当前位置: 仪器信息网 > 行业主题 > >

太赫兹相关仪器

仪器信息网太赫兹相关仪器专题为您提供2024年最新太赫兹相关仪器价格报价、厂家品牌的相关信息, 包括太赫兹相关仪器参数、型号等,不管是国产,还是进口品牌的太赫兹相关仪器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合太赫兹相关仪器相关的耗材配件、试剂标物,还有太赫兹相关仪器相关的最新资讯、资料,以及太赫兹相关仪器相关的解决方案。

太赫兹相关仪器相关的资讯

  • 重大科学仪器专项:太赫兹光谱仪最新进展
    p  strong仪器信息网讯 /strong 2016年12月6日,中央民族大学,2016年太赫兹波谱技术及产业化研讨会暨国家重大科学仪器设备开发专项-基于飞秒激光的太赫兹时域光谱仪开发项目(以下简称:太赫兹专项)2016年年度总结汇报会顺利召开。中科院物理所院士杨国桢、北京理工大学院士周立伟、清华大学院士周炳琨、北京大学院士龚旗煌、中科院半导体所院士李树深、深圳大学院士范滇元、南京大学院士吴培亨、清华大学院士金国藩、天津大学院士姚建铨、科技部资源配置与管理司处长刘春晓、北京市科委李建玲处长等70多人到会。大恒新纪元科技股份有限公司总经理杨晓红、中央民族大学校长宋敏致欢迎辞。宋敏在致辞中说到,本次会议是中央民族大学今年规格最高的一次会议,光电领域顶级专家齐聚,可谓太赫兹领域的年度盛会,并预祝太赫兹专项取得丰硕成果。/ppbr//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201612/insimg/dba4bdfb-5646-46d7-93c4-bde95acb31c8.jpg" title="songmin.jpg" style="width: 400px height: 261px " hspace="0" height="261" width="400" vspace="0" border="0"//pp style="text-align: center "  中央民族大学校长宋敏致欢迎辞/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201612/insimg/7edebd8d-e799-403b-aed2-3243948c71e1.jpg" title="yangxiaoh.jpg" style="width: 400px height: 261px " hspace="0" height="261" width="400" vspace="0" border="0"//pp style="text-align: center "  大恒新纪元科技股份有限公司总经理杨晓红致欢迎辞/pp  大恒新纪元科技股份有限公司研发部副经理张翼、首都师范大学教授张存林、中国石油大学(北京)教授赵昆等各项目承担单位代表介绍了项目有关仪器研制、应用研究、产业化进程等各方面的详细情况 与会院士、部委领导及专家学者代表就项目及产业化方面发表了各自的意见和建议。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201612/insimg/87906388-b8bc-44e6-8af7-5a6521acca02.jpg" title="zhangcunlin.jpg" style="width: 400px height: 261px " hspace="0" height="261" width="400" vspace="0" border="0"//pp style="text-align: center "  首都师范大学教授张存林致辞/pp  太赫兹专项已经历时4年,2017年结项,2016年是承上启下的关键一年。太赫兹项目总体进展顺利,2016年已经开始欧、美、印度、国内等方面的市场推广工作,杨晓红介绍到。大恒新纪元科技股份有限公司研发部副经理张翼详细汇报太赫兹专项进展。太赫兹专项项目经费为1亿3780万(国拨+企业自筹),目前已经完成76.99%经费投入(国拨76.3%+企业自筹68.8%) 计划开发仪器10项,已完成18项 计划应用开发5个,已完成7个 计划申请专利43个,已经完成101个 计划制定标准8个,已经完成3个 计划取得软件著作权8项,已完成11项。太赫兹专项已经完成产品转化15项,2016年密集开展各项市场推广工作,参加慕尼黑激光上海展、第十一届国际激光加工技术研讨会、慕尼黑分析仪器展(德国)、西部光电子展(美国)等20多个国际国内学术会议和展会,实现产品销售41例,CIP-TDS光谱仪、太赫兹时域光谱仪等产品实现销售额3506万元。与传统的中国科学仪器企业有所不同,大恒科技在坚持自研的技术路线之外,也借助了资本的力量,把国际技术领先的美国Zomega公司(该公司由于所有人个人原因关闭)所有技术和专利收入囊中,并为Zomega公司在中国已经销售的所有产品提供后续服务。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201612/insimg/78aa27e0-eb51-4b8a-8b55-d4d8b60e30fb.jpg" title="zhangyi.jpg" style="width: 400px height: 261px " hspace="0" height="261" width="400" vspace="0" border="0"//pp style="text-align: center "  大恒新纪元科技股份有限公司研发部副经理张翼汇报项目进展/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201612/insimg/87f82528-0737-46a7-bd03-72cfdd6de945.jpg" title="飞秒激光器.jpg" style="width: 300px height: 174px " hspace="0" height="174" width="300" vspace="0" border="0"/img src="http://img1.17img.cn/17img/images/201612/insimg/9f6747e3-1e39-4472-972c-6a75ffca5ced.jpg" title="时域光谱仪.jpg" style="width: 300px height: 174px " hspace="0" height="174" width="300" vspace="0" border="0"//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201612/insimg/4c26d459-5966-4a8e-9630-71a7aa6e8d86.jpg" title="太赫兹光谱仪.jpg" style="width: 300px height: 174px " hspace="0" height="174" width="300" vspace="0" border="0"/img src="http://img1.17img.cn/17img/images/201612/insimg/2695b8c2-eae5-4a86-b6f7-f596a374b234.jpg" title="飞秒激光器1.jpg" style="width: 300px height: 174px " hspace="0" height="174" width="300" vspace="0" border="0"//pp style="text-align: center "现场产品展示br//pp  中国石油大学(北京)教授赵昆作《油气资源太赫兹光谱表征与评价》报告。报告中说到,借助太赫兹专项,开拓了石油气光学学科研究领域 依托太赫兹专项,后续获得973课题1项、国家自然科学基金2项、石油化工联合会科技计划3项、中石化课题1项、中石油课题1项。2015年11月14日“井下油气探测关键技术创新及应用”科技成果鉴定会上,太赫兹光谱油气探测技术获得“达到国际领先水平”的评价。目前,油气资源太赫兹光谱表征与评价技术已经应用油气产业的“上游”、“中游”、“下游” 油品太赫兹光谱数据库已经初步建立。赵昆说到,太赫兹技术在石油气方面的应用,并不是替代原有技术和设备,而是有益的补充 未来,太赫兹在非常规油气勘探与开发等方面将大有作为。据了解,太赫兹专项目前已经在食品安全、石油气、民族医药等7个方面完成应用开发的相关工作。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201612/insimg/50098563-4809-47e0-9434-ee550a0d67f7.jpg" title="zhaokun.jpg" style="width: 400px height: 261px " hspace="0" height="261" width="400" vspace="0" border="0"//pp style="text-align: center "  中国石油大学(北京)教授赵昆代表项目应用组报告/pp  为太赫兹专项所取得的成绩及更好地完成2017年专项结题工作,与会的院士、专家学者和相关部门领导纷纷发表自己的意见和建议。譬如:如何进一步提高仪器的稳定性、可靠性?如何加快产业化进程等.....有院士说到,以前我们知道太赫兹应该很有用,太赫兹专项解决了“太赫兹技术如何应用”的问题!/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201612/insimg/e72b8dfd-b69c-46b9-8ed2-baacc7d9d709.jpg" title="yuanshiping.jpg" style="width: 620px height: 348px " hspace="0" height="348" width="620" vspace="0" border="0"//pp style="text-align: center "与会代表发言/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201612/insimg/c0cec519-fd6e-4eb5-9035-f2eaa05e8871.jpg" title="参观.jpg" style="width: 620px height: 413px " hspace="0" height="413" width="620" vspace="0" border="0"//pp style="text-align: center "与会代表现场听取产品介绍/pp  张翼在汇报中说到,2016年,太赫兹专项进入项目第四年,不论是仪器研发还是应用研发均进入收尾阶段,项目正式进入结题准备阶段。2016年,仪器的优化改进及应用探索工作还在进行当中,钛宝石飞秒激光群II型、光纤耦合太赫兹时域光谱仪等设备还在陆续的研发和改进中,大恒科技将以更好的产品、更好的用户体验来迎接未来市场的挑战。2017年,不是终点,是起点!/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201612/insimg/55cfb73b-e1e1-4e8e-b73e-300a2528556c.jpg" style="width: 620px height: 301px " title="合影.jpg" hspace="0" height="301" width="620" vspace="0" border="0"//pp style="text-align: center "  与会代表合影留念/p
  • 太赫兹技术大火 6支仪器概念股受追捧
    据了解,太赫兹生物探测技术已经成为当下一个非常重要的交叉前沿领域,我国目前已经研发出一种太赫兹发射器,该发射器的数据传输速度要比5G至少快10倍,该技术有望在2020年实现应用。太赫兹技术的火热,也引发了公众对于以下几支仪器概念股的关注。  同方股份:控股子公司同方威视技术股份有限公司曾与清华大学共同申请了“一种利用太赫兹时域光谱快速检测植物油纯度的方法及设备”专利权。  大恒科技:太赫兹光谱仪已小批量销售,“基于飞秒激光的太赫兹光谱仪”项目去年已通过专家组2015年年度验收。  华讯方舟:16年4月26日,华讯方舟创始人吴光胜接受媒体采访时称,已成功做出世界第一块石墨烯太赫兹芯片,并在太赫兹研究领域上处于世界领先水平。  天瑞仪器:公司主要从事化学分析仪器及其应用软件的研发、生产销售,同时能提供应用解决方案和相关技术服务。主要产品包括能量色散X射线荧光光谱仪、波长色散X射线荧光光谱仪、镀层测厚X射线荧光光谱仪等36个型号的产品。  四创电子:公司是国家级高新技术企业,国家技术创新示范企业,国家火炬计划重点高新技术企业,全国电子信息行业标杆企业。主营雷达电子、安全电子两大业务。  聚光科技:公司主要从事环境监测、工业过程分析和安全监测领域的仪器仪表的研发、生产和销售,公司产品在线监测气体、液体和固体成分和含量,产品广泛应用于环境保护、冶金、石油化工、电力能源、水泥建材,公共安全等多个领域。
  • 我国基于太赫兹技术的仪器研制备受关注
    仪器信息网讯 自2011年&ldquo 国家重大科学仪器设备开发专项&rdquo 及&ldquo 国家重大科研仪器设备研制专项&rdquo 设立以来,&ldquo 基于太赫兹技术的新一代危险品分析检测仪器开发&rdquo 、&ldquo 相干强太赫兹源科学仪器设备开发&rdquo 、&ldquo 太赫兹超导阵列成像系统&rdquo 、&ldquo 基于飞秒激光的太赫兹时域光谱仪开发&rdquo 等多项基于太赫兹技术的仪器研制项目获批立项。  同时国内各研究机构对太赫兹安检仪的研发也很关注。据报道,2012年2月,由中国电子科技集团38所研发的太赫兹安检技术取得关键性进展,首台样机可在年内面世。  2012年9月,记者从山东省科学院自动化研究所了解到,该所最近成功研制出一种特殊的仪器设备,能够让我们&ldquo 看&rdquo 到障碍物另一侧的状况。这一最新成果的达成,标志着我国超宽带与太赫兹探测成像领域取得重大突破,对于保障公共安全和国民经济发展具有重大意义。反恐防暴和人员救援的&ldquo 好帮手&rdquo   2012年12月,由首都师范大学、北京理工大学、北京维泰凯信新技术有限公司承担的北京市科技计划&ldquo 太赫兹安检仪产品样机研制&rdquo 课题通过了专家验收。该课题研制出国内首台太赫兹安检仪产品样机,实现了以每秒3-5帧的速度对人体进行1*2米大尺寸被动成像,分辨率达到2cm,能够替代国外同类产品。  2012年12月,中国航天科工二院顺利完成了太赫兹高技术课题的年度研究任务,填补了国内太赫兹波散射研究的空白。作为后续,该院还将搭建首套太赫兹波安全监测测试系统,为太赫兹在安检等领域的产品开发提供基础。  另外,基于太赫兹检测技术的地沟油快速检测仪样机也已问世。2012年10月23日,在上海市教委举办的首场专题新闻发布会上,上海理工大学首度展出&ldquo 基于太赫兹技术的地沟油快速检测仪&rdquo 。该设备检测准确率超过90%,可解决当下地沟油监管难、检测难的问题。据报道,该检测仪样机已成形,并付诸批量生产,年底前或将面世。  关于太赫兹技术  太赫兹波的频率范围在0.1T至10THz(波长在3mm至30um),是一种介于红外光和微波之间、有着独特优点的电磁波段,在通信、雷达、医学成像、安全检查等领域都有广泛的应用前景,因此被国外评为改变未来世界的十大技术之一。但由于技术、材料等限制,国内外涉及太赫兹波段的研究结果和数据并不多。  我国政府在2005年11月专门召开了&ldquo 香山科技会议&rdquo ,邀请国内多位在THz研究领域有影响的院士专门讨论我国THz事业的发展方向,并制定了我国THz技术的发展规划。撰稿:秦丽娟
  • 2012太赫兹科学仪器及前沿技术专题研讨会在京成功召开
    仪器信息网讯 2012年8月8日-9日,由中国仪器仪表学会、“太赫兹光电子学教育部重点实验室”、《现代科学仪器》编辑部主办的2012太赫兹科学仪器及前沿技术专题研讨会在北京紫玉饭店成功召开。本次会议的宗旨是为太赫兹科学仪器研制开发提供技术交流平台,为太赫兹仪器选购提供技术咨询,并为太赫兹仪器使用提供技术支撑。本次研讨会特别邀请到电子科技大学刘盛纲院士、天津大学姚建铨院士等太赫兹研究领域的多名专家学者做精彩报告,吸引了来自各科研院所、仪器公司的近100位代表参会。会议现场  开幕式由太赫兹光电子学教育部重点实验室主任张存林教授主持,中国仪器仪表学会副理事长兼秘书长吴幼华先生,电子科技大学刘盛刚院士分别为大会致辞。中国仪器仪表学会副理事长兼秘书长吴幼华先生电子科技大学刘盛纲院士  首先,吴幼华先生代表主办方对各位代表表示热烈的欢迎。并介绍到,太赫兹科学仪器涉及的领域很广,专业性很强,是非常重要的交叉前沿领域,其技术进步为技术创新、国民经济发展和国家安全提供了一个非常诱人的发展机遇。  电子科技大学刘盛纲院士在致辞中指出,“重要的科学成就必须以实验研究为基础,在国际上重要的仪器设备是一流大学所必备的条件。近几年,中国也越来越多的认识到科学仪器的重要性。在过去的十几年中,日本人拿了6个诺贝尔奖,以色列拿了两个诺贝尔奖,我们相信中国一定会拿诺贝尔奖,但是不知什么时候。我们有很多好的思想,只是做不出实验结果来,我们国家要想成为科技大国,加强对仪器设备的支持是非常必要的。此外,中国的太赫兹技术发展非常快,也得到了国家自然科学基金委的大力支持,不过目前还存在一些问题,如投资不太集中等”。国家自然科学基金委员会信息科学部张兆田主任  在开幕式中,国家自然科学基金委员会信息科学部张兆田主任还做了《信息优先资助领域及其基金资助工作》的相关报告。在报告中,张兆田主任介绍了信息科学的发展规律与特点,发展状况与未来发展趋势、重点优先发展领域等。其中,新型毫米波与太赫兹器件就是其优先发展的领域之一,其研究内容包括太赫兹核心器件及阵列检测器、微结构太赫兹功能器件;新型太赫兹探测技术等。此外,张兆田主任还介绍了信息科学部的部门设置、资助方针、资助格局、资助项目类型、项目受理评审过程等相关内容。首都师范大学物理系张岩主任  此外,首都师范大学物理系张岩主任也介绍了太赫兹科学仪器及前沿技术专题研讨会的会议组织等相关情况。  大会报告 技术发展篇太赫兹光电子学教育部重点实验室主任张存林教授报告题目:基于飞秒激光的太赫兹时域光谱仪开发  张存林教授在报告中详细介绍了国家重大科学仪器设备开发专项“基于飞秒激光的太赫兹时域光谱仪开发”的相关情况。介于微波和红外之间的太赫兹是物理与信息领域重大科学技术问题,太赫兹波谱是反应分子结构和空间阵列的指纹谱。太赫兹时域光谱仪未来将向宽谱、高能量、小型化的方向发展,在科研及食品药品鉴定和检测方面具有很重要的应用价值和前景,对经济社会发展、民生改善具有很重要的支支撑作用。在市场方面,近三年来,已经有上百家应用单位有着明确的应用需求。据2010年度太赫兹市场报告的预期,太赫兹在医学、安全和制造业领域相关产品的经济效益到2020年将可达到数千万到数亿美元,市场总额可达到数十亿美元。张存林教授还介绍说按此推算,“基于飞秒激光的太赫兹时域光谱仪开发”项目完成后,若中国市场可占到10%的全球市场份额,预期经济效益也将达到数亿美元。由此,也将拉动中关村高科技示范区高端仪器制造业及相关产业产值约10亿元人民币/年。上海大学马国宏教授报告题目:太赫兹脉冲的产生及波前控制研究  马国宏教授介绍到目前THz波的研究主要包括THz源、THz检测和THz传输等方面,要使THz波的研究成果得到广泛的应用,尤其是将THz技术应用到远红外光谱学中,有必要研究THz脉冲的波前控制以及各种THz光子学器件的工作原理,从而实现对THz辐射的人工调控。随后,马国宏教授介绍了上海大学超快光子学实验室近年来在THz波的产生、THz的主动和被动控制、THz光子学和THz自旋电子学等方面开展的一系列研究工作。其中,主要探讨了利用THz波与各种微结构相互作用实现THz波前的控制,包括THz偏振控制、抗反射、全吸收设计、THz全禁带光子晶体以及THz磁共振器件等。中科院紫金山天文台副研究员张文先生报告题目:太赫兹高灵敏超导热电子探测器技术  张文先生谈到,太赫兹波段存在丰富的分子转动谱线和原子精细结构谱线,通过对这些分子谱线的高频率分辨率观测,可以研究天文、大气和深空探测等领域的重要科学问题。超导HEB混频器是1HTz以上灵敏度最高的相干探测器,已经成功应用到Herschel空间卫星、SOFIA天文台和地面APEX望远镜开展天文观测研究。张文先生所在系统改进了超导HEB热电子混频器的热点模型,深入理解其机制,率先实现了4K闭环制冷环境下的超导HEB混频实验;并研制国际上最高频率(5.3HTz)天线耦合超导HEB混频器,灵敏度率先突破5倍量子噪声极限。此外,张文先生还介绍了其课题组在太赫兹超导HEB混频器应用方面的研究工作。天津大学姚建铨院士报告题目:太赫兹技术及太赫兹仪器的发展趋势  姚建铨院士在报告中介绍到,随着太赫兹科学技术的飞速发展,对太赫兹科学仪器也不断提出新的需求,不仅推动了太赫兹科学仪器的快速发展,也催发了太赫兹前沿技术的不断涌现。同时,太赫兹科学仪器的前沿技术也表征着太赫兹科学仪器的先进性和尖端性,引领着太赫兹科学仪器的进一步发展。在这一部分内容中姚建铨院士介绍了太赫兹技术国内外研究及应用概况,光学太赫兹辐射源研究及太赫兹功能器件-微结构材料的应用等方面的情况。并且指出,微结构光学材料在激光技术、THz技术等方面可望实现传输、源、开关、放大、滤波、调制、吸收、偏振等功能,有十分重要的科学价值及实际意义。如果将微结构材料施加各种场(电、磁、声、光、热、机械等)作用可望产生新现象、出现新机理、实现新功能、制成新器件。此外,姚建铨院士还介绍了基于法布里-珀罗干涉仪的THz波长测试法及THz傅立叶变换光谱仪的相关研究工作。首都师范大学赵国忠教授报告题目:太赫兹波产生探测及太赫兹时域光谱技术  赵国忠教授谈到,对于太赫兹光谱应用来说,获得宽带太赫兹辐射至关重要,目前,实验室使用的宽带太赫兹辐射源以光整流和电导天线为主。随后详细介绍了基于飞秒激光的宽带光电导天线的设计、研制,光电导天线温控系统和太赫兹辐射测量装置的研制,光电导天线太赫兹辐射特性等方面的研究工作。另外,半导体表面太赫兹辐射可以提供方便的宽带太赫兹源,进一步研究非常必要。其中,富含缺陷的氮化铟有望代替砷化铟成为高效、实用的宽带太赫兹辐射源。此外,赵国忠教授还指出太赫兹发射光学的研究也有助于探索半导体表面和内部的载流子动力学。  此外,北京理工大学胡伟东教授、哈尔滨工业大学(威海)田兆硕教授、中国计量科学研究院孙青博士等也就太赫兹技术现状及研究进展做了精彩的报告。北京理工大学胡伟东教授报告题目:Progress in the Terahertz Pulse 3D Imaging System (220GHz)哈尔滨工业大学(威海)田兆硕教授报告题目:THz激光F-P旋转透过率研究中国计量科学研究院孙青博士报告题目:太赫兹光谱与功率计量技术  大会报告 应用篇首都师范大学沈京玲教授报告题目:太赫兹光谱技术在毒品检测中的应用研究  沈京玲教授介绍到,太赫兹波能够用于毒品检测和识别是基于下列两个事实:多数毒品在太赫兹波段具有特征吸收;多数包装材料如纸张、织物、塑料、木头,对太赫兹波是透明的。将两者结合起来,使太赫兹技术非常适于进行毒品的无损检测应用。随后,沈京玲教授详细的介绍了所在课题组近年来在毒品检测识别方面的相关工作:应用太赫兹光谱和成像技术对毒品进行品种鉴定和含量分析,完成了确定毒品纯度和有效成分含量的理论和实验方法;对隐藏在信封和包裹中的毒品进行探查;建立了含有38种纯度在90%以上的毒品的太赫兹光谱数据库等。上海理工大学副院长朱亦鸣教授报告题目:基于太赫兹技术的药物分析与检测  朱亦鸣教授介绍到,国内外现有药物检测技术手段无法有效的检测出假药,而且无法做到在线式检测。太赫兹波处于微波电子学与红外光子学的交叉、过渡区域,是被公认的有重要科学价值和巨大应用前景的频率窗口。太赫兹技术先后被列为“改变未来世界的10种技术”及“2011年六大类电子类新技术”之一,是分析分子有机功能基团最有效的手段。基于这些优势,朱亦鸣教授所在课题组利用时域太赫兹波谱系统对中西药做了相关检测,结果显示太赫兹光谱技术对各种药物鉴别率可达90%,扫描速度达到1s/片,可以做到无损探测及真正的在线检测和分析,并且结合HIPHOP模型,还可以进行药理基团的解析。中国石油大学(北京)赵卉博士报告题目:太赫兹技术在油气光学中的应用  赵卉博士在报告中介绍说,油气光学是研究油气物质的光学性质、光在油气介质中的传播规律和光学技术在油气领域应用的科学。它是在石油与天然气工程、地球探测与信息技术、材料科学与工程、物理学、光学工程等学科发展与支持的基础上建立起来的一个新兴交叉学科。针对国家重大需求,并且基于太赫兹与油气物质相互作用的认知,赵卉博士所在课题组建设了以油气资源、石油化工为研究对象的太赫兹波谱与探测技术平台,开发了油品光学性能透射式测试装置,岩石光学性能透射式测试装置,基于对岩石有机质、干酪根、基础油、汽油等多种体系的太赫兹频段特征吸收带的认知,建立了石油化工产品太赫兹光谱特性和理化性能之间的关系,为太赫兹技术在油气领域的应用提供了实验基础。  此外,中科院上海微系统所谭智勇博士、中科院工程物理研究院流体物理研究所助研朱礼国先生也就太赫兹技术的应用做了精彩的报告。中科院上海微系统所谭智勇博士报告题目:太赫兹量子器件及其成像应用中科院工程物理研究院流体物理研究所助研朱礼国先生报告题目:超快太赫兹光谱在研究太阳能光伏材料中的应用  除了以上各位专家的报告之外,安捷伦科技(中国)有限公司叶伟斌先生,脉动科技有限公司陆明先生,先锋科技股份有限公司Albert Rsdo-Sanchez先生、Patrick F. Tekavec先生,顶尖科仪(中国)股份有限公司贺雪鹏先生也介绍了公司的产品特点及研发情况。安捷伦科技(中国)有限公司叶伟斌先生报告题目:安捷伦毫米波测试解决方案脉动科技有限公司陆明先生报告题目固体THz源和异步采样THz时域光谱系统先锋科技股份有限公司Albert Redo-Sanchez先生报告题目:Terahertz Instrumentation Status and Market Outlook先锋科技股份有限公司Patrick F. Tekavec先生报告题目:High Power THz sources顶尖科仪(中国)股份有限公司贺雪鹏先生报告题目:飞秒光纤激光器及其在太赫兹光谱学中的应用  报告会之后,与会代表参观了首都师范大学太赫兹光电子学教育部重点实验室,相关工作人员为与会代表详细介绍了实验室整体概况,并就相关仪器及其研究的课题同与会代表进行了深入的沟通。与会代表参观太赫兹光电子学教育部重点实验室太赫兹光电子学教育部重点实验室部分仪器设备与会代表合影
  • 太赫兹技术“未来可期”“太赫兹光谱与测试工作组”正式成立
    p style="text-indent: 2em text-align: justify "strong仪器信息网讯 /strongspan style="text-indent: 2em "太赫兹光谱与测试应用研讨会”暨“太赫兹光谱与测试工作组”成立大会于2020年1月12日在天津举行。本次大会由毫米波太赫兹产业发展联盟主办,莱仪特太赫兹(天津)科技有限公司承办,爱德万测试(中国)管理有限公司、中国科学院上海微系统与信息技术研究所与天津大学精密仪器与光电子工程学院联合协办。近百位太赫兹领域的专家学者、各领域的企业用户齐聚天津,分享科研成果、企业需求,共话太赫兹技术与产业发展道路。/span/pp style="text-align: justify text-indent: 2em "太赫兹电磁波段具有频谱资源丰富、穿透性强等特点。随着太赫兹科学技术研究的不断发展,技术应用需求市场正在形成,其中尤为突出的是对于太赫兹光谱技术应用需求。太赫兹光谱检测与成像技术作为太赫兹领域的基础技术,正在食品安全、公共安全、材料科学及生物技术领域显示出其独特的优势和广阔的应用前景。/pp style="text-align: justify text-indent: 2em "国内太赫兹科技研究发展迅速,对太赫兹技术的应用需求与日俱增,将带动国内太赫兹光谱检测与成像技术相关的芯片、模块、系统以及太赫兹数据的爆发式增长。据统计数据显示,2017年中国太赫兹光谱检测与成像技术的市场规模约为2亿元,预计2020年将达5亿元,到2023年中国太赫兹光谱检测与成像技术的市场规模将超10亿元。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/6e629ed1-2554-421c-bd65-6f74be431475.jpg" title="会议照片.jpg" alt="会议照片.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center "strong style="text-indent: 0em "会议现场/strong/pp style="text-align: justify text-indent: 2em "在此次会议上,毫米波太赫兹产业发展联盟特别成立了“太赫兹光谱与测试工作组”,旨在通过工作组的努力,推动太赫兹光谱技术的应用及其标准化工作,并促进太赫兹光谱检测应用的发展,填补我国太赫兹频段物质光谱与材料电磁特性数据库的空白。/pp style="text-align: justify text-indent: 2em "会议由毫米波太赫兹产业发展联盟秘书长刘海瑞主持,他首先对联盟的组织架构、联盟单位、工作进展以及“太赫兹光谱与测试工作组”的主要成员进行了介绍,并宣布“毫米波太赫兹产业发展联盟· 太赫兹光谱与测试工作组”正式成立。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/8627ed3b-02fd-479f-9ffe-8033d602f756.jpg" title="刘海瑞.jpg" alt="刘海瑞.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center "strong style="text-indent: 0em "毫米波太赫兹产业发展联盟秘书长 刘海瑞/strong/ppstrong style="text-indent: 0em "/strong/pp style="text-indent: 2em text-align: justify "随后,揭牌仪式正式开始,由天津市科学技术委员会生物医药处处长王锐与太赫兹光谱与测试工作组组长、天津大学何明霞教授共同揭牌,并为工作组理事单位颁发牌匾。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/2ade9f08-8358-4590-9183-96bd5c54051a.jpg" title="揭牌.jpg" width="600" height="400" border="0" vspace="0" alt="揭牌.jpg"//pp style="text-align: center"img style="width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/5e497f39-5a58-4659-b731-631b58547eeb.jpg" title="揭牌2.jpg" width="600" height="400" border="0" vspace="0" alt="揭牌2.jpg"//pp style="text-indent: 0em text-align: center "strong揭牌仪式/strong/ppbr//pp style="text-align: center text-indent: 0em "img src="https://img1.17img.cn/17img/images/202001/uepic/fd76136e-a905-43b6-8c70-20314ad4b7da.jpg" title="lingjiang .jpg" width="600" height="400" border="0" vspace="0" alt="lingjiang .jpg" style="width: 600px height: 400px "//pp style="text-indent: 0em text-align: center "strong颁发理事单位牌匾/strong/pp style="text-indent: 2em text-align: justify "天津大学精密仪器与光电子工程学院院长曾周末教授、太赫兹光谱与测试工作组组长、天津大学精仪学院何明霞教授和首都师范大学张存林教授分别致辞,表达他们对工作组成立的祝贺与期望。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/972b8f45-0e07-4ef3-8c0c-fe7b135d16a5.jpg" title="院长.jpg" alt="院长.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center "strong style="text-indent: 0em "天津大学精密仪器与光电子工程学院 院长 曾周末/strong/ppstrong style="text-indent: 0em "/strong/pp style="text-align: center"img style="width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/a3dd1525-346b-4d55-8f44-68c3d1116704.jpg" title="hemingxia.jpg" width="600" height="400" border="0" vspace="0" alt="hemingxia.jpg"//ppbr//pp style="text-align: center text-indent: 0em "strong赫兹光谱与测试工作组组长、天津大学 教授 何明霞/strong/ppbr//pp style="text-align: center text-indent: 0em "img src="https://img1.17img.cn/17img/images/202001/uepic/b3ce6e8f-0196-47d8-9023-b491d0cad414.jpg" title="张存林.jpg" width="600" height="400" border="0" vspace="0" alt="张存林.jpg" style="width: 600px height: 400px "//pp style="text-indent: 0em text-align: center "strong首都师范大学 教授 张存林/strong/pp style="text-indent: 2em text-align: justify "大会报告环节中,8位太赫兹领域的专家及工作者进行了精彩的分享。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/90b59608-61c7-45d5-9ecd-0659b8c93984.jpg" title="年夫顺.jpg" alt="年夫顺.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong中国电子科技集团有限公司 首席科学家 年夫顺/strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:基于电子学的太赫兹材料电磁特性测试与结构成像技术研究进展/strong/pp style="text-align: justify text-indent: 2em "在材料测量中,太赫兹材料测量可以深入材料内部,具有电磁特性且对人体无害,有其不可替代性。年夫顺从太赫兹工程相关问题思考、关键技术仪器设备、材料电磁特性测量、材料三维结构成像仪及团队建设未来展望几个部分进行了分享。他还指出,太赫兹目前还没有相应的标准,需要联盟和工作组的共同努力,将太赫兹技术“发扬光大”。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/facef07b-04f9-4eec-9199-37709da8242f.jpg" title="朱亦鸣.jpg" alt="朱亦鸣.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong上海理工大学 教授 朱亦鸣 /strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:太赫兹波谱技术进展及其应用/strong/pp style="text-indent: 2em text-align: justify "太赫兹因其独特的性质已成为各国争相抢占的科学制高点,它既是科学前沿,又是国家的重大需求。朱亦鸣从目前国内太赫兹技术的发展状况,以及它在食用油油品检测、危险品检测、公共安全检测、中药有效成分检测和癌细胞检测等相关领域的应用对国内太赫兹发展的整体状况进行了介绍。随后,他还分享了太赫兹成像新技术——太赫兹近场超分辨显微镜。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/3d3627d6-6994-4227-aaf4-1f650554325c.jpg" title="黎华.jpg" alt="黎华.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong中国科学院上海微系统与信息技术研究所 研究员 黎华/strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:新型太赫兹激光光频梳及光谱应用/strong/pp style="text-indent: 2em text-align: justify "科学与应用的发展对表征技术提出了新的需求,包括超高空间分辨、超快时间分辨及精细光谱分辨等,且表征方法也在向低能量尺度表征发展。黎华基于高性能半导体太赫兹量子级联激光器与光频梳,结合近场显微技术,实现了太赫兹波段时间、空间、光谱的高分辨,解决了色散,主/被动稳频三大挑战,并在国际上首次实现了紧凑型实时太赫兹光谱仪。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/60ae14fe-ace0-4b87-bd15-cd818d3985ae.jpg" title="曲秋红.jpg" alt="曲秋红.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong莱仪特太赫兹(天津)科技有限公司 技术总监 曲秋红/strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:太赫兹光谱检测应用研究及莱仪特检测平台/strong/pp style="text-indent: 2em text-align: justify "太赫兹技术应用前景十分广泛,但太赫兹光谱技术发展还存在很多在技术、成熟度及应用场景中的问题。曲秋红在报告中对莱仪特太赫兹(天津)科技有限公司的检测平台进行了简要的介绍,并分享了平台为食品、中药、太赫兹研究等领域用户提供检测服务的典型案例。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/4a9f2910-9926-455d-91df-8c28c4ba6261.jpg" title="赵红卫.jpg" alt="赵红卫.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong中国科学院上海高等研究院研究员 赵红卫/strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:太赫兹光谱技术在生物化学中的应用研究/strong/pp style="text-indent: 2em text-align: justify "太赫兹在生物化学和生物医学等领域具有广阔的前景。报告中,赵红卫从太赫兹在生物化学检测和手性生物分子的应用入手,介绍了太赫兹在生物化学及生物医学领域的应用,并分享了太赫兹光谱解析的一些心得。最后,她对太赫兹未来的发展提出了一些展望。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/a3f6f0ad-9320-48bc-a52f-e47acdb6e7bb.jpg" title="张彦华.jpg" alt="张彦华.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong爱德万测试(中国)管理公司 新业务高级拓展经理 张彦华/strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:“蒲公英花开”——太赫兹谱数据共享平台/strong/pp style="text-indent: 2em text-align: justify "目前,国内外多家单位拥有一定量的太赫兹光谱数据,但都规模较小、检测平台仪器型号多样,导致各单位交流难度大,且无统一的测样标准。张彦华介绍了爱德万测试(中国)管理公司的蒲公英太赫兹谱数据共享平台,是如何通过用户单位共享的方式让用户获得更加完整的数据库。他还展示了数据平台的相关功能。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/2f1a6ace-c861-4a8a-92d4-d7cdf410fcfd.jpg" title="叶伟斌.jpg" alt="叶伟斌.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong清华大学天津电子信息研究院 电子综合检测中心总监 叶伟斌/strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:测试太赫兹材料与器件电磁参数的技术与方法/strong/pp style="text-indent: 2em text-align: justify "毫米波太赫兹通信具有设备小、定向性强、频谱资源丰富、具有穿透等离子体能力等特点,可以应用于雷达探测、材料成像、生物探测和通讯技术中。报告中,叶伟斌首先简要介绍了清华大学天津电子信息研究院电子综合检测中心的电子综合检测平台,随后,他分享了平台检测雷达芯片的实际案例,最后他还列出了平台提供的毫米波太赫兹的检测服务项目。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202001/uepic/ef2c7fd7-a93c-462d-a8cb-39e20d1f081d.jpg" title="邓玉强.jpg" alt="邓玉强.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong中国科学院计量院 研究员 邓玉强/strongbr//pp style="text-align: center text-indent: 0em "strong报告题目:太赫兹计量研究/strong/pp style="text-indent: 2em "太赫兹是宏观电子学和微观光子学的桥梁,近年来,各类太赫兹测量仪器不断涌现,但却没有统一的标准。邓玉强研究员介绍了他在太赫兹计量领域的一些研究成果。如太赫兹时域光谱计量、太赫兹辐射功率计量、太赫兹波长频率计量、太赫兹空域参数计量,以及太赫兹计量应用几个部分。/pp style="text-align: center text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/e2619468-d700-4ff9-b1f3-6f98caa85110.jpg" title="heying.jpg" alt="heying.jpg"//pp style="text-align: center text-indent: 0em "strong全体与会代表合影/strongbr//p
  • 太赫兹危险品检测仪重大仪器专项启动
    会议现场  2月23日,由中科院上海微系统与信息技术研究所曹俊诚研究员担任首席科学家的国家重大科学仪器设备开发专项“基于太赫兹技术的新一代危险品分析检测仪器开发”项目启动会在上海举行。上海理工大学庄松林院士、上海交通大学雷啸霖院士等专家,上海市科委有关领导,以及来自上海微系统所、上海高晶影像科技有限公司等参研单位和用户单位的专家40余人出席启动会。该项目共获得经费资助6285万元。  “基于太赫兹技术的新一代危险品分析检测仪器开发”项目面向危险物品分析的重大需求,以交通运输部门、国家安全部门、公共场所、药品研制等部门为用户,研发能识别和判断隐藏毒品及爆炸物等危险物品的太赫兹检测分析仪器。本项目的顺利实施将会对维护社会安全提供强有力的科技支撑。  会上,上海微系统所党委副书记俞跃辉介绍了该所的基本情况,尤其是近年来在太赫兹研究方面取得的进展。上海市科委副主任陆晓春表示,上海市在仪器仪表研究方面具有深厚的历史积淀,希望项目组成员继承传统,抓住机遇、全力以赴,建立高效的管理推进机制,依靠国家重大科学仪器专项的支持,在基于太赫兹技术的新一代危险品分析检测仪器开发方面做出重要突破,形成高精尖设备的开发能力。上海高晶影像科技有限公司总经理吴家荣代表项目参加单位表示,在项目执行过程中将严格按照科技部和市科委的要求,建立灵活高效的沟通和管理机制,按照项目任务书要求,高水平地完成基于太赫兹技术的新一代危险品分析检测仪器开发任务,并培养高水平研究人才,做好市场开拓工作。  曹俊诚研究员代表项目组作了总体情况报告,详细介绍了目标仪器的总体设计方案、技术路线和系统集成方案。项目承担单位的课题负责人作任务分解报告,介绍了各自的任务分工、技术方案及预期目标。随后,与会专家对课题的技术方案和管理组织形式等进行了热烈的讨论,为本项目的实施和目标完成提出了很好的建议。  相关新闻:庄松林院士团队承担的国家重大科学仪器设备开发专项启动  近日,由庄松林院士率领团队申报成功的两个国家重大科学仪器设备开发专项“高性能光谱仪器关键元器件与部件的应用及工程化开发”和“基于太赫兹技术的新一代危险品分析检测仪器开发”启动。  国家重大科学仪器设备开发专项是科技部“十二五”期间重点打造的科技专项,以支持重大科学仪器设备的开发,以提高我国科学仪器设备的自主创新能力和自我装备水平,支撑科技创新,服务经济建设和社会发展。  在国家重大科学仪器设备开发专项“高性能光谱仪器关键元器件与部件的应用及工程化开发”项目启动会上,市科委研发基地建设与管理处处长刘勤、我校副校长陈斌出席会议并做指导性发言,李同保院士作为专家组组长出席了会议,市科委发展计划处相关领导与会。会议由科委基地处张露璐主持,与会人员听取了庄松林院士以及项目代表做的项目总体实施方案、分方案介绍,专家组、监察组和用户组成员对项目的实施提出了宝贵建议。  本项目旨在提升我国高性能光谱仪器关键部件及系统的工程化开发水平,项目总经费超过1.3亿元(其中国拨经费6586万元,自筹6932万元)。我校庄松林院士担任项目的总负责人,并将带领我校张大伟教授研发团队进行高性能光谱用的系列光栅、宽波段固态检测器的工程化开发工作,项目将在我校建成我国光谱仪器分光部件及系统、固态检测部件及系统的工程化基地,大力推进我国高性能光谱仪器的整体研发和产业化水平,为我国科学仪器整体水平的提高做出贡献。  我校作为主要参研单位的另一个国家重大科学仪器设备开发专项“基于太赫兹技术的新一代危险品分析检测仪器开发”项目近日也召开了启动会。会上,市科委副主任陆晓春和来自中科院上海微系统所、上海高晶影像科技有限公司、上海理工大学和天津大学等参研单位和上海城市轨道交通、天津市公安局等用户单位的专家40余人与会。我校庄松林院士主持报告会,校长助理刘平出席会议。  本项目的顺利实施,将会对维护社会安全提供强有力的科技支撑。该项目共获得经费资助6285万元,其中我校庄院士团队下属朱亦鸣老师课题组共获得资助经费1612万元。该项目面向危险物品分析的重大需求,以交通运输部门、国家安全部门、公共场所、药品研制等部门为用户,研发能识别和判断隐藏危险物品的太赫兹检测分析仪器。
  • 华为终于向“仪器圈”出手了!这次是为了毫米波/太赫兹?
    p style="text-indent: 2em text-align: justify "strongspan style="text-indent: 2em "3月31日,华为技术有限公司(下称“华为”)新增对外投资企业中电科仪器仪表有限公司(下称“中电科仪”),华为持股比例为8%,/span/strongspan style="text-indent: 2em "认缴出资额达6606.6743万元人民币,认缴出资时间是今年4月30日。/span/pp style="text-indent: 2em text-align: justify "strong中电科仪致力于微波/毫米波测量、光电测量、通信测量、基础测量和毫米波/太赫兹/strongstrong等/strong电子测试领域前沿技术的探索和研究。据悉,strong此前华为就在关注毫米波/太赫兹技术,在2020年1月12日天津举办的“‘太赫兹光谱与测试应用研讨’暨‘太赫兹光谱与测试工作组’成立大会”( a href="https://www.instrument.com.cn/news/20200113/520591.shtml" target="_blank"span style="color: rgb(84, 141, 212) "相关链接:太赫兹技术“未来可期”“太赫兹光谱与测试工作组”正式成立/span/a),就有华为相关工作人员出席,并就太赫兹在通信及雷达领域的应用提出相关问题。此次华为入股中电科仪,或与其通信布局相关,获取最新的毫米波/太赫兹通信技术。/strong/pp style="text-indent: 2em text-align: justify "工商信息显示,与华为一同入股中电科仪的还有7位股东,分别是中国电子科技集团公司第四十一研究所(10%)、中电科投资控股有限公司(8.72%)、合肥中电科国元产业投资基金合伙企业(有限合伙)(8.00%)、蚌埠思仪发展企业管理中心(有限合伙)(7.95%)、国家军民融合产业投资基金有限责任公司(2.46%)、中电电子信息产业投资基金(天津)合伙企业(有限合伙)(2.46%)以及蚌埠思仪创新企业管理中心(有限合伙)(1.88%),公司原唯一股东中国电子科技集团有限公司的持股比例下降至50.54%。这八位股东入股后,中电科仪的注册资本从5亿元人民币增加至8.258亿元,增幅65.17%。/pp style="text-indent: 2em text-align: justify "中电科仪2020年度工作报告介绍,公司在2019年营收、净利润同比增长超25%,货币资金达22.72亿元,2020年的工作目标是实现营收34亿元、净利润3.19亿元等经营目标。/ph1 label="标题居左" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: left margin: 0px 0px 10px "span style="font-size: 20px "strong关于毫米波/太赫兹/strongstrong/strong/span/h1p style="text-indent: 2em text-align: justify "毫米波和太赫兹所覆盖的电磁频谱是低频段常用电磁频谱的几百倍,在高频段电磁波的波长短,具有带宽上的巨大优势和波长短的特性,因此在通信、雷达、成像、检测等领域具有高宽带、高速率、高精度、高分辨率等特点,在高速无线通信、自动驾驶汽车、无损探测、机器人视觉、航空航天等方面有广阔的应用前景。/ph1 label="标题居左" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: left margin: 0px 0px 10px "span style="font-size: 20px "strong关于中电科仪器仪表有限公司/strong/span/h1p style="text-indent: 2em text-align: justify "中电科仪是中国电科集团下属二级企业,本部位于青岛,公司致力于微波/毫米波测量、光电测量、通信测量和基础测量等电子测试领域前沿技术的探索和研究,拥有自主知识产权的、覆盖高中低端的、系列化的电子测量仪器和元器件产品,以及“量身定做”的自动测试解决方案。/p
  • 瞄准“潜力股”,太赫兹仪器亟待产业化——ACCSI2020第一届中国太赫兹仪器产业化发展论坛邀您参加
    p style="text-align: justify text-indent: 2em "第十四届中国科学仪器发展年会(简称ACCSI2020)将于2020年9月16日-9月17日在天津东丽湖恒大酒店召开,大会正在如火如荼地筹备中,目前大会日程及分论坛日程已确定,诚邀“政、产、学、研、用、资、媒”各方代表莅临参会。/pp style="text-align: justify text-indent: 2em "太赫兹是人类迄今为止了解最少、开发最少的一个波段,太赫兹是波动频率单位之一。太赫兹(THz)是频率范围为 0.1THz-10THz,波长范围为 0.03-3mm 介于无线电波和光波之间的电磁辐射。具有携带信息丰富,亚皮秒量级脉宽、高时空相干性、低光子能量,穿透性强、使用安全性高、定向性好、带宽高等特性。2004年,太赫兹(THz)技术首次被美国提出,并且美国政府将太赫兹技术评为 “改变未来世界的十大技术”之一 2005年,日本更是将其列为“国家支柱十大重点战略目标”之首,举全国之力进行研发。太赫兹成为本世纪最为重要的新兴学科之一。/pp style="text-align: justify text-indent: 2em "目前太赫兹技术已在5G-6G通讯、公共安全、在食品安全、材料科学及生物医学等领域显示出其独特的优势和广阔的应用前景。近年,国内太赫兹技术研究发展迅速,诸多领域对太赫兹技术的关注和需求与日俱增,太赫兹技术产业也正在逐步形成,受到诸多领域的关注,也存在亟待解决的问题。/pp style="text-align: justify text-indent: 2em "为推动太赫兹仪器产业化进程,2020年9月17日,第十四届中国科学仪器发展年会(ACCSI2020)将设立:第一届中国太赫兹仪器产业化发展论坛,邀请太赫兹技术专家教授、研究院、技术公司、资本投资专家等,共同研讨如何推进并加快太赫兹技术产业化。a href="https://www.instrument.com.cn/accsi/2020/?hmsr=accsi2020&hmpl=ins_zn&hmcu=index_search_right" target="_blank"span style="color: rgb(255, 0, 0) "strong现诚邀各领域相关从业人员参加学习! (报名参会)/strong/span/a/pp style="text-align: justify text-indent: 2em "br//pp style="text-align: center "strongspan style="font-size: 20px "第一届中国太赫兹仪器产业化发展论坛邀请报告及嘉宾简介/span/strong/pp style="text-indent: 2em "strong一.论坛时间:/strong2020年9月17日 09:30-16:50/pp style="text-indent: 2em "strong二.论坛地点:/strong天津东丽湖恒大酒店/pp style="text-indent: 2em "strong三. 内容环节/strong/pp style="text-indent: 2em "1. 太赫兹技术和产业的现状及发展方向/pp style="text-indent: 2em "2. 国内活跃的太赫兹技术公司信息发布/pp style="text-indent: 2em "3. 多名交叉领域专家圆桌论坛/pp style="text-indent: 2em "strong四.参会嘉宾及规模:/strong/pp style="text-indent: 2em "strong嘉宾:/strong太赫兹领域专家/学者、实验室主任、技术/研发负责人、采购负责人、QC/QA负责人;相关仪器企业及上下游企业董事长、总经理、总工、市场总监、研发总监、销售总监等。/pp style="text-indent: 2em "strong规模:/strong80人/pp style="text-indent: 2em "strong主持人:/strong/pp style="text-align: center"img style="width: 300px height: 299px " src="https://img1.17img.cn/17img/images/202009/uepic/0d222579-cf7b-45ae-a14b-ef398537231e.jpg" title="企业微信截图_20200901170708.png" width="300" height="299" border="0" vspace="0" alt="企业微信截图_20200901170708.png"//pp style="text-align: center "毫米波太赫兹产业发展联盟 秘书长 刘海瑞/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/202009/uepic/addebdba-bc17-4ef7-87db-e3778cdf6387.jpg" title="企业微信截图_20200904123956.png" width="300" height="301" border="0" vspace="0" alt="企业微信截图_20200904123956.png" style="width: 300px height: 301px "/br//pp style="text-align: center "天津大学 教授/副主任/博导 黄战华/pp style="text-align: center "span style="font-size: 20px "strong报告嘉宾一览/strong/span/pp style="text-align: center"img style="width: 300px height: 307px " src="https://img1.17img.cn/17img/images/202009/uepic/6c7aca4c-0b04-4f09-a820-c4efae854c2c.jpg" title="企业微信截图_20200901113614.png" width="300" height="307" border="0" vspace="0" alt="企业微信截图_20200901113614.png"//pp style="text-align: center "报告:太赫兹产业化发展与测试技术/pp style="text-align: center "报告人:中电科仪器仪表有限公司 首席专家 姜万顺/pp style="text-align: center " img src="https://img1.17img.cn/17img/images/202009/uepic/faaa498a-19cc-4bf1-b82c-d33206e86bfc.jpg" title="企业微信截图_20200903134532.png" width="300" height="303" border="0" vspace="0" alt="企业微信截图_20200903134532.png" style="width: 300px height: 303px "//pp style="text-align: center "报告:太赫兹波谱技术进展及应用优势/pp style="text-align: center "报告人:上海理工大学 朱亦鸣 教授/pp style="text-align: center"img style="width: 300px height: 301px " src="https://img1.17img.cn/17img/images/202009/uepic/0dfde48c-87e0-4d0c-ac07-16c4d3887df7.jpg" title="企业微信截图_20200904115824.png" width="300" height="301" border="0" vspace="0" alt="企业微信截图_20200904115824.png"//pp style="text-align: center "报告:太赫兹三维层析成像技术应用及发展展望/pp style="text-align: center "报告人:中国工程物理研究院一所 李泽仁 研究员(博导)/pp style="text-align: center " img src="https://img1.17img.cn/17img/images/202009/uepic/182672a2-91b5-43a8-b661-04e7b092696a.jpg" title="企业微信截图_20200902155328.png" width="300" height="299" border="0" vspace="0" alt="企业微信截图_20200902155328.png" style="width: 300px height: 299px "//pp style="text-align: center "报告:被动式太赫兹人体成像安检系统的应用及未来展望/pp style="text-align: center "报告人:高炳西 博微太赫兹信息科技有限公司 首席专家/pp style="text-align: center " img src="https://img1.17img.cn/17img/images/202009/uepic/9d68953e-0211-4cd3-8f64-86e7113f4f20.jpg" title="企业微信截图_20200903110117.png" width="300" height="298" border="0" vspace="0" alt="企业微信截图_20200903110117.png" style="width: 300px height: 298px "//pp style="text-align: center "报告:太赫兹技术在集成电路产业的应用/pp style="text-align: center "报告人:爱德万测试(中国)管理公司 副总经理 夏克金博士/pp style="text-align: center"img style="width: 300px height: 296px " src="https://img1.17img.cn/17img/images/202009/uepic/14dc8e32-3758-4dbe-b40b-dd494d34124c.jpg" title="企业微信截图_20200904111202.png" width="300" height="296" border="0" vspace="0" alt="企业微信截图_20200904111202.png"/ /pp style="text-align: center "报告:材料的太赫兹光谱与成像无损检测应用及发展展望/pp style="text-align: center "报告人:莱仪特太赫兹(天津)科技有限公司 曲秋红 技术总监/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/202009/uepic/2bbb1996-edcb-4132-990d-f78bf55ddfb0.jpg" title="企业微信截图_20200902100905.png" width="300" height="302" border="0" vspace="0" alt="企业微信截图_20200902100905.png" style="width: 300px height: 302px "/ /pp style="text-align: center "报告:太赫兹安检技术与产品在安保行业的应用及发展前景/pp style="text-align: center "报告人:张殿坤 欧必翼太赫兹科技(北京)有限公司 研发副总经理/pp style="text-align: center " img src="https://img1.17img.cn/17img/images/202009/uepic/35a8ccad-bec4-4c3e-bfc6-b645b8a2f1e6.jpg" title="de31ff03d1df6edcd59ec16a981e945.jpg" width="300" height="300" border="0" vspace="0" alt="de31ff03d1df6edcd59ec16a981e945.jpg" style="width: 300px height: 300px "//pp style="text-align: center "报告:太赫兹科学与技术的发展现状及趋势/pp style="text-align: center "报告人:首都师范大学 张存林 教授/pp style="text-align: center"img style="width: 300px height: 301px " src="https://img1.17img.cn/17img/images/202009/uepic/1a93e414-310b-4587-8095-54a1d249ca69.jpg" title="企业微信截图_20200901141744.png" width="300" height="301" border="0" vspace="0" alt="企业微信截图_20200901141744.png"/ /pp style="text-align: center "报告:毫米波太赫兹成像技术发展及应用前景/pp style="text-align: center "报告人:北京理工大学 胡伟东 教授/pp style="text-align: center " img src="https://img1.17img.cn/17img/images/202009/uepic/cf18db5d-04c3-44f8-a264-71fa2abac76b.jpg" title="企业微信截图_20200901112814.png" width="300" height="302" border="0" vspace="0" alt="企业微信截图_20200901112814.png" style="width: 300px height: 302px "//pp style="text-align: center "报告:太赫兹电磁波在生物医学中的应用与未来展望/pp style="text-align: center "报告人:天津大学 何明霞 教授/pp style="text-align: center " img src="https://img1.17img.cn/17img/images/202009/uepic/ca6d5932-2868-40ce-8008-2fb588ea8bf9.jpg" title="企业微信截图_20200901142229.png" width="300" height="304" border="0" vspace="0" alt="企业微信截图_20200901142229.png" style="width: 300px height: 304px "//pp style="text-align: center "报告:太赫兹光谱技术在化合物、药品、食品。危险品等领域应用与市场展望/pp style="text-align: center "报告人:中央民族大学 杨玉平 教授/pp style="text-align: center " /pp style="text-align: center "strongspan style="font-size: 20px "圆桌论坛:太赫兹科技产业发展论坛(主持人: 何明霞)/span/strong/pp style="text-align: center"img style="width: 300px height: 298px " src="https://img1.17img.cn/17img/images/202009/uepic/0cdd9242-e02e-4c8c-a044-387cb388a4fd.jpg" title="企业微信截图_20200907093420.png" width="300" height="298" border="0" vspace="0" alt="企业微信截图_20200907093420.png"//pp style="text-align: center "常胜江 教授 南开大学 现代光学研究所副所长/pp style="text-align: center " img src="https://img1.17img.cn/17img/images/202009/uepic/c20f3d23-2c9c-412f-862f-c9f09384d5d5.jpg" title="企业微信截图_20200902091532.png" width="300" height="302" border="0" vspace="0" alt="企业微信截图_20200902091532.png" style="width: 300px height: 302px "//pp style="text-align: center "邓力文 深创投 投资经理/pp style="text-align: center " img src="https://img1.17img.cn/17img/images/202009/uepic/14eb4177-cf6b-4032-86a5-05824d4bcb13.jpg" title="企业微信截图_20200901113614.png"//pp style="text-align: center "姜万顺 中电科仪器仪表有限公司 首席专家/pp style="text-align: center " img src="https://img1.17img.cn/17img/images/202009/uepic/584866b8-d52d-424f-b748-f9fd1f82ebff.jpg" title="企业微信截图_20200901170708.png" width="300" height="299" border="0" vspace="0" alt="企业微信截图_20200901170708.png" style="width: 300px height: 299px "//pp style="text-align: center "刘海瑞 秘书长 毫米波太赫兹产业联盟/pp style="text-align: center " img src="https://img1.17img.cn/17img/images/202009/uepic/bfc9d87f-fc23-443d-9653-a2f840caf055.jpg" title="企业微信截图_20200903110117.png" width="300" height="298" border="0" vspace="0" alt="企业微信截图_20200903110117.png" style="width: 300px height: 298px "//pp style="text-align: center "夏克金 爱德万测试(中国)管理公司 副总经理/博士/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: " microsoft="" white-space:="" text-align:="" line-height:=""br//pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-align: center " microsoft="" white-space:="" line-height:="" text-align:=""span style="margin: 0px padding: 0px color: rgb(192, 0, 0) "strong style="margin: 0px padding: 0px "点击图片,报名参会/strong/span/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-align: center " microsoft="" white-space:="" text-align:=""a href="https://www.instrument.com.cn/accsi/2020/" target="_blank" style="margin: 0px padding: 0px color: rgb(102, 102, 102) text-decoration-line: none "img src="https://img1.17img.cn/17img/images/202008/uepic/be43346f-3150-47cc-b087-57195f4dcee9.jpg" title="accsi2020.jpg" alt="accsi2020.jpg" style="margin: 0px padding: 0px border: 0px max-width: 100% max-height: 100% "//a/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: " microsoft="" white-space:="" text-align:="" line-height:=""  参会联系报名/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: " microsoft="" white-space:="" text-align:="" line-height:=""  报告及参会报名:010-51654077-8229 15611023645李女士/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: " microsoft="" white-space:="" text-align:="" line-height:=""  赞助及媒体合作:010-51654077-8015 13552834693魏先生/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: " microsoft="" white-space:="" text-align:="" line-height:=""  微信添加accsi1或发邮件至accsi@instrument.com.cn(注明单位、姓名、手机)即可报名。/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: " microsoft="" white-space:="" text-align:="" line-height:=""  报名链接span style="margin: 0px padding: 0px color: rgb(192, 0, 0) ":/spana href="https://www.instrument.com.cn/accsi/2020/Register.html" target="_blank" style="margin: 0px padding: 0px color: rgb(192, 0, 0) "span style="margin: 0px padding: 0px "https://www.instrument.com.cn/accsi/2020/Register.html/span/a/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: " microsoft="" white-space:="" text-align:="" line-height:=""  会议日程查看年会官网(点击下方链接或扫描二维码)/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: " microsoft="" white-space:="" text-align:="" line-height:="" text-indent:=""a href="https://www.instrument.com.cn/accsi/2020/" target="_blank" style="margin: 0px padding: 0px color: rgb(192, 0, 0) "span style="margin: 0px padding: 0px "https://www.instrument.com.cn/accsi/2020//span/a/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-align: center " microsoft="" white-space:="" text-align:=""img src="https://img1.17img.cn/17img/images/202008/uepic/7975316b-30b7-43a2-904b-4d584f393570.jpg" title="二维码.jpg" alt="二维码.jpg" style="margin: 0px padding: 0px border: 0px max-width: 100% max-height: 100% width: 300px height: 300px " width="300" height="300" border="0" vspace="0"//p
  • 亚太市场将成为太赫兹/红外光谱仪器商主要收入来源
    p  日前,MarketsandMarkets发布了一份报告,分析研究了太赫兹和红外光谱市场发展的主要驱动力,面临的瓶颈、挑战、机遇等。/pp  strong太赫兹光谱/strong主要应用于半导体、国土安全、研发以及非破坏性测试领域。2015年,半导体领域估计占太赫兹光谱市场的主要份额。预计2020年全球太赫兹市场规模将达到5253万美元;预测期2015年~2020年内,复合年增长率为21.3%。/pp  太赫兹光谱市场按地区可划分为北美、欧洲、亚太以及其他地区。2015年,北美地区预计将占到太赫兹光谱市场的最大份额,其次是亚太地区和欧洲。然而,预计在预测期间亚太市场将以最高的年复合增长率增长,成为太赫兹光谱设备公司的收入口袋。/pp  太赫兹光谱市场的主要参与者包括TeraView, Ltd. (U.S.), Menlo Systems GmbH (Germany), Toptica Photonix AG (Germany), Advanced Photonix, Inc. (U.S.), Advantest Corporation (Japan)./pp  strong红外光谱/strong又可细分为近红外、中红外和远红外光谱。2015年,中红外光谱占整个红外光谱市场的主要份额。预计2020年全球红外光谱市场将达到12.56亿美元;预测期2015年~2020年内,复合年增长率为6.9%。/pp  红外光谱仪市场分为台式、显微成像、便携或手持式以及联用仪器。2015年,台式红外光谱仪占整个红外光谱市场的主要份额。/pp  红外光谱主要应用于制药/生物技术、化学工业、环境、食品饮料等领域。2015年,制药与生物科技领域占整个红外光谱市场的主要份额。/pp  红外光谱市场划分为北美、欧洲、亚太以及其他地区。2015年,北美地区占到整个红外光谱市场的最大份额,其次是欧洲和亚太地区。然而,在预测期间亚太市场将以最高的年复合增长率增长,成为作为红外光谱仪器公司的收入口袋。/pp  全球红外光谱市场的主要参与者包括Agilent Technologies (U.S.), PerkinElmer (U.S.), Thermo Fisher Scientific (U.S.), Bruker Corporation (U.S.),Shimadzu Corporation (Japan)./p
  • 大恒科技牵头的国家重大仪器专项之太赫兹时域光谱仪开发通过验收
    3月13日,大恒新纪元科技股份有限公司(简称“大恒科技”)宣布,由公司牵头承担的国家重大科学仪器开发专项“基于飞秒激光的太赫兹时域光谱仪开发”项目进展顺利,进度和成果产出达到任务书要求的考核指标,顺利通过综合验收。“基于飞秒激光的太赫兹时域光谱仪开发”项目概述项目编号:2012YQ140005;项目组织单位:北京市科学技术委员会;项目牵头单位:大恒新纪元科技股份有限公司;项目第一技术支撑单位:首都师范大学;项目协作单位:北京大学、南京大学、中国科学院电子学研究所、上海理工大学、北京理工大学、清华大学、中国农业大学、北京农产品质量检测与农田环境检测技术研究中心、中央民族大学、北京中医药大学东直门医院、中国石油大学(北京)、东莞理工学院、中国科学院半导体研究所;项目起止年限:2012年10月至2017年9月;项目总体目标: 攻克太赫兹源、探测器等模块联用和集成关键技术,研发纳米金属薄膜宽频谱太赫兹源、Nb5N6超薄膜的室温太赫兹探测等关键部件,开发仪器操作平台软件与谱解析系统软件,通过系统集成和工程化开发,研发出性能稳定、质量可靠的基于飞秒激光的太赫兹时域光谱仪;通过在食品安全检测、药品分析、临床检测、油气分析等领域中的应用开发,丰富太赫兹时域光谱仪的测试应用功能,并在材料无损检测、环境监测等领域推广。该项目国家给予重大科学仪器设备开发专项资金人民币6,780万元,分阶段拨付,由牵头单位、第一技术支撑单位和协作单位共同使用。“基于飞秒激光的太赫兹时域光谱仪开发”项目验收情况该项目主要针对太赫兹时域光谱仪及各个关键模块进行了研究和开发,先后开发出具有自主知识产权的超快激光器、太赫兹源、太赫兹探测器等一系列核心产品,形成了四款各具特色的太赫兹时域光谱仪,打破了国外太赫兹技术在国内的价格垄断地位,具有较强的市场竞争力。目前太赫兹光谱仪已经在无损检测形成销售,该项目还在食品安全、民族医药、肾病检测、石油勘探、半导体材料等五个领域进行太赫兹的示范应用研究,进一步拓展了太赫兹时域光谱仪的应用,为太赫兹技术的产业化奠定了基础。关于大恒新纪元科技股份有限公司大恒科技于1998年12月14日注册成立,原名新纪元物产股份有限公司,1999年9月9 日更名为大恒新纪元科技股份有限公司;于2000 年11月29日在上海证券交易所上市(600288)。公司主营业务为光机电一体化产品、信息技术及办公自动化产品、数字电视网络编辑及播放系统、半导体元器件。据大恒科技业绩报告,2019年度实现营业收入33.06亿元,归属于上市公司股东的净利润7,308.76万元;2020上半年公司实现营业收入8.74亿元,实现归属于上市公司股东的净利润-2,201.73万元。
  • 集成太赫兹收发器在美问世
    据美国物理学家组织网2010年6月30日(北京时间)报道,美国科研人员开发出了首个集成太赫兹(THz)固态收发器,新设备比目前使用的太赫兹波设备更小,功能更强大。相关研究成果发表在最新一期的《自然光子学》杂志上。  太赫兹技术是近年来十分热门的一个研究领域,2004年被评为影响世界未来的十大科技之一。美国能源部桑迪亚国家实验室的研究人员将同一块芯片上的探测器和激光器结合在一起,制造出了该接收设备。在实验中,研究人员将一个小的肖特基二极管嵌入一个量子级联激光器(QCL)的脊峰波导空腔中,让能量能够从量子级联激光器内部的磁场直接到达二极管的阴极,而不需要光耦合通路。这样,研究人员就不需要再为制造这些收发器等设备所需要的光学“零件”如何定位而“抓耳挠腮”了。  新的固态系统利用了太赫兹波发出的频率。太赫兹波是指频率在0.1THz—10THz范围的电磁波,介于微波与红外之间,它能够穿透非金属材料,从而为安检、医学成像提供新的手段,在物体成像、医疗诊断、环境检测、通讯等方面具有广阔的应用前景。  量子级联激光器是产生太赫兹辐射的重要器件之一,科学家于2002年演示了半导体太赫兹量子级联激光器。太赫兹量子级联激光器的一个优势在于其能够同其他组件一起被整合在同一个芯片上。然而,此前要想装配出灵敏的相干收发器系统,研究人员需要将零散的、并且常常是巨大的组件组合到一起。而现在,研究人员只是将太赫兹量子级联激光器和二极管混频器整合在一个芯片上,就可以组成一个简单实用的微电子太赫兹收发器。  研究人员也证明,新的太赫兹集成设备能够执行以前组件零散的太赫兹系统的所有基本功能,例如传输相干载波、接受外部信号、锁频等。
  • 太赫兹技术在澳门海关“大显神通”,现在有个免费了解太赫兹的机会,赶紧来!
    近日,澳门海关利用太赫兹人体成像安检系统,以非入侵的检查方式,于关闸口岸截获多宗以隐藏方式偷运香烟入境个案,合共检获3,800支未完税香烟,海关已依法对涉案人员作出起诉。12月18日及19日,澳门海关于关闸口岸查获3起利用身体及随身背包作掩饰偷运未完税香烟个案,合共检获2,200支未完税香烟,涉案人士企图以隐藏方式蒙混过关,将香烟偷运入澳,最终被海关查获。针对有关情况,海关透过资料分析,加强关检执法力度,堵截私烟流入本澳。随后,于12月24日及25日,澳门海关再次透过太赫兹人体成像安检系统及X光机设备协助下,于上述同一口岸分别截获2名入境本澳人士,将香烟藏于身上、随身行李及手提汤壶藏香烟等方式,企图规避海关检查,2宗案件合共检获1,600支未完税香烟。想从原理到应用,系统地了解“太赫兹”吗?现在机会来了!会议介绍2021年1月5-6日(周二、周三),中国仪器仪表学会光学仪器分会、中国光学学会工程光学专委会、上海理工大学及仪器信息网将联合举办“太赫兹前沿进展国际交流论坛2021”网络会议。同时,本次会议也受到了庄松林院士的大力支持。会议围绕太赫兹光谱核心器件研发与应用进展,邀请国内外太赫兹领域的科研工作者、相关领域厂商研发及应用专家,聚焦太赫兹光谱研发、应用及技术转化的最新前沿进展。点击图片报名报名通道扫描下方二维码会议日程点击查看大图参会嘉宾(按报告时间排序)点击查看大图— END —
  • 国产非制冷红外成像和太赫兹成像仪器问世
    4年前,刚刚成立的烟台睿创公司决定研制一只&ldquo 火眼金睛&rdquo &mdash &mdash 无论雨雪交加,还是烟尘雾霾,完全不受光线影响的&ldquo 透视眼&rdquo ,看透暗夜中隐藏的秘密。  &ldquo &lsquo 非制冷红外成像&rsquo 及 &lsquo 太赫兹实时成像&rsquo 是一种比孙悟空的&lsquo 火眼金睛&rsquo 更神奇的技术&rdquo ,在研发者看来,它们的&ldquo 神奇&rdquo 之处在于:在战场上,可以探测夜幕掩盖下的目标、显示烟雾中隐藏的坦克 在日常生活中,可以打造车辆的夜视系统 在机场安检中&ldquo 1秒安检扫描全身&rdquo ,也可以&ldquo 验明&rdquo 建筑大楼的&ldquo 瑕疵&rdquo &hellip &hellip   这只&ldquo 眼睛&rdquo 的研制过程究竟有怎样的故事?  &ldquo 红外之眼&rdquo 能看到什么?  正在高速行驶的轿车前方突然窜出一只动物,在能见度只有两三米的情况下,车辆却提前十米刹了车。借助车上的远红外线摄像机,驾驶员能及时识别出人、动物和车辆等不同散热物体 一座建筑的质量&ldquo 瑕疵&rdquo 与节能水平难以用肉眼观察,但通过红外成像技术,检测易如反掌,因为裂缝处与其他地方的温度不同。  &ldquo 借助于目标自身发射的红外辐射来看透肉眼看不到的东西&rdquo ,就是红外成像技术。上述两个例子只是这项技术广泛用途的部分显示。  在军事上,红外热像仪可应用于军事夜视侦查、武器瞄具、夜视导引、红外搜索和跟踪、卫星遥感等多个领域 在民用方面,可以用于材料缺陷的检测与评价、建筑节能评价、设备状态热诊断、生产过程监控、自动测试、减灾防灾&hellip &hellip   这是一个散发着巨大诱惑的市场,也是一个&ldquo 难以高攀&rdquo 的市场&mdash &mdash 核心成像芯片的研制太难了,难到只被西方少数国家掌握,却因其广泛的军事用途被列入技术封锁和产品禁运之列。而国内,围绕着这项&ldquo 高门槛、宽应用&rdquo 的技术,一批国字头科研院所和高新企业展开角逐,其中包括资金、实力并不占优的民营企业睿创公司。  这家公司创业者认为,&ldquo 实际上,红外行业特别是非制冷红外成像行业在中国是一个空白,没有谁真正突破了核心技术,这就给我们同等竞争的机会。&rdquo   企业的嗅觉是最灵敏的,这促使睿创公司招兵买马,试图在这个行业一展身手,&ldquo 成立公司之前,我们没有100%的把握,只有70%。&rdquo 在公司的创业者看来,睿创是民企,&ldquo 没有退路,只能拼命&rdquo :&ldquo 我们把身家性命都押上了,这就是我们的饭碗,做不成就没有饭吃。&rdquo   不过,破釜沉舟的创业者还是没想到,&ldquo 这个领域的&lsquo 水太深了&rsquo 。&rdquo   &ldquo 深不可测&rdquo 的研发大海淹没了谁?  黑夜是光的坟墓,也让人们产生了对光明的渴求,红外成像与红外探测器便应运而生。  在夜视领域,红外探测器是热成像系统的核心,主要分为制冷型和非制冷型。尽管前者被认为是高端应用中的最佳选择,但因为成本居高不下,所以尺寸较小、重量较轻且功耗较低的非制冷红外探测器更获大家青睐。  但制作非制冷红外探测器并不容易。  作为资金密集型和技术密集型产业的代表,睿创的&ldquo 非制冷红外探测器&rdquo 之路首先面临着钱的考验,&ldquo 研发包括几个步骤,从设计开始就要花钱,做芯片肯定要流片,半导体流片需要花钱 这里面的风险在于,如果设计细节稍有不慎,则前功尽弃,整个之前的投入全部废掉 然后,封装、测试,上马设备都需要花钱 在此之外,原材料的费用,人员费用等等都离不开资金的投入&rdquo 。  投钱多、见效慢考验着企业的定力,但找钱还不是最难的,探测器所需要的芯片攻关才是最大挑战,&ldquo 红外焦平面探测器芯片采用IC(集成电路)+MEMS(微机电系统),长期以来,我国电子信息产业一直饱受&ldquo 缺芯&rdquo 之痛,况且,红外成像芯片相对其它芯片来说,复杂程度和研发难度更高&rdquo 。  大浪淘沙,适者生存,&ldquo 深不可测&rdquo 的研发大海检验着研发阵营的成色:那些并未做好准备的投入者,一个接一个被淘汰 剩下的是善水的坚持者。千百次的&ldquo 实验&mdash 失败&mdash 再实验&mdash 再失败&mdash 直到成功&rdquo ,亲历者的刻骨记忆永远比文字记述来得真切,公司负责人一句&ldquo 太不容易了&rdquo ,概括了所有的研发故事。  尽管步履维艰,挑战重重,但&ldquo 非制冷红外探测器&rdquo 的研制还不是这家企业的终极野心。  如何掌握改变未来的技术?  如果问一下联合国维和部队最怕的是什么,路边炸弹是回答之一。防不胜防的路边炸弹,给爱好和平的人们造成的伤亡不绝于耳。在传统威胁面前,高技术也无能为力?比&ldquo 非制冷红外成像技术&rdquo 更为先进的&ldquo 太赫兹成像&rdquo 的穿墙透视能力给出了答案。  太赫兹技术被美国评为&ldquo 改变未来世界的十大技术&rdquo 之一,它可以穿透墙体对房屋内部进行扫描,是复杂战场环境下寻敌成像的理想技术。同时,与耗资较高、作用距离较短、无法识别具体爆炸物的X射线扫描仪相比,太赫兹成像具有独特优势,目前已经初步应用于检查邮件、识别炸药及无损探伤等安全领域。  2013年1月对中国红外行业来说有着标志性意义:这一天,烟台睿创研制的第一代&ldquo 非制冷红外焦平面探测器&rdquo 迎来&ldquo 鉴定大考&rdquo ,&ldquo 国际同类产品先进水平&rdquo 的结论证明了过去3年努力所达到的高度。2014年初,睿创又发布了第二代高性能红外成像探测器产品,关键指标已经优于国外的竞争产品。  公司负责人表示,&ldquo 以前,核心的芯片和器件主要依赖进口,它的价格从几万到十几万不等,我们产品开发成功可以使价格大幅度下降,当前我们看好安防监控和汽车辅助驾驶市场,这个量是非常大的。&rdquo   利用3年时间将非制冷红外探测器打造出来后,这个上进的民企并没有停下脚步,而是瞄准了下一代非制冷红外成像技术与更高难度的太赫兹探测器。  借助在前期非制冷技术的积淀,睿创又开发出了国内首款太赫兹焦平面探测器产品。值得一提的是:经过国外权威机构的测试,该设备的成像芯片指标达到了国际一流水准。  为什么是他们做出来了?  睿创成立短短四年,做出了西方需要十年时间才能做出的产品。公司负责人时常面临的疑问是:你们是如何做出来的?  &ldquo 之所以能取得成功,是因为我们站在巨人的肩上。在调研、分析与总结之前很多伟大科学家与工程技术人员的杰出成果的基础上最终形成了公司自己的核心技术,争取少犯前人犯过的错误&rdquo 。  在关键的环节找关键的人和灵活的用人机制也推动着项目的成功。&ldquo 我觉得成功的重要原因是股东和董事会充分放权,对总经理和研发团队信任。在公司,500万以下的研发资金支出可以不经过董事会 总经理全国各地搜罗产业链条上所需人才,薪金待遇随需而定&rdquo 。  公司近100名员工,研发人才占了50%多,这就是睿创作为研发初创企业的典型特征。记者了解到,这个包括8名博士、34名硕士的研发团队已经在短短4年间取得了26项专利,其中包括6项发明专利。当然,股权激励是必不可少的。公司一旦上市,拥有股权的研发人员也将获得相应的回报。  激励机制和充分放权给企业带来了活力。  眼下,&ldquo 非制冷红外成像&rdquo 和&ldquo 太赫兹成像&rdquo 的技术都已成熟,进入了产业化的&ldquo 前夜&rdquo ,这让睿创公司有了更大的信心:&ldquo 预计我们的一期芯片达产后,年产值可以达到10亿人民币,在二期完工之后,我们可以达到50亿的产值。&rdquo
  • 太赫兹器件研究取得系列进展
    p  中国科学技术大学教授陆亚林量子功能材料和先进光子技术研究团队在太赫兹主动调控器件研究方面取得系列进展。该团队研究了太赫兹波与超构材料、氧化物超晶格薄膜相互作用机制,并成功制备了超快的太赫兹调制器,率先实现了皮秒级的高调制深度的太赫兹超快开关 同时制备了多功能的太赫兹器件,在单一器件中实现电开关、光存储和超快调制多种功能。相关研究成果近期相继发表在国际学术期刊《先进光学材料》。/pp  太赫兹波具有独特的时域脉冲、低能、谱指纹、宽带等特性,它在物理化学、材料科学、生物医学、环境科学、安全检查、卫星通讯等领域有着广阔的应用前景。其中,影响太赫兹技术发展和应用的关键因素之一是难以获得主动太赫兹调控元器件。超构材料,一种由金属或介质材料的亚波长微结构阵列组成的人工材料,其奇异的电磁响应特性为太赫兹调控器件提供了绝佳的解决方案。遗憾的是,以往基于超构材料的太赫兹元器件均由金属材料构成,加工尺寸固定后,器件的功能在实际应用中便难以主动改变。因此,发展主动调控的太赫兹元器件有着重要的研究意义。/pp  通常主动调控是对太赫兹波偏振、振幅、相位等进行调控,调控速度是另外一个指标。一些实际应用也迫切需求对太赫兹波进行超快调控。陆亚林团队设计并制作了基于硅介质的超快调控超表面。通过对硅薄膜进行离子注入和快速热处理工艺,大大减小了硅的载流子寿命并提高了自由载流子浓度。然后通过光刻、刻蚀工艺将硅薄膜加工为能在太赫兹波段共振的圆盘阵列结构的超表面。利用红外飞秒脉冲的激发,率先实现了皮秒级的高调制深度的太赫兹超快开关(开20ps,关300ps),并基于半导体载流子动力学建立理论模型对其进行了合理的解释。相关研究成果近日在《先进光学材料》期刊上线。/pp  另外,当前研究的太赫兹主动调控器件功能比较单一,即只能在单一外场下实现单一的功能。但单一功能难以适应当今技术发展的要求。因此,在单一器件上,实现多物理场的调控,并实现对太赫兹波的多功能调控,是当前太赫兹技术的发展前沿之一,也是实际应用的现实需求。有鉴于此,该团队基于VO2的绝缘-金属相变,通过将VO2与金属非对称开口谐振环结合,设计了一种太赫兹波段的多功能可调谐复合超表面,并利用国家同步辐射实验室副研究员邹崇文提供的高质量VO2薄膜,通过刻蚀、光刻等工艺制备了器件。此复合超表面能够通过加热和施加电流的方式实现对透射太赫兹波的振幅调控,绝对调制深度高达54%,品质因数高达138%。基于VO2在相变过程中的回滞特性,该复合超表面可以通过电流触发实现室温下对太赫兹波的记忆存储功能。此外,利用超快强脉冲泵浦,此复合超表面还能实现对太赫兹波的超快调控。从而,在单一器件实现了对太赫兹波的多功能调控。相关研究成果近日在《先进光学材料》期刊上线。/pp  此外,很多材料在太赫兹波段的响应仍是未知的,而只有研究清楚了各类材料与太赫兹波相互作用的特性,设计主动太赫兹器件才能有迹可循。该团队利用自行搭建的两套太赫兹系统测量并分析了量子功能材料与太赫兹波的相互作用。重点研究了不同周期数的La0.7Sr0.3MnO3/ SrTiO3超晶格薄膜的太赫兹响应,发现了532 nm连续激光的泵浦对此超晶格在太赫兹波段的介电常数具有较大的调控作用,并通过Drude-Lorentz模型的拟合对此现象进行了微观机理的解释,这为寻找新的可用于太赫兹主动调控器件的功能材料开辟了新路径。相关研究成果发表在《光学快讯》[Opt. Express. 26, 7842 (2018)]上。/pp  上述论文的第一作者为合肥微尺度物质科学国家实验中心博士研究生蔡宏磊,通讯作者为黄秋萍、陆亚林。该工作得到了科技部、国家自然科学基金委、中科院和教育部等关键项目的资助。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/2420c70a-1699-4d09-9881-605198df6544.jpg" title="1.png"//pp style="text-align: center "硅介质超表面器件示意图以及其对太赫兹波超快调控的实验结果/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/c2bbe902-a857-47af-9110-dac15eec004e.jpg" title="2.png"//pp style="text-align: center "金属-VO2复合超表面器件示意图及其电开关、光存储功能的实验结果/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/d4a3ee1d-337a-4aa6-812d-3a05c3fe2e87.jpg" title="3.png"//pp style="text-align: center "La0.7Sr0.3MnO3/ SrTiO3超晶格薄膜在太赫兹波段的介电常数和激发光功率关系/ppbr//ppbr//p
  • 我国大力发展太赫兹技术!太赫兹技术(大同)研究院揭牌成立
    p style="text-indent: 2em text-align: justify "太赫兹波又称远红外波,曾被评为“改变未来世界的十大技术”之一,它是电磁波段中最后一段未被人类充分认识和应用波段。由于频率高、脉冲短、穿透性强,且能量很小,对物质与人体的破坏较小,所以与X射线相比,太赫兹成像技术和波谱技术更具优势,在空间探测、医学成像、安全检查、宽带通信等方面具有广阔的前景。/pp style="text-indent: 2em text-align: justify "7月7日,太赫兹技术(大同)研究院、大同东华科技有限公司在山西省大同市正式揭牌成立,为大同转型发展蓄势赋能。山西省委常委、大同市委书记张吉福,大同市市长武宏文,山西省投资促进局党组书记、局长杨春权及两大平台相关负责人进行揭牌。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 537px height: 356px " src="https://img1.17img.cn/17img/images/202007/uepic/03fdaf1d-fe27-44c3-be23-ef3886ecd362.jpg" title="88ca67ee0af44026a65ab96cdb949524.jpg" alt="88ca67ee0af44026a65ab96cdb949524.jpg" width="537" height="356"//pp style="text-indent: 2em text-align: justify "据了解,太赫兹技术(大同)研究院是大同聚力建设12大科技创新平台的重要平台之一,主要由毫米波与太赫兹技术北京市重点实验室和毫米波太赫兹产业发展联盟组建;大同东华科技有限公司的总部东华软件股份公司成立于2001年1月,以应用软件开发、计算机信息系统集成、信息技术服务等为主要业务,拥有千余项自主知识产权的软件产品。/pp style="text-indent: 2em text-align: justify "武宏文表示,大同将致力把太赫兹技术(大同)研究院打造成一流的国家级研究院。同时,大同将与大同东华科技有限公司在高端制造、信息技术应用、大数据等领域进行深度合作,加强技术研发、加快成果转化、加速产业孵化,着力打造大同成功转型的“四梁八柱”。/pp style="text-indent: 2em text-align: justify "据悉,大同近年来启动建设了大同市国际能源革命科技创新园,引进了12大科技创新平台,集聚了28名两院院士、77名高科技领军人才,转化落地了太赫兹技术测温安检门、煤矿废弃巷道压缩空气储能等一大批高科技转型项目,推动大同发展步入创新驱动快车道。/pp style="text-indent: 2em text-align: justify "揭牌仪式上,杨春权表示,全省投资促进系统将以项目招商、落地为核心,坚持“项目为王”理念,精准招商,为大同项目落地投产见效提供全方位“保姆式”服务。/p
  • 潜力即将爆发 “元年”或已到来! ACCSI2020太赫兹仪器产业化论坛胜利召开
    p style="text-align: justify text-indent: 2em "2020年9月16-17日,2020 (第十四届)中国科学仪器发展年会(ACCSI 2020)在天津东丽湖恒大酒店召开,本届会议的主题为“数字驱动 创新引领”,吸引了来自“政、产、学、研、用”等方面的近1000位高端人士参会。/pp style="text-align: justify text-indent: 2em "9月17日,由仪器信息网、毫米波太赫兹产业发展联盟、天津大学精密仪器与光电子工程学院联合主办的“第一届中国太赫兹仪器产业化发展论坛”(以下简称为“太赫兹论坛”)在ACCSI 2020上隆重召开,论坛汇集了产、学、研、投等各领域专家约100人,并得到了广泛的好评。/pp style="text-align: justify text-indent: 2em "太赫兹技术具有不同于其它电磁波的独特优越特性,具有重要的科学价值,例如在5G-6G通讯、公共安全、食品安全、材料科学及生物医学等领域,都已显示出独特的优势和广阔的前景。近年,国内太赫兹技术研究发展迅速,诸多领域对太赫兹技术的关注和需求与日俱增,太赫兹技术产业也正在逐步形成,受到诸多领域的关注,也存在亟待解决的问题。/pp style="text-align: justify text-indent: 2em "太赫兹论坛受到了多方的重点关注,中国仪器仪表学会分析仪器分会名誉理事长闫成德、中国仪器仪表行业协会分析仪器分会秘书长曾伟、北京宝德仪器有限公司董事长陈志新、深圳市善时仪器有限公司相关领导、南开大学邵学广教授、暨南大学潘涛教授等相关专家及厂商高层均来到论坛观摩学习。/pp style="text-align: center"img style="width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202009/uepic/73df52c3-3595-4c02-b268-66c94e489b37.jpg" title="mmexport8021a9fd9ffa65e6c80ce5538c6b278e(1).jpg" width="600" height="400" border="0" vspace="0" alt="mmexport8021a9fd9ffa65e6c80ce5538c6b278e(1).jpg"//pp style="text-align: center"img style="width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202009/uepic/37a703d1-7920-4295-a74f-5a111847f7e4.jpg" title="mmexport1641161c1007ee6bfbe5040659ebe514(1).jpg" width="600" height="400" border="0" vspace="0" alt="mmexport1641161c1007ee6bfbe5040659ebe514(1).jpg"//pp style="text-align: center text-indent: 0em "会议现场/pp style="text-align: justify text-indent: 2em "太赫兹论坛由毫米波太赫兹产业发展联盟秘书长刘海瑞和天津大学教授黄战华主持,中电科仪器仪表有限公司首席专家姜万顺、上海理工大学教授朱亦鸣、中国工程物理研究院一所研究员(博导)李泽仁、博微太赫兹信息科技有限公司首席专家高炳西、爱德万测试(中国)管理公司副总裁/博士夏克金、莱仪特太赫兹(天津)科技有限公司技术总监曲秋红、欧必翼太赫兹科技(北京)有限公司副总经理张殿坤、首都师范大学教授张存林、北京理工大学教授胡伟东、中央民族大学教授杨玉平、天津大学教授何明霞分别就太赫兹技术发展现状、太赫兹仪器产业化状况、太赫兹技术在各领域应用进展以及不同企业在太赫兹领域的产品进展等方面进行了精彩的报告。/pp style="text-align: center"img style="width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202009/uepic/80535c2a-b831-476d-808c-4b5e9259d4ca.jpg" title="内部会 刘海瑞.jpg" width="600" height="400" border="0" vspace="0" alt="内部会 刘海瑞.jpg"//pp style="text-align: center text-indent: 0em "主持人:毫米波太赫兹产业发展联盟 秘书长 刘海瑞/pp style="text-align: center "img style="width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202009/uepic/3660f8ec-8b9b-4d7a-9967-24c10d7cf822.jpg" title="黄战华1.jpg" width="600" height="400" border="0" vspace="0" alt="黄战华1.jpg"/br//pp style="text-align: center text-indent: 0em "主持人:天津大学 教授 黄战华/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/202009/uepic/65c8d67c-adea-4219-b68a-69309f8a1e9f.jpg" title="姜万顺.jpg" width="600" height="400" border="0" vspace="0" alt="姜万顺.jpg" style="text-align: justify text-indent: 32px width: 600px height: 400px "/br//pp style="text-align: center text-indent: 0em "中电科仪器仪表有限公司 首席专家 姜万顺/pp style="text-align: center text-indent: 0em "strong报告题目:太赫兹产业化发展与测试技术/strong/pp style="text-align: justify text-indent: 2em "2004年太赫兹技术被美国评为“改变未来世界span style="text-indent: 2em "的十大技术”之一,在全球掀起太赫兹技术研究热潮,太赫兹展现了诱人的应用前景,但要实现太赫兹产业发展仍有大量难题需要攻克。科技要发展,测试需先行,姜万顺在报告中介绍了太赫兹测试(仪器)技术进展情况,重点对太赫兹产业化发展中的一些测试难题进行探讨,对部分解决方案进行介绍,并对太赫兹测试仪器发展进行展望。/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202009/uepic/ee6e0ba5-3ca1-4255-9f1d-48bd69606608.jpg" title="mmexport3f180bcd9f7c4d66f6d30a741e911498(1).jpg" alt="mmexport3f180bcd9f7c4d66f6d30a741e911498(1).jpg" width="600" height="400" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "上海理工大学 教授 朱亦鸣/pp style="text-align: center text-indent: 2em "strong报告题目:太赫兹波谱技术进展与应用/strong/pp style="text-align: justify text-indent: 2em " 太赫兹仪器想要实现产业化,关键部分的开发尤为重要。2020年中美贸易关系不佳,华为等企业受限美国的案例提醒着各领域,实现完全国产化的重要性。在报告中,朱亦鸣首先对上海理工大学太赫兹波谱技术进行了简要介绍,随后他通过对太赫兹仪器的几个核心部件,包括飞秒激光器、太赫兹源、太赫兹辐射芯片、高功率太赫兹辐射等的最新进展情况进行了介绍。同时,他表示:目前太赫兹仪器核心部件已经可以基本实现完全国产,这在如今的国际关系中显得尤为重要。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202009/uepic/1460895d-c13b-4d60-ba05-65f1bc99566c.jpg" title="李泽仁 3.jpg" alt="李泽仁 3.jpg" width="600" height="400" border="0" vspace="0"/br//pp style="text-align: center text-indent: 0em "中国工程物理研究院一所 研究员(博导) 李泽仁/pp style="text-align: center text-indent: 0em "strong报告题目:太赫兹三维层析成像技术及应用发展展望/strong/pp style="text-align: justify text-indent: 2em "无损检测是重要的质量控制与保证手段,也是生产与公共安全不可或缺的保障技术。太赫兹三维层析成像技术是一种新型的无损检测技术,它与X射线、噪声等无损检测手段能够很好的互补,在军事、科研和工业生产在线检测领域的应用潜力巨大。李泽仁在报告中首先介绍了太赫兹三维层析成像技术与应用的背景,随后重点分析了太赫兹三维层析成像技术的应用领域与现状。报告的最后,他介绍了中物院一所和青岛清源峰达太赫兹公司在太赫兹三维层析成像仪与核心元部件设计研发和应用的一些成果。/pp style="text-align: center"img style="width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202009/uepic/c5b511bd-e84b-42ac-bcf8-dc3d501763c4.jpg" title="高炳西.jpg" width="600" height="400" border="0" vspace="0" alt="高炳西.jpg"//pp style="text-align: center text-indent: 0em "博微太赫兹信息科技有限公司 首席专家 高炳西/pp style="text-align: center text-indent: 0em "strong报告题目:被动式太赫兹人体成像安检系统应用及其未来展望/strong/pp style="text-align: justify text-indent: 2em "报告中,高炳西首先简述了太赫兹安检相对于传统安检的优势,并对比了主动和被动成像系统,就太赫兹探测器发展水平和典型的被动式成像系统进行了介绍。随后他重点对被动式太赫兹人体成像安检仪的原理设计,以及基于被动式太赫兹成像的综合安检解决方案进行了分析。最后,他分享了他对太赫兹技术产业化的问题的一些思考,并对未来发展进行了展望。/pp style="text-align: center text-indent: 0em "img src="https://img1.17img.cn/17img/images/202009/uepic/e250aa90-e8df-4aec-9d9f-d31cf694e841.jpg" title="夏克金 报告.jpg" width="600" height="400" border="0" vspace="0" alt="夏克金 报告.jpg" style="width: 600px height: 400px "/br//pp style="text-align: center text-indent: 0em "爱德万测试(中国)管理公司 副总裁/博士 夏克金/pp style="text-align: center text-indent: 0em "strong报告题目:太赫兹技术在集成电路测试产业的应用/strong/pp style="text-align: justify text-indent: 2em "集成电路封装不仅起到集成电路芯片内键合点与外部进行电气连接的作用,也为集成电路芯片提供了一个稳定可靠的工作环境,保证其具有高稳定性和可靠性。因此,集成电路封装质量的好坏,对集成电路总体的性能优劣关系很大。夏克金在报告中对太赫兹技术在集成电路失效分析中的应用进行了介绍,并简述了通过超高分辨率太赫兹时域反射系统来测试集成电路内部连线质量的实际应用,并提供了适用于量产集成电路封装质量检测的产业化解决方案。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/202009/uepic/d4d3b186-1329-4cb4-b38b-bef8e25207b4.jpg" title="曲秋红2.jpg" width="600" height="400" border="0" vspace="0" alt="曲秋红2.jpg" style="width: 600px height: 400px "/br//pp style="text-align: center text-indent: 0em "莱仪特太赫兹(天津)科技有限公司 技术总监 曲秋红/pp style="text-align: center text-indent: 0em "strong报告题目:材料的太赫兹光谱与成像无损检测应用及展望/strong/pp style="text-align: justify text-indent: 2em "太赫兹(THz)辐射具有许多独特性质,且具有高信噪比、高分辨率以及非极性物质的强穿透性等特征,因而在物理、化学、生物、材料、医学、农业、国防和军事等领域具有广阔的应用前景。报告中,曲秋红除了介绍莱仪特公司在光谱检测以及太赫兹无损检测的相关产品和业务之外,同时,介绍了一些典型的材料的太赫兹无损检测应用案例。她还表示:她期待与太赫兹同仁共同开拓太赫兹应用市场。/pp style="text-align: center"img style="width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202009/uepic/01cb1409-f8e6-4a8e-a5ed-941f9b7d612b.jpg" title="张殿坤1.jpg" width="600" height="400" border="0" vspace="0" alt="张殿坤1.jpg"//pp style="text-align: center text-indent: 0em "欧必翼太赫兹科技(北京)有限公司 副总经理 张殿坤/pp style="text-align: center text-indent: 0em "strong报告题目:太赫兹安检技术在安保行业的应用及发展前景/strong/pp style="text-align: justify text-indent: 2em "张殿坤在报告中介绍了太赫兹/毫米波人体成像安检领域的小型化被动式太赫兹产品以及主动式毫米波(圆柱扫描、逆圆柱扫描、平面扫描)系列产品,其具有成像速度快,分辨率高,自动检测检出率高,误报率低的特点。同时,他还针对传统安检的痛点,举例介绍了将新技术、新产品与传统产品结合,针对医院、公安检查站、企事业单位内保、轨道交通等不同的应用场景的不同案例,并提供了完整的安检解决方案。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/202009/uepic/b95703d9-c138-4ffa-b2bb-3c9b478458f8.jpg" title="mmexport3109bfa80ee5b3f8564fc2e45c011974(1).jpg" width="600" height="400" border="0" vspace="0" alt="mmexport3109bfa80ee5b3f8564fc2e45c011974(1).jpg" style="text-indent: 32px text-align: center width: 600px height: 400px "/br//pp style="text-align: center text-indent: 0em "首都师范大学 教授 张存林/pp style="text-align: center text-indent: 0em "strong报告题目:太赫兹应用(波谱、成像、通信)现状及趋势/strong/pp style="text-align: justify text-indent: 2em "报告中,张存林主要从太赫兹科学与技术的三大应用span style="text-indent: 2em "方面:太赫兹波谱、太赫兹成像与太赫兹通讯入手,对太赫兹科学与技术的概况,以及国内外相关技术的发展现状进行了介绍与分析。同时,他还分享了首都师范大学太赫兹光电子学教育部重点实验室的发展进程、研究方向以及近年来的研究成果。/span/pp style="text-align: center"img style="width: 600px height: 396px " src="https://img1.17img.cn/17img/images/202009/uepic/1637e453-1460-4df3-ab5f-77f8e64e001a.jpg" title="企业微信截图_20200923171620.png" width="600" height="396" border="0" vspace="0" alt="企业微信截图_20200923171620.png"//pp style="text-align: center text-indent: 0em "北京理工大学 教授 胡伟东/pp style="text-align: center text-indent: 0em "strong报告题目:毫米波太赫兹成像技术发展及其应用前景/strong/pp style="text-align: justify text-indent: 2em "毫米波太赫兹成像技术已成为当前热点领域之一,学术界和产业界都给予了其极大的关注。胡伟东在报告中系统的梳理了主被动两条技术路线太赫兹成像技术的要点,讨论了从准光设计、收发阵列设计以及人工智能图像处理等方面目前面临的问题。最后,他讨论了毫米波太赫兹安检仪器的产业化及应用前景。/pp style="text-align: center "img style="width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202009/uepic/9bf4841f-7b2c-4eee-9e22-e039804c7f4f.jpg" title="杨玉平2.jpg" width="600" height="400" border="0" vspace="0" alt="杨玉平2.jpg"/br//pp style="text-align: center text-indent: 0em "中央民族大学 教授 杨玉平/pp style="text-align: center text-indent: 0em "strong报告题目:太赫兹光谱检测技术应用、机遇与挑战/strong/pp style="text-align: justify text-indent: 2em "随着太赫兹光谱技术在化合物、药品、食品、危险品等领域的应用研究广泛开展,逐渐成为一个交叉前沿学科。化合物在太赫兹波段具有丰富的特征谱信息,以及太赫兹波的良好的穿透性,因此可以对药品、食品和危险品进行无损检测与遥感成像。另外,太赫兹辐射能量低,不会对样品造成损伤;极性分子(水、等)对太赫兹波响应敏感,可以对细胞、生物组织等进行活体检测,等等。报告中,杨玉平从基础研究→应用研究→市场展望等多个层次,详细地介绍了太赫兹光谱技术在化合物、药品、食品、危险品等领域的应用、前景以及机遇。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/202009/uepic/23eb3273-6f65-4ede-8427-9ff0e0550c92.jpg" title="何明霞2.jpg" width="600" height="400" border="0" vspace="0" alt="何明霞2.jpg" style="text-align: center width: 600px height: 400px "/br//pp style="text-align: center text-indent: 0em "天津大学 教授 何明霞/pp style="text-align: center text-indent: 0em "strong报告题目:太赫兹电磁波在生物医学领域的应用与未来展望/strong/pp style="text-align: justify text-indent: 2em "太赫兹 (THz) 波兼具毫米波与红外波的特征,并具有非电离性、非侵入性、高穿透性、高分辨率和指纹谱识别的优势,因此在生物医学领域具有巨大应用潜力。何明霞的报告分为两个部分:第一部分,分析了太赫兹光谱与成像技术在生物医学领域中,对癌症检测、生物大分子检测、生物组织成像等研究的应用成果、技术优势、发展现状及存在问题;第二部分,她介绍了太赫兹电磁波的生物效应的研究起步与发展,及其未来可能有突破性的应用预测。/pp style="text-align: justify text-indent: 2em "为了让参会者进行更深入的交流,共同推动太赫兹仪器产业化进程,报告分享结束后,太赫兹论坛还特别举办了圆桌会议环节,邀请了6位来自不同群体的太赫兹相关专家进行交流。包括学术研究端(南开大学常胜江教授、上海理工大学朱亦鸣教授)、企业端(中电科仪器仪表有限公司首席专家姜万顺、爱德万测试(中国)管理公司副总裁夏克金)、投资端(深圳市创新投资集团有限公司投资经理/中级经济师邓力文)、联盟端(毫米波太赫兹产业发展联盟秘书长刘海瑞)就太赫兹产业化存在的问题、解决方案,以及将如何实现产业化等问题进行了探讨。/pp style="text-align: center"img style="width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202009/uepic/8c7b1df9-f984-431d-86ae-ab87717f0796.jpg" title="LM1323_p1482.JPG" width="600" height="400" border="0" vspace="0" alt="LM1323_p1482.JPG"//pp style="text-align: center"img style="width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202009/uepic/4b6abc5f-bee9-4c8a-834b-13b92085770c.jpg" title="LM1327_p1213.JPG" width="600" height="400" border="0" vspace="0" alt="LM1327_p1213.JPG"//pp style="text-align: center"img style="width: 600px height: 480px " src="https://img1.17img.cn/17img/images/202009/uepic/5b996da6-1b7a-496e-84e2-516cbb5a0dca.jpg" title="圆桌论坛拼图.jpg" width="600" height="480" border="0" vspace="0" alt="圆桌论坛拼图.jpg"//pp style="text-align: center text-indent: 0em "圆桌论坛/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/840994bf-b431-463e-82bb-9311d82ea4f3.jpg" title="合影1.jpg" alt="合影1.jpg"//pp style="text-align: center text-indent: 0em "大会合影/pp style="text-align: justify text-indent: 2em "论坛开始前,毫米波太赫兹产业发展联盟还特别举行了“太赫兹光谱与应用工作组第一次工作会议”,就工作组工作进展与发展规划、太赫兹光谱检测工作站以及未来发展进行了讨论。毫米波太赫兹产业发展联盟秘书长刘海瑞、太赫兹光谱与应用工作组组长何明霞、南京林业大学刘云飞教授(工作组专家)、中检科(南京)太赫兹科技有限公司孙肖林博士等专家进行了充分交流,制定具体计划,共同推进太赫兹技术产业化。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 598px height: 819px " src="https://img1.17img.cn/17img/images/202009/uepic/3c25724f-f2b7-4503-bfa8-146222131ece.jpg" title="内部会.jpg" alt="内部会.jpg" width="598" height="819"//p
  • 首届全国太赫兹技术与应用交流会召开
    首届全国太赫兹科学技术与应用学术交流会日前在京召开。6位两院院士、23名特邀报告专家,及近300名全国专业学者和科研人员,共同探讨这项“改变未来世界”的新兴科技领域。  太赫兹波是频率范围在0.1T至10THz(波长在3mm至30um)的电磁频谱,它介于毫米波与远红外光之间,是至今人类尚未充分认知和利用的频谱资源,有望对通信(宽带通信)、雷达、电子对抗、电磁武器、安全检查等领域带来深刻变革。作为我国太赫兹领域的首次学术“峰会”,大会交流领域涵盖太赫兹物理与基础理论、太赫兹产生与放大技术、太赫兹传输与检测技术,以及太赫兹在光谱学、通信、雷达、成像中的应用技术等多个学科领域。据悉,我国近年来在太赫兹源、检测器件等领域进展显著,已有数十个高校和科研院所启动太赫兹相关研究。本届大会由中国兵工学会太赫兹应用技术专业委员会主办,太赫兹科学技术研究中心承办。  相关概念股包括大恒科技、天瑞仪器、四创电子等。昨天,受太赫兹概念利好影响,大恒科技开盘即一字封停,天瑞仪器盘中涨停,四创电子涨4.20%。  太赫兹技术可检测潜在的地沟油  据京华时报报道,23日,在上海市教委举办的首场专题新闻发布会上,上海理工大学首度展出“基于太赫兹技术的地沟油快速检测仪”。该仪器基于太赫兹电磁波可以与油脂中的有机物产生共振的原理,能找出潜在的地沟油。  合生财富首席分析师梁万章认为,昨天二级市场对太赫兹概念的追捧力度较大,大恒科技大单封死涨停,但此类涨停有非常明显的游资炒作痕迹。  目前来看,市场对太赫兹概念相对陌生,且此技术从实验室走向民用还需一段时间,而传闻涉及该概念的大恒科技、四创电子等上市企业在未来能否拿到订单实现业绩也是未知数,因此,该类个股“一日游”行情的可能性非常大。  对于市场传闻,记者采访了大恒科技董秘严宏深,他表示公司的确在研发太赫兹技术,目前已经和国外共同研发出光谱器,激光发射器目前还在实验阶段。目前正在申请国家经费,希望尽快取得突破。  大恒科技:太赫兹时域光谱仪开发尚处实验室阶段  据仪器信息网报道,2012年8月8-10日期间,由中国仪器仪表学会、“ 太赫兹光电子学教育部重点实验室”、《现代科学仪器》编辑部主办,中国分析测试协会、中国仪器仪表学会分析仪器分会、中国仪器仪表学会农业仪器应用技术分会多家单位支持的“太赫兹科学仪器及前沿技术专题研讨会”在北京紫玉饭店成功召开。  教育部重点实验室主任张存林教授以《基于飞秒激光的太赫兹时域光谱仪开发》为题讲解了其负责的国家重大科学仪器设备开发专项的项目工作进展。该项目由北京市科学技术委员会组织,大恒新纪元科技股份有限公司作为牵头单位,首都师范大学作为第一技术支撑单位。太赫兹光谱作为太赫兹应用技术之一,对经济社会发展及民生改善有支撑作用,而且产业化前景非常可观,据Thintri, Inc. 2010年度太赫兹市场报告预期,太赫兹在医学、安全和制造业领域相关产品的经济效益到2020年将可达到数千万至数亿美元,市场份额可达到数十亿美元,而张存林教授太赫兹时域光谱仪项目预期为中国带来经济效益数亿美元(以中国市场占10%的全球市场份额估算),产品将拉动中关村高科技示范区高端仪器制造业及相关产业年约10亿元人民币的产值。项目融合宽普、高能量、小型化的趋势特点,以光谱范围0.1-10THz、光谱分辨率7.5GHz、太赫兹脉冲能量10μJ为技术指标,在现有原理样机的基础上进行完善来实现工程化,使整机性能指标达到国际先进水平,并预期实现在2014年小批量试产25台、2016年批量投产100台的目标。  据中国证券报最新报道,参与《基于飞秒激光的太赫兹时域光谱仪开发》项目的专家介绍,目前该项目还处在实验室阶段。今年年初项目组已向相关主管部门申请立项和申报补贴资金,但目前还没有收到正式批文,至于相关的补贴资金量更无从得知。  “大恒科技股价异动属于游资炒作。”有券商研究员指出,短期来看,上述项目对大恒科技的业绩并不能产生直接影响,长期影响也要看,项目是否能够成功获得政府主管部门的支持,2014年能否实现部分产品商用,以及相关产品能够取得的市场的认可。  太赫兹安检技术具有巨大的市场前景  据仪器信息网报道,中国电子科技38所研发的太赫兹安检技术已取得关键性进展,首台样机即将于年内面世。  太赫兹安检技术将主要应用于机场、海关、地铁、文化遗产等重要建筑物以及大型活动现场的安全检查,可以快速准确地检测出是否有人携带武器、毒品、爆炸物等违禁品,有效保障大众的生命财产安全。  目前在公共场所的安检是以X射线成像为主,辅助以金属探测器及人工检查,但无法有效检测出人体隐藏的非金属危险物品,进而可能导致恶性暴力及恐怖袭击事件。太赫兹安检技术不仅对人体更加安全,且增加了物联网技术,实现了对被检测对象的智能化识别、定位跟踪、自动报警、管理监控以及信息存储分析和区域网络覆盖,其应用将显著增强城市中公共场所的安全防御能力,有效减少公共安全事件的发生率。  太赫兹安检技术具有巨大的市场前景,预计国内市场潜力在100亿元左右,在世界范围内,太赫兹成像产品潜在的市场销售额可达1000亿元以上。  附:太赫兹(地沟油检测)概念股一览  天瑞仪器、大恒科、四创电子、百利电气、同方股份都进入太赫兹领域,四创电子控股股东38所曾研制出样机。TCL则是介入下一代手机太赫兹研究。  大恒科技:公司表示的确在研发太赫兹技术,目前已经和国外共同研发出光谱器,激光发射器目前还在实验阶段。目前正在申请国家经费,希望尽快取得突破。市场传言,教育部重点实验室主任张存林教授以《基于飞秒激光的太赫兹时域光谱仪开发》为题讲解了其负责的国家重大科学仪器设备开发专项的项目工作进展。该项目由北京市科学技术委员会组织,大恒科技作为牵头单位,首都师范大学作为第一技术支撑单位。  天瑞仪器:目前公司出产的LC310高效液相色谱仪可以应对地沟油黄曲霉毒素b1的限量检测。  同方股份:控股子公司同方威视技术股份有限公司曾与清华大学共同申请了“一种利用太赫兹时域光谱快速检测植物油纯度的方法及设备”专利权。  四创电子:此前有报道称,四创电子大股东华东电子工程研究所(中国电子科技集团公司第三十八研究所)太赫兹安检技术已取得关键性进展,首台样机即将于年内面世。太赫兹安检技术将主要应用于机场、海关、地铁、文化遗产等重要建筑物以及大型活动现场的安全检查,可以快速准确地检测出是否有人携带武器、毒品、爆炸物等违禁品,有效保障大众的生命财产安全。  TCL:2011年深圳先进科学与技术国际会议第三届会议上,公司称目前工业界已全面进入太赫兹开发及应用领域,太赫兹已在通讯领域崭露头角,TCL通讯期待与各位专家学者一起开发与研究太赫兹科学技术,带动通讯产业的技术发展。  百利电气:传百利旗下公司投资上游实验室研发的集成THz医学成像设备比东芝最高端成像效果清晰100倍。  凤凰光学、聚光科技:上述“基于太赫兹技术的地沟油快速检测仪”由上海现代光学系统重点实验室与上海市分析检测协会合作研发,拥有自主知识产权。其中,上海现代光学系统重点实验室的合作单位包括凤凰光学(上海)有限公司、聚光科技(杭州)有限公司。  概念解析:太赫兹  太赫兹(Terahertz,1THz=1012Hz)泛指频率在0.1~10THz波段内的电磁波,位于红外和微波之间,处于宏观电子学向微观光子学的过渡阶段。早期太赫兹在不同的领域有不同的名称,在光学领域被称为远红外,而在电子学领域,则称其为亚毫米波、超微波等。在20世纪80年代中期之前,太赫兹波段两侧的红外和微波技术发展相对比较成熟,但是人们对太赫兹波段的认识仍然非常有限,形成了所谓的“THz Gap”。  2004年,美国政府将THz科技评为“改变未来世界的十大技术”之一,而日本于2005年1月8日更是将THz技术列为“国家支柱十大重点战略目标”之首,举全国之力进行研发。我国政府在2005年11月专门召开了“香山科技会议”,邀请国内多位在THz研究领域有影响的院士专门讨论我国THz事业的发展方向,并制定了我国THz技术的发展规划。另外,美国、欧洲、亚洲、澳大利亚等许多国家和地区政府、机构、企业、大学和研究机构纷纷投入到THz的研发热潮之中。  太赫兹的独特性能给通信(宽带通信)、雷达、电子对抗、电磁武器、天文学、医学成像(无标记的基因检查、细胞水平的成像)、无损检测、安全检查(生化物的检查)等领域带来了深远的影响。由于太赫兹的频率很高,所以其空间分辨率也很高 又由于它的脉冲很短(皮秒量级)所以具有很高的时间分辨率。太赫兹成像技术和太赫兹波谱技术由此构成了太赫兹应用的两个主要关键技术。同时,由于太赫兹能量很小,不会对物质产生破坏作用,所以与X射线相比更具有优势。另外,由于生物大分子的振动和转动频率的共振频率均在太赫兹波段,因此太赫兹在粮食选种,优良菌种的选择等农业和食品加工行业有着良好的应用前景。太赫兹的应用仍然在不断的开发研究当中,其广袤的科学前景为世界所公认。
  • 国家重大科研仪器研制项目“太赫兹近场高通量材料物性测试系统”结题验收会在合肥召开
    7月27日,中国科学技术大学承担的国家重大仪器设备研制专项(部门推荐)“太赫兹近场高通量材料物性测试系统”结题验收会在合肥召开。国家自然科学基金委员会窦贤康主任及相关部门负责人、中国科学院科技基础能力局相关负责人、项目验收专家组(含仪器测试验收专家组、财务验收专家组、技术档案验收专家组)、项目监理组、中国科学技术大学包信和校长及相关部门负责人、项目负责人陆亚林及项目组成员等80余人参加了验收会。验收会由国家自然科学基金委工程与材料科学部常务副主任王岐东主持。项目验收专家组由14位专家组成,清华大学段文晖院士和武汉大学刘胜院士分别担任验收专家组组长和副组长。专家组首先听取了项目负责人、中国科学技术大学杰出讲席教授陆亚林关于“太赫兹近场高通量材料物性测试系统”项目汇报。陆亚林教授带领项目组历时七年,克服了前沿技术挑战和国际贸易形势变化所带来的困难,攻坚克难,成功研制太赫兹近场高通量材料物性测试系统。项目通过研发可调谐预聚束太赫兹激光光源和宽谱脉冲光源、探针和样品双扫描、大口径矢量磁体等核心技术,研制了一套太赫兹近场高通量材料物性测试系统。该系统由复合光源、传输光路、多物理场、近场探测、中央控制及通用系统等构成,主体设备和相关部件已全部就位,系统运行状态良好。达到了计划书的全部技术指标,其中部分指标优于计划书指标。项目组突破了传统需要在100 K左右低温和真空才能实现的瓶颈,首次获得室温大气环境下的原子分辨太赫兹隧道电流成像;突破了多场条件集成技术瓶颈,首次获得低温强磁场下的原子分辨太赫兹近场隧道电流成像;突破了冷壁贯穿孔光学兼容技术瓶颈,成功研制出大口径超导矢量磁体,参数显著高于国际已有矢量磁体;突破了预聚束电子束团串激发0.5-5 THz相干辐射、轻量化固定磁极间隙波荡器、电控偏振分合束激光脉冲串成型光路等技术瓶颈,研制出紧凑型可调谐太赫兹激光器系统,实现了激光中心频率大范围调节。该系统相关技术还被应用于拓扑材料、人工磁结构等测量,包括在超薄氧化物薄膜异质结中测得了斯格明子并具有规模化特性;观测到具有平带结构中的长程铁磁序;在磁阻薄膜中实现了可控磁性莫尔条纹;确立了拓扑克尔效应作为磁斯格明子结构的新机制。验收专家组还听取了松山湖材料实验室冯稷研究员代表项目监理组的监理报告、合肥工业大学吴玉程教授代表仪器测试验收专家组的仪器测试报告、南京信息工程大学袁敏正高级经济师代表财务验收专家组的财务验收报告、中国科学院档案馆潘亚男研究馆员代表技术档案验收组的档案验收报告。其中仪器测试、财务、档案由基金委组织专家于7月24-26日顺利完成了分项验收。验收专家组和基金委相关领导现场考察了仪器设备运行情况。专家组对项目研制工作给予了高度评价,一致认为项目组全面完成了项目工作,评价结果为A。参加验收会的还有国家自然科学基金委工程与材料科学部副主任苗鸿雁、赖一楠,中国科学院科技基础能力局副局长卢方军、科技条件处副处长陈代谢,项目依托单位中国科学技术大学微尺度物质科学国家研究中心主任罗毅等。(合肥微尺度物质科学国家研究中心、科研部)
  • 国防军工行业:太赫兹,不再是黑科技
    太赫兹波技术-改变未来世界的十大技术之一。太赫兹波是人类迄今为止了解最少、开发最少的介于无线电波和光波之间一个波段。太赫兹波拥有低能量,宽频谱,强穿透,瞬态性等技术特点,在国防、国土安全、天文、医疗、生物、计算机、通信等科学领域有着巨大的应用价值。  太赫兹应用技术研究主要分为太赫兹波谱,成像,通信,军事等方向。  细分领域涉及基础科学研究,质量检测,医学成像,材料无损检测,安全检查,室内局域无线通信,高速局域网络通信,军事国土安全等。  高功率太赫兹辐射源,高灵敏度太赫兹波探测器,以及太赫兹波器件等关键组件是太赫兹波应用技术推广的基础。  国际太赫兹市场较为成熟,国内市场处于发展初期。国际太赫兹技术较为成熟,已经逐步进入产业化应用,国际市场高速扩容。全球太赫兹组件和系统的市场将从 2015年的5600万美元增加到2023年的4.15亿美元,2015-2023年复合增长率为25.9%。 (TransparencyMarketResearch)截止到2014年,组件方面,太赫兹源占据较大的市场份额。  系统方面,光谱系统占据最大市场份额。应用领域方面,非破坏性测试和研究实验室中的应用一起贡献了超过60%的市场应用。  我国处于太赫兹技术应用拓展初期,政策支持与研发成果落地有望带动相关产业。  太赫兹技术在国防军工和民用领域具有丰富的下游应用,国防军工领域主要涉及太赫兹雷达,爆炸物、毒气战剂和生物战剂的感测,军工通信(战术通信网,天基通信系统等),军用无损检测等。民用领域主要涉及人体安检,工业无损检测,生物医学(生化检测,医学成像,组织检测)等。  投资建议:我们建议短期内关注安检和无损检测方向,中期关注太赫兹通信,长期关注太赫兹全产业链化发展。中国电科国产化率达到90%的中国首台太赫兹安检仪研制成功,打破了国外垄断,填补国内空白,目前已经试点推广,随着使用范围进一步扩大,并带动安防安检上下游行业,未来将形成千亿规模。太赫兹波在无损检测非金属复合材料方面相比传统的工业手段有着明显的优势。无线通信带宽已经无法满足物联网迅速发展,无线载波必将进入太赫兹波谱范围,支撑物联网万亿市场规模。  太赫兹相关主要上市公司:四创电子(股东中国电科38所研发太赫兹人体安检仪),同方股份(子公司同方威视发展了在毫米波/太赫兹波领域业务-安检设备),华讯方舟(研发石墨烯太赫兹芯片,发展太赫兹成像和生物检测业务),大恒科技(太赫兹时域光谱仪),天瑞仪器(太赫兹波谱技术,液相色谱仪检测地沟油),聚光科技(太赫兹技术的地沟油快速检测仪合作研发单位),凤凰光学(太赫兹技术的地沟油快速检测仪合作研发单位),TCL(太赫兹通信)等。
  • 我国太赫兹研究领域的实验室概览(图)
    太赫兹波是指频率在0.1~10THz之间的电磁波,在电磁波谱上位于微波和红外线之间。是电磁波谱中唯一没有获得较全面研究并很好加以利用的最后一个波谱区间,是人类目前尚未完全开发的电磁波谱“空白”区。由于太赫兹波所处的特殊电磁波谱的位置,它有很多优越的特性,在材料分子的特殊光谱信息分析、材料与结构的无损探伤及三维层析、违禁物品反恐检查、生物组织的活体检查、高精度保密雷达、卫星间宽带通信等方面的研究,在天体物理学、等离子体物理学、光谱学、材料学、生物学、医学成像、环境科学、信息科学等领域有着广阔的应用前景。  太赫兹波有非常重要的学术和应用价值(有的已处于实用),使得全世界各国都给予极大的关注,美国、欧州和日本尤为重视。我国近年来对于太赫兹技术的研究也日益关注。在近日陆续公布的“2011年国家重大科学仪器开发专项”与“2011年国家重大科研仪器研制专项”中,其中由中科院紫金山天文台史生才研究员作为负责人主持申报的国家重大科研仪器设备研制专项——“太赫兹超导阵列成像系统”项目成功获批立项,资助总经费6000万元,研究期限5年。此外中国工程物理研究院申报的国家重大科学仪器开发专项——“相干强太赫兹源科学仪器设备开发项目”也成功获批立项。  仪器信息网编辑整理了目前国内从事太赫兹技术研究的实验室和研究中心,供读者对我国太赫兹技术的研究情况做一基本了解。  太赫兹光电子学省部共建教育部重点实验室  首都师范大学物理系太赫兹实验室于2001年正式成立。2006年正式批准为北京市“太赫兹波谱与成像”重点实验室。2007年获批太赫兹光电子学省部共建教育部重点实验室。该实验室是目前国内最好的太赫兹研究基地之一。2009年起始,太赫兹实验室正式获批中关村开放实验室,依托实验室现有条件和中关村地区科技资源的优势和作用,深化产学研之间的合作,正式为中关村2万多家注册企业提供相应的技术服务,联合进行关键技术攻关。  目前,实验室具有科研用房1500平方米,其中千级超净实验室2间,面积170平方米。科研仪器设备总值超过千万元。在过去的三年中,实验室共承担包括国家973计划、国家863、国家自然科学基金重大项目等各类项目23项,总科研经费1328余万元。  本实验室主要研究方向:1.太赫兹波谱研究 2.太赫兹成像研究 3.太赫兹与红外无损检测研究 4.太赫兹与物质相互作用。  山东科技大学太赫兹技术研究中心  山东科技大学太赫兹技术研究中心成立于2003年,由我国著名太赫兹专家刘盛纲院士担任中心主任,是山东省唯一的太赫兹科学与技术研究机构。  目前实验室拥有太赫兹源研究室、太赫兹时域光谱技术应用研究室和太赫兹器件开发研究室共三个研究室,实验室面积约500平方米,设备价值约300万元。拥有60m2的千级超净实验室,奥地利产半导体泵浦飞秒激光器,德国产808nm、30W半导体激光器,相干公司激光光束质量分析仪,Gentec公司激光功率计,泰克公司200MHz示波器,光学平台等研究设备,锁相放大器, Golay探测器,精密电移台等专用研究设备。  主要研究方向包括:基于光子学太赫兹辐射源的研究、太赫兹应用技术研究、太赫兹器件的研究。  超快光电子与太赫兹技术实验室  超快光电子与太赫兹技术实验室是一个集合光学,半导体物理学,微电子学,生物学等多学科交叉的实验室。主要涉及微电子制造、半导体工艺、生物医学检测、太阳能光伏、红外传感、超高频电磁波应用等领域。实验室依托于上海理工大学。主要研究人员有庄松林院士、朱亦鸣、许健等。  实验室目前已有1000级超净室180平方米,美国相干公司飞秒激光器一台,时域太赫兹波谱测试系统一套,AFM原子力显微镜一台, SEM扫描电子显微镜一台,半导体参量测试仪一台,积分球光谱测试系统一套,磁共溅射/离子束溅射镀膜机一台等大型设备。  实验室主要研究方向:1.应用全新的超快光学方法-时域太赫兹波谱法,进行半导体材料和器件内超快电子的检测 同时设计开发新型的半导体超快电子器件。2.利用太赫兹波对物质进行研究 如通过太赫兹波和生物分子的作用,来鉴别区分不同类型的中草药,毒品等 通过太赫兹波和液晶材料、半导体材料的相互作用,来研究材料本身的一些物理特性。3.超高频电磁通信和传输及其器件的开发。4.微纳结构硅基光伏材料(黑硅)的制备、检测 基于黑硅的光伏电池的优化组装 5.微纳结构金属材料的制备、检测 基于此类微纳结构金属材料的应用 6.表面等离子波导中电磁场微小频率变化的探测7.表面等离子波导中电磁场的古斯汉欣位移增强效应的研究。  中国计量学院太赫兹技术与应用研究所  中国计量学院太赫兹技术与应用研究所成立于2006年7月,属于校级研究所,研究所所长:为洪治博士。研究所获得了浙江省“重中之重”学科“仪器科学与技术”的资助。  现有实验室面积1000余平方米。拥有基于BWO(返波振荡器)的连续THz实验平台 锁模钛宝石激光器及相关测试设备 太赫兹波TDS系统等实验设备。  主要研究方向1.太赫兹波器件、传输与系统 2.太赫兹波成像、传感技术及应用 3.太赫兹波与生物分子相互作用机理及应用 4.太赫兹波谱材料特性测试及应用。  中科院太赫兹固态技术重点实验室  2011年3月28日,中科院太赫兹固态技术重点实验室揭牌仪式举行,该重点实验室的成立,加强了中科院太赫兹研究基地建设。实验室依托于中国科学院上海微系统与信息技术研究所。曹俊诚研究员担任实验室主任,田彤研究员担任实验室副主任,封松林研究员担任实验室学术委员会主任。  实验室主要围绕半导体固态太赫兹源、探测器及其在通信与成像等领域的应用,开展基于光子学和电子学的固态太赫兹器件物理与工艺、太赫兹器件与模块、太赫兹检测与成像以及太赫兹信息传输与通信等方面的基础和应用研究工作。  中物院太赫兹科学技术研究中心  2011年12月12日,中物院太赫兹科学技术研究中心正式成立,中心主任由电子工程研究所所长姚军代理。  中心主要围绕太赫兹物理理论、半导体太赫兹技术、电真空太赫兹技术以及太赫兹在通信、雷达、光谱学和成像中的应用开展研究。太赫兹研究中心目前成立了4个研究室,包括太赫兹总体和应用技术研究室、太赫兹理论研究室、太赫兹半导体器件研究室和电真空太赫兹技术研究室,依托各相关研究所开展工作,并计划在中物院成都科技创新基地建设太赫兹实验室。  此外目前国内高校中电子科技大学,天津大学,南京大学,中山大学,国防科大,上海交通大学,西安理工大学,深圳大学,南开大学,清华大学 北京航空航天大学 北京理工大学等都有太赫兹研究计划。  研究所方面:中国科学院物理所,紫金山天文台,西安光机所,中科院上海应用物理所,半导体所也有研究项目。
  • 零辐射太赫兹人体安检仪年内北京试运用
    前不久,成都双流机场“弱光子人体安检仪”引发轩然大波。经查,所谓“弱光子人体安检仪”实际采用的是X射线检测。因使用X射线人体安检设备对公众进行无差别安检扫描,不具备正当性,环保部于10月10日正式下文叫停使用该类安检设备。  据了解,今年年底春运期间,北京部分火车站或将试用一种没有辐射的太赫兹人体安检仪。  现状 人体安检有盲区 G20峰会启用人体安检仪  据了解,目前,我国公共场所的安检主要是针对行李物进行检测,采用的技术都是比较成熟的X射线检测技术 适用于人体的安检方式,除了人工手检外,就是金属探测门及手持探测器。而对金属之外的物品,并没有特别有效的检测技术。如何能兼顾人身安全与安检效率,成为公众关注的问题。实际上,国外已经出现了无辐射风险同时又能准确检测的新技术,即太赫兹人体安检技术。这类安检新技术,国内也已经从实验室走向应用。在今年的G20峰会上,就出现了我国自主研发生产的适用于人体安检的“被动式太赫兹人体安检仪”。  该类设备已经在国内多地完成场地实验。很快将会在一些火车站进行试点测试。安检仪样子  专家 新型太赫兹安检技术对人体无害  太赫兹波是什么?它对人体无害的科学原理是什么?未来它将如何影响世界?为此,记者采访了中科院院士、我国最早致力于太赫兹波研究的著名激光与非线性光学专家姚建铨。姚院士详细介绍了太赫兹波的特性及科学原理,以及未来的应用前景。  为了便于理解,姚院士还特意在纸上画了一张图,将目前人类已知的各种波段在上面标注。据他介绍,2004年,太赫兹技术首次被美国提出,并且美国政府将太赫兹技术评为 “改变未来世界的十大技术”之一 2005年,日本更是将其列为“国家支柱十大重点战略目标”之首,举全国之力进行研发。太赫兹,因此成为本世纪最为重要的新兴学科之一。  姚院士  “人类社会中存在声波、电磁波、震动波、伽马射线、X射线等各种各样的波。各种波频率有高低。声波的位置比较低,最高频的是伽马射线、X射线。太赫兹波在电子波段里不长不短,正好比光波要低一些,比声波和电磁波要高一些。”  姚院士解释说,太赫兹波之所以对人体无害,与其单光子能量低相关。太赫兹波在频谱图里的位置,位于微波和红外之间,其最大特点是单光子能量很低,仅仅相当于X射线单光子能量的1/124。姚院士说,由于它释放的能量很小,不会对人体产生有害的光致电离 而为什么伽马射线、X摄线对人体有一定的影响?因为它频率高,频率越高对人体的影响越大。所以说,安全性好,是太赫兹波的特性之一。也就是说,太赫兹波用于人体安检,无论主动式还是被动式,它对人体都是安全无害的。也正因为如此,世界上一些发达国家都在利用太赫兹技术在安检和安防领域。  其次,由于人体体温即可发射出太赫兹波,人体和物体之间的温度差,形成强弱不同的太赫兹波,机器接收后进行处理转换,最终实现探测成像 此外,太赫兹波对于某些电介质材料具有很强的穿透效果,除了可测量由材料吸收而反映的空间密度分布外,还可以通过相位测量得到折射率的空间分布,从而获得与材料相关的的更多信息。特别适合于可见光不能透过、而X射线成像的对比度又不够的场合。所以,利用太赫兹电磁波可检查机场通关的旅客与行李,检查邮件中是否藏有毒品、炭疽菌粉或炸弹等违禁物品。也就是说,利用太赫兹波不仅能检测成像,还可以检测物质成分,让毒品、爆炸物等无所遁形。可以预见,太赫兹技术未来将在反恐领域得到广泛应用。  另外,太赫兹和电磁波频谱中其它波段不一样,它几乎兼具通信、雷达和遥感测距等所有功能,而且每项应用的表现都比现有技术占优。因此,通信、军事、航天、生物诊断都是其大显身手的领域。  但是,姚院士也坦言,目前中国乃至全世界对于太赫兹波的了解还不是很深入,只是最近五年研究和应用的速度比较快。而民用方面,主要是在安全检测上。一些发达国家已经出现了太赫兹波人体安检仪,而我国也开始从实验室阶段进入到实际应用。今年,杭州举办的G20峰会期间,一种被称为“被动式太赫兹人体安检仪”的设备就已经投入测试使用。  进展 零辐射人体安检或春运期间北京试用  为了直观感受新型太赫兹人体安检设备的效果与效率,记者特意前往设立在北京亦庄锋创科技园的北京市科协院士专家工作站,现场观摩了在G20峰会期间使用过的被动式太赫兹人体安检仪的检测过程。  当随身携带金属刀、陶瓷刀、速溶奶茶、水、发胶等物品的被检人员,与没有携带物品的人员,依次从一台如银行ATM机般的机器前走过时,现场技术人员随即通过屏幕上人体图像的明暗对比,准确地排查出携带物品的可疑人员。 他介绍说,“今天演示的是双机对扫,人站在两台机器中间,这样就不用转身,大约3秒即可完成检测,非常便利。而且因为是非接触机器检查,避免了手检的尴尬和麻烦。”  据了解,检测是通过屏幕上明暗不同的成像效果来分辨人体是否携带异物。在演示现场,记者看到,一位携带陶瓷刀具的被检人员,其检测图像上能明显看出裤兜处阴影部分,技术人员说,阴影部分就是可疑物品,在实际安检中,这种情况会被要求做进一步人工安检   现场技术负责人赵光贞博士介绍,之所以该设备命名为“被动式太赫兹人体安检仪’,是相对于X射线和毫米波等主动式安检仪而言的。所谓主动式,都是由机器主动发射出光源穿透物体(或者反射回来),而被动式则是由机器被动接收人体发射出来的太赫兹波,本质上决定了“被动式太赫兹人体安检仪”是一种零辐射、零伤害的检测方式。“不同物品的温度不一样,利用温差,检测仪显示出不同颜色的呈像。”  另外,现场技术人员还告诉记者,被动式太赫兹人体安检仪还可实现动态检测,即对正在行进中的人进行扫描检测。据了解,动态扫描检测适用人流密集、安检级别高的场所,比如机场的旅客安检。但技术人员也告诉记者,这套设备虽然能实现动态检测,但是在动态模式下,成像的清晰度会受到一些影响。不过,让人期待的是,研发生产该仪器的航天十一院相关单位已经研发出第二代太赫兹人体安检设备,动态检测效果更佳。而且,新设备的示范应用点已经确定。将在今年春运期间完成测试应用。
  • 屹持光电提供高速线性太赫兹相机样机展示
    为满足广大用户在无损检测及质量控制等领域的需求,上海屹持光电将提供新型THz线性扫描成像系统样机展示,展示时间:2017年7月1日-2017年10月1日,欢迎业内各位专家前来参考指导! Terasense推出的新一代THz线性扫描成像系统——高速线性扫描太赫兹成像系统,搭配Type-2太赫兹源,成像效果得到显著提高。此太赫兹成像系统具有超快的响应速率,可以应用于速度高达15m/s的传送带生产过程中。(可参考视屹持官网频链接:新型线性扫描THz成像系统) 线性太赫兹成像系统由两部分构成:太赫兹线性相机和太赫兹源。新型太赫兹线性扫描系统搭配高功率太赫兹源(输出功率110mW),输出口配置有特殊的平板喇叭锥设计,经过曲面反射镜,使得太赫兹源发射出的THz光束均匀且有效的覆盖到THz相机的每个像素。100GHz(波长3mm)的太赫兹源决定了成像的空间分辨率为1.5mm,这个分辨率足够满足于大多数工业应用。 应用领域:高速线性THz成像系统可以应用于非金属材料的无损探伤、箱包检测、食品药品及化妆品等异物快速检测、木材建材缺陷快速检测、农牧业和文物等无损检测。 垂询电话:021-62209657,更多相关信息欢迎关注上海屹持官方网站了解详细信息: http://www.eachwave.com/
  • 中物院成立太赫兹科学技术研究中心
    12月12日,中物院太赫兹科学技术研究中心正式成立。国家科技部高新司、条财司,国家基金委数理学部,四川省科技厅和绵阳市政府领导,院领导及相关部门领导和专家参加了会议。  会议宣读了《关于组建中物院太赫兹科学技术研究中心的通知》、《关于成立中物院太赫兹科学技术研究中心管理委员会的通知》和《关于成立中物院太赫兹科学技术研究中心学术委员会的通知》,并向中心授牌。  太赫兹科学技术研究中心代理主任、电子工程研究所所长姚军代表中心在发言中,向给予中心成立和今后发展高度关心、支持和帮助的国家机关领导、院所各级领导和专家表示深深的感谢,并表示电子工程研究所作为中心挂靠单位,一定会为中心提供优质的保障与服务,确保中心的高效运行和健康发展。  国家科技部高新司胡世辉副司长在讲话中指出,中心的成立要以国家的重大需求为牵引,围绕国家目标加强顶层设计,加强重大科学问题和重大应用问题研究 希望中心创新管理体制和运行机制,能够以更加开放合作的姿态来开展研究,特别要加强产学研的合作,加强国际合作和交流,为国内太赫兹研究搭建良好的创新平台。  国家基金委数理学部物理一处张守著处长在讲话中表示,中心的成立对推动我国太赫兹研究将发挥重大的作用,基金委也将积极支持这方面的研究工作。  院长赵宪庚在总结讲话中指出,中心的成立对我院“三元”发展战略具有重要意义,同时就中心在研究重点和发展方向、创新管理体制机制、加强人才队伍建设和太赫兹实验室建设等方面提出建议。并表示在上级机关的正确领导下,中心要不断突破关键技术,为我国太赫兹科学技术的发展与应用做出应有的贡献。  中心副主任张健研究员在会上作了《中物院太赫兹研究进展和发展设想》的报告,向与会者介绍了院太赫兹发展定位与总体目标、研究进展和发展设想。  会后,国家科技部和国家基金委等领导和来宾参观了太赫兹通信和雷达系统、太赫兹半导体器件和微纳电真空器件,太赫兹自由电子激光器和电真空器件,太赫兹量子级联激光器,太赫兹时域光谱系统等研制情况。  【中国工程物理研究院太赫兹科学技术研究中心简介】  为推动太赫兹科学技术研究,中国工程物理研究院2011年成立了太赫兹科学技术研究中心,简称“中物院太赫兹研究中心”(TerahertzResearchCenter,THZRC)。中心实行院管委会领导下的首席科学家负责制,管委会主任由院主管副院长担任,中心主任由首席科学家兼任。中心主要围绕太赫兹物理理论、半导体太赫兹技术、电真空太赫兹技术以及太赫兹在通信、雷达、光谱学和成像中的应用开展研究。太赫兹研究中心目前成立了4个研究室,包括太赫兹总体和应用技术研究室、太赫兹理论研究室、太赫兹半导体器件研究室和电真空太赫兹技术研究室,依托各相关研究所开展工作,并计划在中物院成都科技创新基地建设太赫兹实验室。2011年经中国科协批准成立的中国兵工学会太赫兹应用技术专委会挂靠中物院电子工程研究所和该中心。中心依托中物院无线电物理、光学、通信与信息系统、物理电子学等研究生学位点招收博士、硕士研究生以及接收博士后进站研究。  中物院在太赫兹通信、雷达、固态电子学器件、RF-MEMS器件、微纳电真空器件、大功率电真空器件、自由电子激光器、量子级联激光器、超宽谱太赫兹源、光谱成像与检测等方面开展了研究,并取得一系列重要成果。2005年,研制出我国第一个2.6THz可调谐相干自由电子激光太赫兹源,被评为2005年度中国基础研究十大新闻 2010年,基于固态电子学研制出我国第一个0.14THz/10Gbps无线通信传输样机系统(软件解调)并完成0.5km无线传输试验,2011年进一步研究了0.14THz/2Gbps的16QAM无线通信实时硬件解调器并完成1.5km无线传输试验 2011年,研制出我国第一个0.14THz高分辨率ISAR雷达成像演示系统,实现了分辨率优于5cm的二维实时成像 同时,在0.3THz以上的太赫兹固态电子器件与电真空器件、量子级联激光器、太赫兹科学仪器等方面也取得重要进展。  中物院太赫兹研究中心将以国家和社会需求为牵引,以推动太赫兹科学技术发展为目标,扩大开放融合,加强体制创新,主动融入国家科技创新体系,与国内外同行紧密合作,把中心建成科研实验设施先进、特色鲜明、机制灵活、国际一流的开放型太赫兹科学技术研究中心。
  • 通知|太赫兹光谱与测试应用研讨会 暨“太赫兹光谱与测试工作组”成立大会 邀请函
    p style="text-align: justify text-indent: 2em "strong太赫兹电磁波段具有频谱资源丰富、穿透性强等特点。/strong随着太赫兹科学技术研究的不断发展,技术应用需求市场正在形成,其中尤为突出的是对于太赫兹光谱技术应用需求。太赫兹光谱检测与成像技术作为太赫兹领域的基础技术,strong正在食品安全、公共安全、材料科学及生物技术领域显示出其独特的优势和广阔的应用前景/strong。/pp style="text-align: justify text-indent: 2em "在多家科研机构与相关企业的努力下,strong毫米波太赫兹产业发展联盟拟成立“太赫兹光谱与测试工作组”/strong,将会对太赫兹光谱技术的应用及其标准化工作产生非常积极的影响,并促进加快太赫兹光谱检测应用的发展,填补我国太赫兹频段物质光谱与材料电磁特性数据库的空白。为了进一步推进太赫兹光谱与测试应用的相关工作,加快服务平台建设,strong联盟将于2020年1月12日举办“太赫兹光谱与测试应用研讨会”暨“太赫兹光谱与测试工作组”成立大会,旨在分享科研成果,加强企业交流,探讨产业发展道路。/strong欢迎各位联盟成员积极参与,献言献策,共同推进太赫兹产业发展。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/55c27dd3-a921-420e-9149-f3c3928176fe.jpg" title="捕获1.JPG" alt="捕获1.JPG"//pp style="text-align: center text-indent: 0em "span style="font-family: 黑体, SimHei font-size: 24px "strong大会组织/strong/span/pp style="text-align: justify text-indent: 2em "strong主办单位/strong:毫米波太赫兹产业发展联盟/pp style="text-align: justify text-indent: 2em "strong承办单位:/strong莱仪特太赫兹(天津)科技有限公司/pp style="text-align: justify text-indent: 2em "strong协办单位:/strong爱德万测试(中国)管理有限公司 中国科学院上海微系统与信息技术研究所 天津大学精密仪器与光电子工程学院/pp style="text-align: justify text-indent: 2em "strong支持媒体:/strong仪器信息网/pp style="text-align: center text-indent: 0em "span style="font-family: 黑体, SimHei font-size: 24px "strong大会信息/strong/span/pp style="text-align: justify text-indent: 2em "strong会议规模:/strong120人/pp style="text-align: justify text-indent: 2em "strong时间:/strong2020年1月12日 13:30-17:40/pp style="text-align: justify text-indent: 2em "strong地点:/strong天津高新区党群活动中心三层会议大厅举行(天津市西青区海泰发展三道8号)/pp style="text-align: justify text-indent: 2em "strong会议签到:/strong13:00-13:30,三层会议大厅走廊/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 633px height: 546px " src="https://img1.17img.cn/17img/images/201912/uepic/93942039-2a47-4988-acab-22f423d5b644.jpg" title="捕获2.JPG" alt="捕获2.JPG" width="633" height="546"//pp style="text-align: center text-indent: 0em "span style="font-size: 24px "strongspan style="font-family: 黑体, SimHei "报名方式/span/strong/span/pp style="text-align: justify text-indent: 2em "如您需要报名,请扫描下方二维码,填写报名信息,期待您的到来!/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 194px height: 197px " src="https://img1.17img.cn/17img/images/201912/uepic/89c5de2e-48e4-4e9e-a3b6-675b1c6e2800.jpg" title="捕获.JPG" alt="捕获.JPG" width="194" height="197"//pp style="text-align: center "span style="text-indent: 0em "扫描二维码,填写报名信息/span/pp style="text-align: center text-indent: 0em "span style="font-family: 黑体, SimHei font-size: 24px "strong会议赞助/strong/span/pp style="text-align: justify text-indent: 2em "本次研讨会的会场外侧具有上百平米的展示区域,strong赞助单位/strong可展示易拉宝、产品、宣传手册等,感兴趣的单位请与strong联盟/strong(下方主办单位)取得联系。/pp style="text-align: justify text-indent: 2em "strong联系方式/strong/pp style="text-align: justify text-indent: 2em "主办单位:毫米波太赫兹产业发展联盟/pp style="text-align: justify text-indent: 2em "联系人:王贺娟/pp style="text-align: justify text-indent: 2em "联系方式:17810282650/pp style="text-align: justify text-indent: 2em "微信公众号:毫米波太赫兹产业发展联盟/pp style="text-align: justify text-indent: 2em "邮箱:service@chinamta.org.cn/ppbr//pp style="text-align: justify text-indent: 2em "strong承办单位:莱仪特太赫兹(天津)科技有限公司/strong/pp style="text-align: justify text-indent: 2em "联系人:崔鹤峰/pp style="text-align: justify text-indent: 2em "联系方式:13672188587/pp style="text-align: justify text-indent: 2em "微信公众号:莱仪特太赫兹 /pp style="text-align: justify text-indent: 2em "邮箱:let@letthz.onaliyun.com/pp style="text-align: justify text-indent: 2em "br//pp style="text-align: justify text-indent: 2em "strong关于毫米波太赫兹产业发展联盟(附入会指南及申请表)/strong/pp style="text-align: justify text-indent: 2em "毫米波太赫兹产业发展联盟(下文简称:联盟)于 2019 年 4 月 26 日上午在京成立,其宗旨是加快我国毫米波太赫兹产业发展,搭建产业协作与孵化平台,充分运用政用产学研,提高产业创新能力,提升我国在通信、自动驾驶、航空航天、安全防护、生物医学、工业互联网等应用领域的技术水平与产业化能力。在政府、产业界、学术界之间发挥桥梁和纽带作用,分享学术界的科研成果,对接企业需求解决实际问题,实现毫米波太赫兹产业创新发展。/pp style="line-height: 16px text-indent: 2em "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/201912/attachment/e81299b1-fd2d-4fc1-b803-5ff83253195d.pdf" title="指南 毫米波太赫兹产业发展联盟入会指南.pdf"指南 毫米波太赫兹产业发展联盟入会指南.pdf/a/pp style="line-height: 16px text-indent: 2em "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/201912/attachment/3ad5e21e-d5a3-4fc7-858e-9a0e1619cf8c.docx" title="申请表 毫米波太赫兹产业发展联盟.docx"申请表 毫米波太赫兹产业发展联盟.docx/a/p
  • 中国参加国际太赫兹功率比对 响应度超过美德
    世界上第一个太赫兹波段的行波光管放大器。  日前,国际首次太赫兹功率比对在德国柏林举行,参加比对的德、美、中3国的国家计量院采用不同的技术路线,取得的测量结果都能相互吻合。其中,中国计量院参加比对的太赫兹辐射计测量不确定度最小、响应度最高,标志着我国太赫兹辐射功率计量能力步入国际领先行列。  太赫兹介于红外和微波频段之间,是连接电子学和光子学的桥梁,在信息科学、材料科学、生物化学等许多领域具有重要应用价值和重大应用潜力。由于缺乏有效的测量方法和测量仪器,人们对于该频段的辐射特性了解甚少。随着太赫兹技术的发展和广泛应用,太赫兹辐射源、太赫兹探测器、太赫兹测量系统大量涌入市场。在高速宽带通信、功能材料研制、生物医学成像、机场港口安检、地沟油检测、危险化学品监测预警等许多领域的应用日益广泛。然而国际上缺少太赫兹相关参数测量标准,导致太赫兹产品的特性难以客观准确评估,无法科学评估并保障太赫兹研究和应用的有效性。  为解决这一问题,先进国家的计量院相继开展此方面的研究。如德国联邦物理技术研究院(PTB)利用低温辐射计率先实现了太赫兹功率溯源至国际单位制 美国标准技术研究院(NIST)利用碳纳米管作为吸收体实现了太赫兹辐射功率的测量 中国计量院利用自主研制发明的一种太赫兹超强吸收材料实现了太赫兹辐射功率的绝对测量和量值溯源。  为保障太赫兹计量量值准确可靠,2013年,德、美、中3国的国家计量院共同商定了比对方案和进程,对参比国家实验室提出了资格要求。以国际正式论文作为证明,经筛查后有4国的国家计量院符合参加条件,最终有能力参加比对的实验室仅有美国NIST、中国NIM和德国PTB3家,其中PTB为主导实验室。  中国计量院参比负责人、激光室副主任邓玉强博士介绍说,此次比对规定在2.52THz和0.762THz两个频率点下进行,3国参比实验室分别采用互不相同的技术路线复现量值,在同一地点一起进行现场实验测量。最终比对结果表明,3国的现场测量结果都能相互吻合,等效一致。中国计量院在比对的两个频率点均以最小的测量不确定度取得国际等效。  中国计量院参加此次国际比对所采用的太赫兹辐射计及其关键部件均由邓玉强和孙青2位副研究员自主研制发明,其中,太赫兹辐射计吸收材料的吸收带宽和吸收率均为目前国际最高水平,可实现100GHz到可见光波段辐射功率的高准确度测量,且响应光谱平坦。在PTB实验室的现场测量中,该太赫兹辐射计表现出卓越的性能,具有良好的重复性、稳定性和信噪比,非线性仅为0.4%,被德国国家计量院太赫兹辐射度实验室主任AndreasSteiger博士誉为&ldquo 具有德国产品的质量&rdquo 。  据了解,此次为国际首次太赫兹功率比对,被国际光度辐射度咨询委员会(CCPR)关键量比对工作组主席YoshiOhno博士认为是&ldquo 太赫兹计量领域的重大里程碑&rdquo ,将对今后的太赫兹科学研究和太赫兹技术推广应用起到积极的推进作用。配备太赫兹量子级联激光器的纳米线探测器。  太赫兹量子级联激光器的研制难度大,对结构设计、材料生长和器件工艺均有很高的要求。  近日科学家们研发的一种能够检测光波的最新设备或能帮助打开电磁光谱的最后边界&mdash &mdash 太赫兹(Terahertz)光谱。
  • 首个可弯曲、可穿戴太赫兹扫描仪问世
    碳纳米管制成的可弯曲太赫兹扫描装置  据美国电气与电子工程师协会(IEEE)网站14日报道,日本东京工业大学川野由纪夫(音译)和同事利用碳纳米管研发出首个可移动、可弯曲、可穿戴的太赫兹扫描仪,能对包括人体在内的三维卷曲物体进行成像检测。相关研究细节发表在《自然光学》杂志网络版上。  太赫兹射线对应的频率范围在电磁光谱的红外和微波之间,能穿透几乎各种材料且不会造成损害,因此,太赫兹摄像头在非侵入性高分辨率成像领域运用潜力广泛,可检测暗藏的武器、识别爆炸物及检查机械部件缺损等。  但传统太赫兹成像技术用不可弯曲的材料制成,只适用于检测平面样本,难以对大多数三维卷曲结构进行扫描,很多安检场所使用的太赫兹扫描仪需旋转360° 才能拍摄到人体各个角度,这使得安检系统体积过于庞大。  川野和同事利用碳纳米管薄膜设计研制出的首个可弯曲太赫兹成像装置,能在室温下探测到频率在0.14到39太赫兹范围内的所有射线,并且可包裹起来方便携带。利用这种成像仪,他们成功检测出隐藏在多张纸下的纸屑和锗盘堆中的金属线圈,并找出塑料盒内潜藏的一块口香糖。他们还识别出塑料瓶内的金属杂质和注射器上的细微裂口。上述结果表明,新太赫兹扫描仪可用在工业企业中对非平面产品如塑料瓶和药品进行快速和多角度检测。  另外,他们开发出可穿戴扫描仪并成功检测到人手发出的太赫兹射线。川野认为,不需外来太赫兹射线就能给一只手成像,是太赫兹扫描仪向医学运用迈出的重要一步,未来可用来检测癌细胞、汗腺和虫牙等各种健康问题,实时监控自身日常健康状况。  川野表示,接下来他们会将这些新太赫兹成像仪和信号识别电路与无线通信装置一起集成到单个芯片上,从而开发出高速太赫兹监控系统。之后会启动实时医用监控设备的开发工作。
  • 太赫兹无损检测技术及应用
    1. 太赫兹技术太赫兹(Terahertz,THz)又称远红外波,被评为“改变未来世界的十大技术”之一,其频率位于0.1 THz至10 THz,如图1所示。从能量辐射角度,太赫兹辐射能量介于电子与光子之间,在无线电领域被称为亚毫米波,在光学领域通常被命名为远红外辐射。太赫兹波段两侧的微波与红外波段技术研究已经非常成熟,且得到了广泛应用。然而,由于太赫兹源的功率强度和太赫兹接收器的探测灵敏度落后于邻近的微波和红外波段,一定程度上限制了太赫兹技术发展,使得该频段很长一段时间被称为“太赫兹间隙”。从本世纪八十年代中期以来,伴随着物理学超快激光技术的发展,太赫兹源越来越强大,探测器也越来越灵敏,太赫兹技术得以迅猛发展。太赫兹时域光谱技术、太赫兹成像技术以及利用非线性效应产生大功率太赫兹是其中为数不多的重大突破,将太赫兹研究推向了中心舞台。太赫兹技术在无极性非金属材料检测方面明显优于传统方法,而且比其他方法有更高的时间分辨率,极大促进了太赫兹技术在无损检测领域应用。图1 THz波频谱分布2. 太赫兹时域光谱系统依据太赫兹波源类型差异,太赫兹检测技术可分为脉冲型和连续型。连续型太赫兹成像系统效率较高,但其频谱宽度较窄且缺乏时间信息。这促使脉冲型太赫兹时域光谱(Terahertz-time domain spectroscopy, THz-TDS)技术成为无损检测与分析领域的“舞台新星”。该技术具有以下独特优点:(1)相干性:由于光电导与光整流产生太赫兹脉冲的独特机制,使得其单色性较好,具有极强时间与空间相干性,太赫兹脉冲的相干长度甚至可以达到ns量级。这一特性使太赫兹相干测量技术得以实现。(2)强穿透性:太赫兹的穿透性与物质的颜色等物理性质无关,仅仅取决于物质的极性,太赫兹无法透过极性物质,而对于纸张、陶瓷以及涂层等非极性材料,太赫兹对绝大部分非极性物质具有极强的穿透性,其透过非极性物质时能量衰减极小。(3)低能性:相较于物质中各种化学键的键能,1 THz单光子能量远低于键能,一般仅仅为4.1 meV,不会引起物质发生电离作用,也就不会导致被测物质损伤,从而保证了该技术的安全性。(4)瞬态性:太赫兹脉冲时间宽度通常仅为皮秒量级,甚至能达到亚皮秒量级,可以用于材料的超快过程研究。(5)特征指纹性:脉冲太赫兹辐射的频谱范围从数百GHz到几THz,而许多生物大分子的振动和转动能级、以及半导体和超导材料的声子振动能级均落在太赫兹频段。分子振动和转动能级在太赫兹频段往往具有独特的吸收峰,这种独特的吸收特性使得每种物质拥有独一无二的指纹吸收谱。因此,特征指纹性使得太赫兹技术在光谱分析和物质识别等方面具有得天独厚的优势和广阔的应用前景。太赫兹时域光谱系统检测原理,如图2所示。图2 太赫兹时域光谱系统原理飞秒脉冲激光器产生飞秒脉冲激光,脉冲激光在光纤中传输会产生色散、偏振以及非线性效应等,这些现象均会对脉冲品质产生不利影响。在光纤中传输后的飞秒脉冲激光首先需要进行色散补偿,再由偏振分束镜将飞秒激光分为探测光和泵浦光两束,探测光将会直接照射在用于探测的光电导天线上,另一束泵浦光先汇聚在太赫兹发射器上并通过光电导天线两侧的偏置电压产生THz脉冲。最后用准直透镜和非球面聚焦透镜对THz脉冲聚焦后,将THz脉冲准直聚焦照射在待测样品上,携带样品信息的THz信号再次经过分束器的反射后返回太赫兹探测器,光电导天线检测器上的探测光通过测量THz电场的变化来获得微弱的电流信号,该电流信号经过锁相放大等操作后转化为THz时域信号波形,最后计算机通过A/D转换器等效采样收集获得样品的THz检测信号。3. 太赫兹无损检测技术研究进展由于太赫兹技术的安全性、高分辨率和无接触非破环性等优点,在无损检测领域备受关注,该技术在检测领域主要可分为以下两个方面:(1)缺陷成像太赫兹(Terahertz, THz)成像技术在许多领域被视为最前沿技术之一,在无损检测中取得了巨大进步。中国矿业大学范孟豹教授课题组在THz成像取得了相关研究进展。2020年,该团队基于时域有限差分数值模型模拟了热障涂层不同脱粘缺陷情况下的太赫兹信号,基于支持向量机方法实现了缺陷自动辨识。同年,发表了太赫兹成像技术进展综述论文。2021年,团队分析了太赫兹图像乘性噪声产生机理,提出基于同态滤波的THz图像增强模型,消除了太赫兹图像局部伪影,提高了图像的边缘强度。同年,课题组结合蜂窝材料纹理提出了新型滤波算子,称为苯环算子,消除了边缘与高斯-泊松噪声在高频混叠现象,提高成像质量。同时,撰写了THz超分辨率成像系统与信号处理技术综述论文。图3 苯环算子去噪方法(2)参数检测参数测量是表征材料服役与状态关键一环,在无损检测行业中备受关注。White首次使用反射式THz时域光谱系统对热障涂层厚度进行检测,但在其研究中取热障涂层折射率为固定经验值,并不能适用不同制备工艺条件和所有服役工况下的热障涂层;Fukuchi提出定位THz反射信号的三个反射峰,通过朗伯比尔定理获得了热障涂层的折射率,该方法需要THz信号的反射峰,不适应于薄涂层与多层结构的涂层。Krimi等人利用广义的Rouard模型来模拟任意多层薄膜内的太赫兹波与物质的相互作用,然而其使用的遗传优化算法存在收敛速度慢、控制变量较多等问题。近年来,随着人工智能方法快速,发展太赫兹与机器学习相结合参数测量方法应用广泛。中国矿业大学范孟豹教授课题组在参数测量方面取得了相关研究进展。2020年,范孟豹教授团队构建了多层涂层太赫兹信号解析模型,提出了基于全局优化算法减小实验与仿真信号间残差,反演出涂层厚度与折射率参数。2021年,课题组提出了差分进化自适应教与学优化算法,平衡全局与局部寻优能力,准确求解出热障涂层材料参数。同年,课题组针对Fuhucki方法需要手动定位反射的问题,提出了将长短时记忆神经网络与太赫兹技术相结合,完成了时域信号中多反射峰自动定位,实现热障涂层厚度与折射率在线测量。2022年,团队从THz参数测量机理出发,分析出折射率测量需要频域信息,据此开展了小波时频研究,并基于卷积神经网络建立了时频图与厚度、折射率间数学映射。同年,团队提出了全新的THz参数测量视角,深入探究了THz波与热障涂层间作用机理,发现了THz信号前两反射峰携带了测厚关键信息,阐述了实验与仿真信号在峰值处吻合度高的原因。据此,提出了基于模型驱动的THzResNet网络新结构,形成了可解释网络框架,最终实验结果表明THzResNet能够准确预测出热障涂层厚度,测量误差小于1%。图4 多反射峰自动定位方法图5 THzResNet新结构4. 总结随着材料科学技术进步,非金属材料应用逐渐广泛,使得具有非接触、非电离、波长短等优点太赫兹技术必将成为无损检测行业新星,解决缺陷成像与光学参数测量的行业痛点问题。作者简介范孟豹,博士,教授,博士研究生导师,机器人工程系主任,专业负责人,入选江苏省六大人才高峰资助计划。2009年6月毕业于浙江大学控制科学与工程专业,获工学博士学位,2015年1月至2016年1月在英国Newcastle University大学做访问学者。主要研究方向为智能机器人感知理论及应用研究。作为项目负责人,主持国家自然基金项目3项、JKW基础加强项目子课题、“863”计划子课题、江苏省自然科学基金面上项目、高等学校博士学科点专项科研基金新教师项目、国家博士后科学基金特别资助项目、国家博士后科学基金面上项目等项目,承担各类项目近30项。在国内外期刊及学术会议上发表SCI收录论文50余篇、EI收录10余篇。申请国家发明专利40余项,授权发明专利25项,出版专著1部。获国家安全生产监督管理总局科技进步一等奖、浙江省科技进步三等奖、中国腐蚀与防护学会一等奖等省部级奖励3项。担任科技部重点研发项目评审专家、教育部和浙江省科技奖励评审专家、国家自然科学基金项目函评专家、重庆与江西省基金项目评审专家,担任IEEE Transactions on Industrial Informatics、IEEE Transactions on Industrial Electronics、Mechanical Systems and Signal Processing、IEEE Transactions on Instrumentation and Measurement、NDT&E International、Measurement、IEEE Sensors Journal、机械工程学报、中国机械工程等30多个期刊审稿人。欢迎对太赫兹检测技术有兴趣的同行通过邮件联系:wuzhi3495@cumt.edu.cn。近三年课题组与太赫兹检测技术相关的学术论文:(1) 参数测量[1] Binghua Cao, Mengyun Wang, Xiaohan Li, Mengbao Fan, et al. Accurate thickness measurement of multilayer coatings on metallic substrate using pulsed terahertz technology. IEEE Sensors Journal, 2020, 20(6): 3162-3171.[2] Fengshan Sun, Mengbao Fan, Binghua Cao, et al. Terahertz based thickness measurement of thermal barrier coatings using long short-term memory networks and local extrema[J]. IEEE Transactions on Industrial Informatics, 2022, 18(4): 2508-2517.[3] Fengshan Sun, Mengbao Fan, Binghua Cao, et al. THzResNet: A physics-inspired two-stream residual network for thermal barrier coating thickness measurement [J]. IEEE Transactions on Industrial Informatics, 2022, Early Access.[4] 孙凤山, 范孟豹, 曹丙花, 等. 基于时频关键信息融合的热障涂层太赫兹准确测厚方法. 机械工程学报, 2022. (录用).[5] 曹丙花, 郑德栋, 范孟豹, 孙凤山, 等. 基于太赫兹时域光谱技术的多层涂层高效可靠测厚方法[J]. 光学学报, 2022, 42(01): 127-137.(2) 缺陷成像[1] Binghua Cao, Enze Cai, Mengbao Fan. NDE of Discontinuities in thermal barrier coatings with terahertz time-domain spectroscopy and machine learning classifiers[J]. Materials Evaluation, 2021, 79(2) :125-135.[2] 曹丙花, 李素珍, 蔡恩泽, 范孟豹, 淦方鑫.太赫兹成像技术的进展[J]. 光谱学与光谱分析, 2020, 40(09): 2686-2695.[3] 曹丙花, 张宇盟, 范孟豹, 孙凤山, 等. 太赫兹超分辨率成像研究进展[J]. 中国光学, 2022, 15(03): 405-417.[4] 孙凤山, 范孟豹, 曹丙花, 等. 基于几何纹理与Anscombe变换的蜂窝材料太赫兹图像降噪模型[J]. 机械工程学报, 2021, 57(22): 96-105.[5] 孙凤山, 范孟豹, 曹丙花, 等. 基于混沌映射与差分进化自适应教与学优化算法的太赫兹图像增强模型[J]. 仪器仪表学报, 2021, 42(04): 92-101.
  • 太赫兹成像微芯片可探测物质内部信息
    一位特工正在和时间赛跑,他知道炸弹就在周围。他跑到一个拐角,发现小巷内堆满了可疑的纸箱。他急忙掏出手机,快速地逐个扫描面前的箱子,包装内的物品一一展现。千钧一发之际,手机屏幕上出现了爆炸装置的轮廓,形势瞬间扭转,待爆炸装置运行中止时,他才长出了一口气。  看起来像是电影情节?但这一幕却很有可能成为现实,而这要得益于美国加州理工学院工程师们开发出的一种低成本的微小硅芯片。这种成像芯片能够产生并发射出高频的电磁波,即太赫兹(THz)波。当它处于尚未被完全开发的电磁光谱区域,介于微波和远红外辐射之间,能够渗透多种材料,却不会出现X射线的电离损伤。  在扫描和成像领域应用潜力大  把这种新型微芯片整合进手持设备中,能够应用于国家安全、无线通信、医疗保健甚至非接触式游戏研发等多个方向。未来,这一技术还有望为非侵入式的癌症诊断提供帮助。相关研究报告发表在最新一期的电气电子工程师学会(IEEE)《固态电路杂志》上。  该校的电气工程系教授阿力· 哈基姆瑞说:&ldquo 利用与制造现今手机微芯片同样成本低廉的集成电路技术,我们研发出了比它们运行速度快300倍的硅芯片。这些芯片将为制造下一代十分多能的传感器奠定基础。&rdquo   频率从0.3THz到3THz的太赫兹波,具有在扫描和成像等领域的应用潜力。这些电磁波能轻易渗透包装材料,使得探测材料内部信息成为可能。例如,陶瓷、硬纸板和塑料制品等对太赫兹电磁辐射而言就是透明的,因此太赫兹波可以作为X射线的非电离和相干的互补辐射源,用于机场、车站等地的安全监测,比如探查枪械、生物武器、爆炸物和毒品等隐藏的非法物品。然而现有的太赫兹设备多为笨重而昂贵的激光装置,有时甚至需要处于低温环境。而技术的匮乏,也使太赫兹成像和扫描的发展停滞不前。  为了实现太赫兹波在这一领域的应用,哈基姆瑞和考西克· 森古普塔使用了互补金属氧化物半导体,即通常会被用于电子设备芯片制造中的CMOS技术,来设计具有全面集成功能的、可在太赫兹频率运行的硅芯片,而其尺寸只有指尖大小。研究人员表示,这使太赫兹波成像成为了可能。新芯片能够激发比现有途径强劲1000倍的信号,而发出的太赫兹信号能在特定方向被动态程控,使它们成为世界上第一个集成的太赫兹扫描阵列。借助这种扫描装置,研究人员能够发现藏在塑料制品中的剃须刀片,或者确定动物组织中脂肪和肌肉的分布,诊断人体烧伤部位的损伤程度,以及植物叶片组织的水分含量分布等。而太赫兹成像技术与其他波段的成像技术相比,所得到探测图像的分辨率和景深也均有明显提高。&ldquo 这并不是在谈这项技术的潜能,而是切实地展现出它的实际效用。第一次看到太赫兹扫描图像时,我们都屏住了呼吸。&rdquo 哈基姆瑞说。  新研究克服了诸多技术限制  事实上,研究小组克服了诸多技术限制,才将CMOS技术转变成了可运行的太赫兹芯片。每个晶体管都具有一个截止频率,在这一频率之上信号放大就无法实现,而标准的晶体管亦不能在太赫兹频率放大信号。为了解决截止频率的难题,科学家尝试令多个晶体管一起工作。在正确的频率和时间结合它们的力量,来促进集体信号的强度提升。借助新的晶体管操作方法,可使晶体管保持在截止频率之上40%至50%,并能产生较大的功率。&ldquo 就像一群蚂蚁联合起来,也能做到大象所能做到的事情,而且不止于此。&rdquo 森古普塔解释说。  科研人员还解决了太赫兹信号的发射和传输。在如此高的频率下,无法按常理使用导线,而传统的天线在微芯片尺寸效率也很低下。因此,科学家将整个硅芯片当作天线,集成了芯片上的金属部分,在特定的时间和强度一起发射信号。整个解决方案囊括了集成电路、天线、电磁学和应用科学等多领域的创新,可谓十分全面。此外,IBM公司亦有助于此次的芯片制造。
  • 2023年全球太赫兹组件和系统市场将达4.15亿美元
    Transparency Market Research最近的一份市场研究报告显示, 2014年,全球太赫兹组件和系统的市场规模为5600万美元,预计2023年该市场将达4.15亿美元,2015年-2023年之间复合年增长率为25.9%。  太赫兹技术在各种工业过程控制监控和质量控制过程中的应用等将刺激全球市场需求的增长。此外, 太赫兹设备在研究实验室中应用的增加也是推动这一市场增长的主要因素。太赫兹技术的进步和太赫兹组件在非破坏性测试和医学成像方面日益增长的使用等都将有望推动该市场的增长。  从组件方面来说,该市场可以划分为太赫兹源、太赫兹探测器等。截至2014年,太赫兹源占据最大的市场份额。不同应用领域中对高性能太赫兹源不断增长的需求正在推动这部分市场的增长 在系统方面,该市场可以划分为太赫兹光谱、太赫兹雷达和太赫兹遥感。此外,基于光谱学的系统还可以进一步被划分为时域光谱、频域光谱和成像扫描。截至2014年,光谱学系统占据最大的市场份额 在应用方面,该市场可以划分为工业过程控制、研究实验室应用、医学成像、非破坏性测试等。截至2014年,非破坏性测试是最具吸引力的部分,其次是在研究实验室的应用。2014年,非破坏性测试和研究实验室中的应用一起贡献了超过60%的市场份额 从地理位置上来说,截至2014年,北美市场占最大的份额。太赫兹技术在生物学和医学科学中应用的增加是推动市场增长的一个因素。此外,过程改进中对材料的检查和测试是太赫兹技术在欧洲和亚太地区的主要应用领域。  这个市场的一些主要厂商有Advantest Corporation (日本),Digital Barriers PLC (英国),Applied Research & Photonics(美国),EMCORE(美国),Teraview(英国),Bruker(美国),M Squared Lasers (英国),NEC(日本),Menlo Systems GmbH (德国),Techcomp Group (香港),Bridge12 Technologies(美国)和Microtech Instruments (美国)等。
  • 科学岛团队研发出一种光控太赫兹相位调制器
    近日,中科院合肥研究院强磁场中心磁光团队成功研发了一种主动的太赫兹相位调制器。相关研究成果发表在ACS Applied Electronic Materials 国际期刊上。   虽然具有优越的波谱特性和广泛的应用前景,太赫兹技术的工程应用还严重受制于太赫兹材料与太赫兹元器件的开发。为了满足不同的应用要求,太赫兹调制器件成为这一领域的研究重点。   强磁场中心磁光团队聚焦太赫兹核心元器件这一前沿研究方向,继2018年发明一种基于二维材料石墨烯的太赫兹应力调制器【Adv. Optical Mater. 6, 1700877(2018)】、2020年发明一种基于强关联氧化物的太赫兹宽带光控调制器【ACS Appl. Mater. Inter.12, 48811(2020)】、2022年发明一种基于关联电子材料的主动、智能化太赫兹电光调制器【ACS Appl. Mater. Inter. 14, 26923-26930, (2022)】之后,与固体所苏付海团队合作,经过大量材料筛选与技术探索,发现氧化物晶体NdGaO3可以使太赫兹发生明显相位移动。研究结果表明,NdGaO3晶体在100-400K下可以实现~94°的相位移动,相位移动大小几乎线性依赖于太赫兹频率,并且具有晶体各向异性。采用光控的方式,研究团队实现了太赫兹相位的主动调制,即在20 J/cm2的光照激发下,NdGaO3晶体可以实现稳定的相位调控~78°,通过改变光照激发强度,可以实现多态的太赫兹相位移动。该结果表明NdGaO3晶体是太赫兹移相器的合适候选材料,其灵敏度和稳定性有望在新型太赫兹光学器件中得到良好的应用。   该工作获得了国家重点研发计划、国家自然科学基金,省级重大科技专项计划中国科学院前沿科学重点研究项目的支持。(a)基于NdGaO3的光控相位调制器示意图(b)相位移动随太赫兹频率和光照开关的变化。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制