当前位置: 仪器信息网 > 行业主题 > >

低温等离子体刻蚀设备

仪器信息网低温等离子体刻蚀设备专题为您提供2024年最新低温等离子体刻蚀设备价格报价、厂家品牌的相关信息, 包括低温等离子体刻蚀设备参数、型号等,不管是国产,还是进口品牌的低温等离子体刻蚀设备您都可以在这里找到。 除此之外,仪器信息网还免费为您整合低温等离子体刻蚀设备相关的耗材配件、试剂标物,还有低温等离子体刻蚀设备相关的最新资讯、资料,以及低温等离子体刻蚀设备相关的解决方案。

低温等离子体刻蚀设备相关的资讯

  • 出口增长63%!2020年等离子体刻蚀机海关进出口数据盘点
    自美国提出终断该国企业与华为多年的芯片供应以来,研制中国自己的国产芯片提上了我国的发展日程,也是当前中国市场最为紧迫的一项技术,关于芯片技术发展的讨论不仅在专业领域盛行,也成为了普通民众议论的焦点所在。而芯片的制造离不开半导体设备,其中刻蚀设备是其中的重中之重。据了解,目前我国已经突破了刻蚀设备的技术难关,其中中微公司的5nm刻蚀设备已成功销往海外,更是进入台积电的生产线。如今最先进的芯片制造主要使用干法刻蚀技术即等离子体刻蚀技术,相对于湿法刻蚀,具有更好的各向异性,工艺重复性,且能降低晶圆污染几率,因此成为了亚微米下制备半导体器件最主要的刻蚀方法。伴随着国际半导体行业的产能危机,国内等离子体刻蚀机需求或将爆发。通过分析海关等离子体刻蚀机的进口情况,可以从一个侧面反映出中国等离子体刻蚀机市场的一些情况。2020年是特殊的一年,新冠肺炎疫情在全球爆发,各行各业都受到了一定的影响,包括半导体产业。为了解过去近两年中等离子体刻蚀机的进出口情况,仪器信息网特别对2019、2020年1-12月,等离子体刻蚀机(商品编码84862041)进出口数据进行了分析汇总,为大家了解中国目前等离子体刻蚀机市场做一个参考。2019、2020年1-12月海关等离子体刻蚀机进出口数据统计统计年月进口量(台)进口金额(人民币:元)出口量(台)出口金额(人民币:元)2019年1-12月109712,685,798,98279353,896,8762020年1-12月127616,949,614,747122577,419,680从上表可以看到,2020年1-12月,我国共进口等离子体刻蚀机1276台,进口额约为170亿元,进口单价约为1328万元。而2019年同期,等离子体刻蚀机进口1097台,进口额约为127亿元,进口单价约为1156.4万元。与去年同期相比,2020年1-12月我国等离子体刻蚀机进口台数增加约16.3%,进口额增加约33.6%,进口单价提高约15%。从整体来看,2020年进口等离子体刻蚀机市场增长非常明显,同时进口单价也略有提高。而从出口情况来看,2020年1-12月,我国共出口等离子体刻蚀机122台,出口额约为5.8亿元,出口单价约为473万元。而2019年同期,等离子体刻蚀机出口79台,出口额约为3.54亿元,出口单价约为448万元。总体而言,我国等离子体刻蚀机出口量仍然很少,但2020年比上年同期出口金额明显增加约63%,出口数量增加约54%,出口单价也略有提高。2019、2020年1-12月等离子体刻蚀机进口量逐月数据图(单位:台)对2020年1-12月等离子体刻蚀机进口量逐月数据分析发现,并对比2019年同期数据可以明显看出,2020年等离子体刻蚀机进口数量明显有所增加,且逐月变化较为明显,其中2020年1月受国内新冠肺炎疫情影响,等离子体刻蚀机进口数量较去年有所下降,而则2~4月份迎来“报复性”增长,等离子体刻蚀机进口台数比去年同期多大约一半,5~7月每月进口数量与去年有所增长,但增幅有所下降,8月进口数量较去年同期有所下降,可能受国外新冠疫情影响,而9月进口量的大爆发可能是为了弥补8月份进口量不足的部分。10-11月平稳增加,但12月进口量再次下降,这可能来自于特朗普政府将中芯国际列入“实体清单”和冬季疫情反扑的多重影响。2019、2020年1-12月等离子体刻蚀机进口金额逐月数据图(单位:人民币/亿元)对2020年1-12月等离子体刻蚀机进口金额逐月数据分析发现,并对比2019年同期数据可以明显看出,除12月较去年进口金额有所下降以外,等离子体刻蚀机每月进口金额都较去年同期有所增加,其中,6、7、11月较去年增长幅度较小之外,但其他月份增幅明显。值得注意的是,9月进口额更是达到了去年同期的两倍以上,一个可能的原因是9月份台积电停止为华为代工芯片,华为大量订单转向国内代工厂生产,国内代工厂的扩大产能所导致。2019、2020年1-12月等离子体刻蚀机主要海关进口贸易伙伴数量(单位:台)2019、2020年1-12月等离子体刻蚀机主要海关进口贸易伙伴金额(单位:人民币/亿元)2020年1-12月等离子体刻蚀机海关进口贸易伙伴金额分布图根据海关数据,近两年我国主要从美国、日本、新加坡、韩国、中国台湾、马来西亚、英国以及德国等贸易伙伴进口等离子体刻蚀机。其中进口金额最高的前5个贸易伙伴分别是美国、日本、新加坡、韩国和中国台湾。从数据中可以看出,我国等离子体刻蚀机对美日依赖严重。2020年1-12月等离子体刻蚀机进口企业注册地数量分布(单位:台)2020年1-12月等离子体刻蚀机进口企业注册地金额分布(单位:人民币/亿元)通过海关进口等离子体刻蚀机的企业注册地数据,可以大致了解到进口等离子体刻蚀机在国内的“落脚地”。可以看出 ,2020年,江苏、上海、湖北、陕西等省市进口等离子体刻蚀机数量较多,而这些地区也是我国经济较发达,半导体相关行业比较发达的省份和地区。就海关进出口数据来看,等离子体刻蚀机在国内的市场潜力非常巨大,2020年尽管新冠疫情爆发给各行各业造成一定影响,但我国等离子体刻蚀机市场增长依然明显,但由于进口等离子体刻蚀机美日产品占据主流,受到美国贸易战影响较大,国内产线等离子体刻蚀机的“去美化”迫在眉睫。另一方面,由于国内掌握等离子体刻蚀机所涉及的核心零部件、研发人才等仍然相对较少,虽然在介质刻蚀机上的研究已逐渐达到国际先进水平,但难度较大的深硅等离子体刻蚀机的发展距美、日还有一定差距。同时,由于半导体设备企业与晶圆代工厂的工艺深度绑定,也使得等离子体刻蚀机为代表的半导体设备仍依赖进口,受制于人。不过,近年来随着以中微半导体、北方华创等国内等离子体刻蚀机厂商的崛起,国产刻蚀机在一定程度上也能满足部分企业的要求。未来,伴随着中美半导体产业的争夺和全面“去美化”的浪潮,等离子体刻蚀机的国内市场占有率将有望进一步提升。
  • 等离子体刻蚀机、PVD和扫描电镜等创新成果亮相2024清华大学工程博士论坛!
    仪器信息网讯 2024年5月18-19日,2024清华大学国家卓越工程师学院春季工程博士论坛在北京亦庄举办。论坛围绕“先进装备”“大健康”“未来建设”“工业软件”“集成电路”“新能源”“综合交通”“大数据AI”“智能制造”九大产业集群要素开展主题沙龙。本次论坛作为又一次盛大的学术交流活动,现场展出了诸多优秀创新成果,仪器设备相关成果也位于其中,如“应用于集成电路制造的12英寸电感耦合等离子体刻蚀机和硅通孔(TSV)铜籽晶层物理气相成绩(PVD)设备”、“单束高通量扫描电镜及其跨尺度材料观测分析”。成果一:等离子体刻蚀机和硅通孔(TSV)铜籽晶层物理气相成绩(PVD)设备一、主要工程技术难点和创新性1、等离子体刻蚀机:先进脉冲射频脉冲等离子体产生和控制技术,实现多种等离子体参数的调控 先进的抗等离子体刻蚀的涂层技术实现纳米级别的颗粒环境调控,复合径向和角向联合小区域精确控温技术实现优异的整片关键尺寸均匀性,高精度终点检测技术(如光学发射光谱和光学相干光谱)识别精细刻蚀工艺过程中信号强度变化 双重/四重图形曝光工艺能力实现小线宽的图形控制等技术。2、TSV铜籽晶层物理气相沉积设备:高离化率磁控管技术、带有偏压的低温ESC技术 实现高深宽比下高台阶覆盖率沉积 实现优异的颗粒控制 二、工程应用价值和成熟程度目前研发的等离子刻蚀机,通过实现优异的双重/多重图形曝光、高介电常数介质/金属栅等刻蚀工艺形貌控制,适用于鳍式晶体管、多层3D NAND 闪存高密度DRAM内存等先进结构生成,广泛应用于国际主流逻辑、存储等芯片制造生产。TSV铜籽晶层物理气相沉积设备,已经广泛应用于逻辑,存储和先进封装芯片领域,能够实现较高深宽比的硅通孔铜籽晶层沉积,该设备已在多家客户端实现量产应用,代表国产金属薄膜沉积设备的较高水平。成果二:“单束高通量扫描电镜及其跨尺度材料观测分析”创新性的设计单束扫描电镜的电子光学系统:1、采用浸没式的电磁复合透镜保证1nA的落点电流下实现1.8nm@1keV的分辨率。2、采用位于透镜中的背散射(BSE)和二次电子(SE)探测器提高信号电子收集效率和图像信噪比,实现最短10nS/像素的驻留时间,即实现100M像素/秒的成像速度。工程博士论坛每年春季学期和秋季学期各举办一次,旨在加强工程领域的学术交流,激发工程博士生的创新思维,提高工程博士生解决复杂工程技术问题、进行工程技术创新、组织工程技术研究开发工作等能力,促进跨界交叉融合创新,不断扩大工程博士生在工程界、学术界和社会上的影响,推进产教融合,高起点、高质量地培养造就工程技术领军人才。工程博士论坛自2019年创办至今,已先后在北京、南通、深圳、成都、海盐、武汉、上海成功举办9届,经过几年不断地建设和发展,论坛活动成效和影响力不断扩大,逐渐打造成彰显清华特色的学术品牌。工程博士论坛网站:http://qhgbforum.ihaogo.com/index.htmlfor
  • 牛津最新等离子技术App可用于等离子体刻蚀和沉积
    牛津仪器等离子技术最近更新的App包括一个明确和互动的元素周期表、详细的等离子体、离子束和原子层沉积工艺信息。它允许iPhone和iPad用户查阅工艺化学的相关信息,可以通过简单的周期表界面实现任何材料的刻蚀和沉积。  这个周期表App可以免费下载,将吸引大量的工业和学术界的用户。同时,它也是一个优秀的教学设备,可以展示单个元素属性和电子构型。
  • 前十月进口额远超去年全年:等离子体干法刻蚀机海关进口数据分析
    自美国提出终断该国企业与华为多年的芯片供应以来,研制中国自己的国产芯片提上了我国的发展日程,也是当前中国市场最为紧迫的一项技术,关于芯片技术发展的讨论不仅在专业领域盛行,也成为了普通民众议论的焦点所在。而芯片的制造离不开刻蚀设备,其中等离子体刻蚀机更是先进制程中必不可少的设备,是重中之重。2021年是“十四五”开局之年,中国政府也推出了一系列激励政策来鼓励半导体产业发展,明确了半导体产业在产业升级中的重要地位,同时全球自2020年爆发的“芯片荒”在全球范围内愈演愈烈,却迟迟得不到缓解,各行各业都受到了一定的影响,受此影响包括仪器产业、新能源产业等在内的诸多产业都面临产品涨价、缺货的危机。危中有机,全球半导体行业的巨震却是中国半导体产业的发展契机。通过分析海关等离子体刻蚀机的进口情况,可以从一个侧面反映出中国等离子体刻蚀机市场的一些情况,进而了解到中国半导体产业的一些情况。为了解过去2021年中等离子体刻蚀机的进出口情况,仪器信息网特别对2021年1-10月,等离子体干法刻蚀机(商品编码84862041)进口数据进行了分析汇总,为大家了解中国目前等离子体刻蚀机市场做一个参考。2021年1-10月进口等离子体刻蚀机贸易伙伴变化(人民币/万元)贸易伙伴进口额(元)进口数量(台)均价(元/台)美国777014343651615058418日本621252727637416611035韩国328231684432710037666中国台湾18771365038921091421新加坡181269896211316041584马来西亚17790801177723104937英国544211135786977066德国203676120414967710中国1296367043240918荷兰632916423164582法国415082322075412波兰643071643072021年1-10月各贸易伙伴进口总额(人民币/元)2021年1-10月,中国进口等离子体干法刻蚀机总额约235亿元,总台数达1624台,其中美国进口金额最多约78亿元,台数达516台,占比高达33%,日本进口金额紧随其后约62亿元,374台,占比达26%。可以看出,目前等离子体刻蚀机主要来自于美国和日本,进口均价都超1500万元/台,此类等离子体刻蚀机以高端产品为主,主要用于生产。值得注意的是,波兰进口的一台等离子体刻蚀机仅6万多元,此设备可能是用于科研领域的低端产品或配件。从此前统计的【2020年等离子体刻蚀机海关进出口数据盘点】可以看出,2020年1-12月,我国共进口等离子体刻蚀机1276台,进口额约为170亿元,而今年仅前十个月就已超去年全年的进口额。这表明,今年我国晶圆代工厂的建设热度不减,这也和如今的半导体投资热、芯片荒有关。2021年1-10月等离子体干法刻蚀机进口数据(人民币/万元)从进口额的时间变化趋势可以看出,等离子体刻蚀机进口额在4-6月出现了一个高峰,进口额连续大幅度增长,而在七月份却断崖式下跌,直到回归正常水平。这一变化可能和疫情有关,在夏季全球疫情由于气温上升得到缓解,海关进口更畅通,而春秋季节气温较低,全球疫情出现反复。另一个可能的原因是海运费用暴涨导致六月以后进口额降低。2021年1-10月等离子体刻蚀机各注册地进口数据变化(单位/万元)2021年1-10月等离子体干法刻蚀机注册地进口额分布那么这些等离子体刻蚀机主要销往何处?通过对进口数据的注册地进行分析发现,陕西省、上海市和湖北省的进口额最多,分别为54亿元、43亿元和41亿元。等离子体刻蚀机主要应用于集成电路生产中,这表明这些地区在新建或改造集成电路生产线上投入较大,对等离子体刻蚀机的需求也在激增。我国在1-10月从韩国进口等离子体刻蚀机总额约33亿元,其中注册地为陕西省的进口额约19亿元,占比约59%。这表明,陕西省等离子体刻蚀机的进口可能和三星等韩国企业在西安的半导体生产线有关。
  • 粉体材料表面改性良方一种——低温等离子体技术
    p style="text-align: justify text-indent: 2em "粉体材料的一个重要特性就是其表面效应。粉体微粒的表面原子数之比随粉体微粒的尺寸减小而大幅度增加,相应的,粒子的表面张力也随之增加,粉体材料的性质就会因此发生各种变化。以金属纳米微粒为例,随着尺寸减小,微粒的比表面积迅速增加,因而稳定性极低,很容易与其他原子相结合,在空中燃烧。另外,一些氧化物粉体微粒也会由于类似的原因,在暴露于大气中的时候很容易吸附气体。/pp style="text-align: justify text-indent: 2em "改善粉体的的表面效应是粉体材料应用过程中最主要的难题之一,而低温等离子体正是一种有效的表面改性技术。首先我们先了解下究竟什么是低温等离子体。低温等离子体是在特定条件下使气体部分电离而产生的非凝聚体系,其整个体系呈电中性,有别于固、液、气三态物质,被称作物质存在的第四态。具体来说低温等离子体主要由以下几部分组成:中性原子或分子、激发态原子或分子、自由基、电子或负离子、正离子以及辐射光子。/pp style="text-align: justify text-indent: 2em "产生等离子体的方法也有很多种,热电离法、光电离法、激波法、气体放电法、射线辐照法等。等离子体技术在粉体表面处理方面的应用主要有三个维度:等离子体刻蚀、等离子体辅助化学气相沉积和等离子体处理。而低温等离子体技术在改进粉体材料表面处理方面的应用主要有三方面:改进粉体分散性、改进界面结合性能、改进粉体表面性能。/pp style="text-align: justify text-indent: 2em "改进粉体分散性:由于粉体的表面效应,导致粉体很容易团聚,通过等离子体处理,可使粉体表面包膜或接枝,而产生粉体间的排斥力,使得粉体间不能接触,从而防止团聚体的产生,提高粉体分散性能。/pp style="text-align: justify text-indent: 2em "改进界面结合性能:无机矿物填料在塑料、橡胶、胶黏剂等高分子材料工业及复合材料领域发挥着重要的作用。但过多的填充往往容易导致有机高聚物整体材料的某些力学性能下降,并且容易脆化,等离子体技术正是改善这类材料力学性能的好方法。例如等离子体处理的碳酸钙填充PVC制备SMA复合材料可以使其弯曲强度、冲击强度等力学性能大大提高。/pp style="text-align: justify text-indent: 2em "改进粉体表面性能:这部分应用主要有三个分维度,一是能提高粉体的着色力、遮盖力和保色性;二是能保护粉体的固有性能及保护环境;三是在制药领域,能够使得粉体具有缓释作用。/pp style="text-align: justify text-indent: 2em "粉体材料的低温等离子体处理技术对复合材料的发展具有重要的促进意义,但是其工业化的大量应用仍然有待继续努力,目前这一技术同时也是进行污水处理的研究热点之一。/ppbr//p
  • 企业成半导体刻蚀设备采购主力——半导体仪器设备中标市场盘点系列之刻蚀设备篇
    刻蚀技术,是在半导体工艺,按照掩模图形或设计要求对半导体衬底表面或表面覆盖薄膜进行选择性腐蚀或剥离的技术。刻蚀技术不仅是半导体器件和集成电路的基本制造工艺,而且还应用于薄膜电路、印刷电路和其他微细图形的加工。刻蚀还可分为湿法刻蚀和干法刻蚀,相对应的设备分别为干法刻蚀设备和湿法刻蚀设备,其中干法刻蚀设备绝大部分为等离子体刻蚀。仪器信息网近期特对一年内的刻蚀设备的中标讯息整理分析,供广大仪器用户参考。(注:本文搜集信息全部来源于网络公开招投标平台,不完全统计分析仅供读者参考。)各月中标量占比2019年10月至2020年9月,根据统计数据,刻蚀设备的总中标数量为208台,涉及金额上亿元。2019年10月至2019年12月,平均中标量约22台每月。2020年3月份,刻蚀设备采购量降至低谷,1-3月份平均采购量只有11台,3月份只有6台,这可能是受到了疫情的影响。值得注意的是,这些刻蚀设备的采购主要来源于半导体代工企业大量集中的产线建设采购,这也造成了周期性的采购波动。主要的采购单位包括了上海华力集成电路制造有限公司、华虹半导体(无锡)有限公司、上海华虹宏力半导体制造有限公司等集成电路代工企业,与此同时一些3月份以前招标的设备由于疫情也推迟到3月份之后公布中标。招标单位地区分布本次盘点,招标单位地区分布共涉及19个省份、自治区及直辖市。上海、北京、浙江、江苏和广东为刻蚀设备采购排名前5的地区,其中上海的中标量最多,达49台。在这些地区中,上海、浙江和江苏以企业采购为主,这主要由于这些地区是我国集成电路产业发达地区;北京和广东以高校和科研院所采购为主,主要用于科研领域。采购单位性质分布从刻蚀设备的招标采购单位来看,企业是采购的主力军,采购量占比高达59%,高校和科研院所的采购量分别占比20%和21%。值得注意的是,Lam Research International Sarl的设备更受企业青睐,中标数量高达35台,远超其他设备商。不同类型刻蚀设备占比刻蚀设备大致包括了干法刻蚀和湿法刻蚀两类,根据搜集到的中标数据可知,干法刻蚀设备在半导体刻蚀设备中占据主流、占比高达95%。硅干法刻蚀即等离子体刻蚀技术,相对于湿法刻蚀,具有更好的各向异性,工艺重复性,且能降低晶圆污染几率,因此成为了亚微米下制备半导体器件最主要的刻蚀方法。随着亚微米下制备半导体器件需求的增加,硅干法刻蚀技术也显得越来越重要。【参考文献:王晓东:干法刻蚀引领半导体微纳加工】本次光刻设备中标盘点,涉及品牌有SPTS、SCREEN.、AMAT、Oxford、北方华创、Lam Research、WONIK IPS、Tokyo Electron Limited、中微半导体、卡尔蔡司等。其中,各品牌比较受欢迎的产品型号有:牛津仪器PlasmaPro 100 Polaris单晶圆刻蚀系统PlasmaPro 100 Polaris单晶圆刻蚀系统为得到更为精湛的刻蚀效果提供了智能解决方案,在行业中能保持竞争优势。同时,这款仪器具有高效的刻蚀速率、低购置成本、专为腐蚀性的化学成分而设计、出色的刻蚀均匀性、适用于蓝宝石的静电压盘技术、蓝宝石和硅上的GaN、高导通抽气系统、可与其它PlasmaPro系统集成等优点。SPTS深硅刻蚀设备SPTS作为世界顶尖的深硅刻蚀和牺牲层刻蚀设备的供应商,SPTS能够提供一系列的解决方案来满足客户的生产和开发要求。通过一系列的技术的开发,SPTS能为客户提供一系列的先进的工艺,比如功率MOSFET和200mm和300mm晶圆上的高端封装(3D封装和芯片级封装)。这款深硅刻蚀设备的主要应用包括: MEMS,先进封装(TSV),功率器件等等。等离子刻蚀机经济型等离子刻蚀设备EtchLab 200具备 低成本效益高的特点,并且支持揭盖直接 放置样片。EtchLab 200允许通过载片器,实现多片工艺样品的快速装载,也可以直接快速地把样品装载在电极上。RIE等离子体刻蚀设备具备占地面积小, 模块化和灵活性等设计特点。点击此处进入【等离子体/化学刻蚀设备】专场,获取更多产品信息。更多市场信息,查看专题【半导体材料、器件与设备_专题报道】更多资讯请扫描下方二维码,关注【材料说】
  • 全国共享刻蚀设备盘点:牛津第一!
    自美国提出终断该国企业与华为多年的芯片供应以来,研制中国自己的国产芯片提上了我国的发展日程,也是当前中国市场最为紧迫的一项技术,关于芯片技术发展的讨论不仅在专业领域盛行,也成为了普通民众议论的焦点所在。而芯片的制造离不开半导体设备,其中刻蚀设备是其中的重中之重。据了解,目前我国已经突破了刻蚀设备的技术难关,其中中微公司的5nm刻蚀设备已成功销往海外,更是进入台积电的生产线。如今最先进的芯片制造主要使用干法刻蚀技术,干法刻蚀相对于湿法刻蚀,具有更好的各向异性,工艺重复性,且能降低晶圆污染几率,因此成为了亚微米下制备半导体器件最主要的刻蚀方法。干法刻蚀的物理机制,主要包括物理溅射刻蚀、纯化学刻蚀、化学离子增强刻蚀和侧壁抑制刻蚀等。目前我国在生产用刻蚀设备领域已经逐渐实现市场上的突破,但一直以来,对科研用刻蚀设备情况缺乏调查。1月22日,科技部和财政部联合发布《科技部 财政部关于开展2021年度国家科技基础条件资源调查工作的通知(国科发基〔2020〕342号)》,全国众多高校和科研院所将各种科学仪器上传共享,对其中干法刻蚀设备的统计分析或可一定程度反映科研用刻蚀设备的市场信息。小编特对其进行分类统计,供读者一阅。各省(直辖市/自治区)干法设备分布各省(直辖市/自治区)干法刻蚀设备分布图根据统计数据,共享干法刻蚀设备的总数量为276台,涉及25省(直辖市/自治区)。北京、江苏、上海、广东为共享干法刻蚀设备最多的地区,其中北京的数量最多,达81台。北京共享科研用干法刻蚀设备数量较多,主要是由于其实力强劲的高等院校较多,其科研经费充足,可以购买更多的设备。以上四个地区的经济发展水平在全国名列前茅,而且半导体产业发达,对干法刻蚀设备的需求也更高。进一步统计发现,刻蚀设备主要分布于清华大学和中国科学院上海微系统与信息技术研究所。刻蚀设备品牌分布从刻蚀设备的整体品牌分布图可以看到,英国Oxford的刻蚀设备占比最多达22%,其次为德国SENTECH占比为7%,远低于Oxford的市场份额。需要注意的是,北方华创科技集团股份有限公司(简称“北方华创”)是由北京七星华创电子股份有限公司(简称“七星电子”)和北京北方微电子基地设备工艺研究中心有限责任公司(简称“北方微电子”)战略重组而成,是目前国内集成电路高端工艺装备的先进企业,因此在统计中将北方微电子和北方华创归为一家企业。从统计结果来看,国内科研用刻蚀设备中,全球刻蚀设备巨头Lam、AMAT等占比很低,这表明工业用刻蚀设备和科研用刻蚀设备的需求不同,厂商也有所不同。刻蚀设备产地分布从刻蚀设备的产地分布可以看出,进口设备中英国设备最受国内科研用户青睐,占比达30%,但国产设备占比31%(含台湾),高于英国进口数量。统计结果表明,中国品牌包括了北方华创、中国科学院微电子研究所等约20家厂商,呈现出多强局面。本次刻蚀设备盘点中,涉及品牌有Oxford、SENTECH、北京创世维纳科技有限公司、Samco、北方华创 、北京金盛微纳科技公司、北京埃德万斯离子束技术研究所有限公司、SPTS、Gatan、北京泰龙电子技术有限公司、STS、Lam等。其中,各品牌比较受欢迎的产品型号有:等离子刻蚀机高端等离子刻蚀设备SI 500使用低离子; 能量的电感耦合等离子体用于低损伤刻: 蚀和纳米结构刻蚀。通过在广泛的温度: 范围内的动态温度控制确保了可重复且稳定的等离子刻蚀条件。深反应等离子;刻蚀(硅,III-V族半导体,MEMS)可: 采用低温工艺和室温下的气体切换工艺: 来实现。经济型等离子刻蚀设备EtchLab 200具备 低成本效益高的特点,并且支持揭盖直接 放置样片。EtchLab 200允许通过载片 器,实现多片工艺样品的快速装载,也可 以直接快速地把样品装载在电极上。RIE等离子体刻蚀设备具备占地面积小, 模块化和灵活性等设计特点.牛津Oxford等离子体刻蚀机PlasmaPro 80 RIEPlasmaPro 80是一种结构紧凑、小尺寸且使用方便的直开式系统,可以提供多种刻蚀和沉积的解决方案。 它易于放置,便于使用,且能确保工艺性能。直开式设计可实现快速晶圆装卸,是研究和小批量生产的理想选择。 它通过优化的电极冷却和出色的衬底温度控制来实现高质量的工艺。这款设备具有直开式设计允许快速装卸晶圆、出色的刻蚀控制和速率测定、出色的晶圆温度均匀性,可应用于 III-V族材料刻蚀工艺、硅 Bosch和超低温刻蚀工艺、类金刚石(DLC)沉积、二氧化硅和石英刻蚀、用特殊配置的PlasmaPro FA设备进行失效分析的干法刻蚀解剖工艺,可处理封装好的芯片, 裸晶片,以及200mm晶圆、用于高亮度LED生产的硬掩模的刻蚀。
  • 663万!华东师范大学反应离子束刻蚀系统、感应耦合等离子体增强化学气相沉积系统项目
    项目编号:0773-2240SHHW0019项目名称:华东师范大学反应离子束刻蚀系统、感应耦合等离子体增强化学气相沉积系统项目预算金额:663.0789000 万元(人民币)最高限价(如有):663.0789000 万元(人民币)采购需求:项目名称:华东师范大学反应离子束刻蚀系统、感应耦合等离子体增强化学气相沉积系统项目包件1:反应离子束刻蚀系统;数量及单位:1台;简要技术参数:3、等离子体源3.1、射频发生器:最大功率300瓦,13.56MHz,带自动匹配单元;★3.2、ICP源发生器:最大功率3000瓦,2.0MHz,带自动匹配单元;包件2:感应耦合等离子体增强化学气相沉积系统;数量及单位:1台;简要技术参数:★1、SiO2的标准沉积速率:≥40 nm/min;高速沉积速率:≥500 nm/min2、SiO2薄膜沉积厚度:≥6um。其余详见本项目招标文件。合同履行期限:自合同签订之日起250天内;本项目( 不接受 )联合体投标。
  • 设备商、用户对话:刻蚀/沉积工艺如何助力“中国芯”——2018等离子技术应用研讨会侧记
    p  strong仪器信息网讯 /strong近来,中美贸易大战的背景下,“中国芯”成为热议话题,作为一个装备和工艺高度融合的产业,设计、制造、封测、材料设备等每个关键环节都对半导体的发展起着至关重要的作用。其中,以等离子技术为基础的刻蚀、沉积和生长等工艺设备,就是半导体各项最初设计得以实现的基础。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201805/insimg/aaf85acf-1392-40e4-a55c-58a5c78a206e.jpg" title="第01.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "研讨会现场/span/pp  5月8日,作为刻蚀、沉积和生长等工艺设备知名供应商,牛津仪器公司在北京主办了“2018等离子技术应用研讨会”,会议邀请来自第三代半导体联盟、北京工业大学、中国科学院半导体所的科研用户专家,以及半导体生产企业的用户专家,从工艺设备用户与供应商不同角度,对等离子技术在半导体生产/研发中应用的最新进展及存在问题进行了交流探讨。会议间隙,仪器信息网编辑也与部分专家、牛津仪器高层就半导体研究进展等进行了简单交流。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201805/insimg/834c78ab-5016-4463-9193-04daa98cceba.jpg" title="第02.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "牛津仪器等离子技术部亚洲区销售和服务副总裁Ian Wright致辞/span/pp  strong关于研讨会:聚焦科研/生产热点——第三代半导体、VCSEL以及功率射频器件/strong/pp  中国科学院半导体所研究员刘剑认为,从半导体发展历史来看,基础研究固然重要,但是市场对应用研究的影响也非常大。基于此,本次研讨会根据当下科研、工业需求热点,选择“宽禁带半导体”(或称为“第三代半导体”)作为主题,同时,报告内容也兼顾了时下工业应用热点——垂直腔面发射激光器(VCSEL)的相关研究。/pp  研讨会由9个专家报告组成,报告内容主要包括第三代半导体现状与趋势、具有窄谱线和高光束质量的VCSEL介绍、VCSEL相关刻蚀和沉积技术、GaN基半导体电子器件研究进展、低损伤刻蚀和沉积技术等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201805/insimg/a2860748-dcd3-42ef-a89f-991cf6935e47.jpg" title="第03.png"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "用户专家报告/span/pp  (上至下,左至右:第三代半导体产业技术创新战略联盟秘书长 于坤山,北京工业大学教授 徐晨,中科院半导体所研究员 王晓亮,中科院半导体所研究员 王晓东,中科院半导体所研究员 张峰)/pp  会后,据刘剑介绍,他本人与牛津仪器已经有多年的合作,近十年前与牛津仪器共同举办了第一届等离子体研讨会,后续几乎每一届的研讨会也都协助举办。他认为,作为科研用户,通过参与这种形式会议,既增进了与仪器设备企业之间的交流,也可以现场讨论一些技术问题。对于半导体生产企业用户,他们多数会有自己的研发,尤其是一些先进的器件、模块,而研讨会中探讨的一些工艺解决方案,就可以为他们的研究提供帮助。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201805/insimg/3afa8c17-c9a1-41cb-829b-6450e1228d21.jpg" title="第4.png"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "牛津仪器应用专家报告/span/pp style="text-align: center "(左至右:牛津仪器Stephanie Baclet博士,杨小鹏博士,黄承扬博士)/pp  strong我国半导体研究现状、热点如何?牛津仪器关注哪些热点?/strong/pp  关于当下半导体相关领域研究进展或研究热点,刘剑表示:“我之前研究领域主要在III-V族半导体材料,但最近又开始回归到传统半导体硅材料,当然也会涉猎部分III-V族半导体材料。从目前来看,类似我们这样的科研工作者,不太容易区分大家具体是做什么材料体系,基本是受一个学科进展的牵引或个人的兴趣,基于不同的材料在做相近的科研。而关于研究热点,其实这次研讨会主题内容中的第三代半导体以及垂直腔面发射激光器(VCSEL)都是当下大家比较关注的。值得一提的是,VCSEL并不是一个新的研究领域,相关研究也有多年的历史,但就是因为IphoneX用了这种3D图像技术之后,VCSEL才重新进入到大众视野。这也成为工业应用热点再次推动了相关科研的一个实例。”/pp  中国科学院半导体所研究员张峰介绍说:“我是研究碳化硅的,领域是宽禁带半导体。因为我们国家对宽禁带半导体的布局比较早,包括碳化硅衬底材料、外延材料、器件,还有最后的封装,所以相比传统半导体领域,与世界的差距并没有那么大,也就是2-3年的时间。因此这个领域在未来五到十年内,我们国家有很大希望能够迎头赶上,甚至在某些方面可以达到世界一流的水平。”关于半导体研究热点,他认为:‘从“中兴之痛”事件我们可以看到,半导体研究或关注的热点主要是极大规模集成电路方面,在14纳米、7纳米及5纳米这些制程方面的一个进展。也就是说我们国家在这个方面跟国际的差距还比较大,目前我们实现量产是28纳米,我们希望未来能向14纳米、7纳米及5纳米靠近。但这需要产业链整体的提高,包括我们的设备、设计、器件制作工艺,及最后的封装等各个方面,这样才能够跟得上世界的发展。目前半导体研究热点主要是在设计及工艺制备这两方面。工艺制备方面又跟设备很相关,所以说这些都是紧密相连的。’/pp  牛津仪器的刻蚀、沉积、生长等相关设备及工艺解决方案在中国半导体领域的市场占有率较高,且拥有广泛的科研及生产企业用户群。设备厂商在前沿热点把控上,在时刻保持对用户最新需求的关注基础上,职业敏锐性往往赋予他们自己的优势。那么,牛津仪器又对哪些半导体领域的热点保持关注呢?牛津仪器等离子技术部亚洲区销售和服务副总裁Ian Wright表示:“牛津仪器接下来的关注重点,不光是那些具有研发创新能力但处于初期发展阶段的企业,我们更感兴趣的是那些已经成熟的解决方案,这需要更多更稳定的设备把之前好的工艺过程重复出来。对于我们关注的产业领域,主要有两个,第一是光电子领域,比如一些手机的3D面部识别功能,这个功能其实是运用到了我们VCSEL工艺,这个工艺还可以用在无人驾驶汽车的智能测距(测距机理即安装的各种光电传感器,通过各种光电传感器件的协同合作来实现自动驾驶功能)。第二个领域是5G信号网络,该领域会用到一些比较先进的光电子、功率器件,比如,之前的功率器件是基于硅,第二代是基于砷化镓,第三代是氮化镓和碳化硅工艺,牛津仪器是从第一代到三代全覆盖的,当然我们正在着手研究更先进的第四代、第五代半导体,如氧化镓、金刚石等。”/pp  strong用户与设备商协同发展,用户怎么看?牛津仪器怎么看?/strong/pp  在半导体领域,工艺设备对科研或企业生产是至关重要的。张峰认为:“工艺设备是一个基础,如果没有工艺设备,我们设计的东西就没办法实现,但是我们国家在这方面实际上是跟世界有一些差距的,80%-90%工艺设备需要进口。所以,工艺设备方面,我们希望与像牛津仪器这样的国外优秀厂商合作,学习他们的先进技术及经验,使我们国家逐渐掌握工艺设备的研发及生产能力。另外,从科研用户角度讲,我们也有很好的合作。我们会及时向牛津仪器反馈一些最新的需求,比如我们做氮化镓,碳化硅的时候,需要让刻蚀设备刻蚀的更精密一些(如今天会上牛津仪器介绍的原子层刻蚀技术),还有就是在原子层刻蚀与传统等离子体刻蚀结合的需求等。当然,牛津仪器也在不断努力配合我们的需求。”关于如何实现用户与设备供应商更好的合作,张峰表示:“客户可以首先提出一些需求、提供一些样品,让设备厂商提供一些解决方案,及刻蚀的结果 另外,希望设备厂商针对客户提出的新需求,如定制化的需求等,能够积极的满足。”/pp  刘剑补充道:“从科研用户来讲,与生产用户不同的是,我们往往会提出一些特殊的需求。我们主要希望设备企业的工艺设备能够稳定,并能获得我们所需的实验结果。牛津仪器会和用户一起来开发新的工艺,接受客户提出的部分特殊需求,去单独开发一套工艺,然后结合设备一起提供给客户,这对客户研究过程中一些特殊情况是有很大帮助的。”/pp  Ian Wright对两位老师的看法表示赞同,并表示:“总结来看,用户对我们提出的需求主要有三个方面:第一是希望我们能够把牛津仪器一些成熟的解决方案尽快的提供给他们 第二就是他们提出一些特殊需求,我们如果没有一个对应方案的话,能够配合他们一起去解决 第三,售后服务保障,作为一个合格的生产先进器件厂商,并不是说你有了一台先进的工艺设备放在那里就可以没有后顾之忧,接下来的售后服务能力也对你之后的企业发展有很重要的影响。比如设备一旦出现故障,多长时间可以解决 需要一个备件,又需要多长时间可以提供,也是客户衡量设备供应商的一个标准。在此,我敢肯定的是,牛津仪器有能力也愿意在刚才提到的三方面需求全方位与客户合作,解决客户从售前到售后的后顾之忧。”/pp  “牛津仪器走进中国市场已经20余年,但等离子技术部门的大部分精力放在了高校院所科研用户上。为满足更广泛用户的需求,我们决定将工作重心逐渐向技术非常成熟的生产企业用户转移,增强深入合作,通过我们的设备及工艺再加上科研用户的技术来孵化出更多更新的成果。” Ian Wright继续说道。/pp  牛津仪器等离子技术部中国区经理陈伟表示:“中国从过去的能源依赖,发展到现在成为芯片依赖社会形态,包括在各个国家国际环境的变化,都逐渐把矛盾转移到芯片研究上来。许多人认为这是一个危机,但我认为这对我们国家、对我们设备供应商都是一个机遇。现在中国在大力推广自己的芯片产业,这个过程,就需要像牛津仪器这样能够提供优秀设备、解决方案的公司来一起合作,把最新的芯片用最短时间开发出来,这样中国就不必再受制于人。”关于中国市场,他表示:“中国始终是牛津仪器十分重视的市场所在,公司也愿意投入更多的财力、物力到中国市场上来,接下来,牛津仪器将加强与用户的合作。如我们现在正在和一些客户讨论,以共建实验室的方法,来让客户在这方面有更快的突破,帮助一些有潜力客户实现量产。另外,如Ian Wright所说我们更加重视科研客户的同时,对于生产企业客户,我们也会不断加大服务力度,比如,近两年我们相关的售后服务团队就增加了一倍。”/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201805/insimg/418b86a0-2820-4b0c-98ac-4ca3401df3ef.gif" title="第05.gif"//pp style="text-align: center "span style="color: rgb(0, 0, 0) "(右一:牛津仪器等离子技术部亚洲区销售和服务副总裁Ian Wright /span/pp style="text-align: center "span style="color: rgb(0, 0, 0) "右二:牛津仪器等离子技术部中国区经理陈伟)/span/p
  • 合肥研究院低温等离子体灭菌机制研究取得进展
    style type="text/css".TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }/stylep  近年来,低温等离子体技术在生物医学领域显示出巨大应用前景及优势,受到广泛关注。其中,低温等离子体灭菌是该技术在生物医学研究中的热点。目前,已有多个研究显示其在伤口消毒、医疗设备消毒、农产品安全及食品安全等领域都具有广阔的灭菌应用前景。中国科学院合肥物质科学研究院技术生物与农业工程研究所黄青课题组,在利用低温等离子体技术增强灭菌效果及有关灭菌机制研究方面取得新进展。/pp  黄青课题组关注微生物所处环境包括无机盐等对等离子体灭菌效果的影响。研究发现,维持生命活动所必需的常见无机盐离子——氯离子对低温等离子体灭菌效果产生重要影响,并根据等离子体处理时所用气体成分不同而不同。在氧气等离子体处理下,溶液中氯离子存在可显著促进灭菌效果,但在氮气或空气等离子体处理下,灭菌效果却明显下降。/pp  为探索其作用机制,研究人员对不同气体等离子体处理下溶液中氯离子的转变,及其对生成的多种活性氧基团的影响进行定量分析。研究表明,氯离子在氧气等离子体处理下会快速氧化生成活性氯,后者可进一步进入细菌胞内,引起细菌死亡,而在氮气或空气等离子体处理下,生成的活性氯与生成的过氧化氢、亚硝酸根等快速反应生成氯离子、硝酸根等产物,导致等离子体灭菌能力降低。对细胞膜通透性分析表明,氯离子通过调节等离子体处理下细胞膜的损伤而改变等离子体的灭菌效果。/pp  该研究有助于理解等离子体灭菌机制,并为今后实际应用中有目的地提高等离子体灭菌效果提供了依据。相关研究成果发表在emPlasma Processes and Polymers/em上。研究工作得到国家自然科学基金、安徽省自然科学基金及中科院青年创新促进会等的支持。/ppbr//pp style="text-align:center "img alt="" oldsrc="W020171109532114950624.jpg" src="http://img1.17img.cn/17img/images/201711/uepic/eed5e7ee-6b7c-4248-a14d-db2226e5ed85.jpg" uploadpic="W020171109532114950624.jpg"//pp style="text-align: center "氯离子对等离子体灭菌效果的影响及作用机制/p
  • 抗生素污染怎么办?低温等离子体技术来帮忙
    p  废水排放中的抗生素污染一直是个令人头疼的难题。日前,中国科学院合肥物质科学研究院技术生物与农业工程研究所等研发出了一种低温等离子体废水处理技术,能够对诺氟沙星为代表的喹诺酮类抗生素进行降解处理。相关成果发表在最近的环境领域类专业期刊《光化层》上。/pp  该所研究员黄青课题组与企业合作,利用自行研制的医疗废水处理一体机产生臭氧,对诺氟沙星进行降解处理,并利用表面增强拉曼光谱分析降解产物,研究了其降解诺氟沙星的效率及机理。/pp  此前,黄青课题组提出利用低温等离子体技术处理降解诺氟沙星的方案,并且发现处理过程中臭氧降解作用效果明显。为此,他们进一步研究臭氧对诺氟沙星的降解机理。研究人员发现,等离子体产生的臭氧可以快速降解诺氟沙星,同时臭氧对诺氟沙星的氧化降解主要体现在脱氟反应、羧基团和喹诺酮基团的断裂。/pp  “低温等离子体产生臭氧经济实用、简便易行、绿色环保、无二次污染、实用性高,对开发高效废水处理技术、推广等离子体医疗废水处理技术的应用化发展有着重要意义,这项研究拓展了低温等离子体技术在环保领域的应用。”黄青透露,目前有关技术与设备正处于市场化推广阶段。/pp  据了解,制药工业、养殖业及医院排放的污废水其成分非常复杂,不仅包括各种难降解有机物、各类细菌和病毒,还包含大量的抗生素。这些含抗生素的废水由于不经处理或者处理不达标排放至环境水体中造成细菌耐药性增强,严重影响生态平衡,同时对人体健康造成潜在威胁和风险。因此,研发新的既绿色环保又高效的抗生素废水处理技术和设备迫在眉睫。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/983e1d88-7823-40c7-9efd-ca47300d206e.jpg" title="绿· 仪社.jpg" alt="绿· 仪社.jpg"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "扫二维码加“绿· 仪社”为好友 了解更多环境监测精彩资讯!/spanbr//p
  • 中微公司ICP刻蚀设备Primo nanova®第100台反应腔顺利交付
    2021年6月9日,中微半导体设备(上海)股份有限公司(以下简称“中微公司”,股票代码:688012)在上海总部举办电感耦合等离子体(ICP)刻蚀设备Primo nanova第100台反应腔交付客户庆祝仪式。中微公司执行副总裁兼首席运营官杜志游博士、集团副总裁兼等离子刻蚀产品事业总部总经理倪图强博士、副总裁兼ICP刻蚀产品部总经理刘身健博士和其他核心团队成员出席了庆祝仪式。Primo nanova是中微公司于2018年正式发布的第一代电感耦合等离子体刻蚀设备。该设备采用了中微公司具有自主知识产权的电感耦合等离子体刻蚀技术,具有对称的反应腔、超高分子泵抽速、独特的低电容耦合线圈设计和多区细分温控静电吸盘等创新特性,帮助客户在存储芯片和逻辑芯片的批量生产中获得更好的工艺加工能力和更低的生产成本。图源 中微官网目前,中微公司Primo nanova产品已成功进入海内外十余家客户的晶圆生产线,在领先的逻辑芯片、DRAM 和3D NAND厂商的生产线上实现大规模量产。在全球客户的信任和支持下,中微公司第100腔Primo nanova刻蚀设备的顺利交付,是公司ICP刻蚀产品业务发展新的里程碑,标志着产品发展迈入新的阶段。当前集成电路科技发展日新月异,中微公司将继续在全球客户和产业链合作伙伴的支持下,持续开发极具竞争优势的技术和产品,助力行业实现跨越式发展。关于中微半导体设备(上海)股份有限公司中微半导体设备(上海)股份有限公司(证券简称:中微公司,证券代码:688012)致力于为全球集成电路和LED芯片制造商提供领先的加工设备和工艺技术解决方案。中微公司开发的等离子体刻蚀设备和化学薄膜设备是制造各种微观器件的关键设备,可加工微米级和纳米级的各种器件。这些微观器件是现代数码产业的基础,它们正在改变人类的生产方式和生活方式。中微公司的等离子体刻蚀设备已被广泛应用于国际一线客户从65纳米到5纳米工艺的众多刻蚀应用,中微公司开发的用于LED和功率器件外延片生产的MOCVD设备已在客户生产线上投入量产,目前已在全球氮化镓基LED MOCVD设备市场占据领先地位。
  • 中微公司第 1500 个 CCP 刻蚀设备反应台顺利付运
    2021年11月2日,中微半导体设备(上海)股份有限公司(以下简称“中微公司”,股票代码:688012)迎来了一个重要的里程碑:中微公司的电容耦合高能等离子体(CCP)刻蚀设备第1500个反应台顺利付运国内一家领先的半导体制造商。本次交付的Primo D-RIE刻蚀设备反应台来自该客户的重复订单。 据了解,Primo D-RIE刻蚀设备被全球领先的芯片制造商用于制造存储和逻辑器件。为优化产量而设计,Primo D-RIE可以配置多达三个双反应台反应腔,每个反应腔既可以独立操作,又可以同时加工两片晶圆。此外,该设备的突出特点还包括:中微公司具有独立自主知识产权的甚高频和低频混合射频去耦合反应等离子体源、等离子体隔离环、用于控制腔体内反应环境的先进工艺组件。 自2007年Primo D-RIE发布以来,中微公司陆续拓展了CCP刻蚀设备产品线,以满足客户日益严苛的技术需求。除Primo D-RIE双反应台刻蚀设备以外,CCP刻蚀设备系列还包括双反应台刻蚀设备Primo AD-RIE、单反应台刻蚀设备Primo SSC AD-RIE、Primo HD-RIE和刻蚀及除胶一体化的 Primo iDEA。这些产品为客户提供了全面综合的设备解决方案,用于5纳米及以下工艺的多种应用。中微公司的刻蚀设备产品线还包括其他两款电感耦合低能等离子体(ICP)刻蚀设备和硅通孔(TSV)刻蚀设备。中微公司等离子体刻蚀设备独特的创新技术和不断快速增长的市场占有率巩固了在国内外半导体前道设备行业的领先地位,并推动公司持续发展。今年到目前为止,用于3D NAND应用的Primo HD-RIE和用于7纳米及以下节点逻辑应用的Primo AD-RIE-e占设备总出货量的50%。其中,中国大陆和台湾地区占比最高。中微公司今年前三个季度的销售收入比去年同期增长了40.4%,其中刻蚀设备的销售增长率约100%。
  • 王晓东:干法刻蚀引领半导体微纳加工
    p style="text-align: justify text-indent: 2em "10月15日-16日,中国科学院半导体研究所、仪器信息网联合主办首届“半导体材料与器件研究与应用”网络会议(i Conference on Research and Application of Semiconductor Materials and Devices, iCSMD 2020),22位业内知名的国内外专家学者聚焦半导体材料与器件的产业热点方向,进行为期两日的学术交流。会议期间,中科院半导体所、集成电路工程研究中心的王晓东研究员做了题为《半导体微纳加工中的硅干法刻蚀技术》的报告。/pp style="text-align: justify text-indent: 2em "硅干法刻蚀即等离子体刻蚀技术,相对于湿法刻蚀,具有更好的各向异性,工艺重复性,且能降低晶圆污染几率,因此成为了亚微米下制备半导体器件最主要的刻蚀方法。在此次报告中,王晓东研究员介绍了三种不同的硅干法刻蚀技术。/pp style="text-align: justify text-indent: 2em "据介绍,硅干法刻蚀的物理机制,主要包括物理溅射刻蚀、纯化学刻蚀、化学离子增强刻蚀和侧壁抑制刻蚀等。影响硅干法刻蚀效果的因素主要有三类:一是等离子体密度和能量,通过配备两套射频源,ICP和RF射频源来分别控制;二是腔室气压,由于鞘层的存在,一般需要气压小于100 mtorr使得离子平均自由程大于鞘层宽度;三是刻蚀气体选择,气体需要根据反应生成物是否容易去掉来选择,首选挥发性产物。/pp style="text-align: justify text-indent: 2em "王晓东研究员重点介绍了三种硅干法刻蚀技术,即Bosch、Cryo、Mixed。Bosch通常刻蚀特征尺寸>1 μm,刻蚀深度>10 μm,刻蚀结果深且宽,即深硅刻蚀;Cryo即所谓的低温工艺,可以得到平滑侧壁以及纳米尺寸结果;Mixed刻蚀深度<10 μm,具有低的深宽比,也即浅硅刻蚀。/pp style="text-align: justify text-indent: 2em "深硅刻蚀(Bosch)是目前应用最广泛,发展最成熟的硅刻蚀工艺。Bosch最初的基本工艺过程(Basic Bosch Process)就是钝化和刻蚀交替进行。此后,在其中加入轰击过程,发展出先进工艺(Advanced Bosch Process),即钝化、轰击和刻蚀三个过程不断循环,以此达到深硅刻蚀目的。Bosch工艺的优势是高速率、高各向异性和高选择比。其劣势为工艺复杂,晶片状况影响工艺过程,存在侧壁scallop等。同时,深硅刻蚀也存在一些典型的刻蚀问题:一是刻蚀剖面控制,如Undercut、Bowing、Bottling、Trenching、Footing等问题;二是负载效应,随硅暴露面积的增加,刻蚀速率和刻蚀均匀性都会降低,通常减少腔体气压可解决此问题;三是ARDE问题,即随着刻蚀深宽比的增加,刻蚀速率会下降,一般可通过增加沉积保护气体气压,增宽离子的角分布和加入刻蚀截止层等解决;四是Notching问题,即由于电荷积累造成钻蚀,可采用低频脉冲模式LF Pulse Mode来解决。/pp style="text-align: justify text-indent: 2em "除深硅刻蚀外,下电极温度在液氮-100 ℃下,可以进行比较精细的刻蚀—低温刻蚀(Cryo)。与深硅刻蚀相比,其工艺气体不同,一般为SFsub6/sub和Osub2/sub,生成物SiOsubx/subFsuby/sub在-85 ℃时很容易形成,在室温下即可挥发,腔室环境非常干净。因此低温刻蚀可以得到侧壁光滑,undercut很小,选择比高的结果。但此时光刻胶会受影响,所以胶的厚度不能太厚,通常小于1.2 μm,且需要进行合适的烘烤,防止胶裂。/pp style="text-align: justify text-indent: 2em "最后一种就是浅硅刻蚀(Mixed),即在相对较浅的刻蚀中(<10 μm),多采用同步刻蚀方法,钝化和刻蚀同步进行,所以也称同步工艺。与深硅刻蚀不同,浅硅刻蚀的刻蚀性气体与聚合物生成气体同时输入腔室,刻蚀和钝化同步进行,导致钝化和刻蚀的作用会在很大程度上抵消一部分,所以实现了光滑的侧壁(<100 nm)。但这使得刻蚀环境十分复杂,工艺窗口相对较窄,工艺重复性控制难度较大。与多步刻蚀相比,采用同步刻蚀方法进行刻蚀时,为获得较高的刻蚀速率和各向异性,刻蚀中所用射频功率和偏压较高,导致刻蚀材料和掩模之间的选择比低,刻蚀结果对掩模质量依赖性较强,对掩模材料和质量要求高。/pp style="text-align: justify text-indent: 2em "在报告最后,王晓东研究员还介绍了半导体所在微纳器件制备中如MEMS、纳米波导、纳米线器件等方面的大量工作。/pp style="text-align: justify text-indent: 2em "随着亚微米下制备半导体器件需求的增加,硅干法刻蚀技术也显得越来越重要,而半导体所所级公共技术服务中心具备上述技术能力。同时这是一个开放的平台,如果有相应的需求也可以进行合作参与。/p
  • 如何打造全球领先的刻蚀机大厂?
    9月15日,中微半导体设备(上海)有限公司创始人、董事长、总经理尹志尧在公开演讲中探讨如何打造高质量、有竞争力的半导体设备公司时,表示目前半导体公司的设备主要可以分为四大类,光刻机、等离子体刻蚀机、薄膜设备、测试设备。以刻蚀机设备为例,等离子体刻蚀设备市场成长迅速,目前年市场规模超过120亿美元。并且等离子体刻蚀设备已经工厂中投入最大的部分,已经占到工厂设备成本的30%以上。尹志尧提到一定要将更大力度推动和发展半导体微观加工设备产业提到日程上来,半导体设备公司不仅是集成电路制造的供应商和产业链,也是集成电路制造的最核心部分。而大国博弈在经高科技战线上,集中在半导体设备和关键零部件的限制上。当前中微半导体开发的四类设备均达到了国际领先水平,如CCP电容性刻蚀机、ICP电感型刻蚀机、深硅刻蚀机、MOCVCD。其中,中微开发的第三代CCP高能等离子体刻蚀机,已经从过去的20:1发展到如今的60:1极高深宽比细孔。并且中微CCP刻蚀机在台湾领先的晶圆厂和存储厂,已经占据三成市场份额。中微的MOCVD设备在国际氮化镓基MOCVD市场占有率已在2018年第四季度已经达到了70%以上。尹志尧表示,十年来中国有54个公司和研究所曾宣布开发MOCVD设备,但目前只有中微一家成功,并且已经实现稳定的量产。多年来中微的MOCVD设备不断提高蓝绿光LED波长均匀性,目前LED波长片内均匀性已经做到0.71nm。如何将中微半导体做大做强,尹志尧表示中微以“四个十大”为中心,总结17年的经验与教训,继续发展科创企业的管理章法,其中包括:中微产品开发的十大原则;中微战略和商务的十大原则;中微运营管理的十大原则;中微精神文化的十大原则。在开发产品上,尹志尧表示不要老跟着外国人的设计,这样很难做出自己独有的产品,因此中微提出了甚高频去耦合反应离子体刻蚀,让高频、低频都在下电极,当前该技术已经具备一定优势。此外,中微公司还开发了CCP单台机和双台机,ICP单台机和双台机,可以覆盖90%的刻蚀应用,不仅在成本上降低30%,效率上也提升了50%。战略上,中微将通过三维成长(集成电路设备、泛半导体设备、非半导体设备),计划在未来10到15年成为国际一流的微观加工设备公司。公司运营管理上,中微通过运营KPI管理不断提升质量管理水平。截至2021年6月份,中微已经申请了1883个专利,并已获得1115个专利。尹志尧表示,尽管中微在知识产权上已经做得很全面,但也受到多次美国公司对中微发起的专利诉讼,有三次是美国公司对中微提起诉讼,一次是中微对美国公司发起的诉讼。值得注意的是,在专利诉讼中,两次获得了完全胜利,另外两次也在较大优势下达成和解。中微公司在等离子体刻蚀机的技术优势,也让美国在2015年取消了对中国的出口控制,而中微的相关产品出口环境也变得极为宽松。值得注意的是,中微实施了员工期权激励和全员持股的模式,认为这是高科技公司发展的生命线,也是社会主义集体所有制的核心。尹志尧认为,企业价格由投入的股本金带来和劳动创造的价值两部分组成,但公司80%的市值由劳动力创造。不忘初心,就是回到“资本论”,就是要解决剩余价格的合理分配问题。通过期权和股权将员工长期利益和企业绑定,使更多员工参加公司,使员工积极为公司工作,全员持股是中微赖以生存和发展的生命线。尹志尧提到,自己仅占公司1%的股份,但这并不意味着就无法将公司做好。让公司做大做强,要做到强群的总能量最大化和净能量最大化,总能量最大化即使所有阶层和所有部门人们的积极性群都发挥出来,净能量最大化即怎样使各个阶层和各个部门的能量不会在内耗中消失。最后,尹志尧表示,一家公司从初创公司做到成功,公司的文化和作风是主要应随,要建立一直领先的百年老店,初创时期,首先要有过硬的技术产品,到了大公司时期要有足够的运营能力,做到领头公司,则需要看公司的文化作风。
  • 中微公司:已开发出小于5纳米刻蚀设备,刻蚀设备收入增长58.49%
    3月31日消息,昨日中微公司发布其2020年年报,报告期内,中微公司实现营业收入22.73亿元,较上年增长16.76%。归属于上市公司股东的净利润4.92亿元,同比增长161.02%。扣非净利润2331.94万元,同比减少84.19%。中微公司在年报中表示,2020年归母净利润实现翻倍增长主要源于:(1)中芯国际科创板股票投资公允价值变动收益约2.62亿元;(2)公司2020年计入非经常性损益的政府补助较2019 年增加约2.26亿元。而该年扣非净利润较上年同期减少84.19%,则是由于实施股权激励产生的股份支付费用约1.24亿元(属于经常性损益)。图片来源:中微公司年报截图从营收构成来看,中微公司来自半导体设备产品销售的收入达到17.99亿元,来源于设备相关配件的营收为4.42亿元,而设备支持服务的收入则为0.33亿元。产品销售中源于刻蚀设备的收入为12.89亿元,同比增长约58.49%;源于MOCVD设备的收入为4.96亿元,同比下降约34.47%。图片来源:中微公司年报截图在年报中,中微公司就刻蚀技术的未来发展作出了分析。分析指出随着芯片制程向5纳米及更先进制程发展,当前浸没式光刻机受光波长的限制,需要结合刻蚀和薄膜设备,采用多重模板工艺,利用刻蚀工艺实现更小的尺寸。刻蚀技术及相关设备的重要性因此进一步提升。而在2D存储器件的线宽接近物理极限后,NAND闪存已进入3D时代,在其制造工艺中,增加集成度的主要方法不再是缩小单层上线宽而是增加堆叠层数。3D NAND层数增加要求刻蚀技术实现更高的深宽比。中微公司指出,为应对上述趋势,自身在刻蚀设备技术上的研发进展包括:(1)在逻辑集成电路制造环节,其开发的12英寸高端刻蚀设备已运用在国际知名客户65 纳米到5纳米的芯片生产线上;同时,其根据厂商的需求,已开发出小于5纳米刻蚀设备,用于若干关键步骤的加工,并已获得批量订单。目前正在配合客户需求,开发新一代刻蚀设备和包括更先进大马士革在内的刻蚀工艺,能够涵盖5纳米以下更多刻蚀需求和更多不同关键应用的设备。(2)在3D NAND芯片制造环节,其电容性等离子体刻蚀设备可应用于64层和128层的量产,同时根据存储器厂商的需求正在开发新一代能够涵盖128层及以上刻蚀应用及相对应的极高深宽比的刻蚀设备和工艺。此外,电感性等离子刻蚀设备已经在多个逻辑芯片和存储芯片厂商的生产线上量产,正在进行新技术研发,以满足5纳米以下的逻辑芯片、1X纳米的DRAM芯片和128层以上的3D NAND芯片等产品的ICP刻蚀需求,并进行高产出的ICP刻蚀设备研发。在用于制造LED外延片的MOCVD设备技术上,中微公司表示,其用于Mini LED生产的MOCVD设备的研发工作进展顺利,已有设备在领先客户端开始进行生产验证;此外,制造Micro LED等应用的新型MOCVD设备也正在开发中。中微公司在年报中称,去年全年其研发投入总额为6.40亿元,其中包含股份支付费用0.49亿元。若剔除股份支付费用则全年研发投入为5.91亿元,较2019年增长39.16%,主要由于新工艺的研发,包括存储器刻蚀的CCP和ICP刻蚀设备、Mini-LED大规模生产的高输出量MOCVD设备、Micro-LED应用的新型MOCVD设备等。
  • 大连理工大学突破等离子体工艺腔室仿真软件,助力半导体关键设备研发
    超大规模集成电路(ULSI)产业直接关系到国家的经济发展、信息安全和国防建设,是衡量一个国家综合实力的重要标志之一。在半导体芯片制备过程中,约有三分之一的工序要使用等离子体技术,因此配备等离子体工艺腔室的材料刻蚀和薄膜沉积设备是ULSI制造工艺的核心。目前,半导体工艺中最常用的两种等离子体源是CCP(容性耦合等离子体)和ICP(感应耦合等离子体)。等离子体工艺腔室制造过程极为复杂,不仅涉及精密机械加工技术,还要统筹考虑电源、气体、材料等外部参数的优化,以及与晶圆处理工艺的兼容性。如果采用传统的“实验试错法”,不仅成本巨大,而且延长了设备的研发周期,将严重制约我国ULSI产业的快速发展。因此,采用建模仿真与实验诊断相结合的方式、为等离子体工艺腔室的研发与优化提供方案,成为一种必然趋势。等离子体放电过程是极其复杂的,受到多种外界参数的控制,如电源功率与频率、气体成分与压强、腔室尺寸及材料属性等。此外,等离子体系统还包含了多空间尺度和多时间尺度的变化,以及多物理化学场的耦合过程。例如等离子体、鞘层、表面微槽等空间特征尺度相差10个量级;电磁场、带电粒子、中性气体及化学反应等时间特征尺度相差9个量级。如此复杂的等离子体工艺环境,给物理建模和数值仿真都带来了巨大挑战。物理学院PSEG团队在王友年教授的带领下,自2005年开始,历经近二十年时间,在国内率先研发出具有自主知识产权的等离子体工艺腔室仿真软件——MAPS(Multi-Physics Analysis of Plasma Sources)。通过采用物理建模、数值仿真与实验诊断相结合的方法,解决了制约等离子体工艺腔室设计和制造中的一些关键技术难题,为我国研发具有自主知识产权的等离子体工艺腔室提供了技术支撑。MAPS是一款专门面向等离子体工艺腔室的数值模拟软件平台,可以同时为等离子体工艺腔室的参数设计和表面处理工艺(材料刻蚀和薄膜沉积)的结果预测提供模拟服务。基于不同的等离子体模型,MAPS包含不同的数值模拟方法,如粒子/蒙特卡洛碰撞模拟方法、流体力学模拟方法、流体力学/蒙特卡洛碰撞混合模拟方法、整体模型模拟方法等。软件平台包含输入部分、输出部分以及七大模块,分别是等离子体模块、中性气体模块、电磁模块、鞘层模块、化学反应模块、表面模块及实验验证模块。此外,PSEG团队研制了结构可变的大面积、多功能等离子体实验平台和多套CCP和ICP放电平台,并自主研发了射频磁探针、微波发卡探针、光探针、吸收光谱诊断系统、布拉格光栅测温系统、悬浮双探针等诊断工具和集成了商用的Langmuir探针、质谱仪、离子能量分析仪、光谱仪、ICCD及光致解离负离子诊断系统等。这些诊断手段为等离子体源多参数诊断提供条件。大量研究表明,MAPS的模拟结果与实验测量结果在量级和变化趋势上达到一致,证明了MAPS仿真软件的可靠性。近期,针对工业中常用的CCP源,MAPS仿真软件提供了一种新的快速仿真算法:基于多时间步长、泊松方程的半隐式修正、超松弛迭代等,可以将模拟速度提高几十倍。此外,针对ICP源,PSEG团队也建立了一种新的双极扩散近似模型,可以对带有射频偏压的感性耦合放电过程进行仿真。该方法不仅模拟速度快,还适用于低气压放电。MAPS仿真软件具有外界控制参数多、耦合物理场多、数值求解器多、数值仿真模型多等优势,能够对ICP刻蚀机、CCP刻蚀机、PECVD(等离子体增强化学气相沉积)和PVD(物理气相沉积)工艺腔室进行仿真,支持对优化工艺过程参数的进一步探索,受到了国内的多家半导体设备制造企业的青睐。近十年中,MAPS仿真软件已分别为北方华创、中微半导体设备(上海)、拓荆科技、苏州迈为、武汉长江存储及理想能源设备(上海)等多家企业提供仿真服务。未来,PSEG团队将继续专注于对MAPS仿真软件的完善和升级,希望可以为半导体、光伏及平板显示等产业的创新与发展注入源源不断的强劲动力。
  • 牛津仪器纳米级等离子体工艺研讨会在京召开
    仪器信息网讯 2013 年5 月14 日,由牛津仪器等离子技术公司主办的“牛津仪器纳米级等离子工艺研讨会”在北京举行,来自广大企业及科研院所的160余名用户参加了此次会议。会议现场  会议就微纳米技术在科研领域的新发展、未来的加工趋势、微纳米结构及器件应用等内容进行了探讨和交流。牛津仪器商务发展总监 Frazer Anderson先生  牛津仪器商务发展总监Frazer Anderson先生首先介绍了牛津仪器及牛津仪器等离子体技术公司的基本情况。牛津仪器的业务主要分为纳米分析部、工业分析部和服务三大部分。其业务收入目前38%来自亚洲、32%来自欧洲、北美占27%,其他区域占3%。  牛津仪器等离子体技术公司属于纳米分析部,作为等离子体与沉积处理系统的领导供应商,成立于1982年,拥有超过30年的工艺经验,超过6000件的工艺库,能刻蚀、沉积或使用超过50%的元素周期表中的自然界元素。应用领域包括高亮度发光二极管(HBLED)、微机电系统MEMS、第三代光伏发电及下一代半导体技术等。拥有遍布全球的销售服务网络,并在英国、德国、中国、美国、日本、新加坡等设立了分公司与办事机构。中科院半导体所半导体集成技术研究中心主任 杨富华教授  杨富华教授介绍了中科院半导体所、半导体技术研究中心、纳米技术在中科院半导体所的应用、半导体所采用的牛津仪器等离子体技术公司的产品使用情况等。他表示举办这样的交流会对于科研人员更好的了解相关领域的前沿动态及技术交流很有帮助。等离子体技术对于未来的科研工作非常重要,我们的研究人员一定要懂得仪器的使用原理,更好的操作仪器,获取出色的研究成果。同时他提出对于仪器公司来说,要想提高在中国的市场占有率,需要在仪器质量、价格、服务及技术打包方案等方面做更多的关注。牛津仪器MEMS首席工艺科学家 Mark McNie先生  Mark McNie在报告中主要介绍了深硅刻蚀和低温纳米刻蚀技术在微机电系统(MEMS)中的应用。目前微机电系统的主要应用领域包括微机械、微流体、传感器及生物医药等领域。其发展趋势主要在于一体化和复杂化。台湾工研院微系统技术中心经理 Dr.Lin Ching-Yuan  Lin Ching-Yuan博士在报告中指出微机电系统(MEMS)的市场规模到2017年将达到210亿美元,其2011年的市场规模为102亿美元,年均复合增长率将达到13%。未来在消费品和生物应用领域将发挥重要的角色,晶圆级的组合结构设计、3D一体化设计将成为MEMS的发展趋势,MEMS技术在半导体及移动电话领域的应用需求依然强劲。牛津仪器首席技术官 Dr. Mike Cooke  Mike Cooke博士介绍了ALD(Atomic layer deposition)原子层沉积系统及其应用。ALD是一种可以将物质以单原子膜形式一层一层的镀在基底表面的方法,该技术作为一种先进的薄膜生长技术,已经在高介电和半导体薄膜生长等多方面得到了应用。新型高介电栅介质材料,纳米材料和纳米技术以及3D电子器件等是推动ALD发展重要的需求动力。  另外,此次交流会中Mike Cooke博士还就纳米薄膜加工工艺面临的问题及解决方案作了介绍。牛津仪器III-V族刻蚀应用首席工艺科学家 邓力刚博士  邓博士在报告中介绍了激光干涉、光谱发射技术在III-V族刻蚀中的应用,这两种技术均可以很好的用于刻蚀监测及控制刻蚀深度。III-V 族刻蚀工艺优化中应注意了解材料特点,保持腔体干净,另外好的掩膜对于获取良好的刻蚀结果也十分重要。牛津仪器HBLED产品经理 Dr.Mark Dineen  Mark Dineen博士介绍说PlasmaPro 1000 Astrea刻蚀设备,可以为PSS, GaN 和AlGaInP提供大批量刻蚀提供解决方案。牛津仪器在高亮度发光二极管(HBLED)产业中已具备15年以上的供应设备经验, HBLED制造业要求高产量、高性能和低使用者成本, PlasmaPro1000 Astrea大批量刻蚀设备完全符合以上要求。牛津仪器Ion Beam产品经理 梁杰荣博士  梁杰荣博士介绍说,Ion Beam(离子束)技术可广泛的用于金属、氧化物和半导体的刻蚀与沉积。随着离子源栅网设计技术的持续改进,将使离子束技术更好的用于纳米结构的精细刻蚀。高离子能量及低压操作将为高质量的光学涂层和金属沉积提供理想的环境。中科院半导体所 王晓东教授  王晓东教授介绍了Ion Beam Optofab3000 离子束沉积的应用情况。Optofab3000型离子束溅射系统的离子束能量可达几十至1000eV,被溅射出的原子带有10-20eV的能量,比蒸发镀膜高约100倍,薄膜的粘附性及致密度显著提高,靶材的表面原子逐层被撞出来,薄膜以原子层级生长,均匀性好。牛津仪器半导体设备部区域销售经理王宏主持会议  会议中,与会人员在听取报告后,还就自己感兴趣的问题同专家进行了沟通和交流。现场还特别设置了墙报展,各位专家分别将自己的研究内容同与会人员就行了探讨。现场交流撰稿编辑:秦丽娟
  • 中微公司首台8英寸CCP刻蚀设备Primo AD-RIE 200™顺利付运
    2021年6月15日,中微半导体设备(上海)股份有限公司(以下简称“中微公司”,股票代码:688012)首台8英寸甚高频去耦合反应离子(CCP)刻蚀设备Primo AD-RIE 200™ 顺利付运客户生产线。(图为中微CCP刻蚀设备研发团队部分主要成员)Primo AD-RIE 200™ 是中微公司自主研发的新一代8英寸甚高频去耦合反应离子(CCP)刻蚀设备。基于已被业界广泛认可的12英寸CCP刻蚀设备的成熟工艺与特性,Primo AD-RIE 200™ 在技术创新和生产效率方面都有了进一步提升,能够满足不同客户8英寸晶圆的加工需求。为了提高生产效率,Primo AD-RIE 200™ 刻蚀设备可灵活配置多达三个双反应台反应腔(即六个反应台)。此外,Primo AD-RIE 200™ 提供了可升级至12英寸刻蚀设备系统的灵活解决方案,以满足客户生产线未来可能扩产的需求。 “Primo AD-RIE 200™ 是中微公司推出的用于8英寸晶圆加工的CCP刻蚀设备,丰富了中微公司现有的刻蚀设备产品线,是中微公司发展历程中又一重要里程碑。中微公司不但聚焦于高端半导体设备领域,同时也提供其他多种设备以满足集成电路和泛半导体领域多样化的市场需求。”中微公司副总裁兼CCP等离子体刻蚀产品部总经理苏兴才博士说道,“我们希望坚持致力于产品创新和技术提升,不断满足客户的多样化需求,助力客户应对行业挑战。”
  • 一周内多所科研院校密集发布刻蚀机采购招标公告
    p 刻蚀是半导体制造工艺,微电子IC制造工艺以及微纳制造工艺中的一种相当重要的步骤。是与光刻相联系的图形化处理的一种主要工艺。所谓刻蚀,实际上狭义理解就是光刻腐蚀,先通过光刻将光刻胶进行光刻曝光处理,然后通过其它方式实现腐蚀处理掉所需除去的部分。刻蚀是半导体制造中重要的一环,其中尤以等离子体刻蚀重要。/pp 根据Gartner 估算,刻蚀设备占整体建厂设备投资的 15%左右,其中介质刻蚀和硅刻蚀设备分别能占到其中的45%以上,金属刻蚀大概占到3-4%。2018-2020年国内晶圆厂建设对应的刻蚀设备市场空间分别为150、150、160 亿元,而其中介质刻蚀设备市场需求分别为74、76、80 亿元,硅刻蚀设备市场需求分别为71、73、77 亿元,金属刻蚀设备需求分别为4.5、5、5 亿元。/pp 随着近些年半导体行业的火热,对刻蚀的研究更是成为了各大相关科研院所的一个研究热点,带动了相关刻蚀设备的采购,近日国内科研院更是接连发布数条刻蚀设备的招标公告。/pp其中,40%招标公告明确要求采购国产等离子体刻蚀机。/pp以下为本周以来的相关招标公告,/ph3一、《中国科学院微电子研究所感应耦合等离子体刻蚀机采购项目公开招标公告》/h3p 项目概况:/pp 中国科学院微电子研究所感应耦合等离子体刻蚀机采购项目 招标项目的潜在投标人应在www.o-science.com获取招标文件,并于2020年09月01日 14点30分(北京时间)/pp前递交投标文件。/pp 项目编号:OITC-G200290831/pp 项目名称:中国科学院微电子研究所感应耦合等离子体刻蚀机采购项目/pp 预算金额:200.0 万元(人民币)/pp 最高限价(如有):200.0 万元(人民币)/pp 采购需求:/ppbr//ppimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/d5d2bebd-0c45-4353-81be-b55bfb616c41.jpg" title="1.png" alt="1.png"/ br//ppbr//ph3二、《南开大学材料科学与工程学院介质和磁性材料感应耦合等离子体刻蚀机采购项目公开招标公告》/h3p 项目概况:/pp 南开大学材料科学与工程学院介质和磁性材料感应耦合等离子体刻蚀机采购项目 招标项目的潜在投标人应在公允(天津)招标代理有限公司天津市南开区红旗南路仁爱濠景国际大厦A座6层601室)获取招标文件,并于2020年08月27日 09点30分(北京时间)前递交投标文件。/pp 项目编号:NK2020S040N/pp 项目名称:南开大学材料科学与工程学院介质和磁性材料感应耦合等离子体刻蚀机采购项目/pp 预算金额:250.79 万元(人民币)/pp 采购需求:详情请见项目需求书附件/ph3三、《山东大学激光离子束光刻刻蚀系统采购公开招标公告》/h3p 项目概况:/pp 山东大学激光离子束光刻刻蚀系统采购 招标项目的潜在投标人应在济南市高新区舜华路2000号舜泰广场6号楼2101室获取招标文件,并于2020年09月08日 14点30分(北京时间)前递交投标文件。/pp 项目编号:SDSS20200639-F014/pp 项目名称:山东大学激光离子束光刻刻蚀系统采购/pp 预算金额:500.0 万元(人民币)/pp 最高限价(如有):500.0 万元(人民币)/pp 采购需求:山东大学采购激光离子束光刻刻蚀系统一套,用于研究开发相关科研工作。故拟采购一套激光离子束光刻刻蚀系统。(详见公告附件)/ph3四、《西北师范大学物理与电子工程学院基础与应用研究平台建设项目公开招标公告》/h3p 西北师范大学招标项目的潜在投标人应在甘肃省公共资源交易网(http://ggzyjy.gansu.gov.cn/)获取招标文件,并于2020-09-04 11:00:00(北京时间)前递交投标文件。/pp 项目编号:GSJY-ZC2020141/pp 项目名称:西北师范大学物理与电子工程学院基础与应用研究平台建设项目/pp 预算金额:194.23(万元)/pp 最高限价:194.23(万元)/pp 采购需求:双通道系统数字源表(进口产品已论证) 1套、加热型磁力搅拌器 1台、手套箱 1台、压力可控型电动纽扣电池封装机 1台、控温磁力搅拌器 1台、span style="color: rgb(255, 0, 0) "strong等离子刻蚀机(进口产品已论证) 1套/strong/span、电子防潮箱 1台、等离子体清洗机 1套、视频接触角张力测量仪 1套、实验室纯水机 1 台、鼓风干燥箱 1台、手套箱配套机械泵 1套、正入射软X射线谱仪 1套、激光诱导击穿光谱-拉曼联用谱仪 1套、双模式双恒电位仪(进口产品已论证) 1套、高精度分析天平 1台、旋转环盘电极(进口产品已论证) 1套、金属空气电池测试系统(进口产品已论证) 1套/ph3五、《北京工业大学20内涵发展定额-教育部B类重点实验室建设经费项目(第2包)招标公告》/h3p 项目概况:/pp 北京工业大学20内涵发展定额-教育部B类重点实验室建设经费项目(第2包)招标项目的潜在投标人应在北京市东城区朝内大街南竹杆胡同6号北京INN3号楼9层获取招标文件,并于2020年09月02日09点30分(北京时间)前递交投标文件。/pp 项目编号:BJJQ-2020-712-01、02、03/pp 项目名称:北京工业大学20内涵发展定额-教育部B类重点实验室建设经费项目(第2包)/pp 预算金额:人民币325万元/pp 第2包分包预算金额:人民币111.00万元/pp 采购需求:等离子体化学气相沉积台1套、strongspan style="color: rgb(255, 0, 0) "高密度等离子刻蚀系统1套/span/strong,不允许采购进口产品/pp 随着我国对半导体行业的大力支持,大量科研院所开始采购相关设备,半导体行业的生产检测等仪器设备前景广阔。/p
  • 首台国产12英寸晶边刻蚀机在北京经开区发布
    近日,北京经开区企业北方华创科技集团股份有限公司(以下简称“北方华创”)正式发布应用于晶边刻蚀(Bevel Etch)工艺的12英寸等离子体刻蚀机Accura BE,实现国产晶边干法刻蚀设备“零”的突破,为我国先进芯片制造量身打造良率提升高效解决方案。  何谓晶边刻蚀机?在器件制造过程中,由于薄膜沉积、光刻、刻蚀和化学机械抛光等工艺步骤的大幅增长,在晶圆的边缘造成了不可避免的副产物及残留物堆积,这些晶边沉积的副产物及残留物骤增导致的缺陷风险成为产品良率的严重威胁,因此,越来越多逻辑及存储芯片等领域制造商开始重点关注12英寸晶圆的边缘1mm区域,从晶圆的边缘位置着手提高芯片良率。晶边刻蚀机作为业界提升良率的有力保障,其重要性日益凸显。  “Accura BE作为首台国产12英寸晶边刻蚀设备,其技术性能已达业界主流水平。”北方华创相关负责人表示,Accura BE通过软件系统调度优化与特有传输平台的结合,可助力客户实现较高的产能;通过选择搭配多种刻蚀气体,实现对PR(光刻胶),OX(氧化物),SiN(氮化硅),Carbon(碳),Metal(金属)等多类膜层材料的晶边刻蚀工艺全覆盖;可定制多种尺寸的聚焦环设计组合,实现对等离子体刻蚀区域的精准位置控制,从而为客户提供灵活、全面的良率提升方案;具备软件智能算法,可实施可视化的量化调节,简化维护流程,提高设备生产效率。  首台!首套!首次!北方华创自2001年创立起就开始组建团队钻研刻蚀技术,从2005年第一台8英寸ICP刻蚀机在客户端上线,到带领国产刻蚀机从零到交付破千,北方华创历经了二十余载自主创新,不断为集成电路装备国产化进程贡献“亦庄智慧”。据了解,基于20余年在刻蚀工艺技术、等离子体控制及多材料刻蚀能力等方面的积累与创新,Accura BE刚发布上市,就已斩获逻辑及存储器领域头部客户多个订单,通过工艺调试,进入量产阶段,其优秀的工艺均匀性、传输稳定性及快速维护的能力赢得行业高度评价。
  • 等离子体技术助力第三代半导体刻蚀、抛光等工艺——访牛津仪器黄承扬
    2023年6月29日,半导体和电子行业年度盛会SEMICON China 2023在上海新国际博览中心隆重举行。展会现场,牛津仪器携第三代半导体抛光、刻蚀、检测等系列解决方案亮相展会。展会期间,仪器信息网就参会感受、解决方案、行业发展趋势等话题采访了牛津仪器等离子技术部制程技术与业务拓展经理黄承扬。以下是现场采访视频:
  • 进军5nm,中微公司证实刻蚀机进入国际客户最先进生产线
    4月6日,中微公司董事长、总经理尹志尧透露,公司研发的等离子刻蚀设备已经进入客户的5nm生产线。尹志尧表示,公司的等离子体刻蚀设备已应用在国际一线客户从65纳米到14纳米、7纳米和5纳米及其他先进的集成电路加工制造生产线和先进封装生产线。其中,公司开发的12英寸高端刻蚀设备已运用在国际知名客户最先进的生产线上并用于5纳米、5纳米以下器件中若干关键步骤的加工。此外,公司MOCVD设备在行业领先客户的生产线上大规模投入量产。中微公司也在互动平台上证实了这一说法,称公司刻蚀设备确实进入了5纳米生产线。中微公司瞄准世界科技前沿,主要从事高端半导体设备及泛半导体设备的研发、生产和销售。公司的刻蚀设备已应用于全球先进的7纳米和5纳米及其他先进的集成电路加工制造生产线及先进封装生产线。中微公司作为设备公司,向客户提供可加工先进器件的设备,协助、配合客户实现先进器件的开发和生产。据介绍,等离子体刻蚀机是芯片制造中的一种关键设备,用来在芯片上进行微观雕刻,每个线条和深孔的加工精度都是头发丝直径的几千分之一到上万分之一,精度控制要求非常高。
  • 中科院物理所率先实现基于石墨烯的各向异性刻蚀技术
    最近,中国科学院物理研究所/北京凝聚态物理国家实验室(筹)张广宇研究组与高鸿钧研究组、王恩哥研究组合作,利用自制的远程电感耦合等离子体系统,首次成功实现了石墨烯的可控各向异性刻蚀。这种基于石墨烯的各向异性刻蚀技术是我国科学家在该研究领域中独具特色的工作,相关结果发表在【Advanced Materials (2010)】,并得到了审稿人的高度评价。  石墨烯(graphene),是继富勒烯、碳纳米管之后被科学家们发现的又一种新的碳元素结构形态。作为一种室温下稳定存在的二维量子体系,石墨烯打破了凝聚态物理的理论,推翻了人们以前普遍接受的严格的二维晶体无法在有限的温度下存在的科学预言,对凝聚态物理的发展产生了重大的影响。不仅如此,石墨烯表现出来的一系列独特的电学输运特性、光学耦合和其他新奇的物理特性,以及利于剪裁加工的二维特性,使其在分子电子学、微纳米器件、超高速计算机芯片、高转换效率电池、固态气敏传感器、太赫兹学等领域可能有重要的应用前景。  然而,由于石墨烯的导带与价带之间没有能隙,做成晶体管器件时,很难实现开关特性,而且若要运用于现在普遍使用的逻辑电路,其金属性也是一个巨大的难题。如何在石墨烯中引入能隙,成为人们关注的热点问题,这也为石墨烯的制备提出了新的挑战。一般引入能隙的手段主要有:(1) 利用对称性破缺场或相互作用等使朗道能级发生劈裂,在导带与价带之间引入能隙。这主要通过掺杂、外加电场、化学势场等方式在双层石墨烯中引入对称破缺,实现人工调制能隙。(2) 利用量子限域效应和边缘效应,通过形成石墨烯纳米结构(如 nanoribbons纳米带)引入能隙,通过调节带宽,可以实现对带隙宽度的调节。(3) 利用化学气相沉积法掺杂(如B、N等)产生能隙,通过调节掺杂程度可实现对能隙的调节。(4)利用基底作用诱导(如SiC基底上的外延石墨烯)产生能隙,通过调节基底的作用程度可实现对能隙的调节。此前,张广宇研究组与高鸿钧研究组和陈小龙研究组合作,利用拉曼光谱学的手段,系统地研究了外延石墨烯与碳化硅基底之间的电荷转移机制,为未来这类样品制作电子学器件提供了技术参考依据。相关结果发表在【J. Appl. Phys. 107, 034305, (2010)】。  基于已有的实验结果,大家一致认为这四种方法中最可行、最具应用价值的当属石墨烯的纳米结构。目前,石墨烯纳米结构的制备技术和电学性能的研究都有飞速的发展,但要实现大规模集成石墨烯纳米结构器件的应用,如何利用现有的微纳加工技术获得边缘可控的石墨烯纳米结构是亟待解决的难题。虽然国际上已有少数研究组利用金属粒子催化加氢反应或利用SiO2衬底与石墨烯的选择性反应来实现石墨烯选择性的各向异性刻蚀,但这些方法的刻蚀速率不可控,刻蚀取向不确定,且无法与传统的微纳加工技术兼容,从而无法实现石墨烯纳米结构器件的集成加工。  张广宇等人此次实现的这种基于氢等离子体的干法刻蚀技术受等离子体强度和样品温度的调控,刻蚀速率可以精确控制在几个nm/min,且不会引入新的缺陷。由于石墨烯特殊的六角对称性,这种方法可以得到近原子级规则的Zigzag边缘结构。他们还利用这种干法刻蚀技术结合电子束光刻技术首次实现了对石墨烯纳米结构的精确加工和剪裁。这种技术的优势在于可以对石墨烯结构进行原子级尺度加工和对于石墨烯质量的保持性。这种可以沿固定晶向,得到固定的边缘结构的加工剪裁石墨烯的技术是传统技术所无法实现的,为未来大规模精确控制、加工具有确定晶向和边缘结构的石墨烯纳米结构奠定了技术基础。  这项工作得到了中科院“百人计划”、国家自然科学基金和“973”项目的支持。     图1新鲜解理的石墨(a)表面光滑台阶清晰可见,不同功率。(b)50W和(c)100W氢等离子体刻蚀过的石墨表面,显示出了形状规则的正六边形孔。(d)刻蚀速率随温度的变化关系。(e)刻蚀速率随时间的变化关系,证明刻蚀速率可精确稳定的控制在几纳米/分钟。     图2 同样的各向异性刻蚀效应在机械剥离的石墨烯中也如此。氢等离子体刻蚀过的单层(a)、两层(b)及多层(c)石墨烯,正六边形孔洞清晰的形成于缺陷处。(d)单层及两层石墨烯刻蚀速率随温度的变化关系。(e)拉曼光谱表征,几乎看不到代表缺陷态的拉曼D峰,证明石墨烯的晶体质量并没有被温和的氢等离子体破坏。     图3 氢等离子体刻蚀出的单层正六边形孔洞边缘的扫描隧道显微镜成像(a)恒流模式高度像,(b)原子分辨像,(c)二维傅里叶变换图,显示出刻蚀得到的近原子级规则的边缘与zigzag取向2-1-10平行,且在边缘处观察到了驻波。(d)对应的结构示意图。     图4 利用电子束曝光与各向异性刻蚀方法相结合制备具有特定取向的sub-20nm石墨烯纳米带的流程图(a)。具体过程如图(b)电子束曝光和氧等离子体刻蚀得到的起始宽度为120nm的石墨烯条带,经过氢等离子体各向异性刻蚀之后细化到sub-20nm的石墨烯纳米带如图(c)。(d)石墨烯纳米带场效应晶体管器件的结构示意图,石墨烯为接触电极,(e)不同宽度的石墨烯纳米带的器件,(f)对应的转移特性曲线,证明8nm宽的石墨烯纳米带能在室温下实现2个数量级的开关比。
  • 超快电镜助力等离子体研究重要发现 万亿分之一秒的等离子体场检测
    阿贡纳米材料中心的超快电子显微镜,图片自:阿贡国家实验室每个去过大峡谷的人都能体会到靠近自然边缘的强烈感受。同样,美国能源部(DOE)阿贡国家实验室(Argonne National Laboratory)的科学家们发现,当接近一层单原子厚的碳薄膜(石墨烯)边缘时,金纳米颗粒会表现异常。这可能对新型传感器和量子设备的发展产生重大影响。这一发现是通过美国能源部科学用户设施办公室——阿贡纳米材料中心 (CNM) 新建立的超快电子显微镜 (UEM) 实现的。UEM能够实现在纳米尺度和不到一万亿分之一秒的时间尺度内的可视化和现象研究。 这一发现可能会在不断发展的等离子体领域引起轰动,该领域涉及光撞击材料表面并触发电子波,称为等离子体场。多年来,科学家们一直致力于开发具有广泛应用的等离子体设备——从量子信息处理到光电子学(结合光基和电子元件),再到用于生物和医学目的的传感器。为此,他们将具有原子级厚度的二维材料(例如石墨烯)与纳米尺寸的金属颗粒相结合。而要想理解这两种不同类型材料的组合等离子体行为,就需要准确了解它们是如何耦合的。在阿贡最近的一项研究中,研究人员使用超快电子显微镜直接观察金纳米颗粒和石墨烯之间的耦合。“表面等离子体是纳米粒子表面或纳米粒子与另一种材料界面上的光诱导电子振荡,”阿贡纳米科学家Haihua Liu说, “当我们在纳米粒子上照射光时,它会产生一个短寿命的等离子体场。当两者重叠时,我们 UEM 中的脉冲电子与这个短寿命场相互作用,电子要么获得能量,要么失去能量。然后,我们收集那些使用能量过滤器获得能量的电子来绘制纳米粒子周围的等离子体场分布。”在研究金纳米粒子时,Liu和他的同事发现了一个不寻常的现象。当纳米颗粒位于石墨烯薄片上时,等离子体场是对称的。但是当纳米颗粒靠近石墨烯边缘时,等离子体场在边缘区域附近集中得更强烈。Liu说:“这是一种非凡的新思考方式,可以思考我们如何利用纳米尺度的光以等离子体场和其他现象的形式操纵电荷。” “凭借超快的能力,当我们调整不同的材料及其特性时,很难预测我们将看到什么。”整个实验过程,从纳米粒子的刺激到等离子体场的检测,发生在不到几百千万亿分之一秒内。CNM 主管 Ilke Arslan 表示:“CNM 在容纳 UEM 方面是独一无二的,该 UEM 对用户开放,并且能够以纳米空间分辨率和亚皮秒时间分辨率进行测量。” “能够在如此短的时间窗口内进行这样的测量,开启了对非平衡状态中大量新现象的研究,而我们以前没有能力探测到这些现象。我们很高兴能够提供这种能力给国际用户。”对于这种纳米颗粒-石墨烯系统的耦合机制的理解,将是未来开发令人兴奋的新型等离子体装置的关键。基于这项研究的论文“使用超快电子显微镜可视化等离子体耦合”(Visualization of Plasmonic Couplings Using Ultrafast Electron Microscopy)发表在 6 月 21 日的《Nano Letters》上,DOI: 10.1021/acs.nanolett.1c01824。除了 Liu 和 Arslan,其他作者还包括 Argonne 的 Thomas Gage、Richard Schaller 和 Stephen Gray。印度理工学院的 Prem Singh 和 Amit Jaiswal 也做出了贡献,武汉大学的 Jau Tang 和 IDES, Inc. 的 Sang Tae Park 也做出了贡献(日本电子于2020年初收购超快时间分辨电镜商IDES)。文:Jared Sagoff,阿贡国家实验室关于CNM新建立的超快电子显微镜 (UEM)CNM 的超快电子显微镜 (UEM) 是一种独特的工具,可供美国能源部纳米科学研究中心的用户使用。CNM超快电子显微镜实验室。左起顺时针:Thomas Gage, Haihua Liu和Ilke ArslanUEM 的应用是利用电子研究纳米级材料中的超快(亚皮秒)结构和化学动力学,这是一个广受关注的新兴科学领域。CNM的 UEM 结合了以下功能:■具有高重复率的可调谐飞秒激光器■产生脉冲电子束的多种途径■配备高灵敏度相机和电子能量过滤的同步激光泵浦脉冲透射电子显微镜CNM精心设计的UEM打开了通向任何标准电子显微镜都不具备的科学理解领域的大门,即理解亚纳米空间分辨率材料中的快速(亚皮秒到纳秒)动力学和短期亚稳态相。它代表了一种关键的分析工具,可以提供超快的结构和化学变化,以广泛的系统。在未来几年,通过开发超快的电气和机械触发机制,CNM期望开发具有基础和设备相关性的新型样品环境和样品激发途径。结合超快探测,这将允许深入了解电场和应变的非平衡现象。例如,人们可以探索声学声子模式在量子信息科学感兴趣的材料和系统中产生的应变随时间变化的影响,例如金刚石或碳化硅中的空位缺陷。在纳米科学的许多领域中,UEM 在促进对瞬态过程的理解方面具有很高的价值,例如激子定位、短寿命亚稳相、光致分离、拓扑材料动力学、等离子体系统、分子马达和磁波动等。连同理论建模,UEM 将为纳米科学界提供对纳米材料的前所未有的理解。阿贡国家实验室是 1946 年在伊利诺伊州杜佩奇县成立的第一个也是最大的国家实验室。 美国能源部资助阿贡国家实验室和芝加哥阿贡大学有限责任公司管理该实验室。 阿贡国家实验室前身是芝加哥冶金实验室,也是恩里科费米 (Enrico Fermi) 第一个受控核链式反应演示的所在地。 目前,阿贡实验室由阿贡先进光子源、阿贡串联直线加速器系统组成,开展基础科学研究、清洁能源实验、全国环境问题管理,最重要的是审查和监测国家安全风险。
  • 西安光机所在等离子体研究方面取得新成果
    p  7月5日,国际应用物理类学术期刊《应用物理学杂志》(JAP)发表了中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室等离子体学科研究论文A diffuse plasma jet generated from the preexisting discharge filament at atmospheric pressure,论文通讯作者为该所博士汤洁。文章的创新性和重要性受到了期刊编委会和评审专家的高度评价,被遴选为当期的封面文章和亮点文章。/pp  作为一种新型、经济、便捷的等离子体发生技术,大气压低温等离子体射流在材料加工与改性、薄膜层积、纳米颗粒制造、器械表面洗消、生物组织结构与功能恢复、微生物诱变育种等领域都具有独特的技术优势和良好的应用前景。均匀、弥散、大面积低温等离子体射流的研发,一直以来是该学科领域研究的重点和难点。该论文打破传统气体放电中采用降低电离率或提高预电离水平来获取均匀弥散等离子体的思维,建立不同学科领域(光学与等离子体)物质传播与输运相同或相似性理念,首次将“透镜扩束”概念引入低温等离子体领域,提出“电场透镜模型”,构建大气压均匀弥散放电新的基础理论,通过巧妙合理的电极结构设计,在大气压环境中成功实现气体放电从细丝到弥散的转变,并基于Possion模型,阐释了气体放电中弥散等离子体形成机制。/pp  该成果为生成大气压均匀弥散等离子体提供了又一重要指导思想,将对低温等离子体技术应用的推广起到重要促进作用。/pp style="text-align: center "img title="2.jpg" src="http://img1.17img.cn/17img/images/201707/insimg/9291bafc-42d5-4e1a-88a1-90fc9b5e86ea.jpg"//pp style="text-align: center "strong当期期刊封面/strong/p
  • 德国开发出等离子体快速消毒仪
    为解决医务工作者每天花大量时间洗手消毒的问题,德国研究人员最近开发出一种等离子体快速消毒仪,可在几秒钟内对皮肤进行一次安全快捷的消毒处理。  德国马克思普朗克宇宙物理学研究所研究人员在新一期英国《新物理学杂志》(New Journal of Physics)上报告说,等离子态是物质在固体、液体、气体之外的第四种存在状态,宇宙中的许多恒星就处于等离子态。研究人员将少量高温等离子态原子混入大量低温普通原子中,可以得到低温等离子态物质,它产生的自由基和紫外线等具有杀菌效果。  研究人员说,在此基础上开发出的消毒仪使用的等离子体可像空气一样与消毒对象全面接触。例如,人们将双手伸入消毒仪中,几秒钟之内就能对双手实施一次安全快捷的消毒,并可杀灭近年来多次引发感染事故的“超级细菌”耐甲氧西林金黄色葡萄球菌等。消毒过程中,除了需要电力之外,并不需要别的流体和容器。  研究人员说,如果按外科医生一次标准洗手程序需3到5分钟计算,那么在一个繁忙的工作日里医务人员可能要花上几个小时来洗手,如果使用这种等离子体消毒仪,可将这一时间缩短到10分钟。  在同一期杂志上,德国和日本研究人员还报告了另一种杀毒强度可调节的等离子体消毒仪,它形似手电筒,可以专门用来“照射”人体伤口,为缓慢愈合的伤口进行消毒。
  • 精确跟踪芯片蚀刻过程,用高分辨率光谱仪监测等离子体
    在半导体行业,晶圆是用光刻技术制造和操作的。蚀刻是这一过程的主要部分,在这一过程中,材料可以被分层到一个非常具体的厚度。当这些层在晶圆表面被蚀刻时,等离子体监测被用来跟踪晶圆层的蚀刻,并确定等离子体何时完全蚀刻了一个特定的层并到达下一个层。通过监测等离子体在蚀刻过程中产生的发射线,可以精确跟踪蚀刻过程。这种终点检测对于使用基于等离子体的蚀刻工艺的半导体材料生产至关重要。等离子体是一种被激发的、类似气体的状态,其中一部分原子已经被激发或电离,形成自由电子和离子。当被激发的中性原子的电子返回到基态时,等离子体中存在的原子就会发射特有波长的辐射光,其光谱图可用来确定等离子体的组成。等离子体是用一系列高能方法使原子电离而形成的,包括热、高能激光、微波、电和无线电频率。实时等离子体监测以改进工艺等离子体有一系列的应用,包括元素分析、薄膜沉积、等离子体蚀刻和表面清洁。通过对等离子体样品的发射光谱进行监测,可以为样品提供详细的元素分析,并能够确定控制基于等离子体的过程所需的关键等离子体参数。发射线的波长被用来识别等离子体中存在的元素,发射线的强度被用来实时量化粒子和电子密度,以便进行工艺控制。像气体混合物、等离子体温度和粒子密度等参数都是控制等离子体过程的关键。通过在等离子体室中引入各种气体或粒子来改变这些参数,会改变等离子体的特性,从而影响等离子体与衬底的相互作用。实时监测和控制等离子体的能力可以改进工艺和产品。一个基于Ocean Insight HR系列高分辨率光谱仪的模块化光谱装置用于监测等离子体室引入不同气体后,氩气等离子体发射的变化。测量是在一个封闭的反应室中进行的,光谱仪连接光纤和余弦校正器,通过室中的一个小窗口观察。这些测量证明了模块化光谱仪从等离子体室中实时获取等离子体发射光谱的可行性。从这些发射光谱中确定的等离子体特征可用于监测和控制基于等离子体的过程。等离子体监测可以通过灵活的模块化设置完成,使用高分辨率光谱仪,如Ocean Insight的HR或Maya2000 Pro系列(后者是检测UV气体的一个很好的选择)。对于模块化设置,HR光谱仪可以与抗曝光纤相结合,以获得在等离子体中形成的定性发射数据。从等离子体室中形成的等离子体中获取定性发射数据。如果需要定量测量,用户可以增加一个光谱库来比较数据,并快速识别未知的发射线、峰和波段。监测真空室中形成的等离子体时,一个重要的考虑因素是与采样室的接口。仪器部件可以被引入到真空室中,或者被设置成通过视窗来观察等离子体。真空通管为承受真空室中的恶劣条件而设计的定制光纤将部件耦合到等离子体室中。对于通过视口监测等离子体,可能需要一个采样附件,如余弦校正器或准直透镜,这取决于要测量的等离子体场的大小。在没有取样附件的情况下,从光纤到等离子体的距离将决定成像的区域。使用准直透镜可以获得更局部的收集区域,或者使用余弦校正器可以在180度的视野内收集光线。测量条件HR系列高分辨率光谱仪被用来测量当其他气体被引入等离子体室时氩等离子体的发射变化。光谱仪、光纤和余弦校正器通过室外的一个小窗口收集发射光谱,对封闭反应室中的等离子体进行光谱数据采集(图1)。图1:一个模块化的光谱仪设置可以被配置为真空室中的等离子体测量。一个HR2000+高分辨率光谱仪(~1.1nm FWHM光学分辨率)被配置为测量200-1100nm的发射(光栅HC-1,SLIT-25),使用抗曝光纤(QP400-1-SR-BX光纤)与一个余弦校正器(CC-3-UV)耦合。选择CC-3-UV余弦校正器采样附件来获取等离子体室的数据,以解决等离子体强度的差异和测量窗口的不均匀问题。其他采样选项包括准直透镜和真空透镜。结果图2显示了通过等离子体室窗口测量的氩等离子体的光谱。690-900纳米的强光谱线是中性氩(Ar I)的发射线,400-650纳米的低强度线是由单电离的氩原子(Ar II)产生的。图2所示的发射光谱是测量等离子体发射的丰富光谱数据的一个例子。这种光谱信息可用于确定一系列关键参数,以监测和控制半导体制造过程中基于等离子体的工艺。图2:通过真空室窗口测量氩气等离子体的发射。氢气是一种辅助气体,可以添加到氩气等离子体中以改变等离子体的特性。在图3中,随着氢气浓度的增加添加到氩气等离子体中的效果。氢气改变氩气等离子体特性的能力清楚地显示在700-900纳米之间的氩气线的强度下降,而氢气浓度的增加反映在350-450纳米之间的氢气线出现。这些光谱显示了实时测量等离子体发射的强度,以监测二次气体对等离子体特性的影响。观察到的光谱变化可用于确保向试验室添加最佳数量的二次气体,以达到预期的等离子体特性。图3:将氢气添加到氩等离子体中会改变其光谱特性。在图 4 和 5 中,显示了在将保护气添加到腔室之前和之后测量的等离子体的发射光谱。 保护气用于减少进样器和样品之间的接触,以减少由于样品沉积和残留引起的问题。 在图 4中,氩等离子体发射光谱显示在加入保护气之前,加入保护气后测得的发射光谱如图5所示。保护气的加入导致了氩气发射光谱的变化,从400纳米以下和~520纳米处的宽光谱线的消失可以看出。图4:加入保护气之前,在真空室中测量氩等离子体的发射。图5:加入保护气后,氩气发射特性在400纳米以下和~520纳米处有明显不同。结论紫外-可见-近红外光谱是测量等离子体发射的有力方法,以实现元素分析和基于等离子体过程的精确控制。这些数据说明了模块化光谱法对等离子体监测的能力。HR2000+高分辨率光谱仪和模块化光谱学方法在测量等离子体室条件改变时,通过等离子体室的窗口测量等离子体发射光谱,效果良好。还有其他的等离子体监测选项,包括Maya2000 Pro,它在紫外光下有很好的响应。另外,光谱仪和子系统可以被集成到其他设备中,并与机器学习工具相结合,以实现对等离子体室条件更复杂的控制。以上文章作者是海洋光学Yvette Mattley博士,爱蛙科技翻译整理。世界上第一台微型光谱仪的发明者海洋光学OceanInsight,30年来专注于光谱技术和设备的持续创新,在光谱仪这个细分市场精耕细作,打造了丰富而差异化的产品线,展现了光的多样性应用,坚持将紧凑、便携、高集成度以及高灵敏度、高分辨率、高速的不同设备带给客户。2019年,从Ocean Optics更名为Ocean Insight,也是海洋光学从光谱产品生产商转型为光谱解决方案提供商战略调整的开始。此后,海洋光学不仅继续丰富扩充光传感产品线,且增强支持和服务能力,为需要定制方案的客户提供量身定制的系统化解决方案和应用指导。作为海洋光学官方授权合作伙伴,爱蛙科技(iFrogTech)致力于与海洋光学携手共同帮助客户面对问题、探索未来课题,为打造量身定制的光谱解决方案而努力。如需了解更多详情或探讨创新应用,可拨打400-102-1226客服电话。关于海洋光学海洋光学作为世界领先的光学解决方案提供商,应用于半导体、照明及显示、工业控制、环境监测、生命科学生物、医药研究、教育等领域。其产品包括光谱仪、化学传感器、计量检测设备、光纤、透镜等。作为光纤光谱仪的发明者,如今海洋光学在全球已售出超过40万套的光纤光谱仪。关于爱蛙科技爱蛙科技(iFrogTech)是海洋光学官方授权合作伙伴,提供光谱分析仪器销售、租赁、维护,以及解决方案定制、软件开发在内的全链条一站式精准服务。
  • 第四场研讨会 | 如何结合等离子FIB刻蚀和激光烧蚀,更高效完成毫米级半导体失效分析
    主题:Faster mm-scale Semiconductor Failure Analysis byCombining Plasma FIB Milling and Laser Ablation 演讲人:Jozef Vincenc Obona 博士Jozef Vincenc Obona 是TESCAN ORSAY HOLDING公司半导体市场部的产品营销总监,获得Slovak Academy of Sciences (Slovakia) 低温电子学博士学位。他有多年从事半导体失效分析(生产线前端、后端和封装应用)的经验,并与半导体行业领袖一直保持沟通。他在FIB-SEM方面拥有超过13年的工作经验,在西班牙萨拉戈萨的阿拉贡纳米科学研究院(Instituto de Nanociencia de Aragon)、荷兰格罗宁根大学(University of Groningen)以及特温特大学(University of Twente)进行了5年的超短激光脉冲处理应用研究,拥有3项专利并发表了52篇论文。时间段1:3月24日, 下午4:00 –5:00 (北京时间)时间段2:3月25日, 上午2:00 –3:00 (北京时间)长期以来,提高性能和降低功耗是电子器件设计的基本要求,这需要通过器件构件(晶体管、存储单元等)的小型化、信号通路的减少(将多个组件集成在一个先进封装中)以及优化其它组件(包括显示器、射频、微机电系统和电池)来实现。开发新产品是一件非常具有挑战性的工作,快速失效分析(FA)有助于确定缺陷的基本原因并向研发人员提供有效的反馈,以保证产品的上市时间和可靠性。对封装、先进封装、显示器、射频、微机电系统以及电池进行快速失效分析时,往往需要在样品表面以下几百微米甚至于几毫米寻找缺陷位置。由于样品结构的特殊性,需要对样品进行大面积的刻蚀以制备出截面才能够对特定的缺陷位置进行分析。因此,近10年来等离子FIB被普遍使用在这个过程中并受到了行业的广泛认可。然而,近年来随着器件结构越趋复杂、缺陷深度显著增加以及必须更快速获得分析结果等原因,对等离子FIB的能力提出了更高的要求。使用激光烧蚀可以将前期制样速度提升数千倍,因此将激光烧蚀技术加入到等离子FIB工作流程中不仅可以更快获得高质量的分析结果,同时也开启与实验室中不同类型设备协同合作的新篇章。在本次研讨会上,将为您介绍 TESCAN 样品大体积制备的工作流程。使用不同尺寸的要求苛刻的样品进行演示,样品包括复杂器件和不导电硬质材料,您可以看到非常灵活的工作流程。我们将为您展示如何结合超高分辨扫描电镜成像系统快速进行没有伪影的样品制备并揭示样品的真实细节。点击“我要报名”立即报名参会吧!说明:为了让更多的用户可以参与到本次研讨会中,每一场研讨会都有两个时间段可供选,内容相同,与会者可自行选择报名参加其中一个时间段的研讨会。
  • 国产刻蚀机的“突围”之路
    p style="text-indent: 2em text-align: justify "半导体产业三大生产工艺环节分为:IC设计(电路与逻辑设计)、IC制造(前道工序)和IC封装与测试环节(后道工序)。IC制造环节又分为晶圆制造和晶圆加工两部分。晶圆加工则是指在制备晶圆材料上构建完整的集成电路芯片的过程,包含镀氧化、扩散、退火、离子注入、薄膜沉积、光刻、刻蚀、化学机械平坦化(CMP)等十余道工艺,其中最关键的三类主设备是光刻机、刻蚀机和薄膜沉积设备,价值占前道设备的近70%。光刻机已经成为最具关注的话题,其实刻蚀机同为其中重要的一环。刻蚀是在衬底上留下需要的图形电路。刻蚀分为干法刻蚀和湿法刻蚀,当前干法刻蚀是主流工艺;在干法刻蚀中,反应离子刻蚀应用最广泛。按照被刻蚀材料划分,等离子体刻蚀机分为硅刻蚀机、介质刻蚀机和金属刻蚀机;其中,介质刻蚀与硅刻蚀机分别占比49%以及48%,金属刻蚀仅占3%(数据来源:《半导体系列深度报告:刻蚀设备:最优质半导体设备赛道,技术政策需求多栖驱动》)。/pp style="text-indent: 2em text-align: justify "从公开信息可以看到,中国刻蚀设备的工艺节点已经达到5nm,并得到台积电的验证,追赶上主流半导体的步伐;在市场表现上看,国际大厂在中国市场的份额从最初几乎垄断到2019年下降至77%;北方华创的硅刻蚀机、金属刻蚀机,中微公司的介质刻蚀机在国内均已牢牢占据一席之地,并成功进军国际市场。/pp style="text-align: center text-indent: 2em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/aa32673b-c238-4268-8a38-1f3be32fbaa5.jpg" title="1.png" alt="1.png"//pp style="text-indent: 0em text-align: center "span style="text-indent: 2em "5nm的刻蚀机照片(中微官网)/span/ph3 style="text-indent: 0em text-align: center "曾经让人“绝望”的国际巨头/h3p style="text-indent: 2em text-align: justify "2019年全球刻蚀机市场份额由三家国际厂商瓜分,来自美国硅谷的泛林半导体(Lam Research)占53%,位于日本的东京电子东京电子(Tokyo Electron)占19%,同样是美国硅谷的应用材料(Applied Materials)占18%。尽管近年来刻蚀行业的后起之秀如雨后春笋,但这三家国际巨头仍共占全球九成以上的市场份额。/pp style="text-indent: 2em text-align: justify "上世纪70年代,半导体产业大发展,伴随着半导体产业的快速起步发展,相应的半导体设备公司也纷纷成立。1980年泛林半导体公司成立,凭借着对先进技术和产品的单纯追求,第二年便推出了第一款刻蚀机产品—AutoEtch,并于第四年在纳斯达克上市。90年代,泛林将业务拓展到CVD和显示面板领域,反而分散了公司的业务焦点,最终却适得其反市值暴跌。痛定思痛,泛林半导体将研发重心放在刻蚀设备领域,2007年后在刻蚀设备领域终于无可撼动。/pp style="text-indent: 2em text-align: justify "应用材料公司成立于1967年,是全球最大的半导体设备公司。公司位于美国硅谷,拥有极强的研发能力,官方资料显示,应用材料每年在研发上投入20亿美元,团队成员中30%为专业研发人员,平均每天(包括星期六和星期日)要申请四个以上的新专利。1981年应用材料克服了超大规模集成电路离子刻蚀的技术难题,进入刻蚀设备领域,开启了现代刻蚀时代。/pp style="text-indent: 2em text-align: justify "1963年,久保德雄和小高敏夫在东京创立了东京电子研究所,注册资本500万日元,员工6人。1968年,东京电子与Thermco Products Corp.合并,成为日本第一家半导体制造设备厂商。1975年,东京电子决定专注于半导体制造设备。1981年,东京电子成为了最顶级半导体制造设备厂商。1989年,半导体制造设备营收额全球第一,并连续三年蝉联冠军,至1991年。虽然东京电子的成长路径远不如前两家波澜壮阔,但它们对于研发的投入绝不缩水。2018财年东京电子研发费用约1200亿日元(约合80亿人民币)。/pp style="text-indent: 2em text-align: justify "这些巨头都成立于上世纪60-80年代,伴随着半导体产业起步和发展而壮大,积累了强大的技术研发团队和专利壁垒,成为了刻蚀设备领域让人“绝望”的国际巨头。/ph3 style="text-indent: 0em text-align: center "美国禁运下的“成功突围”/h3p style="text-indent: 2em text-align: justify "为了阻挠中国半导体产业发展,美国对半导体关键设备实施了禁运,其中包括了等离子体刻蚀机的禁运。从此中国刻蚀机领域开始了漫漫“突围”路。/pp style="text-indent: 2em text-align: justify "2004年,尹志尧和16位同仁一起,从美国回到中国,在上海浦东创建了中微。尹志尧曾在硅谷Intel公司、LAM研究所、应用材料公司等电浆蚀刻供职16年。尹志尧曾发起硅谷中国工程师协会并担任主席。尹志尧在硅谷工作的时候,其团队让公司占据全球将近一半的市场,并且在半导体行业拥有多项专利。/pp style="text-indent: 2em text-align: justify "为追赶国际先进水平,中微公司成立后采用了全员持股的激励制度,吸引了来自世界各地具有丰富经验的半导体设备专家,形成了技术精湛、勇于创新、专业互补的国际化人才研发队伍,并始终保持大额的研发投入和较高的研发投入占比,2019年净利润同比增长108% 研发投入占营收比为21.81%。/pp style="text-indent: 2em text-align: justify "2007年,中微公司首台甚高频去耦合等离子体刻蚀设备Primo D-RIE研制成功。作为中微第一代电介质刻蚀产品,在同年的日本半导体博览会上发布,是12英寸双反应台多反应腔主机系统,用于65nm到16nm技术节点,可以灵活配置多大三个双反应台反应腔。每个反应腔都可以在单晶圆反应环境下,同时加工两片晶圆。刻蚀设备采用了双反应台技术增加了产能输出,可以有效降低客户的成本,相较于同类产品具有很高的性价比优势。/pp style="text-indent: 2em text-align: justify "2011年,中微第二代电介质刻蚀产品Primo AD-RIE刻蚀设备研制成功,可用于45nm到14nm后段制程以及10nm前段应用的开发。同时,中微通过建立全球化的采购体系,与供应商密切合作,制造出模块化、易维护、具有成本竞争优势的产品;其通过科学的方法管理库存,有效地降低了公司的运营成本。/pp style="text-indent: 2em text-align: justify "2013年,CCP刻蚀设备产品Primo SSC AD-RIE刻蚀设备研制成功,可用于40-7nm工艺。三代刻蚀设备,不断迭代,产品线覆盖了多个制程的微观器件的众多刻蚀应用。/pp style="text-indent: 2em text-align: justify "半导体设备产业的波动要大于半导体芯片产业的波动,更大于 GDP 的波动。仅靠单一的设备产品来发展的企业无法抵御市场波动带来的不确定性。为此,中微公司的半导体设备实现了多产品覆盖,2010年,首台深硅刻蚀设备产品研制成功;2012年首台MOCVD设备产品研制成功,产品覆盖集成电路、MEMS、LED 等不同的下游半导体应用市场。/pp style="text-indent: 2em text-align: justify "在中微的主要产品线刻蚀设备方面,国际巨头泛林科技、东京电子和应用材料均实现了硅刻蚀、介质刻蚀、金属刻蚀的全覆盖,他们占据了全球干法刻蚀机市场的90%以上份额。即便如此,中微还是在介质刻蚀领域实现了突围,将产品打入台积电、联电、中芯国际等芯片生产商的40多条生产线,并实现了量产。/pp style="text-indent: 2em text-align: justify "不同于中微公司从介质刻蚀机入手,北方华创选择从硅刻蚀机入手。在国家02专项的支持下,北方华创在硅刻蚀机领域不断实现突破,先进制程工艺一路上扬,28nm,22nm都实现了突破。/pp style="text-indent: 2em text-align: justify "国产刻蚀机的不断突破,最终使得美国在2015年解除了对中国的刻蚀机禁运。国产刻蚀设备的不断进步终于突破了美国的封锁。/ph3 style="text-align: center text-indent: 0em "“与狼共舞”勇夺“世界三强”一席/h3p style="text-indent: 2em text-align: justify "伴随着美国解除对中国的刻蚀机禁运,国产刻蚀设备也开始进入国际市场并与世界刻蚀机巨头展开了激烈的竞争。而国内市场也迎来了激烈的角逐。/pp style="text-indent: 2em text-align: justify "面对来势汹汹的国际半导体设备巨头,中微公司进一步加大研发投入,提前布局。在2016年成功研制出首台ICP刻蚀设备产品Primo nanova,这是中微基于ICP开发的第一代产品,适用于14-7nm工艺技术节点。可以配置多达6个刻蚀反应腔和两个可选的去胶腔。之后不断改进设备,2018年改进Primo AD-RIE并进入5nm生产线,至今仍不断引领国内半导体设备和技术的发展。目前中微公司在介质刻蚀领域在世界上已获得一席之地,成为介质刻蚀领域的世界三强企业。/pp style="text-indent: 2em text-align: justify "于此同时,北方华创也在刻蚀机领域实现了节节突破,2016年研发出了14nm工艺的硅刻蚀机。虽然金属刻蚀市场很小,但在2017年11月,北方华创研发的中国首台适用于8英寸晶圆的金属刻蚀机,也成功搬入中芯国际的产线,这个也是有重大突破意义的。/pp style="text-indent: 2em "br//pp style="text-indent: 2em text-align: justify "a href="https://www.instrument.com.cn/zc/833.html" target="_self"电子束刻蚀系统专场:https://www.instrument.com.cn/zc/833.html/a/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制