当前位置: 仪器信息网 > 行业主题 > >

电化学石英晶体微天平

仪器信息网电化学石英晶体微天平专题为您提供2024年最新电化学石英晶体微天平价格报价、厂家品牌的相关信息, 包括电化学石英晶体微天平参数、型号等,不管是国产,还是进口品牌的电化学石英晶体微天平您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电化学石英晶体微天平相关的耗材配件、试剂标物,还有电化学石英晶体微天平相关的最新资讯、资料,以及电化学石英晶体微天平相关的解决方案。

电化学石英晶体微天平相关的论坛

  • 求购电化学石英晶体微天平

    求助销售电化学石英晶体微天平公司信息和国内那些单位买了电化学石英晶体微天平信息,本科研组想购买一台好一点的电化学石英晶体微天平,谢谢!

  • 电化学石英晶体微天平应用研究和背景扣除

    电化学石英晶体微天平应用研究和背景扣除摘 要 基于用循环伏安法研究非理想可逆体系时,电极本身的氧化峰电量与还原峰电量存在一比值。据此建立了一种用于电化学石英晶体微天平应用研究的背景扣除新方法。用这种方法研究了腺嘌呤、腺苷、腺苷一磷酸在金电极上的电化学氧化行为。结果表明: 3种活性分子均能在1. 2 V左右氧化,对应的氧化电流大小顺序为:腺嘌呤腺苷腺苷一磷酸,氧化过程的电子转移数为6。关键词 电化学石英晶体微天平, 循环伏安法, 腺嘌呤, 腺苷, 腺苷一磷酸[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=15840]电化学石英晶体微天平应用研究和背景扣除[/url]

  • 【求购】求购电化学工作站及石英晶体微天平

    求购电化学工作站,要求可以做阻抗的,要求很高端的,因为单位有经费还没花完。另外购买EQCM(石英晶体微天平)和表面张力仪,同样要求高端的。各位有什么建议或购买仪器的信息,还请告知,非常感谢!我的邮箱是yangshao79@yahoo.com.cn

  • 石英晶体微天平的特征及应用

    石英晶体微天平最基本的原理是利用了石英晶体的压电效应,主要构造由石英晶体传感器、信号检测和数据处理等部分组成。石英晶体为天平在探头电极上修饰具有生物活性的特异选择功能膜,即作了压电晶体生物传感器。石英晶体为天平因其对质量变化的高敏感性,传感器具有特异性好、灵敏度高、成本低廉和操作简便等优点。 石英晶体微天平利用了石英晶体谐振器的压电特性,将石英晶振电极表面质量变化转化为石英晶体振荡电路输出电信号的频率变化,进而通过计算机等其他辅助设备获得高精度的数据。石英晶体微天平是一种非常灵敏的质量检测仪器,其测量精度可达纳克级,比灵敏度在微克级的电子微天平高100 倍。 石英晶体微天平的其他组成结构在不同型号和规格的仪器中也不尽相同,可根据测量需要选用或联用,一般附属结构还包括振荡线路、频率计数器、计算机系统等。石英晶体微天平广泛应用于分子生物学、病理学、医学诊断学、细菌学等研究领域,在研究和检测蛋白质、微生物、核酸、酶、细胞等方面都发挥了重要的作用。

  • 【讨论】谁说天平没有技术含量:我们有石英晶体微天平

    【讨论】谁说天平没有技术含量:我们有石英晶体微天平

    长期以来,很多人认为天平没有什么技术含量,今天让你们看看,我们也有高科技的一面:石英晶体微天平石英晶体微天平(Quartz Crystal Microbalance-QCM)的发展始于上世纪60年代初期,它是一种非常灵敏的质量检测仪器,其测量精度可达纳克级,比灵敏度在微克级的电子微天平高100 倍,理论上可以测到的质量变化相当于单分子层或原子层的几分之一。石英晶体微天平利用了石英晶体谐振器的压电特性,将石英晶振电极表面质量变化转化为石英晶体振荡电路输出电信号的频率变化,进而通过计算机等其他辅助设备获得高精度的数据。http://ng1.17img.cn/bbsfiles/images/2011/03/201103301559_286072_2197752_3.jpg

  • 【分享】一个英文电化学资源网

    网址:http://www.consultrsr.com/index.htm内容包括:(1)电极;(2)伏安法;(3)电化学阻抗;(4)恒电位仪;(5)石英晶体微天平;等等。另外还提供在线书店,可以选购有关电化学的参考书。

  • 求助石英晶体微天平信息

    本课题组想购买一台好一点的石英晶体微天平,请熟识这方面的朋友给我一点建议。国内不知哪些单位购买了这些仪器,性能,价格如何?谢谢!

  • 大家一起来——征集:你所知道的的电化学仪器类型

    电化学仪器具有使用简便的优点,不用过多关注仪器背后的东东。其种类也不算少了。估计把其所有仪器类型罗列出来,也有一定难度。让我们一起来,添砖加瓦,整理出所有电化学仪器的类型,尤其是一起讨论出电化学仪器分类的标准。抛砖引玉,我先来:PH计自动电位滴定卡氏水分测定电导率仪电化学工作站极谱仪库仑仪石英晶体天平ORP测量仪腐蚀测试仪电化学部件电解水分测定仪酸碱浓度计电解仪离子浓度计电致化学发光检测仪电化学传感器请大家尽量补充,补充楼前未提及的多于2个(含2个)仪器类型,加1分。先到先得http://simg.instrument.com.cn/bbs/images/default/emyc1007.gif

  • 【原创大赛】液相注射氯苯类污染物的电化学检测方法研究

    论文题目:液相注射氯苯类污染物的电化学检测方法研究发表文章题目:Electrochemical DNA biosensor for screening of chlorinated benzene pollutants论文内容及概述:本论文的研究目的及意义:氯苯类污染物严重威胁着人类的健康,引起了社会极大的关注。目前多采用传统色谱方法对其进行检测,然而传统液相色谱检测仪器昂贵,需要复杂的样品预处理,很难实现样品的现场检测。我们设计了新型的液相泵系统注射氯苯类污染物样品到电化学DNA传感器检测池的检测方法。电化学DNA传感器结合了DNA和电化学的优点,总体来说,包括以下几个方面的优势:1)、特异性好,DNA分子双链之间通过特定的碱基配对而具有非常高的特异性识别能力。2)、稳定性好,离体DNA比多数蛋白质(酶)分子的热稳定性好,制成的传感器可以保存较长时间。3)、制备简单,可以大批量合成。4)、电化学响应快,操作比较简便。5)、灵敏度高,成本低廉,适合大批量筛查检测。然而电化学方法直接检测DNA产生的响应信号较低,微弱的响应信号容易受到噪声干扰,发生基线偏移,降低了仪器的灵敏度。而环境中基因毒性化合物的浓度低,引起的电信号变化不明显。本研究使用亚甲基蓝作为信号分子探针增大DNA电化学传感器的灵敏度,使得低至皮摩尔浓度的氯苯类化合物产生的电信号变化也能够被检测到。该检测方法不需要复杂的样品预处理,检测限低,仪器设备简单便携,能够实现环境中氯苯类污染物的现场检测,具有很好的应用前景。此外我们以六氯苯为模拟底物,通过紫外可见光谱和石英晶体微天平方法研究了六氯苯与DNA的作用原理;对氯苯类污染物引起人体健康危害的机理研究具有很好的参考价值。

  • 【求助】观察石英晶体该用哪种显微镜

    我从事化学分析方面工作,对石英晶体的结构一窍不通.最近我们领导给我们下任务,了解一下显微镜方面的相关情况.进论坛一看,显微镜品种很多,不知何种适合我们观察石英晶体.请各位帮忙,谢谢!

  • 【资料】电化学噪声的分析与应用8

    在腐蚀的整个过程中,Rn和Rsn趋于下降.他们的研究同时指出:Rn与EIS技术得到的极化电阻Rp同步变化,孔蚀指标PI(=SI/Imean)和电位噪声的SPD信号均不能正确地反55映材料腐蚀的真实情况.而Chen和Skerry研究指出:抗蚀性能优良的涂层的电荷转移电阻Rt(EIS)和噪声电阻Rn8102具有数量级为10~10Ωcm的电阻值,而且,其双电层电-102容C约为10F/cm 当Rn大于Rt以及Rt的数量级低52于10Ωcm时,涂层下电极开始发生孔蚀,并且此时,电极2表面双电层电容大于1μF/cm.Bierwagen提出了另一个噪声电阻Rn,他认为可以根据下式估计涂层失效的严重性:2S2V02Rn=2=(Rsn)SI2Rctg2=limRs+222=(Rs+Rctg)(7)f→01+fRctgC其中,Rs为溶液电阻,Rctg为涂层电阻,C为双电层电容,f56为采样频率.Rn越大则涂层防护性能越好.Puget和Trethewey等对钢铁表面聚氨酯涂层的磨(冲)57蚀现象的研究发现,冲蚀和化学腐蚀作用不具协同性.电流噪声的标准偏差SI和平均腐蚀电流Imean反比于涂层的覆盖率.随着电极表面的腐蚀从局部腐蚀向均匀腐蚀的转变,电流噪声的非对称度Sk和突出度Ku同时下降至一比较稳定的数值 之后,Sk的继续下降和Ku的回复则表明涂层的破裂和金属基体的冲蚀-腐蚀.涂层的穿孔伴随着噪声SPD曲线斜率的下降,Imean的增加可能预示着冲蚀过程已经暴露了金属基体中的内在缺陷.在材料缓蚀剂的研究方面,Monticelli等学者认为可以通过比较缓蚀剂加入前后SPD曲线特征参数的变化,来判断它们是否通过抑制腐蚀电极的局部阴极析氢反应或是加6强电极表面钝化膜来抑制材料的腐蚀.曹楚南和林海潮等的研究表明,SPD曲线的fc愈低,则钝化抑制剂的抗孔蚀能58力愈强.3电化学噪声在化学电源和金属电沉积等其它领域中的应用  在金属电沉积的过程中,电化学噪声起源于晶核的随机生长,噪声水平远远高于金属溶解或由扩散控制的物质还原过程中产生的电化学噪声水平,且与沉积物的结构和晶体取59α向生长密切相关.在Ni的电沉积过程中,1/f噪声中的指数α接近于2时,110面择优生长 α接近于1时,211晶面择优生长.在Zn的电沉积过程中,SPD正比于沉积层的表面粗糙度.Gabrielli等从理论上对金属电沉积过程中的噪声功率与沉积物的结构和晶体取向生长的关系进行了研60究,认为晶体的“生长/死亡”理论可以解释电沉积过程中的电化学噪声功率谱,但是,所有电极反应的速率波动和微晶所造成的电化学噪声对整个体系的自相关函数也有一定的作用.Budevski等人发现准单晶Ag的表面上沉积金属Ag时的电化学噪声的水平和自相关函数的大小反映了晶SPD体“成核/生长”的速率高低.但是,当晶体的成核和生长都遵循分布时电化学噪声数据的分析变得非常困Poissonian,61难.1999年,Martinet和Durand等学者首次将EN技术用62于电池的性能研究中.如:确定低容量密封Ni-MH电池的充放电状态,探测Ni-Cd电池的过充情况.他们认为锂离子电池的噪声功率谱密度(SPD)与电池的析气电流jgas和流经体系的总电流jtot之间存在下列关系:03j12-6gasSPD(V)=6×10(8)jtot他们测定的是整个电池的电压波动,而不是单个电极的电位波动.但是,他们认为,可以通过在电池内插入两个参比电极的方法来分别探测由单个电极及隔膜产生的电化学噪声.EN技术除了应用于上述工业电化学领域外,在生物化63~65学和环境科学等其它领域也得到了长足的发展.4展望EN技术是一门新兴的电化学研究技术,它的应用非常灵活(可以在极化和非极化条件下进行,可以采用双电极或三电极测试体系)、研究领域非常广泛(材料腐蚀、金属电沉积、化学电源、生物电化学和地震波等)、数据处理手段日益完善(时域谱、频域谱、小波分析和分形分析等),并且相对于其它传统电化学方法和现代物理研究手段具有无可比拟的66优良特性.如果将EN技术及基于EN技术的新技术(如EES和MEES)与非线性数学理论相结合,必将导致EN技术的基础理论的进一步发展和应用研究领域的迅速扩大,其在电极过程动力学机理研究中的独特作用将更加显著.致谢:衷心感谢中国科学院金属所腐蚀与防护国家重点实验室林海潮研究员、李瑛、史志明和严川伟副研究员的无私帮助!

  • 【原创】询问电化学仪器的价格

    询问下普林斯顿应用研究Princeton Applied Research(PAR)的PARSTAT2273电化学综合测试系统,恒电位-恒电流-交流阻抗测试系统(VMP3/Z),及QCM 922石英微天平的价格,谢谢!

  • 【原创】询问电化学工作站的价格

    询问下普林斯顿应用研究Princeton Applied Research(PAR)的PARSTAT2273电化学综合测试系统,恒电位-恒电流-交流阻抗测试系统(VMP3/Z),及QCM 922石英微天平的价格,谢谢!

  • QCM石英晶体微天平相关问题求助!!!!

    本人电化学小白,刚接触QCM,有很多问题不太明白,数据也不知道怎么处理,跪求大神!!1.在PBS(0.2M pH7.4)中扫描裸金片,△F一直在-100Hz左右,不知道是什么原因?下面附图是我做的裸金片2.数据处理:我做的是利用巯基把我的材料吸附在金片表面。同一片金片做的话,是不是我每做一次吸附都要重新测量吸附前的裸金片的频率,还是只测初次的?我是利用QCM定量,△F值选择那一个?裸金片的频率就是测的吗?3.在扫描吸附物质的金片过程中,曲线一直出现波浪形状,试了很多遍不知道问题出在什么地方??

  • 新型电化学测量仪器——电化学扫描探针显微镜(EC-SPM)

    新型电化学测量仪器——电化学扫描探针显微镜(EC-SPM) 材料2106 李昊哲新型电化学测量仪器——电化学扫描探针显微镜(EC-SPM)是一种具有创新性的技术,它在电化学领域的研究和应用中起到了重要的作用。EC-SPM采用了先进的技术和方法,可以对电化学反应进行精确的测量和分析,为科学家们提供了更为准确和可靠的数据。EC-SPM的创新之处在于其结合了扫描探针显微镜(SPM)和电化学技术,实现了对电化学反应的原位观察和测量。传统的电化学测量仪器往往只能提供宏观的电化学数据,而EC-SPM通过在电极表面放置微小的探针,可以实现对电化学反应的纳米级别的测量。这种纳米级别的测量能够更加准确地了解电化学反应的动态变化,提供了更为详细和全面的信息。EC-SPM在前处理合计数方面也进行了改进和优化。传统的电化学测量仪器在前处理过程中往往需要复杂的操作和多个步骤,容易出现误差和不确定性。而EC-SPM通过引入自动化和智能化的前处理系统,可以实现对样品的快速处理和准确计数。这不仅提高了测量的效率,还减少了人为因素对结果的影响,提高了测量的精确度和可靠性。我有幸在实验室使用了电化学扫描探针显微镜(EC-SPM),并且对其性能和使用体验有了一些真实的心得体会。我认为EC-SPM的性能非常出色。它采用了先进的扫描探针显微镜技术,可以实现纳米级的高分辨率测量。在我的实验中,我使用EC-SPM对一种新型材料进行了表面形貌和电化学性质的同时测量,结果非常令人满意。EC-SPM能够清晰地显示出样品的表面形貌,并且能够通过电流-电压曲线来研究材料的电化学行为。这对于我研究材料的结构与性能之间的关系非常有帮助,其次,EC-SPM的操作非常简便。它采用了直观的用户界面,使得操作人员能够快速上手。在我使用的过程中,我只需要按照仪器的操作指南进行操作,就能够轻松地完成测量。而且,EC-SPM还具有自动化的功能,能够实现自动扫描和测量,省去了繁琐的手动调整步骤,提高了实验效率。最后,EC-SPM的数据处理和分析功能也非常强大。它可以对测量得到的数据进行实时处理和分析,并且能够生成高质量的图像和曲线。在我的实验中,我使用EC-SPM获得了一系列的电流-电压曲线,并且通过对这些曲线进行分析,我能够得到材料的电化学性质,比如电荷转移速率和电化学反应动力学参数。这对于我研究材料的电化学性能非常有帮助。EC-SPM在电化学领域的研究和应用中取得了重要的成果。例如,在电池研究中,EC-SPM可以帮助科学家们更好地了解电池中的界面反应和电化学性能,从而提高电池的效率和稳定性。在催化剂研究中,EC-SPM可以实时观察催化剂表面的电化学反应,揭示催化剂的活性和稳定性等关键性质。此外,EC-SPM还可以应用于材料科学、生物医学等领域,实现对材料表面性质和生物分子相互作用的研究。EC-SPM作为一种新型电化学测量仪器,具有创新性的技术和方法。它通过纳米级别的测量,实现了对电化学反应的精确观察和分析。在前处理合计数方面的改进,使得测量结果更加准确和可靠。研究成果在电化学领域的应用广泛,为科学家们的研究和实践提供了重要的支持。它的高分辨率测量能力、简便的操作和强大的数据处理功能使得我能够更好地研究材料的电化学性质。我相信,随着电化学扫描探针显微镜技术的不断发展,EC-SPM将会在材料科学、电化学等领域发挥更加重要的作用。

  • 前沿电化学研究的热点--微区扫描电化学新技术讲座

    美国AMETEK集团旗下两大著名电化学仪器品牌:PAR(普林斯顿应用研究)及Solartron(输力强分析),一直以来作为电化学工作站设备领域内的技术领导者,为广大从事电化学研究的科研工作者提供高品质的技术解决方案。此次,阿美特克科学仪器部将于2014年5月22日(SINO?CORR 2014 NACE 中国国际腐蚀控制与涂料涂装展览期间)举办微区扫描电化学新技术讲座,现场提供全套微区扫描电化学设备供实际操作及样品测试,热忱欢迎各位的光临!近年来,微区扫描电化学技术发展迅猛,在腐蚀和电沉积科学中的表面反映过程基础研究,酶稳定性研究,生物大分子的电化学反应特性,化学传感器,点蚀孔蚀,涂层完整性和均匀性,涂层下或逾金属界面间的局部腐蚀,缓蚀剂性能等相关领域得到广泛应用,倍受科技工作者的关注。http://img1.17img.cn/17img/images/201405/uepic/d1d0fc49-4aa6-4600-bac6-035a24653e58.jpg本次新技术讲座特邀请了阿美特克公司科学仪器部产品经理Dr.John Harper和中国海洋大学王佳教授主讲。Dr. John Harper (AMETEK GROUP 科学仪器部)http://img1.17img.cn/17img/images/201405/uepic/e684dcd0-3d7e-4ae9-962b-e4218d3a5918.jpgDr. John Harper师从英国莱斯特大学Andrew Abbott教授,并获得博士学位。他的研究关注于超临界二氧化碳中的电化学性质。在英国短暂博士后工作后,他进入工业界,参与了新型双极板的氢燃料电池的研发工作。他在燃料电池领域的成就使得他被英国剑桥的一个利用燃料电池催化剂的微传感器研发公司聘用。2003,John加入输力强分析担任应用专家并在公司发挥了巨大的作用,目前,John担任科学仪器部系统产品经理,主要负责的产品有Versascan / SECM, Modulab XM DSSC染料敏化太阳能电池测试系统等。主讲内容:从腐蚀,基础电化学,能源领域探讨微区扫描电化学包括SECM, SVET, SKP, LEIS, OSP, SDS的基本原理及应用王佳教授 (中国海洋大学)http://img1.17img.cn/17img/images/201405/uepic/6fc401fa-573b-44b4-ade7-744995d7c789.jpg中国海洋大学化学化工学院王佳教授,博士生导师,曾担任中国科学院海洋研究所责任研究员,现任中国腐蚀与防护学会腐蚀电化学及测试方法专业委员会副主任,中国防腐蚀标准化技术委员会委员,中国造船工程学会高级会员,山东省腐蚀与防护学会副理事长,“中国腐蚀与防护学报”和“腐蚀科学与防护技术”编委。王佳教授在腐蚀电化学研究领域,专注于多种环境条件下的腐蚀机理,腐蚀控制与监测,腐蚀电化学电子仪器及传感器,腐蚀防护评价等,并在这些领域获得大量成绩,已发表研究论文225篇(SCI 50篇);已发表专利46项。主讲内容:腐蚀研究中的微区电化学方法腐蚀研究中的电化学阻抗谱等效电路模型解析方法新技术讲座定于2014年5月22日(星期四), 在阿美特克商贸(上海)有限公司北京分公司培训室举办。具体安排如下:9:00-11:00 / Dr. John Harper 从腐蚀,基础电化学,能源领域探讨微区扫描 电化学 包括SECM, SVET, SKP, LEIS, OSP, SDS的基本原理及应用11:15-12:30 / 王佳教授 微区扫描电化学测试技术及应用实例 交流阻抗谱数据分析及解析12:30-13:30 午餐13:30-16:30 分组进行仪器上机动手实践及自由讨论联系方式:美国阿美特克科学仪器部(普林斯顿及输力强)联系人:乌鑫 女士电话: 010-85262111-15 北京市朝阳区酒仙桥路10号京东方大厦(B10)二层西侧邮编:100015 Email: michelle.wu@ametek.com.cn回执姓名 单位及通讯地址电话 email参加人数 是否需要住宿

  • 【资料】电化学噪声的分析与应用1

    111112221前言电化学噪声(Electrochemicalnoise,简称EN)是指电化学动力系统演化过程中,其电学状1,2态参量(如:电极电位、外测电流密度等)的随机非平衡波动现象.B.A.TЯΓaЙ等1967年3首先注意到了这个现象,之后,电化学噪声技术作为一门新兴的实验手段在腐蚀与防护科4~11学领域得到了长期的发展.电化学噪声的起因很多,常见的有腐蚀电极局部阴阳极反应活性的变化、环境温度的改变、腐蚀电极表面钝化膜的破坏与修复、扩散层厚度的改变、表面膜1,12~20层的剥离及电极表面气泡的产生等.迄今为止,已有很多技术用于表征电极的界面状态,但是它们都存在着各自不同的缺陷.例如:基于真空技术的低能电子衍射法(LEED)和俄歇电子能谱法(AES)等以及基于电磁波原理的椭圆偏光法(Ellipsometry)和扩展X-射线吸收精细结构技术(EXAFS)等诸多光学方法15,21~25都不能对电极腐蚀现象进行原位观察 基于对研究电极施加外界扰动信号的极化曲线法等传统电化学研究方法则可能因为外加信号的介入而影响腐蚀电极的腐蚀过程,同样无26,27法对被测体系进行原位监测.而电化学噪声技术相对于诸多传统的腐蚀监测技术(如:重量法、容量法、极化曲线法和电化学阻抗谱等)具有明显的优良特性.首先,它是一种原位无损的监测技术,在测量过程中无须对被测电极施加可能改变腐蚀电极腐蚀过程的外界扰28~3126动 其次,它无须预先建立被测体系的电极过程模型 第三,它无须满足阻纳的三个27,32基本条件 最后,检测设备简单,且可以实现远距离监测.2电化学噪声的分类根据所检测到的电学信号视电流或电压信号的不同,可将电化学噪声分为电流噪声或电33~36压噪声.1,29,37,38根据噪声的来源不同又可将其分为热噪声、散粒效应噪声和闪烁噪声:(1)热噪声是由自由电子的随机热运动引起的,是最常见的一类噪声.电子的随机热运动带来一个大小和方向都不确定的随机电流,它们流过导体则产生随机的电压波动.但在没有外加电场存在的情况下,这些随机波动信号的净结果为零.1928年贝尔实验室的J.B.Johnson首先对热噪声进行了详细地实验研究(所以热噪声又称为约翰逊噪声),之后,H.Nyquist根据热力学原理在理论上对其进行了大量探讨.实验与理论结果表明,电阻中热噪声电压的均方值2E[VN]正比于其本身的阻值大小(R)及体系的绝对温度(T):2E[VN]=4KBTRΔυ(1)式中,V是噪声电位值,Δυ是频带宽,KB是Boltzmann常数[KB=1.38×(-23)J/K.上式在13直到10Hz频率范围内都有效,超过此频率范围后量子力学效应开始起作用.此时,功率谱将按量子理论预测的规律而衰减.热噪声的谱功率密度一般很小,例如,1MΩ的电阻在室温298K时所产生的热噪声的谱2功率密度的最大值仅为0.0169μV/Hz.因此,在一般情况下,在电化学噪声的测量过程中,热噪声的影响可以忽略不计.热噪声值决定了待测体系的待测噪声的下限值,因此当后者小于监测电路的热噪声时,就必须采用前置信号放大器对被测体系的被测信号进行放大处理.(2)散粒效应噪声是Schottky于1918年研究此类噪声时,用子弹射入靶子时所产生的噪声命名的.因此,它又称为散弹噪声或颗粒噪声.在电化学研究中,当电流流过被测体系时,如果被测体系的局部平衡仍没有被破坏,此时被测体系的散粒效应噪声可以忽略不计.然而,在实际工作中,特别当被测体系为腐蚀体系时,由于腐蚀电极存在着局部阴阳极反应,整个腐蚀电极的Gibbs自由能ΔG为:ΔG=-(Ea+Ec)zF=-E外测zF(2)式中,Ec和Ea为局部阴阳极的电极电位,E外测为被测电极的外测电极电位,z为局部阴阳极反应所交换的电子数,F为Faraday常数.所以,即使外测E外测或流过被测体系的电流很小甚至为零,腐蚀电极的散粒效应噪声也决不能忽略不计.散粒噪声类似于温控二极管中由阴极发射而达到阳极的电子在阳极所产生的噪声.Schottky从理论上证明了该噪声符合下列公式:2E[IN]=2eI0Δυ(3)式中,e为电子电荷,等于1.59×(-19)C,I0为平均电流.在电化学研究中,e应该用q代替,而q是远大于电子电荷的电量.例如,在单晶Ag的电结晶过程中,q相当于在基体表面上生长一单层Ag所需的电荷 在电极腐蚀过程中,q相当于一个孔蚀的产生或单位钝化膜的破坏所消耗的电量.公式(3)在频率小于100MHz的范围内成立.热噪声和散粒噪声均为高斯型白噪声,它们主要影响频域谱中SPD曲线的水平部分.α(3)闪烁噪声又称为1/f噪声,α一般为1、2、4,也有取6或更大值的情况.与散粒噪声一样,它同样与流过被测体系的电流有关、与腐蚀电极的局部阴阳极反应有关 所不同的是引起26散粒噪声的局部阴阳极反应所产生的能量耗散掉了,且E外测表现为零或稳定值,而对应于极局部腐蚀部位的修复而正移 如果在恒压情况下测定,则在电流-时间曲线上有一个正的脉冲尖峰.关于电化学体系中闪烁噪声的产生机理有很多假说,如“时间常数假说”和“渗透理论假说”等,但迄今能为大多数人接受的只有“钝化膜破坏/修复”假说.该假说认为:钝化膜本身就是一种半导体,其中必然存在着位错、缺陷、晶体不均匀及其它一些与表面状态有关的不规则因素,从而导致通过这层膜的阳极腐蚀电流的随机非平衡波动,于是导致电化学体系中产生了α3类似半导体中1/f噪声.闪烁噪声主要影响频域谱中SPD曲线的高频(线性)倾斜部分.3电化学噪声的测定28,41电化学噪声的测定可以在恒电位极化或在电极开路电位的情况下进行.当在开路电位下测定EN时,检测系统一般采用双电极体系,它又可以分为两种方式:同种电极系统和异种电极系统:(1)传统测试方法一般采用异种电极系统,即一个研究电极和一个参比电极.参比电极一般为饱和甘汞电极(SCE)或Pt电极,也有采用其它形式的参比电极的(如Ag-AgCl参比电极42-47等).电化学噪声用参比电极的选择原则为:除了符合作为参比电极的一般要求以外,还1,44要满足电阻小(以减少外界干扰)、电位稳定和噪声低等要求.(2)同种电极测试系统是近年才发展起来的,它的研究电极与参比电极均为被研究的材48,49料.研究表明:电极面积影响噪声电阻,采用具有不同研究面积的同种电极系统测定体系27的电化学噪声时有利于获取电极过程的机理.当在恒电位极化的情况下测定EN时,一般采用三电极测试系统.在双电极测试系统的基础上外加一个辅助电极给研究电极提供恒压极化.3测试系统应置于屏蔽相中,以减少外界干扰.应采用无信号漂移的低噪声前置放大器,1特别是其本身的闪烁噪声应该很小,否则将极大程度地限制仪器在低频部分的分辨能力.4电化学噪声的分析411频域分析电化学噪声技术发展的初期主要采用频谱变换的方法处理噪声数据,即将电流或电位随时间变化的规律(时域谱)通过某种技术转变为功率密度谱(SPD)曲线(频域谱),然后根据SPD曲线的水平部分的高度(白噪声水平)、曲线转折点的频率(转折频率)、曲线倾斜部分的斜率和曲线没入基底水平的频率(截止频率)等SPD曲线的特征参数来表征噪声的特性,探寻电极过程的规律.常见的时频转换技术有快速傅立叶变换(FastFourierTransform,FFT)、最大熵值法(MaximumEntropyMethod,MEM)、小波变换(WaveletsTransform,WT).特别是其中的小波变换,它是傅立叶变换的重要发展,既保留了傅氏变换的优点又能克服其不足.因此,它代表了电化学噪声数据时频转换技术的发展方向.在进行噪声的时频转换之前应剔除噪声的直流部分,否则SPD曲线的各个特征将变得模糊不清,影响分析结果的可靠性.15,50,51(1)傅立叶变换(FFT)傅立叶变换是时频变换最常用的方法.假设信号为s(t),则由该信号经Fourier变换后得1-ωjt2到频谱s(ω)=s(t)edt,及其相应的能量密度频谱(频率密度)P(ω)=|s(ω)|.根∫39,40闪烁噪声的E外测则表现为具有各种瞬态过程的变量.局部腐蚀(如孔蚀)能显著地改变腐蚀电极上局部微区的阳极反应电阻值,从而导致Ea的剧烈变化.因此,当电极发生局部腐蚀时,如果在开路电位下测定腐蚀电极的电化学噪声,则电极电位会发生负移,之后伴随着电

  • 浅谈电化学式气体检测仪的具体分类情况

    在某些特殊的环境里,周围的空气里有可能含有有毒、可燃等的气体。如果人们进入这样的环境里,是非常危险的。因此我们若想要知道空间范围内空气的气体的种类,那么气体检测仪就可以派上用场了。目前在市场上气体检测仪的中类非常之多,其中的电化学式气体检测仪人们所常用到的气体检测仪之一,那么下面我们就来了解下电化学式气体检测仪的具体分类情况。  一、原电池型气体传感器  也被称为:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器,他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫、氯气等。  二、恒定电位电解池型气体传感器  这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析的传感器。这种传感器已经成功地用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。  三、浓差电池型气体传感器  具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器的成功实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。  四、极限电流型气体传感器  有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。  以上的内容就是电化学式气体检测仪的具体分类情况,电化学式气体检测仪相当一部分的可燃性的、有毒有害气体都有电化学活性,可以被电化学氧化或者还原。利用这些反应,可以分辨气体成份、检测气体浓度。

  • 【网络讲座】峰值力轻敲(PeakForce) 扫描电化学显微镜(2016-11-09 10:00)

    【网络讲座】峰值力轻敲(PeakForce) 扫描电化学显微镜(2016-11-09 10:00)

    1700次,H指数 为18.【会议简介】电化学应用与日常生活和前沿研发的很多领域都有着紧密联系,比如在新能源开发,生物电分析,材料合成,表面保护等。 宏观的电化学反应是电极表面的混杂异构的平均结果, 包含了来自不同反应位点,晶面多向属性以及不同的表面缺陷的平均响应。 这些微观尺度的多样性源取决于材料在纳米尺度下结构,力学,电学以及电化学特性的不均一性。现代电极材料的结构工程正是希望能够在纳米尺度对这些特性进行可控剪裁和加工。在这种情况下,原位和微区电分析技术研究纳米尺度的表面反应是不可或缺的。 为了适应今天这些高度跨学科的研究需要, 能够在原位电化学过程中同时获取相关微观多维信息的技术是科学工作者和工程师们一直的追求。本次报告介绍了布鲁克(Bruker)最新开发,批量制备,高质,稳定且使用便捷的扫描电化学(SECM)纳米电极探针。这些纳米电极探针的特征尺度大约为50 nm。这些探针被用于结合了峰值力轻敲成像模式的原子力显微镜(AFM)平台,也就是布鲁克最近推出的峰值力轻敲扫描电化学显微镜技术。这项技术能够实时的提供空间分辨率高于100 nm的电化学形貌图,以及其他同时获取的高分辨的AFM信息,比如表面形貌图,电学图以及力学图。 另外,这些探针也可以跟布鲁克高带宽的电学模块结合,使得液下纳米电分析成像成为可能。在这次报告,我们也将通过具体例子介绍这项技术在多个领域的应用。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名截止时间:2016-11-09 8:003、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/1979http://ng1.17img.cn/bbsfiles/images/2016/09/201609271113_612273_2507958_3.jpg扫描二维码,报名参会4、报名及参会咨询:QQ群—290101720,扫码入群“大讲堂”http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_669143_2507958_3.gif

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制