当前位置: 仪器信息网 > 行业主题 > >

单模拉锥光波分复用器

仪器信息网单模拉锥光波分复用器专题为您提供2024年最新单模拉锥光波分复用器价格报价、厂家品牌的相关信息, 包括单模拉锥光波分复用器参数、型号等,不管是国产,还是进口品牌的单模拉锥光波分复用器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合单模拉锥光波分复用器相关的耗材配件、试剂标物,还有单模拉锥光波分复用器相关的最新资讯、资料,以及单模拉锥光波分复用器相关的解决方案。

单模拉锥光波分复用器相关的论坛

  • 【资料】偏振光分离法测试光信噪比

    Tellabs实验室的试验证明基于偏振归零法的偏振光分束的改进的OSNR测量技术可以有效改善光信噪比的测量误差。光信噪比(OSNR)预测系统的误码率是光网络的关键性能参数,它的测量和校准可以通过插值法来进行。通常情况下,可以借助测量信道通带内的总信号功率和光信道之间的自激发特性(ASE)噪声差(规格为0.1nm带宽)得到相关参量,这种方法被定义为线性内插法。灵活光网络(AON)是动态可重配置密集波分复用(DWDM)网络,使用可重配置光分插复用器(ROADMs),提供光层的分插功能。在AON网络中,每个信道都可以穿过不同的路线、光放大器以及分插过滤器。甚至临近的信道可能具有不同的噪声功率,使用传统的线性内插技术不能在这样的网络中得到“真正”的OSNR测量值。

  • 求助中文文献

    【序号】:1【作者】:史册 【题名】:定位与检测阵列的构作及其存在性[D] 【期刊】:苏州大学 2012年【全文链接】:https://cdmd.cnki.com.cn/Article/CDMD-10285-1012386707.htm【序号】:2【作者】:张豪磊 【题名】:579nm全固态黄光拉曼激光器的研究[D] 【期刊】:西北大学 2011年【全文链接】:https://cdmd.cnki.com.cn/Article/CDMD-10697-1011088068.htm【序号】:3【作者】:郭家锡 【题名】:579nm外腔式拉曼激光器的数值计算及实验研究[D] 【期刊】:西北大学 2011年【全文链接】:https://cdmd.cnki.com.cn/Article/CDMD-10697-1011087823.htm【序号】:4【作者】:姜海明 【题名】:光纤Raman放大器增益谱平坦化研究[D] 【期刊】:电子科技大学 2011年【全文链接】:https://cdmd.cnki.com.cn/Article/CDMD-10614-1011240410.htm【序号】:5【作者】:周勤存 【题名】:硅基二氧化硅阵列波导光栅波分复用器件的研究制作[D] 【期刊】:浙江大学 2004年【全文链接】:https://cdmd.cnki.com.cn/Article/CDMD-10335-2004075818.htm

  • 34970数据采集器

    它是一种半机架宽的主机,内部有61/2位(22比特)的数字电压表,其背面有3个插槽,可以接受开关与控制的模块某块组合。无论你只需要少数几个简单的数据记录通道,还是上百个ATE性能的通道,Agilent34970A都能以合理的价格满足你的数据采集要求。Agilent 34970A包括了台式数字多用表(DMM)的功能特性,你将从已经证明了的Agilent性能、信号调节的通用输入、全部的低价位、紧凑的数据采集结构等方面获益。34970A具有61/2位的分辨率(22比特)、0.004%的基本直流电压精度和极低的读数噪声,加上高达250通道/s扫描速率,你可以得到为完成工作任务所需要的速度和精度.强有力的适应能力Agilent 34970A的独特设计允许逐通道进行配置,以求达到最大的灵活性及快速方便设置内部的自动量程转换。DMM有11种不同的直接测量功能,而不需要昂贵的外部信号调整。内部的温度转换程序可以C、F或(Kelvin)显示未处理过的热偶、RTD或热敏电阻的输入。利用定度可将线性传感器的输出直接转换到工程单位。你甚至可以设置高/低超出容限的情况。[b][font=&]测试应用[/font][/b]3个模块槽和8个开关与控制模块可配置Agilent 34970A来满足你的独特需要。你可以只买你当时需要的部分,以后随着你的应用发展,再添加更多的模块。用一个半机架单元便可测量多达120路输入。免费的Agilent 软件简化数据采集如果要求基于PC的数据记录能力,但又不想花费时间编程,Agilent 便可解决这个问题。利用这个软件可设置你的测试、采集与存档管理测量数据以及对所得到的数据进行实时显示和分析。熟悉的电子表环境可方便地配置与控制测试,丰富的彩色图形为显示你的数据提供许多选项??全部都是方便的点击,可利用条图、直方图、X-Y散点图和警告灯等建立多种图形。此外,利用 Data Logger可以方便地将数据送到其它应用中以便进一步分析,或者将其包含到你的显示和报告中。当配置了Agilent 34901A 20路继电器多路复用器时,34970A便成为紧凑的、低价位的数据记录器,十分适于实验室或现场的快速测试。有自引导菜单的直观面板和明亮的、便于阅读的真空显示使独立的设置既快又方便。所有读数都自动加有时间标记并存入-50,000读数的存储器??足以保存一周内的有价值数据(每5分钟扫描20个通道)。非易失性存储器可在断电后仍保存数据,这样便可利用34970A数据,以后再上载到PC机。系统配置也保存在非易失性存储器中,因此掉电又重新接通电源后可自动恢复扫描。此外,基本PC的测试时 Data Logger软件可简化测试配置、数据分析和数据管理。对于自动测试和台式自动应用来说,Agilent 34970A的3个插槽和8个插入式开关与控制模块选择允许实现方便的配置。61/2位的内部DMM为你提供了世界应用DMM的性能与功能但占用空间和价格却只是其几分之一。提供支持和National Instruments Lab VIEW的软件驱动程序,从而可容易地将34970A集成到你的系统中,标准的RS-232和GPIB接口以及SCPI编程语言使得这种集成更加方便。三年保证期也是标准的,正如我们专有的继电器维护系统那样,自动地计算并贮存每次单独的开关闭合,以协助你预计继电器的寿命,避免出现生产线停机。对于不要求34970A内部测量的测试应用,可以订购没有内部DMM的单元。这就提供了一个超低价位的解决方案,用来为测试信号进出被测通路和对各种仪器如外部的DMM、示波器、计数器、电源等进行分配。此外,如果你的需要有所变化,以后还可添加DMM。[b][font=&]模块配置[/font][/b]最多可有3个任意组合的模块插入一个主机中,34970A的内部DMM连接只能通过34901、34902A和34908A多路转换器进行访问。34970A的精度指标已经包括了转接偏移和参考结点误差,如下表所示,这些误差单独列出,以便确定有外部测量装置的系统误差。34901A 20路多路复用器是用于一般目的扫描的用途最多的模块,它将具有60路/s扫描速率的密集的多功能转接结合起来,适于各种数据采集应用。34902A 16路高速多路复用器是利用舌簧继电器实现了高达250路/s的扫描速率。这个模块理想地适用于高效自动测试应用以及高速数据记录与监测任务。 34908A 40路单端接多路复用器适用于最高密度的公共、例如电池测试、元件我测试和台式测试。34903A 20路通用开关模块适用于为被测产品接通与断开电源、控制指示器和状态灯、激励外部要求大驱动信号的继电器以及建立常规的开关配置等。34904A是一种双线的4*8全交叉矩阵,为被测件和测试设备之间提供最灵活的连接路径,允许不同仪器同时接到被测件上的多个点。34905A和34906A射频多路复用器为直至2GHz的高频和脉冲信号提供宽带转接能力,利用它们可在被测件发生器、示波器、频谱分析仪、视频放大器或接收机之间构成测试信号通路。34907A多功能模块为各种传感与控制应用提供了极大的灵活性,它将两个8位数字输入和输出口、100kHz两个±12V模拟输出??所有这些都集中在一个模块内。一般性能电源:100V/120V/220V/240V电源频率:45Hz~66Hz,自动检测电源消耗:12W(25VA峰值)全精度:在0℃~55℃全精度:在相对温度80%(在40℃下)贮存温度:-40℃~70℃[b][font=&]对照表[/font][/b][table=600][tr][td]34901A[/td][td]用于34970A的20通道多路复用器(2/4线)模块[/td][/tr][tr][td]34902A[/td][td]用于34970A的16通道多路复用器(2/4线)模块[/td][/tr][tr][td]34903A[/td][td]用于34970A 的 20 通道启动器/GP开关模块[/td][/tr][tr][td]34904A[/td][td]用于34970A 的4 x 8双线矩阵模块[/td][/tr][tr][td]34905A[/td][td]用于34970A的2 GHz双1:4射频Mux,50欧姆模块[/td][/tr][tr][td]34906A[/td][td]用于 34970A 的 2 GHz 双路 1:4 75 欧姆射频复用器模块[/td][/tr][tr][td]34907A[/td][td]用于 34970A 的多功能模块[/td][/tr][tr][td]34908A[/td][td]用于34970A 的40 通道单端多路复用器模块[/td][/tr][tr][td]82350B[/td][td]PCI高性能GPIB接口卡[/td][/tr][tr][td]82357B[/td][td]USB/GPIB 接口高速 USB 2.0[/td][/tr][/table]

  • 【原创】微波化学与单模/多模炉腔的关系

    合成化学被化学科学家誉为21世纪的三大时代元素之一;而随着人们不断开发新的仪器,尝试新的手段,微波化学获得了很大的进步。目前,无论是什么微波炉腔结构只能实现单模或者多模的谐振方式而不能两者兼得。从微波的吸收和均衡性角度出发,单模算得上是不错的选择,但往往功率不是特别高并价格不菲。虽然多模存在很多不确定性,但许多化学工作者获得这样那样的成绩,也许当前是一种主流的手段。

  • 超低损耗单模光纤熔融拉锥制作中吸附夹具的真空压力精密控制技术

    超低损耗单模光纤熔融拉锥制作中吸附夹具的真空压力精密控制技术

    [align=center][img=真空压力控制,690,285]https://ng1.17img.cn/bbsfiles/images/2022/04/202204282026227435_9583_3384_3.png!w690x285.jpg[/img][/align][color=#ff0000]摘要:熔融法光纤拉锥系统中,极小损耗的光纤耦合对应于一个吸附固定光纤的最佳真空度,由此需要对吸附真空度进行精密控制,并找出此最佳真空度值。本文针对稳定批产制作极小损耗的光纤拉锥系统,提出了真空系统改进方案,由此可实现真空度的精密控制。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000]一、问题的提出[/color][/size]在光纤拉锥系统制作光纤耦合器和光纤锥体过程中,一般采用真空吸附方式和特制夹具配合将两根或多根光纤定位并夹持在光学平台上,并以一定的方式使两根或多根裸纤旋转和对轴靠拢,用氢氧焰或激光进行加热熔融,同时以一定的速度向两边拉伸,最终在加热区形成双锥体形式的特殊波导结构。目前的这种光纤拉锥技术很难稳定地批量制作出损耗小于0.1的光纤耦合器,这主要是由于真空吸附将光纤固定的太紧所造成。有文献报道了对吸附固定夹具用的真空系统进行了改进,在一系列不同的吸附固定真空度下制作了相应的光纤耦合器,证明了在整个真空度范围内的耦合损耗有个最小区域,真空度在120mBar时损耗最小为0.05dB,如图1所示。[align=center][color=#ff0000][img=真空压力控制,500,310]https://ng1.17img.cn/bbsfiles/images/2022/04/202204282027598055_8620_3384_3.png!w690x428.jpg[/img][/color][/align][align=center][color=#ff0000]图1 不同真空压力下的耦合损耗[/color][/align]从图1结果可以看出,并不是真空度越高越好,真空度越高,光纤固定越紧,耦合损耗反而会较大。由此可见,为了得到超低损耗的光纤耦合器件,就必须对真空吸附装置的真空度进行精密控制。本文将针对光纤拉锥法制作超低损耗光纤耦合器件过程中对真空度精密控制的要求,提出真空控制系统技术方案以及相应的配套内容,以实现真空度的精密和快速控制。[size=18px][color=#ff0000]二、技术方案[/color][/size]为了实现左右拉伸夹具中对吸附真空度的精密控制,在原有真空系统中增加一个真空罐,只要实现对真空罐内真空压力的控制,即可对左右拉伸夹具的吸附真空度进行控制,如图2所示。[align=center][color=#ff0000][img=真空压力控制,550,452]https://ng1.17img.cn/bbsfiles/images/2022/04/202204282028327555_6494_3384_3.png!w690x568.jpg[/img][/color][/align][align=center][color=#ff0000]图2 光纤拉锥机真空度控制系统结构示意图[/color][/align]图2所示的真空度控制系统主要包括电动针阀、真空计、PID控制器和真空泵。真空度的精密控制采用动态控制法,即根据真空计的测量值与设定值的比较,PID控制器同时调节进气流量和抽气流量,以快速达到动态平衡,将真空度控制在设定值上,控制精度可达±1%。总之,通过真空度的精密控制,可实现超低损耗的光纤耦合器件的稳定批产制作。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 电子信息产品分类注释

    《电子信息产品污染控制管理办法》第三条定义术语第一款给出了电子信息产品的定义,定义中的电子信息产品共十大类,界定了《管理办法》的适用范围。为了帮助所有关注《管理办法》的人士了解其中的电子信息产品的定义含意,现根据我部统计电子信息产业经济指标所用的《电子信息产业行业分类》,对适用《管理办法》的电子信息产品分类注释如下: 雷达设备产品雷达设备一、指挥自动化系统二、雷达及配套设备(一)地面、车载雷达(二)机载、星载、弹载雷达(三)舰载雷达通信设备产品通信传输设备一、通信发射机(一)短波、单边带发射机(二)长波、超长波发射机(三)短波自适应发射机(四)其他发射机二、通信接收机(一)短波、单边带接收机(二)长波、超长波接收机(三)数字接收机三、微波通信设备(一)微波收发通信机(二)微波终端机(三)微波天线、馈线(四)其他微波设备四、卫星应用产品(一)卫星通信地面站天线(二)卫星通信地面站低噪音放大器(三)卫星通信地面站上下变频器(四)卫星通信地面站高功率放大器(五)卫星通信地面站终端机(六)卫星遥感接收设备(七)卫星导航定位接收设备(八)卫星气象接收设备(九)其他卫星地面站和天线五、散射通信设备(一)散射通信终端机(二)散射信道机(三)散射通信天线六、通信导航定向设备(一)飞机通信导航定向设备(二)航用通信导航定向设备(三)地面通信导航定向设备(四)其它通信导航定向设备七、载波通信设备(一)载波终端机(二)载波增音机(三)电力载波机八、光通信设备(一)光缆终端机(二)光缆中继设备(三)光纤放大器(四)WDM波分复用器(五)交叉联接设备(六)其他设备

  • 24bit ADC MCT1248,P2P TI产品ADS1248

    24bit ADC MCT1248,P2P TI产品ADS1248

    [font=微软雅黑][/font][align=center][b][font=微软雅黑][size=18px][font=微软雅黑]南京模数智芯推出的[/font][font=微软雅黑]MCT1248兼容ADS1248[/font][/size][/font][/b][/align][align=center][/align][font=微软雅黑] MCT1248是高精度24bit ADC,集成低噪声PGA、单循环数字滤波器、高精度Δ-Σ AD转换器和内部振荡器,其输入模拟多路复用器支持四路差分输入。此外,该多路复用器集成了传感器失效检测,热电偶电压偏置,系统监控和通用数字I/O。 [/font][font=微软雅黑] MCT1248同样采用[/font][font=微软雅黑]TSSOP-28[/font][url=http://bbs.eetop.cn/forum-185-1.html][font=微软雅黑][color=#000000]封装[/color][/font][/url][font=微软雅黑][font=微软雅黑],[/font][font=微软雅黑]pin [/font][/font][font=微软雅黑]to pin TI产品ADS1248,工作环境温度范围为-40℃至+125℃。[/font][font=微软雅黑][/font][align=center][img=,690,353]https://ng1.17img.cn/bbsfiles/images/2024/01/202401111029091357_6573_6354515_3.png!w690x353.jpg[/img][/align][font=微软雅黑]● 针对所有数据速率的单周期建立设置[/font][font=微软雅黑][/font][font=微软雅黑]● 在20SPS时实现50Hz和60Hz谐波抑制[/font][font=微软雅黑][/font][font=微软雅黑]● 具有8个独立可选择输入的模拟多路复用器[/font][font=微软雅黑][/font][font=微软雅黑]● 两个匹配可编程激励电流源[/font][font=微软雅黑][/font][font=微软雅黑]● 集成低漂移2.048V基准电压:10ppm/°C[/font][font=微软雅黑][/font][font=微软雅黑]● 传感器失效检测[/font][font=微软雅黑][/font][font=微软雅黑]● 8个通用输入/输出接口[/font][font=微软雅黑][/font][font=微软雅黑]● 内置温度传感器[/font][font=微软雅黑][/font][font=微软雅黑]●[/font][font=微软雅黑] [/font][url=http://bbs.eetop.cn/forum-116-1.html][font=微软雅黑][color=#000000]电源[/color][/font][/url][font=微软雅黑]和基准电[/font][font=微软雅黑]压监控[/font][font=微软雅黑][/font][font=微软雅黑]● 自校准和系统校准[/font][font=微软雅黑][/font][font=微软雅黑]● 兼容SPI接口[/font][font=微软雅黑][/font][font=微软雅黑]● 数字电源:2.7V to 5.2V[/font][align=center][b][font=微软雅黑][img=,690,436]https://ng1.17img.cn/bbsfiles/images/2024/01/202401111032322618_4356_6354515_3.png!w690x436.jpg[/img][size=16px][font=微软雅黑]南[/font][font=微软雅黑]京模数智芯微电子科技有限公司官[/font][font=微软雅黑]网:[/font][url=http://www.magicore-tech.com/][u][font=微软雅黑]www.magicore-tech.com[/font][/u][/url][/size][/font][/b][/align]

  • 中国计量院首席研究员——李天初

    中国计量院首席研究员——李天初http://www.jlbjb.com/zgjl/UploadPic/2007-2/200721323391625118.jpg 李天初1981年以来一直在中国计量科学研究院从事时间频率基准、光电子计量、稳频激光和光干涉计量的研究工作。  1996~1998年,担任“光纤损耗/长度和光纤OTDR标准检定装置”课题组长。此成果2001年获中国计量科学研究院科技成果特等奖,2001年获国家质检总局科技成果一等奖,2002年获国家科技进步二等奖(第一获奖人)。此课题建立的装置于2002年被批准为国家标准,取得了良好的社会经济效益。  1999~2005年,担任“1.5 mm光通讯波分复用波长标准装置”课题组长。 此成果在科学意义上填补了国内近红外波段没有波长标准的空白;在实际应用上建立了我国光通讯波分复用光波长标准。

  • 【原创大赛】【20周年】伴我左右 感恩万分-宁波分析测试团队

    [align=center]【20周年】伴我左右 感恩万分[/align][align=center]魏 钠[/align]一说起仪器信息网,已经是我经常访看的网站了,只要遇到需要查看的资料、仪器等都会经常光顾,在工作中其实是我的良师益友,使我受益匪浅。特别是在考察仪器、查看国标、分析疑难问题的解答、还有很多大拿的分享等对我帮助很大,这是一个很好的平台,一个有重要意义的网站。一、默默关注和积极参与:2018年我关注到仪器信息网在举办网络原创大赛,那时就想来参加,可忙于工作没有来参加。今年在宁波分析测试学会的带领下,在李久龙团长的影响下,今年我积极的参与到原创论文中,8月投的《NIRS法测定甲醛溶液中甲醛含量的方法研究》获得了三等奖,这激发了我的参与热情,9月份我又分享了几篇,同时《工艺气气体分析鬼峰异常处理》又获得了三等奖。这段时间的写作参与使我对自己在写论文等方面有了洗礼,自己的知识也得到了巩固,给大家分享使我快乐。二、燃烧的激情:在获奖后感到的是兴奋,没想到自己能获奖,虽然奖励就那么的一点点。但对自己的意义很大,之后我就在我们光谱工作室群里和质检大群里把获奖的喜悦之情进行分享。其实写论文是一个对自己知识积累和沉淀的过程,以前只写写维护报告和方法报告等。投稿参加原创之后会经常浏览一下网页关注一下大家的评论,以及其他人员的投稿分享从中学习知识,慢慢的就沉浸在这张大网之中,我就想是被这张大网捕获的一条鱼,被捕获了,还开心着。三、感激之情:在仪器信息网成立20周年之际,写此篇以表感谢之情。浩浩知识海洋,万千寻梦者游;比比仪器厂家,粮多草广难定;疑难问题困扰,日夜计无所出;敢问何觅良方,还看仪器信息。

  • 【求助】薄膜光波导如何实现光耦合?

    【求助】薄膜光波导如何实现光耦合?

    [align=center][img]http://ng1.17img.cn/bbsfiles/images/2010/08/201008051724_234451_1896367_3.jpg[/img][/align]想要做一个超晶格红外探测器,但是很难实现光耦合,想要做成光波导的形式。但是不知道如何才能实现光耦合,衬底加上外延大概100多微米厚。有经验的帮忙指导一下!也可以合作!邮箱:[email]zwxidian@qq.com[/email].

  • 引力波其实就是光波:真是“水的海洋”“光的宇宙”

    宇宙空间与海洋中间是非常相似的,“海洋中的水”“宇宙空间中的光”,真是“水的海洋”“光的宇宙”,组成“海水”的最小单位是水粒子,同样,组成“宇光”(宇宙空间光)的最小单位是光粒子,水有波动性也有粒子性,粒子性表现在布朗运动上(热运动上)。同样,光也具有波动性和粒子性,这就不要解释了,大家都知道。处于水中的物体会受到水的压力(四周挤压力),同样,处于光中的星球也会受到光的作用力,这就是我们说的引力,所以说引力波其实就是光波:引力就是光作用力,由于光具有波粒二象性,所以说引力源(光源)发出的引力子(光粒子)也具有波粒二象性。引力波其实就是光波。“超大质量黑洞合并,脉冲星自转、超新星爆发等都是引力波的强有力来源”,此观点也可更改为:超大质量黑洞合并,脉冲星自转、超新星爆发等都是光源(光波)的强有力来源。

  • 超声波分散仪在人工智能方面的发展应用

    随着现在的人工智能技术的不断发展,越来越多的行业中都开展了人工智能化发展,在仪器行业中,像[url=http://www.made-instruments.com]超声波分散仪[/url]这些产品都在不断的发展自己的新技术,那么人工智能技术在中国应用发展如何呢?中国曾今是一个农业大国,在农业上很多事都需要人工去做,但是随着现在的科技的发展,像收割机、插秧机等等的机器的问世,大大的减轻了人们的工作,但这还不是最终,在现代社会中,无人农场的渐渐发展,这样的梦想将会成为现实。 一切关于农作物的播种等工序都由机器人代替。其中包括:1, 根据大麦种子需要播种的特定深度来钻孔松土,并由自主劳作机器人控制大麦生长所需的间隔。2,在必要时,按需喷洒杀真菌剂、除草剂和化肥。3,自主收获。由于现代农业比过去只有播种、待农作物成熟再收割的农业模式更为复杂。而如今针对农作物的不同状态、杀虫、除草、施肥的适当分量都需要依靠数据驱动去实行。在实施劳作策略之前,这一对“机器人侦察兵”组合(农用劳作机器人+无人机)不停地对田地监测。并给人们带回拍摄的田野视频样品。另外,在农业等领域里,机器人变得越来越高效、亲民。我们预测在不久以后,农业自动化将会通过常规的农作方法来实现,并保证一定的产出率和稳定性。小型移动机器人或分布式传感器系统可对农作物进行人类难以实现的不间断监测,并将数据反馈给系统,由此系统能够利用位置感知判断并提供农作物所需要的对策。近些年出现的自动除草机器人如Tertill等为农业作出了巨大贡献。无人精确农业预计会成为未来一种可行的农业解决方式 。从上述的种种技术都可以看出现在的科技发展的快速,渐渐的人工智能技术逐渐将取代人力,在超声波分散仪等等产品都是很好的体现现代化发展的快速。

  • 超声波分散仪打破常规的发展

    现在的创新真是只有你想不到没有人办不到,在仪器上,像超声波分散仪这些仪器,都是传统模式的仪器,随着现在的科技的进步,在智能化技术的兴起,现催生出一种可穿戴的智能检测设备。在医疗仪器领域, 不久之前,心电图胸带还是先进的技术,然后才有了“穿戴式”的功能。从那时起,我们已经看到了GPS、加速度计、陀螺仪、光学生物传感器、皮肤电流响应传感器等等被集成到各种可穿戴设备中。这些技术已经带来了全新的用户体验,主要是在运动和健身的追踪等可穿戴设备市场已经有了长足发展的领域。然而,可穿戴技术尤其是生物传感器系统的新进展为医疗健康和医疗器械中可穿戴设备的应用开辟了新的可能性。这些的智能产品打破人们常规的思想,更加直接的说明了智能化发展的今天,仪器设备小型化的发展,便捷化的发展。随着传感器技术和材料技术的飞速发展、可穿戴设备由以往的科幻电影走进了广大消费者的现实生活当中。自2010年起,全球可穿戴设备销量保持高速增长。市场火热的同时,投资者的热情却在退却,更多的用户仍在观望等待中。智能可穿戴设备技术还需要更加稳定、优质的性能吸引投资商,才能在医疗仪器领域有更长远的发展。就是这些打破常规的设备才是仪器今天发展的方向,不仅仅产品更加便捷,方便,更使得今后产品发展的趋势。

  • 在发展中的超声波分散仪

    人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。说起人工智能,人们会想到的是炒的沸沸扬扬的“阿法狗”与我国和韩国世界顶级围棋高手的惨烈对决。最后代表人类最高水平的围棋高手双双惨烈地倒在了人工智能的脚下。这也证明了人工智能的不可思议之处,也让生活不可思议。随着现在的科技的进步人工智能渐渐成为各大科技巨头抢占的下一阵地。目前,国外包括谷歌、微软等科技巨头,都在加大对人工智能技术的投入与研发。国内包括百度、阿里巴巴等公司也在积极进行人工智能的研发。其中,百度应该走在更前列。如今百度基于人工智能等技术的无人驾驶汽车取得了重大突破,并进行过多次路试,有望在不久政策与环境成熟的时候正式商用。随着人工智能的越来越普及,技术越来越先进,在国内很多的中小企业都开始进行初步的发展,虽说发展没有那些"巨头"发展的快,但也是渐渐的初成规模。像先欧科技就把技术应用到超声波分散仪等产品上,这样更方便用户的使用,就是靠着人们对人工智能的需求,在未来人工智能技术一定会运用的更加广泛。

  • 超声波分散仪在创新中要做到那些?

    随着现在的科技的快速的进步,越来越多的企业注重企业的发展。那么在这样的环境中,想要更好的发展自己的,那就需要更好的去开发创新产品这些诶才能更好的跟上时代的发展。在仪器方面更应该如此,只有保持着这样才能开发出更多的仪器。那么在[url=http://www.made-instruments.com]超声波分散仪[/url]上创新产品该做那些努力呢?在现在的超声波分散仪创新中,需要保持以下几点的要求:1、产品创新首先需要人才,在创新中一定要保障人才储备;2、产品创新要有技术的支持,做好技术的支撑,保障创新过程中,技术的完善;3、在创新中,做好产品材料的充足,这样保障产品实验多元化。通过这些诶可以很好的保障好创新中遇到的困难,这样才能更好的创新出来产品,使得产品更加完善。

  • 插件半导体放电管(DO-15)系列

    http://www.kte99.com/UploadFiles/FCK/半导体放电管%20DO-15.png  半导体放电管 经特别设计专为保护敏感的电信设备免受浪涌和其他瞬态过压器件,该系列产品能够处理非常高的浪涌电流,并稳定的电气特性,高可靠性,低电容及可编程等先进特性。  特点:  ·双向对称,D0-15封装形式  ·高浪涌能力  ·高断态阻抗,低漏电  ·低通态电压  典型应用:  ·中央办公室交换设备,模拟和数字线路等(xDSL, T1/E1, ISDN...)  ·客户端设备如电话,传真机,调制解调器,POS终端,PBX系统及来电显示盒。主要保护模块 配线架, 楼宇安全及中心保护模块。  ·接入网络设备,如远程终端,线路中继器,多路复用器,交叉连接,广域网设备,网络接口设备  ·数据线和安全系统。  ·有线电视线路放大器和逆变器。  ·自动喷水灭火系统。

  • 超声波分散仪带动仪器行业朝着健康长远的方向发展

    就在近日,“双一流”高校的建设的话题成为现在当今火热的话题,备受关注的世界一流大学和一流学科建设高校及建设学科名单随之出炉。“双一流”高校建设是有进有出,不搞终身制。由此及彼,[url=http://www.made-instruments.com]超声波分散仪[/url]长远发展也非一劳永逸。 如今,随着科学技术不断进步,各领域对仪器设备提出更多要求,仪器行业竞争由此加剧。尽管目前国内仪器行业内中小企业数量众多,从事各类仪器生产、销售,但是较为突出的仪器企业却占据少数,在激烈的市场竞争中不占优势。“双一流”建设高效是从各高效的学科优势、师资队伍优势、科研创新以及人才培养等全面出发,对整体实力进行综合考量,而决定是否符合要求。同样,判断仪器企业是否符合用户的要求,也要从产品的质量、企业的技术实力、人才队伍以及企业服务等方面综合考虑,用户才会决定是否购买企业产品。“双一流”有进有出,不搞终身制,目的是为了促进高校之间的竞争,提升所有高校实力,从而全面提升我国高校教育水平。在国产仪器快速发展的当下,仪器行业也正需要这种努力拼搏、赶超敢追的精神,如此才能激发整个仪器行业的创新动力,带动仪器行业朝着健康长远的方向发展。

  • 高分辨率激光共焦显微成像技术新进展

    共焦显微镜因其高分辨率和能三维立体成像的优点被广泛应用在生物、医疗、半导体等方面。文章首先分析了影响共焦显微镜分辨率的因素,主要有光源、探测器孔径和杂散光等;并结合这些因素介绍了双光子共焦碌微镜、彩色共焦显微镜、荧光共焦显微镜、光纤共焦显微镜;然后从提高系统成像速度的方面介绍了波分复用共焦显微镜和频分复用共焦显微镜;最后分析了共焦显微镜的发展趋势。一、引言随着人们对于生物医学的研究,传统的光学显微镜已经无法满足研究的需要,人们需要可以实现三维成像的显微镜。1957年Marvin Minsky提出了共焦扫描显微镜的原理。1969年,耶鲁大学的Paul Davidovits和M.David Egger设计了第一台共焦显微镜,1987年第一台商业化共焦显微镜的问世,真正实现了三维立体成像。与普通光学显微镜相比,共焦显微镜具有极其明显的优点:能对物体的不同层面进行逐层扫描,从而获得大量的物体断层图像;可以利用计算机进行图像处理;具有较高的横向分辨率和纵向分辨率;对于透明和半透明物体,可以得到其内部的结构图像;还可以对活体细胞进行观察,获取活细胞内的信息,并对获得的信息进行定量分析。自共焦显微原理被提出以来,引起了研究者的广泛关注,提高显微系统的分辨率和改善系统的性能是研究者开发新型显微镜时考虑的主要因素。近几十年,国内外学者通过对共焦显微成像系统的三维点扩散函数、光学传递函数等方面的分析,得出影响显微系统分辨率的因素,主要包括系统的激励光源、探测器孔径、杂散光等。此外,共焦显微镜的成像速度也是决定系统性能的一个重要因素,专家们也一直在进行提高系统成像速度的研究。本文主要从提高显微系统分辨率和系统成像速度这两个方面来介绍共焦显微镜的发展情况。二、共焦扫描显微镜分辨率的提高光源、探测器孔径和杂散光等是影响共焦显微镜分辨率的几个主要因素,因此可以通过改善这些方面来提高显微系统的分辨率。1.光源显微镜的成像性质在很大程度上取决于所采用光源的相干性,有关研究表明,光源相干性好的系统其分辨率要比相干性差的系统要好,并且照明光源对分辨率的改变范围达到了26.4%。因此,选取适合的照明光源对提高显微系统的分辨率有很大帮助。常规的共焦扫描显微镜主要使用普通单色激光作为光源,随着技术的进步,目前已经出现了使用飞秒激光、超白激光、高斯光束作为光源的共焦显微镜,以提高系统性能,获得更高的分辨率。①飞秒激光为光源的双先子扫描共焦显微镜双光子扫描共焦显微镜通常使用近红外的飞秒激光作为激发光源,由于红外光具有较强的穿透性,它能探测到生物样品表面下更深层的荧光图像,并且生物组织对红外光吸收少,随着探测深度的增加衰减会变小,另一方面红外光的衍射低,光束的形状保持性好。2005年,Wild等人利用双光子扫描共焦显微技术实时观察和定量分析了PAHs在植物叶片表面和内部的光降解过程。后来又进一步研究了菲从空气到叶片的迁移过程、菲在叶片内部的运动及其分布情况等,该技术可观测PAHs在叶片内部的最大深度约为200μm。②白激光( supercontinuum laser)为光源的彩色共焦显微镜彩色共焦显微镜是利用光学系统的彩色像差,光源的不同光谱成分会聚焦到样品的不同深度,通过分析由样品反射的光谱能有效地获得样品的扫描深度。2004年,美国宾夕法尼亚州立大学的Zhiwen Liu课题小组使用光子晶体光纤产生的超连续谱白光作为彩色共焦显微镜的光源,这种超连续谱白光具有大的带宽,能够提高系统的扫描范围,能达到7μm扫描深度。另外超白激光有较高的空间相干性,无斑点噪声,能提高系统的信噪比和扫描速度。③使用高斯光束的荧光共焦显微镜荧光共焦显微镜是通过激光照射样品激发样品发出荧光,再通过探测器接受荧光对样品进行观察的共焦显微镜。华南农业大学的杨初平等人研究了不同光源孔径和束斑尺寸的高斯光束对荧光共焦显微镜分辨率的影响表明:与一定孔径尺寸的平行光束相比,采用高斯光束系统可以获得更好的分辨率。 2. 探测器孔径和杂散光共焦显微镜中探测器孔径能滤除部分杂散光,提高系统的分辨率和信噪比。根据相关文献对共焦扫描显微镜的三维光学传递函数与探测器孔径之间的依赖关系的研究,可以得到探测小孔直径为:d=β*1.22λ/NA,式中,β为物镜的放大率,λ为光的波长,NA为物镜的数值孔径。由该公式确定探测器小孔的直径,一方面满足了共焦扫描系统对探测器小孔直径的要求,从而保证高的横向和纵向分辨率,另一方面,又最大限度地使由试样中发射的荧光能量被探测器接收。为了更进一步提高系统分辨率,许多研究者对共焦显微镜中探测孔径进行了改进,例如使用单模光纤代替普通针孔孔径,还有双D型孔径等。① 使用单模光纤的光纤共焦显微镜在光纤共焦显微镜中用光纤分路器代替传统共焦显微镜中的光束分路器,并以单模光纤来代替光源和探测器的微米尺寸针孔孔径。使用单模光纤的优点在于:首先,在采用寻常针孔制作的共焦显微镜中,光源、针孔、探测器等有可能不在一条直线上从而会引起像差;但是在光纤作为针孔的共焦显微镜中,即使有的部件偏离直线时也不会引入像差。其次,使用单模光纤代替微型针孔,容易清除针孔的污染,而且不易受污染。第三,在使用光纤的系统中,可以自由移动显微镜部分而不必挪动探测器。2006年德克萨斯大学使用光纤共焦显微镜进行口腔病变检测,测得的系统横向和轴向分辨率分别为2. 1µm和10µm,成像速度为15帧/s,可观测范围为200µm×200µm。② 具有D型孔径的共焦显微镜近几年,具有对称D型光瞳的共焦显微成像技术引起广泛的关注,图1所示是该系统示意图。2006年美国东北大学的Peter J.Dwyer等人使用这种共焦显微镜进行了人体皮肤内部成像的实验,测得横向分辨率为1.7士0.1µm。2009年新加坡国立大学的Wei Gong等人采用傍轴近似方法理论分析了在共焦显微镜中使用双D型孔径对轴向分辨率的影响。分析表明在图1中的d值给定时,进入瞳孔的光信号强度l会随着探测器尺寸的增加而增加;但是在探测器尺寸给定时,光信号强度I会随着d的增加而单调递减。在使用有限大小的探测器时,改变d的大小,轴向分辨率可以得到改善。 http://www.biomart.cn//upload/userfiles/image/2011/11/1321512815.png 图1 双D型孔径共焦成像系统示意图在共焦成像光学系统中,到达像面的杂散光会在像面上产生附加的强度分布,从而进一步降低了像面的对比度,限制了系统分辨率的提高,因此在显微系统设计时,杂散光的影响也是不容忽视的。一般除了使用探测小孔来抑制杂散光,其他的一些设备例如可变瞳滤波器等对杂散光也有很好的过滤作用。最近以色列魏茨曼科学研究所的O.sipSchwartz and Dan Oron等人提出在系统中使用可变瞳滤波器,这个滤波器能够使多光子荧光共焦显微镜达到分辨率阿贝极限的非线性模拟,从而改善系统的分辨率。三、共焦扫描显微成像速度的提高共焦显微镜快速的成像速度为研究者观察生物细胞中快速动态反应提供了良好的条件。在共焦扫描显微成像系统中,传统的方法是通过改善扫描探测技术来提高成像速度。现有的扫描探测技术主要有Nipkow转盘法、狭缝共焦检测法、多光束的微光学器件检测法。这些方法可以改善扫描速度,但是与系统分辨率,视场之间都存在矛盾,因此又诞生了两种提高成像速度的新型显微镜:波分复用共焦显微镜和频分复用共焦显微镜。

  • 户外无线IP预警广播系统

    户外无线IP预警广播系统

    [align=center][b] 户外无线IP预警广播系统 [/b][/align][b][b]一.系统概述1.1 行业现壮[/b][/b]在我国很多的地方,户外地理环境复杂,许多需要用到语音广播的地方,要不是有电无网、有网无电、就是无电无网等,安全+在吸取了传统广播系统的优点,克服了缺点专为户外特殊环境打造一套户外无线IP广播系统,实现在无电无网、有电有网的环境下实现语音广播。现在目前市面上大部分用到的广播系统有两种,一种是以前的无线调频高音喇叭系统,一种是新型的数字网络广播系统,这两种广播系统在解决了现有的用户群体的需求外,还存在以下的问题:[b]1、无线调频高音喇叭系统[/b]Ø 无线频段很宝贵,使用需要向国家申请,一般个人和企业很难申请到专用的频段。Ø 传输音频质量随着无线信号衰减而降低。Ø 广播的内容有没有传达,广播方不知道。Ø 不能针对某一个地方进行单一的广播。Ø 广播的距离受限。[b]2、新型的数字网络广播系统[/b]Ø 建造成本昂贵。Ø 对网络要求比较高,如果网络带宽不够,语音的质量会大打拆扣。Ø 大部分需要建立专业的广播系统,需要专业的人士来使用。Ø 广播之后,看不到现场的效果,无法采取更进一步的措施。Ø 在户外的成本比较高,如果走有线,需要专门拉线,走移动线,流量的费用比较高。[b][b] 1.2系统简介[/b][/b] 安全+户外无线IP广播系统,使用了先进的语音压缩技术,可以在有线网络,也可以2G/3G/4G无线网络下进行语音压缩的传输,使用的流量较低,可以指定一个喇叭广播语音,也可以对管理的所有喇叭广播语音。安全+无线广播系统最大的亮点在于,系统广播后还可以通无线IP广播系统的摄像头观看广播后的效果,看有没有必要采取第二步措施。同时前端无线IP广播系统留有传感器的专用接口,可以外接各种传感器,后端系统可以收到传感器数据,及传感数数据超过设定范围而产生的图文并茂的报警,报警之后可以对当地进行广播录音。[b]二、[b]系统总体设计 2.1系统设计理念[/b][/b]现代信息技术的发展,是现代科学技术发展中最活跃的领域,新产品、新技术日新月异,每一个新技术的出现都对我们的工作方式产生极大的影响,对我们工作效率的提高起到极大的推动作用。我们采取基于TI技术、依托云服务器来设计我们整体系统,从而保证我们整套系统技术和应用先进性,更好地为我们客户服务。由于本系统是一个综合性系统和所有设计都具有核心技术、公司自研发,因此在系统设计和建设初期应着手考虑各方面的标准与规范,并且应遵从该规范各项技术规定,做好系统的标准化设计与管理工作。无论是对硬件、软件、通行协议和云技术都采取规范化要求来进行设计。[b][b] 2.2系统功能[/b][/b]Ø 实时抓拍图片查看现场情况;Ø 可设置查看时间,现场情况以图片形式定点传送到手机端或PC端;Ø 可点对点、点对多点广播,设置播报时间、内容,定时广播,广播距离远;Ø 通过手机APP软件,按住说话按钮对现场实时广播;Ø 可录制MP3歌曲通过喇叭循环播放;[b][b] 2.2、系统优势 [/b][/b]Ø 语音采用压缩算法进行压缩,占的流量很少;Ø 保证广播的每一条语音都能收到;Ø 广播完成之后,可以通摄像头看一看现场的景况;Ø 可以对单个广播进行广播,也可以一次对多点进行广播;Ø 不需要专们布线,直接使用3G/4G预警传输单元传输,降低了工程成本;Ø 跟多种传感器结合,能把广播现场的温度,湿度,水位,水温数据传到后端平台;Ø 系统可自检语音是否发送成功或是喇叭出现异常;[b][b] 2.3系统框图[/b][/b][img=,519,449]http://ng1.17img.cn/bbsfiles/images/2016/07/201607161721_600780_3121404_3.png[/img][b]三、[b]系统详细设计 3.1前端硬件设备[/b][/b] 高清网络摄像机 太阳能板 太阳能控制器 铅酸蓄电池 功放机 户外防水高音喇叭 立杆[b] [b] 3.2传输方式[/b][/b] 广播系统采用无线3G\4G预警传输单元传输,传输距离远,确保传输质量[b][b] 3.3 PC端(终端管理平台)[/b][/b]Ø PC软件可以接收来自于设备的报警信息;Ø PC软件可以查看设备的壮况;Ø PC软件可以对所有的设备进行语音广播,也可以对指定某一个设备进行语音广播。只要网络是通的,可保证语音发送到设备端,当由于某个原因发送不到,在管理平台上可以看广播失败的原因;Ø PC软件对广播的语音进行无损压缩;Ø PC软件可以管理100个以上的设备,可以分级管理;Ø PC软件能保存历史广播记录;Ø PC软件可以对每一个设备的现声进行手动截图,定时截图;[img=,446,322]http://ng1.17img.cn/bbsfiles/images/2016/07/201607161721_600781_3121404_3.png[/img] 图(1)为图片预览画面,可看接受到报警图片、报警信息。[img=,404,290]http://ng1.17img.cn/bbsfiles/images/2016/07/201607161721_600782_3121404_3.png[/img] 图(2)为广播设置画面[b][b] 4.2手机终端:[/b][/b]Ø 支持 Android(安卓手机系统的各个版本)和IOS (Iphone 苹果手机系统,IPAD 苹果平板系统)。Ø 可以对某一个设备进行广播;Ø 可以看到设备的工作壮况,当设备工作不正常时能第一时间收到设备的故障信息;Ø 可以对指定的设备进行截图,以了解现场情况;Ø 一个终端可以添加多个设备; [img=,169,301]http://ng1.17img.cn/bbsfiles/images/2016/07/201607161722_600783_3121404_3.png[/img] [img=,160,302]http://ng1.17img.cn/bbsfiles/images/2016/07/201607161722_600784_3121404_3.png[/img] 图(1)为报警信息接收画面 图(2)为现场图片查询、语音广播[b][b]四.适应范围5.1 旅游景区[/b][/b] 大的旅游景区,占地面积大,使用传统广播喇叭,安装布线昂贵,工程造价高,而且后期维户不方便。 使用我们的无线IP广播系统,不光可以做广播使用,还具备以下功能:Ø 可以对某一个地方进行广播,也可以对多个地方进广播;Ø 可以对广播的地方进行截图观看,同时可以对广播后的壮况进行观看;Ø 可以收集广播点的温度,湿度,水位,水温,风速,降雨量数据;Ø 可以使用手机终端(ANDROID,IOS都支持)对单点进行广播;Ø 可以定时播放指定的音频,也可反复播放某一段音频;[b][b]5.2 村村通广播[/b][/b] 村村通广播又叫农村广播系统,以便快速,高效,全面的播放党和国家的惠民政策,政府扶农政策,传播农业科技,肥料信息,农业科普知识、外界新闻等资讯可以传达到群众中,加速社会主义现代化农村的建设速度。当有紧急情况时,可以通过广播系统向农民广播。 村村通广播功能、优势具备以下几点:Ø 政府领导可以对某一个村进行广播,也可以对多个村进行广播;Ø 领导出差异地可以使用手机终端(ANDROID,IOS都支持)对单点进行广播;Ø 可实现多路音源同时播放,广播主控室可通过软件选择对应的村庄收听对应的节目,最多可实现所有村庄,同一时间,广播不一样的内容。Ø 对于特定时间播放的广播,可通过管理中心软件进行预先编程,编程完成后,广播系统便会根据任务,自动广播,真正实现无人值守功能。Ø 镇政府需要对正在本地广播的村庄进行广播通知时,系统会自动识别权限,暂时切掉正在广播的内容,切换到镇政府的广播通知任务中,待镇政府的广播通知结束后,系统回自动回到原来的本地广播中。Ø 市政府通过寻呼话筒可以和各镇、村政府组成一个会议系统,这样就避免了每次开会镇、村政府人员都要到市政府来开会,减少了开资和来回的开资。[b][b]5.3 其它领域[/b][/b]Ø 山洪水利预警广播Ø 农业种值远程推广Ø 城管远程执法Ø 交通文明执法[b]五、[b]成功案例[/b][/b] [img=,247,335]http://ng1.17img.cn/bbsfiles/images/2016/07/201607161722_600785_3121404_3.png[/img][img=,248,336]http://ng1.17img.cn/bbsfiles/images/2016/07/201607161722_600786_3121404_3.png[/img] 图1 南平快速广播系统 图2桂庙新村广播系统 [img=,436,294]http://ng1.17img.cn/bbsfiles/images/2016/07/201607161723_600787_3121404_3.png[/img] 图3 西丽水库广播系统[b][b]六、公司资质6.1我们的荣誉[/b][/b][img=,553,701]http://ng1.17img.cn/bbsfiles/images/2016/07/201607161723_600788_3121404_3.png[/img][b][b]6.2软件著作权[/b][/b][img=,554,831]http://ng1.17img.cn/bbsfiles/images/2016/07/201607161723_600789_3121404_3.png[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制