当前位置: 仪器信息网 > 行业主题 > >

磁热效应直接测量测仪

仪器信息网磁热效应直接测量测仪专题为您提供2024年最新磁热效应直接测量测仪价格报价、厂家品牌的相关信息, 包括磁热效应直接测量测仪参数、型号等,不管是国产,还是进口品牌的磁热效应直接测量测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合磁热效应直接测量测仪相关的耗材配件、试剂标物,还有磁热效应直接测量测仪相关的最新资讯、资料,以及磁热效应直接测量测仪相关的解决方案。

磁热效应直接测量测仪相关的论坛

  • netzsch 404c DSC 测量5083 h22铝合金的recovery 和recrystallisation的热效应

    netzsch 404c DSC 测量5083 h22铝合金的recovery 和recrystallisation的热效应

    用netzsch 404c DSC 测量5083 h22铝合金的recovery 和recrystallisation的热效应样品以annealed 5083作为参考,经过 两个run(不打开chamber)http://ng1.17img.cn/bbsfiles/images/2011/11/201111141816_330460_1148667_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/11/201111141815_330459_1148667_3.jpg有几个小问题:1.为什么第一个run在第二个run的下面(出了有明显热效应的部分)2.after substraction 之后,基线怎么不在0的位置(似乎和第一问题重合),呵呵3.recovery 和recrystallisation的热效应一般是多大啊,在实验中怎么这么不明显谢谢大家的赐教,对这个东西实在是理解不了,谢谢

  • 【讨论】- 微波的热效应和非热效应

    微波能促进化学反应的机理,大都从微波的热效应和非热效应来解释。热效应仅指微波能引起极性分子震动,从而高效率的加热,促进化学反应的进行;非热效应是有些研究者认为,仅仅从高效率加热来解释微波能促进化学反应不合适,还有非加热方式的因素在起作用。 如果有非热效应存在,那么微波加热食品时,会不会让食品产生化学变化,生成一些对人体有害的物质? 大家是怎样认为的呢?

  • 【资料】-微波加快化学反应中非热效应研究的新进展

    [i]自然科学进展;2006,16(3):273-279[/i][b]微波加快化学反应中非热效应研究的新进展[/b][b]黄卡玛,杨晓庆[/b]摘 要:微波已经被广泛应用于加快化学反应。然而,微波加快化学反应所产生的特殊效应,特别是非热效应仍是人们争论的焦点。文中介绍了近年来微波加快化学反应中产生的非热效应、机理分析及实验方法等方面的研究进展。关键词:微波化学反应非热效应特殊效应由于微波独特的选择性加热方式和化学反应速率对温度的敏感性,人们自然联想到降微波应用于加快化学反应以提高反应速率。近年采大量的实验已证实微波可以极大地提高一些化学反应的反应速率,使一些通常条件下不易发主的反应迅速进行,微波现已被广泛应用于从无机反应到有机反应,从医药化工到食品化工,从简单分子反应到复杂生命过程的各个化学领域。近年来,当人们用微波加快化学反应时,发现了许多有别于传统加热的特殊效应,例如:1990年Rose将反应物放在装有冰水混合物的烧杯中以确保恒温,在这样的条件下,他们获得了与相同温度下传统加热方法不一样的结果 Bogdal等在1998年研究不同的有机合成实验中观察到微波加热与传统加热有不同的反应速率 Agrawal等2004年报道了材料烧结过程中发现在腔体中电场最大处和磁场最大处产生了不同的结果 2004年Barnhardt等发现很多在低温条件下不能进行的化学反应,在同样温度条件的微波辐射下可以进进行。这些与传统加热不同的效应引起了人们的关注。2004年在武汉召开的第五届全国微波化学会议,2004年在日本高松举行的微波化学会议、2005年在美国奥兰多举行的第三届世界微波化学大会上微波对化学反应的特殊效应都有专门报道。2004年在奥地利的格拉茨还专门举行了针对微波加热化学反应特殊效应的圆桌会议。 在这些特殊效应中,有一些特殊效应可以用微波的快速加热和选择性加热来解释,如过热现象。很多实验表明在微波加热下各种溶剂的沸点都有不同程度的提高。这是因为微波加热方式造成的。传统加热中,外部靠近热源的容器壁最先热起来,而那里是最容易形成气化核,当其饱和蒸气压等于液体上方气体压强时,溶剂就沸腾了,而微波加热因为是一种选择性的内加热,在内部温度较高的地方缺乏汽化核,致使液体内部因缺乏汽化核而加热到传统沸点时仍不能沸腾。再如热点现象,也是因为微波加热方式造成的。一般说来,热点形成可能由于下面3个原因:(1)具有不同介电损耗的材料的非均匀分布 (2)非均匀分布的微波场 (3)反应物内存在不同的热传导速率。美国宾州大学的Agrawal小组已经成功的观测到了在铁氧体去结晶过程中的热点,其热梯度为2000-4000℃ /mm,该热点持续了31s。还有热失控现象,在微波加热过程中随着温度上升有些物质的介电损耗也随温度增加,这便形成了一个正反馈,导致温度迅速上升将反应物烧毁。在微波加热食品、橡胶和陶瓷中已经报道有热失控现象发生。反之,有些特殊效应不能用温度的变化解释,例如前面所提到的微波低温反应等。而这些难以用温度变化和特殊温度分布来解释的现象就是人们所说的“非热效应”。很多文献中把特殊效应与非热效应等同起来,其实非热效应和特殊效应有本质差别。特殊效应是微波所特有的效应,两者区别在于特殊效应并不排除与温度的相关性。非热效应应该属于特殊效应的一种,它是无法用温度变化来解释的特殊现象。而可以用温度变化解释的特殊效应是热效应。 是否存在非热效应?这个问题一直没有定论,并且微波加快化学反应中的非热效应起源于微波对经典的Arrhenius公式中指前因子和活化能影响的争论,而这两项也正好与化学反应系统中的墒和焙相联系,那么,问题本身就在于对微波不以热的方式对化学反应系统的嫡和烙的影响上。其中Stuerga等反对存在非热效应,而Loupy等则认为存在非热效应。[color=red]最后有全文的下载[/color]

  • 关于玻璃化转变过程到底有没有热效应?

    1.看了很多版本的高分子物理,有的说玻璃化转变没有热效应,比如复旦大学何曼君教授的1.6所述。但是其为二级转变。二级转变为在发生相变时,体积不变化的情况下,也不伴随热量的吸收和释放,只是热容量、热膨胀系数和等温压缩系数等的物理量发生变化。那么这么一说,我们平时DSC检测TG也就说的通了。 2.有些文献里却说玻璃化转变是有热效应的。3.对于玻璃化转变,存在很大的理论分歧,比较经典的有三个:1.自由体积论2.热力学3.动力学。咱们接触的DSC分析TG的依据就是第一个观点。到底应该相信哪一个呢?相信很多使用DSC的都这么疑惑过,但是深究的有几个?大家再次拍砖吧。

  • 【求助】nicolet-6700-远红外时的热效应是啥意思?

    [size=3][size=1][color=#00008B][size=4][size=2][font=黑体]用远红外波段测试时,开启仪器,干涉图要过很久才能出来,开始显示的检测器信号都很弱,问工程师,他说是热效应的原因,有谁能具体解释说明下么?谢谢啦。。。。[/font][/size][/size][/color][/size][/size]

  • 【分享】电磁辐射(EMF)健康影响和测量技术及方法综述

    一、电磁辐射(EMF)项目背景介绍 随着技术革命的更新和不同波段新的应用的不断发现,许多频率电磁辐射(EMF)的暴露水平显著增加,生活中的每个人都处在0-300GHz频率的复合电磁场(EMF)暴露中,电磁污染(EMF)已成为最广泛的环境影响因素之一。电磁污染的主要来源有:各种输变电系统;运输系统、长途通讯设施和便携式通讯工具如移动电话;医药、商业和工业设备;雷达;电台和电视台发射天线等。随着对电磁场(EMF)暴露会引起各种健康问题担忧的增加,1996年世界卫生组织(WHO)设立了国际电磁辐射(EMF)项目以寻求解决问题的方法。由于对电磁辐射所造成的健康危害的不同理解,不同国家所制定的电磁辐射标准有很大的差异。其中,俄罗斯、中国、意大利、比利时等国家在制定标准时考虑了电磁辐射对人体的神经效应方面的影响,标准限值较严厉,美国、澳大利亚、德国等国在制定标准时采用了国际非电离协会(ICNIRP)的推荐标准,没有考虑电磁辐射对人体的神经效应方面的影响,而只是考虑已有明确研究结果的热效应,标准限值较宽松,将来仍然有进一步提高标准限值的可能。二、电磁辐射(EMF)的环境影响由于电磁辐射对环境所造成的影响主要有两方面,一是对人类健康的影响,二是对各种电气设备的影响,因此在考虑电磁辐射的环境影响时将从两个方面入手。如图示:1.电磁辐射对人类健康的影响在评价电磁辐射生物效应的不良健康后果时,应该区分相互作用、生物效应和健康危害这几个概念:o 相互作用是由电感和电容的耦合或力作用于带电颗粒引起的,可能导致微小的身体变化。o 生物效应是可被检测的分子水平以上的功能或结构改变,生理性变化可能或无法被衡量。活的生物体在生命过程中对许多刺激产生反应,这种反应便是一种生物效应。 o 在人体生理正常代偿范围内以及尚未损害人的身体与精神健康的生物效应不能视为危害性效应。o 相互作用所导致的生物效应若超出了人体生理正常代偿范围,则构成真正的或潜在的健康危害。o 生物效应若有损于个体行使正常功能或从刺激中恢复的能力,应视为健康危害。o 经过证实(即,以科学的态度进行的研究、结果有显著性意义、直接的因果关系)的主观感觉,若对个体的身体和精神健康造成损害,应视为健康危害。1.1 电磁辐射不良健康效应电磁辐射对人体的健康影响主要有两方面:躯体热效应和神经效应。根据频率的不同电磁辐射对体的影响有所不同,一般而言低频电磁辐射对人体的影响以神经效应为主,高频电磁辐射对体的影响以热效应为主。如图一示:图一、电磁辐射对人体的健康影响示意图 神经效应 热效应 低频 高频 静态场的健康效应对静电场生物效应的实验研究为数不多,没有证据表明其对人体健康产生不良影响。对大多数人而言,能感觉到的体表带电对身体表面有直接作用,在暴露的静电场强度小于25kV/m时不会发生这种情况。也没有直接的证据表明暴露于高至2T的静磁场会对人体造成任何急性不良影响。对已证实的相互作用机制进行的分析表明,长期暴露于200mT的磁通量密度不会对健康产生任何不良影响。频率低于100 kHz的时变场的健康效应。感应电流密度为10mA/m2或低于10mA/m2时,没有发现低频场能产生明确的不良效应。感应电流密度较高(10-100 mA/m2)时,明显的组织效应,如神经系统的功能变化。感应电流密度高于100达到数百mA/m2时,超过神经元和神经肌肉的刺激阈值。只有少数实验研究显示工频磁场有促癌作用。由于缺乏实验研究的支持,有关暴露ELF场癌症危险度的流行病学数据尚不足以提出暴露限值的推荐值。频率为100KHz-300GHz场的健康效应比吸收率(SAR)为4W/kg的电磁辐射场中约30分钟,体温上升约1℃。比吸收率(SAR)大于4W/kg,超过人体的热调节能力,组织发热会达到有害程度。以上数据为职业暴露限值定为0.4W/kg奠定了基础,这一限值可使在其它极端条件下(如高温、潮湿或体力劳动强度)工作的人们得到充分的安全保证。高频EMFs造成在磁场中接触金属物件的人受电击和灼伤,是间接不良效应。在此频率范围内低电磁辐射强度对人体的神经效应由于缺乏足够的实验支持和大量的流行病学调查研究,因此在国际标准制定时没有考虑该因素,但对标准限值的修改留出了修改的余地。简单事例:日常生活的例子是微波炉加热食物(但加热对象不是人体,不叫热效应),手机使用时间长了以后,头面部会发热。射频场才有热效应,工频场不能致热。遗传学效应(尚无定论)关于微波能否造成遗传损伤的问题,报道不尽相同。由于国内外对微波遗传学效应的研究在暴露频率、功率密度和研究指标等方面较为局限,人群资料较少,因此对于长期微波暴露能否引起遗传损伤,尚有待于进一步研究证实。1.2 电磁干扰--对各种电气设备的影响由于各种设备所辐射的杂散信号在空间中传播,会对其他设备的有用信号造成干扰,如:广播混频,电视声、图干扰,电话杂音(由于非线性器件有检波能力)。心脏起搏器停止,飞机导航失控,炸弹引炸,仪器失灵。电磁场使金属带电,电火花导致燃油起火。工频磁场对阴极射线管电子束的偏移,引起电视、电脑图像抖动。

  • 新技术可直接测量电子速度

    据美国物理学家组织网3月1日(北京时间)报道,美国物理学家表示,他们探索出了一种探测电流的新方法。这一方法基于二次谐波产生的过程,就像一个能远程监控电子速度的“雷达测速仪”一样,能直接“看”到电子的运动并测出电子的速度。相关研究论文发表在《物理评论快报》杂志上。美国堪萨斯大学的物理学助教赵辉(音译)和教授朱迪·吴等人在超快激光实验室进行了这项实验。他们发现,高能激光器发出的光照射在一种包含有移动电子的材料上时,会产生不同颜色的光。在实验中,他们仔细研究了纤薄的砷化镓晶体材料,该材料广泛应用于高速电子学和高速光子学。通过朝整块晶体施加电压,他们让电子以特定的速度在晶体内流动。用人眼看不见的红外激光脉冲照射该晶体,会产生人眼可见的红光,这正是二次谐波产生过程出现的信号。他们还发现,红光的亮度与电子的速度成比例,也就是说电子运动速度越快,红光越亮;而当电子没有直接运动时,没有红光出现。赵辉表示:“通过探测红光,我们能精确测量电子的速度,电子不需要同其他样本接触;我们也不会干扰电子的活动。在此项研究之前,现有探测实验技术都基于电流有三个效应:它能为系统充电、改变系统的温度并产生磁场。而科学家最新发现,电流还具有光子效应,这种使用激光研究电流的新方法完全基于这一最新效应。”研究人员表示,新方法有望改善现今的很多可再生能源技术,诸如太阳能电池、人工光合作用以及水分解等,因为这些技术都依靠对电流进行探测。而且,能更好“阅读”电子运动的传感器可能会成为下一代手机和计算机的基础。

  • 太阳光辐照度计可见光强度测量

    太阳光辐照度计可见光强度测量

    太阳光辐照度计可见光强度测量太阳辐射强度的测量一般采用太阳光辐照度计。太阳光辐照度计是通过观测可以直接读取以Cal/cm2.min为单位的太阳辐射强度的仪表。太阳光辐照度计是通过观测得到电压、电流和其它参数值,然后用一定的换算系数通过计算,可以得到相应的以Cal/cm2.min为单位的太阳辐射强度的仪表。在使用太阳光辐照度计时,必须通过直接或间接的对日射表比较、标定后,才能获得所要测量的值。太阳辐射对电子电工产品有两种有害的作用,即太阳辐射的热效应和太阳辐射的光化学效应。[img=太阳光辐照度计,400,400]https://ng1.17img.cn/bbsfiles/images/2022/09/202209060917109625_698_4136176_3.jpg!w690x690.jpg[/img]太阳辐射的热效应可以引起电子电工产品的热老化、氧化、裂痕、化学反应、软化、融解、升华、粘性降低、蒸发和膨胀等。太阳辐射引起的温度或局部过热,会导致产品的膨胀或润滑性能降低,机械失灵,机械应力增大以及活动部件之间的磨损加剧等。太阳辐射的光化学效应将会导致涂料、油漆、塑料、千维和橡胶等的变形、褪色、失去光泽、粉化和开裂等损坏。太阳辐射试验的目的是为了确定地面上或较低大气层中使用或储存的电子电工产品受太阳辐射所引起的热效应、光化学效应以及对产品的机械性能和电性能的影响。[img=太阳光辐照度计,400,400]https://ng1.17img.cn/bbsfiles/images/2022/09/202209060917329781_5681_4136176_3.jpg!w690x690.jpg[/img]

  • 【讨论】测量时关于金属的记忆效应

    做rohs检测pb,cd。Y做内标。发现Pb的记忆效应比较大 打标准曲线的时候 ,中途用水洗和用酸洗,测量出来的pb值差10%。此外,Y的值也会大幅度下降。不知道各位有没有这样的情况出现?

  • 【资料】电磁辐射危害

    电磁辐射危害  1、电磁辐射危害人体的机理  电磁辐射危害人体的机理主要是热效应、非热效应和累积效应等。  1.1 热效应:人体70%以上是水,水分子受到电磁波辐射后相互摩擦,引起机体升温,从而影响到体内器官的正常工作。产生热效就应的电磁波功率密度在10mW/cm2;微观致热效应1 mW - mW/cm2;浅致热效应在10mW/cm2以下。热效应可造成人体组织或器官不可恢复的伤害,如:眼睛产生白内障、男性不育:当功率为1000W的微波直接照射人时,可在几秒内致人死亡。  1.2 非热效应:人体的器官和组织都存在微弱的电磁场,它们是稳定和有序的,一旦受到外界电磁场的干扰,处于平衡状态的微弱电磁场即将对人体的非热效应体现在以下几个方面:  神经系统:人体反复受到电磁辐射后,中枢神经系统及其它方面的功能发生变化。如条件反射性活动受到抑制,出现心动过缓等。  感觉系统:低强度的电磁辐射,可使人的嗅觉机能下降,当人头部受到低频小功率的声频脉冲照射时,就会使人听到好像机器响,昆虫或鸟儿鸣的声音。  免疫系统:我国有有初步观察到,长期接触低强度微波的人和同龄正常人相比,其体液与细胞免疫指标中的免疫球蛋白1gG降低,T细胞花环与淋巴细胞转换率的乘积减小,使人体的体液与细胞免疫能力下降。  内分泌系统:低强度微波辐射,可使人的丘脑——垂体——肾上腺功能紊乱;CRT、ACTH活性增加,内分泌功能受到显著影响。  遗传效应:微波能损伤染色体。动物试验已经发现;用195MHz、2.45GHz和96Hz的微波照射老鼠,会在4-12%的精原细胞骨形成染色体缺陷,老鼠能继承这种缺陷,染色体缺陷可引起受伤者智力迟钝、平均寿命缩短。  1.3 累积效应:热效应和非热效应作用于人体后,对人体的伤害尚未来得及自我修复之前,再次受到电磁波辐射的话,其伤害程度就会发生累积,久之会成为永久性病态,危及生命。对于长期接触电磁波辐射的群体,即使功率很小,频率很低,也可能会诱发想不到的病变,就引起警惕。  2、电磁辐射危害  电磁辐射污染的危害主要包括对电器设备的干扰和对人体健康的负面影响两大方面。  2.1 对电器设备的干扰,对电器设备的干扰这几年最突出的情况有三种:  一是无线通信发展迅速,但发射台、站的建设缺乏合理规划和布局,使航空通信收到干扰,如1997年8月13日,深圳机场由于附近山头上的数十家无线寻呼台发射的电磁辐射对机场指挥塔的无线电通信系统造成严重干扰,使地对空指挥失灵,机场被迫关闭两小时。  二是一些企业使用的高频工业设备对广播电视信号造成干扰,使周围居民无法正常收看电视而导致严重的群众纠纷,如北京市东城区文具厂就曾因该厂的高频热合机干扰了电视台的体育比赛转播,被愤怒的群众砸坏了工厂的玻璃。  三是一些原来位于城市郊区的广播电台发射站,后来随着城市的发展被市区所包围,周围环境也从人烟稀少变为人口密集,电台发射出的电磁辐射干扰了当地百性收看电视。  2.2 对人体健康的危害  1998年世界卫生组织最新调查显示,电磁辐射对体有五大影响:  一、电磁辐射是心血管疾病、糖尿病、癌突变的主要诱因。美国一癌症疗基金会对一些遭电磁辐射损伤的病人抽样化验,结果表明在高压线附近工作的人快24倍。  二、电磁辐射对人体生殖系统,神经系统和免疫系统造成直接伤害。损害中枢神经系统,头部长期受电磁辐射影响后,轻则引起失眠多梦、头痛头昏、疲劳无力、记忆力减退、易怒、抑郁等神经衰弱症,重则使大脑皮细胞活动能力减弱,并造成脑损伤。  三、电磁辐射是造成孕妇流产、不育、畸胎等病变的诱发因素。  电磁辐射对人体的危害是多方面的,女性和胎儿尤其容易受到伤害,调查表明:1至3个月为胚胎期,受到强电磁辐射可能造成肢体缺陷或畸形;4至5个月为胎儿成长期,受电磁辐射可导致免疫力功能低下,出生后身体弱,抵抗力差。  四、过量的电磁辐射直接影响儿童组织发育、骨骼发育、视力下降;肝脏造血功能下降,严重都可导致视网膜脱落。  伤害眼睛功率密度与形成白内障的时间的阈值曲线不是直线,在每一个频率上照射兔眼似乎都需要一个微波功率密度阈值,低于这个曲线,即使连续照射也不会产生眼损伤。在500MHz以上,白内障形成的最小功率密度约150 mW/cm2,低于500MHz的频率引起眼损害的可能性不能完全排除。  五、电磁辐射可使男性性能下降,女性内分紊乱,月经失调。  1998年世界卫生组织(WTO)在有关电脑屏幕与工人健康问题的最新修正意见中指出:在电脑屏幕工作环境下,有些因素可能影响妊娠结果。首先受到影响的是男方,长期受到电磁波辐照,有可能使男性精子减少,使精子基因畸形并可能变成不育或者畸胎;其次是孕妇,有报道说在电脑前1周工作20小时以上的孕妇生畸形的概率要比普通孕妇高2-3倍,而生女孩的概率大。

  • 【分享】室内电磁辐射污染与健康

    近年来关于室内电磁辐射(electromagneticradiation,EMR)对人体健康的危害引起了广泛关注,EMR包括射频(RF)辐射和极低频(50Hz)电磁场。由于RF和50Hz电磁场所含能量不足于使原子产生电离,所以又称为非电离辐射。大量的研究在不同的国家正在进行中。这里就近年来的研究进展介绍如下。室内环境的电磁场来自三个方面:①家用电器或者电子设备产生的电磁场;②室外的电磁辐射源辐射到室内的电磁辐射能;③地球上,主要由太阳和雷电活动形成的低强度、低频电磁场。在长期的进化过程中,地球上一切生命已经适应了地球本身的低强度、低频电磁场环境,能够在这种环境中生殖、生存和发展。但值得注意的是在过去的100年来,尤其是近30年来,电器和电子设备的迅速发展,大大改变了人类生存的电磁环境。研究证明,高强度EMR能通过加热机体组织对人体造成危害。严重时引起失明,不孕和其他严重的健康问题。这种由加热组织引起组织破坏的效应称为EMR的“热效应”。也有研究报道,不足以引起热效应的低强度EMR也能产生生物效应。对这种效应称为“非热效应”。一、EMR的热效应非常高的射频能量可引起暴露组织严重损伤。损伤程度取决于能量的频率、强度等多种因素。在接近机体的共振频率时,能量吸收多,可产生最大的热效应。一般与地面接触的成人,共振频率大概为35MHz,而与地面隔离的成人,其共振频率为70MHz。身体不同部位也有不同共振频率,成年人头部共振频率为400MHz。体形较小的人,头部共振频率为700MHz。不难看出,体形的大小是决定吸收不同频率能量的重要因素。频率超出共振频率范围时,只有较高强度的EMR才会产生热效应。但机体表面的纵向共振频率大概为1GHz。对居室内环境来说,RF的热效应不是主要问题,因为家用电器产生的电磁场强度不足以引起机体的热效应,除非非常靠近特殊的高能天线或者无屏蔽的功率放大器。二、EMR的非热效应与大多数居民有关的是EMR的非热效应,因为居室的EMR能量较低。对这种长期暴露于低强度EMR的研究包括两个方面:一是流行病学研究,二是实验室研究。实验室研究主要是探索低强29度EMR影响人体健康的生物学机制。而流行病学家主要利用统计学方法研究人群健康模式的改变,但研究结果是非结论性的。这种研究不能证明因果关系,也不能推测出发病机制。而只是寻找一种环境因素与疾病模式改变之间的联系。例如,在早期关于疟疾的研究中,流行病学家观察到疟疾的流行与大量蚊子滋生有关。随后生物医学家从疟疾患者的血液中分离出引起疟疾的病原体,同时确定了在蚊子体中存在同样的病原体。近年来,许多研究室对低强度EMR的生物学效应进行了大量的研究。研究显示即使相当低的EMR也能改变人体的生物节律,影响机体的T淋巴细胞的功能,同时能够改变细胞膜的电化学信号等。有研究报道,人体或者动物对连续EMR更容易适应。尽管研究报道在不断的增加,但关于射频EMR的非热效应仍然是非定论性的、不完善的,有时是矛盾的。三、EMR与癌症在EMR非热效应的研究中,一些流行病学研究发现长期暴露于家庭EMR与某些恶性疾病,如白血病和脑肿瘤之间存在一种弱的联系。但大量精确的配对研究并未证明这种联系,危险率是15~20。流行病学家一般认为危险率4或者大于4时预示着强烈的因果关系。例如,每天吸一包香烟的人比不吸烟的人患肺癌的危险性增加10倍;每天吸两包香烟的人比不吸烟的人患肺癌的危险性增加25倍以上。也有研究表明EMR不能直接致癌,但有时与化学物质协同促进癌细胞生长或是抑制机体的免疫系统。但到目前为止关于低强度EMR是否危害健康,尤其是是否致癌还没有得到结论性的证实。1995年,美国物理协会基于大量的生物学研究资料,对低强度EMR 暴露与癌症之间的联系做了综合的报道。这份报道是详尽的,非常值得关注。主要观点如下:(1)动力线电磁场暴露与癌症之间没有显示一致的、显著的联系;(2)关于极低强度EMR致癌和促癌的所谓的生物物理学机制仍未得到证明;(3)在不可能证明对健康的危害是源于其他环境因素时,在做出极低强度EMR致癌和促癌的结论之前,必须明确一致的、显著的因果关系。美国物理协会的报道主要限制在动力EMR场。家庭居室面临的还有射频EMR,1995年发表的名为“RadioFrequencyandELFElectromagneticEnergies”书中,作者认为“Inconclusion,thedatadonotsupportthefindingthatexposuretoRFfieldsisacausalagentforanytypeofcancer”(page176)。四、EMR暴露的安全限值进一步的问题是我们暴露在何等强度EMR场是安全的。科学家们花费了很大的努力确定EMR暴露限值。这是一个非常复杂的问题。长期以来,国际上不同学派对EMR的生物学效应持不同观点。以美国为代表的西方学派认为,射频辐射对人体的危害主要是热效应。他们所制定的有关卫生标准完全是以致热效应和热交换为依据的。而以原苏联为代表的东方学派认为,EMR的作用机制除热效应外,尚存在非热效应。他们以此制定的有关卫生标准较西方学派的严格,其具体数据较西方学派的低(东方学派10μW/cm2,西方学派10mW/cm2)。西方学派主要是在控制的实验条件下,研究射频辐射对动物的效应,这种效应通常是较易识别和复制的,他们采用的多半是高功率密度的辐射。而东方学派的许多研究工作,主要探讨低功率密度的EMR对作业人员的作用,其结果根据主诉报告、临床表现和流行病学调查的较多。因此,造成了两学派制定的有关卫生标准的数据相差甚远。

  • 补偿式量热仪

    补偿式量热仪

    补偿式量热仪是把研究体系置于一等温量热仪中,测量体系与环境之间迸行热交换时,两者的温度始终保持恒定,并且与环境温度相等。反应过程中研究体系所放出或吸收的热量是依赖恒温环境中的某物理量的变化所引起的热流给予连续的补偿,使体系温度保持恒定。实验过程中,利用相变潜热、电-热、电-制冷效应来实现温度补偿。 (1)相变补偿量热 设将一反应体系置于冰水浴中,其热效应将使部分冰融化或使部分水凝固。已知冰的单位质量熔化焓,只要测得冰水转变妁质量,就可求得热效应的数值。反之,反应体系发生吸热反应,也同样可以通过冰增加的质量来求得热效应。这种量热仪除了冰-水为环境介质外,也采用其他类型的相变介质。这类量热仪简单易行,灵敏度和准确度都较高,热损失小,但热效应是处于相变温度这一特定条件下发生的。造类方法为确定热效应的环境温度提供了热化学数据,但也限制了量热仪的使用范围。 (2)热效应补偿量热 对于一个吸热的化学或物理变化过程,可将研究体系置于一液体介质中,利用电热效应对其补偿,使液体介质温度保持恒定。这就要求电加热时,热损失可忽略不计,这时所吸收的热量可由加热器所消耗的电压(U)、电流(I)和时间(t)的精确测量直接求得。如果不考虑研究体系的介质与外界的热交换,该变化过程所吸收的热量可用公式计算,即:http://ng1.17img.cn/bbsfiles/images/2013/05/201305180957_440560_2698790_3.jpg 在这里,介质温度可根据需要予以设定,温度变化可用高灵敏度的温差温度计测量,电压、电流、时间的测量可用精确度高的仪器测量,只要液体介质恒温良好,热量的测量值就准确可靠。介质与外界的热交换、介质搅拌及其他因素的影响所产生的热量可以通过空白实验予以校正。 对于放热效应就要使用电制冷元件,利用帕提尔(Peltier)效应来补偿。在两种不同金属组成的回路上通一定电流,双金属的接点上将分别形成冷端和热端。帕提尔功率在两端的分配比例与电流大小有关。两端功率相等时的回路电流为I0,在某一小于I0的工作电流I时,其制冷功率为 http://ng1.17img.cn/bbsfiles/images/2013/05/201305180957_440563_2698790_3.jpg ,式中,n称帕提尔系数,它与所用元件材料及工作温度有关。实际上,由于冷热端之间的导热,将使制冷效率低于计算值,这会给放热效应带来一定的测量误差。

  • 【分享】针对纳米器件电学性能的测量技术

    随着纳米技术日新月异的发展,研究已深入到原子挨原子的分子级,构造具有全新特性的新结构。特别地,纳米电子领域的发展十分迅速,其潜在影响涉及非常宽的行业领域。目前的纳米电子研究的内容主要是如何开发利用碳纳米管、半导体纳米线、分子有机电子和单电子器件。不过,由于多方面的原因,这些微小器件无法采用标准的测试技术进行测试。其中一个主要原因在于这类器件的物理尺寸。某些新型“超CMOS”器件的纳米级尺寸很小,很容易受到测量过程使用的甚至很小电流的损坏。此外,传统直流测试技术也不总是能够揭示器件实际工作的情况。脉冲式电测试是一种能够减少器件总能耗的测量技术。它通过减少焦耳热效应(例如I2R和V2/R),避免对小型纳米器件可能造成的损坏。脉冲测试采用足够高的电源对待测器件(DUT)施加间隔很短的脉冲,产生高品质的可测信号,然后去掉信号源。通过脉冲测试,工程技术人员可以获得更多的器件信息,更准确地分析和掌握器件的行为特征。例如,利用脉冲测试技术可以对纳米器件进行瞬态测试,确定其转移函数,从而分析待测材料的特征。脉冲测试测量对于具有恒温限制的器件也是必需的,例如SOI器件、FinFET和纳米器件,可以避免自热效应,防止自热效应掩盖研究人员所关心的响应特征。器件工程师还可以利用脉冲测试技术分析电荷俘获效应。在晶体管开启后电荷俘获效应会降低漏极电流。随着电荷逐渐被俘获到栅介质中,晶体管的阈值电压由于栅电容内建电压的升高而增大;从而漏极电流就降低了。脉冲测试有两种不同的类型:加电压脉冲和加电流脉冲。电压脉冲测试产生的脉冲宽度比电流脉冲测试窄得多。这一特性使得电压脉冲测试更适合于热传输实验,其中我们所关心的时间窗口只有几百纳秒。通过高精度的幅值和可编程的上升与下降时间能够控制纳米器件上的能耗大小。电压脉冲测试可用于可靠性测试中的瞬态分析、电荷俘获和交流应力测试,也可用于产生时钟信号,模拟重复控制线,例如存储器读写周期。电流脉冲测试与电压脉冲测试非常相似。其中,将指定的电流脉冲加载到DUT上,然后电子测量器件两端产生的电压。电流脉冲测试常用于测量较低的电阻,或者获取器件的I-V特征曲线,而不会使DUT产生大量的能耗,避免对纳米器件的损害或破坏。电压和电流脉冲测试都有很多优点,但是它们的缺点却不尽相同。例如,超短电压脉冲的速度特征分析属于射频(RF)的范畴,因此如果测试系统没有针对高带宽进行优化,那么测量过程中很容易产生误差。其中主要有三种误差来源:由于线缆和连接器造成的信号损耗、由于器件寄生效应造成的损耗以及接触电阻。电流脉冲测试的主要问题是上升时间较慢,可能长达几百纳秒。这主要受限于实验配置中的电感和电容。

  • 【原创大赛】2016国产磁测量好仪器系列之四:磁电输运性质测量系统ET-9000系列

    【原创大赛】2016国产磁测量好仪器系列之四:磁电输运性质测量系统ET-9000系列

    2016国产磁测量好仪器系列之四:磁电输运测量系统ET-9000原创:刘小军、刘卫滨、李鹏飞 工程师,北京东方晨景科技有限公司推荐:陆俊 工程师,中科院物理所磁学室2016年9月25日一句话推荐理由:从引进吸收到成功集成改良的磁测量好仪器。一、引言电阻是人们借助电传输能量与信息时必须面临的基本物理现象,它导致电损耗及发热,因而几乎所有的电学材料都有必要考察其电阻率。对于电阻或电阻率的测量比较陌生的读者可以看一篇相关通俗意义的介绍“电阻测量的光与影”。本文要介绍的是磁场下电输运测量,根据加载磁场与电流的方向可以分为纵向磁阻(或简称磁阻效应)与横向磁阻(或简称霍尔效应)。进行磁电输运测量的意义在于磁自由度引入,通过电阻率随磁场的变化规律不仅仅可以用来测量磁场的大小,而且让电阻能展现出更深层次物质结构的信息(比如因晶格或拓扑等因素带来的电子自旋相关的能带结构变化)。其中最吸引人的是电子能量结构的量子化过程,竟可以只是通过简单的通过加磁场测电阻的方法予以揭示,参考图1,如1985年的诺贝尔物理学奖颁发给Klaus von Klitzing的量子霍尔效应、1998年的诺贝尔物理学奖颁发给崔琦等三位物理学家的分数量子霍尔效应、2007年诺贝尔物理学奖颁发给Albert Fert与Peter Gruenberg的巨磁电阻效应以及不久前中国刚公布的“未来科学奖”颁发给清华大学薛其坤的量子反常霍尔效应等奇特量子效应(也有可能在不久的将来获得诺贝尔奖)。因而磁场下进行电输运测量成为凝聚态物理学研究中的家常便饭式的手段。http://ng1.17img.cn/bbsfiles/images/2016/09/201609291741_612654_1611921_3.png图1 磁电输运测量相关的诺贝尔奖级别工作图示二、背景磁电输运测量相关的仪器虽然很轻松就能实现,但要达到在证明被研究物质的奇特量子性质并不容易。其中涉及到的主要技术不仅仅是电压与电流的稳定测量,还包括磁场的稳定与测量,此外还可能涉及到低噪声的低温甚至光学配件等,因而其综合性导致其从头开始的研发周期较长。几十年来,磁电输运测量仪器主要来自于美国的量子设计公司与Lakeshore两家公司。北京东方晨景科技有限公司从20世纪末开始引进代理Lakeshore公司设备,经过十多年的消化吸收,逐步掌握了国外公司在输运测量、磁场电源、低温等系统集成方面的技术,不仅如此,还针对国外公司在应用过程中的让用户感到不便的软硬件问题,进行了自主的改良研制,逐步形成ET-9000测量系统,系统照片如图2所示,该系统从2010年正式推出至今,明显的增加了国内外磁电输运测量仪器系统的比例(约从20%上升到40%)。http://ng1.17img.cn/bbsfiles/images/2016/09/201609291741_612655_1611921_3.png图2 ET-9000 型磁电输运测量仪器照片三、简介ET-9000系列磁电输运性质测试系统是集霍尔效应、磁阻、变温电阻、I-V特性等测试于一体的全自动化测试系统,其总体原理框图如图3所示。系统全面地考虑了集成一体性、屏蔽防干扰能力和操作人性化等用户经常忽略的问题,选取了美国Keithley的电测量仪表,高精度高稳定性电磁铁平台,配备灵巧的测量样品杆和快速插拔样品卡,加上全自动化的专用测试软件,能让用户快速方便地进行电输运测试,并获得准确可靠的数据。http://ng1.17img.cn/bbsfiles/images/2016/09/201609291741_612657_1611921_3.png图3 ET-9000磁电输运测量仪器的测试原理框图ET-9000根据不同的材料不同的测试需求分为多种型号,综合各类型号,其主要技术指标列表如下:物理学参数迁移率1 ~ 1 × 106 cm2/vs载流子浓度6 × 108 ~ 6 × 1023 cm-3霍尔系数±1 × 10-5 ~ ±1 × 1010 cm3/C电阻率5 × 10-9 ~ 5 × 106 Ω·cm电学参数电阻100nΩ ~ 100GΩ电流源±0.1pA~±1A(±1.05A@±21V, ±105mA@±210V)电压源±5μV~±200V(±21V@±1.05A, ±210V@±105mA)电流测量±10fA~±1.05A(10pA为最小分辨率)电压测量±1nV~±200V(0.1μV为最小分辨率)磁场环境室温磁场2.6T@10mm间距变温磁场2T@低温恒温器温度(选件)单点液氮盒77K闭循环恒温器4K~325K(4K型),10K~325K(10K型)高温炉325K~1000K其他样品最大尺寸50mm*50mm*3mm样品数量2个(增加选件可扩展到4个)光学配件[

  • 【资料】电磁辐射的讲解

    电磁辐射是由空间共同移送的电能量和磁能量所组成,而该能量是由电荷移动所产生;举例说,正在发射讯号的射频天线所发出的移动电荷,便会产生电磁能量。电磁“频谱”包括形形色色的电磁辐射,从极低频的电磁辐射至极高频的电磁辐射。两者之间还有无线电波、微波、红外线、可见光和紫外光等。电磁频谱中射频部分的一般定义,是指频率约由3千赫至300吉赫的辐射。 电磁辐射所衍生的能量,取决于频率的高低-频率愈高,能量愈大。频率极高的X光和伽玛射线可产生较大的能量,能够破坏合成人体组织的分子。事实上,X光和伽玛射线的能量之巨,足以令原子和分子电离化,故被列为“电离”辐射。这两种射线虽具医学用途,但照射过量将会损害健康。X光和伽玛射线所产生的电磁能量,有别于射频发射装置所产生的电磁能量。射频装置的电磁能量属于频谱中频率较低的那一端,不能破解把分子紧扣一起的化学键,故被列为“非电离”辐射。哪里会有电磁辐射? 电磁辐射的来源有多种。人体内外均布满由天然和人造辐射源所发出的电能量和磁能量;闪电便是天然辐射源的例子之一。至于人造辐射源,则包括微波炉、收音机、电视广播发射机和卫星通讯装置等。[编辑本段]电磁辐射对人体的危害  电磁辐射是一种复合的电磁波[1],以相互垂直的电场和磁场随时间的变化而传递能量。人体生命活动包含一系列的生物电活动,这些生物电对环境的电磁波非常敏感,因此,电磁辐射可以对人体造成影响和损害。   高尔生教授在他的《空调使用对精[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]量的影响》中指出,电磁辐射对人体的危害,表现为热效应和非热效应两大方面。   热效应,当人体接受电磁辐射时,体内分子会随着电磁场的转换快速运动,使人体升温,热效应会引起中枢神经和植物精神系统的功能障碍,主要表现为头晕、失眠、健忘等亚健康表现。   非热效应,即吸收辐射不足以引起体温增高,但也引起生理变化和反应。生活和工作在这种环境中过久,会出现头晕、疲乏无力、记忆力衰退、食欲减退等临床症状。  近年来,国内外媒体对电磁辐射有害的报道一直未断:意大利每年有400多名儿童患白血病,专家认为病因是受到严重的电磁污染;美国一癌症医疗基金会对一些遭电磁辐射损伤的病人抽样化验,结果表明在高压线附近工作的人,其癌细胞生长速度比一般人快24倍;我国每年出生的2000万儿童中,有35万为缺陷儿,其中25万为智力残缺,有专家认为,电磁辐射是影响因素之一。  1998年世界卫生组织最新调查显示,电磁辐射对人体有五大影响: 1、电磁辐射是心血管疾病、糖尿病、癌突变的主要诱因;  2、电磁辐射对人体生殖系统,神经系统和免疫系统造成直接伤害;  3、电磁辐射是造成孕妇流产、不育、畸胎等病变的诱发因素;  4、过量的电磁辐射直接影响儿童组织发育、骨骼发育、视力下降;肝脏造血功能下降,严 重者可导致视网膜脱落。  5、电磁辐射可使男性性功能下降,女性内分泌紊乱,月经失调。

  • 基于恒磁励磁传感技术的水流量测量干扰的分析

    0 引言恒磁励磁流量传感技术由于它结构简单可靠、励磁不用电源、磁感应强度高、对管道振动不敏感等特点,因此可广泛应用于涡街流量计、射流流量计等以频率量为被测量的流量测量仪器,也可用于以电压量为被测量的电磁流量计等产品。其基本工作原理是:当导电液体介质(如饮用水)流过非导磁体测量管或计量腔切割由恒定磁场产生的磁力线时,根据电磁感应定律导电液体介质就会产生感应电动势,通过放置在与磁力线和测量管相互垂直的一对电极可将感应电动势引出;由于感应电动势E与恒定磁场B的强度、介质的平均流速v成正比,因此可从感应电动势的强弱来测定被测介质的流速,见下式:http://dc.llybw.com/up_files/image/Article/2011/12/05/62561221.gif式中:E为感应电动势;k为调整系数;B为磁感应强度;D为测量管内径;v为测量管内导电液体介质平均流速。而流量传感器输出的体积流量则为:http://dc.llybw.com/up_files/image/Article/2011/12/05/62561222.gifhttp://dc.llybw.com/up_files/image/Article/2011/12/05/62561223.gif其工作原理见图1。基于恒磁励磁的涡街流量检测方法是根据被测流体在测量管内受到阻流体作用后,形成周期性旋涡切割磁力线而产生有一定频率的感应电动势这一原理工作的。由于被测流速与旋涡频率成比例,因此可以通过一组电极检测出有一定幅值E的频率量f作为被测量;射流流量电磁检测法与涡街流量检测法在原理上是基本相同的,即被测流体在射流(计量)腔中由于附壁效应产生反馈振荡而切割磁力线,在其电极上输出一定幅值的频率量。两种传感方式都可以做成单端信号输出形式或差动信号输出形式。由于恒磁励磁传感器无需电源励磁,因此非常适合用于电池供电电磁流量计的微功耗流量计和电子水表。而阻碍恒磁励磁传感技术推广应用的极化干扰电势以及其他不利影响,目前已可采用某些新的设计方法和技术对其作出处理,削弱其影响,达到实际应用之目的。本文对该传感技术应用于导电液体介质的流量(或总量)测量时由于传感原理而造成的各种干扰和误差作出简要分析和探讨。1 由传感原理产生的噪声及干扰1.1 极化电势引入的干扰水是一种由有极分子组成的导电液体电介质,在电场力的作用下(假设由恒磁励磁传感器的两电极产生),介质分子中的正负电荷中心发生相对位移,在其边界与外电场垂直的两表面上就会出现极化电荷,形成极化电势。极化电势的大小与外电场的大小成比例,但极化电势反过来又会影响外电场。由于极化电势是流量和温度等变量的函数,因此在电极上就会形成变化规律很复杂的极化干扰电势,也较难从被测流量信号中分离出去;同时,直流电动势的存在会导致介质中的正负离子向不同极性的电极移动,使电极间的内阻增大,也会影响传感器的正常工作。1.2 原电池效应引入的干扰在导电液体中的两电极,当其电极材料成分有微小变化时,就会产生原电池效应,即在电极回路上会产生微弱电流,并通过信号处理的输入回路产生感应电动势。由于导电液体流动状态的不确定性,因此在电极上也会形成某种随机干扰。1.3 流动噪声引入的干扰当被测流体在测量管(或计量腔)内流动时,使极化电荷随之移动,流量传感器电极上就会感应出所谓的“流动噪声”,它的量值和变化状态不但与被测流体的介电常数、电导率、运动黏度、流体流动速度等有关,还与励磁方式有关。在相同条件下,恒磁励磁时的流动噪声对测量结果的影响是比较严重的。1.4 直流放大器漂移引入的干扰恒磁励磁传感方式使某些被测流量信号以直流电势的大小来衡量流量信号的强弱(如恒磁励磁的电磁流量计),因此前级信号处理必须使用直流放大器。但直流放大器的零漂和噪声等误差会直接叠加到流量信号上,影响测量的准确性;特别是在微小流量测量时,其影响程度就更为严重。1.5 电极材料差异引入的干扰当电极材料的材质或成分有差异,即金属电极的材料标准电位不一致时,两电极间就会形成一固定的电位差。该电位差的存在(可以达到数百毫伏),一方面会加剧极化干扰影响的程度,同时也会使前级放大器产生堵塞,影响测量线性度。由于上述极化电势等干扰的存在,使得在低电导率流体测量时被测小流量信号会被干扰电势所覆盖,这也使恒磁励磁传感技术在流量仪表中的应用受到了普遍的质疑和排斥。为此必须寻找适合的方法及途径来解决这一问题,实现新的突破。2 消除噪声和干扰的主要途径及方法2.1 极化与干扰电势的抵偿方法一:在非采样期内,用中频交变方波电场接通恒磁励磁传感器的两电极,以消除励磁时产生的极化电势的干扰;而在采样期内,由微处理器将两电极自动切换到测量前置放大器的输入端,对流量信号进行检测,见图2。http://dc.llybw.com/up_files/image/Article/2011/12/05/62561224.gif方法二:用开关电路周期性地使传感器两电极接地或采集测量信号,以定期地抵消形成在测量电极上的摩擦电荷与其他杂散电荷。方法三:所谓的“动态反馈控制法”。其方法是:对两个电极进行周期性地测量时段和控制时段的交替工作方式,并使每个控制时段的电极电势等于负的测量时段的电极电势测量值,以消除电极电势信号中的极化,从而直接由两电极信号的差值求得流体流速值。其工作原理见图3。http://dc.llybw.com/up_files/image/Article/2011/12/05/62561225.gif2.2 电极电解抛光通过对传感器两电极的电解抛光处理(施加正的直流电压或交流电压),使其表面形成极其光滑并且有光泽的界面,并在5nm内的深度里具有铬元素密度高于铁元素密度的特性,见图4。抛光处理后的电极在被测流体中浸泡一段时间,就能较大幅度降低“流动噪声”对测量信号的影响。2.3 流场调整采用流场调整装置对被测流体流动分布状态进行控制和调整,提高流体雷诺数,使射流水表或涡街水表测量限下移,测量稳定性提高,间接提高了传感器的信噪比,降低了噪声对有用信号的干扰。如射流水表在采用了流场调整装置后,被测流量的雷诺数下限可以降低到102数量级,大大提高了测量小流量的计量特性。http://dc.llybw.com/up_files/image/Article/2011/12/05/62561226.gif2.4 信号差动检测流量传感器采用差动电极技术和差动放大器检测方法,可以使有用信号幅度增加一倍,明显提高了流量仪表的信噪比;同时也可以抵消由外界温度、振动等因数引起的各种干扰,提高仪表综合性能,特别是小流量测量灵敏度。2.5 电极材料的选配与加工选择材料成分一致性好、标准电位相同、耐腐蚀的电极材料制作传感器电极;同时采用抛光等方法提高电极加工后的表面粗糙度(要求Ra≤0.05μm),使电极在使用中具有较强的抗腐蚀性能。2.6 对直流被测信号进行特殊处理采用“调制”技术对被测直流信号进行调制,使直流信号“交流化”,这样可以使用高性能的交流放大器进行信号放大处理,再经解调处理后还原成原有信号;同时还可使用模拟或数字滤波技术,以及采用相关或频谱分析技术对被测信号与干扰信号进行分离,最大限度地提高信噪比。3 结语随着信号处理技术的不断发展和完善,恒磁励磁流量传感技术所固有的极化干扰电势等影响正在逐步削弱和消除,而其所拥有的各种优势和特点也在同步显现中。因此我们有充分理由相信,应用恒磁励磁传感技术的水流量测量仪表一定会有其更广阔的应用范围,其各项性能指标也将得到进一步的完善和提高。

  • 今日分享内容:电磁辐射对人体都有影响?

    [font=仿宋][size=21px]电磁辐射是电磁波,它通过相互垂直的电场和磁场随时间的变化而向四周辐射能量。[/size][/font][font=仿宋][size=21px]人类赖以生存的地球本身就是一个大磁场,它表面的热辐射和雷电都可产生电磁辐射,太阳及其他星球也从外层空间源源不断地产生电磁辐射。围绕在人类身边的天然磁场、太阳光、家用电器等都会发出强度不同的电磁辐射。[/size][/font][font=仿宋][size=21px]电磁辐射对人体的影响要根据其强度和频率做具体分析。电磁辐射按照频率分类,从低频率到高频率,包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。[/size][/font][font=仿宋][size=21px]X射线和γ射线电离能力很强,属于电离辐射的范畴,而其他电磁辐射电离能力相对较弱,属于非电离辐射。[/size][/font][font=仿宋][size=21px] 对于较低频率的电磁辐射,从无线电波到低频紫外线,对人体的影响主要是热效应。例如我们在强烈的阳光下会产生被太阳烧烤的感觉,这就是太阳光对人体产生的热效应。[/size][/font][font=仿宋][size=21px]日常生活中常见的手机、电脑等,所用的频段主要是无线电波和微波,属于低频率电磁辐射。由于缺少相应的样本和临床数据,目前还没有充分的证据可以说明,在正常使用的情况下,它们会对人体健康造成危害。[/size][/font][font=仿宋][size=21px]对于频率更高的电磁辐射,如X射线和γ射线,它们具有电离特性,对人体的影响不再限于热效应,而是直接或间接地对人体细胞产生损伤,过量照射则对人体健康有害,所以我们要尽量避免进入高频电磁辐射区域。[/size][/font]

  • 【分享】秋季健康饮食:电磁污染与饮食保健

    经过漫长而炎热的夏季,身体能量消耗大而进食较少,因而在气温渐低的秋天,就有必要调补一下身体,也为寒冬的到来蓄好能量。人们常常会因快节奏的生活而忽视对日常饮食的要求,很多人仅仅满足于单纯的吃饱就好,忽视了营养的合理搭配。一份快餐一瓶纯净水、一个汉堡一杯可乐可能一时骗过我们的肠胃,但这样常常会对健康构成威胁。生活家小编特意为您搜罗了适合这个秋季的各类饮食保健信息,让您和家人都能健康快乐每一天!  电磁污染危害人体的机理  电磁污染危害人体的机理主要是热效应、非热效应和累积效应等。  热效应:人体70%以上是水,水分子受到电磁波辐射后相互摩擦,引起机体升温,从而影响到体内器官的正常工作。  非热效应:人体的器官和组织都存在微弱的电磁场,它们是稳定和有序的,一旦受到外界电磁场的干扰,处于平衡状态的微弱电磁场即将遭到破坏,人体也会遭受损伤。  累积效应:热效应和非热效应作用于人体后,对人体的伤害尚未来得及自我修复之前(通常所说的人体承受力——内抗力),再次受到电磁波辐射的话,其伤害程度就会发生累积,久之会成为永久性病态,危及生命。对于长期接触电磁波辐射的群体,即使功率很小,频率很低,也可能会诱发意想不到的病变。  电磁污染的危害  1998年世界卫生组织最新调查显示,电磁辐射对人体有五大影响:  电磁辐射是心血管疾病、糖尿病、癌突变的主要诱因   电磁辐射对人体生殖系统,神经系统和免疫系统造成直接伤害   电磁辐射是造成孕妇流产、不育、畸胎等病变的诱发因素   过量的电磁辐射直接影响儿童组织发育、骨骼发育,导致视力下降、肝脏造血功能下降,严重者可导致视网膜脱落。  电磁辐射可使男性性功能下降,女性内分泌紊乱、月经失调。  营养保健防治  在家庭之中,要预防电磁污染,除了正确和适度应用各种电器和电子类设备之外,还要从营养保健饮食方面着手进行防治。  蔬菜类  油菜、青菜、芥菜、雪里蕻、卷心菜、萝卜等十字花科蔬菜具有抗污染损伤的功能。我国科学家从这些十字花科植物中成功提取出一种天然污染保护剂SP88,并通过从分子水平到整体动物、植物的一系列实验,对SP88的作用机理及生物功能进行了证实。胡萝卜、豆芽、西红柿等富含维生素A、维生素C和蛋白质,经常吃这些蔬菜均有利于抗电磁污染。值得注意的是,武汉大学公共卫生学院罗琼博士等一项最新研究发现,海带的提取物海带多糖因抑制免疫细胞凋亡,恢复免疫抑制小鼠的细胞免疫、体液免疫以及非特异性免疫功能而具有抗污染作用。众多的实验研究表明,真菌类食物诸如金针菇、香菇、猴头菇、黑木耳也可通过增强机体免疫力起到抗电磁污染作用。综上所述,为了有效预防现代家庭室内的电磁污染,在保证摄入充足的蔬菜时,应保证十字花科蔬菜、胡萝卜、豆芽、西红柿、海带以及真菌类蔬菜的摄入,以增强机体抗辐射能力。  水果类  绝大多数水果都有抗污染功能,常食有益而无害。水果为什么能抗污染呢?因为水果中不仅含有丰富的维生素、粗纤维和微量元素,更为重要的是水果中含很多活性成分,正是这些活性成分在抗电磁污染过程中发挥着重要作用,例如, 橘类水果中的萜烯类和浆果中的鞣化酸能激活细胞中的蛋白分子,把电磁污染后变异的癌细胞裹起来,并利用细胞膜的逆吞噬功能,将致癌物排出体外,阻止了致癌物对细胞核的损伤,保证了基因的完好。  饮料  在众多的茶饮料之中,绿茶具有很好的抗污染作用。因为绿茶中含有效的抗氧化剂儿茶酚以及维生素C,不但可以清除体内的自由基,还能使副肾皮质分泌出对抗紧张压力的荷尔蒙。当然绿茶中所含的少量咖啡因也可以刺激中枢神经,提振精神。枸杞茶含有丰富的β-胡萝卜素,维生素B1、维生素C、钙、铁,具有补肝、益肾、明目的作用,菊花茶或者蜂蜜菊花茶都具有明目清肝养肝的作用,这三种茶对抗电磁污染尤其是对“电脑族” 预防辐射和缓解眼睛疲劳作用显著。以往的研究还证实了,葡萄籽提取物对污染损伤的保护作用。苏联的宇航员们长期服用一种富含原花青素的植物饮料,以预防他们在太空飞行时所受到的污染损伤。苏联切尔诺贝利核电站发生爆炸,造成严重核污染,当地许多人遭受核污染损伤,生活在该地区的人们被建议喝一种叫做Crimean的红葡萄酒。所以,建议现代都市家庭经常饮用红葡萄酒。  由于电磁波看不见,摸不着,隐蔽性强,对人体的危害大,多种难治性疾病都与之有关,故处于电磁高污染的现代家庭应从日常生活做起,经常有意识地选用一些有抗辐射作用的蔬菜、水果、饮料以及药膳,防治电磁污染,这样才能真正享受现代高科技所带来的便利和快乐。

  • 微波消解仪的控温方式有哪些?各有什么特点?

    现市场上微波消解控温方式有红外控温、热电偶控温、铂电阻控温、光纤控温等控温方式。红外控温其工作方式是在一定距离下扫描和监测温度红外数据,系非接触式控温,故其精确性较差,控温精度不高。   热电偶控温通过冷热端电势差测试相对温度,由于易引起天线效应干扰微波场的均匀性,故容易产生电火花导致安全事故。并且在微波场下有自热效应即不能测定罐内实际温度。   铂电阻控温利用变化影响铂金导体内自由电子束的绝对电导率技术通过阻抗变化测试热力学温度,输出信号响应,精度较高。但是同样会有天线效应,容易产生电火花导致安全事故。   光纤控温采用直接光纤温度测量法,不受微波场影响,可以提供高精度测量,具备信息反馈及时、控温精确,不存在安全隐患,是目前最理想的微波消解控温方式。

  • 【分享】电磁辐射对人体的危害

    电信系统、无线电电视、广播、微波传送和雷达设备等的迅速增加而产生的“电磁污染”,给人们的生活带来不同程度的危害。在过去30年间,科学家致力于电磁辐射与生物体之间的相互作用的研究。他们将辐射能在生物体中的吸收以及随之而来的生物物理和生物化学过程的直接相互作用定义为原始作用,将由于原始作用所引起的生物机体的结构和功能的变化定义为生物效应,在原始作用的部位产生的瞬间生物效应可以引起进一步的急性和慢性的间接变化。电磁辐射损伤人体的机制:  首先,人体是个导电体。电磁辐射对于人体会产生电磁感应,并有部分的能量沉积。电磁感应可使非极性分子的电荷再分布产生极性,同时又使极性分于再分布,即偶极子的生。偶极于生物膜电位异常,从而干扰生物膜上受体的表达酶的活性,导致细胞功能的异常及细胞状态的异常。  其次,电磁辐射对人体电生理的影响。人体的感受器如眼、耳,皮肤上的冷、热、触、疼感受器等等接受外界刺激将产生神经冲动。神经冲动由周围神经系统再传到中枢神经系统产生反馈, 反馈信息传给人体的效应器产生人的有意识的行动。而这里所讲的神经冲动及所谓反馈信息,稗上就是神经细胞上的电传导。当电磁辐射改变了生物膜电位时也应改变了神经细胞的电传导,扰乱人的正常生理活动。 日积月累会导致神经衰弱,植物神经功能紊乱症状群。神经衰弱具体表现为:头痛、头晕。失眠、多梦、健忘等,严重者可导致心悸及心率失常。电磁辐射还可导致内分泌紊乱。植物神经功能紊乱,腺体细胞功能状态的异常,将导致激素分泌异常,电磁辐射作用于肾上腺则肾上腺素和去甲肾上素水平降低,直接导致抗损伤能力降低;作用于垂体则使生长激素水平降低,导致儿童生长迟缓;作用于甲状腺及旁腺将使甲状腺素和甲状旁腺异常,导致儿童发育障碍;作用于松果体则松果体素水平下降,同时导致生物钟紊乱。  电磁辐射有可能诱导变异细胞的产生。生物体是由细胞构成,其遗传物质是DNA。母细胞复制子细胞的过程就是DNA的复制传递及表达的过程。当这一过程受到电磁波及其它致癌因素干扰时,就会诱发癌基囚,导致癌细胞及其它变异细胞的产生。因此,当人体处在免疫力低下时就会使癌症的发生率增高。电磁辐射使生物膜功能紊乱甚至破坏,会抑制细胞活性,如精子生成减少及活性降低,产生不育症,脸部皮肤细胞代谢障碍而产生色素沉着等。  微波辐射进入人和动物眼睛的伤害是微波热作用的一个明显例证,人和动物的眼睛是一个复杂的生物学构造,它主要由晶状体和玻璃体等构成,眼睛内存在大量水分和少量血液脉管,其介电常数和电导率很高,微波的穿透深度很小,也就是进入眼球的微波功率被迅速衰减,表明眼球对微波功率具有很好的吸收特性。电磁辐射作为一种能量传递方式,还会直接将能量传递给原内子或分子,使其运动加速,进而在体内形成热效应。当微波作用于人的眼睛,眼睛晶状体水分较多,而更易吸收较多的能量,从而损伤眼的房水细胞,晶状体内无血管成份,代谢率低,很难将损伤或死亡的细胞吸收掉,日积月累在晶状体内形成晶核,导致白内障的产生,视力下降,甚至失明。  经过大量科学实验发现:高功率密度一般大于10mW/平方厘米,此时以明显的热效应为主。长时间接触高功率密度的辐射,可以造成机体损伤甚至死亡。短时间接受高功率密度辐射,可引起眼睛的损伤,易发生白内障。在低于1mW/平方厘米的低功率密度下,热效应不起主要作用。长时间接触低功率密度的辐射,动物的神经系统、造血系统和细胞免疫功能会受损害。另外。辐射对遗传、生育和致畸也会产生影响。许多国家已经观察到职业性的微波辐射,导致了植物神经和中枢神经系统失调、虚弱综合症和其他慢性辐射效应。对这些综合症的致病机理是有争议的。微波辐射接触者的主诉症状主要是:头痛、头晕、疲劳、无力、过敏、衰弱、失眠、忧郁、神经紊乱及性功能疾病、胸痛及难以说清的不舒服感,在身体检查方面,发现手臂伸长时手指发颤等症。

  • 【原创】薄膜物性测量中的假象分析(3)-异常磁电耦合效应的背后?::Artefacts in multiferroic(3)-No new physics yet behind the abnormal ME

    【原创】薄膜物性测量中的假象分析(3)-异常磁电耦合效应的背后?::Artefacts in multiferroic(3)-No new physics yet behind the abnormal ME

    [img]http://ng1.17img.cn/bbsfiles/images/2008/09/200809220224_109665_1611921_3.jpg[/img]图1 一篇Science中报道的薄膜磁电耦合性能--疑似假象剖析示意图[color=#dc143c]本专题着重讨论了磁电耦合测量得到的异常耦合效应是否来源于材料的本征物性,指出鉴别异常磁电效应测量结果中假象的原理和思路,最后从测量的角度对磁电材料的应用前景作一点展望性评价。[/color]磁电材料(magnetoelectrics, 又称多铁材料multiferroics)是同时具有自发电荷序和自旋序的一类材料,表现在性能上,它们一般同时具有铁电性(ferroelectrics)、铁磁性(ferromagnetism, 包括弱铁磁性)、磁电耦合性能(magnetoelectricity, 外加磁场下产生电荷的能力)和电磁耦合性能(electromagnetism, 外加电场下产生磁性的能力)。由于磁电材料的多种自发有序同时共存且非常方便进行多场操纵,它有望在高密度集成的记忆元件(memory)、换能器件(transducers)及传感器(sensors)等应用领域里发挥独特的作用。关于磁电/多铁性材料的进展更加科普和富有文采的介绍建议阅读南京大学刘俊明教授blog中的"多铁复兴"专题系列: http://www.sciencenet.cn/blog/user_content.aspx?id=11974 .在这里,笔者从小处着笔,谈磁电研究的一个个细节问题,本专题将要就磁电测量中可能的假象判别逐步展开讨论,希望相关读者通过本文的阅读,在以后的工作中可以很轻松地鉴别出忽悠人的磁电测量结果,对忽悠者蓄意淡化或掩盖测量过程中见不得人的另一面而单纯突出华而不实繁花似锦的一面有能力做出客观的评价。回到题目,本专题要讨论的薄膜假象的原始动机来自于2003年的一篇Science[1],它是美国马里兰大学、Rutgers大学、加州大学和宾州大学等机构联合在Science上报道BiFeO3异质薄膜因为大应变导致的室温下的强铁磁和强铁电性的共存和耦合,声称该结果不论在实验和理论计算上都得到完全一致的结论,指出铁酸铋薄膜的高电阻特性使其有望作为高性能记忆材料的有竞争力的候选材料(BTW, 第一作者J. Wang是南京大学毕业的王峻岭)[1]。但是一段时间以后英国剑桥大学的几个研究组联合在Science上针对上述研究结果发表comment提出严厉的质疑。剑桥大学的研究组通过仔细的理论和实验研究指出铁酸铋薄膜不可能因为应变而产生强铁磁性;指出美国研究组报道的铁磁性只可能来源于杂质,而且很可能来源于二价的铁离子;同时提到因为杂质的存在,美国研究组报道的铁酸铋薄膜的电阻率将大大降低而丧失其器件上的竞争力[2]。最终美国研究组对英国研究组质疑的response承认其最初报道的主要结论存在问题,因为确实存在英国研究组指出的问题[3]。顺便说一个插曲,美、英multiferroic领域的主流学者可能是因为此而结下了怨:有一个有意思的事是今年在UCSB的一个国际性的multiferroic 2008 summer school中好像没有来自剑桥的教授代表出席……接着介绍这篇文章,笔者对剑桥大学质疑的主体抱肯定态度,只是在其对磁性测量数据的解释上笔者倾向于另一种更简单的假象解释:磁性来源于基体,而根本不是来自于薄膜,非磁性甚至抗磁性的基体在热处理过程中因为缺陷或污染的增加可引入磁性[4],一般薄膜越薄这种效应越明显,这和他们报道的不同厚度的测量结果相一致。笔者不认为磁性因为杂质是二价铁的FeOx而认为更可能是三价铁的Fe2O3,一方面是因为Bi2O3-Fe2O3相图上(如图2)显示1:1附近热力学上更稳定存在的相是BiFeO3+Bi2Fe4O9+Bi25FeO40[5],而含二价铁Fe2+的FeOx不大可能会稳定出现;另一方面FeOx不大可能为薄膜的高阻属性做贡献,因为它是半导体,从高阻的实验结果推测最可能存在的是反铁磁绝缘体氧化铁Fe2O3。[img]http://ng1.17img.cn/bbsfiles/images/2008/09/200809220235_109666_1611921_3.jpg[/img]图2 文献中报道的BiFeO3赝二元相图[5]薄膜磁性测量假象将会在后面的专题中专门叙述,这里不再作过多讨论,本专题中着重要“小题大做”来讨论的是03年这篇sciece中非常不引人注意的一小块(剑桥大学的comment中对此只字未提过),如上面图1所示,其中左部分是原文中的Fig. 4,而用红框突出的是其磁电耦合系数的测量结果,原文中对它的介绍只有非常简短的一句话,光凭其原文根本不可能挖掘到该磁电耦合效应的背后及其真正的含义是什么,为了理解这一小幅图,笔者心怀忐忑的找到了第一作者J. Wang(王峻岭)的博士论文[6],并通过其博士论文中的诚实的叙述推测磁电耦合系数的频率依赖关系(原则上频率依赖关系非常容易体现测量结果是否假象,频率越宽越有利于识别)(i) At low (Hz to kHz) frequency, the ME coefficient is small, ~0.02V/cmOe under zero bias (ii) The observed signal dramatically increases to ~3V/cmOe at a measurement frequency of 100kHz (iii) Resonance like behavior was observed as the large signal drops quickly when measurement frequency shifts away from 100kHz (downwards in our case due to instrument limitation). The nature of this resonance behavior is still unclear.根据这段叙述笔者将其发表的磁电耦合曲线的顶点处3 V/cmOe的性能转换成频率依赖关系如图1中右侧所示,从中可以看出原文中发表的数据并非磁电耦合系数,而是某个共振处的异常磁电耦合系数。由于没有更多的实验数据可供参考,笔者仅凭自己的经验认为这个100kHz处的共振峰不可能来源于薄膜,即原文中Fig. 4用一小块地方展示的3 V/cmOe这个数值不具有任何参考意义,真的不如没有它(姑且不用说3 V/cmOe除以厚度因子后的实测值也不过0.1 mV/Oe,离应用价值还很远)!诚然,在没有新的实验数据证明的情况下作任何推断都是没有最终说服力的,不过笔者依然愿意通过接下来的逐步分析展示笔者如此论断的合理之处,即便本专题不能100%的否定之,相信能为有条件有兴趣且认为值得做实验验证之的朋友提供一些可借鉴的方法和思路。为了分析异常磁电耦合系数,接下来请容笔者对磁电耦合系数的测量过程及设备做一下简介。[color=#dc143c][/color]测量假象分析系列上一个专题:[url=http://www.instrument.com.cn/bbs/shtml/20080728/1377915/]【原创】薄膜物性测量中的假象分析(2)-想说铁电很容易吗?[/url]

  • 傅立叶变换红外光谱仪的原理

    傅立叶红外光谱仪的原理是把光源发出的光,经迈克尔逊干涉仪调制成干涉光,再让干涉光照射样品,由检测器获得干涉图,由计算机把干涉图进行傅立叶变换,得到全波段吸收光谱. 傅立叶变换红外光谱仪在整个检测过程中,只有一个可动镜在实验过程中运动;它的测量波段宽,光通量大,检测灵敏度高,具有多路通过的特点,故所有频率可同时测量;它的扫描速度最快可达60次/秒,因使用调制音频测量,故杂散光不影响检测;因样品放置于分束器后测量,大量辐射由分束器阻挡,样品接受调制波,故使热效应极小;因检测器仅对调制的声频信号有反响,其自身的红外辐射不会被检测器吸收。

  • 【分享】磁性涂镀层厚度测量仪应用原理简介

    一、磁吸力原理测厚仪利用永久磁铁测头与导磁的钢材之间的吸力大小与处于这两者之间的距离成一定比例关系可测量覆层的厚度,这个距离就是覆层的厚度,所以只要覆层与基材的导磁率之差足够大,就可以进行测量。鉴于大多数工业品采用结构钢和热轧冷轧钢板冲压成形,所以磁性测厚仪应用最广。测量仪基本结构是磁钢,拉簧,标尺及自停机构。当磁钢与被测物吸合后,有一个弹簧在其后逐渐拉长,拉力逐渐增大,当拉力钢大于吸力磁钢脱离的一瞬间记录下拉力的大小即可获得覆层厚度。一般来讲,依不同的型号又不同的量程与适应场合。 在一个约350º角度内可用刻度表示0~100µm;0~1000µm;0~5mm等的覆层厚度,精度可达5%以上,能满足工业应用的一般要求。这种仪器的特点是操作简单、强固耐用、不用电源和测量前的校准,价格也较低,很适合车间作现场质量控制。 二、磁感应原理测厚仪磁感应原理是利用测头经过非铁磁覆层而流入铁基材的磁通大小来测定覆层厚度的,覆层愈厚,磁通愈小。由于是电子仪器,校准容易,可以实多种功能,扩大量程,提高精度,由于测试条件可降低许多,故比磁吸力式应用领域更广。当软铁芯上绕着线圈的测头放在被测物上后,仪器自动输出测试电流,磁通的大小影响到感应电动势的大小,仪器将该信号放大后来指示覆层厚度。早期的产品用表头指示,精度和重复性都不好,后来发展了数字显示式,电路设计也日趋完善。近年来引入微处理机技术及电子开关,稳频等最新技术,多种获专利的产品相继问世,精度有了很大的提高,达到1%,分辨率达到0.1µm,磁感应测厚仪的测头多采用软钢做导磁铁芯,线圈电流的频率不高,以降低涡流效应的影响,测头具有温度补偿功能。由于仪器已智能化,可以辨识不同的测头,配合不同的软件及自动改变测头电流和频率。 一台仪器能配合多种测头,也可以用同一台仪器。可以说,适用于工业生产及科学研究的仪器已达到了了非常实用化的阶段。利用电磁原理研制的测厚仪,原则上适用所有非导磁覆层测量,一般要求基本的磁导率达500以上。覆层材料如也是磁性的,则要求与基材的磁导率有足够大的差距(如钢上镀镍层)。磁性原理测厚仪可以应用在精确测量钢铁表面的油漆涂层,瓷、搪瓷防护层,塑料、橡胶覆层,包括镍铬在内的各种有色金属电镀层,化工石油行业的各种防腐涂层。对于感光胶片、电容器纸、塑料、聚酯等薄膜生产工业,利用测量平台或辊(钢铁制造)也可用来实现大面积上任一点的测量。

  • 【分享】同步热分析仪的优点

    同步热分析仪将热重分析 TG 与差热分析 DTA 或差示扫描量热 DSC 结合为一体,在同一次测量中利用同一样品可同步得到热重与差热信息。   相比单独的 TG 与/或 DSC 测试,具有如下显著优点:   1.消除称重量、样品均匀性、升温速率一致性、气氛压力与流量差异等因素影响,TG 与 DTA/DSC 曲线对应性更佳。   2.根据某一热效应是否对应质量变化,有助于判别该热效应所对应的物化过程(如区分熔融峰、结晶峰、相变峰与分解峰、氧化峰等)。   3.在反应温度处知道样品的当前实际质量,有利于反应热焓的准确计算。 广泛应用于陶瓷、玻璃、金属/合金、矿物、催化剂、含能材料、塑胶高分子、涂料、医药、食品等各种领域。

  • 【资料】室内电磁辐射污染与健康

    近年来关于室内电磁辐射(electromagneticradiation,EMR)对人体健康的危害引起了广泛关注,EMR包括射频(RF)辐射和极低频(50Hz)电磁场。由于RF和50Hz电磁场所含能量不足于使原子产生电离,所以又称为非电离辐射。大量的研究在不同的国家正在进行中。这里就近年来的研究进展介绍如下。室内环境的电磁场来自三个方面:①家用电器或者电子设备产生的电磁场;②室外的电磁辐射源辐射到室内的电磁辐射能;③地球上,主要由太阳和雷电活动形成的低强度、低频电磁场。在长期的进化过程中,地球上一切生命已经适应了地球本身的低强度、低频电磁场环境,能够在这种环境中生殖、生存和发展。但值得注意的是在过去的100年来,尤其是近30年来,电器和电子设备的迅速发展,大大改变了人类生存的电磁环境。研究证明,高强度EMR能通过加热机体组织对人体造成危害。严重时引起失明,不孕和其他严重的健康问题。这种由加热组织引起组织破坏的效应称为EMR的“热效应”。也有研究报道,不足以引起热效应的低强度EMR也能产生生物效应。对这种效应称为“非热效应”。

  • 【分享】电磁波的安全问题

    摘要经过50多年的研究,目前可证实有害的“非电离辐射”生物效应是热效应(高频)与电刺激(低频)。有许多关于低强度电磁波生物效应的报导,却没有一个所谓的“非热效应”能独立地被重复证实或证明是有害的。在无线电波段,除了热效应以外,没有已知的机理可以预测有害健康的效应。国际电磁波安全标准是在对健康有影响的生物效应进行评估的基础上制定的,包括了热效应和非热效应,以及短期与长期照射的结果。过去10年内有20多个独立专家组和政府健康机构发表类似世界卫生组织在2006年的声明,迄今,所有针对无线电频率场的专家评审都得出了同样的结论:低于国际非电离放射防护委员会规定暴露限值的无线电频率场暴露对人类健康没有任何危害。 随着科技的进步,电子电气产品日益普及,其中很多产品会发出电磁波。其实从第二次世界大战以后,人们对电磁波的安全性就产生了疑虑。美国军方科技人员在50年代即针对军用雷达的生物效应开展研究,60年代将注意力转到广播和电视台的强电磁波影响上;70年代初,苏联以微波照射美国大使馆被揭发,馆员的健康受到关注,加上美国开始有微波炉进入家庭厨房,对家庭主妇和儿童的健康顾虑,也加速了这方面研究的步伐;到80年代时,先是担心高压电是否会致癌,然后是警用汽车测速雷达是否引起□丸癌受到质疑;90年代以来,由于无线通信的普及,大家又开始担心使用手机、住在基站发射台附近、使用无线互联网是否会得癌症,这些问题都是推动研究的动力。尤其近年来因人们寿命的加长,癌症比例也随之上升,人人谈癌色变。从60年代开始,世界各地的科学家推荐了不同的最大可允许暴露值,以保障人身安全。但东欧国家(包括中国)与西方国家的最大可允许暴露值相差有千倍之多,因而引起了混乱和争辩。电磁波安全标准上的分歧,归结于对公共卫生标准发展有不同的认知思维、不同的科学方法和对科学数据不同的理解,以及不同国家在法规方面的考虑。全球标准不统一的事实,促成了部分人士对电磁波敏感、有电磁波恐惧症,而且使公众对电磁波暴露限值缺乏信心。从1996年以来,世界卫生组织就开始了一个国际电磁场项目,其使命之一就是要达到全世界电磁场标准的统一。

  • 【转帖】磁场冷却效应的发现者——李庆贤

    【转帖】磁场冷却效应的发现者——李庆贤

    磁场冷却效应的发现者——李庆贤[img]http://ng1.17img.cn/bbsfiles/images/2007/07/200707081315_57540_1634962_3.jpg[/img]李庆贤,物理学家、物理教育家。曾开展对磁铁矿晶体在低温下磁性的研究,首先从实验上观测到感生磁各向异性在相变点的磁场冷却效应。在建设东吴大学物理系、重建南京师范学院物理系以及培养物理人才方面做出了重大贡献。李庆贤,1902年出生于浙江省吴兴。幼年聪明好学,在家乡南浔小学学习时,成绩优异。1916年考入苏州东吴大学理科。在该大学毕业时,又以一等成绩被这所教会学校接纳为国际斐陶斐(φ.τ.Φ.)荣誉学会会员(每届1—3名),并被留校任教多年。1928年,因获得美国洛克菲勒(Rockefel1er)基金会奖学金而进入美国伊利诺伊(Illinois)大学攻读学位。在J.孔兹(Kunz)教授指导下,李庆贤研究低温下磁铁矿晶体的磁性并在1931年获得了博士学位。 低温下磁铁矿晶体磁性研究的新发现   低温下磁铁矿晶体磁性的研究是一项承前启后的创造性工作。在李庆贤之前,1929年D.外斯(Weiss)观测到四氧化三铁(Fe3O4)在-155℃时饱和磁化强度突然降低,他将此现象解释为大的磁晶各向异性引起的结果。同年,R.W.米勒(Miller)又观察到四氧化三铁的比热在-155℃以下发生急剧增大的现象。为了探讨这些现象的原因,李庆贤做了大量的精细实验。他将天然四氧化三铁单晶体研磨成(100)、(110)和(111)三种取向的圆片样品,将它们置于180—800高斯的外磁场中,他利用悬丝扭转测定法,测量了这些样品在垂直于和平行于外磁场的分量情况下,磁化强度随晶体偏转角的变化,测量是在-150℃—-170℃间进行的。他还测量了样品在室温和液态空气温度下的X射线衍射谱。从大量实验结果的仔细分析中,他作出了这样的结论:磁铁矿晶体的磁性在-155℃以上时都与室温结果相同,衍射斑点的分布也不发生改变,而在-160℃时却发生了变化。这是在他之前未被人发现,而且此前的有关磁性理论所不能解释的现象。李庆贤在其博士论文中断言:“至少从磁性的观点而言,磁铁矿石的磁对称性必定发生了变化。”   李庆贤的发现,立即引起了物理学界的注意。人们纷纷选取-160℃的温度点对磁铁矿进行其他方面的实验。在李庆贤宣布发现之后的第二年,即1932年,日本物理学家观测到四氧化三铁的电阻率的不连续变化;在其后20年又观测到它在-160℃附近有相当大的晶格形变。1947年,E.J.W.维韦(Verwey)等人提出:这些变化是由于磁铁矿中二价与三价铁离子在其所占据的八面晶位上呈有序排列引起的。1958年,维韦的观点由中子衍射从微观结构上得到证实。因此,后来将这一转变称为维韦相变或电子有序化相变。由此可见,在这一系列关于磁铁矿低温磁性的物性异常变化的研究中,李庆贤首先提出了磁对称性改变的新见解,也是首先从实验上观测到感生磁各向异性在相变点的磁场冷却效应。李庆贤的研究是在30年代初作出的,但在其后30余年仍然受到国际磁学界的重视。在60—70年代的许多磁学专著或磁学物理学著作中,都将李庆贤的发现作为一项重大成就加以叙述。日本物理学家近角聪信称李庆贤是“首先观察到磁冷却效应”的人;前苏联学者C.B.冯索夫斯基(Boнсовский)也在其著作中多处引用李庆贤的实验研究。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制