当前位置: 仪器信息网 > 行业主题 > >

细胞信号和神经生物学

仪器信息网细胞信号和神经生物学专题为您提供2024年最新细胞信号和神经生物学价格报价、厂家品牌的相关信息, 包括细胞信号和神经生物学参数、型号等,不管是国产,还是进口品牌的细胞信号和神经生物学您都可以在这里找到。 除此之外,仪器信息网还免费为您整合细胞信号和神经生物学相关的耗材配件、试剂标物,还有细胞信号和神经生物学相关的最新资讯、资料,以及细胞信号和神经生物学相关的解决方案。

细胞信号和神经生物学相关的资讯

  • 新一代测序助力神经生物学研究
    p  了解大脑以及它在行为和疾病中的作用,这种探索可不是个小任务。在过去的十年中,杜克大学Nicholas Katsanis所在的实验室已经表明,遗传学和基因组学方法对于我们了解神经生物学非常有帮助。他在2015神经科学大会上组织了一个短期课程,以帮助研究人员更好地了解基因组学的应用。/pp  首先发言的是Shamil Sunyaev,他是哈佛大学医学院附属的布莱根妇女医院遗传学分部的一名计算基因组学研究人员。他通过一个关于简单和复杂表型的讨论来开始他题为“神经发育和神经退行性疾病基因组注释的计算方法”的演讲,,并介绍了过去的研究人员是如何在动物模型和人类中研究疾病状态的遗传的。他指出,技术的进步,特别是新一代测序(Next-Generation Sequencing, NGS)技术,让研究人员终于能确定多态性标记,定位这些标记,同时确定致病突变。Sunyaev认为,新发现是很重要的,但仍有许多未知的东西,应通过支持研究来加强探索。/pp  接着走上演讲台的是Benjamin Neale,他是Broad研究院一名侧重于心理生物学的遗传学研究人员。Neale演讲的题目是“充分利用精神疾病的基因组数据”,一开始就强调了群体统计数据的不断变化。他指出,对于精神分裂症或自闭症(或与此有关的任何复杂性状)这样的疾病,原因不可能只有一个。孟德尔遗传学可能很有吸引力,但它并不适合我们想要研究的大多数东西。他认为,“这就像身高,没有一个基因是对应5英尺10英寸的。你的身高并非受到单个遗传影响,而是多个,它们合在一起,形成了人群的正态分布。遗传可能性是一种计算,并非个体– 如果存在遗传影响,以及基因作用的生物学过程,它会带来我们在群体中所看到的变化。”/pp  若要在研究中采取不偏不倚的态度,探索疾病的遗传因素是一种方式。这些研究有助于确定新的线索,以便更好地了解精神疾病背后的生物学机理。他探讨了精神分裂症的遗传研究,从早期的全基因组关联研究到如今利用NGS技术的更先进的探索。研究联盟对于深入了解这种疾病是十分有价值的 通过增加样本量,研究人员已经发现了一些新线索。Neale博士提醒大家,目前仍有数千个影响尚未确定,而每个影响都是相当小的。 “以高通量的方式分析遗传变异,这很了不起,但我们需要研究生物学,弄清楚这里到底发生了什么,”他说。“通过这些研究,我们将发现新的神经生物学。我们需要分析并拷问这些新线索,才能真正了解发生的事情。”/pp  出于此,Neale博士表示十分看好千人基因组计划(1000 Genomes Project),他希望由此开启不同的模式和方法,以查看新出现的de novo突变。/pp  短期课程的第三位演讲者是哈佛大学医学院的遗传学家Steven McCarroll。在这个题为“MHC在精神分裂症中的作用”的演讲中,他介绍了一种称为Drop-Seq的技术,可研究如大脑这样复杂组织中的不同类型细胞之间的遗传改变。Drop-Seq的最终结果是来自于不同细胞类型的RNA文库,他的实验室已通过视网膜研究对此进行验证。/pp  利用Drop-Seq,McCarroll博士及其实验室揭示了有关精神分裂症的新的生物学观点。C4补体基因中的一个SNP已知与这种疾病相关联,但它并没有与已知的任何变异相对应。他及其合作者利用分子分析来检测不同的C4基因型,发现了这个家族中有四种常见的变异,然后测定了其在死后大脑样本中的表达情况。他们发现,C4A变异对应的精神分裂症风险明显提高。进一步的研究表明,这个蛋白是补体级联中的一部分,用于标记细胞和碎片以便清除。此证据表明,这个变异可能导致在“突触修剪”的关键时期蛋白质行为发生改变,导致疾病的发生。/pp  “当然,这只是其中一个故事。不过我希望它能鼓励人们,即使是那些复杂、多基因的疾病,这些技术也能为“(疾病过程)实际可能发生的事情”引入新的假说,”他说。“并提供新的治疗可能性。”/pp  加利福尼亚大学圣地亚哥分校基因组医学研究所的Albert La Spada分享了他自己的例子,细致的遗传变异机理研究如何引申出新的疗法。他在亨廷顿氏病上的研究将一种潜在疗法引入临床试验。这种KD3010药物经FDA批准可用于糖尿病和代谢疾病,可能有助于阻止病情恶化。La Spada博士强调了他的工作并没有完成,并强调了细致的表型分析是阻碍基因组学在大脑疾病领域上获得成功的一个巨大障碍。/pp  “如果你正在研究一个疾病过程,你真的需要着手去完成一名系统生物学家的任务。这将需要应用多种方法才能向前推进,”La Spada博士谈道。“其次,无论你是否意识到,遗传学将伴随你的每一步,让你定义一种疾病,重新定义它,然后解析它,这样你才有望开发出一种疗法。”/pp  Alison Goate是西奈山伊坎医学院的一名遗传学研究人员。她随后上台探讨了有关阿尔茨海默病的遗传学研究工作。与她之前的同事一样,她倡导一种系统方法,并指出这些方法已经在阿尔茨海默病领域取得了最佳的效果。到目前为止,遗传学研究支持& #946 -淀粉样蛋白的假说,即这种疾病的可怕症状是由大脑中累积的& #946 -淀粉样蛋白斑块引起的。不过新的研究表明,可能有不同类型的过程,不同类型的细胞,它们出了差错,导致斑块形成。新研究正在发现淀粉样前体基因和早老素1以外的基因,包括SPI1和TREM2。Goate认为,这其中一些基因最令人感兴趣的是,它们可能不是阿尔茨海默病特异的。/pp  “我们在深入了解时发现,这些基因可能从总体上影响了神经退行性疾病的风险– 它们与肌萎缩侧索硬化症(ALS)、额颞痴呆症和帕金森氏症相关联,”她说。“因此,我们了解到的是,它们的作用可能并不是专门清除& #946 -淀粉样蛋白,或许还与清除碎片有关。”/pp  Goate也为美国国家衰老研究所的阿尔茨海默病测序计划点赞。这个计划有望鉴定出与疾病相关的新基因,这包括潜在的致病基因,也可能是保护基因。“我们可以从保护因子上了解很多,”她说。“如果我们发现这些基因是保护性的,那么我们在设计药物时就可以模拟这种保护作用。”/pp  Nicholas Katsanis用一场有关神经精神疾病中的拷贝数变异的演讲作为这一天的结束。他提醒说,真正的遗传外显率有点像“独角兽”,而研究人员可能不知道如何测定它是否真的存在。他希望研究人员能花更多时间来研究保护性的等位基因,并强调需要再上一层,这样我们才能利用遗传发现来帮助治疗疾病。遗传学家和神经学家需要共同努力,以便真正了解不同等位基因对疾病表型的影响。“医学上的重测序是不够的。我们需要进行功能评估,”Katsanis博士指出。“这里可没有什么好人和坏人。等位基因以依赖相互作用的方式发挥它们的影响。因此,我们必须想办法弄明白这一切。”/p
  • 2013年Eppendorf & Science 全球神经生物学奖申请启动
    Eppendorf & Science神经生物学奖Eppendorf & Science全球神经生物学奖是授予在神经生物学领域辛勤耕耘的青年科学家(35 岁以下),以表彰他们的非凡贡献。所有奖项的获得者都是由《Science》杂志高级编辑Peter Stern博士领衔的独立科学家所组成的委员会评出。获奖者不仅可获得25,000美元的高额奖金,其获奖论文能发表在《Science》杂志上,并得以全额资助参与美国神经科学协会年会和颁奖仪式,还将获邀参观Eppendorf 位于德国汉堡的总部。2012年度大奖被授予美国匹兹堡大学助理教授Marlene R. Cohen博士。申请时间即日起至2013年6月15日申请规则申请者必须是在过去10年内获得博士学位的神经生物学专家,并且年龄小于(含)35周岁。申请者的研究领域必须属于神经生物学领域并从事或涉及与论文中所描述的相关工作,展示的科研成果必须在过去三年内完成申请程序申请者所写的论文不超过1000个单词,并提交一份完整的申请表,以及由申请者的导师、主管或熟悉申请者工作的同事所写的一封推荐信,以上文档必须用英文撰写并在线提交评选程序由全球顶尖的神经生物学领域专家组成评委会会在6月至8月汇总和评选所有提交方案,9月选拔并通知获奖者,当年11月公布获奖名单并举行颁奖典礼 ,并在典礼上宣布获奖者和入围者名单填写申请表了解更多信息请访问 http://www.eppendorf.com/prizeEppendorf 官方微博:http://weibo.com/eppendorfchinaEppendorf 中文官网:http://www.eppendorf.cn关于艾本德 (Eppendorf)德国艾本德股份公司于1945年在德国汉堡成立,是一家全球领先的生物技术公司。产品包括移液器、分液器和离心机以及微量离心管和移液吸头等耗材,此外还提供从事细胞显微操作的仪器和耗材、全自动移液系统、DNA 扩增的全套仪器。产品主要应用于科研、商业化的研发机构、生物技术公司以及其他从事相关生物研究的领域。2007年 Eppendorf 收购美国 New Brunswick Scientific (NBS) 公司,2012年 Eppendorf 收购德国 DASGIP 公司,拓展了其细胞培养领域的产品线。关于艾本德中国 (Eppendorf China Ltd.)2003年Eppendorf正式进入中国,分别在上海、北京、广州设立分公司,启动直销的经营模式,为中国客户提供更便捷的技术售后服务。目前全国雇员数量200多名,产品销售覆盖各大中型城市,是Eppendorf全球发展最快的子公司。
  • 且看冷冻电镜如何应用在神经生物学研究中
    pstrong仪器信息网、中国电子显微镜学会、中国电镜网联合报导/strongstrong:/strong2015年10月18日第四届全国激光共聚焦显微技术理论与应用学术交流研讨会圆满闭幕。/pp  在14日下午的会议中,有一个特邀报告格外地引起了笔者的注意,来自西北农林科技大学动物医学院的赵善廷教授提到他曾与高压冷冻固定技术的发明者瑞士科学家Studer博士合作,将该技术与器官型脑片培养技术(organotypic slice culture)相结合,成功地研究了与学习和记忆密切有关的长时程效应(long-term potentiation, LTP)对突触的影响。/pp style="TEXT-ALIGN: center" dir="ltr"img style="WIDTH: 450px HEIGHT: 300px" title="00.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201510/insimg/2f90df00-d7ca-416b-bd07-44431d4c22cd.jpg" width="450" height="300"//pp style="TEXT-ALIGN: center"strong西北农林科技大学动物医学院的赵善廷教授/strong/pp  据了解,以往的常规a href="http://www.instrument.com.cn/zc/1139.html" target="_self" title="" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "电镜/span/a技术需要先用甲醛、戊二醛等化学试剂对样品进行化学固定,但这种固定方法有三个缺点包括:/pp  一、无法扑捉短暂生理过程的形态变化和特征,如神经元突触小泡内神经递质的释放;二、脱水过程用酒精等有机溶剂会造成细胞和组织皱缩,使其形态和大小发生改变;三、化学固定剂特别是戊二醛可引起蛋白质变性,使其与相应抗体结合能力下降甚至丧失,导致电镜免疫组化染色失败。/pp  为克服化学固定的这些缺点,上世纪九十年代末,瑞士科学家Studer博士发明了一种新的物理性电镜固定技术,即高压冷冻电镜固定技术,该技术可以在不使用任何化学固定剂的条件下五十毫秒以内将组织和细胞完全固定。/pp  虽然高压冷冻技术克服了化学固定的三大缺点,但它本身也有一个不足之处:固定的样品非常小,直径不能超过1mm,厚度不能超过& #956 m,从而限制了它在神经生物学研究中的应用。/pp  为了克服高压冷冻固定技术的缺点,将其应用到神经生物学研究中,2002年,该技术发明者Studer博士与当时正在德国弗莱堡大学医学院做博士后的赵善廷博士合作,将器官型脑片培养技术和高压冷冻固定技术相结合固定神经纤维,历时五年的不断摸索,到2007年两种技术终于完美地结合在一起。赵教授在接受本网记者采访时表示,希望能够与国内相关课题组合作,为这种样品制备方法寻找更多的应用领域。/pp style="TEXT-ALIGN: right"撰稿:史秀明/p
  • 新一届Eppendorf & Science神经生物学奖开放申请
    祝贺来自美国普林斯顿神经学研究院的Dr. Michael Yartsev荣获2013年度Eppendorf & Science神经生物学奖!Dr. Yartse使用一种罕见的动物模型——蝙蝠来研究哺乳动物大脑中有关空间记忆和导航系统的神经机制。他的研究成果不仅支持了现有假说提出的对比研究,并且也对该领域长期存在的问题提出了新的见解。他的研究成果也为在神经科学研究中使用新的动物模型开辟了新的思路。每年一度的“Eppendorf & Science神经生物学奖”是授予像Dr. Yartse这样在神经生物学领域取得非凡成就的青年科学家。Dr. Yartse是这一国际性奖项的第12位获奖者,不仅会获得25,000美金的高额奖金,并将受邀出席在美国圣地亚哥举办的2013年度神经科学大会年会。你可能就是下一位获奖者!如果你的年龄不超过35岁(含),并正在进行神经生物学领域的研究,你可能会成为2014年度新的获奖者。下届奖项申请截止日期是2014年6月15日,详情登陆 http://www.eppendorf.com/prizeEppendorf发酵工艺官方微信:Eppendorf的E课堂Eppendorf官方微博:http://weibo.com/eppendorfchinaEppendorf中文官网:http://www.eppendorf.cnEppendorf China十周年庆官网:http://tenyears.eppendorf.cnEppendorf发酵工艺网络研讨会:http://a.bioon.com.cn/eppendorf_lesson/关于艾本德(Eppendorf)德国艾本德股份公司于1945年在德国汉堡成立,是一家全球领先的生物技术公司。产品包括移液器、分液器和离心机,以及微量离心管和移液吸头等耗材,此外还提供从事细胞显微操作的仪器和耗材、全自动移液系统、DNA扩增的全套仪器。产品主要应用于科研、商业化的研发机构、生物技术公司以及其他从事相关生物研究的领域。2007年Eppendorf收购美国New Brunswick Scientific(NBS)公司,2012年收购德国DASGIP公司,拓展了其细胞培养领域的产品线。关于艾本德中国(Eppendorf China Ltd.)2003年Eppendorf在中国注册了艾本德(上海)国际贸易有限公司和艾本德中国有限公司,分别在北京、广州设立分公司,启动直销的经营模式,为中国客户提供更便捷的技术售后服务。目前全国雇员数量200多名,产品销售覆盖各大中型城市,是Eppendorf全球发展最快的子公司。
  • 2017 Eppendorf & Science 神经生物学奖开放申请
    每年一度的“Eppendorf & Science神经生物学奖” 是由顶级科学杂志《Science》与德国 Eppendorf 公司共同颁发,授予在神经生物学领域辛勤耕耘的青年科学家,以表彰他们的非凡贡献。所有奖项的获得者都是由《Science》杂志领衔的独立科学家所组成的委员会评出,年龄在 35 岁(含)以下的青年科学家都有机会申请。来自美国西奈山医院的 Gilad Evrony 博士以其在人脑单个细胞基因组测序和分析技术的成就赢得 2016 年 Eppendorf & Science 神经生物学奖。Evrony 博士的研究发现神经元基因组存在多种突变,表明人脑中的每个神经元携带有独特的体细胞突变指纹。这种突变可以导致局灶性脑畸形,并且可能在其他未破解的神经系统疾病中发挥一定作用。这种技术还首次在人脑中重建发育系谱树,从而可以研究细胞如何增殖并迁移以构建大脑。作为全世界最具权威的学术期刊之一,《Science》杂志吸引了全世界数以万计的科研专家。Eppendorf 全力支持青年科学家的发展,科研路漫漫,我们愿与您并肩同行。或许,您就是下一位获奖者!并将赢得:25,000 美元奖金获奖论文发表在《Science》杂志上得以全额资助参与美国神经科学协会年会和颁奖仪式获邀参观 Eppendorf 位于德国汉堡的总部申请截止日期为2017 年6 月15 日。进入在线申请 : http://corporate.eppendorf.com/de/unternehmen/wissenschaftliche-awards/global-award/ Eppendorf官方微博:http://weibo.com/eppendorfchinaEppendorf官方微信:eppendorfchina关于艾本德(Eppendorf)德国艾本德股份公司于 1945 年在德国汉堡成立,是一家全球领先的生物技术公司。产品包括移液器、分液器和离心机,以及微量离心管和移液吸头等耗材,此外还提供从事细胞显微操作的仪器和耗材、全自动移液系统、DNA扩增的全系列仪器。产品主要应用于科研、商业化的研发机构、生物技术公司以及其他从事相关生物研究的领域。2007 年Eppendorf 收购美国New Brunswick Scientific (NBS) 公司,2012 年收购德国 DASGIP 公司,拓展了其细胞培养领域的产品线。关于艾本德中国(Eppendorf China Ltd.)2003 年 Eppendorf 在中国成立代表处,随后注册了艾本德(上海)国际贸易有限公司和艾本德中国有限公司,分别在北京、广州设立分公司,启动直销的经营模式,为中国客户提供更便捷的技术售后服务。目前全国雇员数量200多名,产品销售覆盖各大中型城市,是 Eppendorf 全球发展最快的子公司。
  • 2009 Eppendorf & Science 神经生物学大奖---赢得殊荣!
    由艾本德与《科学》杂志共同颁布的神经生物学奖是该领域内国际性科研的年度大奖,获得这个享誉业内 荣誉的同时更可抱得高达25,000美圆的奖金。这项年度国际研究奖是由艾本德国际生物技术公司与《科学 》杂志于2002年联合创立,旨在鼓励青年科学家利用分子与细胞生物学的方法进行神经生物学方面的研究 。 2008年度的荣誉之冠由来自美国得克萨斯州贝勒医学院的Mauro Costa-Mattioli博士最终摘得。通过揭露 为形成长久记忆的翻译调控的重要性,Mauro Costa-Mattioli博士的研究为最终研发包括记忆力功能的衰 老和神经退行性疾病等在内的主要大脑疾病的新型治疗药物做出极大的贡献。 2009年度的评选活动已正式启动,2009年6月15日前,欢迎所有年龄35岁以下,在神经生物学领域学有所成的青年科学家自荐报名。欲了解更多奖项的相关内容,请访问www.eppendorf.com/prize网站。Eppendorf 中国: www.eppendorf.cn
  • 2011 Eppendorf神经生物学奖得主造访Eppendorf
    经过组委会的层层筛选,伦敦大学的博士后研究员Tiago Branco 成为2011年度Eppendorf神经生物学奖的获得者。他同妻子Beverley Clark博士一起,在今年6月受邀造访德国艾本德股份公司总部。在此次德国之旅中,Branco博士谈及了他对于神经树突方面的开创性研究。他的卓绝研究成果获得了评委会的赞赏,并授予他2011年度的大奖。这项奖额高达25,000美元的年度性国际大奖由全球领先的生物技术公司Eppendorf和著名的《Science》杂志联合举办,旨在奖励在神经生物学领域的杰出科学家,以表彰他们对神经生物学研究领域的非凡贡献。2012年度的奖项申请已截止,评选工作正紧张进行中。如果您的年龄在35岁(含)以下,并正在从事神经生物学研究,2013年6月15日前登录wwhttp://www.eppendorf.com/prize 在线递交您的申请,下届冠军虚位以待!Eppendorf官方微博:http://weibo.com/eppendorfchinaEppendorf中文官网:http://www.eppendorf.cn关于艾本德(Eppendorf)德国艾本德股份公司于1945年在德国汉堡成立,是一家全球领先的生物技术公司。产品包括移液器、分液器和离心机,以及微量离心管和移液吸头等耗材,此外还提供从事细胞显微操作的仪器和耗材、全自动移液系统、DNA扩增的全套仪器。产品主要应用于科研、商业化的研发机构、生物技术公司以及其他从事相关生物研究的领域。2007年Eppendorf收购美国New Brunswick Scientific (NBS) 公司,2012年Eppendorf收购德国DASGIP公司,拓展了其细胞培养领域的产品线。关于艾本德中国(Eppendorf China Ltd.)2003年Eppendorf正式进入中国,分别在北京、广州设立分公司,启动直销的经营模式,为中国客户提供更便捷的技术售后服务。目前全国雇员数量近200名,产品销售覆盖各大中型城市,是Eppendorf全球发展最快的子公司。
  • 2008年Eppendorf & Science 神经生物学奖颁布
    2008年Eppendorf & Science 神经生物学奖颁布2008年Eppendorf & Science 神经生物学奖已正式宣布,此届总额达25000美元的国际研究奖项被授予美国得克萨斯州贝勒医学院的Mauro Costa-Mattioli博士。通过揭露为形成长久记忆的翻译调控的重要性,Mauro Costa-Mattioli博士的研究为最终研发包括记忆力功能的衰老和神经退行性疾病等在内的主要大脑疾病的新型治疗药物做出极大的贡献 该奖项是由德国汉堡生物技术公司Eppendorf和国际知名的杂志《科学》共同发起。该奖项是面向所有35岁以下的所有年轻科学家,以表彰他们为神经生物学研究做出的杰出贡献。下届奖项的申请截止日期为2009年6月15日。欲了解更多奖项的相关内容,请访问www.eppendorf.com/prize网站。
  • 世界最强X射线激光破解细胞信号传导密码
    p  中科院上海药物研究所徐华强研究员领衔的国际交叉团队经过联合攻关,成功解析了磷酸化视紫红质(Rhodopsin)与阻遏蛋白(Arrestin)复合物的晶体结构,并破解了负责关闭GPCR传导信号的磷酸化密码。7月27日,相关研究成果以封面文章发表于《细胞》杂志。/pp  生命的功能是依靠信号传导密码来体现或来执行的。G蛋白偶联受体(GPCR)是人体内最大的细胞膜表面受体家族,通过G蛋白和阻遏蛋白这两条主要信号通路,承担着细胞信号转导的“信号兵”的职责。当受到外界信号刺激,GPCR激活G蛋白发出“开放”信号。而“关闭”信号的则来自于磷酸化密码——GPCR尾部一旦被磷酸化,随即将激活阻遏蛋白并与之形成紧密结合为复合物,从而关闭传导信号。因此鉴定与解释GPCR磷酸化密码是当今细胞信号传导领域的重要科学问题。/pp  据悉,徐华强领衔的交叉团队在2015年成功解析GPCR与阻遏蛋白复合物的完整复合体结构的基础上,对于该结构的尾部高分辨率结构与磷酸化机制展开攻关。/pp  “我们利用世界上最强X射线激光,看清楚了复合晶体的尾部结构信息,并从中解析了其尾部磷酸化招募并与阻遏蛋白结合的过程。”徐华强将研究过程比喻为生命密码的层层解密,“为了验证磷酸化密码的普适性,我们试验了96%的GPCR蛋白,发现70%-80%GPCR的“关闭”信号都由磷酸化密码控制。”最后通过一系列验证生物学功能验证,GPCR招募阻遏蛋白的磷酸化密码就此破解——GPCR通过其尾部氨基酸的磷酸化招募并与阻遏蛋白结合,同时发现该密码对整个GPCR蛋白组具有普遍性。/pp  据了解,结构生物学的重大突破往往与同步辐射光源+X射线自由电子激光的组合密切相关。目前全球已有6个这样的组合,分别位于德国、美国、日本、韩国、瑞士和意大利。 “我们非常期待我国自有的重大科技基础设施,如正在建设与推进中的软X射线与硬X射线自由电子激光装置。”徐华强表示,“这些大科学平台能够为科学家提供更先进、丰富的综合实验手段。”/pp  据介绍,这项研究获得国家“重大新药创制”重大专项、973、先导专项以及国际项目等基金的资助。合作研究机构包括加拿大多伦多大学、斯克利普斯研究所、德国Desy自由电子激光科学中心、德国汉堡超快成像中心、加州大学洛杉矶分校、南加州大学、上海科技大学和范德堡大学等。/p
  • 2009年Eppendorf神经生物学奖揭晓
    2009 年神经生物学奖颁奖仪式已落下帷幕,此项由Eppendorf和Science 杂志共同合作的大奖授予瑞士洛桑大学整合基因组中心的教授助理Richard Benton博士。在10 月19 日芝加哥举办的全球神经生物学年会的庆祝晚宴颁奖礼上,这位科学新星同时获得了25,000 美金的奖金。  Richard Benton 博士的研究揭示了昆虫对气味物质感受机制的奥秘。若通过加入特定的化学抑制剂的方式来研究这些分子,有可能控制气味偏好的昆虫传播诸如疟疾等疾病的行为。  欲了解本次颁奖盛典和RichardBenton 博士的个人事迹,敬请登录  www.eppendorf.com/award
  • 2012年Eppendorf&Science全球神经生物学奖申请启动
    Eppendorf & Science 神经生物学奖Eppendorf & Science 神经生物学奖是Eppendorf公司联合《Science》杂志,为鼓励全球青年科学家(35岁以下)对大脑及神经系统功能方面进行研究而设立的神经生物学奖项,奖励金额为25,000美元。这一国际性的奖项建立于2002年,至今已颁给了10位杰出的年轻神经生物学家。参赛规则• Eppendorf & Science 神经生物学奖是一项国际性研究奖项。• 参赛者必须是在过去10年内获得博士学位的神经生物学专家,并且年龄小于35周岁。• 参赛者论文中所描述的研究必须属于神经生物学领域。• 参赛者必须从事或涉及与论文中所描述的相关工作。• 研究成果必须在过去三年已完成。• Eppendorf、《科学》杂志和AAAS的员工及其亲属不得参与本奖。参赛程序参赛材料必须用英文形式提交,参赛者必须提交下述项目:1. 一份完整的申请表 2. 参赛者所写的一篇短文,短文中描述该参赛者的工作现有的方法和在神经生物学领域领先的相关研究。短文长度不得超过1000个单词。参赛者的研究成果必须在过去三年已完成。3. 由参赛者的导师、主管或熟悉参赛者工作的同事所写的一封推荐信。4. 参赛者的简历, 包括:(1). 参赛者已发表的论文中所引用的所有文献列表。(2). 参赛者所获的各项学术奖励和专业奖项。(3). 相关专业工作经验 。(4). 与论文相关的参赛者发表的两篇文献复印件。将上述所有材料必须以PDF格式发送电子邮件至:eppendorfscienceprize@aaas.org请注意:如果您的联系信息在提交后发生变化,请务必告知 eppendorfscienceprize@aaas.org 或致电+1 20 2326 6513。评选程序6月至8月:汇总和评选所有提交方案9月:选拔并通知获奖者11月:公布获奖名单并举行颁奖典礼所有获奖者、入围者和申请人将于9月底前被告知结果。获奖者和入围者名单将在颁奖典礼上宣布。参赛截至日期: 2012年6月15日《Science》杂志编辑将对论文做初步评选。最优秀的前10%的论文将提交给评选委员会。评选委员会是由全球顶尖的神经生物学领域专家组成,并由《Science》杂志资深编辑Dr. Peter Stern担任主席。大部分评委由神经科学学会提名任命。论文评选主要遵循2大标准:科学水准和意义,写作风格和清晰度。奖励大奖得主将在最后入围的3位候选人中选出, 获取高达25,000美元的奖励金额。大奖得主的论文将发表在《Science》和《Science Online》。此外,获胜者将免费获得为期5年的《Science》和《Science Online》订阅以及价值1,000美元的Eppendorf产品。同时,Eppendorf公司将全力资助大奖得主出席由神经科学学会举办的颁奖典礼,并提供获胜者前往Eppendorf总部德国汉堡的访问机会。点击下载申请表Eppendorf China Limited艾本德中国有限公司网址:www.eppendorf.cn邮箱:market.info@eppendorf.cn热线: 400 885 7200更多信息,请访问:www.eppendorf.com/prize
  • 分子细胞卓越中心化学生物学技术平台与Bio-protocol联合发布《高内涵成像及分析实验手册》
    ISBN: 978-1-951285-06-7《高内涵成像及分析实验手册》封面高内涵成像分析系统同时具备自动化高速显微成像功能及自动化图像定量分析功能,可对多个样品快速成像,并从图片中提取大量的数据信息,因此可在一次实验中获取多种参数的定量信息,可更好地避免传统高通量筛选检测方式带来的假阳性和假阴性结果,使得高内涵成像分析技术被越来越多地应用到药物筛选及细胞信号通路、肿瘤、神经生物学、免疫学、传染病学、干细胞等基础研究领域。建立高特异性、高灵敏度及稳定可重复的高内涵实验体系对于获得准确可靠的结论至关重要。由中国科学院分子细胞科学卓越创新中心化学生物学技术平台与Bio-protocol中国编辑部共同启动的“《高内涵成像及分析实验手册》(High-Content Imaging and Analysis Protocol eBook)”项目,旨在打造一个高内涵领域技术共享的平台,倡导国内优秀的科研团队分享自己的成熟方案及经验,促进一线科研人员间的交流与互动,有效提升科研效率。本次出版的《高内涵成像及分析实验手册》共收录33份实验方案,分为五个章节。第一章节“高内涵成像及分析概述”部分讨论了高内涵实验设计要点,第二至第五章节按照检测对象的不同分别介绍了高内涵技术在生物大分子表达与定位、细胞亚结构、细胞水平生命活动、3D培养及模式生物中的具体应用。实验方案分别从样品标记与制备、显微成像以及图像分析三个方面分享了实验细节及经验心得。(点击文末阅读原文即可浏览本手册)《高内涵成像及分析实验手册》视频精选(源自Bio-101:e1010855. DOI:10.21769/BioProtoc.1010855)《高内涵成像及分析实验手册》的出版要感谢10位专辑编委的辛苦付出:中国科学院分子细胞科学卓越创新中心的主编韩帅博士和陈铭研究员、科学顾问李林院士,特邀编委—中国科学院生物物理研究所高级工程师王娅老师,浙江大学王毅教授,上海科技大学王瑛博士,中国科学院上海药物研究所臧奕研究员,上海交通大学医学院附属瑞金医院、国家转化医学大设施(上海)张建明研究员,苏州大学张乐帅教授,中国科学院分子细胞科学卓越创新中心高级工程师赵宏伟老师。还要特别感谢包括多名院士在内的26位专家领导的课题组共87位作者参与这本手册的撰写,以及39位一线科研工作者参与评审工作。在他们的共同努力下,《高内涵成像及分析实验手册》才得以顺利发布。《高内涵成像及分析实验手册》专辑编委会《高内涵成像及分析实验手册》所有文章, 读者可以通过Bio-protocol旗下Bio-101平台,Google Scholar等多种途径免费获取(点击文末阅读原文)。读者还可以通过Q&A功能与作者在线直接交流。Q&A在线交流示例(源自Bio-101:e2003367.DOI: 10.21769/BioProtoc.2003367)后续,我们还将持续择优收录各类优质的高内涵实验方法于本手册中,诚邀更多国内外优秀同行参与本项目,分享成熟的实验方法,一起打造本领域的方法百科全书。中国科学院分子细胞科学卓越创新中心化学生物学技术平台简介为更充分实现原创性基础科研成果的社会价值,促进转化研究的开展,中国科学院分子细胞科学卓越创新中心化学生物学技术平台于2008年建立。主要以高通量实验技术为手段,利用全基因组siRNA等文库等进行功能基因组学研究,推动各研究组在生命科学各领域的创新性发现和研究,发掘新的潜在药物靶点,同时针对这些原创性新靶点进行活性化合物筛选,为创新驱动的新药筛选研发提供支持。秉承公共平台提供科研服务的理念,本平台已经为国内数十个科研院校/企业单位的上百个研究组/部门提供过技术服务,有效帮助到科研人员的论文专利和新药研发项目。Bio-protocol简介Bio-protocol于2011年在斯坦福大学创建,旨在提高科研的可重复性, 以助力科学发现。Bio-protocol期刊是Bio-protocol旗下一份同行评审的国际学术期刊,发表高质量的生命科学实验方案。至今,已发表了来自全球上万名优秀科研工作者(包括上百名院士及多名诺贝尔奖获得者)的4000多篇实验方案,并且同Science等多家国际权威科学杂志建立长期合作关系。目前,Bio-protocol期刊已被PMC,Web of Science (ESCI) 、Scopus收录。Bio-101是Bio-protocol旗下一个生命科学实验方法的共享平台, 致力于为全球生命科学研究工作者搭建一个分享、查找和讨论实验方法的开放平台, 让科研更高效。平台与Science、eLife 等期刊合作开通了“Request a Protocol”服务,已经为上万名读者解答实验相关的问题。(来源:BioscienceProtocols微信公众号)
  • 我国在细胞生物学领域获新进展
    我国科学家在细胞生物学研究中又获新进展。2月9日,国际著名学术期刊《自然—细胞生物学》(Nature Cell Biology)在线发表了中国科学院上海生命科学研究院生物化学与细胞生物学研究所研究员朱学良和美国华盛顿卡耐基研究所教授郑诣先的合作研究结果:Nudel和胞质动力蛋白在纺锤体基质组装中发挥重要作用,进而调控有丝分裂纺锤体的正确形成。  纺锤体是主要由微管形成的纺锤形的动态结构,负责真核细胞有丝分裂过程中遗传物质(染色体)的均等分离。因此,纺锤体的异常会引起遗传不稳定,从而导致细胞死亡或肿瘤、癌症等疾病的发生。早在几十年前,人们就提出可能存在一些独立于微管的基质成分,对纺锤体组装起着重要作用,但一直未能被证实。郑诣先研究组近来利用偶联有蛋白质激酶Aurora A的微小磁珠在非洲爪蟾卵抽提物中组装成的纺锤体,证明了一种富含生物膜的纺锤体基质(spindle matrix)的存在,并发现B型核纤层蛋白(Lamin)也是其中的一个重要成分。这种纺锤体基质与微管相辅相成,前者促进后者形成正常的纺锤体结构,而后者的聚合又增强前者的组装。另一方面,纺锤体的正确形成需要胞质动力蛋白(dynein),即一种被称作“分子马达”的能够朝向微管负端运动的蛋白质复合物。朱学良研究小组发现,Nudel是dynein的调节因子,并在有丝分裂中有重要功能。  作为中科院“海外合作伙伴计划”的成员,他们共同探索了纺锤体组装的机理。博士研究生马丽观察到体外纺锤体形成过程中微管和基质的详细变化,发现微管首先从Aurora A磁珠上长出,形成放射状的星体(aster),同时在微管上出现含Lamin B的颗粒 随着时间的推移,星体微管密度加大但长度变短,形成球状物,在此过程中,两个星体会融合形成以磁珠为两极的纺锤体,Lamin B的颗粒也变得高度富集。她和同事们发现,分离出的纺锤体基质中含有dynein和Nudel,并且Lamin B可以和Nudel直接结合。去除Nudel或失活dynein,都可以抑制基质的富集并使纺锤体组装停留在星体阶段。去除Lamin B后,则形成膨大的异常纺锤体。这些结果说明,Nudel和dynein可以通过聚集Lamin B等纺锤体基质成分来调节纺锤体的组装。而且,由于分离的纺锤体基质中还含有大量参与细胞信号转导、转录调控、膜运输等功能的重要蛋白质分子,研究人员推测,纺锤体基质可能还行使其他有待进一步认识的功能。  这项研究得到了科技部、国家自然科学基金委、中国科学院以及美国霍华德休斯医学院、美国卡耐基研究所的经费支持。
  • 五洲东方参展“2013年中国细胞生物学学会全国学术大会”
    五洲东方参展&ldquo 2013年中国细胞生物学学会全国学术大会&rdquo     大会现场报告  2013年4月19&mdash 21日,由中国细胞生物学学会主办,湖北省细胞生物学学会和武汉大学承办的&ldquo 中国细胞生物学学会2013年全国学术大 武汉&rdquo 在湖北省武汉市 武汉科技会展中心举办,北京五洲东方科技发展有限公司(www.ostc.com.cn)作为主要赞助商亮相本次大会。    公司展台  本次大会的主题是&ldquo 细胞-生命的基础&rdquo 。 会议除关注细胞生物学基本科学问题外,还特别关注干细胞与发育、细胞信号转导与疾病、细胞结构域细胞行为、神经细胞学、植物细胞学等重要应用和交叉领域的研究进展。会议邀请了细胞生物学领域著名专家报告当今细胞生物学基础与应用研究的最新成果与发展趋势,共有近千位全国各地细胞生物学研究的专业人员参加大会。    仪器展示    沟通交流  本次大会,北京五洲东方科技发展有限公司展示的产品除全国独家代理的德国Memmert CO2培养箱、德国CHRIST1-2冷冻干燥器、德国BRAND全套移液体系列产品外,隆重展出公司新代理的获得2012年美国权威科学技术杂志《R&D》R&D 100大奖的新一代原位转染仪美国iPorator电转染仪。 iPorator细胞转染仪,是细胞转染技术中的一次革命性的突破,它满足了目前不断提高的在生理相关性状态下,评估基因和基因产品在细胞中的所扮演角色的实验要求。iPorator可以将多种生物分子(如DNA,siRN和肽)原位转染进入在生理相关状态下的细胞单层或是完全分化后状态下的原代细胞和难转染细胞线,独特的性能得到广大参会师生的关注和咨询。
  • 千人齐聚 中国细胞生物学学会学术大会在京召开
    “中国细胞生物学学会第十二次学术大会暨第八届全体会员代表大会”在北京隆重举行  仪器信息网北京讯 2011年7月15-18日,由中国细胞生物学学会主办,中国科学院动物研究所、生物膜与膜生物工程国家重点实验室、计划生育生殖生物学国家重点实验室共同承办的盛会——“中国细胞生物学学会第十二次学术大会暨第八届全体会员代表大会”在北京九华山庄隆重举行,会议主题为“细胞活动、生命活力”。大会现场  1500余名来自全国各地科研院所、高等院校等单位代表参加了本次大会,中国科协副主席程东红出席会议并致辞。中国细胞生物学学会理事长裴钢院士在大会开幕式上作报告时指出,报名参加本届大会的青年学者与在校学生明显超出了预期,反映出中国细胞生物学研究的新生力量正在兴起,中国细胞生物学发展迎来了新的春天。裴钢院士还透露,最近我国利用IPS细胞克隆的小猪已经诞生,正待命名,这是我国细胞生物学研究领域的又一重大进展。中国细胞生物学学会理事长裴钢院士在大会上作理事会工作报告  本届大会既关注细胞生物学基本科学问题,还特别关注干细胞与再生医学、生殖细胞与发育、细胞稳态与疾病、基因、蛋白与细胞工程等重要应用和交叉领域的研究进展,蒲慕明、林鸿宣、贺福初、曹雪涛、尚永丰、陈志南、候凡凡、朱学良、周琪、舒红兵等十几位著名专家作了大会报告。报告人:中科院上海生命科学研究院蒲慕明研究员报告题目:Development of Neuronal Polarity报告人:中科院上海生命科学研究院林鸿宣院士报告题目:水稻产量相关性状的遗传调控机理研究报告人:第四军医大学陈志南院士报告题目:肿瘤细胞生物学与转化研究的未来与发展报告人:南方医科大学侯凡凡院士报告题目:蛋白质氧化损伤对肾脏细胞的病理生物学作用  本届大会还设立了11个分会场,主题分别为:干细胞与再生医学、生殖细胞与发育、细胞通讯与信号转导、细胞结构与细胞行为、免疫细胞生物学、神经生物学、细胞稳态与疾病、基因蛋白与细胞工程、植物细胞生物学、细胞生物学教学、现代细胞生物学技术。每个分会场均设有主报告,其余分会场报告则从投送的摘要中遴选产生。  本次大会十分重视墙报的运用,共展示了300余篇与干细胞与再生医学、生殖细胞与发育、细胞通讯与细胞转导等相关的最新论文摘要,每个墙报前都有专人负责讲解。墙报展厅现场  大会还特别颁发了CST杰出贡献奖、CST杰出成就奖、CST青年优秀论文奖以及CST优秀墙报奖。CST杰出贡献奖由兰州大学郑国锠教授获得,表彰其为中国细胞生物学发展做出的卓越贡献,主办方为获奖者将颁发了奖杯、证书及1万元奖金奖励。CST杰出成就奖分别由清华大学陈晔光教授和中科院上海生命科学研究院朱学良研究员获得,表彰其近五年来在细胞生物学领域内获得的重要研究成果和对我国细胞生物学发展作出的突出贡献,主办方为获奖者将颁发了奖杯、证书及6000元奖金奖励。颁发CST杰出贡献奖、CST杰出成就奖  大会同期还举办了仪器、试剂和耗材展览活动,蔡司、碧迪、艾本德、Life Technologies、默克密理博、贝克曼库尔特、赛默飞世尔、珀金埃尔默、罗氏、尼康、赛信通、美迪希、Abcam、普洛麦格、北京傲锐东源、北京东胜创新、安迪、北京五洲东方、吉泰、优宁维等近40家知名厂商参展。展会现场一角  据了解,细胞生物学是二十一世纪生命科学领域重要的前沿学科之一,也是当今发展最快、最活跃、与其它学科广泛交互的学科之一,本次盛会为促进我国细胞生物学领域专家的交流与合作起到了重要作用,下一届会议将于2013年在武汉召开。
  • GE HC推出用于快速有效在靶细胞中释放腺病毒信号通道传感物的试剂系统
    2005年11月13日华盛顿 DC消息——今天在华盛顿 D.C.的神经科学协会的会议上,通用电气医疗集团(GE Healthcare)宣布推出了Ad-A-Gene Vectors,一种范围广泛,随时可用,经过证实了的腺病毒载体基因释放试剂系统,随着快速开展瞬间细胞信号检测的实现,它为引导化合物分布,药物靶证实和基础研究提供了更多可能性。作为这系统的第一个产品,由于允许研究工作者在各种各样的细胞类型范围内,包括与疾病状态生理学有关的细胞类型中有效地研究细胞信号,所以该系统对二级 筛选和前期药物研发有很大帮助。按照惯例,研究工作者已经创作出了这些明显需要时间和分子生物学工作经验的方法。但是,使用Ad-A-Gene Vectors的话,就不需要有这种工作经验,并且节省时间,因为它提供了一种随时可用的试剂系统用于简单并高效地通过病毒转导将信号通道传感物释放到哺乳动物细胞中。研究工作者们只要简单地将Ad-A-Gene Vectors加进细胞培养基中,并且该转基因将在24小时之内被细胞表达,随时可用于检测。此外,这种随时可用的系统减少了错误并提供可重复的结果, 因为每批Ad-A-Gene Vectors的功能都是经过了证实和检测的。通用电气医疗集团Discovery Systems的产品开发副总裁 Burczak 说道:“由于研究工作所用的相关细胞类型越来越多,Ad-A-Gene Vectors能满足日益增长的,需要有一些方法能提供一种系统生物学的一体化和整体观察的需求。现在,研究工作者们有了一种在细胞内研究根本疾病路径的方便方法。此系统已经能够应用在开展药物治疗以及基础生物学研究中。在该产品的开发中,我们试图使它能用起来更简便,并且能与更多细胞类型兼容。”Ad-A-Gene Vectors既能和广范围的初级细胞也能和转化细胞一起使用,因此,研究工作者们能从有关细胞获得信息数据。该载体同样允许在一个细胞中进行多种路径的访问。这一点在药物靶证实中是特别有用的,因为它能让研究工作者们看到药物是如何能破坏各种路径的。每种复制缺损重组腺病毒制品包括编码一种蛋白质靶的基因或者融合进了EGFP(emerald FP)或者融合进了一种编码一个应答因子的基因中,该应答因子是控制报告基因,硝基还原酶[NTR(nitroreductase)]表达的。在开发Ad-A-Gene Vectors时,通用电气医疗集团获得了McMaster大学病理学和分子医学教授Frank Graham博士的许可,他是全球在分子病毒学领域中,特别是在腺病毒生物学方面最权威的研究者之一。Graham博士说道:“我们非常高兴地看到,我们在腺病毒和基因转移方面的工作促进开发了一批非常高效的用于基因递送的载体。 我深信通用电气医疗集团的技术将为研究工作者提供强有力的研究工具,用于在人工培养的哺乳细胞中有效地转移DNA和高效表达基因。在腺病毒载体的许多优点中,Ad-A-Gene Vectors DNA是不整合进寄主细胞基因组中的,因此传感物的表达和功能活性是不会受任何一种整合过程影响的。”通用电气医疗集团目前正在出售8种Ad-A-Gene Vectors,并预期在今年年底将有50种能大量供货。除试剂系统技术之外,通用电气医疗集团还为高通量细胞分析提供硬件和软件,以使生命科学研究工作者能在细胞内研究根本的疾病路径。
  • 滨松中国将参展中国细胞生物学学会2017厦门大会
    “中国细胞生物学会 2017201720172017年全国学术大会厦门”是以促进我国细胞生物学领域研究人员的交流与合作,推动中国细胞生物学科发展为目标,并由中国细胞生物学会主 由中国细胞生物学会主办,厦门大学生命科院、市技术协会上海博展有限公司共同承办,细胞应激生物学国家重点实验室(厦门大学)、细胞信号网络协同创新中心共同协办的中国细胞生物学会年。本次会议将于2017年9月26-29日在厦门国际会展中心举办,届时滨松中国将携生物科研用相机,以及数字病理切片扫描系统参展。届时欢迎参观(B46展台)。 sCMOS相机 ORCA-Flash 4.0 V3数字病理切片扫描系统 NanoZoomer-SQ
  • 中科大科学家发展单神经细胞 质谱技术研究取得进展
    p  近日,国际综合研究权威期刊《美国国家科学院院报》(PNAS)发表了题为《Single-Neuron Identification Of Chemical Constituents, Physiological Changes, And Metabolism Using Mass Spectrometry》的研究论文。该研究由中国科学技术大学生命学院神经退行性疾病研究中心暨中国科学技术大学脑资源库熊伟教授研究组与中科大化学学院黄光明教授研究组合作完成。该研究依托电生理膜片钳以及电喷雾离子源技术建立的稳定的单神经元胞内组分取样和质谱组分分析技术,对小鼠海马、前额叶、杏仁核、纹状体等脑区单个神经元内的数千种化学小分子进行了快速质谱检测,并且可以做到同步采集电生理信号,在单细胞层次上成功地完成了对神经元功能、代谢物组成及其代谢通路的研究。这项研究首次利用化学质谱方法直接无稀释的检测单个神经元中多种神经递质、代谢物、脂质等化学小分子,实现了单个神经元化学成分及代谢物的即时分析,该技术将目前神经细胞成分分析的研究推向了一个活细胞及单细胞水平,有望在单细胞层次上去研究神经生物学、代谢组学、毒理学等生命科学的重大问题,具有非常重要的应用前景。/pp  大脑中有亿万个神经细胞,这些神经细胞在细胞形态,突触连结,细胞结构,电生理以及生理功能上具有高度的多样性。不同种类的神经细胞中,其化学分子组成、含量、代谢也都有着很大的差别。因此,对脑内单个神经元的化学成分进行分析,则具有重要的生物学价值。质谱分析因为具有高灵敏度,大的线性范围以及高通量分析化学分子的特点,逐渐被用于单细胞的细胞代谢分析。但目前的方法需要使用大量有机试剂对细胞进行处理,无法保持采样时细胞的活性 冗长的处理和分离过程也导致较慢的分析速度,无法短时间内完成大量单细胞分析 并缺乏来自同一细胞的电生理信号 最终导致单细胞代谢物的质谱分析无法大规模用于神经细胞的分析。/pp  此研究成功建立了一套稳定的单细胞质谱分析技术,并对不同年龄段的小鼠海马、杏仁核、纹状体等脑区单个神经元中的谷氨酰胺、谷氨酸以及GABA等化学小分子进行定性、定量分析并对其进行神经元分类,最后利用该技术成功鉴定单个神经元内谷氨酰胺的代谢路径。这项方法的成熟与普及,必会为后续单个神经元组分分析、神经元分类以及病理状态下单个神经元中组分变化分析提供强有力的手段。/pp  该项工作由中科大生命学院博士后朱洪影、生命学院博士研究生邹桂昌、王宁在熊伟教授和黄光明教授的共同指导下完成。该研究工作得到了国家自然科学基金委重大研究计划、科技部、中科院战略性先导科技专项(B类)以及国家青年千人计划等的资助。该工作还得到中国科学技术大学同步辐射实验室光电离质谱线站的仪器与技术支持。/p
  • 细胞生物学研究的利器——仪器平台负责人经验谈
    细胞是生命的最小单位,细胞生物学是生命科学研究的重要领域。有专家说,“了解了细胞,我们就能了解生命”。细胞生物学是研究生命活动的一个重要前沿学科方向,这一学科分支众多,主要关注细胞形态结构、细胞生命活动功能、细胞遗传调控以及细胞与其生命活动环境当中的各种关系,而这一系列的研究离不开科学仪器的帮助。仪器信息网特别向中国科学院分子细胞科学卓越创新中心细胞分析技术平台约稿,以下内容为中科院分子细胞科学卓越创新中心科技条件处处长张文娟和中科院分子细胞科学卓越创新中心细胞分析技术平台主任边玮联合撰写,两位老师根据多年从业经验,详细介绍了8种在细胞生物学研究中应用到的“利器”。以下为供稿内容:荧光显微成像技术和流式细胞分析/分选技术是生命科学研究尤其是细胞生物学研究中应用最广泛、最频繁、需求量最大的实验技术手段。在中国科学院分子细胞科学卓越创新中心细胞分析技术平台18年的建设历程中,结合细胞生物学学科发展过程中不断提升的实验需求,平台经历了多次技术迭代、仪器功能升级、应用场景拓展和设备研发深入探索,已建立成为一个以荧光显微成像、流式细胞检测及分选和电子显微成像3个专业技术部门为核心,以严谨细致的科研服务为宗旨,以科研技术应用及创新为目标的细胞生物学研究技术装备体系。从荧光显微镜到超高分辨率荧光显微成像技术,从2激光4色流式细胞检测到光谱流式细胞分析技术,一路行来积累了一些经验,现将点滴体会分享如下。一、以荧光显微成像技术为代表的多种光学成像手段细胞生物学科研实验可以运用细胞和组织的显微成像技术,通过从几十纳米超高分辨率到厘米级大尺度的3D成像,获取生物大分子的时间及空间信息。荧光显微镜、激光共聚焦显微镜、活细胞工作站、超高分辨率显微镜、双光子显微镜、光片显微镜等是大型显微成像平台技术建立中不可缺少的仪器类型。1. 荧光显微镜荧光显微镜是研究中使用的最基础的成像实验工具,科研级荧光显微镜常规配有UV、BLUE、GREEN激发的荧光滤色块组,可以加配适合CFP、YFP及CY5等观察和成像的荧光滤色块组,结合制冷型彩色CCD或CMOS、软件及高性能计算机,实现明场和荧光显微成像获取显微图像和动态视频图像。图像采集分析软件能够对图像进行分析测量及后期图像处理。正置荧光显微镜可以配有微分干涉组件,匹配不同物镜4x、10x、20x、40x、60x调节组件可以获取样品形貌图像以及偏振光图像。倒置荧光显微镜通常配有相差组件,同时匹配长焦相差物镜,获取样品相差形貌图像。荧光光源有全光谱白光LED灯(寿命≥25000小时)、长寿命金属卤素灯荧光光源(寿命≥2500小时)、氙灯(寿命约1200小时)、高压汞灯等。由于传统高压汞灯使用额定寿命低(200小时),更换汞灯需要调光路,灯泡在使用过程中光效降低明显,灯熄灭后要等待冷却才能重新启动,点燃灯泡后不能立即关闭,一般需要等15min,且压力很高,紫外线强烈,使用中存在安全隐患,已逐步被取代。LED灯有诸多优点,如光效率高、发热少、寿命长、稳定性高、可调节光强、即开即用,由光纤导入显微镜,更换灯泡时无需调整光路,是荧光显微镜首选最优质的荧光光源。目前市场上荧光显微镜明场光源已由高亮度LED灯代替卤素灯,使用寿命超过20000小时,光强度可通过旋钮调节,也可配合灰度滤光片调节。显微镜公司会根据用户的实验需求、应用方向和预算,设计相应的配置技术方案,提供优质的售前售后服务。2. 激光共聚焦显微镜激光共聚焦显微镜是基于点扫描共聚焦成像原理,实现多通道荧光成像、Z-stack成像、time-lapse成像、多点成像、拼图成像等,有ZOOM成像、ROI成像、光谱扫描、多维扫描(xyz、xyt、xyzt、xy扫描)等多种成像模式。激光共聚焦显微镜主要由全自动荧光显微镜、激光光源、扫描装置、检测系统及专用软件和图像工作站组成。显微镜配备10x、20x、40x、63x等高数值孔径共聚焦专用物镜和高精度全电动载物台,精准控制步进精度;多功能同步控制软件和图像工作站可以在获图过程中实时调节参数,也可以对图像进行后期的重构和分析;搭配特定的硬件和软件模块,还可以进行FRET、FRAP、FLIM、FCS等功能成像和分析。常用的固体激光器波长有405nm、458nm、488nm、514nm、561nm、638nm,也可根据实验需求配置592nm、660nm、775nm等更多波长激光器,功率约30-100nw。气体激光器有多谱线Ar离子激光器(发射波长458nm、476nm、488nm、496nm、514nm),氦氖543nm激光器和氦氖633nm激光器,由于使用寿命较短、损耗快,已逐步被固体激光器取代。新一代连续光谱白光激光器能够在440-790nm步进1nm任一波长最佳激发样品荧光,最大程度提高激发效率,更适合于实验中新型染料应用。检测系统一般有3-4个荧光通道和1个透射光通道,可实现多通道荧光成像和明场成像,通过光栅或棱镜分光可进行光谱扫描成像。探测器为光电倍增管PMT,超高灵敏度GaAsP检测器更有利于捕捉微弱荧光信号从而获得更好信噪比的高质量荧光图像。近年来基于Confocal平台搭配超高分辨模块(如Lighting技术、Airyscan 2技术等)实现了超高分辨率显微成像,成像分辨率可达到XY120nm,Z轴200nm。优化的高分辨扫描技术、共振扫描技术等提高了扫描成像速度,可在更短的采集时间内以更大视野和超高分辨率实现低光毒性高质量成像3. 活细胞成像宽场活细胞成像设备是借助高精度的Z轴防漂装置、CO2气体及温控装置、灌流装置、专用物镜和高分辨率制冷型CCD或SCMOS等元件,进行长时程活细胞形态及荧光标记信号的追踪。转盘共聚焦显微成像系统运用双转盘技术,极大的减少了对样品的光漂白和光毒性,采集荧光信号选用科研级sCMOS/EMCCD相机具有高光电转换量子效率和低读出噪音优势,加上超级复消色差物镜、超高分辨率模块(如Sora、SR)结合deconvolution 专业的图像软件和高性能图像工作站分析处理,获得具有高信噪比、高时空分辨率的动态图像。4. 超高分辨率荧光显微成像多种光学原理实现的超高分辨率荧光显微成像STED、SIM、STOM、TIRF等技术已经在生命科学研究中应用,由Stefan W. Hell团队推出的easy STED、easy 3D STED、自适应照明技术以及新型超高分辨率专用荧光染料的应用,免去了复杂手动校准光路过程,降低了光漂白和光毒性,提高了仪器的实用性和稳定性,获得更高分辨率和成像深度,是超高分辨率活细胞成像和3D成像的高端技术设备。国内已有多个研究团队推出超高分辨率显微成像仪器,Sparse-SIM实现了活细胞光学成像空间分辨率60nm的突破,集GI-SIM/ TIRF-SIM/3D-SIM/nonlinear SIM的多模态结构光超分辨成像系统实现了更快的成像速度、更长的成像时程和更高的图像分辨率,能够满足生物学研究中大多数荧光成像实验的需求。超高分辨率荧光显微成像成为可视化活细胞分子动态变化的新技术,使细胞生物学研究进入了新时代,其技术的发展和应用将对生命科学研究产生重大影响。5. 光片显微成像实验动物大尺度组织3D荧光显微成像一直是困扰生物研究的技术难题,运用双光子显微成像技术可以在活体动物组织上实现超过300µm的成像深度。光片显微成像技术由于采用片层激发和面成像技术,减少了光漂白和光毒性,大大提高了成像速度和图像的信噪比,结合组织透明化技术的研发和应用,实现了几厘米的组织3D荧光显微成像。针对不同实验动物组织的各种基于水溶性、有机溶剂、水凝胶等的透明化方法经过不断应用探索,科研人员在平台技术支撑下成功获取了实验鼠脑组织、肝脏、肾脏、心脏、肺、肌肉、胰腺、乳腺、脂肪、睾丸、类器官甚至骨组织等的3D图像。对于实验动物胚胎、小型实验动物(线虫、果蝇、斑马鱼等)的活体发育过程也能够运用光片显微成像技术进行3D动态捕获。光片显微成像图像结果的输出和重构处理分析是实验中面临的瓶颈,改进数据存储、输出和图像处理技术势在必行,同时新的理论技术的发展、相关硬件技术的改进以及制样方法的开发都将促进光片荧光显微技术的应用。目前有多个商品化国际品牌设备,国内研发团队的产品日渐成熟,且已经在DEMO过程中深受用户的认可和依赖,尤其在透明化样品制备技术及图像数据的输出和处理等瓶颈技术方面都有深受关注和切实的优化,使得光片显微成像整体实验流程更加顺畅。6. 组织切片高通量成像和光谱成像组织切片高通量成像设备可完成100-200片组织切片全自动明场、偏光和多通道荧光显微成像,兼容26x76mm、52x76mm、102x76mm多尺寸玻片数字化扫描成像,在图像采集程序设置、自动对焦、采集速度、灵敏度、大视野成像及拼接、成像模式快速切换等技术要素上有很优异的特色,专业软件可批量分析处理图像数据同时兼容第三方数据分析软件,是组织切片形态学、病理学研究和蛋白质功能研究的有利工具。最新推出的组织切片多光谱荧光标记技术和光谱成像技术满足了光谱范围更广的荧光标记和显微成像实验需求,光谱成像范围达到440 nm –780nm,实现100个以上标志物自动化、超多重生物标志物检测和高速显微成像。借助专业的图像分析软件进行后续图像的光谱拆分、定量分析和更多个性化分析。二、流式细胞分析/分选技术1. 流式细胞分析流式细胞分析技术能够对细胞群、细胞亚群乃至单个细胞进行多参数、快速的定性/定量分析,分析速度可达每秒上万个细胞。流式细胞分析仪主要由液流系统、光学系统和电子系统构成,相较于荧光显微成像设备,仪器运行时在系统稳定性和操作复杂性等方面都对使用者的技术掌握程度和操作能力有较高的要求。流式细胞分析仪配备多种波长激光器,通常有355nm、405nm、488nm、561nm、640nm及其它波长激光器,根据实验需求配置检测通道的滤光片组。流式细胞分析多采用单管上样模式,也可借助孔板上样装置实现96和384孔板高通量上样和数据读取功能。声波聚焦技术将待测细胞精确聚焦在样本流的中心位置,最大限度避免细胞堵塞,从而实现在提高样本通量的同时,保证读取样品速度及获取的数据质量和精度。多色荧光分析是流式细胞分析技术发展的必然趋势,目前传统滤片式流式细胞分析仪已经能够选择26种不同波长激光器,且可同时安装9个激光器,支持多达50个高性能检测器,提高灵敏度并降低了噪声,从硬件水平上支持48色荧光标记细胞样品的采集和分析。而光谱型流式细胞技术的诞生,为多色荧光分析打开了全新的技术之门,目前商品化设备可以配置7个波长激光器和188个检测器,覆盖360nm – 920nm光谱范围,能够提供更为精确和全面的荧光信号信息,可从混合细胞群体中检测微弱信号和稀有细胞群体,同时自发荧光探测功能、光谱数据库信息以及光谱数据解析算法都可以为科研人员获得更高保真度的数据和更精准的分析解读提供便利,同时也使得科研人员意识到随之而来的多色流式细胞样品制备技术的挑战。质谱流式技术独辟蹊径地将质谱技术和流式分析技术相结合,采用金属标记抗体避开了荧光串色和自发荧光的困扰问题,检测通道数量可达上百个。但金属标记抗体高昂的实验成本一直是限制其广泛应用的制约因素。除大家熟悉的Fluidigm公司等国外厂商外,近年来国内已有至少两家本土化公司推出国产同类设备并配备专业团队进行抗体标记技术研发,国内外已有多个团队和商业公司针对质谱流式技术进行进一步的开发,有望提高检测速度,降低实验成本。2.流式细胞分选流式细胞分选实验面对的是分选后细胞活性、目标细胞得率、样品是否污染等诸多情况,与仪器的校准情况、液流稳定性、喷嘴孔径、细胞浓度、细胞状态、目的细胞比例、标记荧光强度、分选速度、分选时长等因素甚至环境情况密切相关。仪器使用者需要在仪器调试、清洗维护等方面投入大量精力和时间以保障细胞分选实验的顺利进行。在大型流式细胞技术平台,为保障多用户、多研究方向的流式细胞分选实验需求,流式细胞分选仪器通常会配置4-7个激光器,实现二路、四路甚至六路分选和孔板分选。全光谱超高速流式细胞分选仪配置高达9个激光器和60个检测器,既可以选择传统补偿模式进行数据分析,也可以切换成全光谱分析模式,以进行更精细的细胞亚群鉴定。由于流式细胞检测和分选实验样品是单细胞悬液,样品的浓度、特性、目标细胞比例、多色荧光试剂的设计等等因素都构成了流式细胞样品的复杂性和实验的不确定性,因此充分做好实验前的准备工作,保证较好的待测样品质量、充足的试剂耗材储备、良好的仪器状态、技术人员高超的技能等都将促进实验取得高质量结果。三、结语生命科学前沿研究的实验需求与高端仪器技术发展相互依赖、相互促进、相辅相成。激光显微切割技术、单细胞捕获技术、大颗粒样品分选技术,以及成像流式技术、成像质谱流式技术、在体流式细胞技术、光电关联成像技术等跨类别的技术融合,专业图像分析和处理软件的功能开发,为科研人员带来更优质实验结果、更多实验需求想象空间的同时,技术和仪器设备本身也将在应用中不断创新、完善和突破。近年来随着国家在大型科研仪器和关键部件研制领域项目的大力支持和投入,国内大型仪器技术快速发展,如超高分辨率荧光显微成像系统、光片显微成像系统、超快三维荧光成像系统、拉曼单细胞分选仪、质谱流式细胞分析仪等等国产高端仪器都信心满满地走进科研单位,出色的承担前沿科研实验,性能和品质在实际运行中不断改进和完善。相信在不远的将来,实验室里常规配备的是国产显微镜,仪器平台运行的是品质优异的国产激光共聚焦显微成像系统和国产流式细胞分析分选仪,大型共享技术平台能有更多的国产高端仪器,彻底摆脱卡脖子困境。除此之外,面向未来的科研发展范式,大型科研仪器的运行管理也将会成为一门需要科研人员、技术人员和管理人员认真钻研的学科。本文作者:张文娟 中科院分子细胞科学卓越创新中心 公共技术中心常务副主任,高级工程师张文娟,中科院分子细胞科学卓越创新中心公共技术中心常务副主任,高级工程师。2007年于复旦大学获得生物信息学博士学位, 2007年-2012年先后在复旦大学及美国贝勒医学院从事表观遗传学博士后研究工作。曾获中国博士后科学基金、2006年度上海市科技进步2等奖。2008年,被世界500强美国Honeywell公司上海总部研发中心聘为科学顾问(兼)。 2009年获The Lalor Foundation Travel Award,2011和2012年为International Society for Developmental Origins of Health and Disease(DOHaD)会员。2012年9月回国担任中科院生化与细胞所科研处副处长(副研究员),2013年8月起全面主持科研处工作。2015年2月起担任条件建设管理中心主任/公共技术服务中心执行副主任(高级工程师),2017年起任科技条件处处长/上海生命大型仪器区域中心管委会办公室主任。主要负责技术平台管理体系及条件建设的整体规划与组织实施,统筹科研设备和试剂耗材采购,协调装备研制项目管理。2019年度获上海市大型科学仪器设施共享服务先进个人(管理类)。2019年起任《分析测试技术与仪器》第八届编委。边玮:中科院分子细胞科学卓越创新中心 细胞分析技术平台主任边玮:中科院分子细胞科学卓越创新中心细胞分析技术平台主任。2004年参与筹建细胞分析技术平台,致力于平台的基础建设、人才队伍建设、技术建立和新技术发展,全面负责细胞分析技术平台的运行管理和服务共享。擅长激光共聚焦显微成像、超高分辨率荧光显微成像、活细胞成像、多光谱荧光成像、透明化样品光片成像、组织切片高通量扫描成像和实验室培养细胞及组织切片制样技术,熟悉流式细胞检测分析分选技术、电子显微镜生物样品制备和成像、实验室用超纯水系统等相关大型仪器分析技术,高度关注相关仪器设备和行业技术发展状态。作为项目负责人承担三项中科院仪器设备功能开发项目,两项上海市专业技术人才知识更新工程急需紧缺人才培养项目。现任上海显微学学会理事会理事,生命科学专业委员会主任。中国电子显微学学会理事会理事。《生命的化学》杂志编辑委员会编委。关于中国科学院分子细胞科学卓越创新中心中国科学院分子细胞科学卓越创新中心(简称分子细胞卓越中心)成立于2015年,依托中国科学院原上海生命科学研究院生物化学与细胞生物学研究所(简称生化与细胞所)建设及管理。分子细胞卓越中心致力于生命科学前沿基础研究与应用基础研究,依托分子生物学国家重点实验室、细胞生物学国家重点实验室、上海市分子男科学重点实验室,开展基因调控、RNA与表观遗传学,蛋白质科学,细胞信号转导,细胞与干细胞生物学,癌症和其他重大疾病机理等领域的研究。2020年,中心以第一单位/通讯作者发表高水平论文144篇;IF≥10的代表性论文76篇,其中Cell 3篇、Nature Methods 1篇、Nature Genet 1篇、Cancer Cell 4篇、Immunity 1篇、Nature Cell Biology 1篇、Cell Research 5篇。
  • 五洲东方参加第三届细胞结构与功能的信号基础研讨会
    2010年5月14-19日,由中国细胞生物学学会&ldquo 细胞信号转导分会和细胞精细结构与功能分会&rdquo 共同主办的&ldquo 第三届细胞结构与功能的信号基础研讨会&rdquo 在革命根据地井冈山顺利召开。来自中科院上海生化细胞所、清华大学、北京大学等60多个研究所和重点大学的近140位权威专家、院士、教授、一流学者参会,就细胞生物学的最新研究、细胞信号转导、细胞结构与功能的关系进行讨论与交流。 五洲东方作为实验室通用仪器的赞助商参加了此次会议,展出了Thermo Scientific 8000 CO2培养箱、Brand移液产品、Sigma离心机等。尤其是Thermo Scientific 8000 CO2培养箱是细胞培养和研究的必备工具,引起了在场专家和学者的极大兴趣。 Thermo Scientific 8000 CO2培养箱全国总代理 - 北京五洲东方科技发展有限公司 地址:北京市海淀区北四环中路265号(100083) 电话:010-82388866
  • 裴钢、孟安明两位院士获中国细胞生物学学会两大奖项
    p style="text-indent: 2em margin-bottom: 10px line-height: 1.5em margin-top: 10px text-align: justify "8月5日,中国细胞生物学学会2020年全国学术大会暨学会成立四十周年庆在美丽的苏州金鸡湖畔开幕,开幕式上,颁发了两项中国细胞生物学学会创新奖子奖项:同济大学教授/中国科学院分子细胞科学卓越创新中心研究员、中国科学院院士裴钢荣获中国细胞生物学学会终身贡献奖,清华大学生命科学学院教授、中国科学院院士孟安明获中国细胞生物学学会-CST杰出成就奖。br//pp style="text-align: center margin-top: 10px "img style="max-width: 100% max-height: 100% width: 550px height: 364px " src="https://img1.17img.cn/17img/images/202008/uepic/bc3615b3-c4f0-4cb8-bbe3-20a2dd41e664.jpg" title="颁奖1.png" alt="颁奖1.png" width="550" vspace="0" height="364" border="0"//pp style="text-align: center margin-top: 10px "陈晔光理事长为裴钢院士颁奖/pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em margin-top: 10px "strong裴钢院士获奖理由/strong/pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em margin-top: 10px text-align: justify "裴钢院士长期从事细胞信号转导及转化研究,发现了G蛋白偶联受体信号转导调控以及与其他信号转导通路间相互作用的新机制,为包括癌症、艾滋病、阿尔兹海默症、阿片滥用等重要疾病的发病机理及诊治提供了重要线索和潜在靶点。曾担任中国细胞生物学学会理事长,为我国细胞生物学学科和中国细胞生物学学会的发展做出了卓越贡献,并长期担任Cell Research主编,为该杂志成为国际一流学术期刊做出重要战略贡献。/pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em margin-top: 10px "strong中国细胞生物学学会终身贡献奖/strong/pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em margin-top: 10px text-align: justify "该奖项用于表彰为中国细胞生物学学科发展、科学研究、教育培训、人才培养等方面做出杰出贡献的认识,主要面对年龄为60岁以上的细胞生物学工作者。该奖项自2009年设立,每两年评选一次;2019年起改为每年评选一次,每次评选一人,由学会奖励工作委员会负责评审,在全国细胞生物学学术大会上想获奖者颁发金牌和证书,减免会议注册费。/pp style="margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center margin-top: 10px "img style="max-width: 100% max-height: 100% width: 550px height: 365px " src="https://img1.17img.cn/17img/images/202008/uepic/e7a968ab-608d-41fc-a467-81b443ad84df.jpg" title="颁奖2.png" alt="颁奖2.png" width="550" vspace="0" height="365" border="0"//pp style="margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center margin-top: 10px "罗凌飞副理事长、高翔监事长、GST大中华区总经理谢英为孟安明院士颁奖br//pp style="text-indent: 2em margin-top: 10px "strong孟安明院士获奖理由/strong/pp style="text-indent: 2em margin-top: 10px text-align: justify "孟安明院士主要以斑马鱼为模式系统,发现了调控早期胚胎发育中图式形成的新基因,阐明了它们在相关细胞信号转导中的作用机制,为我国模式动物领域及发育生物学学科的发展做出了杰出贡献。/pp style="text-indent: 2em margin-top: 10px "strong中国细胞生物学学会杰出成就奖/strong/pp style="text-indent: 2em margin-top: 10px text-align: justify "该奖项用于表彰近5年在细胞生物学领域内获得重要研究成果,促进我国细胞生物学发展的会员。该奖项自2009年设立,每两年评选一次;2019年起改为每年评选一次,每次评选2人,由学会奖励工作委员会负责评审,在全国细胞生物学学会大会上向获奖者颁发金牌和证书,减免会议注册费。获奖者受邀做大会特邀学术报告。/p
  • 新型质谱技术让神经化学研究进入单细胞时代
    p style="TEXT-ALIGN: center"img title="神经细胞.jpg" src="http://img1.17img.cn/17img/images/201704/noimg/5ea1ac41-e831-42dc-ab38-5e418c9181f5.jpg"/ /pp 世界上没有两片完全相同的叶子,细胞也是。然而,科学家们在进行现代生物学研究时,大多时候都考察的是细胞群体,而忽略了细胞异质性。/pp  就拿神经细胞来说,大脑中有亿万个神经细胞,这些神经细胞在细胞形态,突触连结,细胞结构,电生理以及生理功能上具有高度的多样性。不同种类的神经细胞中,其基因组、蛋白组、化学分子组成、含量、代谢也都有着很大的差别。在直径不到1毫米的一个很小的脑区,可能就存在几十种甚至上百种完全不同的神经元以及胶质细胞类型。甚至很多情况下,即使物理距离上相邻的两个神经元也可能是两个不同的神经元类型。因此,对脑内单个神经元的基因组、蛋白质组以及代谢组进行分析,具有重要的生物学价值。/pp  单细胞技术在近年发展非常迅速,比如单细胞测序,已经广泛应用于各种生命学科的研究。2014年1月Nature Methods上发表的年度特别报道,将“单细胞测序”(Singled out for sequencing)的应用列为2013年度最重要的方法学进展。/pp  单细胞技术不仅在测序方面取得了极大进展,单细胞质谱分析也正在逐渐得到更多的关注。与用于分析单个细胞基因组的单细胞测序不同,单细胞质谱主要是研究单个细胞内的代谢物情况,例如化学小分子的组成、含量和代谢等等。单细胞质谱的优势在于可以高通量检测目前其它单细胞技术无法检测的小分子化合物,以及它们的代谢过程。同时,由于质谱本身的优势,不需要采取测序或者特异性抗体等外部手段,就可以精确分析检测到的化学物质信息,可以说是“物美价廉”。 不过,由于质谱技术本身的局限性,目前还无法做到类似单细胞测序那样的大规模测量。/pp style="TEXT-ALIGN: center"    多学科交叉合作,开发单神经细胞质谱/pp  2013年,熊伟教授结束了在美国国立卫生研究院的博士后研究工作,回国后加入了中国科学技术大学生命科学学院。在申请中组部“青年千人计划”时,熊伟教授认识了另一位中科大化学学院的“青千”黄光明教授,当时,黄光明教授课题组正在发展一种小样品(pL级别)质谱测量技术。经过多次讨论,他们决定将两个实验室的优势技术进行结合,开发单神经细胞质谱这一新技术。/pp  目前质谱技术在神经科学中的应用,主要还是采用对大量组织细胞匀浆后的样品进行分析。在单细胞检测中,质谱分析因为具有高灵敏度,大的线性范围以及高通量分析化学分子的特点,逐渐被用于单细胞的细胞代谢分析。但目前的方法需要使用大量有机试剂对细胞进行处理,无法保持采样时细胞的活性 冗长的处理和分离过程也导致较慢的分析速度,无法短时间内完成大量单细胞分析 并缺乏来自同一细胞的电生理信号 最终导致单细胞代谢物的质谱分析无法大规模用于神经细胞的分析。/pp style="TEXT-ALIGN: center"  新技术让质谱分析活体单个神经元成为现实/pp  2017年1月26日,熊伟教授与黄光明教授等人在PNAS上发表了一项题为“Single-neuron identification of chemical constituents, physiological changes, and metabolism using mass spectrometry”的研究。在这项新研究中,研究团队依托电生理膜片钳以及电喷雾离子源技术建立了一种稳定的单神经元胞内组分取样和质谱组分分析技术。/pp   img title="神经细胞2.jpg" src="http://img1.17img.cn/17img/images/201704/noimg/6e5915a4-ec84-4cb3-b4c3-d7724a1fc4d3.jpg"//pp /pp style="TEXT-ALIGN: center"  span style="FONT-SIZE: 14px"膜片钳与单细胞质谱分析联用技术分析单个神经细胞示意图/span/pp  电生理膜片钳能将玻璃微电极接触并吸附在细胞膜上,高阻抗封接后将膜打穿成孔,记录膜片以外部位的全细胞膜的离子电流。而电喷雾技术主要是利用一个高压交流电使分析物被离子化然后被质谱检测,该离子源具有较强的抗干扰能力。与传统的质谱方法相比,这一新方法最大的优势是可以原位对活细胞进行取样,并且同时采集细胞位置、电生理活动以及细胞内化学成分等多方面的信息。/pp style="TEXT-ALIGN: center"  质谱分析让神经化学研究进入单细胞水平/pp  研究人员利用这一方法对小鼠海马、前额叶、杏仁核、纹状体等脑区单个神经元内的数千种化学小分子进行了快速质谱检测,并同步采集了电生理信号。/pp  海马、前额叶、杏仁核、纹状体这四个核团无论是在人类还是低等动物中都非常重要,与学习、记忆和情绪等行为以及相关疾病如阿尔茨海默病、帕金森病等有着密切的联系。这些核团内的神经元种类繁多,目前国内外有多个课题组正在从单细胞测序的角度解析这些核团的神经元分类及对其功能进行鉴定。熊伟教授表示,他们对这四个核团神经元进行质谱研究,也正是想从单细胞水平全面分析这些核团神经元的代谢组学情况,以及这些代谢通路和代谢组在学习、记忆和情绪等行为及其相关疾病中的作用机制。/pp  在这项研究中,研究人员主要对不同年龄段的小鼠海马、杏仁核、纹状体等脑区单个神经元中的谷氨酰胺(Gln)、谷氨酸(Glu)以及GABA等化学小分子进行定性、定量分析并对其进行神经元分类。/pp  Glu和GABA是中枢神经系统两大类神经递质(兴奋性或抑制性)的代表性分子。早期人们认为一个神经元内只存在一种递质,其全部末梢只能释放同一种递质,这被称之为戴尔原则(Dale' s principle)。然而随着科学技术的发展,人们逐渐认识到两种或两种以上递质(包括调质)可存在于同一神经元内,在适当的刺激下可经突触前膜共同释放。这种新的观点得到了众多电生理及免疫组化等实验的证明。然而这些证据大部分都是间接的证据,尚无直接证据表明二者的共存。这项研究首次在单细胞水平,通过质谱分析给出了二者共存于同一神经元内的直接证据。同时,研究人员还发现了一些尚未在神经系统中被发现的小分子,他们正在努力研究其作用和分子机制。/pp  此外,研究还鉴定了单个神经元内谷氨酰胺的代谢路径。Gln-Glu-GABA通路是谷氨酸和GABA代谢的经典通路,尤其是谷氨酸,它不仅仅作为兴奋性神经递质存在于神经元内,还大量参与到蛋白质的合成代谢以及细胞能量供应体系中。而GABA是中枢神经系统的抑制性递质,可以防止神经细胞过度兴奋。二者与各种脑疾病都有着密切的关系,如自闭症、阿尔茨海默病、帕金森病等。该通路在大脑的发育和衰老中扮演着非常重要的角色。对单个神经元内谷氨酰胺的代谢路径的鉴定对于深入理解这条代谢通路以及与之相关的疾病机制具有重要意义。/pp  这项研究首次利用化学质谱方法直接无稀释地检测单个神经元中多种神经递质、代谢物、脂质等化学小分子,对单个神经元化学成分及代谢物进行了即时分析,并将目前神经细胞成分分析的研究推向了一个活细胞及单细胞水平。这一技术在将来或许能够帮助科学家们在单细胞层次上去研究神经生物学、代谢组学、毒理学等生命科学的重大问题。/pp  谈到临床应用前景时,熊伟教授的态度也十分肯定。他表示,该技术允许研究人员对血液、脑脊液等样品中的单个细胞进行质谱检测,结合相应的生物标记物,完全有可能对阿尔茨海默病、帕金森病、抑郁症等神经精神疾病的早期诊断提供帮助。/pp   熊伟教授从事神经科学研究,他认为现代神经科学研究需要技术的快速研发以及多领域多学科的交叉合作,必须发展包括显微成像、分子示踪、质谱分析、光遗传学以及转基因操作等最新的生物、物理、化学与工程材料等多学科交叉技术。熊伟教授表示,对他而言,科研不仅仅是工作,也是兴趣,尤其是对新技术的热切追求,驱动着他不断前行。熊伟教授及其研究团队也正在和中国科大的其它实验室展开合作,和不同的领域的科学家交流和分享科研心得是一种享受。/pp  该项工作由中科大生命学院博士后朱洪影、生命学院博士研究生邹桂昌、王宁在熊伟教授和黄光明教授的共同指导下完成。该研究工作得到了国家自然科学基金委重大研究计划、科技部、中科院战略性先导科技专项(B类)以及国家青年千人计划等的资助。该工作还得到中国科学技术大学同步辐射实验室光电离质谱线站的仪器与技术支持。 /pp style="TEXT-ALIGN: center" img title="熊伟.jpg" src="http://img1.17img.cn/17img/images/201704/noimg/2a3b00c2-8807-4156-a379-59653af1915d.jpg"//pp style="TEXT-ALIGN: center"  熊伟 教授/pp  熊伟教授是国家中组部“青年千人计划”获得者,2001年毕业于北京大学生命科学学院,获理学学士学位。2006年毕业于北京大学生命科学学院,获理学博士学位。2006至2013年,在美国国立卫生研究院(NIH)酒精滥用与酒精中毒研究所(NIAAA)做博士后研究工作。2013年3月加入中国科学技术大学生命科学学院。中科院脑科学与智能技术卓越创新中心骨干成员。中科大神经退行性疾病研究中心暨脑资源库核心成员。长期从事与神经化学、药理学、小分子药物研发相关的神经科学研究,运用多种先进的实验技术从分子、细胞水平、到动物行为进行了深入系统的研究,并取得了系列重要成果。研究工作发表在Nature Neuroscience, Nature Chemical Biology, Journal of Experimental Medicine, PNAS, Journal of Neuroscience, Molecular Pharmacology等国际学术期刊上。获得过多项国家级基金资助。/p
  • 专访熊伟教授:新型质谱技术让神经化学研究进入单细胞时代
    p style="text-align: center "img title="1.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/0bb94937-6370-4e0c-8471-e1a4f208f43b.jpg"//pp  采访嘉宾:熊伟 (中国科学技术大学生命科学学院教授,博士生导师)/pp  世界上没有两片完全相同的叶子,细胞也是。然而,科学家们在进行现代生物学研究时,大多时候都考察的是细胞群体,而忽略了细胞异质性。/pp  就拿神经细胞来说,大脑中有亿万个神经细胞,这些神经细胞在细胞形态,突触连结,细胞结构,电生理以及生理功能上具有高度的多样性。不同种类的神经细胞中,其基因组、蛋白组、化学分子组成、含量、代谢也都有着很大的差别。在直径不到1毫米的一个很小的脑区,可能就存在几十种甚至上百种完全不同的神经元以及胶质细胞类型。甚至很多情况下,即使物理距离上相邻的两个神经元也可能是两个不同的神经元类型。因此,对脑内单个神经元的基因组、蛋白质组以及代谢组进行分析,具有重要的生物学价值。/pp  单细胞技术在近年发展非常迅速,比如单细胞测序,已经广泛应用于各种生命学科的研究。2014年1月Nature Methods上发表的年度特别报道,将“单细胞测序”(Singled out for sequencing)的应用列为2013年度最重要的方法学进展。/pp  单细胞技术不仅在测序方面取得了极大进展,单细胞质谱分析也正在逐渐得到更多的关注。与用于分析单个细胞基因组的单细胞测序不同,单细胞质谱主要是研究单个细胞内的代谢物情况,例如化学小分子的组成、含量和代谢等等。单细胞质谱的优势在于可以高通量检测目前其它单细胞技术无法检测的小分子化合物,以及它们的代谢过程。同时,由于质谱本身的优势,不需要采取测序或者特异性抗体等外部手段,就可以精确分析检测到的化学物质信息,可以说是“物美价廉”。 不过,由于质谱技术本身的局限性,目前还无法做到类似单细胞测序那样的大规模测量。/pp  strong1. 多学科交叉合作,开发单神经细胞质谱/strong/pp  2013年,熊伟教授结束了在美国国立卫生研究院的博士后研究工作,回国后加入了中国科学技术大学生命科学学院。在申请中组部“青年千人计划”时,熊伟教授认识了另一位中科大化学学院的“青千”黄光明教授,当时,黄光明教授课题组正在发展一种小样品(pL级别)质谱测量技术。经过多次讨论,他们决定将两个实验室的优势技术进行结合,开发单神经细胞质谱这一新技术。/pp  目前质谱技术在神经科学中的应用,主要还是采用对大量组织细胞匀浆后的样品进行分析。在单细胞检测中,质谱分析因为具有高灵敏度,大的线性范围以及高通量分析化学分子的特点,逐渐被用于单细胞的细胞代谢分析。但目前的方法需要使用大量有机试剂对细胞进行处理,无法保持采样时细胞的活性 冗长的处理和分离过程也导致较慢的分析速度,无法短时间内完成大量单细胞分析 并缺乏来自同一细胞的电生理信号 最终导致单细胞代谢物的质谱分析无法大规模用于神经细胞的分析。/pp  strong2. 新技术让质谱分析活体单个神经元成为现实/strong/pp  2017年1月26日,熊伟教授与黄光明教授等人在PNAS上发表了一项题为“Single-neuron identification of chemical constituents, physiological changes, and metabolism using mass spectrometry”的研究。在这项新研究中,研究团队依托电生理膜片钳以及电喷雾离子源技术建立了一种稳定的单神经元胞内组分取样和质谱组分分析技术。/pp style="text-align: center "img title="2.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/705ccfee-dabe-4de5-8fa8-1bde4c73181d.jpg"//pp style="text-align: center "strong膜片钳与单细胞质谱分析联用技术分析单个神经细胞示意图/strong/pp  电生理膜片钳能将玻璃微电极接触并吸附在细胞膜上,高阻抗封接后将膜打穿成孔,记录膜片以外部位的全细胞膜的离子电流。而电喷雾技术主要是利用一个高压交流电使分析物被离子化然后被质谱检测,该离子源具有较强的抗干扰能力。与传统的质谱方法相比,这一新方法最大的优势是可以原位对活细胞进行取样,并且同时采集细胞位置、电生理活动以及细胞内化学成分等多方面的信息。/pp  strong3. 质谱分析让神经化学研究进入单细胞水平/strong/pp  研究人员利用这一方法对小鼠海马、前额叶、杏仁核、纹状体等脑区单个神经元内的数千种化学小分子进行了快速质谱检测,并同步采集了电生理信号。/pp  海马、前额叶、杏仁核、纹状体这四个核团无论是在人类还是低等动物中都非常重要,与学习、记忆和情绪等行为以及相关疾病如阿尔茨海默病、帕金森病等有着密切的联系。这些核团内的神经元种类繁多,目前国内外有多个课题组正在从单细胞测序的角度解析这些核团的神经元分类及对其功能进行鉴定。熊伟教授表示,他们对这四个核团神经元进行质谱研究,也正是想从单细胞水平全面分析这些核团神经元的代谢组学情况,以及这些代谢通路和代谢组在学习、记忆和情绪等行为及其相关疾病中的作用机制。/pp  在这项研究中,研究人员主要对不同年龄段的小鼠海马、杏仁核、纹状体等脑区单个神经元中的谷氨酰胺(Gln)、谷氨酸(Glu)以及GABA等化学小分子进行定性、定量分析并对其进行神经元分类。/pp  Glu和GABA是中枢神经系统两大类神经递质(兴奋性或抑制性)的代表性分子。早期人们认为一个神经元内只存在一种递质,其全部末梢只能释放同一种递质,这被称之为戴尔原则(Dale' s principle)。然而随着科学技术的发展,人们逐渐认识到两种或两种以上递质(包括调质)可存在于同一神经元内,在适当的刺激下可经突触前膜共同释放。这种新的观点得到了众多电生理及免疫组化等实验的证明。然而这些证据大部分都是间接的证据,尚无直接证据表明二者的共存。这项研究首次在单细胞水平,通过质谱分析给出了二者共存于同一神经元内的直接证据。同时,研究人员还发现了一些尚未在神经系统中被发现的小分子,他们正在努力研究其作用和分子机制。/pp  此外,研究还鉴定了单个神经元内谷氨酰胺的代谢路径。Gln-Glu-GABA通路是谷氨酸和GABA代谢的经典通路,尤其是谷氨酸,它不仅仅作为兴奋性神经递质存在于神经元内,还大量参与到蛋白质的合成代谢以及细胞能量供应体系中。而GABA是中枢神经系统的抑制性递质,可以防止神经细胞过度兴奋。二者与各种脑疾病都有着密切的关系,如自闭症、阿尔茨海默病、帕金森病等。该通路在大脑的发育和衰老中扮演着非常重要的角色。对单个神经元内谷氨酰胺的代谢路径的鉴定对于深入理解这条代谢通路以及与之相关的疾病机制具有重要意义。/pp  这项研究首次利用化学质谱方法直接无稀释地检测单个神经元中多种神经递质、代谢物、脂质等化学小分子,对单个神经元化学成分及代谢物进行了即时分析,并将目前神经细胞成分分析的研究推向了一个活细胞及单细胞水平。这一技术在将来或许能够帮助科学家们在单细胞层次上去研究神经生物学、代谢组学、毒理学等生命科学的重大问题。/pp  谈到临床应用前景时,熊伟教授的态度也十分肯定。他表示,该技术允许研究人员对血液、脑脊液等样品中的单个细胞进行质谱检测,结合相应的生物标记物,完全有可能对阿尔茨海默病、帕金森病、抑郁症等神经精神疾病的早期诊断提供帮助。/pp  strong4. 后记/strong/pp  熊伟教授从事神经科学研究,他认为现代神经科学研究需要技术的快速研发以及多领域多学科的交叉合作,必须发展包括显微成像、分子示踪、质谱分析、光遗传学以及转基因操作等最新的生物、物理、化学与工程材料等多学科交叉技术。熊伟教授表示,对他而言,科研不仅仅是工作,也是兴趣,尤其是对新技术的热切追求,驱动着他不断前行。熊伟教授及其研究团队也正在和中国科大的其它实验室展开合作,和不同的领域的科学家交流和分享科研心得是一种享受。/pp  strong关于研究人员/strong/pp  该项工作由中科大生命学院博士后朱洪影、生命学院博士研究生邹桂昌、王宁在熊伟教授和黄光明教授的共同指导下完成。该研究工作得到了国家自然科学基金委重大研究计划、科技部、中科院战略性先导科技专项(B类)以及国家青年千人计划等的资助。该工作还得到中国科学技术大学同步辐射实验室光电离质谱线站的仪器与技术支持。/pp  strong关于熊伟教授/strong/pp style="text-align: center "img title="3.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/feba38ed-9bd1-4fc4-9016-bb72aef280df.jpg"//pp style="text-align: center "strong熊伟 教授/strong/pp  国家中组部“青年千人计划”获得者,2001年毕业于北京大学生命科学学院,获理学学士学位。2006年毕业于北京大学生命科学学院,获理学博士学位。2006至2013年,在美国国立卫生研究院(NIH)酒精滥用与酒精中毒研究所(NIAAA)做博士后研究工作。2013年3月加入中国科学技术大学生命科学学院。中科院脑科学与智能技术卓越创新中心骨干成员。中科大神经退行性疾病研究中心暨脑资源库核心成员。长期从事与神经化学、药理学、小分子药物研发相关的神经科学研究,运用多种先进的实验技术从分子、细胞水平、到动物行为进行了深入系统的研究,并取得了系列重要成果。研究工作发表在Nature Neuroscience, Nature Chemical Biology, Journal of Experimental Medicine, PNAS, Journal of Neuroscience, Molecular Pharmacology等国际学术期刊上。获得过多项国家级基金资助。/pp  strong参考文献:/strong/pp  Single-neuron identification of chemical constituents, physiological changes, and metabolism using mass spectrometry/pp /p
  • 五洲东方参加2012第二届分子与细胞生物学大会
    由国家外国专家局国外人才信息研究中心承办的2012第二届分子与细胞生物学大会于2012年5月18-20日在中国北京国际会议中心举行。  本届大会共设置了四十多场尖端研讨会,涵盖了分子细胞生物学研究的各方面内容。主要包括:细胞生物学的基础研究、分子生物学的基础研究、功能基因组学与遗传学、分子和细胞生物学的创新技术、化学生物学、生物技术/制药工业中的分子细胞生物学、重大疾病的分子机制、微生物分子细胞生物学、植物分子细胞生物学、动物分子细胞生物学与生物技术。 同期还举办了第五届世界癌症大会和第三届国际神经科技大会。  我公司作为赞助商参加了此次大会,展示的产品有德国BRAND全套移液体系列产品(移液器、瓶口分配器等),美国Thermo Scientific磁力加热搅拌器,自有品牌BIODROPSIS超微量核酸蛋白测定仪BD-2000,加拿大Biocomp全自动密度梯度制备仪,德国Bandlein超声波清洗仪等,受到了广大与会者的关注。  五洲东方会更努力的为用户提供更全面更优质的服务!
  • 走进干细胞于生物学国家重点实验室
    p style="text-indent: 2em "2020年3月初的一天,武汉战“疫”正紧。武汉市金银潭医院院长张定宇接待了一批特殊的客人,他们带来了一种治疗新冠肺炎的新型干细胞药物。/pp style="text-indent: 2em "干细胞药物,即便对很多专业医学人士来说,也是个新鲜事物。“干细胞是什么?”“有用吗?用了会有什么后果?”“做可以,你们要承担所有责任!”这支来自干细胞与生殖生物学国家重点实验室的战“疫”科技攻关团队,一腔热血逆行武汉,却吃了不少闭门羹。/pp style="text-indent: 2em "幸运的是,张定宇信任他们。/pp style="text-indent: 2em "strong多年积淀 一朝亮剑/strong/pp style="text-indent: 2em "3月5日,CAStem细胞注射液治疗新冠病毒致呼吸窘迫综合征(ARDS)临床试验在金银潭医院正式启动。/pp style="text-indent: 2em "CAStem是一款干细胞药物的名字,意为“中科院的干细胞”,是实验室自主研发的干细胞药物。干细胞与生殖生物学国家重点实验室副研究员、国家干细胞库执行主任郝捷请同事把这几个字母写在自己的防护服上,坚定地走进了医院的隔离区。/pp style="text-indent: 2em "在这里,她看到凝聚了大家智慧和心血的细胞药物一滴一滴输入新冠肺炎患者体内。医护人员发现,这些接受了干细胞药物治疗的病人的呼吸功能、肺部病灶特别是肺纤维化症状均有改善。/pp style="text-indent: 2em "在送接受过干细胞药物治疗的痊愈患者出院时,一位患者激动地对他们说:“你们研发的药物太好了,给了我第二次生命!”/pp style="text-indent: 2em "不仅在武汉,这支队伍还先后在北京、哈尔滨开展相关临床研究工作,三地共救治74名患者。/pp style="text-indent: 2em "CAStem——这个带有鲜明中科院烙印的产品,成为新冠肺炎疫情期间国家药品监督管理局批复的唯一一个具有自主产权的干细胞药物,更入选了国家救治新冠患者的“三药三方案”。/pp style="text-indent: 2em "4月14日,科技部负责人在国务院联防联控机制召开的新闻发布会上郑重宣布:干细胞应用于新冠肺炎的临床治疗安全性良好!/pp style="text-indent: 2em "此次抗疫攻关中,干细胞与生殖生物学国家重点实验室亮出两件利器:CAStem干细胞注射液和新一代恒温CRISPR法核酸检测试剂盒(CASdetec)。后者革新了核酸检测的技术原理,有望摆脱对昂贵PCR仪器的依赖,让检测走进社区甚至家庭。/pp style="text-indent: 2em "多年关注呼吸系统疾病、把干细胞药物推向临床一线、开发新一代核酸检测技术、致力于相关标准及知识产权政策发布和完善、全链条布局打通创新成果转化渠道… … 干细胞与生殖生物学国家重点实验室积淀多年的工作,在疫情暴发的非常时期发挥了重要作用。/pp style="text-indent: 2em "“这次疫情的考验让我们知道,这是一支召之即来、来之能战、战之能胜的队伍,是一群有家国情怀的人的聚集体。”中科院院士、干细胞与生殖生物学国家重点实验室研究员周琪说。/pp style="text-indent: 2em "strong时代变迁 奋斗不变/strong/pp style="text-indent: 2em "干细胞与生殖生物学国家重点实验室的前身是“计划生育生殖生物学国家重点实验室”,于1991年成立。它是我国最早开展生殖生物学研究的基地,是美国洛氏基金会在全世界设立的“二十一世纪生殖与避孕研究网络”7个成员之一,也是世界卫生组织在全世界设立的6个“胚胎着床研究中心”之一,在世界和中国生殖研究领域占有一席之地。/pp style="text-indent: 2em "进入新世纪,世界科技格局和研究范式发生全新变化,实验室前瞻性布局了生殖工程研究方向,把前沿生殖技术的创建及应用列为实验室的重要发展目标,并以此为核心,不断壮大干细胞研究团队,到2015年,实验室从事干细胞与再生医学领域研究的研究员达到9位。/pp style="text-indent: 2em "干细胞等先进技术与传统生殖生物学的交叉融合,为实验室生殖学科的发展带来了新的机遇,在生殖生物学研究方向产出了多项具有里程碑意义的重大创新成果,如利用四倍体补偿技术证明iPS细胞的全能性、同性生殖、人工配子、表观遗传新机制、非人灵长类胚胎超长时间培养等,使传统学科焕发了新的生机。/pp style="text-indent: 2em "到2015年,实验室已成长为我国干细胞和生殖生物学领域领先的研究实体。与此同时,“计划生育”已经不再是国家需求,这4个字已经不能代表实验室所承担的使命,通过申请、论证、现场评估,获科技部批准,实验室成功更名为“干细胞与生殖生物学国家重点实验室”,并在2016年国家重点实验室评估中,进入“优秀类”国家重点实验室序列。/pp style="text-indent: 2em "strong基础研究 硕果累累/strong/pp style="text-indent: 2em "干细胞与生殖生物学国家重点实验室主要从事生殖生物学、干细胞与再生医学和创新细胞技术研究,近年研究成果多次入选“年度中国生命科学十大进展”或“年度中国十大科技进展”,并入选 “改革开放40年40项标志性研究成果”。/pp style="text-indent: 2em "在基础理论研究方面,干细胞与生殖生物学国家重点实验室面向世界科技前沿,深挖领域内最基本的科学问题,探索生殖、发育、遗传、衰老全生命周期的调控机制,不断突破领域内科学认知的边界,获得了诸多重大理论突破:首次将胚胎第一次细胞命运分化的选择推到了2—细胞胚胎时期,成果入选2019年度中国生命科学十大进展;首次实现灵长类胚胎长时程体外培养,开启哺乳动物繁衍新方式;发掘跨代遗传新机制,发现个体内代谢环境通过改变生殖细胞基因组甲基化或tsRNAs介导(RNA而非DNA),可将获得的代谢紊乱表型跨代传递给子代,成果入选2016年度中国十大科技进展;揭示了灵长类器官(血管、胰岛、卵巢等)退行的特异性机制,发展通过基因或干细胞治疗干预退行性疾病的有效策略。/pp style="text-indent: 2em "在技术原始创新方面,干细胞与生殖生物学国家重点实验室面向国家人口健康领域的重大需求,取得了多项原始创新成果:构建了多种新型干细胞,包括小鼠孤雄单倍体干细胞(2012年度中国十大科技进展)、大鼠孤雄单倍体胚胎干细胞、异种杂合二倍体胚胎干细胞;开发了具有自主知识产权的基于Cas12b的基因编辑技术;建立同质性原始态人类胚胎干细胞,首次在体外模拟了人类X染色体的随机失活;实现了哺乳动物的无性生殖(入选了The Scientist杂志评选的“2018年度科技进步”);首次建立衰老研究的灵长类动物模型,例如LMNA基因突变的“儿童早衰症”灵长类动物模型,以及“长寿基因”SIRT6敲除的食蟹猴(2018年度中国生命科学十大进展);同时规模化制备了大动物的突变体,建立了多个能准确模拟人类疾病的大动物模型和可用于猪新品系培育的育种新材料,如创制了首例猪甲减模型、提高生产性状猪等。/pp style="text-indent: 2em "strong转化研究 成果卓著/strong/pp style="text-indent: 2em "干细胞与生殖生物学国家重点实验室强化基础和应用基础研究,布局转移转化研究,促进基础研究和应用研究的融通发展,以保持实验室的创新性、先进性和引领性。/pp style="text-indent: 2em "实验室站在时代前沿,积极尝试自我审视和革新。在学科建设方面,始终以“四个面向”为出发点,布局有发展前景、有重大创新产出潜力的学科;在团队建设方面,搭建良性人才流动机制,聚集国内外一流人才;实验室大胆尝试体制和机制革新,如联合国内相关领域的国家重点实验室或优势力量成立联盟或创新实体,通过标准引领、知识产权保护支撑成果转化。/pp style="text-indent: 2em "实验室从解决国家人口健康领域重大需求出发,锚定健康领域重大疾病的诊治,以治疗重大疾病切入口,找寻这些重大疾病治疗的方案和手段,围绕产业链部署创新链,围绕创新链部署产业链,从而实现从基础研究到产业应用全链条的研究模式。/pp style="text-indent: 2em "实验室面向国家重大需求和国民经济主战场,围绕产业链布局,临床转化成果卓著。早在2007年实验室就前瞻性地布局建设北京干细胞资源库,于2019年获批成为国家干细胞资源库,是我国首家通过人类遗传资源(CNAS)许可的干细胞资源库,也是国际首个IOS20387认可机构。实验室借助国家干细胞资源库独特的干细胞资源,突破“干细胞药物”质控、制剂等核心技术,建立了临床级人胚干细胞及多种功能细胞分化平台,并自主创新开发近十种干细胞药物的全链条关键平台技术,研发包括多巴胺神经前体细胞、运动神经前体细胞、视网膜色素上皮细胞、M类细胞、肝细胞、心肌细胞等一系列干细胞。/pp style="text-indent: 2em "实验室承担首批国家药品监督管理局和国家卫生健康委员会备案干细胞治疗帕金森病、老年黄斑变性等重大疾病临床研究项目,其中开展的干细胞治疗帕金span style="text-indent: 2em "森病临床试验被Nature跟踪报道,认为“这标志着中国使用人胚胎干细胞进行临床试验的开始,也是世界上首次使用这些细胞治疗帕金森病的试验”。目前开展包括帕金森病、黄斑变性、卵巢早衰、半月板损伤等十余种疾病临床研究9项。/span/pp style="text-align: center text-indent: 2em "img src="https://img1.17img.cn/17img/images/202010/uepic/ef6a5ace-393a-4dc2-b4bb-54f837870626.jpg" title="20201020424171511.jpg" alt="20201020424171511.jpg" width="482" height="265" style="text-align: center max-width: 100% max-height: 100% width: 482px height: 265px "//pp style="text-align: center text-indent: 2em "①武汉科技攻关团队圆满完成抗疫任务,获金银潭医院“荣誉职工”称号。img src="https://img1.17img.cn/17img/images/202010/uepic/b0ef0ab8-18f3-44c9-8619-b68c5980a372.jpg" title="2020102042585420.jpg" alt="2020102042585420.jpg" width="483" height="326" style="max-width: 100% max-height: 100% width: 483px height: 326px "//pp style="text-align: center text-indent: 2em "②郝捷身穿防护服在武汉市金银潭医院隔离区。/pp style="text-align: center text-indent: 2em "img style="max-width: 100% max-height: 100% width: 446px height: 298px " src="https://img1.17img.cn/17img/images/202010/uepic/b14f967a-93c4-4c59-810b-7e82dd1661f9.jpg" title="20201020424171360.jpg" alt="20201020424171360.jpg" width="446" height="298"//pp style="text-align: center text-indent: 2em "③首次实现雄性同性生殖。/pp style="text-align: center text-indent: 2em "img style="max-width: 100% max-height: 100% width: 442px height: 309px " src="https://img1.17img.cn/17img/images/202010/uepic/b6083866-3223-45bc-a86d-a97403816979.jpg" title="20201020424171512.jpg" alt="20201020424171512.jpg" width="442" height="309"//pp style="text-align: center text-indent: 2em "④实验室与瑞士辉凌公司达成战略合作协议。/pp style="text-align: center text-indent: 2em "span style="font-size: 18px "strong向国际化迈进/strong/span/pp style="text-indent: 2em "2018年底,干细胞与生殖生物学国家重点实验室周琪课题组和李伟课题组合作,在《细胞》上发表了一项重要成果——哺乳动物的第一次细胞命运决定。/pp style="text-indent: 2em "对绝大多数生物来说,生殖的起点就是精卵融合,最初的一颗受精卵,经过无数次细胞的分裂和分化,最终变成一个完整个体。在这个过程中,每个细胞的命运是如何决定的?这是生殖与发育生物学和细胞生物学的一个核心问题。/pp style="text-indent: 2em "在此之前,科学家已经确证在4—细胞期时就已出现了能调控细胞命运选择的分子差异。那么在2—细胞期,也就是受精卵一分为二的时期,这两个细胞的命运是否已经注定不同?/pp style="text-indent: 2em "经过探索,他们发现一种内源逆转录病毒来源的基因——LincGET在两个细胞中的表达量存在差异,LincGET表达量高的那个细胞,更倾向于选择内细胞团的命运倾向,也就是更有可能发育为胎儿,而另一个细胞则更有可能发育为胎盘。/pp style="text-indent: 2em "这项研究得到了瑞士辉凌医药公司的资助。“一项值得做的工作。”辉凌公司相关负责人对这项研究如此评价,“尽管我们是一家制药公司,但是我们与实验室的合作,并不是希望研究成果能直接创造财富,而是希望让自己始终保持创新能力。”/pp style="text-indent: 2em "瑞士辉凌医药公司于2017年与实验室达成战略合作协议,2018~2022年资助2000万美金,支持实验室开展生殖生物学领域的基础及转化研究,促进科研成果转化及临床应用。双方合作成立辉凌生殖医学研究所,设立“辉凌生殖健康基金”,面向全国科研院所、高校和医院征集项目,截至目前共资助46项生殖医学转化研究项目。此项合作探索了国有科研机构开展国际合作和产业化研究的新模式。/pp style="text-indent: 2em "干细胞与生殖生物学国家重点实验室一直注重国际合作交流,在科研布局、项目组织、标准制定等方面向国际化迈进。/pp style="text-indent: 2em "中国于2007年加入国际干细胞组织(ISCF),自2014年起周琪担任ISCF轮值国主席,他倡导国际大科学计划,与多家国际组织和知名科学家搭建起交流渠道,并联合英国、美国、法国、日本等多国推动多项干细胞国际标准提案,引领干细胞国际标准制定。实验室推进中日韩合作项目,建立中日韩三方的干细胞生物学与再生医学研究合作框架体系;2019年3月实验室与韩国干细胞学会、日本再生医疗学会签署中日韩三边合作备忘录,共同约定在国际范围内开展再生医学领域国际合作研究项目,加强国际学术交流;同时,实验室主持中韩科技部双边合作项目——针对东亚人群的临床级干细胞研发及应用。/pp style="text-indent: 2em "实验室推动细胞学会干细胞分会与学术期刊出版商Wiley达成合作备忘录;实验室于2010年发起“国际生殖生物学前沿大会”,该大会每两年举办一次,历届会议都特别邀请国际生殖生物学领域顶尖科学家,交流领域最前沿成果,同时设有“青年科学家专场”报告,为领域后备人才提供提升机会。2021年实验室将承办“世界生殖大会”,这是我国第一次作为东道主主持由生殖生物学领域多国学术组织联合发起的专业届会。/pp style="text-indent: 2em "多年来,干细胞与生殖生物学国家重点实验室始终以“四个面向”为出发点,以实现“四个率先”为发展目标,以脚踏实地的工作和丰硕的科研成果为我国建成世界科技强国提供有力支撑。(李晨阳)/pp style="text-align: center text-indent: 2em "span style="font-size: 20px "strong干细胞与生殖生物学/strong/span/pp style="text-align: center text-indent: 2em "span style="font-size: 20px "strong国家重点实验室简介/strong/span/pp style="text-indent: 2em "干细胞与生殖生物学国家重点实验室是我国干细胞与生殖健康基础研究领域唯一的国家重点实验室,于1991年开始组建,并于1993年底通过验收。/pp style="text-indent: 2em "实验室的研究定位是面向我国人口安全和人民健康的重大需求,在干细胞与生殖生物学领域开展前瞻性和引领性研究,深入探索重大基础科学问题,研发新型研究工具和疾病治疗方法,服务国家创新驱动发展战略,提升国民健康水平和人口质量。主要研究方向包括再生医学研究、生殖健康研究和创新细胞技术研究。/ppbr//p
  • 华粤行细胞生物学新技术研讨会—香港站
    2012年7月,华粤行仪器有限公司(我司)细胞生物学新技术巡回研讨会来到科研创新实力雄厚的香港大学,与医学院生化系的师生们进行了一次丰富精彩的技术交流。 会上,我司市场经理向与会师生介绍了细胞转染及细胞活力分析等方面的新产品,并向大家演示了日本NEPA 21 新一代全能型高效基因转染系统,韩国Nanoentek JULI智能型荧光细胞监测仪,ADAM全自动细胞计数与活力分析仪等仪器的操作方法。 同时,我司联合生化系三个实验室,进行了jurkat细胞、原代神经元细胞及活体鸡胚的电转染演示实验,均获得了较高的转染效率和细胞存活率。实验者对NEPA21的转染效果给予了较高的评价。我司市场经理与参会师生们进行技术交流我司为参会师生展示并介绍相关仪器我司市场经理为师生们讲解并演示仪器操作 jurkat细胞转染GFP质粒转染效果图 原代神经元细胞转染GFP质粒转染效果图
  • 中国细胞生物学学会2018年全国学术大会隆重开幕
    p  “中国细胞生物学学会2018年全国学术大会· 南京”于上周(4月11日)在南京国际博览会议中心盛大开幕,1500余名来自全国各地科研院所、高等院校等单位的代表参加了本次大会。大会为期4天,旨在促进我国细胞生物学领域研究人员的交流与合作,进一步推动中国细胞生物学学科的发展。/pp style="text-align: center "img title="11.JPG" src="http://img1.17img.cn/17img/images/201804/insimg/e0202c28-1bc8-4567-b26b-88e87e7617eb.jpg"//pp style="text-align: center "strong大会现场/strong/pp  本次盛会是由中国细胞生物学学会主办,医药生物技术国家重点实验室、模式动物与疾病研究教育部重点实验室、南京大学模式动物研究所、南京江北新区/南京生物医药谷发展中心、上海博生会展有限公司共同承办、南京大学-南京生物医药研究院、江苏省细胞与发育生物学会共同协办。/pp  大会开幕式中,中国细胞生物学学会名誉理事长裴钢院士、中国细胞生物学学会理事长陈晔光院士、中国细胞生物学学会监事长高翔教授分别致开幕辞。/pp style="text-align: center "img title="12.JPG" src="http://img1.17img.cn/17img/images/201804/insimg/54e8cc54-56cf-438c-8989-068e83b6434e.jpg"//pp style="text-align: center "strong中国细胞生物学学会名誉理事长 裴钢院士/strong/pp style="text-align: center "img title="13.JPG" src="http://img1.17img.cn/17img/images/201804/insimg/7dc47e71-2473-4013-a117-a259515170a3.jpg"//pp style="text-align: center "strong中国细胞生物学学会理事长 陈晔光院士/strong/pp style="text-align: center "strongimg title="15.JPG" src="http://img1.17img.cn/17img/images/201804/insimg/7d3a7535-2767-4995-b3ec-c29ba54eb603.jpg"//strong/pp style="text-align: center "strong中国细胞生物学学会监事长 高翔教授/strong/pp  随后,大会为首都医科大学附属儿童医院、成都生物研究所、复旦大学人体科学馆、中科院动物所、河北安国中学、华西医学院、济南大学、昆明动物博物馆、上海交通大学医学院、生物治疗国家重点实验室、细胞应激生物学国家重点实验室、浙江大学医学院等12个中国细胞生物学学会科学普及基地举行了授牌仪式。中国细胞生物学学会科学普及基地的设立标志着中国细胞生物学学会在细胞生物学科学技术教育、传播与普及方面迈上了一个新台阶。/pp style="text-align: center "img title="21.JPG" src="http://img1.17img.cn/17img/images/201804/insimg/6fdc1a4e-7492-421c-a0c5-13e190aa6296.jpg"//pp style="text-align: center "strong中国细胞生物学学会科学普及基地授牌仪式/strong/pp  开幕式结束后,大会进入主题报告。中国细胞生物学学会特别邀请了第二军医大学东方肝胆外科医院王红阳院士、中国科学院神经科学研究所张旭院士、德克萨斯大学西南医学中心Joseph S.Takahashi院士、中科院遗传与发育生物学研究所李家洋院士等重磅嘉宾进行主题演讲。/pp style="text-align: center "img title="17.jpg" src="http://img1.17img.cn/17img/images/201804/insimg/3592f40d-76ac-4ecc-8f7f-77f1ae1dfc22.jpg"//pp style="text-align: center "strong第二军医大学东方肝胆外科医院 王红阳院士/strong/pp style="text-align: center "img title="18.JPG" src="http://img1.17img.cn/17img/images/201804/insimg/4c5f7452-f3fb-46b5-ae5c-31bd628b651e.jpg"//pp style="text-align: center "strong中国科学院神经科学研究所 张旭院士/strong/pp style="text-align: center "img title="19.JPG" src="http://img1.17img.cn/17img/images/201804/insimg/1d820279-cded-4f3f-b13b-c376472dc1b6.jpg"//pp style="text-align: center "strong德克萨斯大学西南医学中心 Joseph S.Takahashi 院士/strong/pp style="text-align: center "img title="20.JPG" src="http://img1.17img.cn/17img/images/201804/insimg/6603bb48-fbfa-4b47-b42e-de93f6affd18.jpg"//pp style="text-align: center "strong中科院遗传与发育生物学研究所 李家洋院士/strong/pp  本次中国细胞生物学学会2018年全国学术大会共设立了14个分会场,有202位国内外知名科学家和青年科学家作分会场报告。分会场主题分别包括:RNA-蛋白质调控机器在细胞命运决定及个体生殖发育中的作用、发育编程与代谢调控、神经系统发育调控机制、神经信号传递与神经系统疾病、生物钟与健康及适应性、细胞自噬、细胞生长分化与疾病、细胞再生与转化医学、植物干细胞的维持与分化调控、植物器官建成的信号网络、肿瘤细胞微环境、细胞器互作与动态调控、神经干细胞与神经系统功能调控、细胞生物信息学与健康大数据。/pp  除了开展分主题学术交流外,4月10日下午,大会还设立了基金委基金申请、就业宣讲会、资深专家见面会、“创意课堂”大赛、改进教学方法和在国际杂志发表教学研究论文、细胞自噬专家示范授课、青年教师讲课比赛5个特色活动以及华夏源细胞治疗行业论坛、WLLA青年论坛:发育& 干细胞、院校企业创新创业联盟委员会议暨首届研讨会等5个暖场活动。/pp  此外,大会十分重视科研成果的交流与沟通,会议论文集共收录305篇最新论文摘要包括126篇墙报摘要,并在会期中安排专门的墙报展示时间,为参会代表提供更为广泛的交流平台。大会同期还举办了仪器、试剂和耗材展览活动,有70家知名厂商参展。/pp  中国细胞生物学学会2018年全国学术大会· 南京的召开,将对我国细胞生物学领域专家的交流与合作起到重要的促进作用,大会不仅为广大科技工作者搭建了学术交流平台,也为广大细胞生物学学生提供了一个就业平台,极大程度推动了细胞生物学的发展。/p
  • 华粤行细胞生物学新技术研讨会—合肥站!
    2012年5月,华粤行仪器有限公司(我司)细胞生物学新技术巡回研讨会携日本NEPA 21 新一代全能型高效基因转染系统来到科研创新实力雄厚的中国科技大学。为科研工作中遇到的难转染的免疫细胞-P493-6细胞提供了一种高效的转染方式。 P493-6细胞是人B淋巴细胞源细胞系,实验室采用脂质体转染法完全不奏效,利用病毒侵染方式也仅能得到不足5%的转染效率,这种困境一度让师生感到沮丧。而NEPA21 新一代全能型高效基因转染系统的尝试,获得了令实验者惊喜的转染效果。师生对NEPA21 全能型高效基因转染系统给予了高度评价。 NEPA21不需要转染试剂盒,利用优化的程序即可达到高的转染效率,为各种难转染细胞,如原代细胞、干细胞、神经细胞、免疫细胞、血液细胞等,以及离体组织和动物活体的转基因研究带来了便利。NEPA21进行P493-6细胞GFP质粒转染效果图(图片由中科大提供)
  • 化学生物学领域首个重大研究计划结题 投资2亿资助160项
    p  12月6日,国家自然科学基金委员会(以下简称基金委)审议批准同意“基于化学小分子探针的信号转导过程研究”重大研究计划(以下简称该计划)结束。该计划是基金委在“十一五”期间启动的第一批重大研究计划,也是基金委启动的化学生物学领域的第一个重大研究计划。自2007年2月启动以来,共资助项目160项,其中培育项目132项,重点项目14项,集成项目9项,战略研究项目5项,资助费用2亿元,全部资助项目已于2015年底结题。/pp  信号转导是生命的最基本活动,是本世纪的研究前沿与热点领域。开展基于分子探针的信号转导过程研究,一方面可以更深刻地认识生命的本质和规律,另一方面可以为精准调控和利用这些过程提供物质(探针分子和药物)和技术(检测和诊断方法)储备。该计划既推动了化学和生物医学领域的深度交叉与融合,又面向国家重大发展战略需求,与《国家中长期科学和技术发展规划纲要》中涉及的生物医学等内容形成有机互补,充分发挥了化学与生命科学等多学科综合交叉的优势。/pp  计划实施期间,研究人员以化学小分子探针及相应的新方法、新技术为主要研究手段,针对生命体系信号转导中的重要过程,开展化学生物学研究,揭示信号转导的调控规律,为重大疾病的诊断和防治提供新的标记物、新的药物作用靶点和新的先导结构,为创新药物的发现奠定基础,取得了如下主要学术成果:/pp  一是创新性地发展了一系列多种探测信号转导过程的化学方法,实现了在分子水平、细胞水平和活体动物水平上获取生物学信息的新技术突破 特别是发展了针对生物大分子的合成、特异标记与操纵方法,使生物大分子的化学合成、修饰和生物正交调控能力获得了极大的提高。如北京大学陈鹏课题组将非天然氨基酸定点插入技术与生物正交的“化学脱笼”技术相结合,提出了一种理性设计小分子酶激活剂的全新策略:先通过非天然氨基酸技术将激酶的关键赖氨酸残基(保守位点)保护起来,使其丧失活性 再通过开发生物正交断键反应将保护脱去,使其从抑制状态中恢复活性。这一突破把“蛋白质激活的理性设计”从概念验证提升到了拓展应用阶段,具有重要的意义。该技术已经成功应用于重要的激酶如MEK-1、FAK及原癌基因Src激酶的特异激活,为研究与激酶相关疾病的分子基础提供了有效工具。/pp  二是系统性地获取了300多种针对细胞信号转导过程的新型分子探针,并以此为工具,围绕细胞命运调控的重要节点和细胞信号转导过程的关键分子事件,深入研究了其调控规律,揭示了相关分子机制,充分展现了化学探针在揭示生物学通路和作用机制研究中的巨大潜力。如上海交通大学陈国强课题组和中国科学院昆明植物研究所孙汉董课题组合作,对近500个新天然小分子化合物的抗白血病效应进行筛选,发现了adenanthin(腺花素)和pharicin B等在白血病细胞中调控基因表达和细胞分化的分子探针 进而基于腺花素分子探针发现了其靶向的过氧化还原酶Prx-I/II,揭示了腺花素靶向Prx-I/II诱导AML细胞分化的信号通路。在此基础上,他们以PRX-I为靶标发现了新的诱导AML细胞分化的新化合物。上述研究为开展靶向Prx I和Prx II的抗肿瘤药物研发奠定了重要基础。/pp  三是将信号转导过程研究与靶标发现相结合,将靶标发现与功能确证和化合物筛选相融合,基于化学生物学的药物发现新模式,发现了一批重要的药物先导化合物。如中国科学院上海药物研究所蓝乐夫、杨财广、蒋华良和华东理工大学李剑等课题组在研究致病菌信号转导调控致病力的生物学途径和分子机制的基础上,发现了小分子化合物可通过“非抗生素”效应减弱致病力,控制耐药菌感染。他们基于转肽酶SrtA晶体结构设计筛选策略,结合结构优化,获得具有广谱活性的小分子抑制剂,具有在细菌上靶向性干预SrtA的生物学功能。进而基于金黄色色素的表型筛选策略获得窄谱抑制剂萘替芬,发现并确证其作用靶标是CrtN。上述小分子抑制剂不杀菌或者抑制细菌生长,但是均可以有效治疗耐药金黄色葡萄球菌感染的实验小鼠。这些成果为旨在缓解抗生素耐药的“非抗生素”策略抗菌感染新药研究验证了概念,提供了新靶标和先导化合物。/pp  在该计划资助下,研究人员发表研究论文2400余篇,其中Nature、Cell、Nature Chemical Biology、PNAS、J. Am. Chem. Soc.、Angew. Chem. Int. Ed.、Blood、Cell Stem Cell、Cancer Cell等有重要有影响的化学生物学、化学、生物学和医学杂志370余篇,全部论文他引总计超过5万次,单篇引用超过50次的论文230余篇 获国内专利授权149项,国际专利授权9项。研究团队在计划执行期间,培养了千余名研究生和博士后,3名项目承担专家当选中国科学院院士,13名项目承担人获得国家杰出青年基金资助,2支研究团队获得基金委化学生物学创新研究群体资助,极大地推动了我国化学生物学专门人才队伍建设。/pp  评估专家组认为,十年来,我国的化学生物学学科在该计划的执行中实现了从小到大、从散到整、由浅入深、由弱到强的提升,目前已经形成了较完整的化学生物学学科体系,实现了跨越式发展,进入化学生物学研究领域国际先进行列。/pp  该计划指导专家组提出,未来我国化学生物学领域应继续发挥学科交叉优势,围绕生物大分子的动态修饰与化学干预等前沿问题开展研究,发展新技术、新方法,推动化学生物学的研究从静态走向动态,从体外走向体内、从定性走向定量、从简单体系走向复杂体系。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201612/insimg/f30973f5-3057-4d64-a911-456d674efa37.jpg" title="XBb0-fxypunk6594961.jpg"//pp style="text-align: center "图1 基于“化学脱笼”的酶激活策略/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201612/insimg/87964cb5-926e-4719-be2d-1992b8027834.jpg" title="9lVj-fxypiqy2776867.jpg"//pp style="text-align: center "图2 基于腺花素探针发现白血病分化新机制/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201612/insimg/9ed96f0d-230f-4e9a-8a44-18a3aaa28fed.jpg" title="OsmO-fxypunk6594964.jpg"//pp style="text-align: center "图3 抗细菌致病力靶标发现与确证/ppbr//p
  • 细胞生物学国家重点实验室在上海揭牌
    2012年3月23日,细胞生物学国家重点实验室在上海举行实验室揭牌仪式,并召开国家重点实验室第一届学术委员会第一次会议。科技部基础研究司、中科院计划财务局、上海市科委、中科院上海生命科学研究院等部门和单位的有关负责同志参加了揭牌仪式和会议。  实验室主任朱学良研究员代表实验室报告了2011年实验室的研究工作和人才引进等重要进展。实验室学术委员会主任王红阳院士做了肿瘤研究进展的特邀学术报告。实验室全体学术委员对有关固定研究组和开放课题研究组的入室申请报告进行了评议,并对实验室的建设和发展提出了意见和建议。  细胞生物学国家重点实验室是科技部批准依托中科院上海生命科学研究院建设的国家重点实验室,以细胞活动的信号网络及作用机理为主要研究方向,重点开展细胞的增殖、分化、凋亡、运动等基本生命活动及其分子调节网络的组分、相互关系、调控机理,以及与疾病的关系等方面的研究。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制