镜行业升级等具有重要意义。/p
  • 为拯救1.88万亿元的食物损耗,哪些仪器将大显身手?
    仪器信息网讯 近日,《2023年中国食物与营养发展报告》发布会暨中国食物与营养创新发展论坛在京召开。会上,农业农村部食物与营养发展研究所所长王加启主持发布《2023年中国食物与营养发展报告》。王加启所长(农业农村部食物与营养发展研究所供图)首先,报告全面分析我国食物生产与营养供给,2022年我国食物生产与营养供给呈现食物生产稳中有升、主要食物进口减少、营养供给持续改善等三个特点。其次,报告从数量、营养、经济等多个层面对我国食物损耗浪费情况量化评估,我国食物损耗浪费率约为22.7%,损耗浪费的食物量可满足1.9亿人1年的营养需求,折合经济损失高达1.88万亿元。报告中,农业农村部食物与营养发展研究所提出了政策建议:要建设更高效、更包容、更有韧性且更可持续的食物系统需要做好四方面工作。一是依靠多元化食物供给体系,提升动植物蛋白供给;二是依靠科技创新,减少从农田到餐桌全产业链损耗;三是依靠法律和经济手段,减少餐桌上的食物浪费;四是依靠宣传教育,提高全民营养健康意识。据报告称,谷物、蔬菜、水产品和水果位于浪费率最高的四类食物。 相应地,市场对于这四类食物的保鲜、检测技术与仪器设备的需求将增加,气调保鲜,冷链相关的设备、检测仪器也将迎来大显身手的机会。基于本次会议,可以预见,未来政策将鼓励研究人员开展“降低农产品损耗,在线检测农产品质量与品质”方面的研究,相关仪器与设备需求也会增加。在本次会议中,饿了么即时电商研究中心、农业农村部食物与营养发展研究所、中国绿色食品协会绿色农业与食物营养专业委员会、中国人民大学农业与农村发展学院联合课题组发布了《餐饮外卖营养健康化发展趋势研究报告》。报告指出,餐饮服务从关注解决温饱向关注营养健康转变,报告从八大营养健康消费趋势显示了人们对健康饮食的日益关注。这八大趋势为:饮食丰富度增加,全谷物和杂粮食品流行,低卡食品受追捧,注重水果摄入,膳食补充剂消费大涨,水产品消费稳增,饮品减糖化,减盐意识增强。从此份报告中可推测,未来与全谷物、水果、膳食补充剂、水产品检测相关的仪器市场需求也会增加。附:会议简介本次会议以“强化营养导向、贯通食物产业链”为主题,由国家食物与营养咨询委员会、中国农业科学院主办,农业农村部食物与营养发展研究所承办,农业农村部农产品质量安全中心、中国疾病预防控制中心营养与健康所、中国科学院上海营养与健康研究所、中粮营养健康研究院有限公司协办。国家食物与营养咨询委员会主任陈萌山、中国工程院院士任发政、农业农村部农产品质量安全监管司二级巡视员李家健、国家卫生健康委员会食品安全标准与监测评估司副司长田建新、中国农业科学院副院长叶玉江等领导出席会议,农业农村部食物与营养发展研究所党委书记王晓举主持会议。仪器信息网全程参加并报道此次会议。
  • 詹求强教授课题组《自然通讯》新成果:非线性荧光损耗机理及超分辨成像技术获进展
    作者:朱汉斌 来源:中国科学报华南师范大学华南先进光电子研究院教授詹求强课题组在非线性荧光损耗机理及超分辨荧光显微成像领域取得重要进展。相关研究5月23日在线发表于《自然通讯》(Nature Communications)。该研究在荧光损耗物理机理上,提出了受激辐射诱导激发损耗新机理,“拔本塞源”式对敏化能级进行损耗,从源头阻断荧光的激发能量,新机理带来的“荧光损耗放大效应”大幅降低了超分辨所需要的激光光强,在低光强条件下实现了9种不同光谱探针的荧光损耗。在超分辨成像技术上,由此发展了一种通用性强的基于单对低光强、近红外、连续波激光的多色超分辨显微成像技术,克服了传统多色STED超分辨系统所依赖的多对超快脉冲光束协同工作的复杂系统、高成本、低稳定性等问题。受激发射损耗(Stimulated emission depletion, STED)超分辨显微镜的概念由德国科学家Stefan W. Hell于1994年提出,该技术于2014年获得了诺贝尔奖。然而,传统STED显微镜存在原理性局限和问题:受激辐射作用如果要在与自发辐射(寿命有机染料通常为纳秒级)竞争中占主导,通常需要高功率的超短脉冲(飞秒/皮秒)激光作为损耗激光,这往往会导致严重的光漂白、光毒性和重激发背景等问题。此外,多色STED超分辨技术和系统复杂度高、成本高、维护难。詹求强自2017年起带领研究生探索新机理,最终以STED原理性缺陷为突破口,提出全新机理解决了关键问题。上转换荧光纳米颗粒是一种纳米荧光探针,具有近红外激发、反斯托克斯位移大、无背景荧光、发光极其稳定等独特优势。上转换纳米探针通常是一个敏化-发光二元系统,敏化离子负责吸收激发光能量,然后传递给发光离子辐射波长更短的荧光。为解决STED面临的上述难题,詹求强课题组基于上转换荧光技术提出了全新的思路:抑制敏化离子和发光离子间的能量传递过程就可以切断对发光离子的能量补给,使得发光离子被“釜底抽薪”,即受激辐射诱导激发损耗(Stimulated-emission induced excitation depletion, STExD)机理。结合上转换发光的多光子非线性泵浦依赖特性(非线性效应随泵浦的光子数增多而不断增强),实现了光子数越高的荧光能级电子损耗越强烈,STExD机理具有传统STED所不具有的对荧光损耗进行非线性放大的独特效应,与之伴随的技术意义就是可以逐级降低高能级荧光损耗所需要的饱和光强,这突破了传统STED中的饱和光强理论的限制(实验测得值显著低于传统理论值)。基于此,课题组使用740 nm的激发光和1064 nm的损耗光,在钕掺杂的上转换荧光探针中实现了高达99.3%的超高损耗效率,损耗饱和光强降低至23.8 kW/cm2,比传统STED探针降低了3个数量级。结合上转换发光一对多的敏化-发光特性,STExD可以实现一对激光实现对多种UCNPs探针的光开关控制。钕离子是上转换发光常用的敏化离子,可以单独或与镱离子联合敏化多种发光离子,课题组利用镱离子的能量传递桥梁作用,仅使用一组固定波长的激光器就成功实现了铒离子,钬离子的高效荧光损耗,损耗效率分别超过90%和80%。进一步地,也分别在镨、铕、铥、铽掺杂的体系中实现了高效的荧光损耗效应,总计实现9种不同光谱探针的同时荧光损耗。以此新机理STExD为基础,课题组发展了一种基于单对低光强、近红外、连续波激光的多色超分辨显微成像技术,分别对钕(黄色),铒(红色),钬(绿色)掺杂的上转换荧光探针实现了不同颜色的超分辨成像,原始图像分辨率达34 nm,并进一步实现了钕、钬掺杂的上转换荧光双色超分辨成像。通过荧光探针的表面改性和特异性修饰,课题组成功将上转换荧光探针免疫标记到HeLa癌细胞的肌动蛋白纤维,实现了亚细胞结构的超分辨生物成像。该工作提出的STExD通用发光损耗策略巧妙地利用了上转换荧光的传能发光特性,为解决传统STED技术的问题、开发新型探针提供了新的方案,为开发低光毒性、深层组织(近红外II区损耗激光)的多色超分辨成像技术奠定了基础,在突破衍射极限的光传感、光遗传学、光刻等前沿领域也具有广泛的应用前景。华南师范大学博士研究生郭鑫、蒲锐为该论文共同第一作者,来自瑞典皇家理工学院(KTH)的刘海春博士、Jerker Widengren教授等人以及詹求强课题组2016级黄冰如、2015级吴秋生等硕士生对该课题的完成做出了重要贡献,詹求强教授为论文通讯作者,华南师范大学为论文第一完成单位。该研究得到了国家自然科学基金、广东省自然科学基金等项目经费的支持。相关论文信息:https://www.nature.com/articles/s41467-022-30114-z
  • Advanced Materials: 可调谐低损耗一维InAs纳米线的表面等离激元研究
    亚波长下光的调控与操纵对缩小光电器件的体积、能耗、集成度以及响应灵敏度有着重要意义。其中,外场驱动下由电子集体振荡形成的表面等离激元能将光局域在纳米尺度空间中,是实现亚波长光学传播与调控的有效途径之一。然而,表面等离激元技术应用的关键目标是同时实现:①高的空间局域性,②低的传播损耗,③具有可调控性。但是,由于金属表面等离激元空间局域性较小,在长波段损耗较大且无法电学调控限制了其实用化。可喜的是:近期,由中科院物理所和北京大学组成的研究团队报道了砷化铟(InAs)纳米线作为一种等离激元材料可同时满足以上三个要求。作者利用neaspec公司的近场光学显微镜(neaSNOM, s-SNOM)在纳米尺度对砷化铟纳米线表面等离激元进行近场成像并获得其色散关系。通过改变纳米线的直径以及周围介电环境,实现了对表面等离激元性质的调控,包括其波长、色散、局域因子以及传波损耗等。作者发现InAs纳米线表面等离激元展现出:①制备简易,②高局域性,③低的传波损耗,④具有可调控性,这为用于未来亚波长应用的新型等离子体电路提供了一个新的选择。该工作发表在高水平的Advanced Materials 杂志上。图1 neaspec超高分辨散射式近场光学显微镜neaSNOM图2 InAs纳米线中表面等离激元的红外近场成像研究a) s-SNOM实验测量示意图;b) InAs纳米线的AFM形貌图;c) InAs纳米线的红外(901 cm?1)近场光学成像;d) 相应的模拟结果;e) c和d相应区域的界面分析;f) InAs纳米线的红外(930 cm?1)近场光学成像;g) InAs纳米线的红外(950 cm?1)近场光学成像;h) InAs纳米线的红外(930 cm?1)近场光学成像。该研究小组通过neaspec公司的散射型近场光学显微镜(s-SNOM)配合901–985 cm?1可调谐中红外QCL激光器,采用neaspec公司具有的伪外差近场成像技术的neaSNOM近场光学显微镜,对约为104 nm长的InAs纳米线的表面等离激元进行了研究。从近场成像图(图2 c)中可以看出,在930 cm?1红外光及AFM探针的激发下,表面产生的等离激元沿InAs一维纳米线传播,并从纳米线边缘反射回来产生相应的驻波图形。另外,可以通过定量分析表面等离激元传播的相邻的两个节点((λp/2)的空间距离来推断表面等离激元传播的波长(λp)。同时,作者也在不同的红外波长下(930, 950, 和985 cm?1,图2 f, g, h)对InAs纳米线的表面等离激元进行了纳米尺度近场光学成像研究,结果显示出相似的驻波图形。上述研究结果证实作者通过neaspec公司的散射型近场光学显微镜对InAs纳米线的近场成像研究成功观察到了InAs纳米线中的一维等离激元。该研究在通过s-SNOM红外近场光学显微镜展示了在InAs纳米线中等离激元的真实空间成像。作者的进一步研究表明其等离激元的波长以及它的阻尼都可以通过改变InAs纳米线的尺寸和选择不同基底来调控。研究显示半导体的InAs纳米线具有应用于小型光学电路和集成设备的巨大潜力。作者的发现开辟了一条设计与实现新型等离激元和纳米光子设备的新途径。同时,该研究也展示了neaspec公司的散射型近场光学显微镜在半导体一维或二维材料纳米光学研究中的广阔应用前景。截止目前为止,以neaspec稳定的产品性能和服务为支撑,通过neaspec国内用户不断的努力,neaspec国内用户2018年间发表了关于近场光学成像和光谱的文章共14篇:其中包括4 篇Advance Materials; Advance Functional Materials;Advance Science;Advanced Optical Materials和Nanoscale等。伴随更多的研究者信赖和选择neaspec近场和光谱相关产品, neaspec国内群的不断的持续增加,我们坚信neaspec国内用户将在2018年取得更加丰厚的研究成果。参考文献:Tunable Low Loss 1D Surface Plasmons in InAs Nanowires,Yixi Zhou, Runkun Chen, Jingyun Wang, Yisheng Huang, Ming Li, Yingjie Xing, Jiahua Duan, Jianjun Chen, James D. Farrell, H. Q. Xu, Jianing Chen, Adv. Mater. 2018, 1802551 https://doi.org/10.1002/adma.201802551相关产品及链接:1、 超高分辨散射式近场光学显微镜 neaSNOM:https://www.instrument.com.cn/netshow/C170040.htm2、 纳米傅里叶红外光谱仪nano-FTIR:https://www.instrument.com.cn/netshow/C194218.htm3、 太赫兹近场光学显微镜 THz-NeaSNOM:https://www.instrument.com.cn/netshow/C270098.htm
  • 红外光谱测量数据显示 过氧化氯是臭氧损耗真凶
    新华网柏林7月18日电 德国卡尔斯鲁厄技术研究所17日发表新闻公报说,通过对大气红外光谱测量值的分析,该所科学家确认了过氧化氯在极地大气臭氧层损耗中所起的关键作用。这一研究反驳了美国科学家前些年对于极地臭氧层损耗理论的质疑。  公报说,多年来,大多数科学家都赞同这样的理论,即人类活动排放的氟氯烃及其在大气中化学反应的产物过氧化氯破坏极地臭氧层,这一理论已经成为国际环保条约的基础。这些条约的实施已使大气中氯含量开始缓慢下降,因而对臭氧层的威胁有所减轻。  根据有关理论,极地冬季日出后,过氧化氯经短波长的阳光照射,会迅速分解出氯原子并快速摧毁臭氧。过氧化氯受阳光照射后分解的速率决定了臭氧层受损的程度。  然而,美国喷气推进实验室的弗朗西斯波普等科学家于2007年对这一理论提出质疑。他们通过实验室测量得到的过氧化氯受阳光照射而分解的速率,比其他研究得出的结果要低得多。美方研究人员认为,过氧化氯受光照分解的速率不够快,不足以维持大气中氯原子的浓度而造成臭氧空洞。这一研究曾在学术界引起巨大争议。  卡尔斯鲁厄技术研究所的研究人员用热气球搭载红外线光谱仪,测量了斯堪的纳维亚半岛北部地区20公里以上的大气层。该所研究人员韦策尔说,测量得出的大气中氯化合物的数据“清楚地反驳了美国科学家的质疑”,并再次证实过氧化氯在极地大气臭氧层损耗中起关键作用。
  • 液相色谱柱损耗率高?五大维护关键问题必看!
    p style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "色谱柱技术始于上世纪50年代,随着填料和填充技术的发展,色谱柱技术日益成熟,功能也日趋完善,目前已被广泛应用于生命科学、环保、材料、食品、药物开发等领域。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "液相色谱柱在色谱分析系统中主要起着分离检测物质的作用,如同色谱系统的心脏,同时也是易损耗品。为了减少损耗,色谱柱的使用维护至关重要!/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "液相色谱柱使用过程常用问题包括色谱柱连接、色谱柱活化、色谱柱使用、色谱柱维护、色谱柱保存等。/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/f8604747-9570-4f4c-ab4c-38392323be4a.jpg" title="1.png" alt="1.png"//pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun " /spanspan style="font-family: 宋体, SimSun " /span/pp style="line-height: 1.75em text-indent: 2em "strongspan style="font-family: 宋体, SimSun "1、色谱柱连接/span/strong/pp style="line-height: 1.75em text-indent: 2em "span style="color: rgb(192, 0, 0) "strongspan style="font-family: 宋体, SimSun "色谱柱安装方向/span/strong/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "色谱柱安装应按照同一个方向连接使用,且需要按照色谱柱上的方向指示连接,strong尽量避免色谱柱反向连接!/strong/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "常见色谱柱连接的问题主要有两种,安装色谱柱时管线伸出接头长度过长,使得螺纹拧入较浅,会导致密封性不好而漏液,进一步引起基线漂移或响应降低;反之,会在管线前段出现死体积,引起峰形展宽,灵敏度降低。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "理想的接头连接应具备以下特性:管线与接口之间无死体积;在超高压和高温下始终避免泄漏;优异的长期使用稳定性,防止管线滑动;简便易用。/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/84c8701f-71fc-4530-a9f0-a1a71937ed61.jpg" title="2.png" alt="2.png"//ppbr//pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "管线的选择也非常重要,分析型液相系统最常用的规格是0.12和0.17mm内径的管线。更换管线时首先要确认当前管线的规格、并更换相同内径和长度的管线,否则会造成更换前后结果的不一致,因为管线体积会影响系统柱外体积,从而影响峰形和保留时间。/spanspan style="font-family: 宋体, SimSun text-indent: 2em " /span/pp style="line-height: 1.75em text-indent: 2em "strongspan style="font-family: 宋体, SimSun "2、反相柱活化平衡/span/strong/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "1) 首先,使用甲醇或乙腈冲洗约20 倍柱体积 。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "2)若流动相含有缓冲盐,使用与流动相中初始比例相等比例的超纯水和有机相冲洗过渡约20 倍柱体积,再用含缓冲盐的流动相平衡冲洗约20 倍柱体积或以上。 /span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "3) 若流动相不含缓冲盐,可直接用流动相平衡色谱柱,大约20 倍柱体积或以上。 /span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "4)当基线和压力平稳后测试,判断是否充分平衡以连续进样结果的重现为准。若不够可延长流动相的平衡时间。/span/pp style="line-height: 1.75em text-indent: 2em "strongspan style="font-family: 宋体, SimSun "3、反相柱冲洗保存/span/strong/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "1)使用50:50 甲醇或乙腈与水的混合溶液冲洗20-30 倍的柱体积;/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "2)使用纯甲醇或乙腈冲洗20-30倍柱体积;/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "3)储存之前将堵头紧紧密封在柱端接头上,以免填料变干。/span/pp style="line-height: 1.75em text-indent: 2em "strongspan style="font-family: 宋体, SimSun "4、反相色谱柱清洗再生/span/strong/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "清洗或反冲清洗反相色谱柱时,用以下溶剂至少各30倍柱体积冲洗色谱柱:/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "断开色谱柱与检测器的连接,将管线留在色谱柱末端,将其放入接收液体的烧杯中,先用不含缓冲液盐的流动相冲洗(水/有机相),然后用 100% 有机相(甲醇和乙腈)冲洗,检查压力是否回归正常,如果没有,再进行下一步操作。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "如压力没有回归正常,丢弃色谱柱或考虑用更强的条件清洗:75% 乙腈/25% 异丙醇、100% 异丙醇、100% 二氯甲烷 、100% 己烷。/span/pp style="line-height: 1.75em text-indent: 2em "span style="color: rgb(192, 0, 0) "strongspan style="font-family: 宋体, SimSun text-indent: 2em color: rgb(84, 141, 212) "值得注意的是,无论是使用己烷还是二氯甲烷,使用之前或恢复使用反相流动相之前必须用异丙醇进行冲洗。/span/strong/span/pp style="line-height: 1.75em text-indent: 2em "span style="color: rgb(192, 0, 0) "strongspan style="font-family: 宋体, SimSun "关于色谱柱反冲/span/strong/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "虽然色谱柱不应轻易反冲,但当明确知道超压来自颗粒物堵塞筛板或柱头污染时,反冲是最有效补救方法。反冲色谱柱可使颗粒物快速被冲出,此外还可快速冲出柱头强吸附污染物,柱子反冲后最好仍然正向连接使用。不过,反冲也会带来负面影响,如可能导致柱床松动、发生保留时间改变、小粒径的色谱柱反冲可能导致填料流出等。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "其中,可以反冲的色谱柱有:粒径大于2um的色谱柱(2.7、3、3.5、4、5μm等);而不可反冲的色谱柱有:粒径小于2um的色谱柱(1.8μm RRHD/RRHT;1.9μm Poroshell)。/span/pp style="line-height: 1.75em text-indent: 2em "strongspan style="font-family: 宋体, SimSun "5、色谱柱使用过程中常见问题/span/strong/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "液相色谱柱使用过程中最常见的问题包括pH值、温度、溶剂耐受、压力、样品等。色谱柱使用条件不得超出厂家建议的范围,包括最高压力,pH范围,水相耐受,柱温等。当测试条件接近色谱柱使用范围的极限值时,柱寿命会受影响。/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/59a6513a-a6d8-46e8-9bbf-8de6be7224c5.jpg" title="3.png" alt="3.png"//pp style="line-height: 1.75em text-indent: 2em "br//pp style="line-height: 1.75em text-indent: 2em "span style="font-size: 20px "strongspan style="font-family: 宋体, SimSun "问题集锦/span/strong/span/pp style="line-height: 1.75em text-indent: 2em "span style="color: rgb(192, 0, 0) "strongspan style="font-family: 宋体, SimSun "1、C18柱子如何调PH和温度以提高分离度呢?/span/strong/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "答:通过调整pH和柱温优化分离度,这是方法开发中非常重要的手段。简单来讲,中性或不可电离化合物对pH变化不敏感。对于可电离化合物而言,可以通过调整流动相pH值,控制化合物电离状态来改变化合物的反相保留。降低pH可增大酸性化合物保留,而提高pH则可增加碱性化合物保留。通过调整pH改变化合物保留进而优化各个组分之间的分离度。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "通常提高柱温使得传质加快,保留也会降低,但是不同化合物保留对温度变化敏感程度不同,因此也可以通过调整柱温改变各个组分的保留时间来优化分离度。/span/pp style="line-height: 1.75em text-indent: 2em "span style="color: rgb(192, 0, 0) "strongspan style="font-family: 宋体, SimSun "2、色谱柱总超压可能是什么原因呢?/span/strong/spanspan style="font-family: 宋体, SimSun " /span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "答:超压一般是液相流路内部包括色谱柱在内可能有堵塞。需要先做分段排查确定堵塞的部位,再根据堵塞部位排查引起堵塞的可能原因。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "如果是色谱柱堵塞,比较常见的原因有很多,如样品脏、基质复杂并且没有经过良好的预处理,或者预处理之后进入液相系统后又析出从而造成堵塞或污染(解决方法:加强样品预处理);色谱柱超压或超出pH范围使用导致填料碎裂,碎屑颗粒堵塞色谱柱(解决方法:根据测试条件选择合适色谱柱,避免超范围使用);仪器使用过程中部件磨损碎屑造成的堵塞(解决方法:及时更换受损部件)等等,都会引起系统色谱柱压力升高。/span/pp style="line-height: 1.75em text-indent: 2em "span style="color: rgb(192, 0, 0) "strongspan style="font-family: 宋体, SimSun "3、C18柱子出峰时间拖后是什么因素影响?用一段时间出峰时间就拖后了,请问与流动相有没有关系?/span/strong/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "答:液相色谱中影响化合物保留的主要因素包括:样品,色谱柱,流动相(流速,组成,比例等),柱温等。使用过程中发现保留时间漂移的话,需要从以下几个影响因素进行排查:可以先通过对比保留时间漂移前后相同条件下的压力曲线是否重现,从而初步排查可能的原因。若压力曲线不重现,首先确认测试条件是否有改动,检查流动相流速,组成,比例等是否改变,是否存在漏液或进气泡引起的流速和比例变化;对流动相组成变化敏感的样品和方法,应确保每次配制流动相的重现性;检查色谱柱是否堵塞污染;仪器控温是否准确等等,可能的原因比较多,具体原因需要进一步排查。/span/pp style="line-height: 1.75em text-indent: 2em "span style="color: rgb(192, 0, 0) "strongspan style="font-family: 宋体, SimSun "4、色谱柱用什么流动相保存最好?用纯有机试剂是否容易干?/span/strong/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "答:反相柱可以用HPLC级的甲醇或者乙腈保存,注意紧密连接堵头。正常情况下只要堵好堵头,溶剂是不容易干的。当然在保存溶剂中添加5%-10%的水,也没有问题。/span/pp style="line-height: 1.75em text-indent: 2em "span style="color: rgb(192, 0, 0) "strongspan style="font-family: 宋体, SimSun "5、乙腈流动相总是容易聚合,有没有什么解决办法?/span/strong/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "答:乙腈的聚合需要一定条件和时间,务必使用品质可靠的HPLC级溶剂,并且保证所使用溶剂尽可能新鲜。如果是放置保存比较久的乙腈溶剂,使用之前先过滤一下再用会有一定改善。/span/pp style="line-height: 1.75em text-indent: 2em "span style="color: rgb(192, 0, 0) "strongspan style="font-family: 宋体, SimSun "6、小分子极性物质一般选用什么液相色谱柱?/span/strong/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "答:可以先尝试用能够耐受高比例水相的柱子,提高流动相水相比例来增强保留。如果是可电离化合物,如酸性或者碱性化合物,可以在反相模式下先尝试通过调整流动相pH增大保留,酸性化合物需降低流动相pH,碱性化合物则提高流动相pH,根据pH条件选择可以耐受的色谱柱。如果调整pH后反相模式保留仍然很弱,您还可以考虑使用其他保留模式的色谱柱,例如HILIC柱,HILIC-Z,HILIC-OH5,或者纯硅胶的HILIC柱等等,也可以使用离子交换色谱柱或者正相色谱等。/span/pp style="line-height: 1.75em text-indent: 2em "span style="color: rgb(192, 0, 0) "strongspan style="font-family: 宋体, SimSun "7、柱子分离效果差了该怎么处理?/span/strong/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "答:导致色谱柱分离度降低的原因,主要是色谱柱柱效下降及色谱柱选择性发生改变。引起柱效下降的原因比较多,如果是连接不当造成的柱效损失,重新正确连接即可。如果是色谱柱使用中由于柱子污染引起的柱效下降或选择性改变导致的分离度降低,可以尝试对柱子进行清洗再生。如果是色谱柱本身的损伤引起的柱效下降分离度变化,这种通常是不可逆的,只能更换色谱柱,并且在后续使用新色谱柱的时候尽量避免各种损伤柱子的操作。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "br//span/pp style="line-height: 1.75em text-indent: 2em text-align: right "span style="font-family: 宋体, SimSun " /spanspan style="font-family: 宋体, SimSun text-indent: 2em " i本文根据安捷伦报告整理而成,欲了解更多内容,请点击链接观看视频: /i a href="https://www.instrument.com.cn/webinar/video_113123.html" target="_self"https://www.instrument.com.cn/webinar/video_113123.html /a/span/ppbr//p
  • 热分析耄耋老人钱义祥:DMA曲线激荡之美
    DMA曲线激荡之美热分析耄耋老人 钱义祥引言:“DMA曲线激荡之美”是一篇短文。短文诠释(解读)了黏弹性材料的DMA曲线的显信息以及蕴含在DMA曲线中的滞后圈。展现了黏弹性材料在正弦交变应力作用下的激荡之美。近日,和耐驰公司市场与应用副总经理曾志强博士切磋热分析中的美学问题。曾志强博士语出金句:热分析的美存在于DSC曲线的峰谷、TG曲线的流淌和DMA曲线的激荡!妙 ! 我将他的金句镶嵌进“热分析中的美学”论文中,增辉!今以DMA曲线激荡之美为题,撰写了以下短文:一.试样在振动中呈现激荡之美激荡是汉语词语,是指事物受到激发而动荡。强迫非共振法DMA以设定频率振动,使试样处于振动状态,呈现激荡之美。二.激荡的DMA曲线蕴含的信息1. 显信息和隐信息强迫非共振法DMA就是测量应力—应变(同频正弦信号)信号的相位差,其滞后圈即为李萨如图形。由试样在振动中的应力与应变幅值以及应力与应变之间的相位差,直接计算得到储能模量、损耗模量、损耗角正切等性能参数。DMA测量应力—应变(同频正弦信号)信号的相位差,但在DMA曲线中并没有显现相位差信息,它是DMA曲线的隐信息。 DMA曲线中显现的储能模量、损耗模量、损耗角正切等性能参数是显信息。它由试样在振动中的应力与应变幅值以及应力与应变之间的相位差直接计算得到。非晶高聚物的DMA曲线(温度谱)非晶高聚物的DMA曲线(频率谱)2. 一个震荡周期的滞后参数DMA实验要设定振动频率,让试样在一定的频率下振动。一个振动周期即为一个实验点。无数个振动周期构成了DMA曲线。DMA曲线中,每一个振动周期的应力-应变曲线相位差、Tanδ、滞后圈和能量损耗是不一样的。一个震荡周期得到的滞后参数如下图: 3. 损耗角正切Tanδ蕴含的信息:DMA曲线中的Tanδ线如图所示: 损耗角正切Tanδ反映材料的阻尼特性,是DMA曲线的显信息。Tanδ中δ是一个震荡周期的相位差,是DMA曲线的隐信息。从三角函数表中由Tanδ值得到相位差δ。DMA曲线中,损耗角正切Tanδ蕴含哪些信息呢? 1) 显信息Tanδ以DMA曲线形式显现黏弹性材料的阻尼特性,可以从DMA曲线上直接读出每个振动周期的Tanδ。Tanδ表示每周期振动所消耗的能量与最大应变能的比值,是能量损耗和阻尼能力的直接量度。2) 潜信息-相位差相位差:DMA是测量应力—应变(同频正弦信号)信号的相位差。相位差无量纲,用弧度rad表示。李萨如滞后圈:李萨如滞后圈是隐藏在Tanδ曲线内的应力-应变曲线,单位是焦耳j。3)关联Tanδ和简谐振动的能量损耗。4. 诠释DMA曲线:DMA曲线显现显信息,潜藏隐信息。下图诠释了DMA曲线的显信息、隐信息:三.滞后圈的变化美滞后圈的形状多种多样,变化无穷,具有变化之美!黏弹性材料的应力-应变曲线,由于粘性的作用形成滞后圈。DMA计算的理论基础是线性粘弹性,要求施加在试样上的动态应力或动态应变落在应力-应变曲线的初始线性范围内。当试样是线性粘弹性材料(处于线性粘弹性区域),施加的应力是正弦波,则滞后圈为一椭圆形。滞后圈的形状在直线和圆之间变化,如图: 如果是非线性粘弹性材料(处于非线性粘弹性区域),滞后圈的形状是不规则的,如图所示: 滞后圈变异反映了材料的特性,不是怪异,不是丑,而是变化之美!滞后圈变异已经广泛应用于阻尼材料的振动疲劳特性、应力—时间疲劳测试曲线、位移—时间疲劳测试曲线、振幅对阻尼材料的振动疲劳的影响、温度对阻尼材料振动疲劳的影响、频率对阻尼材料振动疲劳的影响、长周期振动的疲劳性能等方面。从滞后圈上可以获得的信息:1. 储能模量、损耗模量、损耗角正切等性能参数。强迫非共振法DMA以设定的频率振动,测定试样在振动中的应力与应变幅值以及应力与应变之间的相位差,直接计算实验得到储能模量、损耗模量、损耗角正切等性能参数。2. 滞后圈形态封闭回线:粘弹性阻尼材料滞后圈是应力、应变所经过的路径形成的封闭回线。滞后圈的形状有椭圆形和不规则图形。椭圆形:如果是线性粘弹性材料(区域),施加的应力是正弦波,则滞后圈为一椭圆形。椭圆的变形:圆形—δ越大,链段运动越困难,越跟不上应力的变化,椭圆越圆;扁形—δ越小,应变落后越小,椭圆越扁。椭圆长轴的斜率等于复模量。不规则图形:如果是非线性粘弹性材料(区域),滞后圈的形状是不规则的。3. 滞后圈面积阻尼材料的动态变形生热现象。由于滞后的存在,每一循环周期中都有能量的损耗,即内耗。消耗的功以热能形式散发,内耗越大,吸收的振动能也越多。 滞后圈面积只表示振动循环一个周期的能量损耗。一个周期中能量收支不平衡,其差值就是椭圆面积 ,表示能量的耗损ΔW,ΔW为阻尼大小的量度。滞后圈面积的变化:振动疲劳试验中,滞后圈随阻尼性能下降而变小。由滞后圈面积的变化得到不同疲劳周期的能量损耗和阻尼衰减特性。4. 损耗因子曲线下的面积:5. 疲劳破坏的周数当材料内部出现疲劳裂纹时,滞后圈发生突变或无法对试样继续加载试验应力,疲劳试验就此终止。结束语:材料的动态力学行为是指材料在交变应力(或应变)作用下的应变(或应力)响应。试样在正弦交变应力作用下呈现材料动态的激荡之美。致谢:曾志强博士提出热分析的美存在于DSC曲线的峰谷、TG曲线的流淌和DMA曲线的激荡的美学理念, 绝妙! “DMA曲线的激荡之美”一文是受曾志强博士的美学理念启迪撰写而成,特此致谢!2023-01-06
  • 【百年传承】安东帕表面力学测试仪器开放日
    开放日活动周2022年,正值安东帕100周年,已推出一系列【百年传承】活动,今天,给大家推荐的是:表面力学测试仪器开放日活动周~免费测试样品安东帕压痕、划痕、摩擦磨损、涂层厚度测试免费开放一星期!(9月5-9日)。安东帕表面力学测试仪可测量各种材料的表面力学性质,从最硬的类金刚石 (DLC) 膜到最软的水凝胶。应用领域覆盖工业和科研:切削工具、汽车、航天、电子器件、生物医学、半导体、聚合物、光学部件、玻璃、装饰物等。压痕仪:硬度、弹性模量、粘弹性、蠕变、断裂韧性等符合工业标准:ISO 14577、ASTM E2546等仪器化压痕技术 (IIT) 是将已知几何形状的压头压入样品表面,同时监测压入深度和法向载荷。可以从载荷-位移曲线中获得压痕硬度(HIT)、弹性模量(EIT)以及其他力学特性。安东帕的压痕仪采用独特的表面参比技术(欧洲专利 1828744,美国专利 7685868),实现低热漂移,具有极高的稳定性。“快速点阵”压痕模式可实现最高每小时600 次的测量速度,并获得完整的压痕曲线。动态力学分析 (DMA)可测量力学性质随深度变化曲线(硬度/模量vs.深度),表征材料粘弹性 (存储及损耗模量、tan δ)。多物镜视频显微镜可以清晰显示样品,并且利用电动工作台精确定位。划痕仪:涂层附着力、摩擦力、耐划伤性等符合工业标准:ISO 20502、ASTM C1624等划痕测试仪技术可以在待测样品上用金刚石划针形成可控的划痕。达到一定的载荷时,涂层会开始脱落。通过集成的光学显微镜观察,结合摩擦力、划痕深度、声发射传感器等多种信号,可以精确地检测临界载荷,量化不同的膜-基材组合的结合性能。安东帕的划痕仪拥有独一无二的全景成像模式(美国专利 8261600,欧洲专利2065695),可直接观测整条划痕。获专利的深度前扫描和后扫描(美国专利6520004,欧洲专利1092142),可得到真实的划痕深度和残留深度,还可研究样品的弹性恢复。主动力反馈系统使得仪器可测量曲面及不平整样品。摩擦学测量:摩擦系数、磨损率、润滑符合工业标准:ASTM G99、G133、DIN 50324等安东帕的销盘式摩擦磨损试验机(TRB3)采用可靠的静加载,包括旋转、旋转往复和线性往复三种运动模式。通过两个LVDT摩擦力传感器和对称弹性臂最大限度地减少热漂移。使用集成的温度和湿度传感器实时监测环境状况。可配置加热、液体测试等多种选件。涂层厚度符合工业标准:ISO 26423:2009、ISO 1071-2、VDI 3198等球坑磨损测试法:使用已知尺寸的球在涂层上磨出一定尺寸的冠状球坑,利用光学显微镜观察并测量球坑尺寸,通过几何模型推导计算涂层厚度。适用于单层或多层涂层,可以测量平面、圆柱面或球面。测量方法简单快速,只需1到2分钟即可测量出涂层厚度。参与方式识别下方二维码,参与活动预约预约时间:即日起至9月2日免费测试周:9月5-9日请尽量详细填写样品信息及测试需求,方便我们判断安东帕上海实验室的仪器配置是否满足您的测试需求最终解释权归安东帕测试预约测样地点测试地址:安东帕(中国)有限公司上海市闵行区合川路2570号 科技绿洲三期2号楼11层
  • 670万!中南大学高等研究中心受激发射损耗(STED)光学超分辨率显微镜采购项目
    项目编号:HZ20220202-0139项目名称:中南大学高等研究中心受激发射损耗(STED)光学超分辨率显微镜采购项目预算金额:670.0000000 万元(人民币)采购需求:包号包名称是否核心产品分项项目名称(标的名称)是否接受进口产品数量交货要求代理服务收费标准时间地点1中南大学高等研究中心受激发射损耗(STED)光学超分辨率显微镜采购项目是受激发射损耗(STED)光学超分辨率显微镜是1台合同生效后,从合同签订之日起 6个月以内,或延迟到采购人指定时间中南大学湘雅医院教学科研楼采购人指定地点具体收费标准详见本项目招标文件“投标须知前附表”否软件系统及工作站是1台否活细胞培养系统是1套否主动式防震台是1台否UPS电源否1台否除湿机否1台否电脑桌否1个合同履行期限:具体内容详见本项目招标文件第五章“采购需求”。本项目( 不接受 )联合体投标。
  • 恒创立达发布恒创立达CS-2A 脆碎度测试仪新品
    大液晶屏显示!全新升级!内部结构为全机械齿轮传动,无皮带,无损耗件,寿命长!!CS-2A 型片剂脆碎度测试仪由控制系统、传动系统、转盘部件等组成,由采用单片微型计算机等组成的精密控制系统对部件进行集中控制;仪器结构合理,自动化程度高,控制进度高,灵敏度高,操作简便,工作可靠。技术参数:转速范围:25rpm±1rpm 具有“计时”模式,计时范围0-9小时59分59秒,并可选择倒计时 具有“计数”模式,0 - 99999次,并可选择倒计数 轮鼓尺寸: 内径约286 mm ,深39 mm 工作电源: 220V±10% V ,50Hz 环境温度: 5 - 35 ℃ 相对湿度 :小于 80 % 整机功率: 18w创新点:1.内部结构为全机械齿轮传动,无皮带,无损耗件,寿命长。2.CS-2脆碎度测试仪由控制系统、传动系统、转盘部件等组成,由采用单片微型计算机等组成的精密控制系统对部件进行集中控制.3.CS-2脆碎度测试仪结构合理,自动化程度高,控制进度高,灵敏度高,操作简便,工作可靠。恒创立达CS-2A 脆碎度测试仪
  • 鑫图参与国家重点项目—“双光子-受激发射损耗(STED)复合显微镜”的研发
    2017年10月20日,科技部重点研发计划-数字诊疗专项"双光子-受激发射损耗(STED)复合显微镜"项目(2017YFC0110200)实施交流研讨会在南京举行,鑫图总经理陈兵在会上作了关于"下一代sCMOS相机"的技术汇报。 该项目以研发及产业化双光子-受激发射损耗(STED)复合显微镜为主要目标,力图在"适用于双光子成像的自适应光学技术"、"基于中空贝塞尔淬灭光场调控的STED 成像技术" 等关键技术上有所突破。在长工作距离显微物镜、飞秒激光器和CMOS 相机等核心部件能自主研发,实现高端光学显微镜的技术创新与装备国产化。项目研发团队是由多名在光学显微成像领域有着丰富研究与产业化经验的资深人员组成,在双光子显微成像、STED超分辨成像及仪器化开发方面都有着深厚的基础。在双光子显微成像方面,项目负责人郑炜博士从2006 年起就开始双光子显微成像的相关研究,自主研发了世界首台双光子\谐波\光声三模态显微镜。在STED成像方面,项目核心成员席鹏教授是国内公认的STED技术领航人,是他首次在国内实现了STED超分辨显微成像,并将STED分辨极限推进到19nm的理论极限,刷新了STED在生物成像上的记录。在产业化方面,申报企业南京东利来公司是中国光学与光子学标准技术委员会的委员单位,是中国显微物镜、目镜标准的第一起草单位。福州鑫图光电有限公司依托其在科学相机产业化方面的优势有幸参与其中,承担该项目核心部件sCMOS相机的研制,助力核心部件国产化目标。
  • TecSense无损顶空残氧测试仪实时监测气调包装内的残氧含量
    TecSense无损顶空残氧测试仪实时监测气调包装内的残氧含量关键词:进口顶空分析仪|西林瓶残氧仪|安瓿瓶氮气浓度仪|肖氏露点仪|进口露点仪|露点仪价格|露点仪品牌|SADP露点仪|便携式露点仪|在线露点仪|微量水分析仪|PBI药品残氧仪 TecSense无损顶空残氧测试仪实时监测气调包装内的残氧含量,也称在线顶空分析仪,可测量食品包装内的气调包装内的残氧含量,也可以用在制药行业药品包装内的残氧含量。介绍随着市场和消费者需求以及经济现实的变化,食品工业继续发生变化。该行业越来越重视:A.食品安全B.质量货架期使用气调包装(MAP)是食品工业应对日益严格的包装审查的一种重要方式。事实上,MAP是包装行业增长罪快的领域之一。食品暴露在大气中会导致产品氧化,从而导致食品工业的主要问题,如货架寿命下降、风味丧失和变色。MAP的工作原理是减少产品接触的氧气量。这是通过在密封前用氮气或二氧化碳冲洗包装来完成的,从而使包装内部的氧气含量低于0.5%。要使气调包装满足这一严格的低氧要求,需要三件事:1。良好的氧气屏障2包装材料。密封前要冲洗好包装三。良好的密封(包装完整性)奥地利TecSense公司推出了一个顶空分析仪测试系统,该系统在包装材料的发展和优越的测试方法方面取得了显著进步。使用这个新的系统,实验室能够——第1次——在不破坏包的情况下监控包内发生的事情。利用氧传感器系统实时监测气调包装中的氧气新的氧气传感器系统为气调包装地板带来了同样的突破性技术。TecSense顶空分析仪系统集成了经验证的TecSense氧气分析仪TecLab不损残氧测试技术和革名性的传感器。第1次,包装线操作员现在可以实时、无侵入、无侵入地监控、控制和记录冲洗周期(三个MAP成功标准中的第二个)。TecSense光学传感器通常情况下,氧气是通过从包装或冲洗室中提取大气样品来监测的,然后将样品送到进行测量的仪器中。使用带有长软管/管的真空系统自动提取样品。但是,这种类型的系统具有侵入性,不能提供实时信息或刷新周期的文档。真空系统很容易损坏,或者取样管很容易堵塞,导致读数不可靠,导致包装线中断。频繁的停工会导致生产力和收入的损失。TecSense顶空分析仪系统提供冲洗室/冲洗包的无创、实时、被动、现场监控。它是一个系统,有两个主要和独立的组件:1.带10英尺光纤束/热电偶电缆延长线的主控制器(箱)。2.TecSense定制的在线传感器块。该顶空分析仪系统没有样品提取、真空或软管。它缺少任何活动部件,因此维护要求非常有限。氧气直接在室内或包装中使用独立的固态光学传感器(革名性的氧气传感器)测量。使用光学传感可以在不干扰测量环境的情况下进行测量。传感行为不消耗氧气,这与传统传感器非常不同,因为它们在测量过程中消耗氧气,并改变使用环境。氧气传感系统中使用的光学氧气传感器测试原理是基于固定在透气疏水聚合物(砖利配方,可承受高温、油和其他恶劣环境)中的染料的荧光猝灭。染料在光谱的蓝色区域吸收光,在光谱的红色区域发出荧光。氧的存在会使染料发出的荧光熄灭,从而导致发射强度和寿命随氧浓度的变化而变化。寿命中的这种变化可以通过校准来提供非常高的加速度。 更多TecSense无损顶空残氧测试仪实时监测气调包装内的残氧含量信息请直接致电英肖仪器中国
  • 第三届国产好仪器起航在即——聚焦物性测试仪器
    p  strong仪器信息网讯 /strong人间四月芳菲尽,山寺桃花始盛开:4月,a style="text-decoration: underline color: rgb(0, 176, 240) " title="" target="_self" href="http://www.instrument.com.cn/activity/goodcn/gchyq/Experpoint?id=782"strongspan style="color: rgb(0, 176, 240) "第三阶段“国产科学仪器腾飞行动”/span/strong/a(以下简称:腾飞行动)将再次起航!作为腾飞行动核心子活动“第三届国产好仪器”也将同时启动。/pp  按计划,a style="color: rgb(0, 176, 240) text-decoration: underline " title="" target="_self" href="http://www.instrument.com.cn/activity/goodcn/gchyq/Experpoint?id=782"span style="color: rgb(0, 176, 240) "第三阶段腾飞行动/span/a将以“物性测试仪器”为主题。活动继续由中国仪器仪表行业协会为指导,仪器信息网主办,我要测网和仪品汇协办,中国仪器仪表学会、北京科学仪器装备协作服务中心、全国实验室仪器及设备标准化技术委员会等单位支持,同时根据此次主题的特点,增补中国和平利用军工技术协会、北京材料分析测试服务联盟、中国仪器仪表行业协会试验仪器分会为支持单位。重装上阵,再次为国 产好仪器发声。/pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong“腾飞行动”背景/strong/span/pp  “国产科学仪器腾飞行动”自2013年9月5日在云南腾冲启动以来,“腾飞行动”前两个阶段活动已圆满落幕,并取得一系列成果。a style="text-decoration: underline " title="" target="_self" href="http://www.instrument.com.cn/activity/goodcn/Index/Main"strongspan style="color: rgb(0, 176, 240) "第一阶段/span/strongstrongspan style="color: rgb(0, 176, 240) "/span/strong/a(2013年9月5日-2015年7月17日)以“分析仪器”为主题,a style="text-decoration: underline " title="" target="_self" href="http://www.instrument.com.cn/activity/goodcn/gchyq/"strongspan style="color: rgb(0, 176, 240) "第二阶段/span/strongstrongspan style="color: rgb(0, 176, 240) "/span/strong/a(2016 年4月22日-2017年3月1日)以“样品前处理及实验室常用设备”为主题。两个阶段举办了包括“分析仪器可靠性培训”、“分析仪器可靠性高层沙龙”等 国产分析仪器可靠性研讨培训系列活动;启动了“国产科学仪器史料征集”工作,举办了“国产科学仪器企业征稿”等活动 组织发起了“科学仪器企业走进高 校”、“国产科学仪器万里行”、“国产好仪器炼成记特别报道”、“国产仪器生产全过程调研考察”、“典型用户单位走访考察”等活动。出版发行《国产好仪器 手册》,并组织优秀产品进行大规模的国内用户推广以及海外市场拓展;并将与政府采购单位以及高端实验室等多方合作,组织企业进行相关的资源对接服务工作,促进国产科学仪器与有关用户单位深入合作,向政府建言献策等,从而帮助国产厂商找到和解决问题所在,提升市场占有率。/pp style="text-align: center "strong“腾飞行动”六大活动项目/strong/pp style="text-align: center"img style="width: 350px height: 173px " src="http://img1.17img.cn/17img/images/201703/insimg/798f617a-5c42-4cd3-8bc7-0880fc8c0a01.jpg" title="3.jpg" height="173" hspace="0" border="0" vspace="0" width="350"//pp style="text-align: center"img style="width: 600px height: 218px " src="http://img1.17img.cn/17img/images/201703/insimg/9bd7dbc7-f937-4499-8a7e-bd64a4f59546.jpg" title="0.jpg" height="218" hspace="0" border="0" vspace="0" width="600"//pp style="text-align: center "strong“国产好仪器”活动流程/strongbr//pp  “国产好仪器”作为“腾飞行动”的核心子活动之一,旨在通过“用户说好才是真的好”的原则,寻找和筛选出一批具有良好用户基础,得到用户单位认可的优秀 国产科学仪器产品以及企业。目前,已成功举办两届“国产好仪器”,发行两册《国产好仪器手册》共计15000份,通过评选活动、网络推广、线下研讨会、学 术会议展会推广、《国产好仪器手册》(电子刊)等各种形式,吸引近500万次用户关注和参与 项目组完成近100台仪器的生产过程实地调研走访。以下为两 届“国产好仪器”活动部分数据小结:/pp style="text-align: center"img style="width: 600px height: 174px " src="http://img1.17img.cn/17img/images/201703/insimg/ba7cf1dc-f250-49e4-8148-e3ef89d46d35.jpg" title="4.jpg" height="174" hspace="0" border="0" vspace="0" width="600"//pp style="text-align: center "strongspan style="color: rgb(0, 0, 0) "/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/5eb59484-db46-438c-acbf-290cabfaa57e.jpg" title="00.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 0, 0) "发行两册《国产好仪器手册》/span/strongbr//pp style="text-align: center "strongspan style="color: rgb(0, 0, 0) "/span/strong/pp style="text-align: center"img style="width: 600px height: 368px " src="http://img1.17img.cn/17img/images/201703/insimg/c08b3718-fa0d-4757-84aa-faaa2d0e70da.jpg" title="1.jpg" height="368" hspace="0" border="0" vspace="0" width="600"//pp style="text-align: center "strongspan style="color: rgb(0, 0, 0) "“国产好仪器”奖牌颁发仪式/span/strongbr//pp style="text-align: center "a style="text-decoration: underline " title="" target="_self" href="http://www.instrument.com.cn/activity/goodcn/gchyq/Experpoint?id=782"span style="color: rgb(255, 0, 0) "strong第三阶段“腾飞行动”概况/strong/span/a/pp  对于物性测试仪器设备,尤其以气候环境试验设备为代表,具有“量大面广”的特点,相关国内生产企业众多,众多的应用领域对优秀国产样品前处理设备有迫切 的需求。但是,产品质量不一、用户选购困难等问题也比较多。第三阶段“腾飞行动”将以“物性测试仪器”为主题,选择试验机、气候环境试验设备、无损检测仪 器、其他物性测试仪器等四大类仪器,以“第三届国产好仪器”为核心子项目,以“用户说好才是真的好”为宗旨,筛选出优秀的国产物性测试仪器设备代表,树立国产仪器的新标杆,打造中国科学仪器生产企业的良好品牌形象。img src="http://img1.17img.cn/17img/images/201703/noimg/c506cc95-5c06-40d9-afd5-fc3546647f84.jpg" title="2.jpg"//pp style="text-align: center "strong部分免费试用“好仪器”/strong/pp  2017年4月,腾飞行动将一如既往的秉承“免费”、“自愿”的原则,span style="color: rgb(0, 176, 240) "热情拥抱有志推动国产科学仪器进步发展的生产企业和用户,携手共筑国产科学仪器进步的基石。/span/pp  span style="font-family: 楷体,楷体_GB2312,SimKai color: rgb(112, 48, 160) "了解腾飞行动最新进展,可扫描下面的二维码关注“仪器经理人”微信号:/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/fe008fbc-a8eb-4845-bd55-5dc0f58d7b83.jpg" title="000.jpg"//pp span style="font-family: 楷体,楷体_GB2312,SimKai color: rgb(112, 48, 160) "欢迎您留下对腾飞活动的建议和意见!/span/ppspan style="font-family: 楷体,楷体_GB2312,SimKai color: rgb(112, 48, 160) "  可以发送到邮箱:goodcn@instrument.com.cn/span/ppspan style="font-family: 楷体,楷体_GB2312,SimKai color: rgb(112, 48, 160) "  或者,文后留言!/span/p
  • 云南省内药房斥巨资首启问题胶囊快速测试仪
    工作人员为记者现场展示  近日,媒体视曝光了多家药厂使用工业明胶,制作问题药品胶囊的事件,本是治病救人的药丸,竟然化身有毒之物,令人倍感心惊。今天,记者从东骏药业获悉,为了践行“专业的药房、放心的药房”的承诺,东骏药业已经花巨资率先引进了目前最先进的两套仪器,通过简单的测试,快速,准确的测试出胶囊中的重金属及有毒物质含量。据悉,这在目前我省尚属首例。  新闻回放:铬毒胶囊流入药企业  据报道,一些药用胶囊生产厂采用工业明胶作为药用胶囊原料,而工业明胶则是由皮革的下脚料中获得。皮革在工业加工鞣制时,往往会导致铬残留,这种鞣制过的含铬革皮废料俗称“蓝矾皮”。使用“蓝矾皮”加工的工业明胶,铬含量往往超标。  铬是一种有毒的重金属,根据价态不同,分为三价铬和六价铬。如长期大量摄入三价铬,容易得糖尿病、高血压等疾病,并且容易引发肿瘤。六价铬的毒素更强,会损害皮肤和呼吸消化系统,导致皮炎、咽炎、气管炎、肠胃疾病等,严重的会导致肾功能衰竭,甚至癌症。  “铬毒”胶囊最终流入药企,并被制成诺氟沙星、阿莫西林等常用药售予患者。其危害不言而喻。测试仪  国典规定 药用胶囊必须检测重金属  据悉,2010年版《中国药典》对明胶空心胶囊有明确规定:生产药用胶囊所用的原料明胶至少应达到食用明胶标准,且出厂前必须检测铬、铅、砷、锰、镉等重金属含量。  按照QB/T 4087-2010《食用明胶》行业标准,食用明胶应使用动物的皮、骨等作为原料,严禁使用制革厂鞣制后的任何工业废料。而国标GB6783-94《食品添加剂-明胶》,亦明文规定了食用明胶含量:食用明胶分为A、B、C三类,A类为国际先进水平,对于铬的限量为A类1mg/kg B类为国际一般水平,C类为合格产品,对铬的限量均为2mg/kg。  此次被曝光的13中铬超标空心胶囊产品中,铬含量最高达181.54mg/kg,超出国标限制90余倍。  分析仪器使毒胶囊无处遁形  记者了解到,针对“铬毒胶囊”事件,东骏药业行动迅速,4月15日央视曝光“问题胶囊”事件当日,东骏药业公司高层便在在总部召开紧急会议,会议主题为彻底清查、清理被曝光的问题胶囊,并对各供应商(生产企业、经销企业),东骏所属各分公司、各部门、连锁店,由东骏药业购进胶囊剂品种的客户,对这三方下发了紧急通知。同时成立了专人检查小组对已曝光的胶囊制剂的各品种进行跟踪管理。  除了开展地毯式排查外,东骏药业还斥巨资引进了目前最先进的“毒胶囊检测仪”——微波消解萃取系统、原子吸收分光光度计,前者产自意大利,后者由日本科学家研发,可实现对药品硬胶囊壳中铬及其他重金属的检测,具备高灵敏度、无损、快速、操作简便等优势。  “为了保证每一个批次,每一个药品,每一粒胶囊质量是可靠的,顾客服用是安全的。为消费者负责同时也为企业负责。”此外,东骏药业表示今后将采购进货的胶囊剂型批批检测达到合格后再上柜。在采购环节上把好质量关,把“毒胶囊”挡在企业的第一个关口之外,杜绝进入企业,流入市场。东骏也非常欢迎与同行携手,创造云南药界良好的质量口碑。
  • 专家约稿|基于原子力显微镜的纳米动态热机械分析技术(AFM-nDMA)
    复合材料微观结构的粘弹性分析综合均衡不同软材料如弹性体、聚合物和凝胶的性能,取长补短,从而获得综合性能较为理想的材料,这在工程中得到越来越广泛的应用,是开发具有崭新性能新型材料的重要途径。复合材料的整体性能与组成相及界面的力学性能密切相关。关于这种界面结构的力学性质如粘弹性的研究对于材料设计是至关重要的。另外,粘弹性质通常随频率或温度发生显著变化。例如,在橡胶状聚合物中,储能模量通常在低频下比较小,随着频率的增加,储能模量急剧增加。但由于其界面结构非常小(数十纳米),其粘弹性的表征具有很大的挑战。传统的AFM和Nano-DMA的技术Bruker的PeakForce QNM技术进行高分辨成像的同时实现了材料弹性和粘性的成像,但其测试频率是固定和离散不可调谐的,并且在数千Hz。而 DMA 的流变学研究通常在低于 200Hz 的频率下工作。研究这种微观结构的粘弹性等力学性质的常用仪器还有纳米动态热机械分析(Nano-DMA),它可以在程序控温下对试样施加交变应力( 或应变),测量材料的应变(或应力) 随温度、时间或频率响应,可以获得材料的储能模量(E' )、损耗模量(E″)及损耗角正切(Tanδ) 等信息。不足的是其X-Y方向的分辨率为几百纳米,达不到更小的分辨精度。 基于原子力显微镜的AFM-nDMA技术近年来布鲁克公司(Bruker)开发了一种基于原子力显微镜的DMA技术(AFM-nDMA),解决了X-Y方向的分辨率的问题,同时可以得到材料微区不同频率和不同温度下的粘弹性质。它是基于Ramp&Hold技术(见图1),原子力显微镜探针以一定大小的力接触到样品表面之后,保持一段时间,再离开表面。在保持接触的时间里,对样品施加不同频率下亚纳米小振幅的震荡,记录材料应力和应变的关系,而探针从材料表面回撤阶段利用包含粘附力的JKR力学接触模型计算得到材料的储能模量和损耗能量。同时还采用了一种特殊的参考频率技术来补偿在保持接触期间由于蠕变而导致接触面积的不稳定性。这种方法可以得到某个频率下的模量分布图,也可以得到材料表面某一位置点不同频率下的模量谱图(见图2)。图1 AFM-nDMA Ramp&Hold力谱 图2 由环状烯烃共聚物COC(红色)、聚丙烯PP(蓝色)、线性低密度聚乙烯LLDPE(绿色)和弹性体(黄色)共混物,使用 PeakForce QNM (a)和AFM-nDMA (b)在 100Hz下的储存模量图以及样品上选定点的谱图 (c)。 AFM-nDMA在100Hz下的储能模量图(c)显示出了几种材料明显的对比度变化,比AFM PeakForce QNM表征的DMT杨氏模量图(a)更加明显。同时,单独选择不同区域表征储存模量随频率的变化(c),可以看到COC的模量随频率增长最快,其次是 PP、LLDPE 和弹性体。 这样就可以多维度有针对性地进行粘弹性表征了。图3 PP-COC 混合物的储能模量(上行)和损耗角正切(下行)图3是聚丙烯 (PP) 基质、环状烯烃共聚物 (COC) 共混形成的结构粘弹性分布图。 这两种材料的粘弹性质随温度变化( 25°C-175°C ),AFM-nDMA储能模量和损耗正切在 100Hz下都呈现出显著的变化。起初两种材料开始在环境条件下具有相等的储存模量,但很快随着温度升高,两种材料各自接近它们的热转变点,储能模量显示出很大的差异,而在175°C出现了两种材料的损耗角的反转。使用 AFM 进行定量纳米力学测量时,探针弹性系数、尖端曲率半径和灵敏度的校正长期以来一直以来困扰了人们。 Bruker现在提供了球形、 明确定义弹性系数的探针。这些探针尖端具有半径为 33 纳米或 125 纳米的球形顶点,可以提供可控的接触面积。AFM-nDMA使定量表征纳米区域粘弹性质成为可能,实现了在可变频率、可变温度下测量 E' 、E"、Tanδ)等信息。 AFM-nDMA首次消除AFM测量中的非线性问题,并提供了体相 DMA与纳米压痕DMA直接匹配的结果。通过相位漂移校正和基准频率归一化,可在0.1Hz至20kHz的流变频率范围内对目标纳米尺度畴结构进行全面粘弹性表征,是一种实现高分辨率下复合材料界面表征的有力手段。AFM 数据允许进行完整的 TTS 分析,空间分辨率优于50nm。 参考文献:1. Pavan V. Kolluru, Matthew D. Eaton ect, AFM-based Dynamic Scanning Indentation (DSI) Method for Fast,High-resolution Spatial Mapping of Local Viscoelastic Properties in Soft Materials, Macromolecules 2018(51) : 8964−89782. Kouqi Liu1, Mehdi Ostadhassan, Bailey Bubach ect, Nano-dynamic mechanical analysis (nano-DMA) of creep behavior of shales: Bakken case study, J Mater Sci (2018) 53:4417–4432 作者简介: 李慧琴,布鲁克(科技)有限公司售后服务工程师、培训师,从事原子力显微镜仪器在微纳米材料方面的表征应用将近20年,主持并编写了三项关于原子力测试方法方面的国家标准(GB T 36969-2018,GB/T 31227-2014,GB/T 31226-2014)和一项国家教学仪器标准( JY/T 0582-2020);申请并授权了2项关于小球探针制备的发明专利;参与了多项国家自然科学基金的研究并发表了多篇关于原子力显微镜应用的论文。
  • 朗铎科技亮相2016中国国际无损检测与分析测试仪器展览会
    “2016中国国际无损检测与分析测试仪器展览会”于2016年11月28-30日在北京国家会议中心召开,这是一场大规模的全国无损检测人士齐聚的盛会。展会以“安全、节能、环保”为主题,集中展示国内外无损检测及仪器的新产品、新技术、新装备。 朗铎科技携赛默飞世尔尼通手持式X射线荧光光谱仪亮相此会,倍受参展观众的青睐,并向与会观众现场演示了Niton产品准确、快速和便捷的性能特点。随着我国国民工业的高速发展,各行业均在大力提升质量检测装备及设施,尤其是提升无损检测技术手段、完善无损检测设备是当前无损检测从业人士所关注的焦点。赛默飞世尔尼通手持式X射线荧光光谱仪(简称“Niton手持式光谱仪”)为合金的成分分析提供了快速无损的检测手段,被广泛用在各种规模的加工制造业,小到小型金属材料加工厂大到大型的飞机制造商等各种规模企业均纷纷选购Niton产品。Niton手持式光谱仪已成为质量体系中材料确认、半成品检验、成品复检的首选仪器。 本次展会为无损检测各界同行搭建一个科技交流、合作发展及市场拓展的平台,朗铎科技借此平台为广大用户提供完善的解决方案,为无损检测行业的稳定与发展保驾护航。
  • 安东帕MCR高端智能型模块化流变仪——带您探究知识的海洋
    流变学是研究物质流动与形变的学科,自上世纪三十年代至今,经过流变学家的不懈努力,已经在全球很多领域发展出成熟的流变测试和分析理论。随着工业技术的不断进步,安东帕的流变学家经过三十多年的辛苦耕耘,并不断革新,向广大用户推出了低中高端系列、技术先进的MCR智能型模块化旋转流变仪。 MCR流变仪行业分布广,高校、科学院、石油石化、食品、化工、航空航天、医学、制药等,从日常生活用品制造业到军工科研机构,到处都有MCR流变仪在使用。 MCR流变仪市场占有率高,在国内用户超过1000个 MCR流变仪拥有众多行业先进技术 MCR流变仪功能最全,指标更宽,能满足流变学测试的所有要求 MCR流变仪系列型号:MCR702、MCR302、MCR102、MCR92、MCR72MCR 流变仪的基本功能 稳态流变测试(旋转模式):黏度、黏度曲线、流动曲线、粘温曲线、屈服应力、滞后环面积、3ITT 触变性等; 动态流变测试(振荡模式):粘弹性数据,如储能模量 G‘、 损耗模量 G“、损耗角正切 Tanδ、复数模量 G*、复数黏度 η*等,可以得到频率扫描、振幅扫描、温度扫描等曲线; 瞬态流变测试:起始流、蠕变、应力松弛等;MCR 流变仪的扩展功能模块扩展的材料性能表征方式熔体拉伸流变夹具扭摆DMTA测试夹具拉伸DMTA测试夹具 淀粉糊化测量模块沥青专业模块大颗粒食品及建筑材料测试界面流变学模块摩擦学测试模块粉体流变学模块 附加参数影响测量模块高压密闭测量系统UV固化测量模块磁流变测量模块 电流变测量模块不动点测量模块 流变与结构分析同步测量流变‐显微可视/偏光/荧光同步测量流变‐SALS同步测量流变-NIR/IR同步测量 流变-拉曼同步测量 流变‐SAXS同步测量流变‐SANS同步测量动态光学流变测量PIV粒子成像测速流变‐介电谱同步测量
  • NEWS|朗铎科技亮相2018中国国际无损检测与分析测试仪器展览会
    2018年7月26-28日,“2018中国国际无损检测与分析测试仪器展览会”在北京?中国国际展览中心隆重召开。这是一场规模盛大的会议,全国无损检测方面的业内人士齐聚一堂。展会以“安全、节能、环保”为主题,集中展示国内外无损检测方面的新产品、新技术、新装备。朗铎科技展位朗铎科技携Thermo Scientific Niton手持式X射线荧光光谱仪亮相此会,倍受参展观众的关注。朗铎科技技术工程师向观众现场展示了Niton产品的检测速度和准确度。朗铎科技技术工程师为观众演示设备随着我国国民工业的高速发展,各行业均在大力提升质量检测装备及设施,尤其是提升无损检测技术手段、完善无损检测设备是当前无损检测从业人士所关注的焦点。Niton手持式X射线荧光光谱仪为合金的成分分析提供了快速无损的检测手段,被广泛应用在各种规模的加工制造业。小到小型金属材料加工厂,大到大型的飞机制造商等各种规模企业均纷纷选购Niton产品。Niton手持式X射线荧光光谱仪已成为质量体系中材料定性分析、半成品检验、成品复检的首选仪器。 本次展会为无损检测各界同仁搭建了一个科技交流、合作发展及市场拓展的平台,朗铎科技借此平台为广大用户提供完善的解决方案,为无损检测行业稳定与快速的发展保驾护航。关于朗铎科技朗铎科技,全球科学服务领域的领导者-赛默飞世尔科技(Thermo Fisher Scientific)中国区域战略合作伙伴。作为工业检测分析系统解决方案服务商,我们致力于为中国客户提供全球高品质的分析仪器、专业的应用技术支持、优质的售后服务等系统解决方案。朗铎科技是赛默飞世尔尼通(Niton)手持式光谱仪在合金/地矿行业的中国区总经销商,同时也是赛默飞世尔ARL全谱直读光谱仪中国区总经销商。目前朗铎科技主要产品包括手持式合金光谱仪、手持式矿石光谱仪、直读光谱仪等系列产品。
  • 一文了解|五大材料热性能分析方法
    | 热分析简介热分析的本质是温度分析。热分析技术是在程序温度(指等速升温、等速降温、恒温或步级升温等)控制下测量物质的物理性质随温度变化,用于研究物质在某一特定温度时所发生的热学、力学、声学、光学、电学、磁学等物理参数的变化,即P = f(T)。按一定规律设计温度变化,即程序控制温度:T = (t),故其性质既是温度的函数也是时间的函数:P =f (T, t)。| 材料热分析意义在表征材料的热性能、物理性能、机械性能以及稳定性等方面有着广泛的应用,对于材料的研究开发和生产中的质量控制都具有很重要的实际意义。| 常用热分析方法解读根据国际热分析协会(ICTA)的归纳和分类,目前的热分析方法共分为九类十七种,常用的热分析方法包括热重分析法(TG)、差示扫描量热法(DSC)、静态热机械分析法(TMA)、动态热机械分析(DMTA)、动态介电分析(DETA)等,它们分别是测量物质重量、热量、尺寸、模量和柔量、介电常数等参数对温度的函数。(1)热重分析(TG)热重法(TG)是在程序温度控制下测量试样的质量随温度或时间变化的一种技术。应用范围:(1)主要研究材料在惰性气体中、空气中、氧气中的热稳定性、热分解作用和氧化降解等化学变化;(2)研究涉及质量变化的所有物理过程,如测定水分、挥发物和残渣、吸附、吸收和解吸、气化速度和气化热、升华速度和升华热、有填料的聚合物或共混物的组成等。原理详解:样品重量分数w对温度T或时间t作图得热重曲线(TG曲线):w = f (T or t),因多为线性升温,T与t只差一个常数。TG曲线对温度或时间的一阶导数dw/dT 或 dw/dt 称微分热重曲线(DTG曲线)。图2中,B点Ti处的累积重量变化达到热天平检测下限,称为反应起始温度;C点Tf处已检测不出重量的变化,称为反应终了温度;Ti或Tf亦可用外推法确定,分为G点H点;亦可取失重达到某一预定值(5%、10%等)时的温度作为Ti。Tp表示最大失重速率温度,对应DTG曲线的峰顶温度。峰的面积与试样的重量变化成正比。实战应用:热重法因其快速简便,已经成为研究聚合物热变化过程的重要手段。例如图3中聚四氟乙烯与缩醛共聚物的共混物的TG曲线可以被用来分析共混物的组分,从图1中可以发现:在N2中加热,300~350℃缩醛组分分解(约80%),聚四氟乙烯在550℃开始分解(约20%)。影响因素:(a)升温速度:升温速度越快,温度滞后越大,Ti及Tf越高,反应温度区间也越宽。建议高分子试样为10 K/min,无机、金属试样为10~20K/min;(b)样品的粒度和用量:样品的粒度不宜太大、装填的紧密程度适中为好。同批试验样品,每一样品的粒度和装填紧密程度要一致;(c)气氛:常见的气氛有空气、O2、N2、He、H2、CO2 、Cl2和水蒸气等。气氛不同反应机理的不同。气氛与样品发生反应,则TG曲线形状受到影响;(d)试样皿材质以及形状。(2) 静态热机械分析 (TMA)热机械分析,是指在程序温度下和非震动载荷作用下,测量物质的形变与温度时间等函数关系的一种技术,主要测量物质的膨胀系数和相转变温度等参数。应用范围:静态热机械分析仪主要用于对无机材料、金属材料、复合材料及高分子材料(塑料、橡胶等)的热膨胀系数;玻璃化转变温度;熔点;软化点;负荷热变形温度;蠕变等进行测试。实战应用:(a)纤维、薄膜的研究:可测定其伸长、收缩性能和模量及相应的温度,应力-应变分析、冷冻和加热情况下应力的分析;(b)复合材料的表征,除纤维用TMA研究外,复合材料的增强,树脂的玻璃化转变温度Tg、凝胶时间和流动性、热膨胀系数等性质,还有多层复合材料尺寸的稳定性、高温稳定性等都可以用TMA快速测定并研究;(c)涂料的研究:可了解涂料与基体是否匹配及匹配的温度范围等;(d)橡胶的研究:可了解橡胶在苛刻的使用环境中是否仍有弹性及尺寸是否稳定等。影响因素:(a)升温速率:升温速率过快样品温度分布不均匀(b)样品热历史(c)样品缺陷:气孔、填料分布不均、开裂等(d)探头施加的压力大小:一般推荐0.001~0.1N(e)样品发生化学变化(f)外界振动(g)校准:探头、温度、压力、炉子常数等校准(h)气氛(i)样品形状,上下表面是否平行应用(3) 差示扫描量热法(DSC)原理:差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。差示扫描量热法有补偿式和热流式两种。试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差ΔT消失为止。在差示扫描量热中,为使试样和参比物的温差保持为零在单位时间所必需施加的热量与温度的关系曲线为DSC曲线。曲线的纵轴为单位时间所加热量,横轴为温度或时间。曲线的面积正比于热焓的变化。图4中展示了典型的DSC曲线。应用范围:(1)材料的固化反应温度和热效应测定,如反应热,反应速率等;(2)物质的热力学和动力学参数的测定,如比热容,转变热等;(3)材料的结晶、熔融温度及其热效应测定;(4)样品的纯度等。影响因素:(a)升温速率,实际测试的结果表明,升温速率太高会引起试样内部温度分布不均匀,炉体和试样也会产生热不平衡状态,所以升温速率的影响很复杂。(b)气氛:不同气体热导性不同,会影响炉壁和试样之间的热阻,而影响出峰的温度和热焓值。(c)试样用量:不可过多,以免使其内部传热慢、温度梯度大而使峰形扩大和分辨率下降。(d)试样粒度:粉末粒度不同时,由于传热和扩散的影响,会出现试验结果的差别。(4) 动态热机械分析(DMA)动态热机械分析测量粘弹性材料的力学性能与时间、温度或频率的关系。样品受周期性(正弦)变化的机械应力的作用和控制,发生形变。应用范围:动态热机械分析仪主要用于对无机材料、金属材料、复合材料及高分子材料(塑料、橡胶等)的玻璃化转变温度、负荷热变形温度、蠕变、储能模量(刚性)、损耗模量(阻尼性能)、应力松弛等进行测试。DMA基本原理:DMA是通过分子运动的状态来表征材料的特性,分子运动和物理状态决定了动态模量(刚度)和阻尼(样品在振动中的损耗的能量),对样品施加一个可变振幅的正弦交变应力时,将产生一个预选振幅的正弦应变,对粘弹性样品的应变会相应滞后一定的相位角δ,如图5所示。DMA技术把材料粘弹性分为两个模量:一个储存模量E´,E´与试样在每周期中贮存的最大弹性成正比,反映材料粘弹性中的弹性成分,表征材料的刚度;而损耗模量E",E"与试样在每周期中以热的形式消耗的能量成正比,反映材料粘弹性中的粘性部分,表示材料的阻尼。材料的阻尼也成为内耗,用tanδ表示,材料在每周期中损耗的能量与最大弹性贮能之比,等于材料的损耗模量E"与贮能模量E´。DMA采用升温扫描,由辅助环境温度升温至熔融温度,tanδ展示出一系列的峰,每个峰都会对应一个特定的松弛过程。由DMA可测出相位角tanδ、损耗模量E"与贮能模量E´随温度、频率或时间变化的曲线,不仅给出宽广的温度、频率范围的力学性能,还可以检测材料的玻璃化转变、低温转变和次级松弛过程。例如损耗峰能够代表某种单元运动的转变,图6为聚苯乙烯tg随温度变化的曲线,从图中可以推断峰可能为苯基绕主链的运动;峰可能是存在头头结构所致;峰是苯环绕与主链连接键的运动。影响因素:升温速率、样品厚度、有无覆金属层,夹具类型等(5) 动态介电分析(DETA)动态介电分析是物质在一定频率的交变电场下并受一定受控温度程序加热时,测试物质的介电性能随温度变化的一种技术。介电分析原理:具有偶极子的电介质,在外电场的作用下,将会随外电场定向排列。偶极子的极化和温度有关并伴随着能量的消耗。一般以介电常数(ε)表示电介质在外电场下的极化程度,而介电损耗(D)则表示在外电场作用下,因极化发热引起的能量损失。偶极子在外电场作用下的定向排列也会随外电场的去除而恢复杂乱状态。偶极子由有规排列回复到无规排列所需的时间称“介电松弛时间T”,按德拜理论:(其中:η介质粘度,a分子半径,K玻尔兹曼常数,T温度K)。松弛时间和分子的大小、形状以及介质的粘度有关。而式中tgδ损耗角正切,ε0静电场下介电常数;ε∞光频率下的介电常数。由此见,ε、tgδ都是和松弛时间τ有关的物理量,因此也和分子的结构、大小、介质粘度有关,这就是利用介电性能研究物质分子结构的依据。由(a)(b)两式可以证明,当时,ε´有极大值,f0称“极化频率”。即当外电场频率为极化频率时,介电损耗极大。应用范围:这一技术已被广泛地应用于研究材料电介质的分子结构、聚合程度和聚合物机理等。从应用对象讲,有聚丙烯酸甲酯、聚氯乙烯、聚酰胺、聚酰亚胺、聚苯乙烯、酚醛、环氧、聚蜡等热塑性和热固性树脂。此外还有耐高温树脂中的聚苯枫、聚苯并咪唑,生物化合物中的蛋白质等。其具体应用也包括增强塑料、模压材料、涂料、粘合剂、橡胶甚至玻璃、陶瓷等金属氧化物。在实验室中,DETA可作为粘弹性研究的有力工具,如动态机械性能和热机械性能测试。在工业生产中,它可应用于树脂制造、质量控制、预固化和固化程度控制等。| 结语该文针对热分析技术的概念入手分析,从五个方面:热重分析法、差示扫描量热法、静态热机械法、动态热机械分析、动态介电分析,简要论述了材料测试中几种典型的热分析方法。热分析已有百年的发展历程,随着科学技术的发展,热分析技术展现出新的生机和活力,不断发展进步。
  • 长庆油田集中采购46台烟气测试仪(便携式)
    招标公告2021年长庆油田烟气测试仪(便携式)带量集中采购项目编号:ZY21-XA305-WZ2441. 招标条件本招标项目 2021年长庆油田烟气测试仪(便携式)带量集中采购已由长庆油田分公司物资供应处(物资管理部)批准,资金来自中国石油长庆油田分公司物资供应处(物资管理部),出资比例为 100% ,招标人为长庆油田分公司物资供应处(物资管理部)。该项目已具备招标条件,现对其 采购进行公开招标。2. 项目概况与招标范围2.1 本招标项目为 带量采购招标,采购物资所属类别为38大类,项目划分为1标包/段。招标范围为:烟气测试仪。预计采购金额246.56万元,招标采购物资品种及规格见下表:序号物资名称及规格计量单位数量单台最高限价(万元)1烟尘烟气测试仪台465.362.2 产品特点:本项目产品主要用于对现场加热炉烟气进行检测,具有完整的烟气状态检测能力和烟气组分排放数据折算处理功能,带有氧气、一氧化氮和二氧化氮传感器,留有可再扩展安装的3个烟气组分传感器(分别为SO2、CO、CO2)能力。2.3交货地点:长庆油田各生产单位,距西安平均距离约为500公里。2.4交货期:发出中标通知书后45天内。2.5招标结果有效期:中标价格为中标供应商的投标价格;招标结果有效期自中标通知书发放之日起至合同履行结束止。2.6价格调整机制:价格调整机制:有效期内原则上不做调整,如发生不可抗力事件或者市场价格发生大幅度变化时,由招标人与中标供应商商谈确定价格或重新启动招标。2.7技术标准及要求:严格执行《烟气测试仪技术规格书》3. 投标人资格要求3.1 投标人应为中华人民共和国境内注册的法人或其他组织,具有承担民事责任的能力(法人企业分支机构等不具备法人资格的投标人参与投标时,应持对应法人企业法定代表人身份证明及法定代表人出具的授权委托书方可参与投标)。提供统一社会信用代码的营业执照彩色扫描件。3.2 投标人应为标的物的制造商。3.3 投标人须提供由质量技术监督部门颁发的覆盖烟气测试仪的计量器具型式批准证书。3.4 财务要求:投标人须提供2020年度有效的经注册会计师事务所审计的财务报告(有效是指:审计报告应当有注册会计师的签名和盖章,会计师事务所的名称、地址及盖章,财务报表包括:资产负债表、利润表或称损益表、现金流量表、附注)。3.5 信誉要求:投标人被工商行政管理机关在全国企业信用信息公示系统中列入严重违法失信企业名单或被最高人民法院在“信用中国”网站(www.creditchina.gov.cn)或各级信用信息共享平台中列入失信被执行人名单的否决其投标。3.6 其他要求:3.6.1 中国石油天然气集团有限公司、长庆油田分公司或集团公司所属其他下属公司取消招投标资格、供应商资格或标的物供货资格的,以及被暂停上述资格尚在处理期内的承包商,出现以上情况否决其投标。3.6.2 《中国石油天然气集团有限公司采购产品质量监督抽查情况通报》中被处罚的投标人,投标将被否决(复查合格的除外)。3.7 本次招标不接受联合体投标。4. 招标文件的获取4.1凡有意参加投标者,请于2021年08月24日至2021年08月30日:登录中国石油电子招标投标交易平台网上购买招标文件。(如未在中国石油电子招标投标交易平台上注册过的潜在投标人需要先注册并通过平台审核(潜在投标人在平台注册后向energyahead@cnpc.com.cn发送加盖公司公章的《审核通过申请》扫描件,申请内容包括:潜在投标人名称即公司名称,参与投标项目,报名截止时间。平台运维人员将在收到申请后及时审核通过),审核通过后登录平台在可报名项目中可找到该项目并完成在线报名,具体操作请参考中国石油招标投标网操作指南中“投标人用户手册”相关章节,有关交易平台操作的问题请咨询技术支持团队相关人员,咨询电话:4008800114 转 3 转 6)或登录中国石油招标投标网,由左侧点击“中国石油电子招标投标交易平台”登录在线报名;4.2招标文件每标段售价为200元人民币,售后不退 请有意参加投标的潜在投标人确认自身资格条件是否满足要求,应自负其责。4.3购买招标文件采用网上支付的模式,系统仅支持个人网银支付(实时到账),不支持企业网银支付及其他支付方式。详细操作步骤参见中国石油电子招标投标交易平台-工具中心-投标人用户手册。4.4若通过个人账户购买,将被认为购买人已经获得了公司的授权,等同于公司购买,不接受个人名义购买。购买前请核实个人银行卡的网上支付单笔限额不少于招标文件售价,以免影响招标文件的购买。4.5 潜在投标人在购买招标文件时,应确认投标人名称、地址、联系人、联系人电话、联系人邮箱及邮编等基本信息准确无误,招投标全流程信息发布和联络以此为准。招标过程中因联络方式有误导致的一切后果由投标人自行承担。4.6 支付成功后,潜在投标人直接从网上下载招标文件电子版。招标机构不再提供任何纸质招标文件。支付成功,即视为招标文件已经售出,文件一经售出概不退款。标书费发票(电子发票)将由招标机构在项目结束后定期开具并发送至投标人购买招标文件时登记邮箱(标书费发票咨询请发邮件至xbfzxfp@163.com查询)。4.7 招标文件购买操作失败或其他系统问题,请与平台运营单位联系(咨询电话:400880011 4)。办理说明及办理网点详见附件5. 投标文件的递交5.1本次招标采取网上电子版提交的投标方式,以网上电子版为准。不接受纸质版投标文件。5.1.1提交时间:建议于投标截至时间前24小时通过“中国石油电子招标投标交易平台”提交电子版投标文件;(考虑投标人众多,避免受网速影响,以及网站技术支持的时间,请于投标截至时间前24小时完成网上电子版的提交。)5.1.1投标截至时间见6.1,投标截至时间未被系统成功传送的电子版投标文件将不被系统接受,视为主动撤回投标文件。5.2 潜在投标人在提交投标文件时,提交10000 元人民币的投标保证金,投标保证金的形式为电汇,应从投标人基本帐户通过企业网银支付向昆仑银行电子招投标保证金专户汇出,昆仑银行将依此向中国石油物资有限公司西安分公司提供投标保证金递交明细。详细操作步骤参见中国石油电子招标投标交易平台-工具中心-投标人用户手册-中国石油电子招标投标交易平台投标保证金操作指南。6. 开标6.1投标截止时间和开标时间(网上开标):2021年09月13日08时30分(北京时间)。6.2开标地点(网上开标):中国石油电子招标投标交易平台6.3 本次招标采取网上开标方式,所有投标人可准时进入中国石油电子招标投标交易平台开标大厅参加在线开标仪式。6.4 潜在投标人对招标文件有疑问请联系招标机构;对网上操作有疑问请联系技术支持团队人员。技术支持团队:中油物采信息技术有限公司咨询电话:4008800114如有疑问请在工作时间咨询。招标公告中未尽事宜或与招标文件不符之处,以招标文件为准。7. 发布公告的媒介本次招标公告同时在中国招标投标公共服务平台(www.cebpubservice.com),中国石油招标投标网(www.cnpcbidding.com)上发布。中国石油物资有限公司西安分公司2021年08月23日
  • 滚球法初粘性测试仪和环形初粘性测试仪在测试双面胶初粘性时有什么区别
    在双面胶的初粘性测试中,滚球法初粘性测试仪和环形初粘性测试仪是两种常用的测试工具。尽管它们的最终目标都是为了评估双面胶的初粘性,但在测试原理、方法以及结果解读上却存在显著的区别。滚球法初粘性测试仪测试原理:滚球法初粘性测试仪通过在一定角度的斜面上滚动标准尺寸的钢球,以测量钢球在胶粘剂表面滚动时的粘附能力。测试时,钢球从斜面顶部释放,滚过涂有胶粘剂的测试表面,根据钢球滚动的距离来评估初粘性。特点:操作简单,测试速度快。测试结果受环境因素(如温度、湿度)影响较小。适用于各种类型的胶粘剂,包括双面胶。适用场景:适用于需要快速评估初粘性的生产环境。适用于胶粘剂的初步筛选和质量控制。环形初粘性测试仪测试原理:环形初粘性测试仪通过将一定直径的环形试样放置在胶粘剂表面,然后以一定速度提起试样,测量胶粘剂粘附环形试样所需的力。测试时,环形试样与胶粘剂接触,然后以恒定速度提起,直至环形试样脱离胶粘剂表面。特点:测试结果更精确,可以量化粘附力。适用于测量特定类型的胶粘剂,尤其是双面胶。测试过程可能受环境因素影响较大。适用场景:适用于需要精确测量粘附力的实验室环境。适用于双面胶的详细性能评估和研究。区别总结测试原理:滚球法侧重于通过钢球滚动的距离来评估初粘性,而环形法则通过测量提起环形试样所需的力来评估。操作复杂度:滚球法操作简单,环形法则可能需要更精确的操作和设备设置。测试速度:滚球法测试速度快,环形法可能需要更多时间来准备和执行测试。环境影响:滚球法结果受环境影响较小,环形法则可能更敏感于温度和湿度变化。结果精确度:环形法可以提供更精确的粘附力数值,而滚球法则提供相对的粘附性评估。适用性:滚球法适用于快速筛选和质量控制,环形法则适用于详细的性能评估和研究。测试成本:滚球法设备通常成本较低,环形法则可能需要更高级的设备。在选择测试双面胶初粘性的设备时,需要根据具体的测试需求、预算和测试环境来决定使用哪种测试仪。每种测试仪都有其优势和局限性,理解这些区别有助于选择最适合的测试方法。
  • 50um的胶带可以使用泉科瑞达初粘性测试仪测试吗?测试要求有什么变化?
    泉科瑞达初粘性测试仪是专门设计用于测量压敏胶带、不干胶标签、保护膜等相关产品的初粘性测试。这种测试仪通常采用国家标准如GB 4852(压敏胶胶带初粘性测试方法——斜面滚球法)等,通过斜面滚球法的原理来测试胶带的初粘性能。对于50um(微米)厚度的胶带,理论上可以使用泉科瑞达初粘性测试仪进行测试,但需要注意以下几点测试要求和可能的变化:测试要求胶带宽度:确保50um厚的胶带宽度符合测试仪的最小和最大宽度要求。大多数初粘性测试仪对胶带宽度有一定的限制,以确保测试的准确性。测试标准:遵循适用的国家标准或行业标准进行测试,例如GB/T 4852-2002《压敏胶粘带初粘性试验方法》。这些标准规定了测试的具体步骤和条件。环境条件:测试应在规定的环境条件下进行,包括温度、湿度等,以确保测试结果的准确性和可重复性。操作规程:按照测试仪的操作手册进行操作,确保测试过程的标准化和规范化。测试变化胶带厚度:虽然50um的胶带可以使用初粘性测试仪进行测试,但胶带的厚度可能会影响其粘附性能。因此,对于不同厚度的胶带,可能需要调整测试参数或条件以获得准确的测试结果。测试速度:胶带的厚度可能会影响测试速度的选择。较厚的胶带可能需要调整测试速度以更好地模拟实际应用中的粘附情况。测试角度:对于不同厚度的胶带,测试角度(即斜面滚球法中的倾斜角度)可能需要调整,以确保测试结果的准确性。测试重复性:由于胶带厚度的不同,可能需要增加测试次数以确保结果的稳定性和可靠性。样品准备:对于50um厚的胶带,可能需要特别注意样品的准备和处理,以避免厚度变化对测试结果的影响。总之,50um厚的胶带可以使用泉科瑞达初粘性测试仪进行测试,但需要注意上述测试要求和可能的变化。通过精确的测试和合理的参数调整,可以确保获得胶带初粘性的准确测量结果。
  • 2010广州分析测试仪器展(CECIA)隆重举办
    仪器信息网讯,2010年5月24日,由广东省科学技术厅、广东省对外科技交流中心共同主办,广东省分析测试协会、广东国际科技贸易展览公司共同承办的“2010中国(广州)国际分析测试仪器/生物技术展览会暨技术研讨会(CECIA) ”在广州锦汉展览中心举办。  展会举办了隆重的开幕式。开幕式由广东省对外科技交流中心吴汉荣主任主持,广东省科技厅发展计划处王韧副处长与广州分析测试中心陈江韩主任在开幕式上分别致辞。中国分析测试协会王顺昌副理事长、汪正范研究员,中国科学院张玉奎院士,中山大学张展霞教授等多位领导、专家为本次展会剪彩。吴汉荣主任主持开幕式王韧副处长致辞陈江韩主任致辞剪彩现场  展会展出的产品包括分析仪器、物性测试仪器、实验室常用设备、环境监测仪器等8大类。吸引了赛默飞世尔、赛多利斯、MERK、梅特勒-托利多、北分瑞利集团、北京吉天等近百家国内外知名仪器厂商参展。展会现场  展会召开同期,还举办了分析测试技术研讨会,全国药品、农产品安全及品质检测技术研讨会,化妆品全成分标识及活性物检测方法培训班,食品安全检测技术与应用研究专场等活动,旨在为大家构建一个学术交流的平台。  分析测试技术研讨会  24日与展会同期召开的“分析测试技术研讨会”由广州分析测试中心陈江韩主任主持,中科院大连化学物理研究所张玉奎院士、国家环境测试中心董亮教授、清华大学分析测试中心孙素琴教授、北京化工大学袁洪福教授等专家学者在研讨会上作了报告。分析测试技术研讨会现场  中科院大连化学物理研究所张玉奎院士作了题为“色谱新进展”的大会报告,在报告中,张院士着重为大家介绍了应用在色谱上的一些高效富集分离材料,包括无机有机杂化整体材料、聚合物颗粒和介孔材料等,并介绍了最近开发出来的微尺度分离分析新技术。其最后表示,希望这些新技术能为蛋白质组学研究、蛋白质组学分离鉴定、蛋白质组学结构鉴定等方面提供新方法,并能促进具有自主知识产权的新仪器、新装置的研制,这也是他下一步的工作重点。张玉奎院士  国家环境分析测试中心持久有机污染物研究室主任董亮研究员为与会者作了“环境介质中有机污染物分析前处理方法概述”的报告。他在报告中概述了大气、水、土壤、沉积物等环境介质中典型有机物样品前处理的技术,介绍了固体和液体样品中挥发性有机物(VOCs)的顶空法,水中半挥发性有机物的固相萃取技术,土壤沉积物和固体废弃物中半挥发性有机污染物各提取手段的优劣 大气被动采样技术,柱色谱净化和凝胶渗透色谱净化的应用原理及常用的浓缩手段。董亮研究员  清华大学孙素琴教授为大家详细讲解了“中药红外光谱分析与鉴定”。随着光谱仪器与计算机技术的不断发展,适用于混合物光谱解析的技术和方法不断出现,为红外光谱法用于混合物分析提供了足够的硬件和软件支持,而红外光谱法也在如生物组织、细胞。食品等复杂混合物体系统的分析和研究中发挥了显著的作用。孙素琴教授在大量的研究基础上,建立的“整体解析法”、“三级鉴别法”、“专家识别法”等“多级红外光谱宏观指纹分析法”,为使用红外光谱对中药、食品等混合物进行分析研究提供了方法指导。孙素琴教授  北京化工大学袁洪福教授作了题为“便携式分子光谱仪器技术及其进展”的大会报告,其表示,分子光谱从分子水平反应物质的结构与组成信息,具有快速和无损的特点。袁洪福教授通过列举食品、药品、危险化学品及毒品的快速检测案例,为大家详细介绍了便携式分子光谱的最新技术与研究进展。袁洪福教授  此外,在“分析测试技术研讨会”举办过程中,穿插举办了Thermo Fisher的技术专场研讨会,Thermo Fisher公司的卢苓女士、黄文女士及李小波先生分别作了“无需停机检修的新一地气/质联用仪在食品安全分析中的优势”、“分子光谱在食品行业中的应用”、“食品重金属检测方案”的报告。其中,卢苓女士的报告中重点介绍了Thermo Fisher公司最近推出的新一代质谱仪——Thermo ISQ。通过采用“ExtractBrite离子源”和“S型离子光学通道”相结合的技术,确保了该仪器运行时间较长,能够持久耐用,并维持高性能;采集速度较快,大于70次全扫描/秒;扫描方式可根据被测物和基质的性质快速切换;质谱检测器电子动态线性范围高达109;若无维护,停机时间很短,并且数据查看、处理简单方便。卢苓女士黄文女士李小波先生  关于CECIA  CECIA 创办于1999年,至今已经举办了十届,是华南地区具有代表性的分析测试行业展览会。主办方致力于参展商打造一个高效的交流平台。关于CECIA 2010的详细情况请访问:http://www.instrument.com.cn/news/20100519/042485.shtml。
  • 剥离强度测试仪能否兼顾测试无纺布胶带的拉伸强度
    随着工业领域的快速发展,材料性能的检测变得越来越重要。剥离强度测试仪作为一款专业设备,被广泛应用于胶粘剂、胶粘带等相关产品的剥离、拉断等性能测试。然而,当面对无纺布胶带这一特殊材料时,我们不禁要问:剥离强度测试仪能否兼顾测试无纺布胶带的拉伸强度呢?一、剥离强度测试仪的基本原理与功能剥离强度测试仪是一种电子剥离试验机,通过模拟实际使用过程中的剥离过程,对材料的剥离强度进行精确测量。其基本原理是通过施加一定的力量,使试样在特定条件下发生剥离,从而测得剥离力的大小。剥离强度测试仪具有高精度、高稳定性等特点,能够准确反映材料的剥离性能。二、无纺布胶带的特性与拉伸强度测试需求无纺布胶带作为一种新型材料,具有优异的柔韧性和粘附性,广泛应用于包装、固定、保护等领域。无纺布胶带的拉伸强度是衡量其质量和耐用性的重要指标。在实际应用中,无纺布胶带需要承受各种外力作用,因此其拉伸强度的大小直接影响着其使用效果和安全性。三、剥离强度测试仪在测试无纺布胶带拉伸强度方面的应用虽然剥离强度测试仪主要用于测试材料的剥离性能,但在实际应用中,我们发现它同样可以用于测试无纺布胶带的拉伸强度。这是因为无纺布胶带的拉伸过程可以看作是一种特殊的剥离过程,即胶带纤维在拉伸方向上的剥离。因此,通过调整剥离强度测试仪的测试参数和条件,我们可以实现对无纺布胶带拉伸强度的测量。在测试过程中,我们需要注意以下几点:首先,选择合适的试样尺寸和形状,以确保测试结果的准确性和可靠性;其次,根据无纺布胶带的特性,设定合适的剥离速度和剥离角度;最后,对测试数据进行处理和分析,以得出无纺布胶带的拉伸强度值。四、剥离强度测试仪在测试无纺布胶带拉伸强度方面的优势与局限性剥离强度测试仪在测试无纺布胶带拉伸强度方面具有操作简便、测量精度高等优势。通过该设备,我们可以快速获得无纺布胶带的拉伸强度数据,为产品设计和质量控制提供有力支持。然而,剥离强度测试仪在测试无纺布胶带拉伸强度方面也存在一定的局限性。由于剥离强度测试仪主要用于测试剥离性能,因此在测试拉伸强度时可能无法完全模拟实际使用过程中的复杂条件。此外,不同品牌和型号的剥离强度测试仪在测试原理和性能上可能存在差异,这也可能对测试结果产生一定影响。五、结论与建议综上所述,剥离强度测试仪在一定程度上可以兼顾测试无纺布胶带的拉伸强度。然而,在实际应用中,我们还需要根据具体需求和条件进行选择和调整。为了确保测试结果的准确性和可靠性,我们建议采取以下措施:首先,选择合适的剥离强度测试仪品牌和型号,以确保其性能和精度符合测试要求;其次,根据无纺布胶带的特性,设定合适的测试参数和条件;最后,对测试数据进行综合分析和评估,以得出全面准确的结论。
  • 司机网购酒精测试仪自测酒驾 交警称不可侥幸
    严查酒驾给司机带来了震慑作用,绝大多数司机现在已做到“开车不饮酒,饮酒不开车”,但还是有司机心存侥幸,自己购买酒精测试仪,酒后自行检测再上路。对此交警表示,酒精检测仪的精度难有保障暂且不说,司机的这种心存侥幸的做法并不可取。  店家:检测准确很畅销  11月13日,记者在不少网店看到,很多店家都在销售价格不尽相同的酒精测试仪,一种售价198元的酒精测试仪销路最好,不到一个月的时间就卖出了46件。而其他的酒精测试仪价格从最便宜的10元到上万元都有,其中不乏进口货。  售价上万的酒精测试仪和交警使用的样式相同,同样带有打印检测结果的功能,但由于价格高昂而无人问津。一些销售几十元到几百元的酒精测试仪的店家,都在宣传语中打出了“交警认证”的字样,让顾客相信其检测结果准确。  记者联系上一位店主,该店主称,自从全国各地开始严查酒驾之后,酒精检测仪的销量一直不错。店主表示,不仅私家车主购买,很多车队、企事业单位也购买检测仪,用来检测员工是否饮酒上班,防止发生驾车、操作机械等方面的意外事故。“检测结果很准的。”店主说。  买家:自测上路很踏实  在一家公司工作的小王自称酒量不小,一两杯啤酒对他几乎没什么影响。有时在饭桌上碍于面子,喝点啤酒意思一下,担心被查出酒后驾车,于是买了一个酒精检测仪,在饭后喝茶、嚼口香糖之后,自我检测一下再上路,“这样心里踏实。”和小王一样,出于自我检测后再开车上路想法的购买者不少,他们对酒精检测仪的检测结果比较相信,“这样喝点酒,只要不超过20的酒驾标准,就安全了。”  交警:此法属自欺欺人  对于车主的这种做法,交警并不赞同。一线查酒小分队的交警表示,首先这些酒精测试仪的准确度存在疑问,像交警所使用的酒精测试仪都是精度很高的产品,价格也比较昂贵,“10元的酒精检测仪估计也就是个玩具。”交警表示,自购酒精检测仪用处不大,“喝没喝酒,自己最清楚。”  记者了解到,交警使用酒精检测仪检查酒后驾车已有多年历史,对于精确打击酒驾有很大作用。以前没有酒精检测仪时,交警判定司机是否喝酒,最直接的方法就是闻味,“司机往交警的白手套上呼一口气,有酒味就能确定司机酒驾。”也有交警偶尔使用绝招,面对坚称自己没饮酒的司机,将一枚硬币扔在地上,让司机弯腰去捡,喝多了的司机弯腰时酒劲上涌,根本捡不到硬币。  交警说,因为人体差异,确实存在有的人喝酒但检测数值达不到酒驾标准的情况,但这并不能成为酒驾的借口,司机更不能以为购买酒精检测仪自测一下,就能达到避免查处的目的,“开车不饮酒,饮酒不开车”应成为社会风气,而不是自购酒精检测仪自欺欺人。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制