当前位置: 仪器信息网 > 行业主题 > >

超快自由光路电光调制器

仪器信息网超快自由光路电光调制器专题为您提供2024年最新超快自由光路电光调制器价格报价、厂家品牌的相关信息, 包括超快自由光路电光调制器参数、型号等,不管是国产,还是进口品牌的超快自由光路电光调制器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超快自由光路电光调制器相关的耗材配件、试剂标物,还有超快自由光路电光调制器相关的最新资讯、资料,以及超快自由光路电光调制器相关的解决方案。

超快自由光路电光调制器相关的资讯

  • 仅细菌大小 迄今世界最小电光调制器问世
    p  据最新一期《纳米快报》报道,美国研究人员设计并制造出了目前世界上最小的电光调制器,这或许意味着未来数据中心和超级计算机所使用的能源将得到大幅削减。/pp  电光调制器在光纤网络中起着关键作用。就像晶体管作为电信号的开关一样,电光调制器可用作光信号的开关。光通信使用光,所以调制器用于打开和关闭在光纤中发送二进制信号流的光。/pp  俄勒冈州立大学电子与计算机学院副教授王小龙在接受科技日报记者采访时称,此项技术的创新点是在光子晶体的微腔里集成了透明氧化物—硅基MOS(金属氧化物半导体)结构。微腔调制器可以把光场压缩到很小的范围,通过载流子富集形成很强的电光调制效应,从而在很小的区间内实现很大的电光调制。/pp  王小龙表示,新研制的电光调制器可极大降低光互联器件的功耗。目前全球数据中心和超级计算机所使用的能源占据了全球电力使用量的4%—5%,数据中心的大部分功耗主要由互联产生,通过光取代电来降低系统功耗是今后的研究方向。但光互联研究的一个瓶颈在于电光转换,电光转换同样需要消耗大量能源。/pp  此项设计结合了材料和器件的创新,增强电子和光子之间的相互作用,从而使研究人员能够创建出一个更小的电光调制器。新调制器相比主流硅基微环电光调制器在尺寸上缩小了10倍,仅为一个细菌大小(8微米× 0.6微米),有源区更是缩小到了0.06立方微米(仅仅是波长立方尺寸的2%),在理论上可将电光转换的能耗降低2—3个数量级。/pp/p
  • 盛志高研究团队成功研发出一种主动智能化的太赫兹电光调制器
    近日,中科院合肥研究院强磁场中心盛志高研究团队依托稳态强磁场实验装置成功研发了一种主动智能化的太赫兹电光调制器。相关研究成果发表在国际期刊 ACS Applied Materials & Interfaces 上。虽然太赫兹技术具有优越的波谱特性和广泛的应用前景,但其工程应用还严重受制于太赫兹材料与太赫兹元器件的开发。其中,围绕智能化场景应用,采用外场对太赫兹波进行主动、智能化的控制是这一领域的重要研究方向。瞄准太赫兹核心元器件这一前沿研究方向,强磁场中心磁光团队继2018年发明一种基于二维材料石墨烯的太赫兹应力调制器[Adv. Optical Mater. 6, 1700877(2018)]、2020年发明一种基于强关联氧化物的太赫兹宽带光控调制器[ACS Appl. Mater. Inter. 12, 48811(2020)]、2021年发明一种基于声子的新型单频磁控太赫兹源[Advanced Science 9, 2103229(2021)]之后,选择关联电子氧化物二氧化钒薄膜作为功能层,采用多层结构设计和电控方法,实现了太赫兹透射、反射和吸收多功能主动调制(图a)。研究结果表明,除了透射率和吸收率,反射率和反射相位也可被电场主动调控,其中反射率调制深度可以达到99.9%、反射相位可达~180o调制(图b)。更为有趣的是,为了实现智能化的太赫兹电控,研究人员设计了一种具有新型“太赫兹-电-太赫兹”的反馈回路的器件(图c)。不管起始条件和外界环境如何变化,该智能器件可以在30秒左右自动达到太赫兹的设定(预期)调制值。(a)基于VO2的电光调制器示意图(b)透射率、反射率、吸收率和反射相位随外加电流变化(c)智能化控制原理图这一基于关联电子材料的主动、智能化太赫兹电光调制器的研发为太赫兹智能化控制的实现提供了新的思路。该工作获得了国家重点研发计划、国家自然科学基金、强磁场安徽省实验室方向基金的支持。文章链接:https://pubs.acs.org/doi/10.1021/acsami.2c04736
  • 合肥研究院采用超快技术构筑GHz高频光弹调制器
    近期,中国科学院合肥物质科学研究院强磁场科学中心盛志高研究团队等采用超快时间分辨泵浦探测技术,在SrTiO3晶体中实现了由超快相干声子诱导的GHz频率的双折射调制,其工作频率远超现今商业光弹调制器的截止频率。相关研究成果发表在《先进科学》(Advanced Science)上,并申请了发明专利。具有双折射效应的特定材料能塑造光。基于双折射调制技术工作的光弹调制器是现代光学技术的核心元件之一。目前的光弹调制器多借助压电材料提供的机械应力,来驱动光弹晶体实现双折射调制,其工作频率受限于光弹/压电晶体的谐振频率,一般为kHz量级。随着高频信号处理和高频光通信的需求不断涌现,亟需研发具有GHz工作频率的双折射材料与调制技术。针对这一现状,盛志高课题组与合作者经过大量材料筛选与技术探索,借助强磁场磁光实验室中的超快泵浦-探测系统,在钙钛矿SrTiO3晶体中发现了由超快相干声子诱导的GHz光学双折射效应,并实现了对其进行光学操控。研究团队在换能器/SrTiO3异质结构中,使用超快激光脉冲产生了具有低阻尼的相干声学声子。经过系列材料筛选,研究发现LaRhO3半导体薄膜作为换能器层能获得相对较高的光子-声子能量转换效率。进一步,研究在优化的异质结构中发现,超快相干声学声子可以在应力敏感的SrTiO3晶体中诱导出具有GHz频率的光学双折射。同时,研究团队通过双泵浦技术实现了对相干声子及其诱导的GHz双折射的光学操纵。这揭示了超快光学双折射调制的一种机制,并为GHz高频声光器件的应用奠定了技术基础。研究工作得到国家重点研发计划、国家自然科学基金、强磁场安徽省实验室方向基金和合肥大科学中心高端用户培育基金的支持。左图:激光诱导的声学声子激发SrTiO3晶体GHz双折射原理示意图;右图:不同晶体取向的SrTiO3晶体GHz双折射调制。
  • 纯相位空间光调制器在PSF工程中的应用
    纯相位空间光调制器在PSF工程中的应用一、引言2014年诺贝尔化学奖揭晓,美国及德国三位科学家Eric Betzig、Stefan W. Hell和William E. Moerner获奖。获奖理由是“研制出超分辨率荧光显微镜”,从此人们对点扩散函数 (PSF) 工程的认识有了显着提高。Moerner 展示了 PSF 工程与 Meadowlark Optics SLM 的使用案例,用于荧光发射器的超分辨率成像和 3D 定位。 PSF工程已被证明使显微镜能够使用多种成像模式对样本进行成像,同时以非机械方式在模式之间变化。这允许对具有弱折射率的结构进行成像,以及对相位结构进行定量测量。 已证明的成像方式包括:螺旋相位成像、暗场成像、相位对比成像、微分干涉对比成像和扩展景深成像。美国Meadowlark Optics 公司专注于模拟寻址纯相位空间光调制器的设 计、开发和制造,有40多年的历史,该公司空间光调制器产品广泛应用于自适应光学,散射或浑浊介质中的成像,双光子/三光子显微成像,光遗传学,全息光镊(HOT),脉冲整形,光学加密,量子计算,光通信,湍流模拟等领域。其高分辨率、高刷新率、高填充因子的特点适用于PSF工程应用中。图1. Meadowlark 2022年蕞新推出 1024 x 1024 1K刷新率SLM二、空间光调制器在PSF工程中的技术介绍在单分子定位显微镜(SMLM)中,通过从相机视场中稀疏分布的发射点来估计单个分子的位置,从而克服了分辨率的衍射限制。可实现的分辨率受到定位精度和荧光标签密度的限制,在实践中可能是几十纳米的数量级。有科研团队已经将这种技术扩展到三维定位。通过在光路中加入一个圆柱形透镜或使用双平面或多焦点成像,可以估算出分子的轴向位置。光斑的拉长(散光)或光斑大小的差异(双平面成像)对轴向位置进行编码。将空间光调制器(SLM)与4F中继系统结合到成像光路中,可以设计更广泛的点扩散函数(PSF),为优化显微镜的定位性能提供了可能。利用空间光调制器(SLM)对荧光显微镜进行校准,可以建立一个远低于衍射极限的波前误差,SIEMONS团队就利用Meadowlark空间光调制器实现了高精度的波前控制。原理证明和实验显示,在1微米的轴向范围内,在x、y和λ的精度低于10纳米,在z的精度低于20纳米。对这篇文献感兴趣的话可以联系我们查阅文献原文《High precision wavefront control in point spread function engineering for single emitter localization 》下面我们来具体看看是如何应用的,以及应用效果如何。图2. A)SLM校准分支和通过光路的偏振传输示意图。额外的线性偏振滤波器没有被画出来,因为它们与偏振分光器对齐。B)相机上的强度响应作为λ/2-板不同方向α的SLM的相位延迟的函数。C) 光学装置的示意图。一个带有SLM的中继系统被添加到显微镜的发射路径中(红色),一个单独的SLM校准路径(绿色)被纳入发射中继系统中。这允许在实验之间进行SLM校准。BE:扩束器,DM:分色镜,L:镜头,LPF:线性偏振滤镜,M:镜子。OL:物镜,PBS:偏振分光镜,TL:管镜。光路如上图2所示,包括一台尼康Ti-E显微镜,带有TIRF APO物镜(NA = 1.49,M = 100),一个200毫米的管状镜头,一个带有SLM的中继系统被建立在显微镜的一个出口端口。中继系统包括两个消色差透镜,一个向列型液晶空间光调制器(LCOS)SLM(Meadowlark,XY系列,512x512像素,像素大小=15微米,设计波长=532纳米)和一个偏振分光器,用于过滤未被SLM调制的X偏振光。di一个消色差透镜在SLM上转发光束。第二个中继镜头确保在EMCCD上对荧光物体进行奈奎斯特采样。显微镜配备了一套波长为405nm、488nm、561nm和642nm的合束激光器。 这个配置增加了一个用于校准SLM的第二个光路。这个空降光调制器校准光路是为测量入射到SLM上的X和Y偏振光之间的延迟差而设计的,为了测量某个SLM像素的调制,需要将SLM映射到校准路径的相机上。这种映射是通过在SLM上施加一个电压增加的棋盘图案来获得的。平均捕获的图像和没有施加电压时的图像之间的差异被用作角落检测算法(来自Matlab - Mathworks的findcheckerboard)的输入,以找到角落点。对这些点进行仿生变换,并用于找到对应于每个SLM像素的CMOS像素。图3. SLM校准程序。A) 单个SLM像素的测量强度响应作为应用电压的函数。每一个极值都对应于等于π的整数倍的相位变化,并拟合一个二阶多项式以提高寻找极值的精度。强度被分割成四个部分,它们被缩放为[0 1]。这个归一化的强度(B)被转换为相位(C),并反转以创建该特定电压段和像素的LUT(D)。E)20个随机选择的SLM像素的归一化强度响应,显示像素间的变化。F) 测量的波前均方根误差是校准后立即使用校准LUT的相位的函数,45分钟后,以及制造商提供的LUT。G) 在不同的恒定相位下,用于成像光路的SLM部分的LUTs。暗点表示没有3个蕞大值的像素。H) 测量的平均相位和预定相位之间的差异作为预定相位的函数。 图3解释了SLM像素的校准程序。首先,以256步测量作为应用电压函数的强度响应,产生一连串的蕞小值和蕞大值,它们对应于π或2π的迟滞。在被照亮的SLM平面内的所有像素似乎有三个蕞大值,这意味着总的相位调制为4π或1094纳米。这些极值出现的电压是通过对极值附近的三个点进行拟合抛物线来找到的,这增加了精度,并充分利用了SLM的16位控制。然后,强度被分为四段,用公式(11)的逆值对这些段进行缩放并转换为相位。相位响应被用来为每个SLM像素构建一个单独的查找表(LUT),以补偿SLM的非均匀性。LUT参数在SLM上平滑变化,并与肉眼可见的法布里-珀罗条纹大致对应,表明相位响应的差异是由于液晶层厚度的变化造成的。额外的像素与像素之间的变化可能来自底层硅开关电路的像素与像素之间的变化。完整的校准需要大约5分钟(在四核3.3GHz i7处理器上的3分钟扫描和2分钟计算时间),但原则上可以优化到运行更快。实验结果:图4 测量的PSF与矢量PSF模型拟合之间的PSF比较。G-I)平均测量的PSF是由大约108个光子携带的信号通过上采样(3×)和覆盖所有获得的斑点编制而成。比例尺表示1μm。 图4显示PSF模型的预测结果。通过这种方式,实验的PSF是由∼108个光子的累积信号建立起来的。实验和理论上的矢量PSF之间的一致性通常是非常好的,甚至在蕞大的离焦值的边缘结构也是非常匹配的。剩下的差异,主要是光斑的轻微变宽,是由于入射到相机上的光的非零光谱宽度,由于发射光谱的宽度和四带分色器的带通区域的宽度。边缘结构中也有一个小的不对称性,这可能是由光学系统中残留的高阶球差造成的。 所有工程PSF的一个共同特点是,与简单的二维聚焦斑点相比,它们的复杂性必须在PSF模型中得到体现,该模型被用于估计三维位置(可能还有发射颜色或分子方向)的参数拟合算法。简化的PSF模型,如高斯模型、基于标量衍射的Airy模型、Gibson-Lanni模型,或基于Hermite函数的有效模型都不能满足这一要求。一个解决方案是使用实验参考PSF,或用花样拟合这样的PSF作为模型PSF,或者使用一个或多个查找表(LUTs)来估计Z-位置。矢量PSF模型也可以用于复杂的3D和3D+λ工程PSF。众所周知,矢量PSF模型是高NA荧光成像系统中图像形成的物理正确模型。复杂的工程PSF的另一个共同特点是对扰乱设计的PSF形状的像差的敏感性,并以这种方式对精度和准确性产生负面影响。为了实现精确到Cramér-Rao下限(CRLB),即无偏估计器的蕞佳精度,光学系统的像差水平应该被控制在衍射极限(0.072λ均方根波前像差),这个条件在实践中往往无法满足。因此,需要使用可变形镜或为产生工程PSF而存在的SLM对像差进行校正。自适应光学元件的控制参数可以使用基于图像的指标或通过测量待校正的像差来设置。后者可以通过基于引入相位多样性的相位检索算法来完成,通常采用通焦珠扫描的形式。这已经在高数值孔径显微镜系统、定位显微镜中实现,并用于提高STED激光聚焦的质量。三、PSF应用对液晶空间光调制器的要求1.光利用率 对于这个应用来说,SLM将光学损失降到蕞低是很重要的。PSF工程使用SLM来操纵显微镜发射路径上的波前。在不增加损失的情况下,荧光成像中缺乏信号。使用具有高填充系数的SLM可以蕞大限度地减少衍射的损失。 Meadowlark公司能提供标速版95.6%的空间光调制器,分辨率达1920x1200,高刷新率版像素1024x1024,填充因子97.2%和dielectric mirror coated版本(100%填充率)。镀介电膜版本的SLM反射率可以做到100%,一级衍射效率可以做到98%。高分辨率能在满足创建复杂相位函数的同时,能够提升系统的光利用率。2.刷新率(蕞高可达1K Hz)高速度可以实现实时的深层组织超分辨率成像。可见光波段蕞高可达1K Hz刷新速度(@532nm)。3.分辨率(1920x1200) 高分辨率的SLM是创建三维定位所需的复杂相位函数的理想选择,如此能够对每个小像元区域的光场进行自由调控。 上海昊量光电作为Medowlark在中国大陆地区总代理商,为您提供专业的选型以及技术服务。对于Meadowlark SLM有兴趣或者任何问题,都欢迎通过电话、电子邮件或者微信与我们联系。欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。 关于昊量光电:昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
  • 科学岛团队研发出一种光控太赫兹相位调制器
    近日,中科院合肥研究院强磁场中心磁光团队成功研发了一种主动的太赫兹相位调制器。相关研究成果发表在ACS Applied Electronic Materials 国际期刊上。   虽然具有优越的波谱特性和广泛的应用前景,太赫兹技术的工程应用还严重受制于太赫兹材料与太赫兹元器件的开发。为了满足不同的应用要求,太赫兹调制器件成为这一领域的研究重点。   强磁场中心磁光团队聚焦太赫兹核心元器件这一前沿研究方向,继2018年发明一种基于二维材料石墨烯的太赫兹应力调制器【Adv. Optical Mater. 6, 1700877(2018)】、2020年发明一种基于强关联氧化物的太赫兹宽带光控调制器【ACS Appl. Mater. Inter.12, 48811(2020)】、2022年发明一种基于关联电子材料的主动、智能化太赫兹电光调制器【ACS Appl. Mater. Inter. 14, 26923-26930, (2022)】之后,与固体所苏付海团队合作,经过大量材料筛选与技术探索,发现氧化物晶体NdGaO3可以使太赫兹发生明显相位移动。研究结果表明,NdGaO3晶体在100-400K下可以实现~94°的相位移动,相位移动大小几乎线性依赖于太赫兹频率,并且具有晶体各向异性。采用光控的方式,研究团队实现了太赫兹相位的主动调制,即在20 J/cm2的光照激发下,NdGaO3晶体可以实现稳定的相位调控~78°,通过改变光照激发强度,可以实现多态的太赫兹相位移动。该结果表明NdGaO3晶体是太赫兹移相器的合适候选材料,其灵敏度和稳定性有望在新型太赫兹光学器件中得到良好的应用。   该工作获得了国家重点研发计划、国家自然科学基金,省级重大科技专项计划中国科学院前沿科学重点研究项目的支持。(a)基于NdGaO3的光控相位调制器示意图(b)相位移动随太赫兹频率和光照开关的变化。
  • 纯相位空间光调制器(SLM)零级光的产生及消除方法
    引言:空间光调制器(一般指相位型SLM)可以对光的振幅、相位、偏振态等进行调制,在光学研究领域拥有广泛和悠久的历史。目前相位型空间光调制器在全息光学,全息光镊,激光并行加工,自适应光学,双光子/三光子/多光子显微成像,散射或浑浊介质中的成像,脉冲整形,光学加密,量子计算,光通信,湍流模拟等领域应用广泛。很多的科研人员在使用空间光调制器时,往往会受到零级光的困扰,零级光对研究结果也产生了非常大的影响。可以说大家苦零级光久矣。本文对液晶空间光调制器零级光的产生原因及其消除方法进行了阐述。Meadowlark Optics公司拥有40年纯相位SLM研发经验,可以提供模拟寻址的纯相位空间光调制器(1920x1200 & 1024x1024分辨率),产品工作波段可以覆盖400-1700nm,相位稳定性可以达到0.1%,帧频可以到1436Hz,损伤阈值可以达到200W/cm2以上。 关键词:空间光调制器、SLM,液晶空间光调制器,纯相位,LCOS,零级光,一级衍射空间光调制器零级光产生的原因?要想了解SLM零级光产生的原因,我们需要先了解下空间光调制器的结构构成。如下图所示,LC-SLM光学头主要由:保护玻璃,透明电极,液晶层,像素电极层(Wafer)构成。1) 保护玻璃的透过率窗口片保护玻璃的透过率在相应的工作波段(400-800nm,500-1200nm,850-1650nm)内通常在98.5-99.5%范围内,因此有少量的光被直接反射回去。2)透明电极的透过率透明电极的透过率一般都在99%以上,该部分造成的零级光基本可以忽略。3)空间光调制器填充率像素电极层(Wafer)由一个个的独立像元构成,从而SLM可以实现针对单个像元的独立调制。相邻像元之间会有微小的缝隙,缝隙部分无法加载电压,因此对应的液晶层无法加载相位,这部分未被调制的光会反射回去,产生零级光。4)入射光照射到非工作区域如果入射光照射到了非工作区域,则这部分光也会不被调制,直接反射回光路,产生零级光。5)入射光的偏振态或者偏振方向错误目前市面上所有的相位型空间光调制器(SLM)均要求线偏光入射,线偏方向与液晶的e轴平行(extraordinary axis)。如果入射光与e轴存在夹角,或者入射光的偏振态不是线偏光,则会有一部分分量的光不被调制,从而产生零级光。Meadowlark公司SLM零级光消除方法?硬件方面:1)提高空间光调制器的填充率,蕞小化缝隙影响。Meadowlark Optics公司可以提供1024x1024的纯相位空间光调制器,填充因子可以达到目前世界蕞高的97.2%,大大减小了缝隙产生的影响。2)提高空间光调制器的线性度。1920x1200的液晶空间光调制器,MLO公司在出厂前会对每一台SLM进行高精度的校准,保证每一台空间光调制器都具有高度的线性准确性,从而提高相位调制精度,达到蕞优的调制效果。软件方面:a)叠加闪耀光栅Meadowlark公司的SLM控制软件提供生成任意周期闪耀光栅的功能,该光栅可以方便的与客户的全息图进行叠加,从而把结果偏转到1级位置,客户只需要用光阑将零级光滤掉,只让一级光通过即可。b)叠加菲涅尔透镜MLO公司的调制器控制软件提供生成任意焦距菲涅尔透镜的功能,用户可以将全息图与该菲涅尔灰度图进行叠加,从而零级光与衍射光的焦平面会发生错位,零级光在衍射光的焦平面上会发散掉,从而减小零级光的影响。光路方面:1)光路中添加偏振片和半波片,提高入射光的偏振态准确性为了使用SLM作为相位调制器,入射偏振必须是线性的,并且与LC分子对齐。为了确保入射光的偏振是线性的,建议在激光光源后放置一个偏振器。为了确保偏振与LC分子对齐,建议在偏振器和SLM之间放置半波片,通过半波片的旋转可以将0级光调到最小。2)光路中添加使用0阶块(0th order block),阻挡零级光上海昊量光电设备有限公司可以提供什么样的空间光调制器?1)1920x1200纯相位空间光调制器(标准速度) 2)1024x1024纯相位空间光调制器(超高速度)关于昊量光电:昊量光电可以给客户提供SLM样品试用,以及全面的技术支持。上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、先进激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。您可以通过昊量光电的官方网站了解更多的产品信息,或直接来电咨询。
  • Meadowlark公司收购CRi空间光调制器业务
    Meadowlark公司收购CRi空间光调制器业务 近日,美国Meadowlark Optics公司与Cambridge Research & Instrumentation(CRi)公司发布联合声明,宣布双方就Meadowlark Optics公司正式收购CRi公司液晶空间光调制器产品线达成协议。 Meadowlark Optics公司总裁兼CEO Garry Gorsuch先生表示,纳入CRi SLM产品,进一步丰富了美国Meadowlark Optics公司的产品线,充分证明了公司要发展和扩大更多SLM市场的决心,以及公司在空间光调制器生产核心技术方面的信心。作为美国Meadowlark Optics公司在空间光调制器产品线的中国地区独家代理商,昊量光电将一如既往地为客户(包括CRi SLM客户)提供优质的服务与技术支持!关于CRI:CRi公司的P128 SLM和 P640透射式液晶SLM在超快脉冲整形方面具有独特的技术优势,持有多项技术专利。目前CRI公司的SLM产品线已经加入到Meadowlark现有的透射和反射SLM产品线中。 关于Meadowlark Optics公司:2014年7月,Meadowlark收购了Boulder Nonlinear Systems 的商业产品部分,BNS公司的产品包括了SLMs、光学快门,偏振旋转器,可变波片和立体光学镊子系统。截止目前,Meadowlark的SLM产品线已经涵盖了美国原BNS公司的SLM,CRi的的SLM,以及Meadowlark公司原有的SLM生产线。目前Meadowlark公司的液晶空间光调制器的研发技术、生产工艺及拥有的专利技术数量,均处于全球领先地位。 关于上海昊量光电设备有限公司:上海昊量光电设备有限公司作为Meadowlark Optics公司空间光调制器产品线中国地区的独家代理,深耕SLM行业多年。上海昊量光电设备有限公司拥有专业的销售团队及售后技术团队,多年来坚持为客户提供一流的产品和售后服务,在SLM的应用领域得到了客户高度的认可和好评。 调制器 空间光调制器超高速液晶空间光调制器透射式液晶空间光调制器 ? 美国BNS公司(Boulder Nonlinear Systems, Inc.)生产销售适用于各种光电应用的液晶空间光调制器(liquid crystal spatial light modulator),能够根据指定的像素图案对光在空间的分布进行调制,在需要pixel-by-pixel光束控制以优化产品性能的应用领域正扮演着 越来越重要的角色。BNS公司能够提供基于LCoS(liquid crystal on silicon)技术的各种反射式空间光调制器,包括纯相位调制,纯振幅调制,及振幅相位混合调制。其XY(512X512)面阵及 linear(1X4096)线阵空间光调制器被广泛应用于激光光束偏转与可编程相位掩模等热点领域。 BNS公司的空间光调制器具有相位或振幅调制速率高、透过效率高、图形软件操作界面友好等特点。调制器 空间光调制器XY系列偏振无关液晶空间光调制器1x12,288线阵相位型液晶调制器XY系列铁电液晶空间光调制器XY系列向列液晶空间光调制器 专用实验设备 CUBE-便携式光镊系统全息光镊系统
  • 5G电光调制解调器核心部件:王家海教授团队在有机电光材料取得系统性进展
    近年来,人们在居住、工作、休闲和交通等各种不同场景的多样化业务需求推动着新一轮的光子革命。其中,以5G无线通讯为主,对于信息高速传输的需求已经渗透到大数据、机器学习、远程医疗及自动驾驶等领域,使信息突破时空限制进行智能互联。而光子作为载体的信息处理传输材料可以很好的解决传输速率慢的问题,因此制备出高速、低耗能和易于工业化生产的电光材料,从而实现高速率的数据中心光互连,成为学术界和工业界亟待解决的关键问题。在传统的商业化电光材料的研究中,主要是以无机材料铌酸锂作为代表。然而传统铌酸锂材料所制成的电光调制器的信号质量、带宽、半波电压、插入损耗等关键性能参数的提升逐渐遭遇瓶颈,电光系数低,晶体生长、加工困难、体积庞大且与CMOS工艺不兼容等。与无机材料和电子为载体的微电子材料相比,光子为载体的二阶非线性有机电光材料具有电光系数高、光学损伤阈值高、响应速度快、制备过程更易于生产,具有良好的热稳定性、成本低以及选择范围广等优点,并能易与半导体微电子器件实现集成,故而有很大的应用前景。然而有机非线性光学材料运用到商业化的电光调制器等领域也面临着技术瓶颈(难以满足Telecordia GR-468-CORE standards 标准),如何获得兼具大的电光系数(r33值)、光热稳定性、极化取向稳定性的有机电光发色团仍然是行业的难点。1. 高性能交联型有机电光材料的研究针对有机电光材料的研究难点,王家海教授团队首次提出了二元交联材料的基解决方案:将可以交联的蒽和丙烯酸酯基团修饰到发色团QLD1-QLD4的电子给体和电子桥上,发色团在电场的作用下发色极化取向,温度进一步升高,交联反应发生,以网状聚合物的形式固定住已经取向的发色团分子,光热稳定性大幅提升。此外,由于没有小分子/聚合物交联剂的存在,发色团含量高达100wt%,电光系数大幅提升。交联后,QLD1/QLD2和QLD2/QLD4薄膜的电光活性非常高,r33的最大值分别为327 pm/V和373 pm/V, 这是目前文献报告的最高值。经Diels-Alder反应后,其电光薄膜的玻璃化转变温度从~90°C增加至185°C,这高于任何其他纯发色团膜。在85℃退火后,99.63%的r33初始值可保持500 h以上,这些材料具有超高的电光活性和长期长期极化取向稳定性,为有机电光材料的器件化和商业化提供了可能。图 1 电光材料QLD1-QLD4的分子结构该成果发表在化学顶级刊物 Chemical Science, 2022, 13, 13393-13402文章链接 https://pubs.rsc.org/en/content/articlelanding/2022/sc/d2sc05231h图 2 发色团数密度与极化效率的关系图;b)长期稳定性测试结果。2. 基于新型双给体的有机非线性光学材料的研究 研发了一种基于(N-乙基-N-羟乙基)苯胺衍生物的可修饰性双给体,并首次将其应用于非线性光学材料。在发色团的给体 和桥上分别引入三个隔离基团,用于减少分子之间的静电相互作 用,从而提高极化效率。基于此,我们开发了一系列非线性光学 发色团 BLD1-4,它们具有相同的双(N-乙基-N-羟乙基)苯胺基 给体、TCF 或 CF3–TCF 受体,和异佛尔酮衍生桥。密度泛函理 论计算表明,这四个发色团由于给体具有强大的给电子能力,比 传统的非线性光学发色团的一阶超极化率更大。纯发色团 BLD1– BLD4 的极化膜由于发色团的大空间位阻和大的一阶超极化率从而展现出非常高的极化效率。含有发色团 BLD3 的纯发色团膜在1310nm 处获得了超高的 r33 值(351pm/V)和极化效率(3.50±0.10 nm2 V-2)。大的电光系数使这些新的给体为有机非线性光学材料提 供了很有价值的参考。图 3 发色团 BLD1-4 的结构图 4 发色团 BLD1-4 的极化效率曲线该成果发表在材料刊物 Materials Chemistry Frontiers, 2022, 6,1079-1090.文章链接 https://pubs.rsc.org/en/content/articlelanding/2022/qm/d1qm01577j3. 树枝状有机电光材料的研究图 5 发色团 C1-C3 的结构 开发出具有大电光系数和高稳定性的电光材料,一直是这个领域最具挑战性的话题。一系列基于相同的双(N,N-二乙基)苯胺给体、三亚乙基二氢呋喃受体和异佛尔酮衍生桥的发色团 C1-C3 被合成开发出来。与含有单发色团的树枝状材料 C1 进行比较,我们合成了双枝发色团分子 C2 和三枝发色团分子 C3。这是第一次将双(N,N-二乙基) 苯胺基给体用于 CLD 型发色团和多发色团系统。与 C1 发色团相比, C2 和 C3 多发色团具有更高的电光性系数和玻璃化转变温度。纯发色团 C2 的薄膜上在 1310 nm 处取得了大的 r33 系数 (180 pm/V)和极化效率(1.94±0.08 nm2 V-2),已经实现在。此外,树枝状分子 C2 的玻璃化转变温度高达 122℃。该材料具有良好的稳定性和大的电光系数,具有良好的应用前景。图 6 发色团 C1-C3 的 DSC 曲线该成果发表在材料刊物 Materials Chemistry Frontiers, 2021, 5, 8341-8351文章链接 https://pubs.rsc.org/en/content/articlelanding/2021/qm/d1qm01337h4. 自组装型有机电光材料的研究我们已经开发了一系列自组装的树枝状电光材料。通过在发色团的给体和桥部分引入芳香树枝状化合物(HD)、三氟苄基树枝状化合物、五氟苯基树枝状化合物和蒽环,合成了四种交联型树枝状化合物H1、H2、H3 和 HLD1。此外,还合成了含有三枝化三氟苄基的多发色团 H4。基于 HD-PFD/HD-AH/TFD-TFD 的π-π相互作用使得这些分子可以进行超分子自组装的,以最大限度地减少发色团的偶极-偶极相互作用,并在高负载密度下最大限度地提高发色团的极化效率。 对于分别含有发色团 1:1 H1:H3、1:2 H3:HLD1 和 H4 的纯电光膜,已经实现了高 r33 值(328、317 和 279 pm/V)。此外,发色团的长期取向稳定性也得到了改善。在室温下 1000 小时后,自组装型电光薄膜的初始电光系数仍然保持在 95%以上。图 7 发色团 H1-H4 以及 HLD1 的结构该成果发表在材料刊物 Dyes and Pigments, 2022, 202, 110283.文章链接 https://www.sciencedirect.com/science/article/pii/S0143720822002054图 8 发色团 H1-H4 以及 HLD1 的极化效率与分子数密度的关系图团队负责人简介王家海,广州大学化学化工学院教授、研究生和博士后导师,2008年5月美国University of Florida化学系毕业,师从Charles R. Martin;2008年5月至2009年1月,美国约翰霍普金斯大学化学生物工程系博士后,从事微纳米器件加工课题,致力于智能器件的设计及其应用性能的探讨;2009年1月至2014年8月,分别在中科院苏州纳米所和长春应用化学研究所任副研究员,从事体外诊断纳米孔检测相关的技术开发。2014年10月加入山东大学,任研究员,从事氢能源催化剂材料的开发。2017年至今加入广州大学,百人计划教授。入选中国科学院首批促进会会员,广州市高层次青年后备青年人才,全球顶尖十万科学家之一。目前团队研究方向包括能源催化材料、锂电池、生物化学传感器、纳米孔单分子计数器和5G通讯。代表性成果发表在Advanced Materials、Biosensor and Bioelectronics、J. Am. Chem. Soc.、Nano Letters 等国际著名期刊上。
  • 美国MeadowlarkOptics公司推出全球响应速度最快的纯相位液晶空间光调制器
    摘 要:传统的液晶空间光调制器作为一种高单元密度的新型波前矫正器件, 一直受限于液晶的刷新速度,在许多的应用领域无法满足科研人员的需求。美国Meadowlark Optics公司20多年以来一直致力于研发高响应速度的空间光调制器,近期Meadowlark Optics宣布推出液晶刷新速度(0-2π)高达600Hz@532nm 500Hz@635nm的高速型SLM,其控制器的帧频为833Hz。 引 言:这款高速型液晶空间光调制器的分辨率为512x512,像素25um,开孔率:96%,通光口径:12.8x12.8mm 相信这款空间光调制器的出现,可以为天文自适应,生物显微自适应等对空间光调制器的刷新速度有较高要求的客户带来便利。此款产品由上海昊量光电独家代理。 液晶空间光调制器的工作原理Meadowlark Optics公司使用的液晶材料为超高速液晶,利用液晶的双折射效应及扭曲特性,当光进入双频液晶空间光调制器后,对应的O光和e光的折射率不同导致光束中的o光和e光分离。o光和e光在液晶空间光调制器中的传输速度不同,同时利用液晶的扭曲效应,在SLM两端施加不同的电压时液晶分子会发生不同角度的偏转,因此液晶空间光调制器可以对每一个像素点实现不同的相位调制(如下图所示)。 结论 高速型液晶空间光调制器以其液晶响应速度快,校正单元多(512*512)等特点受到越来越多的科研人员的青睐。目前在天文望远镜观测、大气湍流模拟、自适应光学算法模拟、眼底成像、双光子显微镜、超分辨显微成像等领域发挥着越来越重要的作用。此款产品由上海昊量光电独家代理。 关于我们:上海昊量光电设备有限公司专注于光电领域的技术服务与产品经销,致力于引进国外顶级光电器件制造商的技术与产品,为国内客户提供优质的产品与服务。我们力争在原产厂商与客户之间搭建起沟通的桥梁与合作的平台。
  • 滨松推出1550nm光利用率98%的新型空间光调制器
    在光通信的研究中,所涉及的波段除了可见光中的多个波长(如780nm)外,在红外波段,1550nm是最多被选择的。由于光纤中使用的玻璃材料的吸收特性,1550nm光在传输过程中能量损失是最小的,这样就能达成更远距离的光通信。除了对光本身性能的利用外,光通信还要求光路中的每一个元件,在保证功能的前提下,最大程度地控制光能损失。光通信研究典型光路空间光调制器中的光能损失想要光携带信息传输向远方,需要对其进行编码。空间光调制器(LCOS-SLM)就是可以通过相位调制来实现这一操作的元件。待编码的激光束穿过空间光调制器透明的玻璃基板层和ITO电极层,到达液晶层完成相位的调制(电压→液晶分子排列方向→折射率→光程→相位)后,经过反射面的反射进行输出。这时候的光,就已经是满载信息的了。 当然,作为光路中的其中一环,"高性能、低光能损失"也是光通信对空间光调制器提出的苛刻要求。光在空间光调制器的透明的玻璃基板层和ITO电极层其实损失都较小,而液晶层为主要的的工作层,调制带来的损耗难以避免。在这种情况下,提高反射面的反射率,便是控制元件整体光能损失的最有效方法。目前空间光调制器反射层主要有两类:传统的铝制反射层和介质镜。其中,后者的反射率是明显高于前者的。虽然在可见光波段高反射率介质镜已经得以应用,但受材料限制,适用于1550nm的介质镜始终是业界的技术瓶颈。因此,大部分针对此波长的空间光调制器,一直以来采用的都是传统材料(铝)的反射层,光利用率也只在80%左右。155nm处光利用率达98%的新型空间光调制器滨松成功突破了材料和工艺难题,自主开发出了可应用于1500nm-1600nm波段的介质镜。利用此项独家的专利技术,研发了在1550nm附近超高光利用率(97%)的全新空间光调制。 目前市面上1550nm附近各主要SLM产品的光利用率对比除了1550nm高反射率外,滨松此款新型空间光调制器在上升和下降时间方面,较以往产品也有了明显的提升,灵敏度进一步改善。新品现在可以接受预定咨询,而针对光通信用可见光波段,滨松同样可以提供丰富的产品选择。 滨松1550nm高反射率空间光调制器基本参数一览整体方案提供:InGaAs红外相机+空间光调制器针对调制后的光斑观察和分析,滨松也可提供针对1550nm附近波段的高灵敏InGaAs红外相机,可搭配空间光调制器,应用于光通信研究中。
  • 美国Meadowlark公司推出亚毫秒响应速度的纯相位液晶空间光调制器!
    美国Meadowlark公司推出亚毫秒液晶空间光调制器!目前市面上的纯相位液晶空间光调制器的液晶响应速度均处于50Hz以内(0-2π),无法满足高速调制客户的使用要求。 为满足自适应、通信等领域的用户高速调制的需求,美国Meadowlark公司(原BNS)于2016年推出了目前市面上唯一一款兼具有高液晶响应速度(0-2π)(285Hz-667Hz @ 532nm;166Hz-250Hz@1550nm)、高衍射效率(90-95%)、高填充因子(100%)、的纯相位液晶空间光调制器。 美国Meadowlark Optics公司的超高速液晶空间光调制器采用瞬态向列液晶效应技术(Transient Nematic Effects)、相位环绕技术(Phase Wrapping)、局部校准技术(Regional LUTs),实现了超高速的液晶响应速度。这三项技术均已申请专利。 瞬态向列液晶效应技术超高速液晶空间光调制器与高速型的空间光调制器响应速度对比上海昊量光电设备有限公司可以给客户提供样品试用,以及相关的技术支持。您可以通过我们的官方网站(http://www.auniontech.com/n/news/v_The_Fastest_Liquid_Crystal_Spatial_Light_Modulator.html)了解更多的液晶空间光调制器产品信息,或直接来电咨询021-34241962。
  • 滨松成功研发出适用于高功率CW激光器的空间光调制器
    滨松公司利用其独特的光学半导体制造工艺,成功研制出世界上最大规模的液晶型空间光调制器(Spatial Light Modulator,以下简称SLM※1),该SLM的有效面积约较以往产品增加了4倍,且耐热性更高。该开发器件可应用于工业用高功率连续振荡(以下简称CW)激光器,实现激光分束等控制,应用到如金属3D打印,以激光烧灼金属粉来模塑成形车辆部件等,同时有望提高激光热加工的效率和精度。本次研发项目的一部分是受量子科学技术研发机构(QST)管理的内阁办公室综合科学技术和创新会议战略创新创造计划(SIP)第2期项目“利用光和量子实现Society 5.0技术”的项目委托,开展的研发工作。该开发器件将于4月18日(星期一)至22日(星期五)在横滨Pacifico(横滨市神奈川县)举办为期5天的国内最大的国际光学技术会议“OPIC 2022”上发布,敬请期待。※1 SLM:通过液晶控制激光等入射光的波前,调整反射光的波前形状,来校正入射光的光束和畸变 等,是可自由控制激光衍射图形的光学设备。传统开发产品(左)和本次研发器件(右)产品开发概要本次研发的器件是适用于高输出功率CW激光器的SLM。激光器分为在短时间间隔内可重复输出的脉冲激光器和连续输出的CW激光器。脉冲激光器可以减少热损坏,实现高精度加工;而CW激光器可用于金属材料的焊接和切割等热加工,因此成为激光加工的主流。滨松凭借长期以来积累的独特的薄膜和电路设计技术,已经成功开发了全球耐光性能最佳,适用于工业脉冲激光器的SLM。通过应用SLM,将多个高功率脉冲激光光束进行并行加工,相较于仅聚焦到1个点的加工方式,它的优势在于它可以实现碳纤维增强塑料(CFRP)等难加工材料的高速、高精度地加工。但在应用于CW激光器时,存在随着SLM温度上升导致性能下降的问题。SLM结构和图形控制原理SLM由带像素电极的硅衬底、带透明电极的玻璃衬底,以及两衬底中间的液晶层组成。它通过控制在像素电极上的液晶的倾斜角度,来改变入射光的路径长度然后进行衍射。其结果便是,通过对入射光进行分支、畸变校正等,实现对激光束照射后衍射图形的自由调控。此次,滨松公司运用了大型光学半导体器件在开发和生产中积累的拼接技术(※2),将SLM的有效面积扩大到30.24×30.72 mm,约为现有尺寸的4倍,为世界上最大的液晶型SLM,也因此它可以减少SLM单位面积的入射光能量。同时,由于采用耐热性和导热性俱佳的大型陶瓷衬底,提高了散热效率,成功地抑制了因CW激光器连续照射而引起的温度升高,使得SLM可适用于工业用的高功率CW激光器。此外,大面积硅衬底在制造过程中容易出现弯曲、平整度恶化的情况,进而导致入射图形的光束形状产生畸变,针对这一问题我们运用了滨松独特的光学半导体元件生产技术,使SLM在增大面积的同时,保持了衬底的平整度。至此,实现了光束的高精度控制。※2拼接技术:在硅衬底上反复进行光刻的技术。适用于完成无法一次性光刻的大型电子回路。本次研发的器件适用于工业用高功率CW激光器,实现多点同时并行加工,有望提高如金属3D打印为代表的激光焊接和激光切割等激光热加工的效率。此外,通过对光束形状进行高精度的控制,该开发器件可根据对象物体的材料和形状进行优化,进而实现高精度的激光热加工。今后,我们将继续优化SLM结构中的多层介质膜反射镜,以进一步提高耐光性能。此外,我们也会将此开发器件搭载到激光加工设备中,进行实际验证实验。研发背景SIP第2期课题旨在通过将网络空间(虚拟空间)和物理空间(现实空间)高度融合的信息物理系统(Cyber Physical System,以下简称CPS)验证具有革命性的创新型工业制造。其中,“利用光和量子的Society 5.0实现技术”中,我们研发的主题包括激光加工在内的3个领域,旨在通过CPS激光加工系统验证创新型制造的可能性。随着CPS激光加工系统的实现,我们期待通过AI人工智能收集在多种条件下用激光照射物体得到的加工结果数据,选择最佳的加工条件,进而优化设计和生产过程。SLM被定义为CPS激光加工系统中必需的关键设备,为此,我们将继续致力于提高SLM的性能。本次研发的器件在CPS激光加工系统中的应用场景主要规格
  • 500us(2KHz)高速纯相位液晶空间光调制器(SLM)面世!
    纯相位液晶空间光调制器的液晶响应速度多年以来一直受限于60Hz的数据传输及30-140ms的液晶响应时间限制,无法实现高速的调制,不能满足相控阵扫描,自适应光学等高速调制应用的使用要求。一直以来,纯相位空间光调制器的速度到底可以做到多快?一直备受科研工作者的关注。 美国Meadowlark公司近日推出了高液晶响应速度(2KHz at 532nm)、高光利用效率(98%)、高填充因子(97.2%)、高分辨率(1024x1024)的纯相位液晶空间光调制器。500us(2KHz)高速纯相位液晶空间光调制器(SLM)产品特点:1) 液晶响应速度快:2KHz at 532nmMeadowlark Optics的硅基液晶(LCoS)空间光调制器(SLM)专为纯相位应用而设计,并结合了具有高刷新率的模拟数据寻址。这种组合为用户提供了具有高相位稳定性的最快响应时间(500us fall time)。图1 液晶响应时间 1024 x 1024 SLM非常适合需要高速、高衍射效率、低相位纹波和高功率激光器的应用。客户还可以控制温度设定点,从而在开关速度和相位稳定性之间找到完美的平衡。1024 x 1024 空间光调制器系统包括一个Gen3 x8 PCIe控制器,带有输入和输出触发器以及低延迟图像传输。触发可以在696µs的SLM芯片刷新周期边界上执行,对于需要SLM与外部硬件紧密同步的应用,甚至可以在刷新周期中间执行。该控制器还包括可加载752幅1024x1024(8bit)图片的内部存储器,可以提前加载,然后全速排序,以便在操作期间最大限度地减少PCIe总线上的流量。 2)光利用效率高:Up to 98%Meadowlark公司可提供镀介质镜型号的SLM,填充了像素间的间隙,使液晶空间光调制器的面积填充率达到100%,提高反射率、降低衍射损耗。镀介质镜型的SLM可以在400-1700nm工作波段范围内轻松实现98%(Max)的光利用率,同时降低了激光引起的热效应,提高了SLM的损伤阈值,以满足高功率脉冲激光调制和激光加工等应用需求。图2 镀介电膜的SLM反射率曲线图3 SLM损伤阈值测试 3) 高波前质量(λ/20)许多用于表征和校正像差的算法都基于Zernike多项式。然而,对圆形孔径的依赖不适用于描述正方形或矩形阵列的像差。已经开发了基于SLM的干涉子孔径的替代策略[9],以确保SLM的有效区域上的像差可以被校正到λ/ 40或更好。图4(a/c)未校准的SLM波前(λ/ 7 RMS)(b/d)校准后的SLM波前(λ/ 20 RMS)上海昊量光电作为Meadowlark Optics公司在中国大陆地区独家代理商,为您提供专业的选型以及技术服务。上海昊量光电设备有限公司可以给客户提供样品试用,以及相关的技术支持。您可以通过我们的官方网站了解更多的液晶空间光调制器产品信息,或直接来电咨询。
  • 美设计出太赫兹多像素光波调制器
    据《每日科学》网站2009年5月31日报道,美国科学家首次设计出一款多像素太赫兹频率(THz)光波调制器,将来有望广泛应用于生物光谱学和半导体结构成像研究。  太赫兹辐射是指频率从0.37THz到10THz,波长介于无线波中的毫米波与红外线之间的电磁辐射区域,所产生的T射线在物体成像、医疗诊断、环境检测、通讯等方面具有广阔的应用前景。对太赫兹辐射的正式研究,可以追溯到很多年前,但直到1990年高效生成和检测辐射的方法成为可能后,该研究才变得越来越普遍。  美国莱斯大学物理学家丹尼尔米特尔曼和他在桑迪亚和洛斯阿拉莫斯国家实验室的同事,使用一种特异材料来控制太赫兹波束的流出。之所以称之为特异材料,是因为它包含数组微观分裂的金属环,这些圆环可由附近的电极控制。通过调节圆环的电容来调整辐射水平。也就是说,赫兹光(即T射线)可以通过调制器进行转换,由调制器决定光线能否通过。该调制器由16个像素组成,呈4×4阵列。  米特尔曼称,第一次对太赫兹波束进行电控非常重要。要使光束能够穿过整个平面,而不呈现线性爆裂状态,进而促成光波成像,这是第一步。调制器的切换速度大约为1兆赫,与现今数据传输的最快速率相比并不算快。但他认为,对许多T射线成像任务来说,高带宽并不是必需的。目前他们正在设计一个较大的32×32像素阵。  该研究成果将在2009年激光与电学/国际量子电子学会议(CLEO/IQEC)上提出。该会议将于5月31日至6月5日在美国巴尔的摩召开。
  • 分子玻璃用于5G电光调制解调器核心材料:王家海教授团队在国际知名期刊Advanced Science发表最新成果
    近日,化学化工学院王家海教授团队在交联性非线性光学分子发射团取得新的进展。刘锋钢副教授设计了全新的交联性分子玻璃,具备卓越的性能,研究成果发表在国际知名期刊Advanced Science,刘锋钢副教授和王家海教授为共同通讯作者。01研究背景当前,随着云计算、5G通信、高清网络视频、太赫兹场、人工智能/机器学习和物联网等技术的快速发展,对信息的需求正在快速增长,没有任何放缓。随着现有服务的快速发展和新型服务的出现,世界互联网数据流量出现了爆炸式增长。在诸如数据中心网络之类的中短距离通信网络中存在对超大容量光纤通信的需求。对于中短距离光通信系统,如何在光电子器件带宽有限的系统中实现超高速(单波长400Gb s−1以上)信号传输已成为业界的热点问题。为了解决这一问题,研究低成本的单通道、高频谱效率的光通信系统具有重要意义。决定光通信技术应用的关键因素之一是制备高效稳定的二元交联/自组装有机非线性光学分子玻璃,即高性能有机电光材料(二阶非线性光学材料)的制备。早期对二阶非线性光学材料的研究主要是铌酸锂(LiNbO3)等无机晶体材料。这种类型的材料本身有一系列难以克服的缺点,如电光系数低、晶体生长和加工困难、介电常数高、对输入光波信号干扰强。经过多年的发展,有机电光材料的优势越来越明显。有机非线性光学材料具有电光系数高、响应速度快、可加工性和集成性好等优点,广泛应用于电光调制器、光通信、光信息存储、太赫兹等领域02研究内容开发了蒽-马来酰亚胺Diels–Alder(DA)反应以及蒽-五氟苯和苯-五氟苯基的π–π相互作用,以制备高效的二元可交联/自组装树枝状发色团FZL1-FZL4。电场极化取向后,DA反应或π–π相互作用形成共价或非共价交联网络,极大地提高了材料的长期取向稳定性。交联膜FZL1/FZL2的电光系数高达266 pm V−1,玻璃化转变温度高达178°C,自组装膜FZL1/FZL4和FZL3/FZL4由于发色团密度高(3.09–4.02×1020分子cm−3)而达到272–308 pm V−1。长期取向稳定性测试表明,在85°C下加热超过500小时后,极化交联电光膜1:1 FZL1/FZSL2保持了99.73%的初始r33值。极化自组装电光膜1:1 FZL1/FZL4和1:1 FZL3/FZL4在室温下放置500小时后,仍能分别保持原电光系数的97.11%和98.23%以上。该材料优异的电光系数和稳定性表明了有机电光材料的实际应用前景。03研究相关硕士研究生张恋本文的第一作者,刘锋钢副教授和王家海教授为共同通讯作者,广州大学为第一单位。王家海,广州大学化学化工学院教授。团队研究方向包括能源催化材料、锂电池、生物化学传感器、纳米孔单分子计数器和5G通讯。代表性成果发表在Advanced Materials、Biosensor and Bioelectronics、J. Am. Chem. Soc.、Nano Letters 、Nano-Micro Letter 、Nano Energy等国际知名期刊。论文链接https://onlinelibrary.wiley.com/doi/10.1002/advs.202304229
  • 科学家研制出稳定且双折射可调的深紫外液晶光调制器
    近日,中国科学院院士、中科院深圳先进技术研究院碳中和技术研究所(筹)所长成会明与副研究员丁宝福团队,联合清华大学深圳国际研究生院教授刘碧录团队、中科院半导体研究所研究员魏大海团队,首次发现了二维六方氮化硼(h-BN)液晶具有巨磁光效应,其磁光克顿-穆顿效应高出传统深紫外双折射介质近5个数量级,进而研制出稳定工作在深紫外日盲区的透射式液晶光调制器。   双折射是引起偏振光相位延迟的一个基本光学参数。有机液晶因双折射可受外场连续调制,而被广泛用作光调制器的核心材料。然而,传统有机液晶在深紫外光照射下吸收强且不稳定,液晶光调制器仅能工作在可见及部分红外光波段,无法工作在紫外及深紫外波段。同时,透射式深紫外光调制器在紫外医学成像、半导体光刻加工、日盲区光通讯等领域颇具应用前景。因此,发展一种在深紫外光谱区稳定、透明度高及具有场致双折射效应的新型液晶材料,有望推进透射式深紫外液晶光调制器的发展。   科研团队研制出一种基于二维六方氮化硼无机液晶的磁光调制器。研究采用的氮化硼二维材料具有极大的光学各向异性因子(6.5 × 10-12C2J-1m-1)、巨比磁光克顿-穆顿系数(8.0 × 106T-2m-1)、高循环工作稳定性(270次循环工作后性能保留率达99.7%)和超宽带隙等优点,同时二维六方氮化硼是通过“自上而下”的高粘度纯溶剂辅助研磨法剥离制备而成。由于超宽的带隙,二维六方氮化硼液晶在可见、紫外和部分深紫外光谱区具有颇高透明度。在磁场作用下,基于二维六方氮化硼液晶的磁光器件在正交偏振片下呈现出明显的磁控光开关效应。   科研人员通过观察入射光偏振态与磁场作用下液晶透射率关系的实验揭示了二维六方氮化硼在外场作用下顺磁场的排布方式。在入射光的偏振态被调整为平行和垂直于磁场的两种状态下,后者呈现较高的光透射率,间接印证了二维六方氮化硼纳米片平行于磁场方向排布。该研究针对层状二维六方氮化硼薄膜的磁化率各向异性测试揭示了面内易磁化方向,进一步证实了二维六方氮化硼纳米片顺磁场排布的物理机制。结合二维氮化硼纳米片的极大的光学各向异性,研究发现了二维六方氮化硼液晶的巨磁致双折射效应。   该研究选用波长处于深紫外UV-C日盲区的266 nm激光,测试二维氮化硼液晶在该光谱区的光学调制性能。通过开启和关闭0.8特斯拉的磁场,研究实现了该调制器在深紫外光波段的透明与不透明两种状态之间的切换。经过270个不间断开关循环测试后,性能的保持率达99.7%。   鉴于二维材料家族成员庞大、带隙覆盖宽,基于无机超宽带隙二维材料液晶的光调制器的光谱覆盖范围有望向更短深紫外波段延伸,促进液晶光调制器在深紫外光刻、高密度数据存储、深紫外光通讯和生物医疗成像重要领域的应用。   相关研究成果以Magnetically tunable and stable deep-ultraviolet birefringent optics using two-dimensional hexagonal boron nitride为题,发表在Nature Nanotechnology上。研究工作得到国家自然科学基金、科技部、广东省科学技术厅、深圳市科技创新委员会等的支持。六方氮化硼无机二维液晶及其磁控光开关效应 六方氮化硼无机二维液晶的磁致排列和磁致双折射效应表征基于六方氮化硼无机二维液晶的深紫外光调制器性能研究及对比
  • 雪景科技推出全球首款无需制冷剂的商业化热调制器
    全二维气相色谱(comprehensive two-dimensional GC, or GC×GC)作为一种全新的色谱分离手段,具有分离能力强,峰容量大,定性有规律等优点。目前已经开始应用在石油化工、环境监测、天然产物分析、食品卫生、生物医药等行业,是复杂样品和痕量样品分析的强大武器。全二维色谱最核心的部件调制器可分为气流式调制器(flow modulator)和热调制器(thermal modulator)。相比气流式调制器,热调制器调制性能更加优异,而且可以直接连接质谱,是当前最主流的调制技术。市场上的热调制器普遍采用气流喷射调制方式,利用液氮或压缩空气以及热空气对色谱炉膛内的调制色谱柱进行冷却和加热,附属设备较多,运行和维护费用较高。加上居高不下的系统价格,使全二维气相色谱技术目前仅限于一些高端实验室和较前沿的科研应用,难以向广大中低端用户和常规检测普及。  雪景科技经过多年的研发,成功推出了全球首款采用半导体制冷元件的商业化固态热调制器(SSM),使全二维气相色谱(GC×GC)彻底摆脱了液氮和其他制冷剂的使用。独特的机械和热管理设计保证了产品与目前主流热调制器相当的调制性能。其小巧的结构和方便的操作极大地简化了GC×GC技术的使用难度和运营成本。由于采用了模块化设计,用户可以方便地将该调制器安装到任意气相色谱平台上,配合专业的全二维色谱数据处理软件,将常规的一维气相色谱升级成全二维气相色谱系统,极大提高现有系统对复杂样品的分析能力。另外,由于该热调制器体积小巧能耗低,可以和其他在线式或者便携式色谱进行联用甚至集成,第一次实现全二维气相色谱在在线监测和野外分析中的应用,为我国日益增长的环境、食品和化工检测需求提供一种全新的技术手段。固态热调制器  雪景科技是一家致力于推广和普及全二维气相色谱技术的公司。主要产品包括全二维气相色谱调制器、全二维色谱数据处理软件、以及全二维气相色谱系统构建和维护、应用解决方案和技术支持等。全二维气相色谱系统
  • 雪景科技发布全二维气相色谱气流调制器产品
    2019年8月23日,雪景科技在第二届全二维色谱技术与应用大会上正式发布了全新的气流调制器 QFM1200 QFM1200系列气流调制器采用雪景科技发明的准止流调制技术(Quasi-stop flow modulation), 通过周期性将进样口直接联通二维柱,(近似)停止一维流动并产生较大的二维流量,将一维馏出物快速释放至二维,实现调制效果。 QFM1200开创了一种全新的气流调制原理,继承了气流调制的优势,包括体积小巧,无需制冷剂,沸点范围宽,运行稳定可靠,重复性好,无需维护等。同时进一步简化了结构和附属设备,省去了目前气流调制技术常用的额外气流控制组件和微流路元件,显著降低了系统复杂度。可以在常规色谱平台上更简便、更快捷、更经济地升级到全二维气相色谱系统。雪景科技同时推出了针对不同应用的多种柱系统配置和优化色谱方法,当方法确定后可长期不间断稳定运行,在常规分析及便携式现场分析领域具有广阔的应用前景。
  • Science:具有超过500吉赫兹带宽的超材料石墨烯光电探测器
    01. 导读石墨烯已经实现了许多最初预测的特性,并且正朝着市场迈进。然而,尽管预测的市场影响巨大,基于石墨烯的高性能电子和光子学仍然落后。尽管如此,已经报道了一些令人印象深刻的光电子器件演示,涉及调制器、混频器和光电探测器(PDs),特别是利用石墨烯的高载流子迁移率、可调电学特性和相对容易集成的石墨烯光电探测器已经得到了证明,例如展示了利用光增益效应的高响应度或超过100 GHz的带宽。从紫外线到远红外线之间,尽管石墨烯几乎具有均匀吸收特性,但其相对低的吸收率约为2.3%,这是其中一个主要挑战。因此,大多数速度最快、性能最佳的探测器都是在硅或硅化物等光子集成电路(PIC)平台上进行演示的。通过石墨烯的电场的平行传播,可以提供更长的相互作用长度,从而增加吸收率。通过使用等离子体增强技术,甚至可以实现更短和更敏感的探测器。尽管在光子集成电路上使用石墨烯已经展示了多种功能应用,但光子集成电路的整合也有其代价。光子集成电路的整合限制了可访问的波长范围,无论是由于波导材料(如Si)的透明度限制,还是由于集成光学电路元件(如光栅耦合器、分光器等)的有限带宽。此外,光子集成电路的整合对偏振依赖性和占地面积都有一定的限制,这是由于访问波导的原因。光子集成电路的模式和等离子体增强也意味着所有光线只与石墨烯的一个非常有限的体积相互作用,导致早期饱和的发生,有效地将最大可提取的光电流限制在微安级别。作为一种替代方案,可以直接从自由空间垂直照射石墨烯。这种方法可以充分利用石墨烯的光电检测能力,而不会受到所选择光子平台的限制。然而,这需要一种结构来有效增强石墨烯的吸收。此外,由于器件尺寸较大,对整体器件几何结构和接触方案的额外考虑更加关键。尽管如此,已经证明即使是与自由空间耦合的石墨烯探测器也可以达到超过40 GHz的带宽。由于没有光子集成电路的一些约束,整体效率不会受到耦合方案的影响,而且其他属性,如不同波长和偏振,现在也可以自由访问。例如,最近利用任意偏振方向来演示了中红外区域的极化解析检测中的定向光电流。石墨烯提供了多种物理检测效应:与传统的光电探测器(如PIN光电二极管或玻璃热计)只使用一种特定的检测机制不同,石墨烯探测器具有多种不同的检测机制,例如基于载流子的机制[光电导(PC)和光伏(PV)],热机制[玻璃热(BOL)和光热电(PTE)],或者增益介质辅助的机制。最近的器件演示已经朝着光热电复合操作的方向推进,以克服依赖偏置检测机制时的高暗电流问题。对石墨烯的时间分辨光谱测量表明,载流子动力学可以实现超过300 GHz的热和基于载流子的石墨烯光电探测器。对于设计高速、高效的石墨烯光电探测器来说,目前仍不清楚哪种直接检测机制(PV、PC、BOL或PTE)可以实现最高的带宽,并且这些效应中的许多效应可以同时存在于一个器件中,使得专门的设计变得困难。02. 成果掠影鉴于此,瑞士苏黎世联邦理工学院电磁场研究所Stefan M. Koepfli报道了一种零偏置的石墨烯光电探测器,其电光带宽超过500 GHz。我们的器件在环境条件下可以覆盖超过200 nm的大波长范围,并可适应各种不同的中心波长,从小于1400 nm到大于4200 nm。材料完美吸收层提供共振增强效应,同时充当电接触,并引入P-N掺杂,实现高效快速的载流子提取。光可以通过标准单模光纤直接耦合到探测器上。直接的自由空间耦合使光功率可以分布,导致高于100 mW的饱和功率和超过1 W的损伤阈值。该探测器已经经过高速操作测试,最高速率可达132 Gbit/s,采用两电平脉冲幅度调制格式(PAM-2)。多层结构几乎可以独立于基底进行加工处理,为成本效益高的技术奠定了基础,该技术可以实现与电子器件的紧密单片集成。我们进一步展示了该方法的多样性,通过调整超材料的几何形状,使其在中红外波长范围内工作,从而在原本缺乏此类探测器的范围内提供高速和成本效益高的探测器。因此,这种新型传感器为通信和感知应用提供了机会。相关研究成果以“Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertz”为题,发表在顶级期刊《Science》上。03. 核心创新点本文的核心创新点包括:1. 基于图形石墨烯的光电探测器:本文提出了一种利用单层石墨烯的光电探测器。与传统的光电二极管或波尔计可以利用一种特定的探测机制不同,图形石墨烯探测器具有多种不同的探测机制,包括载流子机制、热机制和增益介质辅助机制。2. 电光带宽:本文展示了具有大于500 GHz的电光带宽的图形石墨烯探测器。这意味着该探测器能够高速响应光信号,适用于高速通信和数据传输。3. 多波段操作和宽光谱范围:图形石墨烯探测器能够在多个波段上工作,并且具有超过200 nm的宽光谱范围。这使得该探测器在通信和传感等领域具有广泛的应用潜力。4. 自由空间耦合和紧凑集成:本文展示了通过自由空间耦合的方式将光信号直接耦合到探测器中,避免了光子集成电路中的限制,并且实现了紧凑的集成。这使得探测器具有更好的灵活性和可扩展性。5. 高饱和功率和低压操作:图形石墨烯探测器具有高饱和功率,能够抵消响应度的影响。此外,它还能在低电压范围内进行操作,与CMOS技术兼容,使得探测器具有更低的功耗和更好的性能。04. 数据概览图1. 间隔式石墨烯超材料光电探测器的艺术视角。(A)从顶部直接通过单模光纤照射器件的艺术化表现。(B)器件结构的可视化。光电探测器由金反射层背板、氧化铝间隔层、单层石墨烯和相连的偶极子谐振器组成。金属线具有交替的接触金属,由银或金制成。然后,该结构由氧化铝钝化层封顶。图2. 制备的器件和模拟的光学和电子行为。(A至D)所提出的超材料石墨烯光电探测器(钝化前)的扫描电子显微图,放大倍数不同。显微图展示了从电信号线到活动区域再到谐振器元件的器件结构。在(D)中显示了四个单元格(每个单元格大小为1 mm × 1 mm),位于x和y坐标系中。比例尺分别为50mm(A),5 mm(B)和1 mm(C)。(E至G)同一单元格的模拟光学和静电行为。图(E)中展示了电磁场分布下的偶极子天线行为,图(F)中展示了相应的吸收分布。大部分吸收都集中在偶极子谐振器附近。图(G)中展示的模拟接触金属引起的电势偏移显示了由于交替接触金属而引起的P-N掺杂。沿着每种模拟类型((E)至(G))的中心线(y = 1000 nm)的横截面位于每个面板的底部,显示光学信号和掺杂在接触区域附近最强。图3. 用于电信波长的器件性能。(A)用光学显微镜拍摄的器件在与电子探针接触时的顶视图(顶部)和侧视图(底部)图像。图像显示了与单模光纤的直接光学耦合。DC表示直流,RF表示射频。(B)归一化的光电响应随照射波长变化的曲线图,显示了共振增强和宽带工作。FWHM表示半峰全宽。(C)光输入功率变化范围内提取的光电流,范围跨越了五个数量级(黑线)。蓝线对应于器件上的光功率(Int.),而黑线对应于单模光纤输出的功率(Ext.)。响应度分别为Rext = 0.75 mA/W和Rint = 1.57 mA/W。(D)石墨烯光电探测器在2至500 GHz范围内的归一化频率响应。测量结果显示平坦的响应,没有滚降行为。WR代表波导矩形。(E)不同射频音调下的归一化射频响应随栅压的变化。发现理想的栅压在-2.5 ±1 V附近,使得响应平坦,这对应于轻微的P掺杂,可以从底部的电阻曲线中看出。电阻曲线进一步显示靠近0 V的狄拉克点和非常小的滞后行为(在图S2中进一步可视化)。(F)测量栅电压范围的相应模拟电势剖面,显示了理想的栅电压(以红色突出显示),对应于两个接触电平中心处的掺杂。图4. 光谱可调性和多共振结构。(A至C)模拟(A)和测量(B)不同元件共振器长度的光谱吸收,展示了元件结构的可调性。图中给出了四个示例的极化无关设计的扫描电子显微镜图像(C),其中颜色对应于(A)中所示的共振器长度刻度。比例尺为1 mm。(D至G)多共振器件的概念。(D)针对1550和2715 nm的双共振器件的扫描电子显微镜图像。顶部比例尺为1 mm,底部比例尺为5 mm。(E)相应的电场模拟,使用3个单元单元格乘以2个单元单元格的双共振器件,激发波长分别为1550和2715 nm,显示了两个不同尺寸共振器的清晰偶极子行为。(F)器件上的光电流与光功率的关系图和(G)两个波长的测量响应度与电压的关系图。05. 成果启示我们展示的2 GHz至500 GHz以上的电光带宽光电探测器与传统的PIN光电探测器技术和单向载流子光电二极管相媲美。垂直入射的元件结构图形PD在单个器件中充分发挥了图形的预期优势。从概念上讲,该探测器的性能利用了元件吸收增强、通过图形-金属接触掺杂的内置电场、通过静电门实现的良好控制的工作点以及化学气相沉积生长的图形的有效封装。探测器依赖于相对简单的金属-绝缘体-图形-金属-绝缘体的层状结构,这种结构潜在地可以在几乎任何衬底上进行后处理,并支持与现有结构的高度密集的单片集成,类似于等离子体调制器的示例。与大多数先前关于图形探测器的工作不同,我们展示了在无冷却条件下的空气稳定操作,使用了与互补金属氧化物半导体(CMOS)兼容的低电压范围的栅压,这是由于直接生长的封装层结构与底部绝缘体设计的结合效果所致。通过这些器件,我们展示了132 Gbit/s的数据传输速率,这是迄今为止已知的最高速度的图形数据传输速率。高饱和功率使得高速检测成为可能。在受到射击噪声限制的通信系统中,高饱和功率可以抵消适度的响应度,因为信噪比与响应度和输入功率成正比。此外,适度的响应度可以改善。以前的自由空间照明的图形光电探测器依赖于载流子倍增或基于剥离的多层图形而达到了更高的响应度,而没有任何光学增强。因此,还有很大的空间来共同努力进一步完善这个概念,改进制造工艺,并实现更高质量的图形材料。这些努力很可能会导致新一代的基于图形的探测器,具有足够的响应度。最后,大于500 GHz的高带宽和图形的波长无关吸收使得探测器可以在从1400 nm到4200 nm及更远的范围内的任何波长上工作。这对于传感和通信都是相关的。例如,在电信领域,持续增长的数据需求导致了对新通信频段的强烈需求。这种具有紧凑尺寸和与CMOS集成能力的新型探测器可能能够满足当前迫切需求。原文详情:Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertzStefan M. Koepfli, Michael Baumann, Yesim Koyaz, Robin Gadola, Arif Gngr, Killian Keller, Yannik Horst, ShadiNashashibi, Raphael Schwanninger, Michael Doderer, Elias Passerini, Yuriy Fedoryshyn, and Juerg Leuthold.Science, 380 (6650), DOI: 10.1126/science.adg801
  • 雪景科技携固态热调制器亮相PEFTEC大会
    p  两年一度的石油环境检测技术大会(PEFTEC, Petroleum, Refining, Environment Monitoring Technologies Conference)于2017年11月29-30日在比利时著名港口城市安特卫普召开。本次大会主题包括实验室检测、石油化工产品分析,环境排放监测、便携式与在线采样技术、标准物质与方法、质量控制等。吸引了全球石化炼油、环境检测、以及分析仪器行业的数百名专家学者和仪器厂商参加。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/dc6bcff0-da1b-47f5-9948-ebbfc43c649f.jpg" style="" title="IMG_20171129_100536_副本.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/c619152a-5e82-4c70-9f7f-62dd0963efdd.jpg" style="" title="IMG_20171130_141622_副本.jpg"//pp  雪景科技作为唯一一家中国仪器厂商参加本次大会,展出了公司自主开发的基于半导体制冷技术的全二维气相色谱热调制器SSM1800。全二维气相色谱是一种具有强大分离能力的分析技术,可用于石油化工、环境检测、食品香料等行业中复杂样品的分离分析。相比传统气相色谱,全二维技术可极大提高峰容量和分辨率,一次可同时分析上千种化合物。这项技术在欧洲和北美应用较为广泛,很多实验室都有配备,积累了丰富的实用经验。但传统全二维技术需要使用液氮等制冷剂,运行成本较高,而且附属设备多,操作维护也比较复杂。主要集中于高端实验室。雪景科技开发的SSM1800采用革命性的调制方式,彻底摈弃了制冷剂使用,其独特的设计和方便简捷的操作颠覆了人们对全二维气相色谱技术的认知,吸引了广大参会的色谱应用者前来观看咨询。/pp  在了解了固态热调制器的工作原理和实际效果后,很多用户产生了浓厚的兴趣。他们表示,“SSM1800是一个令人兴奋的产品。它的出现极大简化了全二维分析的操作和维护过程,降低了这项高端分析手段的技术门槛。由于全二维技术在石化和环境行业中针对复杂体系出色的分析效果,固态热调制技术将对今后全二维气相色谱在相关应用中的普及推广起到了非常积极的作用。”/pp  strong雪景电子科技(上海)有限公司简介/strong/pp  雪景科技(J& X Technologies)是一家由海归博士创立的初创公司,致力于新型全二维气相色谱技术的设计、研发、生产、和应用。公司总部设在上海,另外在南京、北京设有分支机构。雪景科技自主开发的全球首款不使用制冷剂的固态热调制器SSM1800于2016年面世,目前已应用于国内多家高校、科研机构和企事业实验室,受到用户的广泛好评。同时雪景科技积极开拓海外市场,目前与一些国外知名分析实验室开展合作,共同推广方便易用的全二维气相色谱技术,实现其在普通实验室和常规分析上的普及应用。/p
  • 昊量光电2024年慕尼黑上海光博会邀请函
    慕尼黑上海光博会将于2024年3月20-22日在上海新国际博览中心(上海市浦东新区龙阳路2345号)举办,届时我们将携前沿光电产品及技术解决方案在W4馆4420亮相,展品涵盖生物显微、半导体检测、激光医疗、光纤传感、精密光谱、机器视觉、偏振测量、光束匀化、光束偏转等热门应用领域,本次慕尼黑上海光博会除了前沿技术产品亮相,还有超赞的干货演讲等活动,诚邀各位新老客户拨冗莅临展位洽谈交流!W4馆4420 主题演讲日程预览 展位活动详情 展品应用速递 PPLN晶体,显微镜LED光源,LED点光源,MEMS扫描镜,AOTF,AOM,调温式热封机VTS,混频器,隔震平台,空间光调制器,LCOS,半导体激光器,荧光标准片,DMD空间光调制器,压电纳米平移台,标准分辨率靶,SCMOS,光子晶体光纤,920飞秒激光器,显微高光谱成像,微型光谱仪,3D光场显微成像模块、微球显微镜,光纤耦合LED光源,3D光场显微相机,生物阻抗分析仪,纳米孔读取器,多通道电流放大器,膜片钳,蛋白质测序仪,单光子相机,无掩模光刻机。在线椭偏仪,在线膜厚测量仪,在线拉曼光谱成像,在线荧光寿命成像,在线荧光光谱成像,自动化光电流成像,超分辨光学微球显微镜、锁相放大器、激光干涉仪,高频激振器,TDTR,266nm窄线宽激光器,波前传感器,激光光束分析仪,激光位置和指向稳定系统,多通道声光调制器AOMC,声光偏转器AODF,非球面匀化镜。2940nm铒激光器,2020nm铥激光器,激光光束分析仪,非球面匀化镜,调温式热封机VTS,混频器,激光传能光纤,激光功率计,生物电阻抗断层成像仪,医用激光光纤(紫外-中红外),医用光纤温度传感器,医用光纤压力传感器 温度解调系统,时域红外光谱仪,扫频激光器,法珀腔医疗压力传感器。PPLN晶体,显微镜LED光源,LED点光源,MEMS扫描镜,AOTF,AOM,调温式热封机VTS,混频器,隔震平台,空间光调制器,LCOS,半导体激光器,荧光标准片,DMD空间光调制器,压电纳米平移台,标准分辨率靶,SCMOS,光子晶体光纤,920飞秒激光器,显微高光谱成像,微型光谱仪,3D光场显微成像模块、微球显微镜,光纤耦合LED光源,3D光场显微相机,生物阻抗分析仪,纳米孔读取器,多通道电流放大器,膜片钳,蛋白质测序仪,单光子相机,无掩模光刻机。共聚焦拉曼光谱仪,共聚焦荧光寿命成像系统,共聚焦荧光成像,超导探测器、单光子计数器、激光稳频器、超稳腔、窄线宽稳频激光器、锁相放大器、任意波形发生器、偏频锁定模块、超快飞秒激光器、单光子相机、光刻机,单腔双光梳激光器,光纤光谱仪,拉曼光谱仪,近红外光谱仪,多光谱相机、高光谱相机,光纤探头,激光光束分析仪,PPLN晶体,声光偏转器AOD,声光调制器AOM,非球面匀化镜,激光位置和指向稳定系统,非线性晶体,F-theta场镜,扩束镜,隔震平台。二维光谱成像测量系统,多光谱相机、高光谱相机、热成像相机,变焦镜头,在线颜色测量,二维光谱颜色测量,线激光3D相机,结构光3D相机,光场相机,高光谱相机,3D傅里叶显微成像仪,光纤传感器。偏振态测量仪(三款),偏振相,锁相放大器,小尺寸宽带偏振态测量仪,高精度偏振(斯托克斯量)测量系统,光弹调制器,托卡马克专用光弹调制器,偏振分析专用锁相放大器,成像型穆勒矩阵测量系统,高精度波片相位延迟测量系统,光弹性系数测量仪,桌面主动隔振台。声光偏转器,电光偏转器,电光偏转系统,KTN电光偏转器,液晶偏振光栅,大角度闭环微型振镜,MEMS扫描镜,压电纳米平移台,液晶空间光调制器,主动隔振台,光纤偏振态测量仪,中空回射器。 昊量展位指引 关于我们
  • 操控片上飞秒光脉冲传播的新方法
    随着高度集成化的纳米光子器件的发展,人们开始追求在更小空间尺度(如纳米尺寸)、更快时间尺度(如飞秒尺度)上灵活操纵片上光信号的方法。通过在纳米空间尺度和飞秒时间尺度上对光信号的操纵,不仅能够为光与物质相互作用的超快动力学过程研究提供新方法、新思路,还能为超高时空分辨的光学探测和成像,以及片上超快光信号处理、传输、精密波前调控和光谱测量提供有效的研究平台,因此在光子芯片器件、量子信息处理、光子神经网络与人工智能、超快光学波前测量等领域具有广泛应用前景。在空间尺度方面,近年来人们通过研究超材料、超表面等人工微纳结构来精确调控光波前,已经能够在纳米空间尺度上自由控制光信号的传播特性,例如让光信号沿着艾里光束的抛物线轨迹进行传播,应用于显微成像、光镊、光通信等领域。在时间尺度方面,传统的动态调控设备(如空间光调制器SLM)和动态调控材料(如电光材料)受制于材料的响应速度,难以达到飞秒量级。而随着飞秒激光脉冲整形技术的发展,频域调控逐渐成为超快时域调控的主要手段。将飞秒脉冲频域调控方法与人工微纳结构相结合,就有望实现极小时空尺度(飞秒时间尺度、纳米空间尺度)下的光场产生和调控,创造出很多新颖的时空光场并拓展新应用。深圳大学的袁小聪、闵长俊教授团队将脉冲频域调控与纳米结构空间调控相结合,提出了基于时空傅里叶变换(FT)的片上光脉冲调控方法,可用来操纵片上光脉冲的时空传播轨迹,让脉冲在不同时刻展现出不同的传播特性,从而使得极小时空尺度下的光场时空特性操控成为可能。FT作为一种常用的数学工具,已经被广泛应用于光学相关的应用中,如白光的光谱测量、脉冲整形和全息等。该团队研究发现,通过片上纳米聚焦结构调控空间域FT,可实现光场空间分布的构建;再通过光的色散效应来调控时域FT,可实现飞秒脉冲时域上的波前整形;最后将时空FT结合就有望同步调控飞秒脉冲传播的时空特性。为了验证这个方法,该团队以金属表面传播的表面等离激元(SPP)作为例子,理论研究了时空FT方法对飞秒SPP脉冲时空传播轨迹的调控效果。SPP作为一种可以突破光学衍射极限的光学表面波,不仅可以提供纳米尺度的空间分辨,还能够极大增强局域电磁场,因此被广泛应用于片上光子器件、光存储、光学传感、光镊、拉曼增强等领域。而由飞秒激光激发的飞秒SPP脉冲,同时具备纳米尺度的空间分辨能力与飞秒尺度的时间分辨能力,在极小时空尺度下的光场调控,以及光与物质相互作用的研究中具有重要价值。该团队基于金属膜上时空FT纳米结构的设计和入射光色散的调制,成功展示了多种新颖的时空光学效应,包括:将传统SPP聚焦形成的单个焦点逐步弯曲,形成一个环形分布的时空焦点;产生SPP-Airy脉冲并灵活控制其在不同时刻的传播方向,形成S形的时空传播路径(图1)。图1 时空傅里叶变换结构激发和调控飞秒SPP脉冲传播的示意图与传统片上光学调控方法只能调控空间、时间其中一个维度相比,这种时空FT方法提升了光脉冲调控的自由度,尤其在时域方面提供了更加出色的调控效果,为超快片上光学信息处理提供了新思路,在超快光子调控器件等领域有重要应用价值。
  • 美开发出超快纳米级发光二极管
    据美国物理学家组织网11月16日(北京时间)报道,斯坦福大学工程学院的研究团队研发出一种超快的纳米级发光二极管(LED),能够以每秒100亿比特的速度传输数据,并比当前以激光为基础的系统装置能耗更低。研究人员表示,这是为芯片上的计算机数据传输提供超快、低能耗光源的重要步骤。相关研究报告发表在15日出版的《自然通讯》杂志上。  科研人员表示,低能耗的电控光源是下一代光学系统的关键,这能够迎合计算机行业日益增长的能源需求。传统上,工程师认为只有激光才能以极高的数据传输速率和超低能耗进行通讯。而此次研发的单一模式LED能发射单一波长的光,与激光十分相似,能像激光一样执行相同任务,且消耗的能量更低。  研究人员在新装置的中心,插入了若干座砷化铟“小岛”。当电脉冲通过时,它们能产生光。这些“小岛”的周围包裹着光子晶体(在半导体上蚀刻的微孔阵列),能像镜子一般将光线弹射聚集至装置的中央,使它们囚禁于LED内,并被迫按单一频率产生共鸣,从而形成单模光。  现有设备基本是由激光发光器与外部调制器两个装置构成。两种装置都需要消耗电力,而新款二极管将发光器和调制器的功能整合到一个装置内,大大降低了耗能量。科学家表示,新款设备可达到目前最高效设备能源效率的2000倍至4000倍。平均而言,新款LED装置能以每比特0.25飞焦(10-15焦耳)的耗能量传输数据,而当下典型的低能耗激光设备也需要消耗500飞焦来传输单个比特,其他技术则耗能更多。
  • 【超全解析】用于智能制造的滨松激光解决方案
    讲到滨松的激光技术,最早要从参与激光核聚变研究开始讲起。为实现激光核聚变的能源开发,滨松与大阪大学的激光工程学院合作,共同推进用于固态激光激发的高功率输出LD的研发以及相关技术的研究。滨松四大事业部之一的激光事业部 在不断成熟的过程中,滨松也希望将自身的激光技术带入产业应用中。以此为原点,积极推进了各类激光技术的研发。逐渐拥有了包括了半导体激光器、固体激光器、激光器配套附件、以及有着全球专利的隐形切割等产品。正在工作的滨松隐形切割引擎(SDE)世界首创也是唯一可进行晶圆内部切割的技术,与多个知名厂商有着紧密合作关系 随着中国制造2025的不断深入推进,激光技术已成为一种不可或缺的支撑技术,在晶圆切割、手机屏幕粘贴、玻璃切割、塑料焊接以及表面处理等众多应用中都不可替代。而针对这些应用,滨松可提供从元器件一直到整套系统的全产线产品。并以各自的独特性能,为目前的技术应用带来更好的可能。 元器件产品半导体激光器泵浦源作为光纤激光器的重要组成部分,主要由半导体激光器芯片(CWLD)和快轴准直镜(FAC)封装而成。滨松拥有两款输出功率分别为12 W和22 W的 CWLD芯片,对应的条宽分别为100 μm和190 μm。由于CWLD发射的激光在快轴方向的发散角较大,大约达到25°,非常不利于之后的光纤耦合,因此需要在芯片发射前加上FAC,进行快轴方向光束准直。为此,滨松可提供在800 nm~1050 nm波长范围为内透过率达到99%以上的FAC来解决上述问题。同时,对于FAC的尺寸规格(长度、高度、宽度)以及有效焦距,可根据需求进行定制。模块化产品为了解决大功率半导体激光器封装的问题,滨松可为客户提供巴条模块和叠阵模块供选择。巴条模块主要有以下两款产品:L8413-50-808(808 nm)及L8413-50-940(940 nm),输出功率分别为50 W和60 W。巴条模块除了可以单个使用外也可以组合使用。多个巴条模块呈线阵排列,在与冷却装置配合使用时可达到高输出功率以及高可靠性。此外,滨松还可将多个巴条一起封装成940 nm的叠阵模块。该叠阵模块内含15个巴条,输出功率高达1200 W(80 W/Bar)。当然,我们可以在叠阵前面加上FAC,对快轴方向的激光进行准直,耦合效率高达95%。 叠阵模块可用于高功率固体激光器泵浦源或是材料的表面处理。巴条模块叠阵模块半导体激光器随着传统工业制造朝着更加精密的方向发展,激光焊接俨然成为激光加工领域的市场风口。激光加热光源(LD-Heater & SPOLD)作为滨松在激光焊接领域的主要产品,其重要程度自然不言而喻。激光加热光源适用于新型的塑料焊接和OLED屏幕焊接。这些产品主要有能量分布均匀的平顶光束、改变镜头实现可变光斑面积、可实时监测表面温度,加工效果“可视化”等优势。针对不同的客户需求,滨松可提供波长为808nm、915nm以及940nm,输出功率从10W至200W的产品。目前在OLED屏焊接和无损拆解、智能腕表的防水焊接等中都发挥着重要作用。LD-Heater & SPOLD 除了激光加热光源之外,滨松也提供基于叠阵模块集成开发的直接输出半导体激光器(DDL)。该产品的中心波长为940nm,输出功率为4000 W、6000 W(可选)。主要应用为表面处理包括熔覆和淬火。为了获得更好的处理效果,DDL输出的光斑为矩形平顶光束,即照射到材料表面光斑形状为矩形,并且能量分布均匀。此外,为了满足各种不同材料的处理需求,输出的矩形光斑的长宽比例可以通过附加镜头实现1:1~1:5改变。直接输出半导体激光器(DDL)光斑长度比 超快激光加工解决方案皮秒固体激光器(Moil-ps)与Wavefront Shaper空间光调制器模块的结合,是滨松可为超快激光加工提供的,包括激光器和整形系统的全套解决方案。滨松超快加工解决方案 此套方案可实现在ITO薄膜上同时钻孔1000个(单孔直径为1.5 μm),也可实现在电子元件上微型二维码的一次成型,大大提升加工效率。ITO薄膜同时钻孔1000个,单孔直径1.5μm电子元件微型二维码一次成型Wavefront Shaper空间光调制器模块是滨松在光束整形领域的新品。同时采用了均匀激光强度分布的匀化器、非球面透镜成像的光学系统等高性能光学器件并配合核心器件——滨松空间光调制器(LCOS-SLM),实现了高强度的激光加工。(滨松LCOS-SLM可以承受200W以上的平均功率)相对于元件级别的LCOS-SLM,Wavefront Shaper更容易连接到系统,可实现简单的计算机控制系统(各种DLL适配),并具备温度控制功能(提高激光毁伤阈值)。在光束整形、像差校正、三维加工、并行加工等中有着广泛的应用。滨松Wavefront Shaper空间光调制器模块 2019年,湖北工业大学-滨松中国-金顿激光共同建立的“激光加工联合实验室”。目前主要进行的,就是基于滨松空间光调制器的精密激光加工方案(钻孔、切割、打标等)的研究,包括不同应用的相位图计算算法、光路系统的搭建与优化、不同材料和应用的实验工艺验证等等。依托联合实验室,滨松也可以更快的为国内客户提供产品应用验证、打样等服务。激光隐形切割引擎&下一代激光加工引擎隐形切割可以说颠覆了现有的切割概念。该方法将激光聚焦至晶圆内部进行预切割,再通过扩张膜的张力实现晶圆的划片。相比传统的砂轮切割,可以实现完全干式工艺,切割后晶圆无崩片、高强度,并且可缩小切割道的宽度。滨松隐形切割是世界首创,也是唯一可进行晶圆内部切割的技术,目前在全球拥有600多项专利。为了提高使用的便捷性,滨松可为客户提供系统化产品——隐形切割引擎(SDE)。目前,已有4000台以上的隐形切割设备,在世界各大半导体工厂中稳定运行着。以深厚的隐形切割工艺积累,和卓越的SLM控制技术为基础,滨松最新开发出了下一代激光加工引擎JIZAI。其灵活性极强,客户可以自由选配SLM、扫描镜、自动对焦镜、物镜等内部器件,来获得不同成本和性能要求的JIZAI模块。JIZAI概念图这个小模块可以实现任意形状的加工光束,比如多点并行加工、像差校正、平顶光束等等。紧凑轻巧,可自由移动,在多点打标、内部打标、玻璃打孔、微通道成型等众多激光加工作业中都可应用。内部打标玻璃打孔微通道成型滨松成立于1953年,已有66年的历史,其与中国结缘于1988年合资工厂的建立。为顺应中国市场发展,2011年全资子公司——滨松光子学商贸(中国)有限公司于北京成立,负责集团在中国的产品技术、服务、市场以及销售,随后在上海和深圳设立了分公司,以更好地服务于各地区的客户。针对激光加工的市场需求,滨松中国于本土配备了专门的产品技术、市场及销售人员。在提供更快速、优质、本土化的服务外,还会基于滨松集团的广阔视野,为客户带去具有价值的前沿产品技术、应用、市场信息。同时我们也不断推进着与国内高校的合作,如通过成立联合实验室(湖北工业大学-滨松激光加工联合实验室)这种方式,进一步优化产品的使用,加强与市场联系。以期为客户提供可更好满足应用需求的优质产品解决方案。
  • 亚飞米分辨率双电光梳绝对频率光谱测量
    光学频率梳(Optical frequency comb,简称“光梳”)由大范围、等间隔的梳齿分量构成,每根梳齿均对应绝对频率,如同在光频上的一把梳子(或标尺)。得益于飞秒激光器和非线性光学的发展,1999年美国标准局和德国马普所的研究团队分别在实验上实现了光梳,解决了绝对光频率计量问题,J. L. Hall和T. W. Hänsch因此贡献而分享了2005年诺贝尔物理学奖。光梳的诞生同样给光谱测量领域带来了革命性突破,分辨率提高到皮米量级,光梳光谱学的新技术和新应用也在不断涌现。双光梳光谱学可以充分利用光梳在频率准确度、频率分辨率、光谱范围和脉冲宽度等方面的优势,在诸多基于光梳的测量技术中脱颖而出。在频域上,双光梳光谱学表现为两个有微小重复频率差异光梳的多外差探测,可以将探测光梳记录的待测谱线,如分子吸收谱,从光频转移到射频。双光梳光谱学可以利用光谱交织技术进一步将分辨率提高至几十飞米量级。然而现有方案测量时间大幅增加,使用温度或驱动电流调节时无法提供绝对频率参考,且分辨率仍有进一步提高至光梳梳齿线宽的较大空间。电光调制光频梳(简称“电光梳”)由对连续种子光的电光调制产生,用于构建双光梳系统时其具有天然的互相干性,无需复杂的锁定电路或相位校正算法,可以大幅降低系统复杂度。此外,由于电光梳具有不受谐振腔腔长限制的重复频率以及可自由调节的中心波长,由其构建的更具应用前景的双电光梳系统受到研究人员的广泛关注。上海交通大学何祖源、樊昕昱教授团队提出了一种新型双电光梳光谱测量方案,将光谱测量分辨率进一步提高到亚飞米量级,相较于现有方案提高了两个数量级。该方案利用外调制的稳频光作为扫频电光梳的种子光,可以在实现低频率误差快速光谱交织的同时,提供绝对光频率参考。图1 亚飞米分辨率双电光梳绝对频率光谱测量技术原理示意图研究团队在分析各性能指标的理论限制和相互制约关系的基础上,将光谱测量技术关注的综合性能指标(光谱分辨率、测量带宽以及测量时间)提高至奈奎斯特极限,并且可以通过多次平均提高测量信噪比。该方案用于测量分子吸收谱线和高Q值光纤法布里珀罗腔谐振谱线的实验结果,充分展示了该方案灵活实现超高光谱分辨率、高信噪比和高刷新率的能力。图2 氰化氢(HCN)气体吸收谱线的光谱测量结果图3 光纤法布里珀罗谐振腔反射谱的光谱测量结果该研究成果将推动超精细光梳光谱学的进一步发展,并在温室气体监测、精密光器件测试、生物化学传感,以及诸如电磁诱导透明等物理现象观测中具有非常重要的应用价值。
  • 仪器情报,科学家首次提出并验证了自由电子拉姆齐成像新技术!
    【科学背景】随着电子显微镜在高空间和时间分辨率下对材料及其极化子的低能非平衡动态研究的深入,该领域引起了广泛关注。电子显微镜能够提供精细的空间分辨率和快速的时间分辨率,然而,获取极其微弱的信号并同时解开振幅和相位信息仍然是一个重要挑战。尤其是,在探测过程中,如何增强信号的强度并确保图像的准确性,成为当前研究的重要课题。自由电子与电磁场的相互作用在许多科学和技术领域产生了深远影响,从电子显微镜和X射线源到微波源和加速器。自由电子与电磁场的相互作用可以通过在相互作用之前或之后调制电子来增强。这种电子调制在电子辐射和电子加速等应用中起到了关键作用。例如,介质激光加速器中的研究已经展示了这种调制的巨大潜力。电子调制可以通过经典或量子力学方法实现,通过分别形成功电子分布或电子波包。在这一领域,光子诱导近场电子显微镜(PINEM)的研究提供了重要的启示。PINEM通过超快透射电子显微镜实现了高空间和时间分辨率的成像,其核心在于自由电子脉冲与光学近场的非弹性散射。这种相互作用使得能够以单纳米级空间分辨率和亚皮秒级时间分辨率重建近场振幅,并启用了一系列在纳米光子和凝聚态系统中的成像模式。然而,尽管PINEM技术在成像和量子态重建方面取得了重要进展,其在提高电子显微镜近场成像灵敏度方面仍存在不足。为了解决这一问题,以色列理工学院Ido Kaminer教授团队提出了一种新的显微方法——自由电子拉姆齐成像(FERI)。这一方法通过光学调制自由电子来实现光学近场的相干放大,显著增强了信号强度。本研究通过展示自由电子拉姆齐成像(FERI)的应用,解决了近场成像中信号微弱的问题。具体而言,研究人员在实验中展示了FERI在六方氮化硼(hBN)薄片微鼓结构中极化子动态的相干放大成像。相比传统的PINEM技术,FERI提供了高达20倍的信号对比度相干放大,通过电子-场相互作用理论进一步增强了算法方案下的放大效果。整体增强使得在低入射强度下能够获取高质量图像,为在电子或激光剂量敏感的情况下进行新型显微实验铺平了道路。 【科学亮点】1. 实验首次提出并验证了FERI技术:&bull 实验展示了利用自由电子拉姆齐成像方法进行光学近场相干放大。这一技术依赖于光诱导电子调制,实现了电子成像中光学近场的增强,解决了传统电子显微镜中信号微弱和振幅、相位信息解离的问题。2. 实验通过FERI技术实现的具体成果:&bull 实验对象为六方氮化硼(hBN)薄膜制成的微鼓结构。通过FERI技术,实验获得了hBN薄膜中二维极化子波包的亚周期动态,提供了时间、空间和相位分辨率的同时测量。&bull 实验揭示了极化子波前上的涡旋–反涡旋奇点现象,并观察到行波模仿驻波振幅轮廓的有趣现象。该现象通过相位分辨测量得以确认。&bull FERI技术展示了相比传统电子近场成像高达20倍的信号相干放大能力,能够解析出几个瓦特每平方厘米量级的峰值场强度,对应于几千伏每米的场幅。3. FERI技术的应用前景:&bull 实验结果显示FERI技术能够在电子或激光剂量敏感的情况下,提供极高的成像灵敏度和分辨率。这一技术特别适用于研究当前难以调查的生物样本和量子材料,如高温超导体和软物质等。&bull 通过FERI技术,可以在低入射强度(几个瓦特每平方厘米)下获取清晰图像,为新型显微实验提供了可能性,尤其在需要最大化信号而剂量有限的场景中显示出巨大潜力。【科学图文】图1:自由电子拉姆齐成像FERI:利用电子调制,以用于光学近场的相干放大成像。图2: 极化激元波包的时间和相位分辨成像。图3:通过自由电子拉姆齐成像FERI提取的本征声子极化激元特性:极化激元相速度的直接测量和涡旋-反涡旋对的识别。图4:自由电子拉姆齐成像FERI,用于精确测量弱场的前景,以及经典和量子状态之间比较。图5: 超快透射电子显微镜ultrafast transmission electron microscopy ,UTEM设置和光子电子调制器photonic electron modulator,PELM集成。图6: 自由电子拉姆齐成像FERI中的优化程序。 【科学结论】本文展示了自由电子拉姆齐成像(FERI)技术在光学近场成像领域的突破性进展,通过光诱导电子调制实现了对极其微弱信号的相干放大。FERI不仅能够在高空间和时间分辨率下观察材料和其极化子的低能非平衡动态,还能够同时获取振幅和相位信息,解决了传统电子显微镜面临的挑战。FERI技术的引入为全断层扫描提供了可能,能够准确提取电磁模式的三维轮廓,包括深度受限的极化子。这种全新的测量方式不仅拓展了对量子材料中极化子非线性效应的观测能力,还为成像生物样本和其他剂量敏感材料开辟了新的可能性。FERI的相干放大特性使得其对低强度场的敏感度显著提高,进而减少了对样品的电子和激光剂量,有助于最小化损伤并增加数据的可靠性和精确性。因此,本文不仅在物理学和工程技术上有重大的应用潜力,还为未来在量子材料、生物科学和材料研究领域的进一步探索提供了新的方法和工具。原文详情:Bucher, T., Nahari, H., Herzig Sheinfux, H. et al. Coherently amplified ultrafast imaging using a free-electron interferometer. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01451-w
  • IXblue-新型“全玻璃”有源光纤! ---适用于智能驾驶应用
    ‍IXblue-新型“全玻璃”有源光纤!---适用于智能驾驶应用 如今,有一个新兴市场:需求量非常大的紧凑型市场所需激光雷达的激光器,其要求具备高功率输出(脉冲功率高达几瓦)。它们被用于自动驾驶车辆,以绘制环境地图。这种高功率激光器的泵浦信号在光纤中通过纯二氧化硅的多模波导进行传输。在高功率下,泵浦激光最终将与光纤的丙烯酸酯涂覆层相互作用,泵浦激光的能量会分布到该涂覆层所存在的细小缺陷上,产生过高的热量,该缺陷最终会被破坏并将其烧毁(造成光纤涂覆层的损伤)。解决该问题的一个常规方案,是生产一种具有耐热特性的丙烯酸酯涂层的光纤(最高125°C;85°C会发生)。但今天,iXblue提供了一个最终的解决方案--IXblue全玻璃有源光纤:在光纤中,泵浦激光将不再与光纤涂覆层相互作用,无论温度如何、激光传输特性都将保持不变。基于iXblue在Er/Yb光纤方面的长期技术和一些获得专利的新工艺技术,成就了这一新产品——“IXF-2CF-AGEY”(双包层全玻璃铒镱光纤):一种在其纤芯中Er-Yb共掺的光纤,纤芯被双包层(甚至三包层*)包裹。在外包层是一种折射率较低的掺氟二氧化硅(SiF)材料,这意味着激光仅与光纤内的玻璃材料相互作用,使其非常可靠且对温度不敏感(高达200°C)我们仔细甄选了纤芯成分,从而获得了高效率(每根新光纤上测试的功率转换效率都高于40%)和低的1μm放大自发辐射,这也是10年来开发的iXblue铒镱共掺光纤一直被认可的标记。 “使用高温双层丙烯酸酯涂层(HTC)可将长期工作温度范围提高至125°C,使IXblue全玻璃有源光纤成 为恶劣环境下1.5μm激光雷达的理想解决方案。”iXblue产品线经理Arnaud Laurent 解释道。 全玻璃设计保证泵浦激光仅仅与光纤中玻璃材质接触,确保在苛刻使用环境中长期运行。增强的长期可靠性、更高的工作温度是应对恶劣环境的关键优势,同时降低了系统对冷却条件的要求。 iXblue全玻璃光纤非常适合大批量需求的光纤激光器制造商,基于自由空间或混合(光纤/自由空间)架构中使用。光纤直径为125μm,纤芯为5或9μm。Si内包层的八角形结构是一种良好的几何结构,可实现有源光纤纤芯的最佳的泵浦信号吸收。上海昊量光电作为IXblue在中国的授权代理商,负责IXblue电光调制器、IXblue光纤及其他新型激光器等光电仪器在中国市场的销售、技术服务、市场推广服务。对于IXblue全玻璃有源光纤有兴趣或者任何问题,都欢迎通过电话、电子邮件或者微信与我们联系。 更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。‍‍
  • IXblue致力欧洲光电与量子技术计划: 收购Kylia 和Muquans
    IXblue(Lannion, France,法国拉尼翁)已收购光学组件和仪器制造商Kylia(Pessac, France,法国佩萨克)和Muquans(Talence, France,法国塔伦斯),后者生产集成的量子仪器。Kylia成立于2003年,基于超精密组装技术开发和制造光学组件和仪器。Kylia销售的产品已被工业制造商用于光纤电信(fiber-optic telecommunications),计量(metrology)和空间领域(space)。Muquans成立于2000年,专业从事激光冷却量子操纵技术的仪器仪表。它提供的产品包括量子重力仪(quantum gravimeter),原子钟(atomic clock),光纤上的频率传输系统(frequency transfer systems over fiber)以及高性能的激光系统(high-performance laser systems)。 iXblue的新实体将进一步加强光子学的战略轴心作用,在法国的4个工业基地分布着160多名工程师,在仪器、激光和先进的光子学组件方面的营业额超过3500万欧元。上海昊量光电设备有限公司是法国IXblue集团在中国市场的主要代理商,双方已携手多年为国内众多用户提供光电及量子应用产品,如电光调制器以及包括掺杂光纤在内的多种特种光纤产品。法国IXBlue公司的产品质量上乘,且得到欧洲航天局(ESA)及法国多所研究机构的认证。上海昊量光电设备有限公司与IXBlue公司沟通,将向中国客户着重推荐大芯径掺杂光纤:(1)铒镱共掺光纤(Er/Yb Doped fiber)IXF-2CF-EY-PM-25-250 (or Non-PM)IXF-2CF-EY-PM-30-300 (or Non-PM)等(2)掺铥/铥钬共掺光纤(Tm/Tm&Ho Doped fiber)IXF-2CF-Tm-PM-20-250 (or Non-PM)IXF-2CF-Tm-PM-20-300 (or Non-PM)IXF-2CF-Tm-O-25-250IXF-2CF-Tm-O-25-400IXF-2CF-TmHo-PM-20-300 IXF-2CF-TmHo-PM-25-300(3)掺镱光纤 (Yb-Doped fiber)IXF-VLMA-40-220-PM-Yb此外,上海昊量光电设备有限公司还提供IXblue公司的抗辐射光纤、偏振光纤、光敏光纤及其它掺杂光纤。您可以通过我们的官方网站了解更多的IXblue产品信息,或直接来电咨询昊量产品。
  • 昊量光电正式成为美国Meadowlark Optics公司所有产品线的独家代理商
    基于长期友好的合作伙伴关系与相互信任,近日昊量光电与美国Meadowlark Optics公司正式签订独家代理协议。昊量光电正式成为美国Meadowlark Optics公司所有产品线的独家代理商。我们相信,双方这次全面深入的合作将帮助美国Meadowlark Optics公司加快在中国的业务增长,提升为中国客户的服务品质。 作为美国Meadowlark Optics公司在中国地区的独家代理商,昊量光电将全面负责美国Meadowlark公司在中国的市场拓展与客户服务。昊量光电将一如既往地为中国地区的客户提供优质的产品与服务! 美国Meadowlark Optics公司(Meadowlark Optics, Inc.)于1979年由美国国家大气研究中心的科学家Tom Baur先生创立。如今Meadowlark Optics公司已经成为全球顶级的偏振光学元器件制造商。Meadowlark Optics公司产品包括超高精度偏振片、液晶相位延迟器等。 2014年7月,美国BNS (Boulder Nonlinear System)公司商业产品部与美国Meadowlark Optics公司合并之后,美国Meadowlark Optics公司在液晶空间光调制器方面的技术实力进一步增强。 2015年3月,美国Meadowlark Optics公司正式收购CRi公司液晶空间光调制器产品线 ,Meadowlark公司在液晶空间光调制器的产品种类得到了进一步拓宽,其在液晶空间光调制器的世界领导者地位得以进一步巩固! 作为一家专业的光电产品代理商,上海昊量光电设备有限公司专注于光电领域的技术服务与产品经销,致力于引进国外顶级光电产品制造商的技术与产品,为国内客户提供优质的产品与服务。昊量光电成立于2008年。目前,昊量光电已经与国外多家知名光电产品制造商建立了良好的合作关系。其代理品牌包括美国Meadowlark公司、法国Photline/iXFiber公司、英国Gooch&Housego公司、美国ConOptics公司、法国Oxxius公司、英国Qioptiq公司、法国Cristal Laser公司、德国Cinogy公司等,其产品包括空间光调制器、声光调制器、电光调制器、半导体激光器、半导体泵浦激光器、光纤激光器、激光晶体、光束测量设备等,所涉及的领域也涵盖了材料加工、光通讯、生物医疗、科学研究与国防等。 昊量光电秉承“诚信、高效、创新、共赢”的核心价值观,我们为客户提供优质的产品与服务,为实现各方共赢而不懈努力! 调制器 空间光调制器CRi液晶空间光调制器超高速液晶空间光调制器透射式液晶空间光调制器液晶相位延迟器/液晶光阀超快液晶可变延迟器/液晶可变波片OEM液晶可变延迟器/相位延迟器紫外液晶可变延迟器/波片中红外液晶可变延迟器/相位延迟器(3.6um-5.7um)可调谐滤波器可调谐液晶滤波器(半高宽可选)三色液晶可调谐滤波器
  • 辉光放电光谱仪:方便快速的镀层分析手段
    研究镀层特性,有哪些常用的分析技术?  如今,大多数材料不是多层结构,如薄膜光伏电池、LED、硬盘、锂电池电极、镀层玻璃等就是表面经过特殊处理或是为改善材料性能或耐腐蚀能力采用了先进镀层。为了很好地研究和评价这些功能性镀层特性,有多种表面分析工具应运而生,如我们熟知的X射线光电子能谱XPS、二次离子质谱SIMS、扫描电镜SEM、透射电镜TEM、椭圆偏振光谱、俄歇能谱AES等。  为什么辉光放电光谱技术受青睐?  辉光放电光谱仪作为一种新型的表面分析技术,虽然近年来才崭露头角,但已受到了越来越多的关注。与上述表面分析技术相比,辉光放电光谱仪在深度剖析材料的表面和深度时具有不可替代的独特优势,它的分析速度快、操作简单、无需超高真空部件,并且维护成本低。  辉光放电光谱仪最初起源于钢铁行业,主要被用于镀锌钢板及钢铁表面钝化膜等的测定,但随着辉光放电光谱技术的逐步完善,仪器的性能也得以提升,可分析的材料越来越广泛。  其性能的提升表现在两方面:一方面随着深度分辨率的不断提升,辉光放电光谱技术已可以逐渐满足薄膜的测试需求。现在,辉光放电光谱仪的深度分辨率可达亚纳米级别,可测试的镀层厚度从几纳米到150微米,某些特殊材料可以达到200微米。  另一方面是辉光源的性能改善,以前辉光放电光谱仪主要用于钢铁行业的测试,测试的镀层样品几乎都是导体,DC直流的辉光源即可满足该类测试,但随着功能性镀层的不断发展,越来越多的非导体、半导体镀层出现,这使得射频辉光源的独特优势不断凸显。射频辉光源既可以测试导体也可以测试非导体样品,无需更换任何部件和测试方法,使用方便。如果需要测试热敏材料或是为抑制元素热扩散则需选用脉冲射频辉光源。脉冲模式下,功率不是持续性的作用到样品上,可以很好地抑制不期望的元素扩散或是造成热敏样品的损坏,确保测试结果的真实准确。  辉光放电光谱的工作原理  辉光放电腔室内充满低压氩气,当施加在放电两极的电压达到一定值,超过激发氩气所需的能量即可形成辉光放电,放电气体离解为正电荷离子和自由电子。在电场的作用下,正电荷离子加速轰击到(阴极)样品表面,产生阴极溅射。在放电区域内,溅射的元素原子与电子相互碰撞被激化而发光。辉光放电源的结构示意图,样品作为辉光放电源的阴极  整个过程是动态的,氩气离子持续轰击样品表面并溅射出样品粒子,样品粒子持续进入等离子体进行激化发光,不断有新的层在被溅射,从而获得镀层元素含量随时间的变化曲线。  辉光放电等离子体有双重作用,一是剥蚀样品表面颗粒 二是激发剥蚀下来的样品颗粒。在空间和时间上分离剥蚀和激发对于辉光放电操作非常重要。剥蚀发生在样品表面,激发发生在等离子体中,这样的设计可以很好地抑制基体效应。  氩气是辉光放电最常用的气体,价格也相对便宜。氩气可以激发除氟元素外所有的元素,如需测试氟元素或是氩元素时需采用氖气作为激发气体。有时也会使用混合气体,如Ar+He非常适合于分析玻璃,Ar+H2可提高硅元素的检出,Ar+O2会应用到某些特殊的领域。  光谱仪的主要功能是通过收集和分光检测来自等离子体的光以实现连续不断监控样品成分的变化。光谱仪的探测器必须能够快速响应,实时高动态的观测所有元素随深度的变化。辉光放电光谱仪中多色仪是仪器的重要组成部分,是实现高动态同步深度剖析的保障。而光栅是光谱仪的核心,光栅的好坏决定了光谱仪的性能,如光谱分辨率、灵敏度、光谱仪工作范围、杂散光抑制等。辉光放电是一种较弱的信号,光通量的大小对仪器的整体性能有至关重要的影响。  如何进行定量分析?  和其他光谱仪一样,通过辉光放电光谱仪做定量分析也需要建立标准曲线。不同的是,辉光放电光谱仪的标准曲线不仅是建立信号强度和元素浓度之间的关系,还会建立时间和镀层深度间的关系。  下图是涂镀在铁合金上的TiN/Ti2N复合镀层材料的元素深度剖析,直接测试所得的信号强度(V)vs时间(s)的数据经过标准曲线计算后可获得浓度vs深度的信息,可清晰的读取各深度元素的浓度。  想建立标准曲线就会涉及到标准样品,传统钢铁领域已经有非常成熟的方法及大量的标准样品可供选择。然而一些先进材料和新物质,很难找到标准样品做常规定量分析。HORIBA研发的辉光放电光谱仪针对这类样品开发了一种定量分析方法,称为Layer Mode,该方法可以使用一个与分析样品相类似的参比样品建立简单的标准曲线,实现对待测样品的半定量分析。  辉光放电光谱的主要应用  除了传统应用领域钢铁行业,辉光放电光谱仪现在主要应用于半导体、太阳能光伏、锂电池、硬盘等的镀层分析。下面就这些新型应用阐述一下辉光放电光谱仪的独特优势。  1. 半导体-LED芯片  如上图所示,LED芯片通常是生长在蓝宝石基底上的多镀层结构,其量子阱活性镀层非常薄(仅有几纳米),而且还包埋在GaN层下。这种结构也增加了分析的难度。典型的表面技术如SIMS和XPS可以非常好表征这个活性镀层,但是在分析过程中要想剥蚀掉上表面的GaN层到达活性镀层需要耗费几个小时,分析速度慢,时效性差。  辉光放电光谱仪的整个分析过程仅需几十秒即可获得LED芯片镀层中各元素随深度的分布曲线,可快速反馈工艺生产过程中遇到的问题。  2、太阳能光伏电池  太阳能电池中各成分的梯度以及界面对于光电转换效率来说至关重要,辉光放电光谱仪可以快速表征这些成分随深度的分布,并通过这些信息优化产品结构,提高效率。分析速度快、操作简单、非常适用于实验室或工厂大量分析样品。  3、锂电池  锂离子电池的正极材料是氧化钴锂,负极是碳。  锂离子电池的工作原理就是指其充放电原理。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,到达负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。  同理,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回到正极。回到正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。  辉光放电光谱仪可以通过测试正负电极上各种元素随深度的分布来判定其质量及使用寿命等。  辉光放电光谱仪除独立表征样品外,还可以和其他分析手段相结合多方位全面的进行表征。如辉光放电光谱仪可以与XPS、SEM、TEM、拉曼和椭偏等技术共同分析。  总体来说,辉光放电光谱仪是一种非常方便快速的镀层分析手段。它的出现极大地解决了工艺生产中质量监控、条件优化等问题,此外还开拓了新的表征方向。  关于HORIBA 脉冲射频辉光放电光谱仪  HORIBA研发的脉冲射频辉光放电光谱仪是一款用于镀层材料研究、过程加工和控制的理想分析工具。脉冲射频辉光放电光谱仪可对薄/厚膜、导体或非导体提供超快速元素深度剖析,并且对所有的元素都有高的灵敏度。  脉冲射频辉光放电光谱仪结合了脉冲射频供电的辉光放电源和高灵敏度的发射光谱仪。前者具有很高的深度分辨率,可对样品分析区域进行一层层剥蚀 后者可实时监测所有感兴趣元素。  (本文由HORIBA 科学仪器事业部提供)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制