当前位置: 仪器信息网 > 行业主题 > >

大角度微型二维扫描镜

仪器信息网大角度微型二维扫描镜专题为您提供2024年最新大角度微型二维扫描镜价格报价、厂家品牌的相关信息, 包括大角度微型二维扫描镜参数、型号等,不管是国产,还是进口品牌的大角度微型二维扫描镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合大角度微型二维扫描镜相关的耗材配件、试剂标物,还有大角度微型二维扫描镜相关的最新资讯、资料,以及大角度微型二维扫描镜相关的解决方案。

大角度微型二维扫描镜相关的论坛

  • 【电镜视频大赛】扫描电镜+拉曼光谱一体化系统 TESCAN RISE在二维材料的应用——TESCAN中国

    [url=https://www.instrument.com.cn/zt/DJSPZJ][img=,610,90]https://ng1.17img.cn/bbsfiles/images/2022/06/202206171750180931_1042_5531796_3.gif!w610x90.jpg[/img][/url]【电镜视频大赛】扫描电镜+拉曼光谱一体化系统 TESCAN RISE在二维材料的应用——TESCAN中国[font=-apple-system, BlinkMacSystemFont, &][size=15px][color=#18191c]TESCAN RISE 电镜-拉曼一体化系统是一款革命性的产品,是世界上第一台真正实用化的扫描电镜-拉曼光谱仪联用系统。扫描电子显微镜能表征微观样品表面形貌、成分、结构信息,并能快速成像,是一个很好的微观分析平台,而拉曼成像是用于获得样品化学成分和分子空间分布的一种广为人知的光谱技术。以往两者联用的共轴方案不能保证分析位置的重合,并且存在相互干扰。而 TESCAN 推出的平行轴联用方案避免了这些问题,充分发挥两者的分析优势,实现了真正的联用。[/color][/size][/font]

  • 【创新】SSRM用一个扫描探针二维成像和大规模集成电路领域取得突破

    日本东芝公司(Toshiba Corp.)于4月16日宣布,他们在电子载体通道以及半导体中的杂质成像方面取得了重大突破,这使得在1纳米尺度上的分析技术首次变得可能。这一基于扫描电阻显微镜(SSRM)的技术是实现下一代45纳米级别大规模集成芯片(LSI)等的关键性一步。  东芝公司将在国际可靠性物理年会(IRPS)上宣布他们的这一发现,这是目前正在美国Arizona凤凰城举行的国际半导体可靠性的大型会议。东芝计划在会议最后一天,当地时间4月19日发表这一突破性成果。  扫描电子显微镜是一种用来分析半导体表面的局域性二维电阻的理想方法,它能用于分析电子载体以及杂质。目前对于45纳米级别LSI的需求使得了解载体通道内的电子载体密度非常重要,而且需要能达到1纳米级别的精度,这是由于电特性方面的微小改变都会导致泄露和短路。  SSRM用一个扫描探针对半导体器件的载体进行二维成像。这些图像反映了导致电阻变化的杂质,并使得对电流路径分析变得可能。但是通过传统探针的高分辨SSRM精度只能维持在5纳米左右。  问题来源于两个方面:样品的水蒸气将影响成像精度,而且维持样品和探针间的稳定也很困难。为了克服以上问题,东芝将SSRM置于真空中,并精确定位了探针位置。这使得东芝公司达到了目前最高的分析精度:1纳米,这将用于45纳米LSI制造。教育部科技发展中心

  • 【原创大赛】二维码扫码枪选购和使用技巧

    二维码扫码枪选购和使用技巧一、相关要求农业部公告第2210号指出:“为进一步强化兽药产品质量安全监管,确保兽药产品安全有效,农业部决定在前期试点基础上,加快推进兽药产品质量安全追溯工作,利用国家兽药产品追溯系统实施兽药产品电子追溯码(二维码)标识制度,形成功能完善、信息准确、实时在线的兽药产品查询和追溯管理系统。”要求自2016年1月1日起,全面启动实施兽药经营和监管环节追溯管理工作,实现兽药生产、经营、监管信息的互联互通。农业部于2017年11月30日公布的农业部令2017年第8号,对《兽药经营质量管理规范》进行修改,增加了兽药追溯设备、追溯制度、追溯记录和追溯数据上传的要求。二、兽药二维码简介我国兽药二维码标识采取“一品一码”,实现了二维码编码的唯一性和一次性,确保每个兽药二维码不重复。虽然二维码是可以仿制的,但因为每一个二维码都是唯一的,如果仿制同一个码极易被识破。如果逐个产品仿制并考虑产品码、盒码、箱码的关联,则成本极高。同时,造假企业的数据因为没有合法的用户资格,所以数据是进不了追溯系统的。合法企业如果有重复的二维码上传到系统,系统只能识别一次,重复的二维码不会被系统接受。监管人员在使用专门设备扫描识读二维码时,一旦发现重码会自动报警。兽药产品追溯码是兽药追溯系统随机产生的24位数字,生产二维码的码制是QR码,字符编码采用UTF-8。QR码又称“快速响应矩阵码”,是一种矩阵式二维码。每个QR码符号由正方形模块组成的一个正方形阵列构成,通过模块的颜色深浅来表达数据,深色模块表示二进制1,浅色模块表示二进制0。QR码的特征是在其左上角、右上角和左下角的三个由同心正方形构成的位置探测图形。每个QR码符号最多可以包含:1.数字数据:7089 个字符2.字母数字数据:4296 个字符3.8位字节数据:2953 个字符4.日本汉字数据:1817 个字符5.中国汉字数据:1817 个字符QR码有 L、M、Q、H 四种纠错等级,可恢复的码字比例分别为 7%、15%、25%、30%。三、二维码扫码枪选购和使用技巧在兽药追溯管理中,二维码扫码枪是极其重要的设备,操作时需要通过扫码枪将二维码转换为24位数字的追溯码,并自动输入追溯平台,才能进行追溯操作。我市在今年6月份启动的兽药追溯工作中,使用某品牌的无线二维码扫码枪进行操作,取得了较好的效果,并总结出无线二维码扫码枪选购和使用技巧,并向近百家兽药经营企业进行推广,得到多数兽药经营企业的好评。内容如下:1、一定要选购二维码扫码枪!几十元的扫码枪只有一维扫码功能,只能扫描条形码,扫二维码是没用的。二维码扫码枪一般在200元以上,可以扫二维码,拿来扫条形码更是不在话下。2、建议选购无线二维码扫码枪。兽药入库时一般都是整箱包装,又笨又重,搬运不方便,用有线扫码枪(通过USB线连接电脑)扫码不方便,而且有的仓库离电脑距离有点远(几米或者十几米),拖着一根USB线方便吗?选购无线二维码扫码枪就方便得多,可以脱离USB线的纠缠,拿着扫码枪在十几米范围内轻松自在地扫码。3、无线二维码扫码枪连接和充电无线扫码枪通过蓝牙与电脑连接,只要将扫码枪附带的蓝牙适配器插入电脑USB接口,启动扫码枪,约5秒后听到扫码枪发出“嘀”一短声即说明连接成功。无线扫码枪内置锂电池,扫几百次甚至上千次没问题,但总有没电的时候,这时只要将USB线接上充电即可,充电头、充电宝都可以。4、无线扫码枪不能扫描二维码怎么办?如果二维码扫码枪可以扫条形码,但不能扫二维码,可能是没有开启二维码功能或者没有开启QR码功能,只要用扫码枪扫一下这两个功能的二维码,应该就可以正常使用了。5、扫码结果字符乱码怎么办?如果扫出来的数字正常,但中文字符乱码,可能是电脑处于中文输入法状态,调到英文输入法状态一般就正常了。6、电脑断网无法进行追溯操作怎么办?电脑断网后,可以扫码但无法进行追溯操作,因为追溯平台的操作需要连接到服务器端实时操作。这时可以新建一个WORD文档,扫码后保存,网络通畅后将二维码复制粘贴到追溯平台的追溯码输入框内,进行入库/出库操作。7、仓库离电脑太远怎么办?有些企业仓库离门店比较远,或者货物拉到客户那里试销,客户需要哪些货物才能确定哪些需要出库。这时可以打开手机蓝牙功能,并和扫码枪配对,然后打开手机上的备忘录或其它文本编辑软件,扫码后保存。回到门店后通过微信、QQ等方式将文件传输到电脑,然后将追溯码复制粘贴到追溯平台追溯码输入框内,进行出库操作。8、扫码枪临时坏了怎么办?兽药二维码是标准的QR码,可以用微信扫一扫得到24位数字的追溯码,复制到手机备忘录或其它文本编辑软件,然后通过微信、QQ等方式将文件传输到电脑,最后将追溯码复制粘贴到追溯平台追溯码输入框内,进行出库操作。经过上述扫码枪选购和使用技巧的推广,兽药经营企业普遍认为扫码操作容易方便,积极配合做好兽药追溯工作,经过不到一个月的培训、指导和督查,我市60多家兽药经营企业全部启动追溯操作,率先完成省里确定的年底前全部启动追溯操作的目标,得到上级有关部门的肯定。

  • 微型拉伸压缩试验台

    请教各位有了解过微型拉伸压缩试验台这个产品吗?就是在扫描电镜下通过这个设备测试材料的应力,应变,杨氏模量,极限拉伸强度等。

  • 微型拉伸压缩试验台

    请教各位有了解过微型拉伸压缩试验台这个产品吗?就是在扫描电镜下通过这个设备测试材料的应力,应变,杨氏模量,极限拉伸强度等。

  • 微型近红外光谱仪关键技术研究进展

    [color=#555555]微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url](Near Infrared Microspectrometer, NIM)是一种运用光学原理对物质的组分和含量进行定性、定量分析的微型无损检测仪器,具有小体积、低功耗、低成本、可现场在线分析、便于二次开发等优点,在农业生产、食品安全、生物医药、石油化工、航空航天以及国防安全等众多领域获得了广泛的应用。例如,Zeltex公司的手持式近红外粮食分析仪可直接显示出蛋白质等成分的含量。[/color][color=#555555]传统的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]体积大、功耗高、价格昂贵、难以二次开发,这极大地限制了其应用范围。直到上世纪90年代,随着微光机电系统(MOEMS)技术的兴起,微型化的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器逐渐出现并不断发展,开启了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的微型化进程。[/color][color=#555555]不论哪种类型的光谱仪,都需要将复色光色散为单色光,所以分光是光谱仪最基本的功能。文章根据不同的分光技术,主要介绍了光栅扫描型、傅里叶变换型和阿达玛变换型三种类型微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url],并进行了分析及总结。[/color][align=center][color=#333333] [img=,650,234]http://www.gdkjfw.com/images/image/95851544146319.jpg[/img][/color][/align][align=center][color=#888888]图1 典型的微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url][/color][/align][color=#ffffff]光栅扫描型微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url][/color][color=#555555]为了降低微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]的成本,德国夫朗禾费光学微系统研究所(IPMS)率先提出了以MOEMS扫描光栅为核心元器件的光栅扫描型微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url],以集分光与扫描于一体,可以用价格低廉的单管探测器取代昂贵的阵列探测器,仪器的性能不再取决于阵列探测器而主要取决于扫描光栅(如图2所示)。[/color][align=center][color=#333333][img=,650,207]http://www.gdkjfw.com/images/image/9751544146319.jpg[/img] [/color][/align][align=center][color=#888888]图2 MOEMS扫描光栅型微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]工作原理[/color][/align][color=#555555]随着MEMS技术的发展,微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]向超小型、宽光谱发展的趋势越来越大。[/color][color=#555555]2016年IPMS报道了一种体积只有方糖大小,可集成于手机的光栅扫描型微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url],如下图所示,光谱范围950~1900 nm,分辨率10 nm,其核心元器件为集成了入射狭缝和出射狭缝的MOEMS扫描光栅芯片。扫描光栅面大小为3 mm×3 mm,采用静电梳齿驱动,并集成了压电式角传感器进行闭环控制,以实现高精度扫描。但由于镜面厚度只有数十微米,在扫描过程中,镜面容易出现动态变形的问题,影响光谱仪的信噪比。基于IPMS的核心技术,德国HiperScan公司在市场上推出了相应商品化的光栅扫描型微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]。[/color][align=center][color=#333333] [img=,650,226]http://www.gdkjfw.com/images/image/45711544146319.jpg[/img][/color][/align][align=center][color=#888888]图3 德国IPMS研究所研制的超小型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url][/color][/align][color=#555555]国内相关科研团队也进行了光栅扫描型微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]的研究。[/color][color=#555555]西北工业大学乔大勇团队研制的MOEMS扫描光栅,采用SOI制作,静电梳齿方式驱动,但同样存在镜面动态变形的问题,且静电驱动方式所需驱动电压较高。[/color][color=#555555]重庆大学温志渝团队提出的MOEMS扫描光栅,利用偏晶向硅片制作大面积闪耀光栅,具有较高的衍射效率和分辨率,采用较厚的光栅面能够有效地解决动态变形的问题,但同时带来了稳健性较弱的问题。扫描光栅采用电磁式驱动和传感,便于一体化集成,且所需驱动电压较低,但存在电磁干扰的问题。[/color][color=#555555]由于光栅扫描型微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]有MOEMS扫描光栅这一可动部件,抗震性较差,因此开发出高性能的MOEMS扫描光栅是光栅扫描型仪器发展所需突破的关键技术问题,而且在拓宽光谱范围的同时需考虑解决二级光谱重叠的问题。[/color][color=#ffffff]傅里叶变换型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url][/color][color=#555555]傅里叶变换型微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]是基于光干涉和傅里叶变换原理设计的,一般采用迈克尔逊干涉仪为核心部件。迈克尔逊干涉仪主要由定镜、分束器和动镜组成,而其中的动镜尤为关键。动镜主要做活塞式运动,其可动行程(即扫描位移)的大小直接决定了仪器性能。[/color][align=center][color=#333333] [img=,650,286]http://www.gdkjfw.com/images/image/80411544146319.jpg[/img][/color][/align][align=center][color=#888888]图4 迈克尔逊干涉仪工作原理及MOEMS工艺制成的干涉仪[/color][/align][color=#555555]2[/color][color=#555555]015年,德国夫朗禾费ISIT研究所提出了基于PZT薄膜的压电驱动MOEMS活塞镜,在163Hz谐振频率下扫描位移最大可达±800 μm ,但在扫描位移较大时存在镜面倾斜的问题。镜面倾斜限制了可用的扫描范围,而且会影响干涉信号,因此降低了分辨率。[/color][color=#555555]美国佛罗里达大学谢会开团队对电热驱动MOEMS活塞镜进行了深入研究,其采用双闭环控制的方法不仅有效减小了大位移扫描过程中的镜面倾斜幅度,同时实现了恒定速度的线性扫描,降低了信号处理的难度,使得光谱分辨率和抗干扰能力等性能大为提升。[/color][color=#555555]另一种类型的微型傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]则是以层状光栅干涉仪为核心元件,利用单管探测器对零级光谱进行探测。相较于迈克尔逊干涉仪,层状光栅干涉仪不需要分束器、定镜等光学元件,结构更加简单、紧凑。[/color][color=#555555]土耳其科克大学Urey团队提出了一种基于垂直梳齿驱动器的层状光栅干涉仪,同时梳齿电极作为驱动器和可动光栅,产生的位移达到106 μm。[/color][color=#555555]随后,该团队又提出了稳健性更好的基于FR4板材的电磁驱动层状光栅干涉仪,及基于MOEMS技术更大位移的静电驱动层状光栅干涉仪,后者可动光栅的最大位移可扩展至±356 μm,并引入机械闭锁装置以提高抗冲击能力。新加坡国立大学周光亚团队也做了相应的研究。[/color][color=#555555]微型傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]具有结构紧凑、光通量大、波长精度高、高分辨率等优势,适用于对分辨率要求较高的场合,但仍存在抗震性差的固有缺陷以及仪器性能受限于动镜或可动光栅所能实现的活塞位移等问题。目前,瑞士Arcoptix公司、日本滨松、埃及的Si-Ware Systems和国内的无锡微奥公司均推出了商品化的微型傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]。[/color][color=#ffffff]阿达玛变换型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url][/color][color=#555555]阿达玛变换型微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]是一种在色散光谱仪中引入阿达玛变换的数字变换型仪器,通过光的多路复用提高信噪比,而且一般采用单管探测器使成本较低,无移动部件使抗冲击能力也优于傅里叶变换型光谱仪。[/color][align=center][color=#333333] [img=,650,214]http://www.gdkjfw.com/images/image/76961544146320.jpg[/img][/color][/align][align=center][color=#888888]图5 微型阿达玛变换光谱仪工作原理及数字阵列微镜[/color][/align][color=#555555]基于数字微镜阵列的微型阿达玛变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]通过控制微镜单元的选通实现对光信号的开关调制,既减小了光谱能量损失,也抑制了杂散光的干扰,是近年来研究的热点。[/color][color=#555555]为了进一步减小光能量损失,重庆大学张智海等人结合H矩阵与S矩阵的优点,提出了一种互补S矩阵编码调制方案,在S矩阵的基础上将信噪比提升约1.4倍。[/color][color=#555555]2014年,长春光学精密机械与物理研究所刘华团队设计了一种光谱折叠式微型阿达玛变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url],采用两个子光栅使光谱范围有效拓宽为800~2000 nm,光谱分辨率也得到了提升,但杂散光较大。为了避免这一缺陷并降低光谱仪的复杂度,该团队又提出了一种采用自由曲面透镜准直的光谱折叠式光谱仪来拓宽光谱,光谱范围达800~2400 nm,可覆盖几乎整个近红外波段,仿真结果显示分辨率优于10 nm,提升了光能利用率,降低了消除二次光谱的难度。[/color][color=#555555]微型阿达玛变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]具有光通量大、信噪比高、成本低、抗震性较好等优点,适用于微弱光谱信号的检测,编码技术和光谱拓宽仍是近年研究的热点。目前,Polychromix公司、Aspectrics公司和国内的北京华夏科创仪器公司均有相应的商品化仪器出现在市场上。[/color][color=#555555]由于近红外探测器在整台微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]成本中占的比重较大,所以采用单管探测器的微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]成本较低。在MOEMS技术的推动下,微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]的体积也大为缩小。因此,微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]可以走出实验室,应用到越来越多的领域中。如近年来出现的SCIO、TellSpec等廉价小巧的专用型微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]。[/color][color=#555555]微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]一直朝着宽光谱、高分辨率、高信噪比、高集成度、小体积、低成本、快速检测等方向发展,国内外的科研机构一直在新原理、新工艺、新材料等方面进行着不懈的探索和努力。今后,微纳技术的发展势必会给微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]的发展提供有力的技术支撑,而且随着对微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]的二次开发和应用领域的拓宽,光谱与人类生产生活的联系将会更加密切。[/color]

  • 微型光谱仪的知识介绍

    1 引言  微型光谱仪具体模块化和高速采集的特点,在系统集成和现场检测的场合得到了广泛的应用。结合光源、光纤、测量附件,可以搭配成各种光学测量系统。  光谱仪器是应用光学技术、电子技术及计算机技术对物质的成分及结构等进行分析和测量的基本设备,广泛应用于环境监测、工业控制、化学分析、食品品质检测、材料分析、临床检验、航空航天遥感及科学教育等领域。由于传统的光谱仪存在着结构复杂、使用环境受限、不便携带及价格昂贵等不足,不能满足现场检测和实时监控的需求。因此,微型光纤光谱仪成为光谱仪器发展的一个重要的研究方向。近年来,由于光纤技术、光栅技术及阵列式探测器技术的发展和成熟,使得光谱检测系统形成了光源、采样单元及摄谱单元相分离的结构形式,整个系统结构更具模块化,使用更加方便灵活,从而使微型光纤光谱仪成为现场检测和实时监控的首选仪器。  2 微型光谱仪结构  传统的光谱仪光学系统结构复杂,需通过旋转光栅对整个光谱进行扫描,测量速度慢,并且对某些样品还需经过特定的预处理,并要放在仪器的固定样品室内进行测量。与此相比,微型光纤光谱仪有很多优点,如:速度快、价格低、体积小、重量轻及全谱获取,而且通过光纤传导可以脱离样品室测量,适用于在线实时检测。  光谱仪微型化设计的实现得益于摄谱结构的优化。微型光纤光谱仪使用非对称交叉式Czerny-Turner分光结构,此光学结构的设计是在Czerny- Turner结构基础上进行光路的改进,使光谱仪内部构件布局更紧凑,可进一步小型化。摄谱结构光学平台的优化设计使微型光纤光谱仪内部无移动部件,光学元件都采用反射形式,可在一定程度上减少像差,并使工作光谱范围不受材料影响。微型光谱仪的固定化光学平台适合于震动及窄空间等复杂的工作环境。  3 微型光谱仪特点  光纤传导技术:光纤技术的发展,使待测物脱离了固定样品池的限制,采样方式变得更加灵活,适合于远距离样品品质监控。由于光纤对光信号的传输作用,使得光谱仪可以远离外界环境的干扰,保证光谱仪的长期可靠运行。  CCD阵列探测器技术:将经光栅分光后的作用光在探测器上同时瞬间采集,而不必移动光栅,因此样品光谱采集速度及快,并通过计算机实时输出。  光栅技术:全息光栅具有较小的杂散光,而机械刻划光栅具有更高的反射率和灵敏度。  计算机技术:电子计算技术的发展极大地提高了光谱仪的智能控制和处理能力。  4 微型光谱仪应用  随着微型光谱仪应用测量系统的不断拓展,其快速高效分析及便携式实时应用的优势逐渐显现出来,光谱分析技术正逐步从实验室分析走向现场实时检测。依据现阶段实际应用现状,微型光纤光谱仪在以下领域得到广泛的应用。  透射吸收测量:透射吸收测量用于测定液体或气体中介质对作用光的吸收,依据比耳定律,吸光度正比于摩尔吸收率、光程和样品介质浓度。  反射测量:反射测量方式分为镜面反射和漫反射测量,在实际测量中,可以采用不同的参考白板和测量角度来进行区分。反射测量用于测定样品的化学成分及表面颜色相关信息。  发光二极管(LED)测量:LED测量系统用于LED光源的绝对光谱强度及颜色指标测量。  激光测量:根据激光光谱的特征,检测系统配置高分辨率微型光纤光谱仪,同时可用积分球或余弦校正器来衰减入射光,以避免CCD探测器的饱和。  荧光测量:荧光测量因其光谱信号特别弱,因此需要一个高灵敏的探测器及一个高效率的滤光片,将样品激发出的微弱信号光和高强度的激发光区别开来。  氧含量测量:氧含量是通过光纤探头尖端荧光团的荧光强度的衰减来进行测量,应用荧光淬灭原理可以测量溶解氧或气态氧的分压,从而探测出环境的氧含量。  拉曼光谱测量:拉曼光谱与红外吸收光谱同为研究物质的分子振动能级从而分析物质的组成,但相对于红外吸收光谱,拉曼光谱的谱线较为简单且具有独特性,而且被测物不需进行前处理,因此在判断物质组成成分时有明显的优势。拉曼光谱测量系统特别适用于反应过程监控、产品识别、遥感及介质中高散射粒子的判定。  激光诱导击穿光谱(LIBS)测量:LIBS是一种用于固体、液体及气体中进行实时、定性及半定量的光谱元素分析技术,其工作原理是高强度的脉冲激光聚焦在样品表面,脉宽为10ns的激光脉冲蒸发样品产生等离子体,随着等离子体的冷却,处于激发态的原子发射出元素的特征光谱,这个光谱被光纤探头收集并传送到光谱仪,通过光谱分析软件中预存的样品特征光谱进行比对分析。  5 结论  微型光谱仪具有系统模块化和搭建灵活性的优势,因此在实际生产研究中,仅需配一套光谱仪,应用不同的测试附件就可以对各种不同的样品进行实时检测。同时,微型光纤光谱仪具有内部结构紧凑、无移动部件、波长范围宽、测量速度快、价格低的特点,在工业在线监控及便携式检测系统开发等领域提供了广阔的应用发展空间。(选自网络)

  • 如何利用智能手机的扫码二维码功能完成巡检任务?

    二维码应用在巡检工作中,不需要额外花时间给设备充电和维护。检查人员只需要在手机上下载[b]巡查使app[/b],现场扫描巡查点的二维码(或者使用蓝牙、NFC)即可完成巡检工作,可减少企业培训成本。1. 巡查点可以灵活布设哪里需要检查,就在哪里贴上二维码,管理人员在巡查使电脑端设置巡检路线及设备,巡检人员扫码就能记录该点位的具体情况。而且巡查路线和设备都支持修改和变动,如果一开始不确定巡查路线可以先关注重点区域,在重点位置布设二维码,试运行一段时间,后期可以根据需要增加或取消某个巡检点位置。2. 记录现场真实情况在巡查点处,扫码后可以通过拍摄照片、录制视频、文字等方式记录现场情况。巡检人员可[b]巡查使[/b]电脑端实时查看巡检人员地理位置及巡检状态,监督巡检人员工作。3. 异常情况及时上报,处理过程有记录现场如果发现异常情况,一线人员可以扫码上报,系统会将异常情况自动上报至管理员电脑端,管理人员可根据巡检人员上报异常情况的紧急程度安排维护优先级。4. 巡查数据储存在云服务器所有的巡查记录都会安全、稳定地储存在云端,便于管理人员查看和导出。高层可通过[b]巡查使智能巡查安全管理系统[/b]的[b]数据可视化功能板块[/b]针对数据进行分析改进

  • 智能手机获得新技能 变身显微镜扫描DNA

    加州大学洛杉矶分校(UCLA)研究人员们最近开发出一种新的手机附件设备,能将任何智能手机变成一款DNA扫描荧光显微镜。这项创新可望对于医疗诊断带来深远影响,并再次展现如何有效利用智能手机来降低医疗成本,以及为开发中国家带来先进的医疗诊断技术。  这款智能手机的附件包括一个外部透镜、薄膜干涉滤光器、可微调的微型楔形榫头支架,以及雷射二极管,全部封装在一个以3D打印的小型方盒中,并整合成一款手持式荧光显微镜。  “DNA单分子在拉长时的宽度约2nm,”UCLA霍华德.休斯医学院(HHMI)教授Aydogan Ozcan表示,“以透视来看,它使DNA较人的发丝还细约50,000倍。目前,为单个DNA分子进行成像需要昂贵又庞大的光学显微镜工具,使其几乎仅限于先进的实验室设置才能进行。相形之下,这款适用于个人手机的附件设备显然就没那么昂贵了。”  虽然其他“智能手机变身显微镜”的设备也能够成像出较大规模的对象,例如细胞;但是,Ozcan的研究团队最新开发出的这款智能手机光学附件,则是首款可成像DNA单分子纤薄链以及调整其大小的设备。  该设备主要用于远程的实验室设置,以诊断不同类型的癌症与神经系统疾病,例如阿尔兹海默症(Alzheimer),以及侦测传染病的抗药性。为了利用手机上的相机,首先必须以荧光标记隔绝以及标示所需的DNA。Ozcan表示,如今,这种实验室程序已经能在偏远地区以及资源有限的环境下进行了。  为了扫描DNA,研究团队开发出可执行在同一支智能手机上的运算接口,以及一款Windows智能应用程序。扫描后的信息可被传送至远程Ozcan实验室中的服务器,然后测量DNA分子长度。在联机可靠可情况下,完整的数据处理过程只需要10秒钟的时间。

  • 说说:金相显微镜与扫描电镜的区别

    上周分享的文章:[color=#ff0000][b][color=#333333]专业角度看,光学显微镜与扫描电镜的区别在哪里[/color][color=#333333][/color][/b][/color][b][color=#333333]?[/color][/b]描述这两者的不同之处、机制和实际运用,希望能给更多的朋友们快速的了解,接下来小冉还是会继续分享关于电镜和其他显微镜的区别,好了,一起来简单看看[color=#ff0000]金相显微镜与扫描电镜的区别[/color]吧! 金相显微镜是用于观察具有入射照明的金属样品(金相组织)表面的显微镜。它结合了光学显微技术、光电转换技术、计算机图像处理技术。高科技产品可以在计算机上轻松观察金相图像,从而可以对金相图进行分析,分级等,输出图像为。金相显微镜是一种光学显微镜。相对于电子显微镜,分辨率较小,微米分辨率较小,放大倍数较小,但操作简便。大视场、价格相对较低。[align=center][img=,500,376]http://www.gdkjfw.com/images/image/15051531705166.jpg[/img][/align] 金相显微镜一种用于扫描电子显微镜的新型电光仪器。它具有简单的样品制备、放大倍率可调范围宽度、图像分辨率高、景深等。扫描电子显微镜已被广泛应用于生物学领域、医学、冶金学几十年,并促进了各相关学科的发展。扫描电子显微镜的特点:电子显微镜,高图像分辨率,纳米级分辨率,可调放大倍数和大,另一个重要特征是大景深和丰富的三维图像。 金相显微镜与扫描电镜之间存在很大差异,主要表现在以下几个方面: 一、光源不同:金相显微镜使用可见光作为光源,扫描电子显微镜使用电子束作为光源进行成像。 二、原理不同:金相显微镜采用几何光学成像原理进行扫描,扫描电子显微镜使用高能电子束轰击样品表面,激发表面上的各种物理信号。采样,然后使用不同的信号检测器接收物理信号并将其转换为图像。信息。 三、分辨率:由于光的干涉和衍射,金相显微镜只能限制在0.2-0.5um。扫描电子显微镜使用电子束作为光源,其分辨率可达到1-3nm。因此,金相显微镜的微观结构观察属于微米分析,扫描电子显微镜的观察属于纳米尺度分析。 四、景深:一般金相显微镜的景深在2-3um之间,因此样品的表面光滑度要求极高,因此制备过程相对复杂。 SEM的景深可以高达几个。

  • 扫描电子显微镜的电荷效应讲解

    在SEM中还存在些不期望的现象,例如:电荷效应,其也形成一些特殊的对比度。然而,在扫描电子显微镜的观察过程中,我们需要尽可能地避免它。[b]1.荷电的形成[/b]根据上面介绍的扫描电子显微镜的原理,电子束源连续轰击到样品上。根据图2-6,只有原始电子束能量为v1和v2,二次电子产额δ为1,即入射电子和二次电子数相等,样品不增加或减少电子,并且没有形成吸收电流。只要初始电子束不满足该条件,就形成吸收电流以满足电荷平衡,i0 = ib +是+ ia。为了实现电荷平衡,样品需要具有良好的导电性。对于导体,观察没有问题。然而,对于不导电或导电性差的样品、,过量电荷不能被带走,并且样品表面会形成累积,这将产生静电场以干扰入射电子束的发射和二次电子。电气效应。负荷效果对图像有一系列影响,例如:1异常对比度:二次电子发射受到不规则性的影响,导致部分图像异常明亮,部分变暗 2图像失真:由于电荷产生的静电场,入射电子束不规则地偏转,导致图像失真或相位差 3图像漂移:由于静电场的作用,入射电子束在一定方向上偏转,形成图像漂移 4亮点和亮线:斑点样品经常出现不规则放电,导致图像中出现不规则的亮点和亮线 5图像是“平坦的”并且没有立体效果:通常扫描速度慢,每个像素点保持更长,电荷累积,图像看起来平坦,立体效果完全丧失。[b]2.消除荷电[/b]电荷的产生对扫描电子显微镜的观察具有很大影响,因此可以仅通过消除或减少负荷效果来进行正常的扫描电子显微镜观察。有许多方法可以消除和减少电荷。以下是一些常用方法。首先,我们必须注意在样品制备过程中减少电荷:1)减小样品尺寸、并最小化接触电阻:这将增加样品的电导率。2)涂层处理:对样品施加导电膜以改善其导电性,这是最常用的方法。常用的涂层是[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积和离子溅射。通常使用的导电膜通常是金和碳。如果你想要更好的结果,你也可以使用白金pt、铬cr、铱ir。导电膜不仅可以有效地提高导电性,而且可以提高二次电子激发速率,并且当前的膜厚度相对容易控制,并且样品的形状在一定的放大率下不受影响。然而,涂层也有其缺点。涂覆后,会有薄膜覆盖,这将影响样品的真实形状。在严重的情况下,它会产生伪像,一些超高分辨率的观察或一些细节(如孔、光纤)和编辑。 ebsd分析具有很大的影响。除了样品制备外,还需要找到合适的EM工作条件来消除或减少电荷的影响:3)降低电子束电流:降低入射电子束的强度,减少电荷的积累。4)降低放大倍率:尽可能使用低倍率,因为倍数越大,扫描范围越小,电荷累积越快。5)加快扫描速度:电子束长时间停留在同一区域,容易引起电荷积聚 此时,可以加速电子束的扫描速度,并且在不同区域中花费的时间变短以减少电荷。6)改变图像采集策略:扫描速度越快,图像信噪比就越大。此时,线累积或帧叠加平均可以降低负荷效果并改善信噪比。线路累积对轻微负荷具有良好的抑制效果 帧叠加对快速扫描产生的高噪声具有良好的抑制效果,但图像不能漂移,否则会出现重影导致图像模糊。如图2-40所示,样品是聚合物球。当扫描速度慢时,样品容易损坏和变形,并且快速扫描同时进行线积累。样本完好无损,图像仍然具有良好的信号噪声。比。7)降低电压:降低入射电子束的能量(降至v2)也可以有效地降低负荷效果。如图2-41所示,样品是聚苯乙烯球。加速电压在5kV时具有显着的负荷现象,并且负荷减少到2kV。但是,随着加速电压的降低,它也会带来分辨率降低的副作用。8)在非镜筒中用二次电子检测器或背散射电子检测器观察:当产生大量电荷时,大量二次电子被向上推,但二次电子被接收在镜筒中。电子信号过大,导致负荷,特别是在浸入模式下,此时使用探测器外极片,接收的电子信号量相对较小,可降低负荷效果,如图2-42所示 背散射电子能量高,并且由于电荷,其产率和出射方向远小于二次电子。因此,bse图像还可以有效降低电荷效应,如图2-43所示。二次电子和反向散射图像的比较。9)倾斜样品:以一定角度倾斜样品,这增加了样品中二次电子的产量,从而降低了负荷效果。此外,EM制造商也在开发减少或消除电荷的新技术,最常见的是低真空技术。低真空技术是消除样品电荷的一种非常有效的手段,但它要求电子镜本身配备这种技术。10)低真空模式:在低真空模式下,可以使用电离离子或气体分子来中和电荷,从而可以在没有涂层或恶劣的电磁镜条件的情况下消除负荷效应。然而,在低真空条件下,原始电子束将被气体分子散射,因此分辨率、 SNR、对比度将降低。如图2-44所示,生物样品可以观察到二次电子和背散射电子的无电荷效应,而无需电镀导电薄膜。

  • 激光扫描共聚焦显微镜在细胞生物学中的应用

    激光扫描共聚焦显微镜是近十年发展起来的医学图像分析仪器,与传统的光学显微镜相比,大大地提高了分辨率,能得到真正具有三维清晰度的原色图像。并可探测某些低对比度或弱荧光样品,通过目镜直接观察各种生物样品的弱自发荧光。能动态测量Ca2+ 、pH值,Na+、Mg2+等影响细胞代谢的各种生理指标,对细胞动力学研究有着重要的意义。同时激光扫描共聚显微镜可以处理活的标本,不会对标本造成物理化学特性的破坏,更接近细胞生活状态参数测定。可见激光扫描共聚焦显微镜是普遍显微镜上的质的飞跃,是电子显微镜的一个补充,现已广泛用于荧光定量测量,共焦图像分析,三维图像重建、活细胞动力学参数分析和胞间通讯研究等方面,在整个细胞生物学研究领域有着广阔的应用前景。1. 定量荧光测量ACAS可进行重复性极佳的低光探测及活细胞荧光定量分析。利用这一功能既可对单个细胞或细胞群的溶酶体,线粒体、DNA、RNA和受体分子含量、成份及分布进行定性及定量测定,还可测定诸如膜电位和配体结合等生化反应程度。此外,还适用于高灵敏度快速的免疫荧光测定,这种定量可以准确监测抗原表达,细胞结合和杀伤及定量的形态学特性,以揭示诸如肿瘤相关抗原表达的准确定位及定量信息。2. 定量共聚焦图像分析借助于ACAS激光共焦系统,可以获得生物样品高反差、高分辨率、高灵敏度的二维图像。可得到完整活的或固定的细胞及组织的系列及光切片,从而得到各层面的信息,三维重建后可以揭示亚细胞结构的空间关系。能测定细胞光学切片的物理、生物化学特性的变化,如DNA含量、RNA含量、分子扩散、胞内离子等,亦可以对这些动态变化进行准确的定性、定量、定时及定位分析。3. 三维重组分析生物结构ACAS使用SFP进行三维图像重组,SFP将各光学切片的数据组合成一个真实的三维图像,并可从任意角度观察,也可以借助改变照明角度来突出其特征,产生更生动逼真的三维效果。4. 动态荧光测定Ca2+、pH 及其它细胞内离子测定,利用ACAS能迅速对样品的点,线或二维图像扫描,测量单次、多次单色、双发射和三发射光比率,使用诸如Indo-1、BCECF 、Fluo-3等多种荧光探针对各种离子作定量分析。可以直接得到大分子的扩散速率,能定量测定细胞溶液中Ca2+对肿瘤启动因子、生长因子及各种激素等刺激的反应,以及使用双荧光探针Fluo-3和CNARF进行Ca2+和pH的同时测定。5. 荧光光漂白恢复(FRAP)——活细胞的动力学参数荧光光漂白恢复技术借助高强度脉冲式激光照射细胞某一区域,从而造成该区域荧光分子的光淬灭,该区域周围的非淬灭荧光分子将以一定速率向受照区域扩散,可通过低强度激光扫描探测此扩散速率。通过ACAS可直接测量分子扩散率、恢复速度,并由此而揭示细胞结构及相关的机制。6. 胞间通讯研究动物细胞中由缝隙连接介导的胞间通讯被认为在细胞增殖和分化中起非常重要的作用。ACAS可用于测定相邻植物和动物细胞之间细胞间通讯,测量由细胞缝隙连接介导的分子转移,研究肿瘤启动因子和生长因子对缝隙连接介导的胞间通讯的抑制作用,以及胞内Ca2+、PH和cAMP水平对缝隙连接的调节作用。7. 细胞膜流动性测定ACAS设计了专用的软件用于对细胞膜流动性进行定量和定性分析。荧光膜探针受到极化光线激发后,其发射光极性依赖于荧光分子的旋转,而这种有序的运动自由度依赖于荧光分子周围的膜流动性,因此极性测量间接反映细胞膜流动性。这种膜流动性测定在膜的磷脂酸组成分析、药物效应和作用位点,温度反应测定和物种比较等方面有重要作用。8. 笼锁-解笼锁测定许多重要的生活物质都有其笼锁化合物,在处于笼锁状态时,其功能被封闭,而一旦被特异波长的瞬间光照射后,光活化解笼锁,使其恢复原有活性和功能,在细胞的增值、分化等生物代谢过程中发挥功能。利用ACAS可以人为控制这种瞬间光的照射波长和时间,从而达到人为控制多种生物活性产物和其它化合物在生物代谢中发挥功能的时间和空间作用。9. 粘附细胞分选ACAS是目前唯一能对粘附细胞进行分离筛选的分析细胞学仪器,它对培养皿底的粘附细胞有两种分选方法: ① Coolie-CutterTM法,它是Meidian公司专利技术,首先将细胞贴壁培养在特制培养皿上,然后用高能量激光的欲选细胞四周切割成八角形几何形状,而非选择细胞则因在八角形之外而被去除,该分选方式特别适用于选择数量较少诸如突变细胞、转移细胞和杂交瘤细胞,即使百万分之一机率的也非常理想。 ② 激光消除法,该方法亦基于细胞形态及荧光特性,用高能量激光自动杀灭不需要的细胞,留下完整活细胞亚群继续培养,此方法特别适于对数量较多细胞的选择。10. 细胞激光显微外科及光陷阱技术借助ACAS可将激光当作“光子刀”使用,借此来完成诸如细胞膜瞬间穿孔、切除线粒体、溶酶体等细胞器、染色体切割、神经元突起切除等一系列细胞外科手术。通过ACAS光陷阱操作来移动细胞的微小颗粒和结构,该新技术广泛用于染色体、细胞器及细胞骨架的移动。

  • 微型食道扫描仪问世 可提前发现癌细胞病变

    2013年01月16日 来源: 腾讯科技 作者: 过客/编译 腾讯科学讯(过客/编译)人们希望美国开发的这种技术能够成为扫描Barrett's oesophagus症状的一种更加简单的方式,从而提早发现能够导致癌症的这种病症。与目前的成像技术不同的是,这种设备能够在病人意识清醒的状态下使用,而且只需要几分钟时间。目前为止这种设备只在小部分病人当中进行了测试。当人们患有Barrett's oesophagus病症时,食道较低位置的细胞由于长期的酸液回流会变得异常,这就使它们处于形成食道癌的高风险之中。医生能够使用内窥镜扫描那些症状,但是必须在镇静状态下进行。 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130116/2c27d720c896126030e624.jpg这种扫描仪使用红外线成像http://www.stdaily.com/stdaily/pic/attachement/gif/site2/20130116/2c27d720c896126030e725.gif医生能够借此寻找Barrett's oesophagus疾病的迹象 这种新设备包含在一个维他命药片大小的胶囊内,外部连接有一根细线。胶囊内部是一个快速旋转的激光探头,它发出的红外线会被食道内侧反射回来。医生能够在屏幕上看到食道的3D影像,而且微观细节远超内窥镜效果。当病人吞下这种胶囊的时候,它是以服用药片相同的方式进入胃部,然后能够使用细线拉回到食道当中。在6位已知患有Barrett's oesophagus症状的病人和7位健康志愿者身上测试了这种设备,研究人员称图像清晰的显示出那些病患中的细胞变化。 该研究的合作者之一盖里-蒂尔纳教授称,这项技术比内窥镜检查便宜,而且避免了对于镇静剂、专用设备以及专业培训的需求,而且图片显示的微观细节可以避免活体组织切片。蒂尔纳教授说道:“这种设备所产生的食道图片是我们看到过的一些最好图片。我们最初担心会失去许多数据,但是我们惊喜的发现,它为我们带来了食道壁完整的微观图像。”蒂尔纳教授补充道,这种设备能够帮助医生确定谁处于风险中,而且有可能在更容易处理的早期阶段就发现癌症。

  • 【资料】微型真空泵、微型气泵选型说明

    随着我国的仪器仪表工业的蓬勃发展,体积小巧、无油环保的微型真空泵、微型气泵、微型水泵得到越来越广泛的使用。如何才能在规格繁多的微型泵中选择最适合您的产品呢? 根据微型泵的用途,可以分为几类来讨论: 一、如果只是用微型气泵输出压缩空气。 简单地说,就是只用它来打气、充气,泵的抽气口基本不用。这种情况比较简单,按输出压力从大到小依次可选: PCF5015N 、 FAA8006 、 FAA6003 、 FAA4002 、 FM2002 、 FM1001, 当然还要参考流量指标等相关技术参数。 二、如果是用微型泵抽气,情况稍微复杂些,大致可从以下两个方面来决定选型: 1、判断微型泵抽气端工况 用于抽气的微型泵分为两类:气体采样泵和微型真空泵。虽然通常总是不加区分地把它们简单统称为微型真空泵,但从技术角度二者是有区别的,选型时更要特别注意。 简而言之,气体采样泵只能带小负载(即:泵抽气端阻力不能太大),但价格便宜;严格意义上的微型真空泵可以带大负载(抽气端允许大阻力,甚至完全堵塞),但价格稍贵。二者具体区别可以详见我公司网站上“试验数据”中的文章《关于微型真空泵与气体采样泵的区别》,不再复述。 气体采样泵有: PM 系列(具体型号如: PM950.2 、 PM850.5 、 PM8001 、 PM7002 、 PM6503 );微型真空泵有: VM 系列、 VAA 系列、 PK 系列、 PC 系列、 VCA 系列、 VCC 系列、 VCH 系列、 PH 系列、 FM 系列、 FAA 系列、 PCF 系列,这些系列下的所有规格都是真正的微型真空泵,如 VM7002 、 VAA6005 、 PC3025 等。 对于微型泵抽气端阻力的大小可以用仪器测定,把它与泵的技术参数“进气口允许最大阻力” Por 值(“进气口Por”的定义参见VM系列详细参数)比较就可以知道选型是否合适。通常根据经验采用简便的方法确定,比如下述几种情况都属于负载较大(即泵的抽气端阻力较大),只能在微型真空泵范围内选型:• 在泵的抽气端要接很长的管道,或管道弯曲点多、弯曲厉害甚至会阻塞封闭,或管道内孔很小(比如小于∮2毫米);• 在管路上有节流阀、电磁阀、气路开关、过滤器等元件;• 泵抽气口与密闭容器连接,或该容器虽未密闭但进气量较小;• 泵抽气口与吸盘连接,用于吸附物体(如集成块、精密工件等);• 泵的抽气端与过滤容器相连,容器口放置滤网,用于加速液体过滤。 2、判断微型泵排气端工况 以上都是在讨论微型泵抽气端阻力的问题,根据这些判断条件已经缩小了选型的范围,但还必须考虑排气端阻力问题,这样才能最终确定可选范围。 在实际应用中,微型真空泵面临的排气状况是不一样的: 一类是排气很顺畅,直通大气; 另一类是排气阻力较大,比如在排气管路上有阀、细小弯管、大阻尼传感器、非专用的消音器、在液面以下排气、气体排往密闭或半密闭容器等。在现代设计制造中,把面对不同排气条件的微型真空泵区别对待。“排气口允许最大阻力 Por 值”(“排气口Por”的定义参见VM系列详细参数)这一参数就是标定泵的排气能力,让我们可以用严格的技术手段确定选型是否恰当。 简单地说,对于排气阻力大的系统,我们的选型范围是: FM 系列、 FAA 系列、 PCF系列;对于排气阻力小的系统,选型范围是: VM 系列、 VAA 系列、 PK 系列、 PC 系列、 VCA 系列、 VCC 系列、 VCH 系列、 PH 系列。 根据以上几个步骤,我们已经可以确定微型泵的选型范围了。在划定的几个可选系列中,再根据我们对流量和真空度的要求就可以确定具体的型号了。 注意参数选择要留有余量,特别是流量参数。泵接入气路系统后,由于管道、阀门等气路元件要造成压力损失,会衰减流量,因此得到的流量小于泵的标称流量。 三、以下是其他与微型气泵选型相关的问题,请根据使用情况考虑: 1、带负载启动问题。 如果微型气泵在启动前它的抽气口就已经存在真空或排气口已经存在压力,则要考虑泵的另一技术参数:进气口最大启动负载 Pis 值,排气口最大启动负载 Pos 值(这两个值的定义参见VM系列详细参数)。典型应用事例就是使用微型气泵维持容器内的真空或正压状态,当容器内的真空或正压低于设定值时,需要泵通电启动,高于设定值时停机。 可以在自身能达到的极限真空度下启动的产品有: VM 系列、 VAA 系列、 PK 系列、 PC 系列、 VCA 系列、 VCC 系列、 VCH 系列、 PH 系列; 可以在自身能达到的最大输出压力下启动的产品有: FM 系列、 FAA 系列、 PCF 系列。 该性能对制造商的技术水平要求较高。 2、微型泵的介质温度问题。 根据通过泵的介质气体的温度,选择要普通型的还是要高温型的。 3、微型泵的可靠性问题。 根据微型泵出故障后产生后果的严重性而定,完全根据自己的要求。优质品的平均无故障连续运行时间都大于 1000 小时,有的高到数千小时。特别注意,这项参数是在满负荷、不间断的运行状态下测定的,是最恶劣的工况,如果实际使用不是满载或连续运行,该数值会高一些,高多少视泵的工况而定。该性能完全是考验制造商的技术实力,从产品外观上可以看出一些,如采用特制电机而非普通低价电机、体积相当的情况下重量较重等。根据产品价格也可略知一二。 4、微型泵的电磁干扰问题。 如果有精密电路控制微型泵,视电路抗干扰能力而定,可能需要订购低电磁干扰的微型泵[URL=http://www.weichengkj.com/pm.htm]http://www.weichengkj.com/pm.htm[/URL][URL=http://www.weichengkj.com/pc.htm]http://www.weichengkj.com/pc.htm[/URL]

  • 【原创】扫描探针显微镜的1234

    1.功能扫描隧道显微镜STM 原子力显微镜AFM自动进针功能 真三维图形处理功能深度和宽度定标功能自动保存扫描参数WINDOWS 9X操作系统的控制软件2.特点整机自动化自动记录参数图象数据定标配图象处理软件3.技术指标分辨率 横向:≥0.1nm 纵向:≥0.01nm;扫描范围 3μm×3μm;18μm×18μm;扫描频率 1Hz~100Hz步进电机及丝杠控制 10nm精度光栅扫描旋转角度 0~360º样品台大小 10x10x10mmD/A精度:16bit,32通道;A/D精度:16bit,10通道偏置电压 0~10V隧道电流预置 0.5nA~10nA图像分辨率 512×512灰度等级 256计算机 优于P42.0G/256M/40G4.整套仪器的其他附件、连接电缆、软件确保仪器正常操作和日常维护,满足基本功能和以上技术参数。

  • 【原创】微型光纤光谱仪在检测领域中的应用实例

    【原创】微型光纤光谱仪在检测领域中的应用实例

    微型光谱仪/光纤光谱仪在检测领域中的应用实例http://www.NewOpto.com摘要:微型光谱仪/光纤光谱仪以其系统模块化和搭建灵活性的特点,在要求现场检测和实时监控的场合得到了广泛的应用。本文以美国Ocean Optics微型光纤光谱仪为例,介绍其结构和特点,并且详细介绍了微型光纤光谱仪在实际检测领域中的应用方案。http://ng1.17img.cn/bbsfiles/images/2011/10/201110242341_326114_1638458_3.jpg ScanSci Spectrometerhttp://ng1.17img.cn/bbsfiles/images/2011/10/201110242339_326113_1638458_3.jpg Maya2000pro Spectrometer1 引言光谱仪器是应用光学技术、电子技术及计算机技术对物质的成分及结构等进行分析和测量的基本设备,广泛应用于环境监测、工业控制、化学分析、食品品质检测、材料分析、临床检验、航空航天遥感及科学教育等领域。由于传统的光谱仪存在着结构复杂、使用环境受限、不便携带及价格昂贵等不足,不能满足现场检测和实时监控的需求。因此,微型光纤光谱仪成为光谱仪器发展的一个重要的研究方向。近年来,由于光纤技术、光栅技术及阵列式探测器技术的发展和成熟,使得光谱检测系统形成了光源、采样单元及摄谱单元相分离的结构形式,整个系统结构更具模块化,使用更加方便灵活,从而使微型光纤光谱仪成为现场检测和实时监控的首选仪器。现以全球首家微型光纤光谱仪的制造商美国Ocean Optics公司的微型光纤光谱仪为例,介绍微型光纤光谱仪的结构及特点,并且重点介绍其在实际检测领域中的应用方案。2 微型光纤光谱仪结构及特点传统的光谱仪光学系统结构复杂,需通过旋转光栅对整个光谱进行扫描,测量速度慢,并且对某些样品还需经过特定的预处理,并要放在仪器的固定样品室内进行测量。与此相比,微型光纤光谱仪有很多优点,如:速度快、价格低、体积小、重量轻及全谱获取,而且通过光纤传导可以脱离样品室测量,适用于在线实时检测。2.1 微型光纤光谱仪结构光谱仪微型化设计的实现得益于摄谱结构的优化。全球首家光纤光谱仪生产商美国Ocean Optics公司的Michael J. Morris等人研制的USB系列微型光纤光谱仪使用非对称交叉式Czerny-Turner分光结构,此光学结构的设计是在Czerny-Turner结构基础上进行光路的改进,使光谱仪内部构件布局更紧凑,可进一步小型化(如USB4000系列光谱仪的尺寸规格仅为89.1 mm×63.3 mm×34.4mm)。摄谱结构光学平台的优化设计使微型光纤光谱仪内部无移动部件,光学元件都采用反射形式,可在一定程度上减少像差,并使工作光谱范围不受材料影响。微型光谱仪的固定化光学平台适合于震动及窄空间等复杂的工作环境。2.2 微型光纤光谱仪特点低损耗光纤、高效率光栅及低噪声高灵敏CCD阵列探测器等相关技术的发展,使微型光纤光谱仪在性能上有了很大的改进,具有如下技术特点:光纤传导技术:光纤技术的发展,使待测物脱离了固定样品池的限制,采样方式变得更加灵活,适合于远距离样品品质监控。由于光纤对光信号的传输作用,使得光谱仪可以远离外界环境的干扰,保证光谱仪的长期可靠运行。CCD阵列探测器技术:将经光栅分光后的作用光在探测器上同时瞬间采集,而不必移动光栅,因此样品光谱采集速度及快(测量时间为3.8ms~10min),并通过计算机实时输出。光栅技术:全息光栅具有较小的杂散光,而机械刻划光栅具有更高的反射率和灵敏度。计算机技术:电子计算技术的发展极大地提高了光谱仪的智能控制和处理能力。3 微型光纤光谱仪应用方案随着微型光纤光谱仪应用测量系统的不断拓展,其快速高效分析及便携式实时应用的优势逐渐显现出来,光谱分析技术正逐步从实验室分析走向现场实时检测。依据现阶段实际应用现状,微型光纤光谱仪在以下领域得到广泛的应用。3.1 透射吸收测量系统透射吸收测量用于测定液体或气体中介质对作用光的吸收,依据比耳定律,吸光度正比于摩尔吸收率、光程和样品介质浓度。透射吸收测量系统由以下部件组成:USB4000-UV-VIS光谱仪、DH2000-BAL光源、QP400-025-SR光纤、CUV-UV样品池、CV-Q-10比色皿及电脑。3.2 反射测量系统反射测量方式分为镜面反射和漫反射测量,在实际测量中,可以采用不同的参考白板和测量角度来进行区分。反射测量用于测定样品的化学成分及表面颜色相关信息。反射测量系统由以下部件组成:USB4000光谱仪、DH2000-BAL光源、R400-7-UV-VIS反射探头、RPH-1探头支架、标准参考板WS-1及电脑。 3.3 发光二极管( LED)测量系统LED测量系统用于LED光源的绝对光谱强度及颜色指标测量。LED测量系统由以下部件组成:USB4000-VIS-NIR光谱仪、FOIS-1积分球、LS-1-CAL-INT校准光源、QP400-2-VIS-NIR光纤、LED-PS电源及电脑。3.4 激光测量系统[/fon

  • 【转帖】美科学家新技术让扫描隧道显微镜变快100倍

    据国外媒体报道,来自美国康奈尔大学和波士顿大学的科学家近日称,他们最近开发出一种新技术,能够让扫描隧道显微镜(STM)成像速度加快100倍,可以清晰地观测到原子的细微变化情况。  这是一个简单的改动,其原理基于目前在纳米电子学中应用的一种测量方法,却使得扫描隧道显微镜(STM)拥有了新的能力--包括感应单个原子大小的小点的温度,以及探测精确到0.00000000000001米(这是比原子直径小3万分之一的距离)的微型变化。扫描隧道显微镜是根据量子力学中的隧道效应原理,通过探测固体表面原子中电子的隧道电流来分辨固体表面形貌的新型显微装置。1981年,世界上第一台具有原子分辨率的扫描隧道显微镜诞生后,人类实现了从半导体技术到纳米电子学等许多领域的重大发现。  然而,由于电流可以在十亿分之一秒中发生变化,因此扫描隧道显微镜的测量速度极其缓慢。而且限制因素并不仅仅在于信号方面,还在于信号分析中涉及的基本电子学。理论上,扫描隧道显微镜可以跟电子通过隧道一样迅速地收集数据——以一千兆赫的速率(每秒10亿周波)。然而,典型扫描隧道显微镜的运行速度常常因电线中的电容或储能电容器的限制而减慢至1千赫(每秒1000周波),而这些电线正是其读出电路系统的组成部分。  为此,研究人员们曾尝试过许多复杂的补救方法。康奈尔大学物理学副教授舒瓦布表示,不料最后的解决方法竟是惊人的简单。研究人员表示,通过增加一个额外的射频波源,并通过一个简单的网络向扫描隧道显微镜发送一个波,然后就可以依据返回至射频波源的波的特点,探测隧道接口(即探针和固体表面之间的距离)的电阻。这项技术被称为反射计,它使用标准的电线作为高频波的通道,这种高频波不会受电线电容的限制而减速。  该装置还为原子分辨率温度测量法和运动探测法提供了可能,可以用来测量比原子小3万倍距离的运动。舒瓦布说:“频率的基本极限与人们的操作之间有6个量级。有了射频配合,速度就可以增加100到1000倍,希望能或多或少得到些视频图像。有了这个技术,我们就可以用扫描隧道显微镜来进行许多物理实验。我坚信,10年后将出现一大批射频-扫描隧道显微镜,被用来进行各种各样的实验。”(

  • 【求助】怎样才能拍出好的二维晶格像

    最近在学习使用高分辨透射电镜Tecnai F20,现有两个问题向各位大侠请教:1、我在测试SiC纳米线(111晶面间距为0.25nm)的时候,很多时候在高分辨下得到的是一维条纹结构(即只有一个方向的条纹),今天下午却偶然之间得到了非常漂亮的二维晶格结构图像(即可以看到单个原子的排列),我再去观察别的纳米线却得不到了。以前记得有本书上说只有在入射电子束与样品晶格结构呈特定 的位相关系情况下,就可以得到清晰的二维晶格条纹。我想请问各位老师,该怎么去调节仪器或样品以得到漂亮的二维晶格结构图像呢?2、在测样品电子衍射图谱的时候,先在TEM模式下找到目标区,然后套光阑点衍射模式,进行选区衍射拍摄。但这样做得到的图谱往往很不好看,得到的衍射斑点很杂乱,我通过调整相机常数是无法解决的,请问各位老师这种情况该怎么办?似乎是要调整样品的角度,但具体要怎么操作呢?

  • 美国微型拉伸,压缩,弯曲,蠕变,疲劳测试平台,问我要资料哦

    微型拉伸压缩试验台专门应用于扫描电子显微镜,扫描探针显微镜和光学显微镜。在放大镜下进行试验,这种微型设备的表现非常理想,它能提供更深入的了解材料失效的早期阶段和整体了解材料的具体表现。此外,可实时观察晶粒位错和裂纹扩展。揭示了更多的形变信息,而传统的方式是后故障分析。这些参数存储文件可以方便将来测试时调取。测试进行中,测试结果可实时显示,亦可生成应力-应变曲线。关键参数都可以保存到报告中,如峰值负载/应力,屈服点,弹性模量和其它测试数据,原始测试数据和结果可以导出标准格式。易于和其它数据集成分析和实验室管理系统。测量平台直接在传动轴上运动,消除丝杠和齿轮传动误差;设备采用先进的编码系统,不需用其它设备对其现场校准;线性刻度分辨率可编程范围1.22NM-5NM一系列的夹具几乎适应于所有规格样品

  • 【转帖】扫描电子显微镜的应用

    新设备简介扫描电子显微镜的应用扫描电子显微镜是一种多功能的仪器、具有很多优越的性能、是用途最为广泛的一种仪器.它可以进行如下基本分析:(1)三维形貌的观察和分析;(2)在观察形貌的同时,进行微区的成分分析。①观察纳米材料,所谓纳米材料就是指组成材料的颗粒或微晶尺寸在0.1-100nm范围内,在保持表面洁净的条件下加压成型而得到的固体材料。纳米材料具有许多与晶体、非晶态不同的、独特的物理化学性质。纳米材料有着广阔的发展前景,将成为未来材料研究的重点方向。扫描电子显微镜的一个重要特点就是具有很高的分辨率。现已广泛用于观察纳米材料。②进口材料断口的分析:扫描电子显微镜的另一个重要特点是景深大,图象富立体感。扫描电子显微镜的焦深比透射电子显微镜大10倍,比光学显微镜大几百倍。由于图象景深大,故所得扫描电子象富有立体感,具有三维形态,能够提供比其他显微镜多得多的信息,这个特点对使用者很有价值。扫描电子显微镜所显示饿断口形貌从深层次,高景深的角度呈现材料断裂的本质,在教学、科研和生产中,有不可替代的作用,在材料断裂原因的分析、事故原因的分析已经工艺合理性的判定等方面是一个强有力的手段。③直接观察大试样的原始表面,它能够直接观察直径100mm,高50mm,或更大尺寸的试样,对试样的形状没有任何限制,粗糙表面也能观察,这便免除了制备样品的麻烦,而且能真实观察试样本身物质成分不同的衬度(背反射电子象)。④观察厚试样,其在观察厚试样时,能得到高的分辨率和最真实的形貌。扫描电子显微的分辨率介于光学显微镜和透射电子显微镜之间,但在对厚块试样的观察进行比较时,因为在透射电子显微镜中还要采用复膜方法,而复膜的分辨率通常只能达到10nm,且观察的不是试样本身。因此,用扫描电子显微镜观察厚块试样更有利,更能得到真实的试样表面资料。⑤观察试样的各个区域的细节。试样在样品室中可动的范围非常大,其他方式显微镜的工作距离通常只有2-3cm,故实际上只许可试样在两度空间内运动,但在扫描电子显微镜中则不同。由于工作距离大(可大于20mm)。焦深大(比透射电子显微镜大10倍)。样品室的空间也大。因此,可以让试样在三度空间内有6个自由度运动(即三度空间平移、三度空间旋转)。且可动范围大,这对观察不规则形状试样的各个区域带来极大的方便。⑥在大视场、低放大倍数下观察样品,用扫描电子显微镜观察试样的视场大。在扫描电子显微镜中,能同时观察试样的视场范围F由下式来确定:F=L/M式中 F——视场范围;M——观察时的放大倍数;L——显象管的荧光屏尺寸。 若扫描电镜采用30cm(12英寸)的显象管,放大倍数15倍时,其视场范围可达20mm,大视场、低倍数观察样品的形貌对有些领域是很必要的,如刑事侦察和考古。⑦进行从高倍到低倍的连续观察,放大倍数的可变范围很宽,且不用经常对焦。扫描电子显微镜的放大倍数范围很宽(从5到20万倍连续可调),且一次聚焦好后即可从高倍到低倍、从低倍到高倍连续观察,不用重新聚焦,这对进行事故分析特别方便。⑧观察生物试样。因电子照射而发生试样的损伤和污染程度很小。同其他方式的电子显微镜比较,因为观察时所用的电子探针电流小(一般约为10-10 -10-12A)电子探针的束斑尺寸小(通常是5nm到几十纳米),电子探针的能量也比较小(加速电压可以小到2kV)。而且不是固定一点照射试样,而是以光栅状扫描方式照射试样。因此,由于电子照射面发生试样的损伤和污染程度很小,这一点对观察一些生物试样特别重要。⑨进行动态观察。在扫描电子显微镜中,成象的信息主要是电子信息,根据近代的电子工业技术水平,即使高速变化的电子信息,也能毫不困难的及时接收、处理和储存,故可进行一些动态过程的观察,如果在样品室内装有加热、冷却、弯曲、拉伸和离子刻蚀等附件,则可以通过电视装置,观察相变、断烈等动态的变化过程。⑩从试样表面形貌获得多方面资料,在扫描电子显微镜中,不仅可以利用入射电子和试样相互作用产生各种信息来成象,而且可以通过信号处理方法,获得多种图象的特殊显示方法,还可以从试样的表面形貌获得多方面资料。因为扫描电子象不是同时记录的,它是分解为近百万个逐次依此记录构成的。因而使得扫描电子显微镜除了观察表面形貌外还能进行成分和元素的分析,以及通过电子通道花样进行结晶学分析,选区尺寸可以从10μm到3μm。由于扫描电子显微镜具有上述特点和功能,所以越来越受到科研人员的重视,用途日益广泛。现在扫描电子显微镜已广泛用于材料科学(金属材料、非金属材料、钠米材料)、冶金、生物学、医学、半导体材料与器件、地质勘探、病虫害的防治、灾害(火灾、失效分析)鉴定、刑事侦察、宝石鉴定、工业生产中的产品质量鉴定及生产工艺控制等。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=79549]扫描电子显微镜的应用[/url]

  • 【原创大赛】扫描电镜中扫描旋转及对非导电样品的成像应用探讨

    【原创大赛】扫描电镜中扫描旋转及对非导电样品的成像应用探讨

    扫描电镜是材料学研究中的常用仪器,通过入射电子轰击样品,激发和收集二次电子以获得样品表面形貌像。虽然扫描电镜相对透射电镜对样品要求不高且制样简单,但为保证在真空条件下获得清晰的样品表面形貌像,对待测样品的基本要求为不挥发且易导电。不导电的样品因在电子束轰击区域易产生荷电形成电场,影响二次电子成像效果,因此对此类样品往往采用溅射一层非常薄的导电膜C或金属(如Au、Pt)提高导电性,改善成像效果。但对于样品表面起伏较大,以及需拍摄截面外侧的样品往往效果有限,主要会通过改变加速电压(Accelerating voltage),改变束流(Beam current)以及工作距离(Work distance)的方式进行成像调整,有时调整效果也是非常有限。通过日常的积累探索,本文以容易被忽略的扫描旋转(Scan rotation)对非导电样品的扫描电镜成像应用进行探讨。一、什么是扫描旋转? 电子束从极靴中出射后汇聚到样品为一个仅有数纳米的大小的束斑,再通过逐点移动实现对样品整个目标区域的扫描成像。逐点移动的方向由扫描线圈控制,可在平面内360度旋转可调。由于扫描线圈调整电子束偏转使得扫描方向发生改变,但成像时仍然按照水平的方式给与图像展现,直接体现为图像以中心为轴,进行了一定角度的旋转,此即为扫描旋转。扫描旋转感觉似乎是样品在旋转,实际上此时样品位置并未移动,仅仅是成像的视角发生了角度的改变。以图1中系类示意图为例:图1-1中的五角星以及四个方向的4个三角形为一个样品。扫描电镜在成像时往往会按照一定的长宽比进行某个区域的成像,如图1-2所示的方框为成像区域,即在电脑屏幕上可见的图像。图中示意的绿色的点为逐点扫描的起点,箭头为扫描方向,红色点为图像的中心。当扫描角度改变时,以90度为例,如图1-3所示。此时是仍以红色为中心点,扫描的起始点(绿色)和扫描方向发生了改变,但仍然按照固定的长宽比进行扫描区域成像,即虚线框范围,成像仍然按照水平方向展示,即在电脑屏幕上展现的图像为图1-4所示,与图1-2中方框内图像相比似乎旋转的90度。[img=,690,563]https://ng1.17img.cn/bbsfiles/images/2021/08/202108241611580279_4828_1613111_3.jpg!w690x563.jpg[/img]二、扫描旋转在样品表面形貌成像中应用 扫描旋转方向的改变基本应用是为获得某个好看的目标物的图像,例如使得目标物的图像横平竖直,或者沿一定角度的趋势。在特殊情况下如当样品导电性差形成荷电,成像时容易产生明或暗条纹时,有时通过调整扫描方向,改变荷电分布区域,可以对成像效果有一定的改善。如下列图2系列图为同一位置不同扫描旋转角度的成像图。其中图2-1,图2-2,图2-3均在不同位置不同深浅度的黑色条纹,图2-4相对成像效果较好。由于荷电分布完全由所观测的样品的成像区域特性决定,即使同一样品不同区域荷电分布也不一致,难以总结出特定的一致规律,因此扫描旋转的改变对于成像的效果目前只能通过不同角度进行不断的尝试。[img=,690,522]https://ng1.17img.cn/bbsfiles/images/2021/08/202108241612532956_154_1613111_3.jpg!w690x522.jpg[/img]三、扫描旋转在截面样品形貌成像中应用 在特殊样品的情况下,尤其对导电性差的截面外侧成像时,通过扫描旋转方向的改变可以显著提升成像效果。当侧面为水平时与扫描点移动方向一致,在侧面边缘易形成荷电场,对图像的扭曲非常明显。如下列图3系列图所示。图3-1中黄色标记线上侧为样品截面外侧,可见有一定的拉伸。进一步通过轻微角度调整,如图3-2和图3-3黄色线标记指示区,两者为同一样品区域,可见截面外侧的一层膜,由于荷电的作用造成图像扭曲非常明显。当将扫描方向调整为90度(图3-4),此时扫描点移动方向与样品截面外侧垂直,局部荷电得到一定改善,因此得到的图像未拉伸。如图3-1和图3-4两图绿色指示区为同一区域,可见图3-1中外侧区域成像时受到了严重压缩,经调整扫描方向得到了图3-4样品截面外侧的真实形貌图。[img=,690,604]https://ng1.17img.cn/bbsfiles/images/2021/08/202108241614424860_7131_1613111_3.jpg!w690x604.jpg[/img] 又如下列组合图(图4),以样品截面水平为0度,分别逆时针旋转角度(30,60,90)和顺时针旋转角度(-30,-60)。可见在截面垂直(90)时为无变形成像。[img=,690,351]https://ng1.17img.cn/bbsfiles/images/2021/08/202108241616295560_4109_1613111_3.jpg!w690x351.jpg[/img]四、结论 通过简单的扫描旋转改变电子束移动方向,对非导电性样品来说,有时可以获得意向不到的成像效果。

  • 【原创大赛】扫描电子显微镜原理与应用

    【原创大赛】扫描电子显微镜原理与应用

    植物中某些组织在发育早期非常的小,肉眼无法辨别它的表面结构,一般的光学显微镜也无法满足观察需求,这个时候就需要高分辨率的扫描电子显微镜来帮助植物科研工作者来揭开这些微小组织器官的面纱,把真实表面结构展现给大家。扫描电子显微镜是怎样的工作原理,和其他显微镜的差别在哪里,它为何能有如此高的“分辨率”呢?这些都得从他的工作原理说起。扫描电子扫描电子显微镜(Scanning Electron Microscope),简写为SEM,它是由电子光学技术、真空技术、精细机械结构以及现代计算机控制技术等共同组成。在加速高压作用下,由电子枪发射的电子经电子光学系统(由聚光镜和物镜组成)聚集成束照射到样品表面,对样品进行逐行扫描,从样品表面反射出多种电子,包括二次电子、饿歇电子、反射电子、X射线等,其中二次电子为SEM主要采集信号,通过检出器采集,再经视频放大形成图象信号,经显示器显示成直观的图象信息。相对于光学显微镜而言,SEM具有放大倍数高、分辨率高、成像清晰、立体感强、样品制备简单等诸多优点。1938年第一部扫描电子显微镜就研发成功了,不过直到1965年第一部商用SEM才出现。现在,扫描电子显微镜在植物方面可以对分阶段连续取得的样品进行细胞发生和发育学方面的微观动态研究。除了在植物方面应用,SEM还被广泛应用与动物、医学、化学、物理、地质、机械等多个行业。不少研究者和厂家从二次电子图像分辨率,放大倍数,适用性等方面努力提高SEM的性能,满足人们对SEM的需求。http://ng1.17img.cn/bbsfiles/images/2015/07/201507121833_555080_3023439_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/07/201507121834_555081_3023439_3.jpg

  • 【求购】二手的扫描电子显微镜

    各位业内的兄弟姐妹,不知道你们是不是知道有二手的扫描电子显微镜啊,PHILPS XL40的。或者日本Hitachi,或者英国Oxford.不知道你们有这方面的消息吗?有消息的留下联系方式啊 。或者E:s601@zencatec.com.cn

  • 海洋光学微型光纤光谱仪及其典型应用

    海洋光学微型光纤光谱仪及其典型应用

    光谱学是测量紫外、可见、近红外和红外波段光强度的技术。光谱测量被广泛应用于多种领域,如颜色测量、化学成份的浓度测量或辐射度学分析、膜厚测量、气体成分分析等领域。在上世纪九十年代以来,微电子领域中的多象元光学探测器(例如CCD,光电二极管阵列)制造技术迅猛发展,使生产低成本扫描仪和CCD相机成为可能。美国海洋光学公司的微型光纤光谱仪使用了同样的CCD(CCD光谱仪)和光电二极管阵列探测器,可以对整个光谱进行快速扫描,不需要转动光栅。   海洋光学的微型光纤光谱仪通常采用光纤作为信号耦合器件,将被测光耦合到光谱仪中进行光谱分析。由于光纤的方便性,用户可以非常灵活的搭建光谱采集系统。其优势在于测量系统的模块化和灵活性,且测量速度非常快,可以用于在线分析。而且由于采用了低成本的通用探测器,降低了光谱仪的成本,从而也降低了整个测量系统的造价。   微型光纤光谱仪基本配置包括包括一个光栅,一个狭缝和一个探测器。这些部件的参数在选购光谱仪时必须详细说明。光谱仪的性能取决于这些部件的精确组合与校准,校准后光纤光谱仪,原则上这些配件都不能有任何的变动。海洋光学拥有广泛的光谱仪配置选择,使其性能最大化以满足客户要求。如果这些配置不符合您的要求,我们可以根据您的要求为您量身定做。  海洋光学微型光纤光谱仪选型① 光学分辨率光学分辨率是配置微型光纤光谱仪时经常被考虑的主要因素之一。当用户为了追求微型光纤光谱仪的高分辨率时,在选型时会选择具有尽可能多像元数探测器的微型光谱仪。而实际上光学分辨率不仅仅由探测器的像元数决定,还与狭缝宽度和光栅的刻线密度有关。所以当讨论分辨率时,通常用色散或用波长范围除以像元数。半高全宽值(FWHM),即最大峰值光强一半处所对应的谱线宽度是一种表述分辨率更好的方法(见上图)。用FWHM可以对不同光谱仪的实际光学性能进行直接对比。用这种表示方法可以避免一些缺陷,例如:有的光栅并没有用到全部像元;采用交叉式Czerny-Turner光路设计的光谱仪中,光学系统不能把狭缝清晰地成像在探测器上,这是由于光路中过大的反射角和固有的系统放大倍率造成的。http://ng1.17img.cn/bbsfiles/images/2012/04/201204122045_360970_1855403_3.jpg② 灵敏度灵敏度是配置光谱仪时所需要考虑的另一个因素。现在的主流微型光纤光谱仪都采用线阵探测器,所以灵敏度跟像素数没有任何关系。但面阵探测器例外,因为面阵探测器在垂直方向的每个像素都会被累积,在某种意义上垂直方向上的所有像素的累积可以被看成一个更大的像素。因此,在考虑某种应用对灵敏度的要求时,更重要的是看探测器的响应曲线。下图中给出了海洋光学微型光纤光谱仪采用的两种典型探测器的灵敏度响应曲线。http://ng1.17img.cn/bbsfiles/images/2012/04/201204122046_360971_1855403_3.jpg③ 信噪比信噪比也是选配微型光纤光谱仪的一个因素。对于CCD光谱仪,较高的灵敏度导致了较低的信噪比。在一定范围内,可以通过对光谱进行多次平均来提高信噪比。平均次数的平方根恰好是信噪比提高的倍数。例如,光谱平均100次,信噪比能提高10倍。有些应用需要较高的信噪比,此时用户应当比较在光谱仪中的光学平台和探测器的综合信噪比。需要强调的是,用户一定要搞清楚厂家给出的信噪比是不是整个光谱仪系统的信噪比,因为只有整个光谱仪系统的信噪比才是最重要的。一个信噪比高的探测器配一个性能不高的光路,那么它的高信噪比就没有实际意义。比较不同探测器和微型光纤光谱仪间的信噪比的比较好的方法是:测量100次,然后对每个像元计算平均值和标准偏差,信噪比等于平均值除以标准偏差。测量信噪比时,信号强度应当接近饱和,并设置正确的平滑值(如果需要的话)。④ 光栅选择光栅选择是最比较复杂的。通常有两个因素决定了光栅的选择:波长范围和光学分辨率。波长范围受限于所选择的探测器或光栅,或二者都有。光学分辨率不仅受限于光栅,还受限于狭缝宽度和探测器的像元数和像元尺寸。还要考虑第三个因素,即光栅还会影响系统的灵敏度,这是因为不同的光栅的闪耀波长(即最高效率)位置各不相同。当对系统进行最优化配置时,最好查看一下光栅的效率曲线。下图中是海洋光学微型光纤光谱仪采用的几种典型的600线/mm光栅的效率曲线,效率最高点从紫外区到近红外区。http://ng1.17img.cn/bbsfiles/images/2012/04/201204122047_360972_1855403_3.jpg⑤ 狭缝狭缝了也是选配微型光纤光谱仪的一个因素。微型光纤光谱仪有多种狭缝尺寸供您选择,狭缝安装在光纤接头处(见图),并且被永久的固定在光谱仪上。有两点需要记住,狭缝越小,光学分辨率越高;狭缝越大,进入光学平台的光通量越多,即灵敏度越高。从本质上说,需要折中兼顾光谱仪的分辨率和灵敏度。http://ng1.17img.cn/bbsfiles/images/2012/04/201204122047_360973_1855403_3.jpg⑥ 其他 选择微型光纤光谱仪的其他选项会相对容易一些。例如可以选择升级UV4探测器后,探测器上的标准BK7窗片将会被石英窗片替代,用来增强海洋光学微型光纤光谱仪在波长340nm以下紫外区的响应能力。而其它探测器,比如薄型背照式CCD或CMOS则不需要这个选项。而为了避免二、三级衍射效应的影响,可以通过在位于狭缝与消包层模式孔之间的SMA905连接器中安装长通滤光片或在探测器的窗口处安装OFLV消除高阶衍射滤光片。正如上面介绍的几个因素所表明的,通过一些简单的步骤就就可以配置好满足您应用的微型光纤光谱仪。除了光谱仪,我们可能还需要考虑种类纷杂的光源和采样附件。所以不必犹豫尽管向我们咨询有关仪器的一切问题,我们将会给您一套最适合您应用的微型光纤光谱仪配置。

  • 三维扫描工程逆向技术应用的行业范围

    三维扫描工程逆向技术应用的行业范围模具样品开发:汽机车类、家电制品、运动器材、制鞋、玩具、陶瓷等。快速原型制作:古董、人像、艺术品、卡通人物、玩具等。人体形状测量:人体外形测量、医疗器材制作等。造型设计:立体动画、多媒体虚拟实景、广告动画等。1 三维扫描工程逆向技术对国内的汽车制造业具有重要意义目前,我国成为汽车消费大国,但汽车设计与制造与国外还有相当差距,为了提高产品档次,国内企业大量进口了国外的配件或成品车,然而单纯引进成品而不注意引进技术,对我国汽车行业的技术提升是相当不利的,且会减少企业的利润空间。因此,企业在进口的同时,还要能够善于对引进的技术进行深人研究,探索引进产品中的关键技术并进行消化吸收和改进创新,对于车型的更新,最主要的工作就是获得原有车型的几何模型(其中大型覆盖件的设计是整个新车型开发的关键),基于逆向技术(三维扫描工程技术)、CAD/CAM技术(曲面构建、模型重建)是目前获取几何模型应用最广的方法。长沙多维测量设备有限公司生产的三维动态、高速扫描系统是理想的选择。运用三维扫描工程可以获得原有零件的三维数据,建构出三维模型,如果把此图形编译成刀路加工代码,就可以复制生产出和原零件一样的产品了;再根据国情或者实际需求,在此三维模型上进行修改创新,可以设计成更符合国内习惯或者具有其它功能的新产品。可见,逆向工程技术对于加速我国汽车制造业的发展具有非常重要的现实意义,是提高我国汽车制造技术水平、缩短与发达国家差距的一个捷径。2 基于三维扫描工程逆向技术的玩具设计与生产目前,我国中、小玩具加工企业大多是根据客户提供的图形设计生产玩具,客户提供的图片多属二维平面图,且造型各不相同,设计人员看图裁剪制作,并配色加工样品,样品制成后再与图片对照作修改,因而,主要依赖设计人员的空间想象力和设计经验,一个样品须经多次修改才能定型,设计手段原始,导致产品开发周期长,成本高,缺乏市场竞争优势。借助于三维扫描逆向工程技术,依据二维图片,利用油泥等材料进行三维实体模型制作,通过三维数据测量技术将实物(油泥等)模型表面数字化,再利用反求软件进行曲面重构,生成三维CAD模型。这样可以从根本上更新玩具的设计手段,缩短产品开发周期,提高设计质量。长沙多维测量设备有限公司生产的转台式的激光扫描仪就是针对这样的客户而设计的,操作简单,价格实惠。3 基于三维扫描工程的鞋楦逆向设计,以实现量脚订制鞋楦是制鞋的基础和重要模具,鞋楦作为鞋子的母体,不仅决定了鞋子的长短肥瘦和造型,还决定了鞋子穿着舒适性,因此,鞋楦的形状至关重要。每个人的脚的形状各不一样,要想最大程度的实现量脚订制,每人制作一个鞋楦,是不切实际的。而借助于逆向工程却可以实现。将已有的标准鞋楦进行三维测量,将模型数据化,再用相关软件对鞋楦曲面进行三维实体造型,得到标准鞋楦的三维图形。利用造型设计工具,根据顾客的脚型数据改动鞋楦的轮廓和截面特征,并据此对脚型的实测数据进行修改,就可以得到新的鞋楦造型数据,然后生成加工代码就可以制造鞋楦了。这样人们就可以量脚订制出完全符合自己脚形的鞋子了(鞋楦的三维数字化测量系统)。长沙多维测量设备有限公司生产的台式抄数机维您提供最优质、简便的方案,低廉的投入,超值的回报。4 三维扫描工程逆向技术在现代服装生产行业大有用途服装合体性是服装生产的一大关键,也是消费者最为关心的一项指标。而目前,服装的合体性还不能很好的满足消费者的需求,量身定做还主要依靠传统的人工测量方法,实现速度比较慢。如果应用三维扫描工程逆向技术,采用三维扫描仪进行人体尺寸的测量,扫描输出的数据可直接用于服装设计软件,为实现量身定制、实现服装电子商务提供了可能。同时,利用这种方法,还可以建立人体数据库,以便对人体的尺寸、体形特征进行分析,从而为更好的制定服装号型提供依据;也可以建立个性化虚拟平台,在虚拟平台上进行交互式立体设计,同时配合相应软件可生成二维的服装样板片,为原型板的建立和服装样板的系列化设计提供快捷、便利的研究方案。三维扫描工程逆向技术的运用使服装生产和设计更具个性化和人性化,提高了服装的适体性,是实现现代化、数字化服装批量生产,个性化生产及服装电子商务的有效手段,是服装工业迅速发展建立快速反应模式的必要技术支撑。5 需要模压成型的纺织品的成型模具的制造有些纺织品需要根据最终产品的形状进行加工,以形成整体的无缝立体形态,此时就需要采用模压成型(CompressionMolding)的方法。而用于模压成型的成型模具对于产品成型至关重要,要求它与制成品具有良好的形状适应性和尺寸精度,而此类制成品的形状往往比较特殊,由不规则曲面构成,用传统的测量方法很难实现良好的形状再现,此时,借助于三维扫描工程逆向技术进行设计制造便可事半功倍。目前模压纺织制品主要见于妇女内衣、泳衣、运动装,以及一些医用、军用、航空航天用、汽车用、建筑用产品及运动器材,如罩杯、垫肩、头盔、潜水镜、航空服装、座椅垫、医用矫形器件、建筑构件等。6 三维扫描工程逆向技术对人体还原起重大作用口腔组织的数据采集是计算机辅助设计与计算机辅助制造(CAD/CAM)系统的重要组成部分三维扫描技术具有使用方便、抗干扰能力强、自动立体重构、可重复性强等优点.国内外学者应用三维扫描仪构建了数字化的牙颌模型、眼、耳、鼻等颌面赝复体,应用三维扫描仪重建牙预备体并分析其获取数据的可靠性。目前,只有我国能够真正实现了把三维颅骨扫描三维颅面复原和三维颅面鉴定技术集于一身,并应用于刑侦实案检验中,为侦破重大涉命案件提供身源线索和证据。与世界同类研究相比,该项技术处于国际领先水平。7 三维扫描工程逆向技术对文物考古方面有意义博物馆是一个地区甚至国家文明发展程度的重要标志,当代世界博物馆的发展趋势表明,现代博物馆不再是简单的文物标本的收藏、展示、研究机构,而是应该成为面向社会、服务于公众的文化教育机构和信息资料咨询机构。目前我国的博物馆往往在这一方面比较忽视,要改变这种现象,必然涉及到博物馆展览模式的改变。以往的博物馆展览模式由于受到开放时间的规定和展览场地的限制,它运作的舞台已经越来越显得狭小、它发展的空间也越来越显得局限而且没有余地。比如,目前博物馆的陈列多是以展品配说明牌、图片的形式面向观众,但是随着社会的发展和人们知识水平的提高,观众已不再满足于只欣赏美妙的展品,而更多的是想探求藏品背后所蕴藏的文化积淀,甚至渴望将某一部分特别喜爱的文化层面移出博物馆,溶入到自己的生活中去。为了适应世界文化潮流,满足社会的文化需要,计算机技术的应用,是最有效的手段之一,因此博物馆的数字化代表着世界博物馆社会化发展的方向。随着三维扫描技术的发展,三维数字模型对文物考古的修复、复制、测绘

  • 【资料】激光共聚焦扫描显微镜一些介绍

    激光共聚焦扫描显微镜简介一、 激光共聚焦显微镜的基本组成激光扫描共聚焦显微镜(laser scanning confocal microscope LSCM)是20世纪80年代发展起来的一项具有划时代意义的高科技新产品,是当今世界最先进的细胞生物学分析仪器。激光共聚焦显微镜利用激光作为光源,在传统光学显微镜基础上采用共轭聚焦的原理和装置,以及通过针孔的选择和PMT的收集,并带有一套对其所观察到的对象进行数字图像分析处理的系统软件。与传统光学显微镜相比,它具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点。所以它问世以来在生物学的研究领域中得到了广泛应用。激光共聚焦显微镜主要有四部分组成:1、显微镜光学系统。2、扫描装置。3、激光光源。4、检测系统。整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地进行。1.1 显微镜光学系统  显微镜是LSCM的主要组件,它关系到系统的成象质量。显微镜光路以无限远光学系统可方便地在其中插人光学选件而不影响成象质量和测量精度。物镜应选取大数值孔径平场复消色 差物镜,有利于荧光的采集和成象的清晰。物镜组的转换,滤色片组的选取,载物台的移动调节,焦平面的记忆锁定都应由计算机自动控制。1.2 扫描装置  LSCM使用的扫描装置在生物领域一般为镜扫描。由于转镜只需偏转很小角度就能涉及很大的扫描范围,图象采集速度大大提高,512×512画面每秒可达4帧以上,有利于那些寿命短的离子作荧光测定。扫描系统的工作程序由计算机自动控制。1.3 激光光源  LSCM使用的激光光源有单激光和多激光系统。多激光器系统在可见光范围使用多谱线氩离子激光器,发射波长为457nm、488nm和514nm的蓝绿光,氦氖绿激光器提供发射波长为543nm的绿光,氦氖红激光器发射波长为633nm的红光,新的405nm半导体激光器的出现可以提供近紫外谱线,但是小巧便宜而且维护简单。1.4 检测系统  LSCM为多通道荧光采集系统,一般有三个荧光通道和一个透射光通道,能升级到四个荧光通道,可对物体进行多谱线激光激发,样品发射荧光的探测器为感光灵敏度高的光电倍增管PMT,配有高速12位A/D转换器,可以做光子计数。PMT前设置针孔,由计算机软件调节针孔大小,光路中设有能自动切换的滤色片组,满足不同测量的需要,也有通过光栅或棱镜分光后进行光谱扫描功能的设置。二、激光共聚焦显微镜的特点以及在生物领域的应用传统光学显微镜相比,激光共聚焦显微镜具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点,在对生物样品的观察中,激光共聚焦显微镜有如下优越性:1、对活细胞和组织或细胞切片进行连续扫描,可获得精细的细胞骨架、染色体、细胞器和细胞膜系统的三维图像。2、 可以得到比普通荧光显微镜更高对比度、高解析度图象、同时具有高灵敏度、杰出样品保护。3、***图象的获得,如7 维图象(XYZaλIt): xyt 、xzt 和xt 扫描,时间序列扫描旋转扫描、区域扫描、光谱扫描、同时方便进行图像处理。 4、细胞内离子荧光标记,单标记或多标记,检测细胞内如PH和钠、钙、镁等离子浓度的比率测定及动态变化。5、荧光标记探头标记的活细胞或切片标本的活细胞生物物质,膜标记、免疫物质、免疫反应、受体或配体,核酸等观察;可以在同一张样品上进行同时多重物质标记,同时观察; 6、对细胞检测无损伤、精确、准确、可靠和优良重复性;数据图像可及时输出或长期储存。 由于共聚焦显微镜的以上优点,激光共聚焦显微镜在以下研究领域中应用较为广泛:1、细胞生物学:如:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化、细胞凋亡机制;各种细胞器、结构性蛋白、DNA、RNA、酶和受体分子等细胞特异性结构的含量、组分及分布进行定量分析;DNA、RNA含量、利用特定的抗体对紫外线引起的DNA损伤进行观察和定量;分析正常细胞和癌细胞细胞骨架与核改变之间的关系;细胞黏附行为等 2、生物化学:如:酶、核酸、受体分析、荧光原位杂交、杂色体基因定位等,利用共聚焦技术可以取代传统的核酸印迹染交等技术,进行基因的表达检测,使基因的转录、翻译等检测变的更加简单、准确。3、药理学:如:药物对细胞的作用及其动力学;药物进入细胞的动态过程、定位分布及定量 4、生理学、发育生物学:如:膜受体、离子通道、离子含量、分布、动态;动物发育以及胚胎的形成,骨髓干细胞的分化行为;细胞膜电位的测量.荧光漂白恢复(FRAP)、荧光漂白丢失(FLIP)的测量等。 5、遗传学和组胚学:如:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断; 6、神经生物学:如:神经细胞结构、神经递质的成分、运输和传递; 7、微生物学和寄生虫学:如:细菌、寄生虫形态结构; 8、病理学及病理学临床应用:如:活检标本的快速诊断、肿瘤诊断、自身免疫性疾病的诊断; 9、免疫学、环境医学和营养学。如:免疫荧光标记(单标、双标或三标)的定位,细胞膜受体或抗原的分布,微丝、微管的分布、两种或三种蛋白的共存与共定位、蛋白与细胞器的共定位;对活细胞中的蛋白质进行准确定位及动态观察可实时原位跟踪特定蛋白在细胞生长、分裂、分化过程中的时空表达,荧光能量共转移(FRET)。

  • 怀化学院德国蔡司Sigma HD型热场发射扫描电子显微镜

    湖南怀化学院德国蔡司公司SigmaHD型热场发射扫描电子显微镜于2015年10月正式投入使用并可对外提供测试服务。仪器配备:镜筒内二次电子(In-lens)、二次电子(SE2)、背散射电子(BSE)及能谱仪(EDS)等探测器。二次电子像分辨率可达1.0 nm (30 kV)。测试样品基本无需排队、可随到随测,2-4个工作日内给出测试结果。联系人:杨老师联系电话:18152731699

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制