当前位置: 仪器信息网 > 行业主题 > >

细胞信号和神经生物学

仪器信息网细胞信号和神经生物学专题为您提供2024年最新细胞信号和神经生物学价格报价、厂家品牌的相关信息, 包括细胞信号和神经生物学参数、型号等,不管是国产,还是进口品牌的细胞信号和神经生物学您都可以在这里找到。 除此之外,仪器信息网还免费为您整合细胞信号和神经生物学相关的耗材配件、试剂标物,还有细胞信号和神经生物学相关的最新资讯、资料,以及细胞信号和神经生物学相关的解决方案。

细胞信号和神经生物学相关的论坛

  • 碳纳米管“鱼叉”能捕获单个脑细胞信号

    科技日报讯(记者常丽君)据美国物理学家组织网6月20日(北京时间)报道,美国杜克大学科学家开发出一种碳纳米管制成的“鱼叉”,可用于捕获单个脑细胞发出的信号。相关论文发表在6月19日的《公共科学图书馆·综合》上。 目前用于记录脑细胞信号的电极主要有两种:金属和玻璃。金属电极可用在活动物中,记录脑细胞群体活动峰值及其工作情况;玻璃电极既可用于检测峰值,也能检测单个细胞活动,但却脆弱易碎。以往实验中曾用过碳纳米管探针,但那种电极要么太厚会造成组织损伤;要么太短而限制了电极穿透深度,无法探测到内部的神经元。 最新研制出的碳纳米管“鱼叉”只有一毫米长、几纳米宽,可利用碳纳米管卓越的机电性能来捕获单个脑细胞的电信号。杜克大学神经生物学家理查德·穆尼和该校计算机科学与生物化学教授布鲁斯·唐纳德5年前开始合作,研究用纳米材料来缩小机械并改良探针。他们先以电化技术处理过的钨丝为基础,用自缠多壁碳纳米管延长它,制成了一毫米长的小棒,然后用聚焦离子束将纳米管磨锋利,使其一端逐渐变细到只有一根碳纳米管粗细,就像微小的“鱼叉”。杜克大学神经生物学家迈克尔·普拉特说:“这种碳纳米管‘鱼叉’结合了金属和玻璃电极的优点,无论是在脑细胞内外,它们都能记录良好,非常灵活而且不会碎,可以用来记录活动物的单个脑细胞信号。” 在穆尼的实验室,他们把“鱼叉”分别刺入小鼠脑组织切片和麻醉小鼠大脑中来实验,结果显示探针能传输脑信号,而且有时比传统的玻璃电极效果更好,信号中断的可能性更小。 新探针还能刺穿单个神经元,记录单个细胞的信号,而不是附近的一群神经元。唐纳德强调,这被称为细胞内记录,应是人们首次用碳纳米管在脑切片或完整脊椎动物大脑中记录单个神经元信号。 总编辑圈点 碳纳米管可用于研究单个神经细胞发出的信号,如今的成果就是极好的理论证明。这种对单个神经元信号及神经元之间相互作用的进一步挖掘,将会帮助我们更好地理解大脑的计算功能,从而弥补人类对自身“司令部”认知上的缺陷。从另一个角度看,杜克大学此次所采用的探针技术也十分有前途,可在多领域——包括从基础科学到人脑计算接口、脑组织假体等等方面都有着广泛应用,亦因此其进一步开发备受业界期待。 《科技日报》(2013-06-21 三版)

  • 细胞信号通路那些事儿

    [align=center][size=18px][b]细胞信号通路那些事儿[/b][/size][/align][align=center][size=14px]会议时间[/size][size=14px]:[/size][size=14px]2020年[/size][size=14px]5[/size][size=14px]月[/size][size=14px]2[/size][size=14px]8[/size][size=14px]日1[/size][size=14px]4[/size][size=14px]:00[/size][/align][size=16px][b]内容[/b][/size][size=16px][b]介绍:[/b][/size]信号通路(signal pathway)的提出最早可以追溯到1972年,信号通路是指能将细胞外的分子信号经细胞膜传入细胞内发挥效应的一系列酶促反应通路。这些细胞外的分子信号(称为配体,ligand)包括激素、生长因子、细胞因子、神经递质以及其它小分子化合物等。配体特异性地结合到细胞膜或细胞内的受体(receptor)后,在细胞内的信号又是如何传递的呢?细胞内各种不同的生化反应途径都是由一系列不同的蛋白组成的,执行着不同的生理生化功能。各个信号通路中上游蛋白对下游蛋白活性的调节(包括激活或抑制作用)主要是通过添加或去除磷酸基团,从而改变下游蛋白的立体构象完成的。所以,构成信号通路的主要成员是蛋白激酶和磷酸酶。受体蛋白将细胞外信号转变为细胞内信号,经信号级联放大、分散和调节,最终产生一系列综合性的细胞应答,包括下游基因表达的调节、细胞内酶活性的变化、细胞骨架构型和DNA合成的改变等。这些变化并非都是由一种信号引起的,也可以通过几种信号的不同组合产生不同的反应。本次讲座将为大家介绍几种常见的信号通路及酶标仪在其中的应用。[size=16px][b]讲师[/b][/size][size=16px][b]介绍:[/b][/size] [size=14px][b]田华[/b][/size][size=14px][b]:[/b][/size][size=14px]现任[/size][size=14px]MolecularDevices[/size][size=14px]高级应用科学家,在[/size][size=14px]MolecularDevices[/size][size=14px]公司从事酶标仪的售前售后技术支持工作,熟悉酶标仪的原理及各种应用。毕业于南京农业大学遗传学专业,曾就职于中国科学院植物生理生态研究所和生物公司,拥有8年生物技术公司工作经验,熟悉各种分子和细胞生物学实验[/size][size=14px]。[/size]报名地址:[url]https://www.instrument.com.cn/webinar/meeting_13687.html[/url]

  • 2017第七届国际分子与细胞生物学大会通知

    第七届国际分子与细胞生物学大会将于2017年4月25-27日在西安举行。大会活动主要包括主题报告、科技论坛、专题讨论会、展览展示、海报展示高端人才招募洽谈会等。会议议题包含干细胞、分子与细胞生物学的最新技术、分子细胞生物学、生物医药等。此外本届会议将邀请到国内外著名院士、以及来自世界50多个国家和地区的相关领域学者、企业高管、科研院所的科研专家等领衔主讲高端论坛近40个。为广大的国内外分子与细胞生物学领域嘉宾提供了相互交流的平台。同期将召开第二届遗传学大会和生物技术产业大会。三会联动,一次注册均可参加!大会网站:http://www.bitcongress.com/cmcb2017/cn/default.asp大会主席:尹玉新博士,北京大学基础医学院院长、北京大学系统生物医学研究所所长大会主题论坛演讲人:Martin Banwell 博士,澳大利亚国立大学教授 Christian Patermann 博士,德国欧洲委员会前主任 Robert S. Plumb 博士,英国帝国理工学院教授Dongping Zhong博士,美国俄亥俄州立大学教授Xiang Zhang博士,英国剑桥大学首席顾问,皇家学会会员 著名演讲人(国内)卢灿忠,中国科学院福建物质结构研究所教授罗顺,中国健顺生物科技有限公司总裁许胜勇,北京大学教授范兴明,云南省农业科学院研究员孙凌云,南京大学医学院教授、主任谭砚文,复旦大学教授陈建海,南方医科大学教授谢志红, 安徽医科大学教授华益民,苏州大学教授沈赞明,南京农业大学教授胡颖,哈尔滨工业大学教授刘磊, 北京大学教授郑彩霞,北京林业大学教授邓文生,武汉科技大学教授邓文礼, 华南理工大学教授王雯,首都医科大学教授陈兵, 第三军医大学教授张小莺,西北农林科技大大学杨铁林,西安交通大学教授秦 鸿雁,第四军医大学教授刘毅, 遵义医学院附属医院教授许乃寒,清华大学深圳研究生院教授茅卫锋,大连医科大学副教授张志远,中国国家生物科学研究所研究员蒋晓江,第三军医大学教授,主任医师刘书逊,第二军医大学副教授吴玉梅,第四军医大学副教授著名演讲人(国外):Ying-Jan Wang,台湾国立成功大学教授Julie Kazimiroff,美国艾伯特爱因斯坦医学院主任Samir Ounzain,瑞士洛桑大学博士后科学家Yitzhak Rabin,以色列巴伊兰大学教授Franz E. Weber, 瑞士苏黎世大学教授Christina L. Chang,台湾国立成功大学教授Ivan Robert Nabi,加拿大英属哥伦比亚大学教授Brajendra K. Tripathi,美国国立卫生研究院科学家Stefano Zanasi,意大利佛罗伦萨大学教授Vadim Davydov,俄罗斯国立医科大学教授So Yoon Kim,韩国延世大学教授Kari Keinanen,芬兰赫尔辛基大学教授Yi Wang,加拿大阿尔伯塔大学Yeu-Ching Shi,台湾Indigena Botanica公司Ruben G. Contreras,墨西哥高级研究中心首席研究员Yong Jia,美国诺华研究基金会基因组学研究所高级研究员Dongxia Xing,美国MD安德森癌症中心高级研究科学家Mark A. Birch-Machin,英国纽卡斯尔大学教授 Zvi Naor,以色列特拉维夫大学教授Jia-Ching Shieh,台湾中山医科大学副教授Emmanuel M. Drakakis,英国帝国理工大学教授Kiwon Song,韩国延世大学教授Gregory Lee,加拿大不列颠哥伦比亚大学教授Michael Uhlin,瑞典卡罗林斯卡学院研究员Makoto Fukuda,日本东京医科齿科大学Kwan-Kyu Park,韩国大邱大学教授Yonggui Gao,新加坡南洋理工大学副教授Edith Aberdam, 巴黎第七大学研究工程师Alex Kharazi ,美国Stemedica副总裁Jukka Tuomi,芬兰阿尔托大学研究室主任Charles H. Sherwood,美国阿尼卡疗法有限公司总裁、首席执行官David Trudil,美国NHDetect公司执行总裁Alain Verreault,加拿大蒙特利尔大学教授、首席研究员Susanne Staehlke, 德国罗斯托克大学医学中心研究员 会议议题专题一:细胞生物学的研究前沿论坛1:细胞核结构和功能 论坛2:染色质和表观遗传 论坛3:基因组不稳定性和DNA损伤 论坛4:细胞骨架、粘附和迁移 论坛5:中心粒、中心体和纤毛 论坛6:蛋白质结构和功能 论坛7:膜结构、动态、运输和调控 论坛8:线粒体功能和细胞能量代谢 论坛9:信号转导和信号网络 论坛10:细胞分裂和细胞周期 论坛11:蛋白质稳态、细胞应激 论坛12:细胞坏死与存活 论坛13:叶绿体和光合作用 论坛14:细胞壁生物学 论坛15:发育和形态发生 论坛16:免疫细胞生物学 论坛17:微生物和寄生虫生物学 论坛18:基因表达和转录调控专题二: 干细胞论坛1:胚胎干细胞和成体干细胞 论坛2:间充质干细胞 论坛3:造血干细胞 论坛4:神经干细胞 论坛5:细胞可塑性和重编程 论坛6:干细胞治疗专题三: 分子与细胞生物学的最新技术论坛1:基因组编辑技术 论坛2:高通量/高含量技术 论坛3:分子和细胞成像技术 论坛4:单分子和单细胞分析技术 论坛5:实验室芯片、微流体和微阵列 论坛6:流式细胞术 论坛7:新型细胞分离,分离和培养技术 论坛8:光遗传学专题四: 分子细胞生物学与生物医药论坛1:分子与细胞生物学和转化医学 论坛2:分子药物靶标研究 论坛3:癌细胞生物学 论坛4:细胞神经生物学 论坛5:神经退行性疾病 论坛6:生殖细胞和生殖疾病 论坛7:肌肉细胞和肌肉疾病 论坛8:RNA与疾病和治疗 论坛9:端粒、端粒酶与衰老 论坛10:模式生物和疾病模型 论坛11:组织修复与再生 论坛12:心血管生物学 论坛13:红细胞疾病 论坛14:时间生物学★ 企业展位展览范围 一、科学仪器区 分析测试仪器:光谱仪器、色谱仪器、质谱仪器、频谱仪器、波谱仪器、光学分析仪器、热分析仪器、表面分析仪器、元素分析仪器、成份分析仪器、过程分析仪器、图像分析仪器、射线分析仪器、气相色谱、液相色谱、显微镜、光学影像处理和其他通用分析仪器等。 通用实验室仪器:热量装置、反应装置、剂量称重系统、自动化装置、独立技术、实验室家具、实验室用品、实验室医疗设备、实验室数据系统、实验室图像分析及处理、实验室工艺及设备、输送设备与连接装置、清洁、烘干设备、超洁净环境工程设备等。 生化仪器、生命科学及微生物检测仪器、实验动物设施:多肽合成仪、氨基酸测试仪、DNA合成仪、诊断仪器、生物生化技术设备、生物培养箱、发酵罐、酶标仪、生物传感器、生物工程过程控制与生产工艺装备。行业专用分析仪器与设备:电子光学仪器、生化仪器、生命科学及微生物检测仪器、生物反应器、实验动物设施。二、试剂/消耗品区 通用试剂、仪器专用化学试剂、标准物质、实验室用化学品、电子试剂 、光化学试剂、生化和分子生物学试剂、医学/诊断/检验试剂、细胞/血清/培养基抗体、实验室消耗品。 三、生物医药区

  • 【讨论】“空间细胞生物学”你怎么理解?

    今天看到一个新的研究领域,或者说新的专业方向:“空间细胞生物学”(Spatial Cell Biology)。在细胞生物学中,相似的格言可以应用于细胞和有机体生理学的调节。细胞在有机体内的位置和细胞内各要素的位置将会影响细胞所有的行为,包括其所能履行的功能,其信号传导伙伴,以及是否和如何生长与分裂。 即使是在单细胞细菌中,空间组织也调节着细胞分裂和其他关键的发育过程。你是怎么理解的??

  • 生物质谱技术在细胞生物学中的应用

    生物质谱技术在细胞生物学中的应用桑志红 王红霞 综述 概 论 蛋白分离与显色 蛋白质鉴定 数据库查寻 灵敏度 具体示例 展望未来(相关文献)摘 要 基因组计划的飞速发展使我们提早进入"后基因组时代",而质谱技术的重要进展使得通过酶解、质量分析、序列分析及其数据库检索对蛋白质进行高通量快速鉴定的技术方法应运而生,并成为"后基因组时代"的关键核心技术。这种技术的应用范围已经从细胞,组织以及整个有机体中蛋白质的表达到蛋白质翻译后修饰等等方面。本文简要综述生物质谱技术在细胞生物学等学科中的应用。  过去的十年经历并见证了生命科学革命性的变化. 大规模基因组测序技术的问世使人类基因组计划最终目标的实现比预期一再提前。与此同时,近几年间已有10余种模式生物的基因组序列测定告罄,3年内还将有40种左右生物的基因组全序列问世。因此大多数人同意我们现在已经提早进入"后基因组时代"(post-genome era), 目前我们所面临的挑战是如何破解基因组计划已获得的大量序列信息并加以应用。这个问题的关键是基因的生物学功能不能只通过对核酸一级结构(序列)的检测来确定。研判一个未知基因的功能、与其他基因产物及其亚细胞结构之间的功能联系, 最终都必须通过在蛋白水平对基因产物的研究才能确定。蛋白质组这个名词是近几年才提出来的,它用来描述一个细胞的全部蛋白质,而在蛋白水平上进行大规模的研究引出了新的术语蛋白质组学。蛋白质表达图谱是依靠蛋白质显示技术和精确定量技术对细胞或组织中蛋白质表达总况进行比较(2), 这个领域最近已有综述(11)。细胞图谱蛋白质组学是指应用生物质谱技术鉴定蛋白质及其相互作用并确定在亚细胞中的定位。本文的目的是 简要综述生物质谱技术在细胞生物学领域中越来越多的应用,并为该领域正考虑应用这种技术的研究者提供一些的有用的信息。 作为一个新的研究领域,蛋白质组学发展的关键是近年来质谱技术的革新。这种革新极大地促进了质谱技术在生命科学研究中的应用。质谱现在可以作为将各种蛋白质与序列数据库联系起来的桥梁。生物质谱根据质量数和所载电荷数不同的多肽片断在磁场中产生不同轨道而以质荷比(m/z)方式来分离它们。80年代末,随着两种崭新的尤其适合蛋白质研究的软电离方式ESI(电喷雾电离)和MALDI(基质辅助激光解吸附电离)的出现,质谱成为现代蛋白质科学中最重要和不可缺少的组成部分。 生物质谱最强大的应用功能之一是能够鉴定蛋白质复合物的组成成分(19)。细胞中一些最重要的生命过程都是通过多蛋白质复合体来执行和调节的,但由于蛋白质鉴定的困难,大多数上述蛋白复合体都是未知的。生物质谱灵敏度的不断提高显著地促进了对具有生物学功能和治疗潜力的蛋白复合体的鉴定,例如,NF-k B信号通路,CD95(FAS/APO-1)介导的细胞死亡途径,和核受体介导的转录信号传导过程中形成的蛋白复合体。在某些情况下,复合物可通过常规蛋白纯化的方法进行纯化,如剪接体复合(25),酵母纺锤体复合物(29)及VHL肿瘤抑制复合物(18)。然而,更常见的是,复合物中的组成成分通过一步免疫沉淀或免疫亲和步骤后就可纯化,这种方法甚至可以用于鉴定那些用常规蛋白纯化和鉴定技术所不及的一些过渡态或不稳定的复合物。因为生物质谱技术的介入,现在已经不再需要通过抗体进行免疫印迹实验,而是通过生物质谱技术对免疫沉淀获得的蛋白复合体组分直接进行蛋白序列分析。以酵母P24复合物鉴定为例,应用上游表位标签策略有可能不需制备抗目标蛋白的抗体就能对蛋白质复合物进行鉴定(13)。这种方法(36)对于基因组序列已完全清楚和遗传稳定的生物(如芽殖酵母,啤酒酵母)尤为简便, 例如对RENT复合物和促有丝分裂后期复合物(49)。因为这种方法的成功应用,使人们对上游表位标签策略-蛋白纯化-生物质谱分析的方法兴趣倍增。值得一提的是,将能被特殊蛋白酶切除的连接子(接头)掺入表位标签是尤为有利的(如下所述)。 上述方法是通过识别蛋白复合物中相互作用和配对的各组分而达到对蛋白鉴定的目的,另一种策略则是通过对分离纯化的细胞器蛋白组成进行鉴定而在亚细胞水平对蛋白质定位. 用这种方法确定蛋白质位置, 对评价蛋白质潜在的功能将是大有帮助的. 应用这种方法,我们称为细胞器蛋白质组学, 已经发现正常工作状态下的细胞器含有比我们以前所知道的数量多得多的蛋白种类。然而实际上,由于质谱极高的分辨率和灵敏度,纯化后的细胞器组分即使只有微量的混杂,也能被质谱分辨并误认为是细胞器的组成部分。因此,如何充分的纯化以保证至少绝大多数被鉴定的蛋白质都来自同一种细胞器,成为制约上述工作的瓶颈。 蛋白质翻译后修饰也是蛋白鉴定工作中的一个重要方面。根据DNA序列信息并不能可靠预测或推导出蛋白质翻译后的修饰。而质谱技术已经被证明对研究蛋白质翻译后的修饰(例如磷酸化和糖基化)是极为有用的,特别是对序列已知的蛋白的鉴定。例如:Betts等人(1a)用这种方法成功地鉴定了从小鼠大脑中分离的神经纤维蛋白体内磷酸化位点。同样方法, Wong等人(45)确定了钙联蛋白质(calnexin)C未端的磷酸化位点。在糖基化的例子中, Carr等人(5)采用液相色谱与质谱联用技术选择性地鉴定了糖蛋白中N- 和O-联接的寡糖. 稍后, 本文将会通过对E-选择素中糖基化位点的鉴定来进一步说明这种方法.

  • 英发现细胞信号通路新“刹车”蛋白

    细胞的癌变是细胞在信号通路调节失控情况下的无限制增生,而RAF-MEK-ERK信号通路的持续性激活则是诱导细胞癌变的重要原因。因此,对RAF-MEK-ERK信号通路的研究一直是分子生物学研究的热点。英国科学家在最近一期《分子与细胞生物学》杂志上发表论文称,真核翻译起始因子3a(EIF3a)可以通过和RAF激酶结合,抑制RAF-MEK-ERK信号通路,是这一信号通路的重要“刹车”蛋白。这一发现意味着EIF3a可能成为下一代抗癌药物全新的靶标蛋白,为抗癌药物的研发提供新思路。 EIF3a是细胞蛋白质翻译起始复合物的重要构件。由英国格拉斯哥大学和爱尔兰都柏林大学研究人员组成的研究小组研究发现,EIF3a能够与细胞外信号调节激酶通路的两个组成部分SHC蛋白和Raf1蛋白绑定,不仅可以调节蛋白质翻译,影响细胞的生长和分化,还通过和RAF激酶结合,抑制RAF-MEK-ERK信号通路,成为RAF-MEK-ERK信号通路的重要“刹车”蛋白。同时,研究人员还发现,EIF3a和另一个“刹车”蛋白——β抑制蛋白(β-arrestin2)结合,能够调节细胞的另一条最主要信号通路:G蛋白偶联受体(GPCR)信号通路。 该论文首席作者,格拉斯哥大学生物医学与生命科学学院的徐天瑞博士指出, RAF-MEK-ERK信号通路是细胞外信号传递入细胞内的主干通路,绝大多数细胞外信号都可以通过RAF-MEK-ERK通路影响细胞行为,诸如细胞增值、细胞分化、细胞凋亡。新发现表明,EIF3a可以抑制RAF-MEK-ERK信号通路,从而抑制癌症的产生;其通过与β抑制蛋白结合影响其功能,可治疗由G蛋白偶联受体信号通路失控而导致的癌症;同时,EIF3a可以抑制RAF激酶活性,诱导细胞凋亡,从而杀灭癌细胞;而对EIF3a本身蛋白质翻译的调节,也可以作为治疗癌症的重要手段。 徐天瑞博士说:“信号抑制蛋白EIF3A的发现意义重大,《科学—信号传导》杂志最近将其列为2011年度细胞生物学领域八项重大进展之一。我们的新研究证明,EIF3a不仅是蛋白质翻译起始因子,也是RAF-MEK-ERK信号通路和G蛋白偶联受体信号通路交汇点上的重要调控蛋白。通过对EIF3a的调控,有可能四管齐下地杀灭癌细胞,从而使EIF3a可能成为下一代抗癌药物全新的靶标蛋白,为抗癌药物的研发提供新思路。”(记者 刘海英)

  • 【分享】R著名生物学家——饶毅

    饶毅 博士北京生命科学研究所资深研究员,学术副所长美国西北大学神经内科学Elsa Swanson讲席教授、Feinberg临床神经科学研究所研究主任教育经历Education1978-1983江西医学院学士MB, Jiangxi Medical College, China1983-1985上海第一医学院硕士学位研究生, MS Student, Shanghai Medical University1985-1991加州大学旧金山分校神经科学博士Ph. D. in Neuroscience, University of California at San Francisco, USA 1991-1994哈佛大学生物化学与分子生物学系博士后Postdoctoral Fellow, Department of Biochemistry and Molecular Biology, Harvard University工作经历Professional Experience2006-present 西北大学神经内科学Elsa Swanson讲席教授 2006-present 美国西北大学Feinberg医学院Feinberg临床神经科学研究所研究主任(Director of Research,Feinberg Clinical Neuroscience Research Institute) 2004-present 中国北京生命科学研究所资深研究员,学术副所长 National Institute of Biological Sciences, Beijing, China 2004-present 美国西北大学神经内科学教授 Northwestern University Feinberg School of Medicine, Chicago, IL, USA 2004-2006 美国西北大学神经科学研究所副所长 1994-2004 华盛顿大学(圣路易斯)医学院解剖学与神经生物学系 Department of Anatomy and Neurobiology at Washington University School of Medicine in St. Louis, Missouri, USA 2001-2006 Journal of Neuroscience(美国)《神经科学杂志》编委 2006-present Developmental Biology (美国)《发育生物学》编委 2002-2005 Developmental Brain Research (美国)《发育脑研究》编委 2006-present Brain Research (美国)《脑研究》编委 2000-present Neuroscience Research (日本)《神经科学研究》编委 2006-present PLoS One (美国)《科学公共图书杂志》编委 2001-2006 Faculty of 1000 (英国)《千位教授》 成员 2001-2008 NeuroSignals (瑞士和香港)《神经信号》编委 2003-2005 Chinese Science Bulletin (中国) 《科学通报》编委 2006-present Cell Research (中国)《细胞研究》编委 2005-present Neuroscience Bulletin《中国神经科学杂志》编委 1999-present 《二十一世纪》 (香港) 编委 2004-present 《科学文化评论》(中国) 编委 2004-present 《科技中国》 (中国) 编委 1998 Gordon分子和细胞神经生物学会议 副主席 2000 Gordon分子和细胞神经生物学会议 主席 2003 主席, 国际脑研究组织皮层发育和进化会议Chair, IBRO Symposium on Development and Evolution of Cortical Specification 1999-2001 美国国家科学基金会 发育神经生物学评审委员会 委员Panelist, Developmental Neuroscience Panel, NSF 1998-2000 杰出青年基金B类 (中国 国家自然科学基金会) 2004-present 中国科学院生物物理研究所兼职博士生导师 2006- present 中国科技大学兼职教授 2002-2005 中国科学院上海交叉学科研究中心共同主任 2002-present 中国科学院自然科学史研究所兼职博士生导师 1999-present 中国科学院神经科学研究所理事会成员 1999-present 中国科学院神经科学研究所客座研究员 1996-1999 中国科学院上海生命科学研究中心兼职研究员 1995-1996 讲课: 发育神经生物学 华盛顿大学 1996-1999 主持: 分子 华盛顿大学 1997-1999 主持: 神经发育原理 华盛顿大学 1999-2004 讲课: 细胞神经生物学 华盛顿大学 1997 主持: 分子发育神经生物学 中国科学院 1998 讲课: 发育遗传学 北京大学 2000-2002 主持: 分子和细胞生物学 中国科学院上海生命科学研究院 2003-2004 讲课: 分子和细胞生物学 中国科学院 北京大学 清华大学 2001-2003 讲课: 神经生物学 中国科学院 神经科学研究所 2002-2003 讲课: 分子和细胞神经生物学 香港科技大学 2005-2006 主持: 发育神经生物学 美国西北大学 研究概述 Research Description该实验室目前主要兴趣在于两个神经生物学问题: 1) 行为的遗传学分析, 2) 神经发育的分子机理。 实验室探索通过遗传学途径用果蝇研究行为的机理。首先探寻果蝇是否有较复杂的行为,建立行为的实验模型,然后通过遗传突变,筛选影响行为的基因,找到基因以后,进一步分析分子机理和神经环路。极性是细胞的一个基本性质。神经细胞有轴突和树突,它们起不同的作用,树突一般接受信号,而轴突通常发送信号。如果没有神经细胞的极性,神经系统的信息传递就会紊乱。实验室在分子和亚细胞水平研究神经细胞极性发生的机理,除了可以帮助基础理解以外,如果能知道怎样形成轴突,也许可以提示如何在损伤后帮助促进神经纤维再生。目前主要研究调节神经细胞极性的信号转导通路。The lab is currently carrying out genetic analysis of behavior in Drosophila and molecular studies of cell polarity in mammal neurons.The lab is using genetic approaches to study behaviors in Drosophila. The initial attempts are made to explore the existence of complex behaviors in Drosophila, to establish Drosophila models of these behavioral paradigms. Once established, these models will make it possible to identify genetic mutations and their underlying genes. The identifications of these genes will allow further studies at the levels of both the molecules and the neural circuitry.Polarity is a basic cellular feature. Each neuron usually has an axon and multiple dendrites. They play different roles: axons usually for sending signals and dendrites for receiving signals. Abnormality in neuronal polarity will disrupt to informational flow in the nervous system. Molecular and subcellular studies of neuronal polarity will further understanding of basic mechanisms and may also help suggesting new approaches to facilitate recovery after neural injuries. The current focus of the lab is on signal transduction pathways involved in establishing and maintaining neuronal polarity.

  • 【分享】神经细胞培养

    体外神经细胞的培养已成为神经生物学研究中十分有用的技术手段。神经细胞培养的主要优点是:(1)分散培养的神经细胞在体外生长成熟后,能保持结构和功能上的某些特点, 而且长期培养能形成髓鞘和建立突触联系,这就提供了体内生长过程在体外重现的机会。(2)能在较长时间内直接观察活细胞的生长、分化、形态和功能变化,便于使用各种不同的技术方法如相差显微镜、荧光显微镜、电子显微镜、激光共聚焦显微镜、同位素标记、原位杂交、免疫组化和电生理等手段进行研究。(3)易于施行物理(如缺血、缺氧)、化学和生物因子(如神经营养因子)等实验条件, 观察条件变更对神经细胞的直接或间接作用。(4)便于从细胞和分子水平探讨某些神经疾病的发病机制,药物或各种因素对胚胎或新生动物神经细胞在生长、发育和分化等各方面的影响。 我们实验室从80年代始开展了神经细胞的体外培养工作,取得了一些经验,现将培养细胞分类及方法简要介绍如下:一.鸡胚背根神经节组织块培养 主要用于神经生长因子(NGF)等神经营养因子的生物活性测定。在差倒置显微镜下观察以神经突起的生长长度和密度为指标半定量评估NGF的活性。1. 材料和方法 (1)选正常受精的鸡蛋,置于37℃生化培养箱内孵化,每日翻动鸡蛋一次。 (2)取孵化8-12 d 的鸡蛋, 用70% 酒精消毒蛋壳,从气室端敲开蛋壳,用消毒镊剥除气室部蛋壳。(3)用弯镊钩住鸡胚颈部,无菌条件下取出鸡胚置小平皿内,除去头部后,腹侧向上置 灭菌毛玻璃片上,用眼科弯镊子打开胸腹腔,除去内脏器官。(4)在解剖显微镜下,小心除去腹膜,暴露脊柱及其两侧,在椎间孔旁可见到沿脊柱两侧 排列的背根节(图1),用一对5号微解剖镊小心取出。(5)置背根节于解剖溶液内,用微解剖镊去除附带组织,接种于涂有鼠尾胶的玻璃或塑料 培养瓶中,在DMEM无血清培养液中培养。2. 结果鸡胚背根神经节在含神经生长因子(NGF, 2.5S,20ng/ml)的无血清培养液中培养24 h,神经节长出密集的神经突起。而未加NGF的神经节培养24 h, 未见神经突起生长。二.新生大鼠、新生小鼠及鸡胚背根神经节分散细胞培养背根神经节(DRG)细胞起源于神经嵴,NGF研究先驱Levi-Montalcini的实验表明,外原性NGF能刺激DRG细胞生长发育并形成广泛的神经网络。在体外,分离培养的神经节在NGF存在的情况下,神经突起的生长在一天之内可长达数毫米,因此,利用培养的DRG细胞,进行轴突生长发育的研究,是最为经典而常用的方法之一。

  • 【资料】美国科学家解开胚胎干细胞信号通道之谜

    美国南加州大学科学家表示,他们新发现的名为IQ-1的小分子在防止胞胎干细胞分化成一种或多种特殊细胞方面具有决定性作用,该研究成果有望帮助人们开发出无污染大规模培养胚胎干细胞的方法。有关研究刊登在美国《国家科学院院报》网站上。  干细胞疗法是许多科学家研究的热门项目,大规模培养胚胎干细胞是干细胞疗法成功发展的前提。目前,实验鼠纤维原细胞饲养层是唯一被证明为能够培养胚胎干细胞的方法。在此方法中,必要的化学信号能促使胚胎干细胞不断分裂而不分化。然而,南加州大学凯克医学院医学和药学教授迈克尔卡恩博士表示,人体胚胎干细胞用饲养层培养会遭受实验鼠糖蛋白标识的污染,如果将培养的干细胞用于人体,或许出现可怕的免疫反应。  作为发现IQ-1小分子的研究小组主要研究人员,卡恩表示,他们发现的小分子帮助人们向实现无实验鼠纤维原细胞饲养层培养胚胎干细胞的方法往前迈进了一步。对于IQ-1的工作原理,卡恩解释说,Wnt通道(也就是细胞信号通道)对干细胞具有分叉效应(dichotomouseffects),IQ-1能够在阻断Wnt通道一个分叉的同时,增强来自Wnt通道另分叉的信号。这样,人们可以从根本上维持干细胞的生长和所需的力量。  卡恩认为,如果人们能够创造出一个化学物质环境的系统来培养人体胚胎干细胞,那么就可以避免干细胞受污染的危险,它将让科学家的工作更加容易,这是研究小组的奋斗目标。凯克医学院干细胞和再生医学中心主任马丁佩拉博士表示,卡恩他们的研究让人们能够观察胚胎干细胞内部分子控制机制,其新发现有望帮助人们开发出大规模繁殖纯胚胎干细胞的技术。

  • 第六届分子与细胞生物学大会

    第六届国际分子与细胞生物学大会将于2016年4月25-28日在大连国际会议中心举行。组委会已邀请到诺贝尔奖大师、著名院士、500强企业高管、海外华人科学家、国内外学术专家和企业家出席会议并做主题报告,将有来自近60个国家和地区的2000位专业人士参会,其中外宾1000人以上。本届活动周将举办“生物制造2025”主题论坛、诺贝尔奖大师论坛、中日韩生物技术论坛、大师校园行、企业卫星会议、大型晚宴及文艺演出、海外高层次人才和项目对接会、科技考察等活动。此外还有蛋白质、抗体、疫苗、基因、遗传学5大分会和“第七届国际生物展”同期召开,将举办200多场专题报告,将有400个项目参与对接,参展商150家。六会联动,一次注册均可参加!我们期待和欢迎您莅临第六届国际分子与细胞生物学大会。在这里分享最新科研成果,获取最前沿的科技资讯,找到最合适的合作伙伴,结识最专业的客户群体,走近诺奖大师,聆听巨匠声音,推动我国在分子与细胞生物学领域的发展。网址链接: http://www.bitcongress.com/cmcb2016/cn/default.asp 演讲人介绍—基因及遗传领域 讲题:如何在分子水平上模拟复杂生物系统Arieh Warshel博士,2013年诺贝尔化学奖得主;美国南加州大学特聘化学教授、美国国家科学院院士 讲题: 神经元中的线粒体转运Zu-Hang Sheng博士, 美国国立卫生研究院高级首席研究员 讲题: 炎症与肿瘤发生的天然防御分子——5-methoxytryptophanKenneth K. Wu博士, 美国德克萨斯大学休斯顿健康科学中心名誉教授 讲题:在个性化肺癌免疫疗法中使用外显子测序和突变抗原筛查用于新抗原鉴定 Caifu Chen博士, 美国Integrated DNA Technologies公司高级研发副总裁 讲题:RNA药物的创新技术Xianbin Yang博士, 美国AM Biotechnologies公司主任 讲题:测序技术的现在和未来Barry Merriman 博士,美国人类长寿公司副总裁 讲题:两栖弹涂鱼基因组研究的最新进展石琼博士,中国深圳华大水产科技有限公司科技副总裁 讲题:新测序平台的发展J O. Adams博士,中国北京龙基高科生物科技有限公司总裁 讲题:肿瘤释放蛋白基因分析的最新研究及全蛋白序列的表达Giulio Filippo Tarro博士,意大利T. & L.博德博蒙特癌症研究基金会总裁 讲题:从大数据到临床:大数据时代癌症的精准医疗鲁兴华博士,美国匹兹堡大学生物信息转化中心副主任 讲题:植物的RNA甲基化压力响应Iain Searle博士,澳大利亚阿德莱德大学实验室负责人 讲题:弗立特里希氏共济失调中表观基因启动子沉默Sanjay I. Bidichandani博士,美国俄克拉荷马大学教授 讲题:植物内生菌和微生物的生物组学发现、特性和发展German C Spangenberg博士,澳大利亚拉籌伯大学教授 讲题:利用免疫转录调控网络治疗多发性硬化症Margaret Jordan博士,澳大利亚詹姆斯库克大学分子和细胞生物学部门研究主任 讲题:基因治疗和基因递送载体Guang Qu博士,美国Spark基因治疗公司主管 讲题:癌症治疗药物协同作用的发展Janak Padia博士,美国黄金时段生命科学公司总裁兼首席执行官 讲题:小鼠和大鼠基因质量:决定正确遗传背景的转基因模型Ana V. Perez博士,美国塔康生物科学公司基因科学与合规性全球总监演讲人介绍—蛋白质与多肽领域 讲题:仿生肽研究的最新进展和挑战Vadim T. Ivanov博士,俄罗斯科学院多肽研究所主任 讲题:缓解医疗需求的多肽药物Jose de Chastonay博士,瑞士Bachem控股集团首席商务官 Michael Shapiro博士,美国辉瑞公司高级总监 讲题:人类全基因组全长蛋白在人源细胞中的表达Guangli Wang博士,美国OriGene技术公司副总裁 讲题:可用于超高速肽合成的单分散微粒Wolfgang Rapp博士,德国Rapp Polymere 公司首席执行官 讲题:DNA结构和纽结理论何希盛博士,美国诺瓦东南大学助理院长 讲题:生物制药发展与多糖分析Zoran Sosic博士,美国Biogen Idec公司高级研究员 讲题:肺炎髓过氧化物酶和血管生成素样蛋白4的临床应用Vincent T. K. Chow博士,新加坡国立大学教授 讲题:过人源单克隆抗体对艾滋病毒蛋

  • 从细胞生物学角度如何定义“滋阴”?

    刚接触中药,很多东西不懂,特来向各位高手请教:“滋阴”为中药中很常见的词,但是,如果从细胞生物学角度来看,这个“滋阴”功效的表现形式是什么呢?是药物细胞的抗损伤作用和修复作用吗?是否是用以下数值来衡量:OD值,percentage of free radical scavening capacity, percentage of haemolysis, percentage cell viability.....另外,请问各位高手,以下词如何翻译成英文:胃寒湿,阴虚胃弱,阴虚泄泻。先谢过了!

  • 【转帖】细胞生物学发展史

    1677年荷兰Antonie van Leeuwenhoek (1632-1723)显微镜学家、微生物学,用简单显微镜观察到动物的“精虫”(细胞)。1665年英国Hooke Robert(1635-1703)博物学家提出细胞和细胞结构的概念。1827年贝尔发现哺乳类的卵子,对细胞本身进行认真的观察。1838年描施莱登述了细胞是在一种粘液状的母质中,经过一种像是结晶样的过程产生的,并且把植物看作细胞的共同体。在他的启发下施万坚信动、植物都是由细胞构成的,并指出二者在结构和生长中的一致性。1845年德国动物学家西博尔德(1804-1885)断定原生动物都是单细胞的。1852年德国病理学家菲尔肖(1821-1902)在研究结缔组织的基础上提出“一切细胞来自细胞”的名言,并且创立了细胞病理学。1867年德国植物学家霍夫迈斯特对植物,分别比较详细地叙述了间接分裂。1873年施奈德对动物,分别比较详细地叙述了间接分裂。1875年德国植物学家施特拉斯布格首先叙述了植物细胞中的着色物体,而且断定同种植物各自有一定数目的着色物体;1880年巴拉涅茨基描述了着色物体的螺旋状结构,翌年普菲茨纳发现了染色粒。1882年德国细胞学家弗勒明在发现了染色体的纵分裂之后提出了有丝分裂这一名称以代替间接分裂。施特拉斯布格把有丝分裂划分为直到现在还通用的前期、中期、后期、末期;他和其他学者还在植物中观察到减数分裂,经过进一步研究终于区别出单倍体和双倍体染色体数目。1882年捷克动物生理学家浦肯野提出原生质的概念。1888年瓦尔代尔才把核中的着色物体正式命名为染色体。1891年德国学者亨金在昆虫 的精细胞中观察到 X染色体。1902年史蒂文斯、威尔逊等发观了 Y染色体。1900年重新发现孟德尔的研究成就后,遗传学研究有力地推动了细胞学的进展美国遗传学家和胚胎学家摩尔根(1866—1945)研究果蝇 的遗传,发现偶尔出现的白眼个体总是雄性;结合已有的、关于性染色体的知识,解释了白眼雄性的出现,开始从细胞解释遗传现象,遗传因子可能位于染色体上。细胞学和遗传学联系起来,从遗传学得到定量的和生理的概念,从细胞学得到定性的、物质的和叙述的概念,逐步产生出细胞遗传学。此外,发现了辐射现象、温度能够引起果蝇突变之后,因突变的频率很高更有利于染色体的实验研究。辐射之后引起的各种突变,包括基因的移位、倒位及缺失等都司在染色体中找到依据。利用突变型与野生型杂交,并且对其后代进行统计处理可以推算出染色体的基因排列图。广泛开展的性染色体形态的研究,也为雌雄性别的决定找到细胞学的基础。20世纪40年代后,电子显微镜得到广泛使用,标本的包埋、切片一套技术逐渐完善,才有了很大改变。开始逐渐开展了从生化方面研究细胞各部分的功能的工作,产生了生化细胞学。

  • 【分享】诺贝尔奖和诺贝尔奖学:生命科学诺贝尔奖五十年评介与思考

    【内容介绍】 本书在总结50年来诺贝尔生命科学奖项(生理学或医学奖及有关生命科学的化学奖)的基础上,系统介绍了各奖项内容及奖项之间的联系,并就其方法论、与科学哲学的关系、获奖的科学环境和历史人文背景、奖项的定量研究、有关学科的交叉,以及在我国自己国土上取得的科研成果尚未得奖的原因等进行了探讨,提出有必要将诺贝尔奖作为一门学问来,研究,使其成为一门学科。本书适合高等院校的理工农医科师生阅读。 【本书目录】 第1篇 诺贝尔生理学或医学奖简介诺贝尔生理学或医学奖遴选标准诺贝尔生理学或医学奖的颁发机构??卡罗琳斯卡学院诺贝尔生理学或医学奖的提名和遴选过程与生命科学有关的诺贝尔化学奖对于诺贝尔生理学或医学奖的舆论批评常被提到的诺贝尔生理学或医学奖的错误颁发第2篇 诺贝尔生理学或医学奖50年奖项评介第1章 DNA、分子生物学和分子遗传学§1.1 DNA双螺旋三维结构模型的建立§1.2 与DNA双螺旋模型有关的诺贝尔奖项§1.3 DNA、基因调控与遗传密码§1.4 遗传信息流中心法则的修订和断裂基因§1.5 真核细胞的转录§1.6 基因工程的端倪??限制性内切酶、DNA测序和DNA重组§1.7 RNA病毒、致癌基因§1.8 有关RNA的研究第2章 免疫学及分子机理§2.1 现代免疫学的开端§2.2 抗体的化学结构§2.3 放射免疫分析??极灵敏的生命物质的测定方法§2.4 主要组织相容性复合体§2.5 免疫网络学说、单克隆抗体与杂交瘤技术§2.6 抗体多样性的分子基础§2.7 免疫移植§2.8 组织相容抗原与丁细胞作用机制第3章 细胞生物学、细胞信号转导§3.1 第二信使??激素作用机制§3.2 亚细胞结构及功能的研究§3.3 前列腺素的发现及其生物学作用§3.4 胆固醇的代谢调控§3.5 神经与上皮生长因子的发现§3.6 可逆性的蛋白质磷酸化过程§3.7 G蛋白及其在细胞信号转导中的作用§3.8 动物基因控制早期胚胎发育的模式§3.9 一氧化氮生理功能的发现§3.10 蛋白质信号序列决定其在细胞内的位置和转运§3.11 细胞内蛋白质的降解§3.12 细胞分裂周期的调控机制§3.13 程序性细胞死亡(细胞凋亡)第4章 神经生物学与听觉、视觉、嗅觉得基础研究§4.1 神经的兴奋抑制与膜的离子通透性§4.2 神经递质和突触理论§4.3 细胞质膜上单离子通道的发现§4.4 大脑半球的分工§4.5 神经系统内的信号转导§4.6 耳蜗刺激(听力)的物理机制§4.7 视觉的生理和化学与视觉信息处理§4.8 嗅觉基因编码和信号大脑皮层定位第5章 新方法、新疗法和新发病机制的研究§5.1 个体和社会行为模式的建立§5.2 X射线-CT扫描仪、核磁共振成像技术§5.3 手性催化剂合成具有新特性的分子§5.4 药物治疗的重要原理§5.5 乙型肝炎和库鲁病病因的发现§5.6 朊蛋白,一种新的传染机制§5.7 溃疡病与幽门螺杆菌§5.8 修改小鼠基因,创建人类疾病模型第3篇 生命科学诺贝尔奖的方法论研究第6章 生命科学诺贝尔奖的研究层次§6.1 科学、技术与科学方法§6.2 诺贝尔奖的研究层次§6.3 生命科学诺贝尔奖中的重要发现和发明第7章 自然科学诺贝尔奖的定量研究§7.1 数据的选取§7.2 诺贝尔物理学奖§7.3 诺贝尔化学奖§7.4 诺贝尔生理学或医学奖第8章 生命科学的研究方法§8.1 把复杂的生命现象简单化§8.2 对线虫研究取得的成果§8.3 DNA双螺旋模型及复制假说的验证第9章 关于交叉学科§9.1 科学发展的一般趋势§9.2 学科交叉与生命科学诺贝尔奖中的奖项第10章 科学哲学与生命科学§10.1 科学与哲学§10.2 科学结论的证实与证伪§10.3 “科学革命”与“范式”§10.4 “新工具主义”??科学革命产生的另一个源泉第11章 处理生物复杂性问题的现实与未来§11.1 生命系统的三大特性??非线性、自组织性和系统性§11.2 生物复杂性问题§11.3 处理生物复杂性问题的一些方法§11.4 世界观的转变第12章 生命科学诺奖产生的科学环境和人文环境§12.1 生命科学诺奖产生的历史背景和科学环境§12.2 生命科学诺奖产生的人文环境第13章 国人的诺贝尔奖情结第14章 诺奖学 [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=137307]诺贝尔奖和诺贝尔奖学:生命科学诺贝尔奖五十年评介与思考01[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=137308]诺贝尔奖和诺贝尔奖学:生命科学诺贝尔奖五十年评介与思考02[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=137310]诺贝尔奖和诺贝尔奖学:生命科学诺贝尔奖五十年评介与思考03[/url]太大了。。。就分割了一下。。。

  • 细胞自噬 细胞自噬

    细胞自噬是机体一种重要的防御和保护机制。但是这种自噬“信号”如何传递给细胞从而使其“执行”自噬过程,则一直是科学界的难题。近期,我校生命科学学院林圣彩教授课题组成功找到高等动物细胞在生长因子缺失条件下,启动自噬的部分“密码”,从而在细胞自噬机制研究方面取得重大突破。  4月27日,最新一期的美国《科学》杂志以研究文章的形式刊发了这项研究成果,并配发专门评述。这也是近三年来,我校生命科学学院第二篇发表在这一世界顶级学术刊物上的论文。2009年6月,该院韩家淮教授的一篇有关细胞选择死亡方式机制的研究文章曾“登上”该杂志。  所谓自噬,是指细胞消化自身蛋白质或细胞内的结构(细胞器)的一种自食现象。通过这种现象,细胞可以降解、消除和消化受损、变性、衰老和失去功能的细胞器和变性蛋白质等生物大分子,为细胞的生存和修复提供必须的能量。  科学家们认为,自噬与细胞凋亡、细胞衰老一样,是一种十分重要的生物学现象。有关实验表明,包括肥胖症、糖尿病、神经退行性疾病、免疫失调及癌症在内的人类许多重大疾病的发生都与该过程的异常有关。为此,自噬也是当前生命科学中最热门的研究领域之一。  据林圣彩介绍,对自噬进行分子机制的研究始于上世纪90年代的以单细胞生物酿酒酵母为模型的研究,目前,一系列构成单细胞生物自噬核心机器的基因已被发现并命名。  然而,对自噬在多细胞生物特别是哺乳动物中的调控机制的研究,科学界至今仍在不断探索中。摆在科学家面前的一个根源性的问题是:在多细胞生物中,诱导自噬的各种信号是如何被传递到细胞内自噬“核心机器”从而启动自噬过程的?  研究表明,与单细胞生物不同,在多细胞生物内,外界营养元素要依赖于生长因子的调控才能被转运到细胞内。一旦细胞外的生长因子匮乏,细胞便能启动自噬以维持能量平衡。那么,生长因子缺失这一信号又是如何“传达”的呢?  这也成为长期致力于细胞信号转导研究的林圣彩教授课题组近年来的研究目标之一。经过多年研究,课题组终于成功“**”这一自噬启动“密码”——即通过一种名为GSK3的激酶活性增高后磷酸化并随之激活乙酰转移酶TIP60,进而导致自噬核心机器中的蛋白激酶ULK1的乙酰化水平增强而启动细胞自噬。简言之,这一发现揭示了多细胞生物在生长因子缺失条件下的细胞自噬过程的新的介导分子及其通路。  林圣彩认为,弄清楚了细胞内到底有哪些蛋白分子“参与”了自噬和它们如何串联在一起,将有益于科学界从“源头”上认识相关疾病,并为这些疾病的诊断和治疗提供新的靶点。

  • 激光扫描共聚焦显微镜在细胞生物学中的应用

    激光扫描共聚焦显微镜是近十年发展起来的医学图像分析仪器,与传统的光学显微镜相比,大大地提高了分辨率,能得到真正具有三维清晰度的原色图像。并可探测某些低对比度或弱荧光样品,通过目镜直接观察各种生物样品的弱自发荧光。能动态测量Ca2+ 、pH值,Na+、Mg2+等影响细胞代谢的各种生理指标,对细胞动力学研究有着重要的意义。同时激光扫描共聚显微镜可以处理活的标本,不会对标本造成物理化学特性的破坏,更接近细胞生活状态参数测定。可见激光扫描共聚焦显微镜是普遍显微镜上的质的飞跃,是电子显微镜的一个补充,现已广泛用于荧光定量测量,共焦图像分析,三维图像重建、活细胞动力学参数分析和胞间通讯研究等方面,在整个细胞生物学研究领域有着广阔的应用前景。1. 定量荧光测量ACAS可进行重复性极佳的低光探测及活细胞荧光定量分析。利用这一功能既可对单个细胞或细胞群的溶酶体,线粒体、DNA、RNA和受体分子含量、成份及分布进行定性及定量测定,还可测定诸如膜电位和配体结合等生化反应程度。此外,还适用于高灵敏度快速的免疫荧光测定,这种定量可以准确监测抗原表达,细胞结合和杀伤及定量的形态学特性,以揭示诸如肿瘤相关抗原表达的准确定位及定量信息。2. 定量共聚焦图像分析借助于ACAS激光共焦系统,可以获得生物样品高反差、高分辨率、高灵敏度的二维图像。可得到完整活的或固定的细胞及组织的系列及光切片,从而得到各层面的信息,三维重建后可以揭示亚细胞结构的空间关系。能测定细胞光学切片的物理、生物化学特性的变化,如DNA含量、RNA含量、分子扩散、胞内离子等,亦可以对这些动态变化进行准确的定性、定量、定时及定位分析。3. 三维重组分析生物结构ACAS使用SFP进行三维图像重组,SFP将各光学切片的数据组合成一个真实的三维图像,并可从任意角度观察,也可以借助改变照明角度来突出其特征,产生更生动逼真的三维效果。4. 动态荧光测定Ca2+、pH 及其它细胞内离子测定,利用ACAS能迅速对样品的点,线或二维图像扫描,测量单次、多次单色、双发射和三发射光比率,使用诸如Indo-1、BCECF 、Fluo-3等多种荧光探针对各种离子作定量分析。可以直接得到大分子的扩散速率,能定量测定细胞溶液中Ca2+对肿瘤启动因子、生长因子及各种激素等刺激的反应,以及使用双荧光探针Fluo-3和CNARF进行Ca2+和pH的同时测定。5. 荧光光漂白恢复(FRAP)——活细胞的动力学参数荧光光漂白恢复技术借助高强度脉冲式激光照射细胞某一区域,从而造成该区域荧光分子的光淬灭,该区域周围的非淬灭荧光分子将以一定速率向受照区域扩散,可通过低强度激光扫描探测此扩散速率。通过ACAS可直接测量分子扩散率、恢复速度,并由此而揭示细胞结构及相关的机制。6. 胞间通讯研究动物细胞中由缝隙连接介导的胞间通讯被认为在细胞增殖和分化中起非常重要的作用。ACAS可用于测定相邻植物和动物细胞之间细胞间通讯,测量由细胞缝隙连接介导的分子转移,研究肿瘤启动因子和生长因子对缝隙连接介导的胞间通讯的抑制作用,以及胞内Ca2+、PH和cAMP水平对缝隙连接的调节作用。7. 细胞膜流动性测定ACAS设计了专用的软件用于对细胞膜流动性进行定量和定性分析。荧光膜探针受到极化光线激发后,其发射光极性依赖于荧光分子的旋转,而这种有序的运动自由度依赖于荧光分子周围的膜流动性,因此极性测量间接反映细胞膜流动性。这种膜流动性测定在膜的磷脂酸组成分析、药物效应和作用位点,温度反应测定和物种比较等方面有重要作用。8. 笼锁-解笼锁测定许多重要的生活物质都有其笼锁化合物,在处于笼锁状态时,其功能被封闭,而一旦被特异波长的瞬间光照射后,光活化解笼锁,使其恢复原有活性和功能,在细胞的增值、分化等生物代谢过程中发挥功能。利用ACAS可以人为控制这种瞬间光的照射波长和时间,从而达到人为控制多种生物活性产物和其它化合物在生物代谢中发挥功能的时间和空间作用。9. 粘附细胞分选ACAS是目前唯一能对粘附细胞进行分离筛选的分析细胞学仪器,它对培养皿底的粘附细胞有两种分选方法: ① Coolie-CutterTM法,它是Meidian公司专利技术,首先将细胞贴壁培养在特制培养皿上,然后用高能量激光的欲选细胞四周切割成八角形几何形状,而非选择细胞则因在八角形之外而被去除,该分选方式特别适用于选择数量较少诸如突变细胞、转移细胞和杂交瘤细胞,即使百万分之一机率的也非常理想。 ② 激光消除法,该方法亦基于细胞形态及荧光特性,用高能量激光自动杀灭不需要的细胞,留下完整活细胞亚群继续培养,此方法特别适于对数量较多细胞的选择。10. 细胞激光显微外科及光陷阱技术借助ACAS可将激光当作“光子刀”使用,借此来完成诸如细胞膜瞬间穿孔、切除线粒体、溶酶体等细胞器、染色体切割、神经元突起切除等一系列细胞外科手术。通过ACAS光陷阱操作来移动细胞的微小颗粒和结构,该新技术广泛用于染色体、细胞器及细胞骨架的移动。

  • 【推荐讲座】:显微成像新技术在神经科学研究领域的应用(8月9日 10:00)

    【网络讲座】:显微成像新技术在神经科学研究领域的应用【讲座时间】:2016-08-0910:00【主讲人】:徕卡神经科学产品专家,应用主管,2013年毕业于中科院生化细胞所,细胞生物学和神经生物学专业。攻读学位期间运用共聚焦、转盘共聚焦、微流控钙成像、电生理等技术研究钠离子通道,曾在国际期刊J. Neurosci、J. Biol. Chem.、Cell Res.等杂志上发表文章,在成像领域积累了非常丰富的经验。【会议简介】在过去的十年间,神经科学领域不断涌现出新的成像技术,从解析超微结构到构建大脑整体网络,从离体神经元成像到光学与在体电生理的结合,为科研难题提供了解决方案。此次Webinar中,徕卡神经科学产品专家苏博士将分享超高分辨率显微镜、双光子、光片及激光显微切割等先进的显微成像分析技术在神经科学中的应用实例,为大家的科研提供新的灵感。应用领域包括:神经生物学,细胞生物学等。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名截止时间:2016年08月09日 10:004、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/20065、报名及参会咨询:QQ群—2901017206、扫描下面的二维码,加入生命科学微信群,入群口令“生命科学”。http://ng1.17img.cn/bbsfiles/images/2016/07/201607071638_599649_2507958_3.gif

  • 【转帖】《科学》:美生物学家打造出“细胞黑客”

    据《自然》网站11月25日报道,美国生物学家研究出一种基因线路,可以按照需要编制程序,指示细胞对想要的信号作出响应。这项技术有着广泛用途,比如诱导干细胞分化成体内的不同组织,或在营养不良时激活植物的防御机制等。相关研究发表在11月26日出版的《科学》杂志上。“从广泛意义上讲,就是对细胞的行为和决策进行控制,让其对任何感兴趣的蛋白质作出反应。”负责该项研究的加利福尼亚斯坦福大学生物工程师克里斯蒂娜·斯莫克说,其主要难点在于如何控制细胞行为,以及如何开发细胞路径。为此,研究小组制造了一段DNA(脱氧核糖核酸)作为基因线路,将其插入细胞转录到RNA(核糖核酸)中后,它会去探寻细胞内部是否存在某种特殊的目标蛋白质,一旦找到,线路就会给这种蛋白质编码。比如,其中一种线路包含了一种酶的基因,这种酶能让细胞对抗病毒药物更昔洛韦(ganciclovir)更加敏感。研究人员在基因序列中插入一个停止信号,以防止细胞通过信使RNA生成工作蛋白质,而到下一个停止信号时,它们会编码一小段RNA作为一个适配子,识别一种叫做beta-联蛋白的信号蛋白质(在某些肿瘤中beta-联蛋白会被过度复制),找到目标后适配子就会与其结合,由此会让细胞与信使DNA以某种方式铰接,从而清除停止信号以产生酶。

  • 曼迪匹艾(北京)科技服务有限公司正在寻找细胞生物学类 英文学术期刊助理编辑职位,坐标,谈钱不伤感情!

    [b]职位名称:[/b]细胞生物学类 英文学术期刊助理编辑[b]职位描述/要求:[/b]Cells专注于生物领域进展,涵盖生物学,包括但不限于细胞生物学,分子生物学, 蛋白质,生物物理学,化学生物学,生物技术,生物工程等研究领域。详情请查看: http://www.mdpi.com/journal/cells一、工作职责1. 联系同行专家,组织稿件的同行评审;2. 建立与期刊主编,编委成员,作者及审稿人之间的良好沟通;3. 对稿件进行编排处理。二、职位要求1. 生物学相关专业背景;2. 硕士及以上学历;3. 英语六级;4. 熟练office办公软件;5. 良学习能力强,能适应公司高强度职业培训,例如:参加职业培训讲座和一对一导师培训管理。三、工资待遇1. 薪酬待遇: 月基本工资9000-13000,丰厚的绩效奖金;2. 五险一金,年度体检等各种福利。[b]公司介绍:[/b] 曼迪匹艾(北京)科技服务有限公司成立于2008年05月29日,注册地位于北京市通州区翠景北里21号楼22层2204.2205.2206.2207,法定代表人为林树坤。经营范围包括技术推广服务;信息咨询(不含中介服务);市场调查;编辑服务;电脑图文设计、制作;技术开发;计算机技术推广服务;销售计算机软件及辅助设备、文具用品;技术进出口。(企业依法自主选择经营项目,开展经营活动;依法须经批准的项目,经...[url=https://www.instrument.com.cn/job/user/job/position/68957]查看全部[/url]

  • 【转帖】《生物化学杂志》:三种蛋白在神经细胞修复中起重要作用

    俄亥俄州哥伦布市一项新的研究表明,成熟脑细胞表面的三种特定蛋白量的增加可促使细胞产生新的生长延伸。该研究探讨了小鼠脑神经细胞上的三个相关的受体蛋白:GPR3,GPR6和GPR12。当研究人员增加这三种蛋白的量后,细胞生长延伸比蛋白水平正常时的神经细胞的生长大三倍,延伸速度比对照细胞快4-8倍。俄亥俄州立大学医学中心的项目主持人Yoshinaga Saeki说,“我们的研究结果显示,这三种蛋白可能是用于治疗中风、脑和脊髓损伤及神经退行性疾病的重要靶点。”该研究刊登在4月6日的《生物化学杂志》(Journal of Biological Chemistry)上。 这些蛋白量的增加与神经细胞cAMP内的一种重要的信号分子的水平的增加有关。这个分子在调控神经细胞生长、分化和生存,以及传输神经冲动的轴突再生中起着关键作用。随着哺乳动物神经细胞的成熟,其细胞内的cAMP水平下降,这可以部分解释为什么成熟神经细胞受损的轴突不能再生。神经外科副教授、俄亥俄州州立dardinger神经肿瘤及神经科学实验室主管Saeki声称,“我们的发现为cAMP在轴突生长中起着重要作用这一观点提供了更多证据,并显示出这些受体蛋白可能在调节神经细胞cAMP的产生中起主要作用。” 该研究的第一作者Shigeru Tanaka是Saeki所在实验室的一名博士后研究员。在本项研究中,他与同事从小鼠与大鼠脑组织神经母细胞瘤中取得神经细胞,使之在培养基中生长以了解更多关于这三种蛋白及其调控cAMP生长中的作用。他们向这些细胞中注入三种基因以增加这三种蛋白的含量水平,然后用一种被称为核糖核酸干扰的实验室技术关闭这三种蛋白的产生。上述三个蛋白分子中GPR3在神经细胞中最为丰富,而GPR12刺激神经细胞延伸的作用最强。研究表明,阻断GPR3的产生会大大减慢神经细胞的生长速度,研究者们通过修复GPR3或GPR12的产生扭转了这种效应。三种蛋白质的含量水平高也与较高水平的cAMP有关,同时GPR6和GPR12能增加两倍到三倍的水平。 Saeki说,“总的来说,我们的研究结果显示,这三种蛋白能加快神经细胞的生长即使在抑制分子的存在下也是如此,我们迫切希望能找出可以在临床前中风或脊髓损伤动物模型身上重现此结果的方法。”来源:生物谷

  • 三维培养的间充质干细胞球体的生物学特性及应用的研究进展

    【序号】:1【作者】:唐敏英1,2雷艳3詹世淮【题名】:三维培养的间充质干细胞球体的生物学特性及应用的研究进展【期刊】:中华细胞与干细胞杂志(电子版). 【年、卷、期、起止页码】:2020,10(05)【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=jDUTNXVfqCrmJH4M2Ig9b1awjEvZmEbHrSgV84P1WxPGQnKOAzxiaSwL2YPdTipB7RE9TbqQhZ5BzNznx-EjawrpnFh0Z5ju6iIjIsAPjjfkXRsZrWAq2fGL1dyaoMAdu-lYVDUk5CVF5o2L2T1vdg==&uniplatform=NZKPT&language=CHS

  • 细胞生物学实验室(本实验室现行)洗消 (SOP)

    关键词:洗消标准操作目的:确保实验用器皿符合细胞生物学实验要求背景知识:选填项目原理:选填项目主体内容:操作步骤,必填项目 主要参考文献:选填项目:清 洗已使用过的器皿请立即浸入清水中,不应留有气泡。1. 玻璃器皿的清洗清水中取出,于5%盐酸中浸泡过夜自来水简单冲洗洗涤液软毛刷刷洗(1.防止损坏器皿表面光洁度2.注意边角)自来水简单冲洗浸于酸液中6h(小心注意安全,有毒强腐蚀)自来水仔细冲洗(每瓶均灌满倒掉,重复20次以上)单蒸水漂洗3次后烘干备用2. 胶塞的清洗清水中取出,于2%NAOH煮沸10-20min自来水简单冲洗1%的稀盐酸浸泡30min自来水冲洗单蒸水漂洗3次后烘干备用3. 塑料制品的清洗清水中取出,于2%NAOH液浸泡过夜自来水简单冲洗5%盐酸溶液浸泡30min自来水冲洗单蒸水漂洗3次后烘干4. 滤器的清洗流水缓慢冲洗洗涤液中浸泡24h流水缓慢冲洗单蒸水缓慢冲洗3次后烘干5. 不锈钢器皿的清洗自来水简单冲洗[font='Helvetica Neue'

  • 【分享】PNAS:发现储存“时间记忆”的脑部细胞

    据国外媒体报道,美国麻省理工大学的神经学家通过实验发现人类大脑中储存“时间记忆”的神经元细胞。 数十年来,神经学科的科学家在理论上推测人类的大脑中有一部分细胞可以在大脑中为我们日常发生的事件打上“时间标签”,这样我们可以及时回想起过去所发生事情的时间。但是,在科学界一直没有找到可以让人信服的证据证明这部分帮助我们记忆事件发生时间的脑细胞的存在。 近日,麻省理工大学的安-格雷布耶尔(Ann Graybiel)教授和他的研究小组发现,在灵长类动物的大脑中有一类神经元细胞可以将时间信息精确的编译储存。安-格雷布耶尔说:“我们的大脑对所有事情都加上时间的标签,这样就使得我们回忆事情显得非常简单。我们回忆事情的时候首先通过过滤这些时间标签,然后通过时间标签将相关的事情从记忆中提取出来。”这种准确的时间记忆对于开车或弹钢琴等日常活动以及对于我们回忆往事极为重要。这个发现发表在新一期的美国《国家科学院院刊》(PNAS)上。这项研究成果可用于治疗帕金森综合征等导致记忆力丧失疾病的治疗上。 安-格雷布耶尔的实验小组首先训练两只猕猴按照规定完成一个简单的眼部运动实验。当接到“开始”的命令后,两只猕猴按照自己的速度去完成眼部运动实验的过程。研究小组用相应的仪器同步记录两只猕猴大脑中数百个神经元细胞的电信号。同时,实验小组用相关的仪器同步记录两只猕猴大脑中数百个神经元细胞的电信号,并由日本脑部研究所的直孝藤井(NaotakaFujii)和宾夕法尼亚州立大学的金德哲(DezheJin)领导的研究小组用数学的方法来分析这些电信号。 经分析后发现,当猕猴接到“开始”的实验命令后,猕猴脑部的神经元细胞总是在特定的时间内由脑部发出,比如说:在猕猴接到“开始”实验命令后的100毫秒、110毫秒或者150毫秒时等等。安-格雷布耶尔说:“这些实验数据的分析表明,我们已经找到了一直在寻找而没有发现的猕猴大脑内储存时间记忆的脑部细胞。” 这些储存时间记忆的神经元细胞位于脑部前额叶皮层和纹状体区域,这些区域同时也是人类大脑掌控学习、运动和思维的重要区域。安-格雷布耶尔表示,尽管这次实验主要集中在研究猕猴脑部前额叶皮层和纹状体区域,但是脑部其他的区域肯定也存在这些可以储存时间记忆的神经元细胞。 对于这次研究结果的应用,安-格雷布耶尔表示,这次研究的结果可以帮助帕金森综合症患者康复。帕金森综合症的患者正是由于脑部时间记忆功能受损,在寻找和传输时间记忆时总是比正常人要慢。因此帕金森综合症患者不能像正常人一样按照正确的时间规律来完成日常行动。根据这次实验的结果,在为帕金森综合症患者治疗时,可以通过轻轻拍打等外部刺激帮助患者脑部加速寻找关于时间的记忆,这样患者讲话时会显得更加清楚一些。另外,医生还可以通过神经元修复装置或者神经元修复药物(这些药物中含有神经元细胞所需的多巴胺和羟色胺等)来帮助帕金森综合症患者恢复。 在下一步的研究中,安-格雷布耶尔将集中研究脑部是怎样制造这些含有“时间记忆标签”的神经元细胞的,并研究这些时间记忆细胞是如何控制人们的行为和学习活动的。还有一个重要的研究问题是,脑部究竟为何对于不同环境下对时间的感受并不相同。安-格雷布耶尔说:“我们有时候会感觉时间过的很快,有时候却感觉时间过的很慢,所有这些都将可以用带有时间记忆的神经元细胞来解释说明原因所在。” 美国匹兹堡大学的神经生物学教授彼得-施特瑞克(Peter Strick)对这次实验结果给予高度的评价,施特瑞克认为这次实验结果是对脑部如何记录和表述时间概念的一次全新阐释。施特瑞克说:“对于光线、声音、触觉、冷热感知、嗅觉等,我们人体有特定的感觉接受器,但是对于时间我们并没有特定的感觉接受器,对于时间的感知和储存是由大脑自己形成并运行的。”(转自科学网)

  • 《分子生物学检验技术》教学大纲

    检验大纲目录《分子生物学检验技术》教学大纲1第一章 绪论(1学时)1第二章 原核生物基因组与病毒基因组(3学时)1第三章 真核生物基因组(2学时)2第四章 癌基因与抑癌基因(2学时)2第五章 蛋白组与蛋白组学(2学时)2第六章 核酸的分离与纯化(4学时)3第七章 DNA重组技术(6学时)3第八章 聚合酶链式反应及其在基因诊断中的应用(6学时)4第九章 核酸分子杂交技术与应用(6学时)5第十章 蛋白质分析技术(3学时)6第十一章 生物芯片技术与应用(3学时)6第十二章 细胞凋亡与检测技术(4学时)7人体寄生虫学及检验8临床免疫学及免疫学检验10教学内容11《临床微生物学和微生物检验》教学大纲19绪 论21第一篇 临床微生物学导论21第一章 微生物与感染21第二章 细菌感染的实验诊断22第三章 真菌感染的实验诊断23第四章 病毒感染的实验诊断24第二篇 临床细菌学25第五章 细菌的分类与命名25第六章 球菌25第七章 肠杆菌科26第八章 弧菌科29第九章 非发酵革兰阴性杆菌29第十章 苛养菌及人兽共患病原菌30第十一章 革兰阳性需养杆菌30第十二章 棒状杆菌属31第十三章 分枝杆菌属32第十四章 放线菌属与诺卡菌属33第十五章 厌氧菌33第十六章 弯曲菌属与螺杆菌属35第十七章 螺旋体35第十八章 支原体、衣原体、立克次体36第三篇 临床真菌学37第十九章 真菌的分类与命名37第二十章 病原性真菌37第四篇 临床病毒学38第二十一章 病毒的分类与命名38第二十二章 呼吸道病毒38第二十三章 肝炎病毒39第二十四章 逆转录病毒40第二十五章 肠道病毒41第二十六章 急性胃肠炎病毒42第二十七章 黄病毒42第二十八章 出血热病毒43第二十九章 疱疹病毒44第三十章 其他病毒45第三十一章 朊粒45第五篇 微生物检验46第三十二章 临床感染症病原体的检验46第三十三章 医院感染的实验诊断48第三十四章 抗微生物药物和敏感性试验48第三十五章 微生物商品化、自动化检验50第三十六章 微生物检验的质量控制50《临床生物化学和生物化学检验》教学大纲52第一章 绪论(1学时)52第二章 临床生物化学实验室基本技术要求与管理(7学时)52第三章 血浆蛋白质以及非蛋白含氮化合物的代谢紊乱(5学时)52第四章 糖代谢紊乱(5学时)53第五章 血浆脂蛋白及其代谢紊乱(5学时)54第六章 诊断酶学(5学时)54第七章 微量元素与维生素的代谢紊乱(3学时)55第八章 体液平衡紊乱(10学时)57第九章 肝胆疾病的生物化学与实验室诊断(5学时)58第十章 肾脏疾病的生物化学诊断(6学时)59第十一章 心脏疾病的生物化学标志物(5学时)59第十二章 胃肠胰疾病的临床生物化学(2学时)60第十三章 骨代谢异常的生物化学诊断(3学时)61第十四章 红细胞代谢紊乱(3学时)61第十五章 内分泌疾病的生物化学诊断(5学时)62第十六章 神经、持神疾病的生物化学(2学时)63第十七章 妊娠的临床生物化学(2学时)64第十八章 体液肿瘤标志物(3学时)64第十九章 治疗药物浓度监测(2学时)65第二十章 自动生物化学分析仪的应用与原理(3学时)66第二十一章 临床生征化学方法的选择、建立和评价(5学时)66第二十二章 遗传性疾病的生物化学与分子生物学诊断(5学时)67第二十三章 实验室信息系统(2学时)68第二十四章 临床生物化学技验质量控制(5学时)68第二十五章 临床生物化学实验室数据的作用和有效使用(2学时)69《临床血液学和血液学检验》教学大纲70第一、二章 血液学概述和发展史与临床的关系70第三章 造血检验的基础理论70第四、五章 造血检验的基本方法及临床应用70第六、七章 红细胞检验的基础理论和基本方法71第八章 红细胞检验的临床应用71第九、十章 白细胞检验的基础理论及基本方法73第十一章 白细胞疾病检验74第十二、十三章 慢性白血病和少见类型白血病75第十四章 血栓与止血检验的基础理论77第十五、十六章 出血性疾病及其检验77第十七、十八章 血栓性疾病及其检验78《临床检验基础》教学大纲79绪 论79血液标本采集和抗凝剂选择80血液一般检验80血栓和止血一般检验80尿液生成和标本采集及处理80尿液理学和化学检验81尿液沉渣显微镜检查81尿液分析仪及其临床应用81脑脊液检验81浆膜腔积液检验82胃液和十二直肠引流液检验82粪便检验82生殖系统分泌物检验82痰液和支气管肺泡灌洗液检验83羊水检验83脱落细胞检查基本知识83脱落细胞检查技术和临床应用评价83各系统脱落细胞检查84细针吸取细胞学检查84

  • 生物学专业 SCI论文发表心得

    对从事生物学、医学与药学专业的研究生而言,能让自己的文章在SCI期刊发表是一种莫大的荣耀。说的世俗一些,一篇SCI论文(哪怕是IF低于1.5分的期刊)会为一名硕士带来不少荣耀。当然了,对博士研究生而言,SCI的IF是关系到其能否顺利毕业的保证。前期在论坛上看到博士毕不了业,对导师以死相逼。究其原因仅仅是因为一纸论文。发表SCI论文真的有那么难吗?笔者看来有实验结果SCI论文发表其实不是一件难事。这里实验结果不一定就是国内的教授们的“首次报道”类的结果。如果你的试验结果可以组织成一个合理的story,完全可以去SCI论文投稿。1. 论文写作论文写作非一日之功。前期要阅读大量文献,并将阅读文献做一个小记,这样不会出现读完后一点儿印象都没有。更重要的是为以后的参考文献选用打下良好基础。因为你引用参考文献时要有针对性,不能乱引用。比如说你在Cell中读到1985年Blackburn E H女士与其博士后Greider CW发现了端粒。那么你就记录一下,用到的时候很方便。在这里我建议大家采用Endnote管理文献,该软件对文献管理与论文写作非常有用。采用该软件你可将所有的文献进行分类管理,并可在摘要内做适当记录。在书写论文时,Endnote在参考文献管理方面的优势就体现出来了,一切参考文献都是一键输入,根本不用手写。大家都知道投稿鲜有一次成功的,每种期刊都有其特定的参考文献要求,万一稿件不中,还要修改转投其他期刊,如果其他期刊的参考文献不一样,那么你惨了。你需要人工修改。使用Endnote则很简单,Endnote收录高分期刊的参考文献模板与写作模板。所以你根本不用愁格式。如果低分的期刊没有收录其参考文献模式与写作模板,你有两个办法:一,找一个相同的参考文献模板引用。例如你投稿到ABBS,你发现Cell的文献文献格式与其相同,你只需要在Endnote插入格式内选择Cell的文献格式就可以了。一键完成。二,如果你是在找不到相同的模板,那你就自己编写吧,也很简单。在这里我就不赘述了。阅读了大量论文,试验也做的差不多的时候。需要着手写论文了。写作论文时一定要集中时间写。在写作时不一定非要从 Abstract写到Acknowledgement。你可以最后写方法与致谢,但是摘要一定字斟句酌,摘要是一篇文章的高度概括。大家在搜集信息时一般看看文章的摘要就知道这篇文章是否适合自己去阅读。文章的摘要需全面体现开展该项研究的意义的深度概括。Introduction主要是概括该领域的研究,引出待解决、需研究的问题。说明为何开展该项研究等等。材料与方法就相对好些了,详细阐述方法与步骤即可。结果与讨论也非常重要。结果部分将试验结果展开论述,一般辅以图片说明。试验图片一定要清晰,否则审稿人会让你重新进行一次试验的。说句不负责任的话,你可以拼错一个单词,但是图片不可以出现模糊或不清晰这种情况。讨论就是对结果的意义进行进一步探究。SCI期刊的讨论不像国内期刊最后的讨论那样写的天马行空,就事论事、简洁是讨论写作的基本原则。2. 论文定位稿件分为综述性文章与实验性文章。投稿时首先对自己的论文有一个准确的定位,这就需要阅读大量的文献,掌握目前该领域研究到了什么状态,研究的热点是什么。你的工作对当前研究有什么意义。期刊是读者交流的主渠道,很多科学家在从事类似研究,有很多未解决问题困扰着他们,如果你的研究能对这些困扰提出一个论据,哪怕是一个细小分支。你的这篇论文也可以投一篇IF较高的期刊。我研究生时的专业是端粒酶。该领域的研究主要是围绕着端粒酶活性检测与端粒与细胞衰老信号通路的关系。端粒酶检测方法在1994年就已经发表,现在方法很成熟,试剂盒都研发出来了。对于端粒酶与细胞衰老方面存在很多的信号通路,如果能找到一些调节细胞信号通路的因子,那么高的可以发到Cell,低的也可以发到3分以上的期刊。如果你对信号通路进行综述,除非是该领域的大牛进行综述,否则该综述不可能被收录,因为信号通路这一领域很难解释一个所以然。如果能解释所以然,这篇文章可以在Cell上发表。如果你对端粒酶检测方法进行综述,你就Out了。这种综述90年代就发表了。所以投稿前,一定要掌握该领域的研究趋势,明确自己的结果在投稿时的定位。3. 选定期刊稿件定位后,就开始选择期刊了。选期刊怎么选?在 Google上搜索?那真是海底捞针了!我推荐大家每人拥有近3-5年的影响因子表格。一般期刊的影响因子的变动不大,在Excel表格内将采用IF升序或降序的方法排列。如果你觉得你的文章可以投稿到1分的期刊,那么你就在IF为1的期刊列内搜索,找到生物学、医学、药学领域的期刊,一次多找几个。然后到期刊的官方网站去看该期刊的征稿范围(Scope),确保范围准确。

  • 单细胞“纳米生物间谍”技术能进入活细胞取样

    原标题 “纳米生物间谍”技术能进入活细胞取样 可用于深入揭示线粒体基因组变异的重要性 科技日报讯 据物理学家组织网近日报道,美国加利福尼亚大学圣克鲁兹分校(UCSC)研究人员开发出一种机器人式的“纳米生物间谍”系统,能从单个活细胞内提取出微量样本,进行RNA或DNA测序,而不会杀死细胞。研究人员表示,这种单细胞“纳米生物间谍”技术是一种了解活细胞内部动态过程的有力工具。相关论文发表在最近出版的美国化学协会《纳米》杂志上。 “我们能从活细胞中拿走一个‘生物间谍’,再把它送回该细胞,在几天内这样重复多次而不会杀死细胞。如果用其他技术,你不得不牺牲这个细胞才能分析它。”该生物传感与生物电技术小组负责人、UCSC巴斯金工程学院生物分子工程教授内德·波曼德说。 “纳米生物间谍”平台是研究小组用纳米吸液管开发的最新设备。纳米吸液管是一种小玻璃管,取液端越来越细,至尖端直径仅50到100纳米。波曼德说:“我能在实验室造出纳米吸液管,这不需要昂贵的纳米制造设备。但要进入一个细胞,问题是即使在高倍显微镜下,你也看不见吸液管尖端,不知道它偏离了细胞有多远。” 实验室博士后研究员亚当·赛格尔解决了这一问题。他基于在一台改造过的扫描离子电导显微镜(SICM),开发出一种反馈控制系统。该系统能利用通过纳米吸液管尖端的离子流作为反馈信号,在尖端接近细胞表面时探测其中的液滴。在尖端进入细胞之前,一种自动控制系统能定位它在细胞上面的位置,然后尖端很快插入穿透细胞膜,通过操控电压有控制地提取一小点细胞内物质。由于吸液管尖端极精细,对细胞造成的损害极微小。 研究小组用这种系统从活细胞中提取的微量细胞物质,估计只有50毫微微升(千万亿分之一升),约一个人体细胞百分之一的量。他们从单个人体癌细胞中提取物质并进行RNA测序,还从人类成纤维细胞中提取了线粒体并对其进行了DNA测序。“人们已经知道,线粒体和多种神经退化疾病有关。该技术可用于深入揭示线粒体基因组变异的重要性。”波曼德说。 该技术应用前景广阔。波曼德希望能与其他研究人员合作,探索其更多用途。“对于癌症生物学家、干细胞生物学家等想要了解细胞内部情况的科学家来说,这是一种多功能的平台。”(常丽君)来源:中国科技网-科技日报 2014年01月20日

  • 生物发光技术在细胞学检测中的应用

    生物发光技术在细胞学检测中的应用摘要:本文就生物发光技术的种类、机理、及其技术特点进行了综述,并就其在细胞学检测中的应用与研究进展展开了讨论。关键词:生物发光; ATP;荧光素酶;细胞凋亡;细胞内游离Ca2+自从20多年前,Marlene A DeLuca’s第一个成功的获得表达萤火虫荧光素酶基因(luc基因)的转基因烟草以来,生物发光(Bioluminescenc,BL)作为一个古老而又年轻的技术, 近年来得到了很大的发展和广泛的应用。而近几年来,随着分子生物学的进展以及一些新生物技术工具的出现,尤其在某些关键技术如生物传感器、基因序列分析、活体细胞ATP 测定]等方面取得了一些突破,使生物发光的应用进入了一个新时代,极大提高了生物发光的检测和快速应用,其应用范围更进一步扩大[1]。1 生物发光的种类和特点尽管自然界中的生物体普遍存在发光现象,它们的发光机理、强度和光谱范围存在着很大差异。目前,国际上根据发光的机理不同将生物发光分为:受激荧光,发光生物发光,化学发光和生物的超微弱发光[3,4]。1.1 受激荧光受激荧光是指生物体在受到外界光辐射的作用时,体内固有的荧光物质或吸收的荧光标记物发光的现象。在生物学领域中,由于分析物质荧光的方法敏感性极高,而且几乎所有的有机分子都能够直接或经过适当的化学处理后发生荧光,故很早就受到重视,并逐渐发展成为生物学和医学中的荧光分析。在生物医学领域应用荧光分析最多的是荧光显微技术,基本工具为荧光显微镜。但一般的荧光显微镜某些情况下荧光的亮度不足,使观察困难随着光电技术和计算机技术的进步,已经发展出的激光共聚焦显微镜,操作更加方便,实验可重复性提高,使受激荧光的应用更加广泛[5]。1.2 发光生物发光在生物发光领域中最容易被人们所接受的发光现象就是以萤火虫的闪光为代表的发光生物发光[3]。现在,已了解各种发光生物发光的基本反应,在这个领域中也取得了一些新的进展,例如在体外重组虫荧光素酶,用基因工程技术在大肠杆菌中表达;人工合成荧光素;体外模拟细菌发光体系已获成功;细菌的发光基因已被提出,同样也已用基因工程方法在大肠杆菌中表达。水母发光蛋白已经分离纯化,一级结构已经清楚。由于生物发光的量子效率极高,所以研究生物发光能量的转化具有重要的理论与实际意义。近年来被广泛应用的发光蛋白,如GFP、YFP、CFP 等,其发光原理就是源自动物的自发发光,从而为生物医学研究提供了新的手段[6]。1.3 化学发光化学发光是在化学反应过程中(主要为氧化还原反应)发出可见光的现象[6]。化学发光反应是由两个关键步骤组成:激发和发射。许多化学反应进行时能释放足够的自由能而把参加反应的物质之一激发到能发射光的电子激发态,生成一种激发态产物,在它回到基态时,剩余能量转变成光子能量产生发光现象。随着化学发光物质合成技术的进步,化学发光在生物医学及其它领域的应用越来越广泛[7,8],将化学发光与免疫反应结合起来建立的化学发光免疫测定法和化学发光标记是继荧光标记,放射性核素标记,酶标记三大标记技术之后,发展起来的最新检测技术[8]。1.4 生物超微弱发光 随着生物发光研究的进一步深入,发现人体的器官、组织、细胞、乃至大分子都在发光,不过发光强度更弱。这些有关生物超微弱发光(ultra-weak bioluminescence)的研究课题,构成了当前生命科学发展前沿中的一个极其重要的研究领域——生命系统的超微弱光子辐射(ultra-weak photon emission from living system) [8]。20世纪60~70 年代以来,各国先后出现了一些研究小组专门进行这方面的探讨,如日本的稻场文男小组(1991)研究了鼠肝核的超微弱天然光子发射;德国F.A. Popp小组提出了“生物光子”概念和一系列的相干理论[9]。目前研究已涉及到细胞、亚细胞乃至生物大分子的层次[ 9,10]。越来越多的实验表明,DNA 是生物超微弱发光的一个辐射源。1.5 生物发光特点研究发现生物发光有以下几个特点:① 生物发光的颜色范围很宽,可从红光到深蓝光;② 氧是几乎所有生物发光系统中必须的因素;③ 生物发光是由“荧光素酶”与“荧光素”的化学反应所引起的;④ 所有的生物发光反应似乎都是酶-底物类型的反应,但复杂程度不同,某些生物发光反应涉及3 种或4种底物,而另一些生物发光反应甚至需要3个或4个酶的体系[8]。[/size]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制