当前位置: 仪器信息网 > 行业主题 > >

大尺寸磁控溅射镀膜机

仪器信息网大尺寸磁控溅射镀膜机专题为您提供2024年最新大尺寸磁控溅射镀膜机价格报价、厂家品牌的相关信息, 包括大尺寸磁控溅射镀膜机参数、型号等,不管是国产,还是进口品牌的大尺寸磁控溅射镀膜机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合大尺寸磁控溅射镀膜机相关的耗材配件、试剂标物,还有大尺寸磁控溅射镀膜机相关的最新资讯、资料,以及大尺寸磁控溅射镀膜机相关的解决方案。

大尺寸磁控溅射镀膜机相关的论坛

  • 【求购】求购镀膜机

    最近单位要买一台磁控溅射镀膜机,不知国内外哪些厂家的设备比较好,因为镀膜机的部件比较多,又要求真空,出点小问题难免,所以售后方面得好。不知哪位比较有经验的,指点指点。

  • 扫描电镜不导电样品磁控溅射镀膜仪常见问题解决

    随着电镜技术和应用快速发展,越来越多电镜用户对样品前处理提出了更高的要求。其中磁控溅射镀膜仪就专用来给场发射扫描电镜不导电样品进行喷金镀膜。本作品主要从两大方面介绍磁控溅射镀膜仪。1.简易演示真空磁控

  • 【原创大赛】磁控溅射原理及TEM样品的制备

    当前,制备非晶的方法主要有淬火法和气相沉积法。快冷法又分为铸膜法和甩带法,适合于制备大块非晶。气相沉积法分为真空蒸发法、化学气相沉积法、脉冲激光沉积法和磁控溅射法。~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~磁控溅射法制备非晶样品有其独特的有点,下面主要介绍下磁控溅射制备非晶样品的原理。电子在电场E的作用下,在飞向基板的过程中与氩气原子发生碰撞,使其电离出氩离子和一个新的电子,电子飞向基片,氩离子在电场作用下飞向阴极靶,并以高能量轰击靶的表面,使靶材发生溅射。在溅射的过程中,溅射离子,中性的靶原子或分子即可在基片上沉积形成膜。综上所述,磁控溅射的基本原理就是以磁场来改变原子的运动状态,并束缚和延长原子的运动轨迹,从而提高电子对工作气体的电离几率和有效地运用了电子的能量。这也体现了磁控溅射低温、高效的原理。常用的TEM样品以TEM载网为基片。TEM载网是直径为3nm,厚为20μm,网格间距为80μm,最底下一层铜或者钼,上面覆盖一层约为5nm厚的无定形碳作为支撑膜。利用磁控溅射法制备沉积的薄膜就沉积在这种TEM载网的无定形碳的支撑膜上,为了减少非弹性散射对衍射数据的影响,在实验过程中尽可能制备厚度比较小的薄膜厚度,约为15nm-20nm,这样制得的样品就可以直接在透射电子显微镜中进行直接的表征。

  • 出售磁控溅射仪(私聊)

    出售磁控溅射仪(私聊)

    磁控溅射仪(2019下半年购入,9成9新)[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2023/10/202310091529314999_3303_5829706_3.jpg!w690x920.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2023/10/202310091529317199_6660_5829706_3.jpg!w690x920.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2023/10/202310091529323410_1965_5829706_3.jpg!w690x920.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2023/10/202310091529325843_2573_5829706_3.jpg!w690x920.jpg[/img]设备技术要求 1.样品基台:直径 6 英寸样品2.反应腔室:304 不锈钢材质3.靶座系统:3 英寸圆形靶座 4 个,位于腔室上部;靶与样品的距离90~110mm 可调4.真空系统:分子泵,机械泵5.真空测量:薄膜规(进口),全量程规(进口)6.气路系统:标配 2 路进气,种类和流量可定制;管路配件(进口)7.电源系统:500W/13.56MHz 自动匹配射频源 1 套(进口);500W 直流电源 2 套(进口)8.样品载台:自转旋转 5-30rpm 可调;加热温度 300℃;可加射频偏压200V 预清洗基片9.真空性能:本底真空优于 6.67x10-5Pa10.控制系统:工控机;触摸屏,菜单自动/手动操作11.安全控制:异常报警12.工艺应用:金属薄膜和介质薄膜沉积13.不均匀性:≤±5%@6 英寸14.设备尺寸:一体型设备;占地面价(参考)1.0m*1.50m。[img=,554,628]https://ng1.17img.cn/bbsfiles/images/2023/10/202310091529103198_4423_5829706_3.png!w554x628.jpg[/img]运行需求:供电需求: 380V、三相五线制;设备总功率需求约为 15KW冷却水:>1.5L/min压缩空气: 0.4~0.6Mpa

  • 真空镀膜机

    最近需要购买一台热蒸发真空镀膜机,请问哪些厂家的比较好用?另外,有谁知道日立公司在北京的代理的联系方式?

  • 真空镀膜机中辅助挡板的作用

    真空镀膜机(DMP450)中有一个辅助挡板,设计的初衷是为了改善镀膜均匀性,但在实际生产过程中,原机辅助挡板并不能最大改善膜厚均匀性。一个半球形工件盘,基片卡槽分三圈排列,相同蒸发功率,相同时间下,相邻两圈的基片膜厚有差异。从理论上来说,如何通过修正挡板改善膜厚一致性和均匀性?

  • 难怪在镀膜上可以看到金颗粒,原来如此

    难怪在镀膜上可以看到金颗粒,原来如此

    如果在镀膜时所用的设备是直流溅射仪或磁控溅射仪而非离子束溅射仪,在放大倍率为几万倍下观察,就会看到镀膜结构。绝大多数用户所使用的离子溅射仪都属于前两种。下面的照片是我对三个文献有关内容的综合。http://ng1.17img.cn/bbsfiles/images/2013/01/201301262045_422846_1609375_3.jpg

  • 如何看镀膜机上的金靶(Target)消耗情况?

    如何看镀膜机上的金靶(Target)消耗情况?

    新接手一台Hummer的镀膜机(用于SEM样品镀金),请教如何判断金靶的消耗情况。我附上图片,请熟悉的同学帮忙指教,多谢了!http://ng1.17img.cn/bbsfiles/images/2011/10/201110130944_323322_1608661_3.jpg

  • 大尺寸材料体积密度计原理、应用及参数规格

    [url=http://www.f-lab.cn/solid-densimeters/ttdm.html][b]大尺寸材料体积密度计[/b][/url]TTDM专业为大尺寸样品材料的[b]体积密度测量[/b]和[b]体积比重测量[/b]而设计的[b]体积比重计[/b],[b]Bulk Densimeter[/b],非常适合粉末冶金行业,贵金属回收行业,铸件,铝铸造厂,橡胶,塑料,硬质合金等领域的材料[b]体积密度测量[/b]。[b][b]大尺寸材料体积密度计[/b]适用于:[/b]粉末冶金行业,贵金属回收行业,铸件,铝铸造厂,橡胶,塑料,硬质合金[b][b]大尺寸材料体积密度计[/b]原理:[/b]根据ASTM D297-93,D792-00,D618,D891,ISO2781,JISK6530,GB / T1033采用阿基米德原理的浮力法,采用沸水法,真空饱和法,可直接显示测量结果。[b][url=http://www.f-lab.cn/solid-densimeters/ttdm.html][b]大尺寸材料体积密度计[/b][/url]技术数据[/b]粉末冶金通过几个步骤形成。首先将合金,氧化物,碳化物和润滑剂等金属的混合粉末放入模具中并在高压下形成。成型后,将这些部件放入用于致密化的烧结炉中。然后产品可以经过一些更多的处理后制作。稀释金属粉末颗粒后,粉末冶金被制成复杂的形状成分。这种方法取代了传统的加工方法。因此,烧结材料密度的测量非常重要。材料的最大重量可达3100g。 [table][tr][td=2,1]型号[/td][td]TTDM 1200L[/td][td]TTDM 2000L[/td][td]TTDM 3000L[/td][/tr][tr][td=2,1]可测范围[/td][td]0.01 g〜 1200 g[/td][td]0.01 g〜 2000 g[/td][td]0.01 g〜 3000 g[/td][/tr][tr][td=2,1]密度分辨率[/td][td=3,1]0.001g / cm[sup] 3[/sup][/td][/tr][tr][td=2,1]水箱内部尺寸[/td][td=3,1]22x18x14(厘米)[/td][/tr][tr][td=2,1]密度范围[/td][td=3,1] 1,1都可以进行测试[/td][/tr][tr][td=2,1]设置[/td][td=3,1]设置水温和溶液补偿,防水油密度设定[/td][/tr][tr][td=1,3]功能[/td][td]程序1[/td][td=3,1]可直接显示粉末冶金产品的体积密度,有效孔隙率,湿密度和体积。[/td][/tr][tr][td]程序2[/td][td=3,1]可直接显示烧结含油轴承的含油量,有效孔隙率。[/td][/tr][tr][td]程序3[/td][td=3,1]可直接显示不渗透产品的密度和体积。[/td][/tr][tr][td=2,1]标准接口[/td][td=3,1]RS-232[/td][/tr][/table] [img=大尺寸材料体积密度计]http://www.f-lab.cn/Upload/solid-densimeters-ttdm.jpg[/img][b]更多密度计比重计:[url]http://www.f-lab.cn/densitometers.html[/url][/b]

  • 【已应助】求助学位论文一篇成功,谢谢灰太狼!

    【序号】: 1【作者】: 光学工程【题名】: 基于ANSYS的(非)平衡磁控溅射镀膜机磁场模拟【期刊】: 优秀研究生学位论文【年、卷、期、起止页码】: 【全文链接】:http://edu.nulog.cn/detail.htm?306178谢谢!

  • 新方法可生产形状尺寸可控的石墨烯量子点

    科技日报 2012年05月19日 星期六 本报讯 (记者张巍巍)据物理学家组织网5月18日(北京时间)报道,美国堪萨斯州立大学的研究人员开发出一种新方法,可生产出大量形状和尺寸可控的石墨烯量子点,这或将为电子学、光电学和电磁学领域带来革命性的变化。相关研究报告发表在近日出版的《自然·通讯》杂志上。 由于边缘状态和量子局限,石墨烯纳米结构(GN)的形状和大小将决定它们的电学、光学、磁性和化学特性。目前自上而下的GN合成方式有平板印刷术、超声化学法、富勒烯开笼和碳纳米管释放等。但这些方法都具有生产率低、形状尺寸不可控、边缘不光滑、无法轻易转移至其他基底或溶解于其他溶剂等问题。 该校化学工程系的维卡斯·贝里教授等科研人员利用钻石刀刃对石墨进行纳米切割,使其变成石墨纳米块,这是形成石墨烯量子点的前提。这些纳米块随后将呈片状脱落形成超小的碳原子片,生成的ID/IG比值介于0.22和0.28之间,粗糙度低于1纳米的石墨烯结构。科研团队通过高分辨率的透射电子显微镜和模拟证明,生成的GN边缘笔直、光滑,而通过控制GN的形状(正方形、长方形、三角形和带状)和尺寸(不超过100纳米),研究人员能够大范围控制石墨烯的特性,使其应用于太阳能电池、电子设备、光学染料、生物标记和复合微粒系统等方面。 贝里表示,新型石墨烯量子点材料在纳米技术领域具有巨大的发展潜力,他们期望能通过此次研究进一步促进石墨烯量子点的发展。 总编辑圈点 石墨烯出现短短几年,产业界已有很多人预言它将成为未来电子业的中坚材料。制造纳米级的石墨烯点以代替硅晶单元,是石墨烯在电子业应用的关键一步,也是现在各国科学家竞相探索的目标。今年年初,美国莱斯大学成功利用碳纤维制造了纳米级的石墨烯圆片,效率比以往大为提高。这次堪萨斯大学实验成功的“石墨纳米切割”方式,进而能够控制石墨烯纳米点的形状,无疑开辟了一条新的技术思路。

  • 国内大尺寸构件超低热膨胀系数测试技术综述

    国内大尺寸构件超低热膨胀系数测试技术综述

    摘要:航天器用各种大尺寸构件都普遍要求超低膨胀系数以保证构件尺寸的稳定性,传统热膨胀系数测试只针对长度100mm以下的小试样,已无法满足大尺寸构件的超低热膨胀系数测量,需要精确测量整个构件的超低热膨胀系数。本文对国内在大尺寸构件热膨胀系数整体测量方面的研究工作进行了综述,以了解国内目前的发展状况,给今后开展此方面工作提供参考和借鉴。1. 前言 在太空运行的各种航天器,由于没有大气层的保护,其环境温度变化很大,受阳面温度可高达上百摄氏度,而被阳面温度却在零下几十摄氏度。因此,航天器在空间环境中,由于材料的热膨胀,会引起航天器结构的尺寸变化。但是从航天器的某些部件和仪器的技术要求考虑,希望航天器的某些结构的稳定性要好,这一点对通讯卫星天线结构及敏感元件、太空望远镜的镜筒支架等的使用和安装尤为重要。尤其是卫星和望远镜桁架结构更要求其在一定的环境温度变化范围内不因热应力产生变形或者变形极小,即所谓零膨胀。传统热膨胀系数测试只针对长度100mm以下的小试样,已无法满足大尺寸构件的超低热膨胀系数测量。为适应航天器制造的要求,特别是对于以m为长度单位的E-08/K量级材料热膨胀系数需要更加准确的测试。因此,研究航天器用复合材料工程构件的超低膨胀测试方法和相应的测试设备,具有重要的科学意义和实用价值。 本文将介绍国内在工程构件级热膨胀系数测试方法和测试设备方面所开展的工作。2. 光纤位移传感器测试方法(1) 针对卫星用低膨胀纤维增强复合材料杆件,上海复合材料科技有限公司与国防科技大学合作开展相应的热膨胀系数测试系统研究,具体的测试要求为: (1)测试件是碳纤维复合材料杆件,杆件形状为圆杆或矩形杆。长度尺寸1m,圆杆直径φ10~80mm,壁厚为2mm左右。矩形杆的截面不超过100mm×100mm,壁厚2mm左右。 (2)能测量在温度范围-70~+100℃的轴向伸缩量,并测量相应温度,从而得出工程试件的热膨胀曲线。测量误差不大于±3%。 (3)试验箱能按要求的程序升温,升温程序可调,并能实时控制。对设定点的温度控制精度优于±1℃,测量精度优于0.5℃。试件周边温度的均匀性优于±2℃。 上海复合材料科技有限公司研制的这套热膨胀测试系统主要由温度控制系统、机械系统、数据采集系统、计算机控制与分析系统四大部分构成。 (1)温度控制系统:采用高低温试验箱,满足温度范围和温度控制要求。 (2)机械系统:包括测试系统的基座、测试基准、试件支架。 (3)数据采集系统:包括光纤位移传感器。 (4)计算机控制与分析系统:主要用于控制整个测试过程,实现测试数据的自动采集、分析、存储与测试结果的显示。 位移采集采用MTI2000光纤位移传感器,其特点是非接触式,最大量程2mm,分辨率为0.25um。MTI2000光纤位移传感器包含一组发射光光纤和一组接收光光纤,如图 2 1所示,发射光光纤和接受光光纤以三种不同方式排列(不规则、半圆心及同心圆形状),卤钨灯提供光源,光传输到光纤中,光纤探头发出的光照射在被测物上,被测物反射回来的光进入接受光光纤并传入到MTI-2000中。http://ng1.17img.cn/bbsfiles/images/2016/10/201610221657_614789_3384_3.png图 2-1 光纤分布示意图 如图 2-2所示,当光纤与被测物接触时,没有光能传输给接收光光纤,输出信号为“零”。随着探头与被测物之间距离的增加,接收光纤接收的光也增加,并且增加的光和距离之间非常敏感,与信号输出也呈很好的线性。随着距离的继续增加,接收光光纤接收到的光达到峰值,如果探头和被测物之间的距离继续增加,接收到的光将会持续减少,结果是具有第二个很灵敏且具有大量程和标准距离的测量范围。 http://ng1.17img.cn/bbsfiles/images/2016/10/201610221657_614790_3384_3.png图 2-2 MTI2000光纤位移传感器输出信号与位移的变化关系 整个测量系统的测量基准利用低膨胀系数材料殷钢制作,测量基准包括殷钢连杆、传感器微调台和殷钢传感器夹具。测量基准至于试验箱外,因醋不受试验箱内温度变化影响,而且整个测量基准能够控制在0.5um/m℃以下。 被测件通过试件支架安装在试验箱内,试件支架包括殷钢V形架、低导率材料升降杆和剪式升降台,被测件水平置于V形架内,由V形架自动定心,从而保证被测件轴心与两个传感器侧头平行。被测件支架通过剪式升降台固定在大理石基础件上,不与试验箱体接触。 剪式升降台能够调整被测件在试验箱内高度,从而保证能够测量不同直径的被测件的热膨胀系数。在温度快速变化的情况下保证箱体和支架对称变形,同时减小支架的质量,以减小其热容,防止测量时受到支架变形影响而产生的缓慢漂移。 文献中并未报道此测试系统的结构,但根据分析可以大概此测试系统为双端面测试结构,即将两路光纤位移传感器对准被测件的两个端面,同时测量两个端面的位移,最终得到整个测试件的热膨胀长度变化。整个测试系统的结构如图2-3所示。http://ng1.17img.cn/bbsfiles/images/2016/10/201610221657_614791_3384_3.png图 2-3 低膨胀纤维增强复合材料杆件热膨胀系数测试系统结构示意图 从文献报道分析这套大尺寸构件热膨胀系数测试系统技术指标和测试结果,可以得出以下初步的结论: (1)位移传感器分辨率为0.25um,那么测量准确度基本也就在1um左右,这个测量准确度基本与千分表相同,所能测试的热膨胀系数最小也就在1E-06/K左右,还无法测试-7量级甚至-8量级的零膨胀系数材料。而目前的2m长构件热膨胀系数可以达到5E-08/K水平,由此可见采用这种测试方法无法满足目前零膨胀构件的测试需求。 (2)采用光纤式位移传感器所进行的位移测量,是一种相对测试方法,实际测量精度还需要采用更高级别仪器进行计量标定才能保证热膨胀系数测量准确性。 (3)采用已知热膨胀系数的铝材Ly12CZ(淬火状态)制成的测试件进行测量精度考核,测试件直径为φ20mm,常温下长度1m,壁厚为2.5的管型材。在-50?20℃测试温度范围内,测定的平均热膨胀系数为19.9E-6/K,20~100℃测试温度范围内,测定的平均热膨胀系数为21.4E-6/K。文中得出的结论是对于这种E-06/K量级的热膨胀系数测试偏差在7%以内。由此试验证明这套大尺寸只能测试E-06/K量级的热膨胀系数。 (4)文中报道了对直径?20mm、壁厚2mm、长度为1m的碳纤维复合材料圆杆热膨胀系数测试结果,测试温度范围为10~30℃。测试结果显示热膨胀长度变化量为-17.47um,线膨胀系数为-0.87E-06/K。文中仅报道了两次重复性测量,两次重复行测量重复精度为1.3%。由此可见这种碳纤维复合材料圆杆热膨胀系数很大,距离所需要的零膨胀系数差距很大。 (5)从文中报道可以看出,整个测试是以殷钢基座为基准,理论上这个测量基准能够控制在0.5um/m℃以下。但考虑到伸入试验箱内光纤长度的变化,以及并未采用同侧差分测量抵消光纤长度的技术手段,很大可能会出现碳纤维复合材料圆杆实际热膨胀系数很小,但此套装置并不能准确测试,测试结果反而是此装置的系统误差,即碳纤维复合材料圆杆很小的热膨胀以及完全淹没在测试系统误差内。 (6)尽管文中报道的碳纤维复合材料圆杆热膨胀系数测试结果在-0.87E-06/K左右,这表现出碳纤维复合材料圆杆生产工艺还未能实现整体圆杆的零膨胀,更表现出测试方法自身精度完全无法达到零膨胀测试需要,但这是目前国内对大尺寸管件低膨胀测试的首次尝试,尽管不成功但意义非常重大。从对1m长的圆杆测试结果可以看出,在10?30℃温度范围内,圆杆收缩了17.47um。那么如果采用取样方式进行热膨胀测试,取样尺寸如果为100mm,那么100mm小试样的受热收缩也仅仅为1.7um左右。对于这种不到2um的热膨胀,采用目前常规的热膨胀仪器都无法进行测量。文中所报道的1m长碳纤维复合材料圆杆热膨胀系数测试恰恰证明了低膨胀构件整体热膨胀系数测试的必要性,这点在超低热膨胀系数构件中显得更为突出。[color=#ff000

  • 菜鸟求大神教薄膜应力的测试方法

    最近踩有磁控溅射镀铜,想分析薄膜的参与应力,采用Jade6.5测试了微观应力及晶粒尺寸,选择黄继武老师教材里面建议的用两组平行的晶面作拟合后计算,但是方差很大,显然结果不对,现在心里很没底,想请教下有没有大牛做过这方面的工作,我看到有些大牛采用其他的仪器测试的薄膜应力,甚至还有三位的图出来,都是怎么测怎么算的啊?

  • 【原创大赛】薄膜的物理气相沉积——溅射法

    【原创大赛】薄膜的物理气相沉积——溅射法

    溅射制膜的过程:气体辉光放电、等离子体、靶、溅射、沉积到衬底(一)与蒸发法相比,溅射沉积的主要特点:①沉积原子能量高,因此薄膜的组织更致密,附着力也可以得到明显改善;②制备合金膜时,其成分的控制性能好;③靶材可以是极难熔的材料;④可利用反应溅射技术,从金属无素靶材制备化合物薄膜;⑤由于被沉积的原子均携带有一定的能量,因而有助于改善薄膜对于复杂形状表面的覆盖能力,降低薄膜表面的粗糙度。http://ng1.17img.cn/bbsfiles/images/2015/07/201507151100_555534_2989334_3.jpghttp://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif(二)溅射沉积分类主要的溅射方式可以根据其特征分为四种:(1)直流溅射;(2)射频溅射;(3)磁控溅射;(4)反应溅射。http://ng1.17img.cn/bbsfiles/images/2015/07/201507151102_555536_2989334_3.jpg图1 不同溅射方法的靶电流密度和靶电压的比较http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif(1)直流溅射直流溅射又称为阴极溅射或二极溅射图2直流溅射沉积装置示意图,其典型的溅射条件为:工作气压10Pa,溅射电压3000V,靶电流密度0.5mA/cm2,薄膜的沉积速率低于0.1μm/min直流溅射过程中常用Ar作为工作气体。工作气压是一个重要参数,它对溅射速率以及薄膜的质量都有很大影响直流溅射设备的优点和缺点:优点:简单缺点:使用的气体压力高,溅射速率较低,这不利于减小气氛中的杂质对薄膜的污染以及溅射效率的提高。http://ng1.17img.cn/bbsfiles/images/2015/07/201507151105_555538_2989334_3.jpg图2直流溅射沉积装置示意图http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif(2 )射频溅射直流溅射要求靶材有较好的导电性,可以很大方便地沉积各类合金膜。对于导电性很差的非金属材料的溅射,我们需要一种新的溅射方法—射频溅射。射频溅射是适于各种金属和非金属材料的一种溅射沉积方法射频场对于靶材的自偏压效应。在衬底或薄膜本身是绝缘体的情况下,采取对其施加一个射频电压的方法,也可以起到对其施加负偏压的作用。(3)磁控溅射相对于蒸发沉积来说,一般的溅射沉积方法具有两个缺点。第一,溅射方法沉积薄膜的沉积速度较低;第二,溅射所需的工作气压较高 这两个缺点的综合效果是气体分子对薄膜产生污染的可能性较高。而磁控溅射技术:沉积速度较高,工作气体压力较低。工作原理:磁场对电弧运动有一定的约束作用(绕磁场螺旋前进);(1)电子的电离效率高,有效提高了靶电流密度和溅射效率,(2)较低气压下溅射原子被气体分子散射的几率较小(三)气体放电是离子溅射过程的基础(1)首先介绍直流电场作用下的物质的溅射现象预抽真空,充入适当压力的惰性气体,如Ar气,10-1~10Pa;在正负电极间外加电压的作用下,电极间的气体原子将被大量电离;Ar—→Ar++e,Ar+被电场加速后射向靶材,撞击出靶材原子(分子),靶材原子脱离靶时仍具有一定能量,飞向衬底,电子被电场加速飞向阳极;http://ng1.17img.cn/bbsfiles/images/2015/07/201507151107_555542_2989334_3.jpg图3直流气体放电体系模型及伏安特性曲线http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif电压进一步增大,发生极板两端电压突然降低,电流突然增大,并同时出现带有颜色的辉光,此过程称为气体的击穿;击穿后气体的发光放电称为辉光放电;这时电子和正离子是来源于电子的碰撞和正离子的轰击,即使自然游离源不存大,放电也将继续下去。而且维持辉光放电的电压较低,且不变,此时电流的增大显然与电压无关,而只与阴极板上产生辉光的表面积有关;正常辉光放电的电流密度与阴极材料和形状、气体种类和压强有关;由于正常辉光放电时的电流密度仍比较小,所以在溅射方面均是选择在非正常辉光放电区工作。http://ng1.17img.cn/bbsfiles/images/2015/07/201507151110_555543_2989334_3.jpg图4示意性地画出了在离子轰击条件下,固体表面可能发生的物理过程http://ng1.17img.cn/bbsfiles/images/2015/07/201507151111_555544_2989334_3.jpg图5所示,不同能量离子与固体表面相互作用的过程不同当离子入射到靶材上时,对于溅射过程来说,比较重要的过程有两个:其一是物质的溅射;其二是二次电子发射:二次发射电子在电场作用下获得能量,进而参与气体分子的碰撞,并维持气体的辉光放电过程。http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gifhttp://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif (四)合金的溅射和沉积用溅射法沉积合金膜,比蒸发法易于保证薄膜的化学配比;溅射过程中入射离子与靶材之间有很大的能量传递。因此,溅射出的原子将从溅射过程中获得很大的动能,其数值一般可以达到5~20eV;一方面,溅射原子具有很宽的能量分布范围,其平均能量约为10eV左右;另一方面,随着入射离子能量的增加,溅射离子的平均能量也有上升的趋势;溅射过程还会产生很少的溅射离子,它们具有比溅射出来的原子更高的能量。能量较低的溅射离子不易逃脱靶表面的鞘层电位的束缚,将被靶表面所俘获而不能脱离靶材;由蒸发法获得的原子动能一般只有0.1eV,两者相差两个数量级;在溅射沉积中,高能量的原子对于衬底的撞击一方面提高了原子自身在薄膜表面的扩散能力,另一方面也会引起衬底温度的升高。

  • 无菌实验室玻璃隔断抗菌镀膜处理技术

    生物实验室、无菌间、重症监护病房装修会大量采用12MM厚钢化玻璃,未经特殊处理的钢化玻璃表面富含羟基,易于吸附水汽和有机物,成为微生物落脚生根繁殖的温床,这给保持无菌环境带来了不利影响。现有厂家专门生产的药物释放型抗菌玻璃,在机械强度、成本、制造工艺上无法代替建筑用厚钢化玻璃,因此对现有建筑用钢化玻璃进行表面特殊处理,使之获得一定程度的长效抗菌抑菌特性,是现有经济条件下的唯一选择。  ****Hanxion HK-2型玻璃抗菌抑菌玻璃镀膜液,能够在玻璃表面形成一层化学镀膜层,它是由特殊分子结构的有机聚合物organic polymer形成的网状结构,和玻璃表面的硅羟基silanophilic interaction牢固键接,在微观尺度上形成一种特殊的空间结构,这种结构对微生物具有强烈的致死作用,细菌、霉菌无法在这样的微观环境下生长、繁殖。经过镀膜液处理过后的玻璃,具有长时间稳定的抑菌、抗菌、防霉的性能,可以降低生物、医疗环境中各类玻璃表面上粘附的细菌、霉菌密度,更好的保持医用环境的洁净,降低清洁成本。可以有效抑制细菌的繁殖、生长,有效杀死与镀膜层直接接触的细菌、霉菌镀膜层厚度大约在十几个到几十个纳米之间,具有良好的光学性能,完全不影响玻璃的光线通透。和玻璃表面硅羟基发生化学键接,具有极佳的耐磨性,牢固度。能耐受各种洗涤剂、有机溶剂、强酸、弱碱的腐蚀;耐受正常的手指皮肤、纸巾、织物的反复擦拭而不脱落,可以长时间发挥抑菌、抗菌功能。可以使玻璃获得很强的疏水特性,保持玻璃干燥,无水汽吸附镀膜层完全不含有重金属银、铅、汞、镉、砷这几种成分,也不含有任何氟化物fluoride,不向外界释放抗生素物质和其它物质,完全无毒,具有极好的生物安全性。化学镀膜工艺简单,无需昂贵真空镀膜机,可以批量化规模化生产。适用于各类玻璃

  • 测TSS的全玻璃微孔滤膜过滤器尺寸

    按国标GB/T11901-89测定水中悬浮物时,全玻璃微孔滤膜过滤器尺寸没有描述,只规定CN-CA滤膜直径是60mm,请问各位大虾购买这套过滤器时应买多大尺寸的,如滤头直径,砂芯部位直径等?有好的推荐吗?

  • 航天器用大尺寸构件超低热膨胀系数测试技术综述

    航天器用大尺寸构件超低热膨胀系数测试技术综述

    摘要:航天器用各种大尺寸构件都普遍要求超低膨胀系数以保证构件尺寸的稳定性,传统热膨胀系数测试只针对长度100mm以下的小试样,已无法满足大尺寸构件的超低热膨胀系数测量,需要精确测量整个构件的超低热膨胀系数。本文对国外在大尺寸构件热膨胀系数整体测量方面的研究工作进行了综述,以了解国外技术的发展状况,给今后开展此方面工作提供参考和借鉴。1. 前言 在太空运行的各种航天器,由于没有大气层的保护,其环境温度变化很大,受阳面温度可高达上百摄氏度,而被阳面温度却在零下几十摄氏度。因此,航天器在空间环境中,由于材料的热膨胀,会引起航天器结构的尺寸变化。但是从航天器的某些部件和仪器的技术要求考虑,希望航天器的某些结构的稳定性要好,这一点对通讯卫星天线结构及敏感元件、太空望远镜的镜筒支架等的使用和安装尤为重要。尤其是卫星和望远镜桁架结构更要求其在一定的环境温度变化范围内不因热应力产生变形或者变形极小,即所谓零膨胀。 传统热膨胀系数测试只针对长度100mm以下的小试样,已无法满足大尺寸构件的超低热膨胀系数测量。为适应航天器制造的要求,特别是对于以m为长度单位的E-08/K量级材料热膨胀系数需要更加准确的测试。因此,研究航天器用复合材料工程构件的超低膨胀测试方法和相应的测试设备,具有重要的科学意义和实用价值。 本文将介绍国外在工程构件级热膨胀系数测试方法和测试设备方面所开展的工作。2. 波音公司激光扫描干涉仪在大尺寸桁架热变形测试中的应用 美国波音公司的Bond等人在1971年首次报道了多通道激光干涉仪监测大直径天线在空间模拟腔体内的热应变动态行为和大尺寸桁架热膨胀系数的测试,经过将近20年的研究并经历了三代技术的迭代,在1990年研发出扫描式激光干涉仪并在工程中得到应用。有关波音公司在多通道激光干涉仪技术上的发展进程参见文献,这里不再进行详细介绍,本文主要概述波音公司扫描式激光干涉仪在大尺寸构件热膨胀系数测试中的应用。 美国波音公司多通道激光干涉仪技术经历了三代技术发展,尽管可以实现多通道的测试,但每个通道都需要独立的光路和相应光学器件,特别在多通道同时测试时会存在众多光束和配置众多器件,这种光路和器件上的复杂性给实际工程实现带来很大困难。为此,Bond等人又开发了一种扫描式激光干涉仪并获得了专利。 扫描式激光干涉仪在理想情况下,扫描干涉仪应包含连续激光源、将激光分离为参考光和信号光的分光器以及由信号控制的信号光偏光器。所产生的控制信号致使大多数偏转信号光具有连续性,从而使得每一束偏转的信号光都指向相应的测量位置。在每个测量位置处将会对入射的偏转后的信号光进行反射从而形成反射信号光。每一束反射后的信号光与参考光重合产生干涉条纹,光电探测器读取干涉条纹形成相应的条纹信号,信号处理装置对每一束偏转信号光的条纹信号进行周期性测量,最终得出每个测量位置上位移。 一般情况下,每束反射光将会产生9条反射后的信号光束,其中包含了相应测量位置点的位置和取向信息。混合光则将每一束反射后信号光与参考光进行混合并产生一个干涉条纹图案,探测装置包含了9个光电探测器来测量相应干涉图案中相应点的辐照度并产生相应的条纹信号,信号处理器则会周期性的测量每个条纹信号的相移,从而得到测量位置处的位移变化量。如果进一步的发展,干涉仪可以设法在相应的第一和第二频率处对信号光和参考光进行调制,信号处理后所得到的参考信号的频率等于第一和第二频率之差。 这种扫描式激光干涉仪的光路俯视图如图 2-1所示,这种扫描式激光干涉仪的光路设计可以用来对放置在密闭环境12中试件10的热变形进行测量,特别是这种干涉仪测试光路设计还适合用于测量试件10上21-24位置处的相对位移,由此可见这种干涉仪可以很方便的扩展用于测量10个以上位置的相对位移。http://ng1.17img.cn/bbsfiles/images/2016/10/201610311050_615393_0_3.png图 2-1 波音公司激光扫描干涉仪光路结构示意图 激光器30发出一连续激光束32,激光束32穿过旋转偏振器34形成新的光束36,光束36穿过偏振光分光器38被分割为参考光束40和信号光束42。采用旋转偏振器34的目的是实现参考光和信号光相对光强的调整而不用对光学器件进行重新准直。参考光束40经过声光调制器(AOM)50形成调制后的参考光束52,参考光束52经过一系列反射镜54-56照射到声光偏转器(AOD)90。 同时,信号光束42经过声光调制器(AOM)60形成调制后的信号光束62,信号光束62穿过中继透镜照射到半波片66,半波片66改变信号光束62为水平偏振光以匹配参考光束的偏振方向。改变为水平偏振方向的信号光62经过中继反射镜68和70进入过滤/合成器80。过滤/合成器80包含一个作为空间过滤器或光束清洁器使得信号光空间连续性更好作用的椭圆微型反射镜。经过空间过滤后的信号光62经微型反射镜反射后通过透镜84和反射镜86照射到声光偏转器(AOD)90。 声光偏转器(AOD)90经信号控制将信号光62在水平面内偏转成四束信号光束91-94,同时声光偏转器(AOD)90还将参考光52偏转为四束参考光96-99。虽然偏转后的参考光束与偏转后的信号光都偏转了相同角度,但由于反射镜56略微处于反射镜86上方使得偏转后的信号光与参考光并未重叠,如图 2-2所示,因此偏转后的参考光束96-99全部照射在球面反射镜100上并全部按照原光路全部返回AOD 90中。AOD 90将这些反射回的参考光全部转换为一单数参考光72。球面镜100的取向确定需要使得反射回的参考光72位置略微高于经反射镜56反射的入射过来的参考光52。参考光72经过中继反射镜74和76的反射进入并透过透镜组78进入滤波/合成器80。在这种光路安排中,参考光两次通过AOD 90以便补偿信号光在AOD中的频率漂移。http://ng1.17img.cn/bbsfiles/images/2016/10/201610311050_615394_0_3.png图 2-2 声光偏转器光路示意图 偏转的信号光束91-94经过球面反射镜100上方照射到中继反射镜111-114上,通过这些中继反射镜,偏转后的信号光束91-94分别依次指向试件10上的21-24位置所对应的测量结构件121-124。偏转后的信号光束91经反射镜111、反射镜130、透镜组132、反射镜134和反射镜136照射到测量结构件121处。采用同样方式,偏转后的信号光束92经过反射镜112、反射镜138、透镜组140和反射镜142照射到测量结构件122处。偏转后的信号光束93经过反射镜113、透镜组144、反射镜146和反射镜148照射到测量结构件123处。最终,偏转后的信号光束94经过反射镜114、透镜组150、反射镜152和反射镜154照射到测试结构件124处。这样每个测量结构件中121-124处都会接收到一束偏转后的信号光,由此共产生9束偏转后的信号光,这9束信号光将按照原光路返回到AOD 90中。这9束由测量结构件121-124产生的偏转后的信号光分别被指定编号为101-104。AOD 90将产生9束偏转后信号光束经反射镜86反射后形成一组信号光116并通过透镜组84进入滤波/合成器80,并在滤波/合成器80中的微型反射镜上形成9束信号光束的衍射图案,此衍射图案要原大于微型反射镜,由此微型反射镜使得偏转信号光的光学损失较低。滤波/合成器80通过透镜组84接收了9束偏转后的信号光束,滤波/合成器80将每束偏转后的信号光与通过透镜组78接收到反射后的参考光束72进行汇合,每束汇合后的信号和参考光束入射到9只光电探测器阵列118中的一只光电探测器上。每束信号和参考光的汇合都会产生一个干涉图案,相应的光电探测器测量干涉图案中辐照度得到相应的条纹电子信号。如果参考光和信号光的光程发生变化,则会引起干涉图案位置偏移,从而产生随时间变化的条纹电子信号,由此可以检测试件10的位移变化。http://ng1.17img.cn/bbsfiles/images/2016/10/201610311050_615395_0_3.png图 2-3 测量结构件结构示意图 测量结构件如123的结构如图 2-3所示,主要包括准直器160、参考结构162和测试板164。准直器160和参考结构162

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制