当前位置: 仪器信息网 > 行业主题 > >

单模单频全固态激光器

仪器信息网单模单频全固态激光器专题为您提供2024年最新单模单频全固态激光器价格报价、厂家品牌的相关信息, 包括单模单频全固态激光器参数、型号等,不管是国产,还是进口品牌的单模单频全固态激光器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合单模单频全固态激光器相关的耗材配件、试剂标物,还有单模单频全固态激光器相关的最新资讯、资料,以及单模单频全固态激光器相关的解决方案。

单模单频全固态激光器相关的资讯

  • 我国高功率全固态激光器成功实现应用
    工欲善其事,必先利其器。高功率全固态激光器技术就是先进制造领域的一把利器。长期以来,国外在高功率激光技术领域一直对我国实行严密的技术封锁,严重制约了我国先进制造领域工业关键激光成套装备的发展。为摆脱我国在这一技术领域的长期被动落后局面,抢占战略主动权,自&ldquo 十五&rdquo 开始,863计划持续对该项技术进行大力支持,经过多年攻关,相继突破3kW、4kW、6kW和8kW的激光输出,到&ldquo 十一五&rdquo 中期,成功研制了具有完全自主知识产权的工业级5KW全固态激光器,打破了国际禁运。  为加速成果转化应用,&ldquo 十二五&rdquo 期间,863计划继续设立&ldquo 先进激光材料及全固态激光技术&rdquo 主题项目,中国科学院半导体研究所牵头承担,以工业应用需求为导向,研制系列化的高稳定、高可靠的工业级全固态激光器及其装备,并在激光焊接、表面处理等领域实现产业化应用。目前,在项目研究成果基础上,我国首个具有自主知识产权的高功率全固态激光器生产线已在江苏丹阳建成,并实现批量生产 在汽车零部件激光焊接领域,自主研制的全固态激光器成功打破国外垄断,实现了产业化应用突破,自2012年以来,已为奇瑞汽车焊接了超过10万套自动变速箱的核心部件,为北京奔驰汽车焊接了近3万套天窗 攻克无预热情况下的激光熔覆防微裂纹、微气孔等核心技术,为全球第三大石油装备制造商威德福公司成功研制出超高耐磨转井部件,实现威德福首次将该类高难度核心部件从英国的剑桥转移到亚洲进行生产。  经过863计划长期的持续支持,我国的高功率全固态激光器产品已初步形成了从自主研制激光器到成套装备集成再到应用的完整产业链。随着我国激光技术的不断进步,更多的高功率全固态激光器产品走上成熟的工业化进程,将为提升我国先进制造产业核心竞争力,扭转关键成套装备基本依靠进口的被动局面,加强国防建设提供有力的装备保障和技术支撑。
  • 我国成唯一制造实用深紫外全固态激光器的国家
    由中科院承担的深紫外固态激光源系列前沿装备日前通过验收,我国成为世界上唯一能够制造实用化深紫外全固态激光器的国家。  &ldquo 这是我国自主研发高精尖仪器的一个成功范例。&rdquo 9月6日,由中科院承担的国家重大科研装备研制项目&mdash &mdash &ldquo 深紫外固态激光源前沿装备研制项目&rdquo 通过验收,验收委员会给出了如是评价。  该系列前沿装备中的深紫外非线性光学晶体与器件平台、深紫外全固态激光源平台,以及基于这两个平台研制的8台新型深紫外激光科研装备各项既定目标全面完成,使我国成为世界上唯一能够制造实用化深紫外全固态激光器的国家。  中科院院长白春礼表示,该项目是中科院相关研究所和科学家在长期科研工作积累的基础上,协同攻关、自主创新取得的重要成果,也是中科院近年来&ldquo 致力重大创新突破、服务创新驱动发展&rdquo 的具体体现。  开启深紫外时代  项目从一个晶体开始。  这是一种名为氟硼铍酸钾(KBBF)的晶体。上世纪90年代初,在发现硼酸盐系列非线性光学晶体后,中科院院士陈创天的研究团队经过10余年努力,在国际上首先生长出大尺寸KBBF晶体。  KBBF晶体是目前唯一可直接倍频产生深紫外激光的非线性光学晶体,是在非线性光学晶体研究领域中,继硼酸钡、三硼酸锂晶体后的第三个&ldquo 中国产&rdquo 非线性光学晶体。  深紫外非线性光学晶体问世后,如何将其研制成实用化、精密化激光源,则成为一个棘手的问题。  KBBF晶体是层状结构,难以切割,而要做到深紫外倍频又必须切割。为此,陈创天携手激光技术专家、中国工程院院士许祖彦,开始摸索解决办法。  &ldquo 当时中国大陆还没有这方面的实验装置,我们不得不跑到香港科技大学,借用他们的实验室。&rdquo 许祖彦回忆说,两个人窝在实验室里,每天工作到深夜一两点,终于搞出了KBBF棱镜耦合器件。  该器件在国际上首次实现了1064nm激光的6倍频输出,将全固态激光波长缩短至177.3nm,首次将深紫外激光技术实用化、精密化,并已获中、日、美专利。  之后两人密切配合,在国际上首次实现KBBF晶体倍频输出深紫外激光,并最终发展出实用化的深紫外固态激光源(DUV-DPL)。  从此,中国开启了深紫外的时代。  从激光源到8台装备  DUV-DPL的研制成功,不仅使得我国激光科技研究突破了200nm以内的&ldquo 深紫外壁垒&rdquo ,实现了实用化、精密化,还极大推进了我国科研人员在激光科技研究领域的继续深入。  许祖彦形容自己的工作是&ldquo 二传手&rdquo ,&ldquo 跟上游讨论晶体该长成什么样,向下游询问要什么样的激光&rdquo 。  他花了一年多时间,跑了二三十个实验室,&ldquo 推销&rdquo DUV-DPL。  深紫外波段(指波长短于200nm的光波)科研装备目前主要使用同步辐射和气体放电等非相干光源。相对于同步辐射而言,在体积方面,配有KBBF晶体棱镜耦合器件的全固态激光器体积变得很小 在能量分辨率方面,比同步辐射提高5~10倍以上 在光子流密度方面,提高了3~5个量级。  2007年年底,财政部专门设立&ldquo 深紫外固态激光源前沿装备研制&rdquo 项目,对搭建深紫外非线性晶体和器件研制平台、深紫外固态激光器研发平台,以及研制8台新型DUV-DPL科学仪器,予以专项支持。陈创天、许祖彦担任项目首席科学家。  &ldquo 为使仪器保持领先,科研人员必须不断调整技术方案。为此,总体部还设立了一个工程监理部,这在国内的科研项目中很少见。&rdquo 项目总体部总经理、中科院理化所研究员詹文山说。  这样一来,经常要&ldquo 推倒重来&rdquo 。身为&ldquo 二传手&rdquo 的许祖彦深有体会:在5年多的时间里,满足了仪器研制人员变更技术方案的多项技术要求,解决了光源与8台仪器对接的工程问题。  打造自主创新链  如今,这8台科学仪器已经在石墨烯、高温超导、拓扑绝缘体、宽禁带半导体和催化剂等研究中获得了重要结果。  以深紫外激光光发射电子显微镜(PEEM)为例,目前国际上最先进的光发射电子显微镜空间分辨率最高为20nm,而采用全固态激光器后能提高到3.9nm。中科院大连化物所利用这台仪器开展了石墨烯/Ru(0001)表面插层反应原位观测,为石墨烯等光电子材料发展和应用提供了强有力的研究手段。  詹文山透露,目前2mm以下的KBBF晶体已可小批量生产,满足国内市场需求。8台科学仪器中,PEEM正在逐步进行产业化尝试。  &ldquo 晶体&mdash 光源&mdash 装备&mdash 科研&mdash 产业化,深紫外固态激光源前沿装备研制项目打造了一条自主创新链,涵盖了从提出原创科学思想到实现应用成果这一完整的科学价值链,为学科交叉面广、跨度大、探索性和工程性很强的原创性重大科研装备创新积累了经验,也为中科院各业务管理单元合理分工、深度融合、协力创新提供了典型样本。&rdquo 白春礼评价道。  &ldquo 这仅仅是深紫外波段仪器应用的开始。&rdquo 许祖彦透露,项目二期将从物理、化学、材料拓展到信息、资环、生命等领域,开展6台国际领先水平的仪器设备研制工作,继续推动深紫外技术的深度开发。  同时,在一期任务顺利完成基础上,去年中科院理化所联合北京中科科仪等单位,在科技部支持下启动了深紫外仪器设备产业化开发工作,逐步将研制成功的深紫外仪器设备推向市场。
  • 我国研制成功5千瓦级全固态激光器 打破国际禁运
    美国“百夫长”激光炮就是将数个8千瓦级工业激光器并联。  林学春研究员(左一)与国外同行开展学术交流(科学报图片)  工欲善其事,必先利其器。  激光就是先进制造领域的一把利器,对一个国家的先进制造业发展有着至关重要的作用,而先进制造业的水平,体现着综合国力的强弱。  29岁就成为中国科学院半导体所最年轻的研究员,他最感谢的是他的导师、中国工程院院士许祖彦,导师不仅教给他扎实的基础知识,同时也教会他如何做人。  跨越鸿沟,就是一个全新的自己  2005年,博士毕业后来到半导体所科技处工作刚刚一年的林学春接到了一项艰巨的任务——筹建全固态光源实验室。  从无到有,往往要付出常人难以想象的努力。创建初期,林学春白天被科技处各种事务性工作填得满满当当,研究只能放在晚上做。大功率激光器实验危险性很强,水、电、光都集中到一个很小的区域,稍不留神,水溅出来会有灾难性的后果,看不见的激光射出来会把钢板烧个窟窿。而那时,实验室里只有林学春一个人在同时面对这些可能发生的危险。  危险,林学春不怕,但让他苦恼的是,如何才能得到理想的实验结果。很长一段时间内,他觉得自己离成功很远,想到研究所为实验室投入的那么多经费可能要付诸东流,他不免心急如焚。  一个能取得成功的人总是一个善于调节自己情绪的人。很快,他就豁然开朗了,要作出成绩必须先平静下来,有无所畏惧的决心和勇气。他把激光器部件一个个拆开,反复对比每一个参数,认真设计每一个步骤,经常在不知不觉中,发现窗外天已大亮。  尽管很累,但是他说,要感谢那段时间,因为在每天的坚持中,他不光看到了自己的进步,还锻炼了自己的意志,“现在我无论碰到什么困难都不怕,跟过去遇到的困难比起来小多了”。  跨越了鸿沟,成果接踵而至。实验室相继突破3kW、4kW、6kW和8kW激光输出,缩短了与国际上该领域的差距。2008年,以林学春作为项目负责人承担的“863”重点项目“高功率5千瓦全固态激光器”的课题“高功率全固态激光器研究”通过了科技部专家组严格评估,这是我国首次研制成功的满足工业需求的5千瓦级全固态激光器,并具有完全自主知识产权。这项成果对打破国际禁运、实现激光先进制造装备工程化具有重要意义。  进军“激光革命”  人类的文明史就是一部人类利用光的历史,激光则是迄今为止“最亮的光”,“激光革命”在改变着世界。让自己所制造的激光器服务于社会,在这场“革命”中取得一点小小的成绩,是林学春最大的心愿。  近年来,为加快科技成果转化,林学春及其科研团队以“工业应用需求”为导向,研制出一系列工业化高稳定性、高可靠性激光器及其装备,广泛应用于激光焊接、表面处理、精细加工和激光医疗等领域并取得了显著的成效。  他们研制的高稳定性全固态激光器被中国计量院作为标准光源,对国内的功率计进行标定。他们还开发出国内领先的1000W准连续(90ns)全固态激光器,用于船舶的除漆除锈等行业,目前应用于新加坡IDI激光有限公司。  林学春及其科研团队研发出的全固态高能量脉冲(12J/脉冲)激光器可以对金属表面进行毛化,使载货重轨能在雨雪等恶劣天气下正常行驶,技术将有望应用到高速铁路上,这将大大提高我国高铁在恶劣天气中的运营能力。  林学春团队研制出的工业用1~5kW高性能系列化全固态激光器于2010年成功与江苏省丹阳市天坤集团签订成果转化协议,直接为研究所带来了2000万元的现金收益。这项技术将广泛应用于汽车、船舶、航空、铁路等对国民经济起举足轻重作用的材料加工领域,对尽快扭转我国在先进制造领域关键成套装备基本依靠进口的局面,提高技术创新能力具有重要意义。  尽管如此,年轻的林学春一贯地谦逊:“我们只是在老一辈科学家引领下做了一些可供借鉴的工作而已,将来还有很多事情等着我们去做。”对于卓有成绩的青年科学家来说,这是难能可贵的。
  • DUV-DPL(全固态深紫外激光器)
    在2009年4月9日召开的“2009中国科学仪器发展年会”上,中国科学院理化技术研究所许祖彦院士作题为“DUV-DPL”的大会特邀报告,DUV- DPL为全固态深紫外激光器。  全固态深紫外激光器是我国具有自主知识产权的核心技术,在此项技术研发出来以前,我国科学仪器缺乏实用化、精密化的深紫外激光相干光源,致使我国深紫外激光仪器发展缓慢。全固态深紫外激光器研制的成功,使得我国激光科技研究突破了200nm波段的深紫外壁垒,实现了科学仪器的实用化、精密化。  全固态深紫外激光器(DUV-DPL)作为核心部件可应用在多种光谱仪器上,例如:深紫外激光光电子能谱仪、深紫外激光光谱仪、深紫外激光显微镜、深紫外光化学反应仪、深紫外气溶胶质谱仪等科学仪器。以全固态深紫外激光器为核心部件的科学仪器,其主要功能是:获取新数据,发现新现象,开拓新方向。  全固态深紫外激光器已申请到了中国、日本、美国的专利,就目前情况而言,中科院的专利已垄断了深紫外全固态激光研究的全部领域。这极大推进了我国科研人员在激光科技研究领域继续深入,促进了我国前沿科学、光电子产业发展,为这一技术研究领域在国际上持续保持优势地位奠定了坚实的基础。  深紫外激光器已应用于物理、化学、材料科学等领域,将在在信息、资环、生命等领域应用,这将为各大学科提供全新研究手段,对科研活动起到革命性的推动作用。
  • “全固态激光器及其应用技术”重点项目完成中期检查
    日前,由新材料技术领域专家组责任专家、项目总体专家组专家和组外专家组成的中期检查专家组,对“十一五”863计划新材料技术领域“全固态激光器及其应用技术”重点项目进行了中期检查,项目顺利通过检查。  该项目以全固态激光器技术的重大需求为牵引,以实现激光先进制造、激光显示与激光医疗等三大领域产业化应用为目标,通过人工晶体、大功率半导体量子阱材料与器件、全固态激光器与系统的关键制备、批量生产和应用技术攻关,保持和发展我国在人工晶体与全固态激光技术国际领先的整体优势。  通过汇报和现场检查,中期检查专家组认为,该项目总体进展情况良好。其中,“高功率5kW全固态激光器”、“汽车加工用5kW全固态激光器”、“超大屏幕激光数码影院技术研究”等课题进度超前,完成了合同书规定的考核指标,取得了较为显著的成果。  中期检查专家组充分肯定了项目各课题取得的成绩,同时对部分课题的实施工作提出了具体的意见和建议,为项目研发的持续推进和下一阶段的验收工作打下了坚实的基础。
  • 半导体所携IS-3000CB工业用高功率全固态激光器亮相国家“十一五”成就展
    仪器信息网讯 2011年3月7日至14日,中国科学院半导体研究所携IS-3000CB工业用高功率全固态激光器亮相国家“十一五”重大科技成就展。IS-3000CB工业用高功率全固态激光器  高功率全固态激光器是应用于现代工业加工的新一代激光光源。与传统的气体激光器相比,具有体积小、重量轻、效率高、寿命长等优点。我国自主研制的全固态激光器,功率高达6kw,功率不稳定度优于±0.77%,关键部件全部国产化,可广泛用于汽车焊接、铁路轮轨及风电轴承的表面淬火和熔覆等工业加工中,对提升我国工业加工装备水平具有重要意义。  关于中国科学院半导体研究所:  中国科学院半导体研究所是1956年按照“12年科学发展远景规划‘中’四项紧急措施”开始着手筹建的,是集半导体物理、材料、器件研究及其系统集成应用于一体的国家级半导体科学技术的综合性研究所,正式成立于1960年。目前,该所是集半导体物理、材料、器件及其应用研究于一体的半导体科学技术的综合性研究所。为了适应知识创新的需要,经过学科调整和目标凝练,主要研究领域包括:光电子及其集成技术 体材料、薄膜材料、微结构半导体材料科学技术 低维量子体系和量子工程、量子器件的基础研究 半导体人工神经网络和特种微电子技术。
  • 863计划“先进激光材料及全固态激光技术”项目申请指南公布
    国家高技术研究发展计划(863计划)新材料技术领域“先进激光材料及全固态激光技术”主题项目申请指南  在阅读本申请指南之前,请先认真阅读《国家高技术研究发展计划(863计划)申请须知》(详见科学技术部网站国家科技计划项目申报中心的863计划栏目),了解申请程序、申请资格条件等共性要求。  一、指南说明  依据《国家中长期科学和技术发展规划纲要(2006-2020年)》,为满足先进制造、精密测量和国家重大科学工程等对全固态激光器的迫切需求,设立“先进激光材料及全固态激光技术”主题项目。  本项目通过突破人工晶体材料及全固态激光器研制和产业化关键技术,开发出具有自主知识产权的系列化高功率、皮秒和紫外全固态激光器产品,促进我国人工晶体材料和全固态激光器产业的发展。  本主题项目的任务落实只针对项目整体进行,项目申请者应针对指南内容,围绕项目总体目标和任务进行申请,而不要只针对项目部分目标和任务进行申请。  项目可以由一家申请,也可以由多家共同申请。对于多家共同申请的主题项目,由研究单位自行组合形成项目申请团队(一个单位只能参加一个申请团队),并提出项目牵头申请单位和申请负责人,由项目牵头申请单位具体负责项目申请。  项目申请要提出项目分解(包括任务分解及经费分解)方案,提出项目课题安排及承担单位建议,并填写课题申请书(项目拟分解的课题数最多不超过10个)。  二、指南内容  1、项目名称  先进激光材料及全固态激光技术  2、项目总体目标  突破人工晶体、全固态激光器及其核心器件的研发和产业化关键技术,开发出系列化高功率、皮秒和紫外全固态激光器产品并实现工业示范应用,促进我国人工晶体和全固态激光器产业的发展。  3、项目主要研究内容  (1)深紫外激光器及人工晶体关键技术  KBBF/RBBF晶体生长、KBBF-PCT器件制备、激光高次谐波和激光线宽控制等技术研究。  (2)新型晶体材料及器件技术  超晶格晶体制备、超晶格可调谐锁模、Nd:YAG激光陶瓷材料制备等技术研究。  (3)千瓦级光纤材料及全光纤激光器  低光子暗化光纤制备、全光纤种子源研制、全光纤激光器整机设计和装配等技术研究。  (4)单频激光器关键技术  纵模控制、增益光纤与标准光纤熔接、倍频晶体抗光损伤工艺等技术研究。  (5)紫外激光器产业化关键技术及应用  光学晶体长寿命使用、激光器单元模块化、系统集成等产业化关键技术开发 紫外激光微加工应用技术开发。  (6)高功率激光器产业化关键技术及应用示范  大批量Nd:YAG单晶高质量低成本生长及加工、激光振荡放大、系统集成等产业化关键技术研发 高功率激光在焊接、表面处理等方面的应用技术开发。  (7)皮秒激光器产业化关键技术及应用示范  皮秒激光振荡、再生与行波放大、系统集成等产业化关键技术研发 皮秒激光微加工应用技术开发。  4、项目主要考核指标  (1)深紫外人工晶体及激光器  KBBF晶体尺寸15×10×4mm3,RBBF晶体尺寸12×6×1.5mm3,KBBF-PCT器件透过率95%@193nm 177.3nm激光器功率100mW。  (2)光学超晶格锁模器件  线性损耗0.5%/cm、尺寸≥20×3×1mm3 锁模激光器:1.0μm/0.5μm双波长和1.3μm 激光陶瓷尺寸≥100×100×20mm3、透光率≥80%@1064nm。  (3)千瓦级光纤材料及激光器  双包层光纤材料光子暗化12dB/m@633nm 全光纤激光器功率1.5kW、光束质量M21.5。  (4)单频激光器  倍频晶体KTP抗光损伤阈值2GW/cm2@1064nm/10ns/10Hz 单频绿光激光器功率10W、线宽2MHz、噪声0.03%RMS 单频光纤激光器功率5W、线宽10kHz、边模抑制比60dB。  (5)紫外激光器  功率10W/20W/30W系列,重复频率50~150kHz,光束质量M2≤1.3,8小时内功率起伏3%,无故障运行时间≥5000小时,实现与加工系统的匹配及定型生产。  (6)高功率激光器  Nd:YAG晶坯直径≥100mm、单程损耗≤2×10-3/cm@1064nm,键合晶体的键合面损耗≤0.1% 3kW和5kW激光器产品:光纤芯径为400μm,连续无故障运行时间≥5000小时,实现与加工系统的匹配及定型生产 激光器功率≥6kW,8小时内功率起伏±2%。  (7)皮秒激光器产品  千赫兹10~20mJ@1064nm、5~10mJ@532nm、1~2mJ@355nm,脉冲宽度≤20ps,光束质量M2≤2,连续无故障运行时间≥5000小时,实现与加工系统的匹配及定型生产。  5、项目支持年限为2年。  6、项目国拨经费控制额为9000万元,自筹经费不低于国拨经费控制额。  三、注意事项  1、鼓励“产学研用”联合申报,项目下设每个课题的协作单位原则上不超过5家。  2、受理时间:项目申请受理截止日期为2010年12月8日17时。  3、申报要求:项目申请采取网上申报方式,申报通过“国家科技计划项目申报中心”进行,网址为program.most.gov.cn。请按要求编写《国家高技术研究发展计划(863计划)主题项目申请书》,具体申请程序、要求及其他注意事项详见《国家高技术发展计划(863计划)申请须知》。  4、咨询联系人及联系电话、电子邮件  咨询联系人:史冬梅  联系电话:010-88372105/68338919  电子邮件:shidm@htrdc.com  863计划新材料技术领域办公室  2010年10月20日
  • 紧凑型全固态半导体泵浦激光打标机研制成功
    近日,由长春新产业光电技术有限公司研制成功的紧凑型全固态半导体泵浦激光打标机,倍受市场青睐。  激光打标是指利用激光束使打标表面物质气化或发生化学物理变化,从而显出刻蚀图形和文字的方式。与传统标记方式相比,激光打标技术具有标记速度快、字迹清晰永久、污染小、无磨损、操作方便、防伪能力强、可以做到高速自动化运行等优点,因此在工业领域逐渐从电加工进入光加工时代的今天,激光打标已被广泛应用到各种加工领域,包括五金制品、金属器皿、精密机械、汽车配件、电子器件、集成电路块、食品包装、刀具、礼品、钟表、电脑键盘等产品的表面,必将代替传统的标记工艺,给产品注入新的活力。  目前市场上,激光打标机根据工作方式不同可分为灯泵YAG激光打标机、半导体侧泵激光打标机、半导体端泵激光打标机、光纤打标机等。其中,半导体端泵激光打标机不仅可以实现更为精细的打标效果,而且更加具有体积小、价格低的优势。  长春新产业光电技术有限公司是依托中科院长春光机所设立的高新技术企业,成立于1996年3月主要从事半导体泵浦全固态激光器的研发、生产和销售,其全固态激光器产业化规模和产品技术水平近年来一直保持国际先进、国内领先水平,产品遍布全球81个国家和地区,同类产品的国际市场占有率约为30%,国内市场占有率70%以上。紧凑型全固态半导体泵浦激光打标机的研制是公司依托原有半导体泵浦全固态激光器方面的技术优势,逐步实现对激光器下游产品的开发,进一步促进固体激光技术及其器件的应用发展,而且将带动晶体材料、半导体材料、光电器件工艺、加工领域的发展,其带来的直接效益和二次效益都会对国民经济和地区发展带来新的活力。  该公司研制成功的紧凑型全固态半导体泵浦激光打标机,发光源采用半导体列阵,光光转换效率高 采用特殊耦合泵浦方式,光源结构更加紧凑 热耗损低,无需单独配备冷却系统,是目前国内同类产品中体积最小的设备。
  • 我国首台全固态连续激光鲜红斑痣治疗仪研制成功
    在“十一五”863计划“全固态激光器及其应用技术”重点项目的支持下,中国人民解放军总医院承担的“全固态激光治疗血管瘤设备”课题取得重要突破,研制出国内首台全固态连续激光鲜红斑痣治疗仪,近日顺利通过验收。  中国人民解放军总医院激光医学科、北京心润心激光医疗设备技术有限公司等单位,根据光动力作用原理和鲜红斑痣的病变特点,利用全固态激光技术,研制出国内首台全固态连续激光鲜红斑痣治疗仪。该治疗仪输出稳定、光斑质量均匀、临床使用方便、可靠性高和临床疗效好、设备达到了同类产品的国内外先进水平。目前,该项目成果已获SFDA批准在临床试用2000余例,有效率100%。  鲜红斑痣是一种先天性血管畸形,并随年龄增长而加重的、终生性常见多发病,发病率高达3-5‰,我国每年约有5-8万患者出生。该设备的成功研制,不仅为数百万鲜红斑痣患者带来福音,而且有力地促进我国相关激光医疗设备产品和产业的发展。
  • 深紫外全固态激光源重大仪器专项启动
    国家重大科学仪器设备开发专项“新型深紫外全固态激光源及其前沿装备开发(1)”启动  5月22日,国家重大科学仪器设备开发专项“新型深紫外全固态激光源及其前沿装备开发(1)”项目启动会在中科院理化技术研究所召开。科技部条财司,中科院条财局,理化所相关负责人出席会议,项目工程总体组、技术专家组和用户委员会成员及项目主要学术骨干等近50人参加了启动会。  为促进项目良好运行,推动科技成果向现实生产力转化,与会领导、专家就如何加强项目组织管理,做好项目相关知识产权研究,强化项目知识产权保护、管理和运用,实现部件的标准化和加快科技成果的应用推广等方面给予了指导建议。  该项目由中国科学院组织,中科院理化所牵头,北京中科科仪股份有限公司提供产业化技术支撑,中科院物理所、电子所和中国科学技术大学作为主要应用单位参加,获得了科技部国家重大科学仪器设备开发专项2012年度项目支持。项目旨在围绕物理、化学、材料、信息等领域前沿研究对深紫外科研装备的迫切需求,充分利用我国独有的可倍频产生深紫外激光的KBBF非线性光学晶体及其实用化的棱镜耦合使用技术,开展深紫外激光光发射电子显微镜工程化研究,为我国深紫外领域的相关前沿研究提供有力支撑。
  • 半导体所等在高功率、低噪声量子点DFB单模激光器研究中获进展
    分布反馈(DFB)激光器具有结构紧凑、动态单模等特性,是高速光通信、大规模光子集成、激光雷达和微波光子学等应用的核心光源。特别是,以ChatGPT为代表的人工智能领域呈现爆发态势,亟需高算力、高集成、低功耗的光计算芯片作为物理支撑,对核心光源的温度稳定性、高温工作特性、光反馈稳定性、单模质量、体积成本等提出了更高要求。近期,中国科学院半导体研究所材料科学重点实验室研究员杨涛-杨晓光团队与研究员陆丹,联合浙江大学兼之江实验室教授吉晨,在高功率、低噪声的量子点DFB单模激光器研究方面取得重要进展。该团队采用高密度、低缺陷的叠层InAs/GaAs量子点结构作为有源区,结合低损耗侧向耦合光栅作为高效选模结构,研制出宽温区内高功率、高稳定、低噪声、抗反馈的高性能O波段量子点DFB激光器。在25-85 °C范围内,激光器输出功率均大于100 mW,最大边模抑制比超过62 dB;最低的白噪声水平仅为515 Hz2 Hz-1,对应的本征线宽低至1.62 kHz;最小平均RIN仅为-166 dB/Hz(0.1-20 GHz)。此外,激光器的抗光反馈阈值高达-8 dB,满足无外部光隔离器下稳定工作的技术标准。该器件综合性能优异,兼具低成本、小体积的优势,在大容量光通信、高速片上光互连、高精度探测等领域具有规模应用前景。相关研究成果以High-Power, Narrow-Linewidth, and Low-Noise Quantum Dot Distributed Feedback Lasers为题,发表在Laser & Photonics Reviews上。研究工作得到国家重点研发计划和国家自然科学基金等的支持。图1. 量子点材料的形貌和荧光特性,以及器件与光栅结构图2. 器件的输出特性、光谱特性、光频率噪声特性和外部光反馈下的光谱稳定性
  • 千瓦级全光纤激光器研制成功并实现小批量生产
    在&ldquo 十二五&rdquo 863计划新材料领域&ldquo 先进激光材料及全固态激光技术&rdquo 主题项目支持下,中国科学院上海光学精密机械研究所承担的&ldquo 千瓦级光纤材料及全光纤激光器&rdquo 课题取得重大进展,在近期通过了课题技术验收。  课题解决了低光子暗化掺镱光纤、高功率光纤光栅、高功率泵浦合束器的国产化制备技术,开发出双包层光纤、光纤光栅和泵浦合束器系列产品或样品,形成了一套拥有自主知识产权的高功率光纤材料与核心部件的制备工艺技术,所开发的掺镱光纤与核心部件应用在千瓦级光纤激光器产品中。  掌握了千瓦级全光纤激光器的整机集成及规模化生产的关键技术和相关工艺,实现了数百瓦到千瓦级单模全光纤激光器的批量化生产,打破了国外垄断。所开发的系列高功率全光纤激光器已在金属薄板切割、焊接等领域获得重要应用。  课题实施期间,成立了2家专业从事高功率光纤激光器研发生产的高科技公司,组建了专业化的生产示范线,实现了数百瓦到千瓦级光纤激光器的产业化。2012年,形成了小规模生产销售能力。  作为目前先进的工业加工用高功率激光器,单模千瓦级以上全光纤激光器我国还大量依赖进口。高功率全光纤激光器与智能机器手技术相结合,使得实现高功率激光加工(如焊接、切割、融覆、3D打印等)的柔性化和智能化成为可能,是目前国内外激光加工装备的重要发展趋势。作为制造业大国,我国对该类高效率全光纤激光器有较为广泛的应用需求,市场前景广阔。
  • 我国投资1.8亿深紫外固态激光项目世界领先
    深紫外全固态激光源指输出波长在200纳米以下的固体激光器,与同步辐射和气体放电光源等现有光源相比具有高的光子流通量/密度、好的方向性和相干性。  中科院自上世纪90年代初开始研究深紫外非线性光学晶体和激光技术,经过20多年努力,在国际上首次生长出可直接倍频产生深紫外激光非线性光学晶体,并发明棱镜耦合技术,率先发展出实用化的深紫外固态激光源,使中国成为当今世界上唯一掌握深紫外全固态激光技术的国家。  中国科学家利用独创、独有的深紫外技术和深紫外激光非线性光学晶体,已成功研制出深紫外激光拉曼光谱仪、深紫外激光发射电子显微镜等8台深紫外固态激光源前沿装备,均为当今世界所独有的科研利器,居深紫外领域国际领先地位。  总投资1.8亿元人民币的深紫外固态激光源前沿装备研制项目,2008年启动实施以来进展顺利,现已研制成功的8台前沿装备还包括深紫外激光光化学反应仪、深紫外激光光致发光光谱仪、深紫外激光自旋分辨角分辨光电子能谱仪、深紫外激光原位时空分辨隧道电子谱仪、基于飞行时间能量分析器的深紫外激光角分辨光电子能谱仪等国际领先水平的仪器设备,另外1台光子能量可调深紫外激光光电子能谱仪研制工作也已基本完成,正在调试之中,多台仪器设备已初步用于前沿科学研究,并表现出优异的性能。  中科院整合麾下理化技术研究所、物理研究所、大连化学物理研究所、半导体研究所科研资源,在财政部专项资金支持下,设立深紫外固态激光源前沿装备研制项目,设计出从“材料-器件-装备-科学研究”完整研发体系。在成功研制8台重大仪器设备的同时,还搭建有深紫外非线性晶体和器件研制平台、深紫外固态激光器研发平台和深紫外应用仪器开发平台,核心器件深紫外晶体及器件已实现小批量生产,为仪器设备后续发展尤其是产业化工作奠定了基础。  深紫外固态激光技术突破是中国新型科学仪器研发的难得机遇。中科院在前期工作基础上,正组织专家进一步调研,一方面,将研制成功的8台仪器设备中技术成熟、具有市场潜力的发展为商品化仪器设备,推动中国高端科学仪器产业化 另一方面,进一步整合人才、技术力量,继续研发新型深紫外科学仪器和设备。
  • 自激式全固态ICP射频源研制及产业化重大专项启动会在聚光科技召开
    2016年11月18日,由聚光科技(杭州)科技股份有限公司(以下简称“聚光科技”)牵头承担的国家重大科学仪器设备开发专项“自激式全固态ICP射频源研制及产业化”项目开题会议在杭州顺利召开。浙江省科技厅乐斌、中科院电工研究所韩立所长助理、浙江大学金钦汉教授、浙经事务所徐永标教授、上海环境监测中心大气环境监测室段玉森主任、浙江地质矿产研究所胡勇平教授、中国科学院高能物理研究所刘宇研究员、杭州信雅达科技有限公司赖月林总经理、杭州电子科技大学程知群教授、浙江工业大学莫卫民教授等领导、项目专家成员以及合作单位相关负责人近22人出席会议。与会人员合影  首先由项目承担单位聚光科技党委书记陈荧平致欢迎辞,随后浙江省科技厅乐斌对项目实施过程中几点要求及评价体系等方面发表重要讲话,并希望项目组进一步加强合作,祝愿聚光科技在后续项目的实施过程中取得圆满成功。 浙江省科技厅乐斌发表重要讲话  中国地质大学(武汉)金星教授向各位领导及专家组就项目总体情况进行了介绍,本专项重点研制具有自主知识产权、达到国际一流水平的自激式全固态ICP射频源设备,在此基础上进行工程化、产业化,同时建立一条规模生产线,年产能达500台套,项目完成后3年内年销售量300台套以上,支持ICP类分析仪器销售500台套。 中国地质大学金星教授作项目介绍  本专项将研制工作在27.12 MHz频率的自激式全固态ICP射频源,频率稳定度优于0.01%,功率稳定性优于0.1%,输出功率在0.6~1.7 kW之间连续可调。  在应用开发方面,本项目针对ICP射频源在光谱和质谱中的应用,将研制的ICP源集成在国产ICP-OES和ICP-MS上,实测灵敏度、背景噪声、检出限和长短期稳定性等主要性能指标,并与采用进口ICP射频源的国产ICP-OES和ICP-MS进行横向比较,以验证本项目研制的ICP射频源的性能是否满足ICP-OES和ICP-MS的要求。形成的测试报告和应用示范效果,对于ICP射频源在国产ICP-MS中的推广应用将起到一个良好的带动作用。  在产业化方面,本项目将依托产业化承担单位的基础,按照产品开发(IPD)流程进行产品开发,参考ISO 9001:2001质量标准进行管理,建立全面的ICP射频源产品质量管理体系、物料质量管理规范和产品订单履行规范,保证ICP射频源的小试、中试和规模生产顺利实施。建立相应质量管理体系,建设生产线,实现自激式全固态ICP射频源年销售量300台套以上。  通过本项目的实施,将给国家带来巨大的经济社会效益。  一、为环境、食品等行业的仪器设备提供核心部件,提升我国检测设备的研制和应用水平  在水、土壤环境质量检测、水质重金属污染突发事件和食品重金属检测领域等行业,本项目研制成功的ICP源将为这些领域重金属检测设备ICP-OES和ICP-MS提供先进的核心部件,促进国产高端元素检测设备的技术成熟,保障检测行业的检测事业发展。先进的检测设备将大大提升水质、土壤环境的检测能力,促进环境安全和食品安全的总体控制。环境和食品安全保障手段的加强,必将提高人民的生活水平,从而产生巨大的社会效益。  二、 促进元素检测技术水平的提高  通过实施项目,我国元素检测设备和检测质量控制产品的研制水平将会有很大提高,必将进一步促进整个国产化元素检测关键设备的产业化、标准化、系列化,形成关键检测设备核心模块的产业化基地,促进国产元素检测设备的市场化推广。  三、替代进口,节约外汇  目前国内高端的ICP-OES和ICP-MS设备基本购买国外产品,市场被进口设备长期垄断,价格昂贵、仪器的维护费用高、周期长。本项目研制的具有我国自主知识产权的ICP射频源,技术指标达到国外同类产品水平,将极大的促进国产ICP-OES和ICP-MS在技术上成熟,达到国外同等先进水平,能够胜任国内元素检测各种复杂的应用环境;同时实现国产化应用、本土化维护和成本的降低,完全可替代进口产品,降低了成本,不仅促进仪器企业降低成本提高产品竞争力,也帮助国产ICP类分析仪器在整个元素检测仪器市场提高竞争力。  四、拉动内需,促进就业  本项目涉及光学、化学、机械加工、生物学、微加工、电子学、材料科学等多行业,能够促进ICP-OES和ICP-MS等分析仪器行业的进步,项目的实施将带动相关产业的发展,增加就业岗位。  总之,通过本项目的实施,将实现具有自主知识产权的自激式全固态射频电源的国产化和产业化,将在杭州建立一条拥有年产能力500台套ICP射频源的生产线,并实现批量销售,项目完成后年销售量超过300台套。通过本项目研究成果的推广,将促进国产ICP-OES和ICP-MS等高端无机分析仪器的产业化,提升国产仪器的市场竞争力。  随后,各仪器开发单位分别就各承担任务的总体目标、工作难点、技术路线、实施计划等方面进行了专题汇报,经过专家组多次提问及内部讨论,形成了专家意见,为项目的顺利实施奠定了坚实的基础。
  • 我国紫外激光器产业化关键技术取得突破
    清华大学等单位共同承担的“十二五”863计划新材料领域“紫外激光器产业化关键技术及应用”课题取得重要进展,于近日通过技术验收。  课题组解决了厘米级BBSAG晶体生长、非线性晶体超光滑表面加工、工业级应用的全固态激光器整机装配等工艺难点,突破了高光束质量紫外频率变换、非线性光学晶体的寿命及抗损伤、光束指向稳定性等多项关键技术,开发出10-30W不同功率级别的全固态紫外激光器和新型的BBSAG四倍频器件,产品性能达到国外同类产品水平,形成了一套拥有自主知识产权的全固态紫外激光核心技术,并实现了紫外激光器在微加工成套设备上的试用。  课题实施期间,BBSAG晶体生长技术已经转移到福建福晶科技股份有限公司,该公司及下属公司已经实现BBSAG晶体的生产并出口到欧美等发达国家。经过本课题支持,课题组成功研制出最大输出功率达30W的紫外激光器,各项指标均达到甚至超过国际光电子公司紫外高功率激光器指标水平。该课题成果的产业化,将打破国外在紫外激光器市场中的垄断,极大地提升我国激光微加工制造产业的核心竞争力。
  • 先进超快(飞秒、皮秒)激光器
    table width="633" cellspacing="0" cellpadding="0" border="1" align="center"tbodytr style=" height:25px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果名称/span/p/tdtd colspan="3" style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign="bottom" width="501" height="25"p style="text-align:center line-height:150%"strongspan style=" line-height:150% font-family:宋体"先进超快(飞秒、皮秒)激光器/span/strong/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"单位名称/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="501" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"中科院物理研究所/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系人/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="168" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"方少波/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="161" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系邮箱/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="172" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"Renee_zlj@126.com/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果成熟度/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="501" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"□正在研发 √已有样机 □通过小试 □通过中试 √可以量产/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"合作方式/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="501" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"√技术转让 √技术入股 √合作开发 √其他/span/p/td/trtr style=" height:304px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="633" height="304"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"成果简介:/span/strong/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"激光器被广泛运用于工业、农业、精密测量和探测、通讯与/spanspan style=" font-family:宋体"a href="https://www.baidu.com/s?wd=%E4%BF%A1%E6%81%AF%E5%A4%84%E7%90%86&tn=44039180_cpr&fenlei=mv6quAkxTZn0IZRqIHckPjm4nH00T1Ykmy7WP1K-Pjf3PhRdPynv0ZwV5Hcvrjm3rH6sPfKWUMw85HfYnjn4nH6sgvPsT6KdThsqpZwYTjCEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-TLwGUv3EnHmsrjfsPjT1" target="_blank"span style=" color:windowtext text-underline:none"信息处理/span/a/spanspan style=" font-family:宋体"、医疗、军事等各方面,并在许多领域引起了革命性的突破。其中,超快激光器倍受各界追捧。它不仅可以实现加工的“超精细”,还实现了真正意义上的激光“冷”加工;由于超快特性,可以用于更精密的手术;更高的峰值功率,可引雷、放电,快速毁坏目标,导弹拦截、卫星致盲等等。/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"由于飞秒激光的前沿性,是激光产业中高利润的高端产品。国际市场每年飞秒激光相关产值约100 亿美元,国内市场为国外公司垄断,大量外汇流失(10亿美元),同时影响国家安全。/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"中国科学院物理研究所光物理重点实验室从事飞秒激光器研究多年,开发出一系列飞秒激光器及相关科研成果,包括:/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒钛宝石激光振荡器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"TW/spanspan style=" font-family:宋体"级飞秒超强激光放大器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"高重复频率飞秒激光放大器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒参量激光器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"光纤飞秒激光器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"全固态飞秒激光器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"全固态皮秒激光器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"低噪声光学频率梳/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"窄线宽及可调谐激光器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"同步及延时控制器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"周期量级激光及其CEP锁定/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"用户定制激光器/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"部分产品和指标达到国际领先或国内首次的程度,包括:/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"同步飞秒激光器(国际领先)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒PW超强激光(世界纪录)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"若干全固态飞秒激光(国际首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"紫外波段皮秒激光(国际领先)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"红外波段飞秒激光(国际领先)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"阿秒激光装置(国内首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒光学频率梳(国内首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒参量激光振荡器(国内首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒镁橄榄石激光(国内首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒Cr:YAG激光(国内首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒激光压缩器(国内最短脉宽)/span/pp style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"主要技术指标:/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/ea10646a-372a-4205-8429-4a0ef2b8d87e.jpg" title="3.png"//pp style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"技术特点:/span/strong/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"超快:国内最短激光脉冲,3.8fs/可见光波段/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"超强:1.16PW峰值功率,当时的世界纪录/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"阿秒:160as/XUV极紫外波段,国内首次实现/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"光梳:稳定度~10-18 /秒,国际同类最高结果之一/span/p/td/trtr style=" height:75px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="633" height="75"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"应用前景:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"自20世纪60年代问世以来,激光已在工业、医学、军事等众多领域广泛应用。近年,超短脉冲激光即超快激光成为激光领域的先端发展趋势。脉冲越短,激光的精度越高、释放的能量越大。在实验室,a href="http://laser.ofweek.com/tag-%E6%BF%80%E5%85%89%E8%84%89%E5%86%B2.HTM" target="_blank" title="激光脉冲"span style="color:windowtext text-underline:none"激光脉冲/span/a已短到飞秒级别(1飞秒等于千万亿分之一秒)。超快激光投入应用,成为人类工具史上的又一“利器”。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"飞秒激光作为最重要的前沿方向,可以完成常规激光无法完成的工作,因此应用更为广泛,需求量巨大。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"在加工制造领域:比常规激光更高的精度、更高质量的加工效果。如发动机汽缸、太阳能电池、仿生加工…/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"在医疗领域:由于超快特性,可以用于更精密的手术,无痛、高效。近视、老花…/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"在国防领域:更高的峰值功率,快速毁坏目标,导弹拦截、卫星致盲。引雷、放电等常规激光所不能。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"在科研领域:常规激光远远不能的科学前沿:激光粒子加速、高能物理、光钟……/span/p/td/trtr style=" height:72px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="633" height="72"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"知识产权及项目获奖情况:/span/strong/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"已经申请相关发明专利23项。包括——/span/pp style="text-indent:28px line-height:24px"a title="高对比度飞秒激光脉冲产生装置"span style=" font-family:宋体 color:windowtext text-underline:none"高对比度飞秒激光脉冲产生装置/span/aspan style=" font-family:宋体"(申请号CN201210037173.1)/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"一种全固态皮秒激光再生放大器(申请号CN201210360026.8)/span/pp style="text-indent:28px line-height:24px"a title="飞秒锁模激光器"span style=" font-family: 宋体 color:windowtext text-underline:none"飞秒锁模激光器/span/aspan style=" font-family:宋体"(申请号CN201410251367.0)/span/pp style="text-indent:28px line-height:24px"a title="基于全固态飞秒激光器的天文光学频率梳装置"span style=" font-family:宋体 color:windowtext text-underline:none"基于全固态飞秒激光器的天文光学频率梳装置/span/aspan style=" font-family:宋体"(申请号CN201410004852.8)/span/pp style="text-indent:28px line-height:24px"a title="全固态陶瓷锁模激光器"span style=" font-family:宋体 color:windowtext text-underline:none"全固态陶瓷锁模激光器/span/aspan style=" font-family:宋体"(申请号CN201310349408.5)等/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"曾获得国家自然科学二等奖/span/p/td/tr/tbody/tablepbr//p
  • “硼酸盐激光自倍频晶体和小功率绿光激光器件商品化制备技术及应用”项目获国家技术发明二等奖
    1月18日,中共中央、国务院在北京隆重召开2012年度国家科学技术奖励大会。胡锦涛、习近平等党和国家领导人出席奖励大会并为获奖人员颁奖。山东大学晶体材料研究所王继扬教授完成的“硼酸盐激光自倍频晶体和小功率绿光激光器件商品化制备技术及应用”项目荣获国家技术发明二等奖。此外,山东大学作为合作单位获得一项国家科技进步二等奖。  王继扬教授及其课题组在国家自然科学基金和“973”专项支持下,在蒋民华院士学术思想指导下,坚持复合功能晶体研究,与中科院理化所许祖彦院士课题组合作,突破传统思想,发现硼酸钙氧盐类晶体的最大有效非线性系数在非主平面方向。他通过对多种硼酸钙氧盐晶体生长和激光特性的筛选研究,发现硼酸钙氧钇钕晶体综合性能优良,具有实用化前景,通过产学研结合实现了激光自倍频晶体元件和激光自倍频绿光器件模组的商品化生产,根据市场需求开发了多种产品,并已获得广泛应用,在国际上首次实现了激光自倍频晶体及其器件的商品化,开辟了激光自倍频晶体与器件应用的商品化领域,创造了具有特色和优势的小功率绿光全固态激光器新品种,发展了激光自倍频功能复合模型,丰富了功能晶体学科,是复合功能晶体研究领域的重大突破。
  • 澳开发出能量更强单原子激光器
    据美国《每日科学》网站3月31日报道,澳大利亚因斯布鲁克大学研究小组最新实现的更高能量单原子激光,不但具有传统激光器的属性,还展示了单个原子相互作用的量子力学性质。  在传统型激光器中,光学性质活跃的物质被放置在两面镜子之间的一个空腔内,然后用电流或另一束激光将其激发。光学性质活跃的物质所发射出的光子被反射再次穿过物质,会激发更多光子的发射,最终产生激光。系统中单个电子或光子的量子涨落对整个激光器几乎没有影响。  单个原子激光器,其激光出自于单个原子。首先对于激光系统性能而言,其工作阈值条件具有非常重要的意义。因斯布鲁克大学的科学家瑞纳布拉特与皮特施密特领导的研究小组,展示了激光阈值高度完美化的最小可能:单个原子可在光学腔中单模交互。被“囚禁”在离子阱中的单一钙离子,因接受外部激光刺激而活跃,释放出一个光子。由两面镜子组成的高精度光学腔,能捕捉并聚集该光子,离子循环的每个周期都有一个光子被添加到腔洞系统中,使光线得以增强。  单原子激光器可促进人们了解单个原子与单个光子之间的相互作用,由单原子激光器产生的非经典光将实现对光子流量的精细控制,在光子信息工程中具有很大的应用前景。自1958年研制成功以来,激光就被冠以“最快的刀、最准的尺”之名。但现今的这项技术正在将此概念延伸到一个全新的领域。  该项成果发表于最新一期《自然物理学》杂志上.
  • 谱育科技又一“国家重仪专项”通过验收:自激式全固态ICP射频源实现国产化
    p style="text-align: justify line-height: 1.75em text-indent: 0em "  2020年11月18日,国家重大仪器设备开发专项——“自激式全固态ICP射频源研制及产业化”(2016YFF0100200)综合验收会议在北京举行。该项目自2016年立项,致力于推动我国自激式全固态ICP射频源国产化进程。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/a3c2aaa3-acc8-4702-84f3-925895b44734.jpg" title="1111.jpg" alt="1111.jpg"//pp style="text-align: justify line-height: 1.75em text-indent: 0em "  验收会议由科技部科技评估中心主持,以刘淑芬教授为组长的综合验收专家组分别对项目验收材料、项目目标完成情况、项目考核指标完成情况、项目成果应用推广和发挥作用、工程化与产业化情况等进行了验收。/pp style="text-align: justify line-height: 1.75em text-indent: 0em "  经过现场听取汇报、资料审查和质询,专家组就项目相关情况进行深入讨论,一致认为该项目整体符合验收要求,研究成果达到任务书中各项考核指标,完成工程化,实现了产业化,项目顺利通过综合验收。/pp style="text-align: justify line-height: 1.75em text-indent: 0em "  strong项目背景/strong/pp style="text-align: justify line-height: 1.75em text-indent: 0em "  本项目由聚光科技(杭州)股份有限公司牵头,旗下自孵化子公司杭州谱育科技发展有限公司(以下简称“谱育科技”)研发团队承担此次项目的仪器研发及产业化工作,该项目参与单位还有中国科学院微电子研究所、中国地质大学(武汉)、中国科学院上海硅酸盐研究所、北京海光仪器有限公司、北京普析通用仪器有限责任公司等。/pp style="text-align: justify line-height: 1.75em text-indent: 0em "  目前,元素检测及元素检测设备的需求在不断增大 国际上ICP-MS、ICP-OES技术也已比较成熟,在核心部件ICP射频源的研究上正往自激式全固态射频电源技术方向发展。/pp style="text-align: justify line-height: 1.75em text-indent: 0em "  国产相关仪器正处于起步阶段,在当前国际采用的主流核心技术上陷入瓶颈,竞争力较弱,导致国内高端的ICP-OES和ICP-MS设备基本依靠进口,面临进口设备价格昂贵、维护费用高、周期长等问题,亟待进一步改进以提升竞争力,实现国产化!/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/0a967953-509f-4428-84c7-5971722f92bc.jpg" title="222222.jpg" alt="222222.jpg"//pp style="text-align: center line-height: 1.75em text-indent: 0em "  具有自主知识产权的自激式全固态ICP射频源/pp style="text-align: justify line-height: 1.75em text-indent: 0em "  本项目研制的具有我国自主知识产权的ICP射频源,将促进国产ICP-OES和ICP-MS在技术上成熟,达到国外同等先进水平 同时实现国产化应用、本土化维护和成本降低,实现替代进口。这不仅能促进仪器企业降低成本的同时提高产品竞争力,也帮助提高国产ICP类分析仪器在整个元素检测仪器市场竞争力。/pp style="text-align: justify line-height: 1.75em text-indent: 0em "  strong课题内容/strong/pp style="text-align: justify line-height: 1.75em text-indent: 0em "  1、本项目重点开展射频源功率放大及锁相环设计、高精度的阻抗匹配网络设计、ICP射频源的控制系统设计、射频功率检测装置等研究,攻克关键技术 基于ICP用射频电源研制、ICP射频源工程化开发,完成设备开发。/pp style="text-align: justify line-height: 1.75em text-indent: 0em "  2、本项目基于ICP射频源,研制开发台式、在线、车载的ICP-OES和ICP-MS, 针对水、土壤环境质量检测、水质重金属污染突发事件和食品重金属检测领域等行业的需求,建立适应国内的成熟应用模式,并建立年产能500台套ICP射频源的生产线。/pp style="text-align: justify line-height: 1.75em text-indent: 0em "  strong应用成果/strong/pp style="text-align: justify line-height: 1.75em text-indent: 0em "  研发团队经过多年技术攻关与创新,进行技术研究、设备开发并完成应用,实现产业化。/pp style="text-align: justify line-height: 1.75em text-indent: 0em " strong 技术研究/strong/pp style="text-align: justify line-height: 1.75em text-indent: 0em "  完成基于并行推挽的射频功率放大技术/pp style="text-align: justify line-height: 1.75em text-indent: 0em "  完成基于数值寻优的自激式阻抗网络匹配/pp style="text-align: justify line-height: 1.75em text-indent: 0em "  完成非定值阻抗下功率测量/pp style="text-align: justify line-height: 1.75em text-indent: 0em "  完成基于复杂基质下快速匹配/pp style="text-align: justify line-height: 1.75em text-indent: 0em "  … … /pp style="text-align: justify line-height: 1.75em text-indent: 0em "  strong产品开发/strong/pp style="text-align: justify line-height: 1.75em text-indent: 0em "  完成具有自主知识产权的/pp style="text-align: justify line-height: 1.75em text-indent: 0em "  自激式全固态ICP射频源仪器开发/pp style="text-align: justify line-height: 1.75em text-indent: 0em "  strong应用示范及产业化/strong/pp style="text-align: justify line-height: 1.75em text-indent: 0em "  在3个厂家4个型号国产ICP-OES、ICP-MS上进行应用/pp style="text-align: justify line-height: 1.75em text-indent: 0em "  在环境水样、高盐、有机、地矿等样品进行应用验证并通过/pp style="text-align: justify line-height: 1.75em text-indent: 0em "  形成1个自激式全固态ICP射频源的生产基地/pp style="text-align: justify line-height: 1.75em text-indent: 0em "  年产能力达到500台套以上,已经形成批量生产/pp style="text-align: center"img style="width: 600px height: 415px " src="https://img1.17img.cn/17img/images/202011/uepic/b1e7d576-e68c-450b-bccc-b2095fa79713.jpg" title="44444444.jpg" width="600" height="415" border="0" vspace="0" alt="44444444.jpg"//pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 200px height: 200px " src="https://img1.17img.cn/17img/images/202011/uepic/71878879-5ea9-4a17-b8cc-4552ea90ea61.jpg" title="7000.jpg" alt="7000.jpg" width="200" height="200" border="0" vspace="0"//pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C319154.htm" target="_blank"span style="color: rgb(0, 112, 192) "strongspan style="text-align: center "谱育科技SUPEC 7000 电感耦合等离子体质谱仪/span/strong/span/a/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/55962fdc-ab82-4425-a5c5-f67a337f5762.jpg" title="6500.jpg" alt="6500.jpg"//pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C391682.htm" target="_blank"span style="color: rgb(0, 112, 192) "strongspan style="text-align: center "聚光科技 EXPEC 6500新一代全谱ICP-OES/span/strong/span/a/p
  • 我国首个碱金属原子光学传感器专用激光器诞生
    日前,中科院长春光机所在国内首次研制出碱金属原子光学传感技术专用的795nm和894nm 垂直腔面发射激光器(VCSEL)。该器件采用完全自主的结构设计、材料生长和芯片工艺研制而成,芯片体积仅为0.05立方毫米(0.5mmx0.5mmx0.2mm)。器件高稳定单模态激光输出高于0.2毫瓦,工作电流低于1.5毫安,功耗低于3毫瓦,工作温度超过100℃,可作为核心光源用于芯片级原子钟、原子磁力计、原子陀螺仪等碱金属原子传感器。  基于原子光学技术的精密传感需要一些特定的波长(如795nm和894nm等)并且满足窄线宽、低功耗、可直接调制、单模和稳定偏振态的光源来激发碱金属原子。传统灯泵浦光源方案的传感器存在的体积大、功耗高、稳定性差等问题一直是困扰原子光学传感器小型化的主要难题。垂直腔面发射激光器(VCSEL)作为一种新型的半导体激光器,具有窄线宽、低功耗、高调制频率、小体积和容易集成等特征,因此基于VCSEL的相干布居俘获(CPT)方法使得原子光学器件的微型化和低功耗应用成为可能。  目前,国外只有个别实验室和公司具有制作该类原子光学传感器专用VCSEL的能力。中科院长春光机所大功率半导体激光组在十余年研究基础上成功制备出性能符合要求的VCSEL器件,为国内原子传感器的研制提供了必需的核心元器件并掌握了自主知识产权,目前正在与国内相关单位开展合作研究,促进芯片级原子传感器的产品开发。这些产品将应用于航天、国防以及民用领域,例如:精密计时技术、单兵卫星精确定位,长航时远距离惯性导航,高灵敏度水下金属磁场测量等。   795nm VCSEL 芯片(左)和TO46封装器件(右)
  • 日本押宝全固态电池 几十家企业、大学等机构联手
    p  全固态锂电池作为可兼顾高能量密度和安全性的蓄电池备受关注,在世界各国正积极推进交通工具电动化的大环境下,日本新能源产业技术综合开发机构(NEDO)为了尽快实现全固态锂电池的实用化,启动了第二期研发项目。/pp  在该项目中,汽车、蓄电池、材料领域的23家企业,15所大学及公立研究生所将展开合作,确立能解决全固态锂电池当前瓶颈的基础技术,同时将采用原型单元,开发对新材料特性、量产工艺以及是否适合配备于纯电动汽车(EV)等进行评估的技术。另外,还会以日本主导推进国际标准化为目标,开发关于安全性和耐久性的试验评估方法。此外,在推进研发的同时,还将讨论电动汽车大量普及的未来社会体系的方案设计。/p  EV用バッテリーとして安全性耐久性を確保しつつ、高エネルギー密度化高出力化が実現可能。——确保作为EV用电池的安全性和耐久性,同时实现高能量密度和高输出功率。p  1.概要/pp  今后,预计很多国家都将强化汽车的二氧化碳排放规定和燃效规定,交通工具将朝着电动化的方向发展。因此,很多汽车厂商都宣布了到本世纪二十年代每年销售数百万辆纯电动汽车和插电式混合动力车(PHEV)的计划。在这种情况下,车载电池将成为决定EV和PHEV的便利性(续航距离、充电时间等)及价格的主要因素,因此,急需通过提高能量密度来提高电池的性能和降低成本。/pp  目前的EV和PHEV使用的锂电池(LIB)采用有机电解液制造,其能量密度与安全性属于此消彼长的关系,只要一方面出问题,就可能冒烟甚至起火。对此,如图1所示,采用无机固体电解质的全固态锂电池充分发挥固体电解质的阻燃性及热稳定性和化学稳定性,即使提高能量密度也能确保安全性和耐久性。此外还能简化电池组的冷却系统和冒烟起火时的排气系统等,提高体积能量密度。而且,全固体电池有望使EV充电时间降至10分钟以内,实现超快速充电。不过,要想实现期待的这些性能,还存在很多瓶颈,而且单元的结构、材料构成和制造工艺等基本概念尚未确定,目前,面向实用化的研究开发的效率并不高。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201806/insimg/71b893a4-64dc-4eee-9ecf-ead6726c6e50.jpg" title="u=5987533,886558873& fm=173& app=25& f=JPEG.jpg"//pp style="text-align: center "  图1:EV电池的技术转移设想/pp  因此,在NEDO的“先进创新蓄电池材料评估技术开发一期(2013~2017年度)”项目中,开发了全固态锂电池的标准电池模型(200mAh级单层层压单元)以及采用该模型的材料评估技术,并对企业和大学等面向全固态锂电池开发的固体电解质和电极活性物质等进行了评估,将评估结果反馈给样品提供者。/pp  此次启动的二期项目将在一期项目取得的成果的基础上,开发实现大型化和高容量化的标准电池模型(Ah级层压单元)以及采用该模型的材料评估技术。一期项目的评估技术是为了掌握材料的基本特性,而二期项目的评估技术将进一步升级,将评估量产性以及是否适用于EV等。因此,此次有4家汽车及摩托车企业、5家蓄电池企业及2家材料企业新加盟了受理评估委托的“技术研究联盟锂电池材料评价研究中心”(LIBTEC)。另外,14所大学和研究所也作为新的委托对象加入二期项目,将与LIBTEC进行合作。/pp  如图2所示,在EV电池市场上,预计目前研究开发比较领先、采用硫化物固体电解质的第一代全固态锂电池将在2025年左右成为主流,到2030年左右,采用具备高离子导电性的硫化物固体电解质或者化学稳定性较高的氧化物固体电解质的新一代全固态锂电池将成为主流。第一代全固态锂电池和新一代全固态锂电池都将是二期项目的研发对象。/pp  2. 业务内容/pp  【1】业务名称/pp  先进创新蓄电池材料评估技术开发(二期)/pp  【2】业务总额(预定)/pp  100亿日元/pp  【3】时间/pp  2018~2022年度/pp  【4】研发内容/pp  (1)开发通用基础技术/pp  将开发能解决全固态锂电池的大型化和量产化瓶颈的基础技术,包括固体电解质的量产与低成本合成、向电极活性物质涂敷电解质、电解质层与电极层的成膜等。/pp  另外,通过组合全固态锂电池用新材料和元器件,评估单元的性能、耐久性和安全性,将制作用于掌握新材料与元器件的利弊、技术课题及是否适合单元量产工艺等的标准电池模型,并编订规格说明书及性能评估程序手册。/pp  此外,还将开发通过计算机模拟,预测全固态锂电池的单元及电池组的不稳定性、劣化和发热情况的技术,以日本主导推进国际标准化为目标,开发关于耐久性和安全性的试验评估方法等。/pp  (2)讨论社会体系设计/pp  将调查并分析各国与全固态锂电池及电动汽车有关的政策、市场和研发动向,制定以EV普及为前提的整个未来社会体系的方案设计,同时与“(1)开发通用基础技术”联动,推进相关研究开发。制定方案时,还将考虑充电基础设施建设、资源限制、3R原则(Reduce、reuse、recycle,即减量化、再利用和再循环)等,讨论低碳化社会的方案设计。/ppbr//p
  • 【前沿快讯】刀片式研磨机用于全固态电解质前驱体的制备
    全固态锂离子电池因为采用固体电解质,不含易燃、易挥发组分,彻底消除因漏液引发的电池冒烟、起火等安全隐患,被称为最安全的电池体系。固体电解质是全固态锂离子电池的核心部件,硫化物固体电解质因为高离子电导率、合适的电化学窗口以及较好的力学性能而受到广泛关注。目前,制备含硫固体电解质的方法一般采用振动球磨法长时间球磨混合前驱体原料后,再高温煅烧而获得。深圳大学田冰冰教授团队首次报道了一种创新的制备含硫固体电解质的方法:采用刀片式研磨机高速混合前驱体原料,仅需不到5分钟,即可进入煅烧步骤制得含硫固体电解质。通过此法制得的硫化物固体电解质离子电导率高达20 mS cm-1,组装成固态电池后测得在0.1C电流密度下,比容量达到165 mA h g-1,同时,具有良好的倍率性能和循环寿命。如下为文献[1]中提到的刀片式研磨机高速混合与传统球磨方法的优势对比:制备方法传统球磨高速研磨混合设备行星式球磨机高速刀片式研磨机混合方式球磨刀片研磨最大处理量50g500g转速180/360rpm10000-25000rpm耗时重复次数1-2h10-20次25s6次煅烧条件取10-20g置于密封石英管中460-555℃×16h取100-300g置于氧化铝坩埚中460-555℃×16h显然,采用高速刀片式研磨机混合前驱体,处理量增大了近十倍,且缩短了研磨时间,大大提高了制备效率。IKA Multidrive control研磨机是一款采用了德国先进制造工艺的高速刀片式研磨机,可满足各种需要高速研磨或高速混合的应用场景。 关于IKAIKA 集团是实验室前处理、分析技术、 工业混合分散技术的市场领导者。电化学合成仪、磁力搅拌器、顶置式搅拌器、分散均质机、混匀器、恒温摇床、恒温培养箱/烘箱、移液器、研磨机、旋转蒸发仪、加热板、恒温循环器、粘度计、量热仪、生物反应器、化学合成釜、实验室反应釜等相关产品构成了IKA 实验室前处理与分析技术的产品线;而工业技术主要包括用于规模生产的混合设备、分散乳化设备、捏合设备、以及从中试到扩大生产的整套解决方案。IKA 还与全球知名大学和科学家进行着密切的合作, 支持其在科研道路上不断探索。我们致力于为客户提供更好的技术, 帮助客户获得成功。IKA 成立于1910年,集团总部位于德国南部的Staufen,在美国、中国、印度、马来西亚、日本、巴西、韩国、英国、波兰等国家都设有分公司。 艾卡(广州)仪器设备有限公司是IKA 集团于2000年设立的全资子公司,主要负责为中国和蒙古国提供产品、技术和服务支持。
  • 太赫兹光子马约拉纳零模量子级联激光芯片
    近日,新加坡南洋理工大学电气与电子工程学院的Qi Jie Wang教授团队及其合作者们通过构建光子类马约拉纳零模(Majorana-like zero mode),在量子级联激光芯片中实现单模、柱状矢量光场输出的太赫兹量子级联激光器。相关成果以“Photonic Majorana quantum cascade laser with polarization-winding emission”为题发表于期刊《Nature Communications》上。新加坡南洋理工大学电气与电子工程学院博士后韩松(现为浙江大学杭州国际科创中心和浙江大学信电学院研究员)为论文第一作者,博士研究生Yunda Chua为共同第一作者;南洋理工大学电气与电子工程学院Qi Jie Wang教授为论文第一通讯作者,武汉大学信息电子学院曾永全教授为共同通讯作者。拓扑学研究的是几何物体或空间在连续形变下保持的全局性质,它只关注物体之间的空间关系而不考虑其大小和形状。对具有特殊拓扑性质的光子结构而言,空间上的缺陷和无序只会引起局部参数变化,不影响该空间的全局性质。拓扑光子结构的典型特征在于结构内部是绝缘体,而表面则能支持无带隙的界面(表面)态。受结构全局性质的规范,界面态可沿着有限光子绝缘系统的边缘或畴壁单向传输,并且能够有效地绕过结构拐角及制备误差引起的缺陷和无序而无后向散射(即拓扑保护)。因此,拓扑光子结构可用于实现高鲁棒性半导体激光器,即“拓扑激光器”。然而,拓扑激光器研究面临两大共性难题:1)需要光泵;2)需要外加磁场或者构建等效磁场来产生受拓扑保护的界面态激光模式。二者均显著增加了激光器系统的复杂程度、成本和功耗,降低了激光器的可靠性,阻碍了其实用化进程。针对上述难题,课题组前期利用量子能谷霍尔效应的原理,以太赫兹有源超晶格材料为增益介质,集成能谷光子晶体,通过简单的设计打破结构反对称性来产生“能谷-动量锁定”的边界传输模式,实现了拓扑界面态的片上单向传输和放大,从而首次研发出电泵浦拓扑激光器。然而该工作是多模激光器且其信噪比低,难以实现激光器出射光的光束控制。随后,来自南加州大学的科学家利用量子自旋霍尔效应,在室温条件下,实现近红外电泵浦单模激光。然而,该工作设计复杂的超大尺寸耦合环形谐振腔阵列实现拓扑边界态,其样品整体尺寸在200个波长以上,且需要耦合光栅增强激光输出和信噪比,难以实现光束调控、赋形、极化控制等高性能激光器。此外,两个工作均需要选择性地泵浦边界态,牺牲光子晶体体态增益材料,难以实现大面积集成的高功率激光器。因此,对电泵浦拓扑激光器性能的提升,如光束调控、赋形、极化控制、高功率输出等,亟待新的物理机制。团队创造性地将凝聚态中p波超导的马约拉纳零能模式引入到光子晶体体系,并利用光子类马约拉纳零能模式的辐射特性,实现了全动态范围单模输出(边模抑制比大于15dB,输出光率约1毫瓦)、柱状矢量光场调控、固态电泵浦、单片集成的太赫兹拓扑激光器。该成果的独特优势还有:(1)在不需要选择性泵浦的情况下,其发光腔体整体直径可以低至大约4个波长,是目前报道能保证毫瓦量级功率条件下最紧凑的太赫兹拓扑激光器(相对激光波长),这极大提升了该类半导体激光器在实际应用中的集成度。(2)光子马约拉纳微腔的自由光谱程(free spectral range)与腔体尺寸呈现二次方反比律[3],这一特性使得光子马约拉纳微腔更容易在大面积条件下保持单模激光输出。团队也在电泵浦拓扑激光器体系中证实了该二次方反比律,并实现了大面积泵浦下高功率(大于9毫瓦)和单模激光输出,其功率是同等尺寸下脊形激光器的5.4倍。图1.光子马约拉纳激光器的示意图a和加工样品图b。图2.a.超胞(supercell)能带随Kekule调制相位的变化。b.类马约拉纳光子腔的相位分布及六方晶格位置与相位之间的关系。中心虚线圆包围的部分为非Kekule调制区域(non-Kekule modulated region),其半径标记为ζ,这里ζ=2a。图中显示马约拉纳光子腔的相位绕数为+1。c.相位绕数为+1的类马约拉纳光子腔的空气孔的大小分布。d,e.三维模拟的类马约拉纳光子腔的近场(Ez)与远场(Intensity)分布。图3. a,b实验测到的激光模式随泵浦电流密度变化,a.相位绕数+1,b.相位绕数-1。c.理论计算的净增益。d.实验测得的L-I-V曲线和在对应位置激光光谱。图4.远场测试。a.测试装置示意图。b,c.数值仿真和实验测试的远场光斑。d,e.加偏振片后的激光光谱和光斑。图5.大面积激光的L-I-V曲线,激光光谱,和单模性分析。
  • 美研究人员研制成功一种用于光谱学的新型太赫兹激光器
    从左至右:利哈伊大学(Lehigh University)电气和计算机工程研究生Ji Chen、Liang Gao和Yuan Jin在利哈伊大学Sinclair大楼Sushil Kumar的太赫兹光电子(Terahertz Photonics)实验室  美国研究人员展示了一种具有破记录输出功率的太赫兹半导体激光器,可用于各种形式的光谱学和其他应用。  以强烈的单色辐射光束形式提供的光束是众所周知的技术,可以追溯到1960年推出的第一台激光器。依靠激光器来实现超快速和高容量的数据通信、制造、手术以及商业应用,例如条形码扫描仪、打印机,诸如CD和DVD的光盘,自动驾驶车辆,激光显示表演和动态艺术装置,当然还有光谱学。  从红外到紫外的激光器被广泛使用,然而,利哈伊大学的Sushil Kumar团队研究了太赫兹激光器。太赫兹辐射位于微波和红外区域之间的电磁波谱区域。它们可穿透塑料、织物、纸板和其他材料,可用于检测各种化学品。太赫兹激光有可能用于非破坏性、非侵入性筛查和检测爆炸物,非法药物,检测药物化合物,筛查皮肤癌。  为了真正有用,激光必须以非常精确的波长发射,这通常通过单模激光器中的“分布式反馈”来完成。太赫兹激光器必须是单模的。随着太赫兹辐射的传播,其中一部分会被大气湿度吸收,这是非常不利的。因此,一个用于光学传感和分析的太赫兹激光,不管距离多远,即使几米,也必须避免这个问题。现在,Kumar的团队一直致力于通过提高光功率输出来提高强度和亮度。  他们研究了“表面发射”(而不是“边缘发射”)的单模激光器。已经找到了一种将周期性引入激光器光学腔的方法,使其能够从根本上辐射高质量的光束并提高辐射效率。该团队将这种方法称为“混合二阶和四阶布拉格光栅”。他们建议,他们的混合光栅不一定限于太赫兹激光器,而是可以用于增强几乎任何表面发射半导体激光器。  该团队报告了单模太赫兹激光器的功率输出为170毫瓦的实验结果。这是迄今为止这种激光器中功能最强大的。因此他们证明,它们的混合光栅可以通过简单地改变激光腔内压印光栅的周期来精确控制发射波长。库马尔表示,1000毫瓦的设备应该很快成为可能,这可能会吸引制造商的眼球。  原文请查阅:  Power up: New lasers for spectroscopy  SpectroscopyNOW.com  Channels: Atomic  Published: May 15, 2018 符斌供稿
  • 我国高功率拉曼光纤激光器研究取得进展
    近期,中国科学院上海光学精密机械研究所空间激光信息技术研究中心冯衍研究员领衔的课题组,在高功率拉曼光纤激光器研究中取得新进展。提出了一种镱-拉曼集成的光纤放大器结构,有效地解决了拉曼光纤激光器功率提升的主要技术瓶颈问题,在1120nm波长,首次获得580W的单横模线偏振拉曼光纤激光和1.3kW的近单模拉曼光纤激光输出。  近年来,高功率光纤激光器发展迅速。1&mu m波段的掺镱光纤激光器,近衍射极限输出功率可达20kW,多横模输出功率可达100kW。尽管如此,稀土掺杂光纤激光器的输出波长,因稀土离子能级跃迁的限制,仅能覆盖有限的光谱范围,限制了其应用领域。基于光纤中受激拉曼散射效应的拉曼光纤激光器是拓展光纤激光器波长范围的有效手段。  该项研究中,在一般的高功率掺镱光纤放大器中注入两个或多个波长的种子激光,波长间隔对应光纤的拉曼频移量。处于镱离子增益带宽中心的种子激光率先获得放大后,在后续光纤中作为泵浦激光对拉曼斯托克斯激光进行逐级放大。初步的演示实验获得了300 W的1120nm拉曼光纤激光输出 接着采用较大包层(400&mu m)的光纤,获得了580W的单横模线偏振拉曼光纤激光和1.3kW的近单模拉曼光纤激光输出。结果发表于《光学快报》(Optics Letters)和《光学快讯》(Optics Express) [Opt. Lett. 39, 1933-1936 (2014) Opt. Express 22, 18483 (2014)]。鉴于目前高功率掺镱光纤激光器均采用主振放大结构,新提出的光纤放大器结构可用于进一步提升拉曼光纤激光的输出功率。初步的数值计算也表明,该技术方法有望在1~2&mu m范围内任意波长获得千瓦级激光输出。  该项研究得到了中国科学院百人计划、国家&ldquo 863&rdquo 计划、国家自然科学基金等项目的支持。   千瓦级掺镱-拉曼集成的光纤放大器结构示意图  输出功率随976 nm二极管泵浦功率的变化曲线,其中的插图为最高输出时的光谱。
  • 便携式质谱及全固态ICP光源新仪器发布会
    仪器信息网讯,2009年11月27日下午,由中国计量科学院和清华大学、中国地质大学等单位研制的便携式质谱和全固态ICP光源新仪器发布会于BCEIA2009期间在北京展览馆A会议室成功召开,近100位相关部门领导、专家学者、仪器厂商代表和媒体记者参加了此次发布会。发布会由清华大学张新荣教授主持。清华大学张新荣教授便携式质谱  目前,质谱仪已经成为许多领域的必备分析仪器之一,在制药、生命科学、环境监测、食品安全、航天和军事技术等诸多热点领域发挥着越来越重要的作用。目前质谱仪大多体积庞大、价格昂贵且维护费用高,大范围推广使用有一定困难,特别是在制药和生物学领域。   由中国计量科学院和清华大学等单位共同研制开发的便携式质谱,小巧轻便,没有过多的耗材,可以在运动环境或恶劣气候环境下工作,不需外接电源,不需过多前处理,气、液、固态样品均可引入分析。此外,便携式质谱还可对未知样品进行鉴定和分析,实现快速痕量检测,能达到ppb级别的灵敏度。目前,便携式质谱已应用于环境样品分析、香精香料分析、农药残留和食品安全分析等领域,还可应用于突发事件、军事航天、有机物药物和有机毒物、公共安全等现场分析领域。全固态ICP光源  目前ICP光源所用的射频电源正向全固态化、高稳定度、智能控制方向发展,提高ICP光源所用的射频光源的频率稳定度和功率稳定度、智能控制、轻便体积一直是ICP光源研制努力的方向。   由中国计量科学研究院和中国地质大学(武汉)共同开发的数字式高效全固态ICP光源为全数字化设计,其状态参数均可通过计算机采集、设置和控制 具有较高的工作效率、频率稳定性和功率稳定性 光源系统具有故障诊断功能、自动阻抗匹配功能和自动保护功能。目前该成果已申请1项发明专利和2项实用新型专利。中国计量科学院黄泽健教授  中国计量科学院的黄泽健教授向大家介绍了便携式质谱的性能参数及构造特点。清华大学分析中心林子青先生  清华大学分析中心的林子青先生重点介绍了低温等离子体离子源与便携式质谱仪联用的优势,以及常压便携式低温等离子体质谱仪的分析测试特性。中国地质大学(武汉)机械与电子学院金星教授  中国地质大学(武汉)机械与电子学院的金星教授首先介绍了目前国内外ICP光源的研究现状,随后重点介绍了数字式高效全固态ICP光源的组成、设计思想、特点及相关研究结果。中国科学院大连化学物理研究所的张玉奎院士  中国科学院大连化学物理研究所的张玉奎院士表示:便携式质谱及全固态ICP光源的成功研发,表明我国在分析仪器科学技术自主创新方面已经取得了重大进展,成果的发布代表科学仪器研制项目的成功,但通向产业化的道路仍很漫长,希望在领导和相关部门的支持下,更快实现产业化。中国科技部财条司郑健博士  中国科技部财条司郑健博士首先代表科技部条财司吴学梯副司长向研发便携式质谱及全固态ICP光源的成功研发表示祝贺,之后郑健博士谈到:在有关领导和专家的支持与关注下,中国科学仪器硕果累累,自主创新能力已经达到一定高度,为“十二五”推动科学仪器自主创新奠定了基础。国家质量监督检验检疫总局姚泽华副处长  国家质量监督检验检疫总局姚泽华副处长谈到:国家质量监督检验检疫总局非常关注科学仪器国产化、专用仪器的开发及方法的研究。他非常高兴地看到目前国产仪器取得的成就,希望在相关部门领导的关怀下,研发单位和相关企业一起努力,共同推进国产科学仪器的产业化进程。清华大学精仪系分析主任王晓浩教授  清华大学精仪系分析主任王晓浩教授首先代表金国藩院士感谢科技部等相关部门多年来的支持,并希望便携式质谱仪在技术上能有所突破,能够更快更早地进入市场,期待和中国计量科学院能在相关领域有更深入更广泛的合作。中国计量科学研究院化学所李红梅所长  中国计量科学研究院化学所李红梅所长表示:在科技部、应用领域专家和其他企业的关注下,研发项目取得了阶段性的成功,并希望在今后产业化发展的道路上,能够得到更广泛的支持和鼓励。同时,李所长代表研发团队作出承诺:再接再砺,在分析仪器领域做出自己应有的贡献。国家标准化管理委员会副主任方向研究员  国家标准化管理委员会副主任方向研究员发言:便携式质谱及全固态ICP光源是“十五”和“十一五”成果的延续。这些技术是属于国家的,也是属于大家的,选择在BCEIA2009这种技术氛围的环境下举行发布会,是希望业内同仁共同努力,将成果转换成产品,推进新成果的产业化进程。专家观看仪器现场演示发布会现场
  • 电镜表征新成就颠覆认知 全固态电池量产不是梦
    导语2020开年新气象,电镜科研新成就。困扰业界许久的锂枝晶生长机理问题取得重大突破,全固态电池距离量产迈进一大步。近日,燕山大学亚稳材料制备技术与科学国家重点实验室黄建宇教授、沈同德教授和唐永福副教授等人联合美国佐治亚理工学院朱廷教授、宾夕法尼亚大学张宿林教授,通过巧妙地设计实验过程,实时直观地记录了锂枝晶生长的微观机制,精准测定了其力学性能和力-电耦合特性。更难能可贵的是,该研究团队还提出了一种固态电池中抑制锂枝晶生长的可行性方案。锂枝晶的生长机理难题困扰业界许久,至此终于有种“拨开云雾见天日,守得云开见月明”的感觉了。论文链接:www.nature.com/articles/s41565-019-0604-x据悉,该研究成果已在权威国际期刊《自然-纳米技术》(Nature Nanotechnology)刊登发布。《自然-纳米技术》是材料与纳米科技领域的国际顶级学术期刊,2019年的影响因子高达33.407,该研究成果的突破性和重要性由此可见一斑。为什么这项研究成果能够引发业界广泛关注呢?这就不得不提到目前在电动汽车上广泛使用的液态锂离子电池,其主要结构包括正负极材料、隔膜和电解液。因内部构造原因,液态锂离子电池容易受环境温度影响,而且很容易产生不可控的锂枝晶。锂枝晶非常“锋利”,可以刺破隔膜导致电解液泄漏,导致电池内部短路,从而造成电池起火甚至汽车自燃事故,近年来为提升电池的能量密度,企业把隔膜厚度从十几毫米降低到了五六毫米,2019年特斯拉、蔚来等大牌电动汽车相继“走火”,或许也间接反映了这个问题。概括言之,在材料体系没有创新的条件下,目前商品化的液态锂离子电池的能量密度已经逼近“极限”(300Wh/kg左右),“里程焦虑”、“可能自燃”等问题重创消费市场。既然液态电解液不行,那改用机械刚性的固态电解质不就完事了么?于是乎,全固态锂离子电池(简称:全固态电池)进入了公众视野。顾名思义,全固态锂离子电池采用的是固态电解质,不含任何液态组份,结构更加安全。与液态锂离子电池相比,全固态锂离子电池的能量密度最高潜力达900Wh/kg,因此,固态电池被视作为下一代锂电池技术革命,其量产与普及将会彻底解决电动汽车发展的最大瓶颈问题,国内外车企巨头已然纷纷布局涉足,“固态热潮”一时风头无两。然而,全固态电池的研发之路也并非一马平川。全固态电池以金属锂作为负极材料,仍然绕不开“不可控锂枝晶”的这个坎儿,实验结果表明,锂枝晶生长到一定程度时,也可以穿透固态电解质,造成电池短路失效。尽管诸多研究致力于探索如何抑制锂枝晶的产生,但是以往研究主要停留在宏观尺度,对于锂枝晶生长的微观机理、力学性能、刺穿固态电解质的机制及抑制其生长的科学依据缺乏足够了解。赘述至此,相信您应该充分了解黄建宇教授、沈同德教授等人的研究成果的重要性了吧?!___AFM-ETEM纳米电化学测试平台,可实现原位观测纳米固态电池中锂枝晶生长机制及其力学性能和力—电耦合精准定量测量。___据悉,该研究团队基于AFM-ETEM平台发现,在室温下,当对AFM针尖施加电压(过电位)时亚微米晶须开始生长,其生长应力高达130 MPa,远高于此前研究报道。此外,研究人员还发现锂晶须在纯机械载荷作用下的屈服强度可达244Mpa,远高于宏观金属锂的屈服强度(~1MPa)。可以说,该研究成果颠覆了研究者对锂枝晶力学性能的传统认知,为抑制全固态电池中锂枝晶生长提供了新的定量基准,为设计具有高容量长寿命的金属锂固态电池提供了科学依据,这项研究成果得到应用之后,全固态电池将有望加速实现商业化量产。很荣幸,赛默飞世尔科技旗下Thermo Scientific品牌的两大拳头电镜产品能够深度参与此项研究工作,并帮助研究团队发明了一种基于原子力显微镜—环境透射电镜(AFM-ETEM)原位电化学测试平台,建立起了一种有效的研究锂枝晶的动态原位实验表征新技术。它们是Themis™ ETEM环境气氛球差校正透射电子显微镜(左图)与Helios PFIB双束电镜(右图):Helios PFIB Themis™ ETEM Themis™ ETEM 300kV原子分辨扫描/ 透射电子显微镜可以一体化解决纳米材料在接触活性气体环境和升温的过程中的时间分辨动态特性原位研究,包括材料的结构性能关系、原子尺度的几何结构、电子结构以及化学组成。Helios PFIB系统结合了Elstar电子镜筒和Vion氙等离子体离子镜筒,既可以实现纳米分辨率和最高衬度成像,又能确保尺度样品加工的速度和精确度。基于此,赛默飞推出了一系列针对锂电池行业的多尺度二维及三维表征解决方案,主要包含多功能计算机断层扫描系统、扫描电镜、镓离子双束电镜、Xe等离子双束电镜、透射电镜等产品,涉及电芯表征、电极表征、隔膜表征等应用,希望从广度和深度两个方面,为客户在锂电池开发的各个阶段提供强力支持的产品组合,助力攻克电池研发技术难题,让全固态锂离子电池的量产与普及不再是梦,让电动汽车“充一次电跑1000公里”不再是梦!
  • “Cleanlaze激光器在拉曼光谱分析中的应用”获美国专利
    近日必达泰克公司(B&W Tek)的“新型激光器(Cleanlaze™ 系列)在拉曼光谱分析中的应用”,成功地获得了美国专利 (专利号: US 7,245,369 B2), 为拉曼专用激光器的应用提供了新的选择。 新型激光器(Cleanlaze™ 系列)是一种窄带、稳频、低功耗、小体积、结构紧凑的激光激发光源(特别是在近红外波长范围内)。过去这种激发光源依赖于外腔型激光器,其成本和复杂程度往往令使用者望而生畏。B&W Tek在与有关厂商的多年合作过程中,成功发展了数种高性能、高性价比的稳频半导体激光器,并将其应用在拉曼光谱分析中,成功地获得了美国专利。该系列主要有785nm、830nm、980nm及其他客户所需波长。根据不同拉曼光谱分析的需求,我们提供了单模(0.02nm FWHM)及窄带多模(0.25nm FWHM)等不同规格。多模激光器最大可通过光纤输出大于1.2w的功率。单模目前已经可以达到输出100mw的要求。 基于这款Cleanlaze™ 系列激光产品,B&W Tek为广大客户提供了3种仪器系统。 一. 完整的拉曼光谱仪系统MiniRam™ 、MiniRam™ II和i-Raman™ ,其中包括了Cleanlaze™ 系列激光产品 二. 供实验室使用的台式Cleanlaze™ 系列激光激发光源 三. OEM Cleanlaze™ 系列激光模块,其包括TE 致冷控温,电路驱动以及激光光纤输出。 (以上产品均有USB激光输出功率控制模块选配。) 美国必达泰克公司一直致力于激光器和微型光纤光谱仪的研发生产,在激光器和光谱仪的研发生产上有着丰富的经验。目前必达泰克公司在激光器和光谱仪方面已获得多项美国专利,并且还有十几项专利正在审核中。如需要具体信息,可与上海办公室联系,必达泰克光电科技(上海)有限公司,电话021-64515208。我们将竭诚为您服务!
  • 太赫兹技术新突破:新型锁相技术实现太赫兹激光器创纪录高输出功率
    p style="text-align: justify text-indent: 2em "等离子体激光器由于其本身的亚波长金属腔而经受着低输出功率和光束发散的困扰。/pp style="text-align: justify text-indent: 2em "strong近日,里海大学(Lehigh University)的科研人员研制出一套方案,可以显著提高激光的发射效率和改善光束质量,研究人员称之为锁相的方案。通过该应用,可以实现目前为止最高高功率的太赫兹激光输出。他们研制出的激光可以产生迄今为止最高的发射效率,并且适用于任何单波长半导体激光量子级联激光器。/strong/pp style="text-align: center"strongimg style="max-width: 100% max-height: 100% width: 470px height: 530px " src="https://img1.17img.cn/17img/images/202007/uepic/13f65aca-5a4c-4d3c-b367-43abbfff42c9.jpg" title="截屏2020-07-01 下午5.15.13.png" alt="截屏2020-07-01 下午5.15.13.png" width="470" height="530"//strong/pp style="text-align: center text-indent: 0em "strong文章截图/strong/pp style="text-align: justify text-indent: 2em "阵列的金属微腔穿过等离子体波而实现纵向地耦合,从而导致单个光谱模的发射和衍射局限在表面法线方向形成单瓣光束。研究人员将这一方案应用于太赫兹等离子体量子级联激光器(quantum-cascade lasers,QCLs)和测量峰值功率超过2 W的单模 3.3 THz QCL在窄单瓣光束时的发射,条件为运行温度为58K时的紧凑型斯特林制冷机。/pp style="text-align: justify text-indent: 2em "新的等离子体激光器锁相方案,与以往在半导体激光器方面的大量文献中对锁相激光器的研究截然不同,该方法利用电磁辐射的行波作为等离子体光腔锁相的工具。同早期的工作相比较,研究人员展示了在功率上可以有一个数量级的增加和至少30倍高的平均功率强度的单模太赫兹QCLs存在。/pp style="text-align: justify text-indent: 2em "该方法获得的太赫兹激光辐射效率是迄今为止任何单波长量子级联所能达到的最高水平,也是首次报道这种量子级联的辐射效率超过50%。这一高效率可以说超过了研究人员一开始的预期,这也是为什么他们研制的激光器的输出功率会显著的高出以前的激光器的原因。/pp style="text-align: justify text-indent: 2em "这项工作的主要创新在于光学腔的设计,它在某种程度上独立于半导体材料的特性。研究人员认为,在利哈伊大学的利哈伊大学光子学和纳米电子学中心,新获得的电感耦合等离子体(ICP)刻蚀工具在推动这些激光器的性能边界方面发挥了关键作用。这一研究报道可以说是单波长太赫兹激光的范式转变,窄的光束将会得到发展和在将来继续发展,同时研究者认为在将来太赫兹的前途非常光明。/p
  • 青岛能源所硫化物全固态电池失效机制研究获进展
    近日,中国科学院青岛生物能源与过程研究所研究员崔光磊带领的固态能源系统技术中心,在硫化物基全固态电池失效机理研究和性能提升方面取得重要进展。相关成果发表在《科学通报》(Science Bulletin )上。   由高理论容量的高镍层状正极材料和锂金属负极组成的硫化物基全固态锂金属电池有望解决目前商用锂离子电池能量密度低、安全性差等问题,是颇具前景的下一代高比能电池技术之一。实验研究表明,全固态电池存在循环寿命短、库仑效率低、容量衰退快等问题,影响了其进一步的发展与应用。由于缺乏合适的表征手段,全固态电池的衰退机制尚不清晰,因而需要准确、可靠的先进表征手段来剖析电极材料降解失效原理以阐明电池内在的衰退机制。   科研人员采用先进高分辨无损三维同步辐射X射线断层扫描成像技术(SXCT),对LiNi0.8Co0.1Mn0.1O2(NCM)|Li6PS5Cl|Li固态电池衰退机制开展研究。实验结果表明,因正极电化学-机械力学耦合失效诱导的反应异质性产生不均匀的锂离子通量并传输到负极,进而产生不均匀的锂沉积、溶解行为及死锂的产生等。锂负极不均匀的电化学反应行为又反作用于正极并强化其反应异质性,形成一种正负极衰退互相促进的正强化机制。随着电池继续循环,正负极不均匀反应加剧造成结构破坏,同时正负极体积缩胀引起电解质的塑性变形,最终致使电池失效。对比实验表明,采用LiZr2(PO4)3 (LZP)对正极进行改性,有效抑制了正极的电化学-机械力学耦合失效,并显著提高了负极锂沉积-溶解均匀性和电解质的结构完整性。该工作揭示了硫化物基全固态电池中由锂离子传输动力学的动态演变引起的正负极之间正强化的衰退机制,首次提出了全固态金属锂电池正负极相互信赖、相互关联的失效行为,为进一步优化和发展全固态电池提供了新的思路和指导方向,并为开发下一代高能量密度与高安全性的高镍三元硫化物基全固态电池奠定了研究基础。   研究工作得到国家自然科学基金、中科院战略性先导科技专项、中科院青年创新促进会和山东能源研究院等的支持。青岛能源所硫化物全固态电池失效机制研究获进展
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制