当前位置: 仪器信息网 > 行业主题 > >

质谱去高峰度蛋白方法

仪器信息网质谱去高峰度蛋白方法专题为您提供2024年最新质谱去高峰度蛋白方法价格报价、厂家品牌的相关信息, 包括质谱去高峰度蛋白方法参数、型号等,不管是国产,还是进口品牌的质谱去高峰度蛋白方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱去高峰度蛋白方法相关的耗材配件、试剂标物,还有质谱去高峰度蛋白方法相关的最新资讯、资料,以及质谱去高峰度蛋白方法相关的解决方案。

质谱去高峰度蛋白方法相关的资讯

  • 聚集质谱技术 中国科学仪器设备与试验技术发展高峰论坛
    仪器信息网讯 2012年11月2-3日,中国科学仪器设备与试验技术发展高峰论坛在北京国家会议中心举行。论坛共分光谱仪器、质谱仪器、色谱仪器和食品安全检测技术与仪器4大专题。在质谱论坛,除了邀请国内著名专家做质谱最新技术进展报告外,还组织了讨论会,各位专家针对国产质谱仪的发展提出了建设性意见。论坛由中国科学院北京科学仪器研制中心于科岐研究员主持。中国科学院北京科学仪器研制中心于科岐研究员  应邀作报告的专家有:中国医学科学院药物研究所再帕尔• 阿不力孜教授,复旦大学丁传凡教授,广州禾信分析仪器有限公司周振教授,清华大学张新荣教授,钢研纳克检测技术有限公司肖滋兰博士,军事医学科院北京蛋白质组研究中心魏开华研究员、钱小红研究员,北京普析通用仪器有限责任公司张华,岛津企业管理(中国)有限公司文艳。  中国医学科学院药物研究所 再帕尔• 阿不力孜  再帕尔• 阿不力孜教授的报告题目是:质谱技术最新进展及其发展趋势,从2012 ASMS年会看质谱技术的发展,概述了质谱技术在离子源和质量分析方面近期技术进展。在离子化技术方面,常压敞开式离子化技术,具有无需真空环境、无需复杂样品前处理、样品广泛适用于气体、液体和固体的特点,目前这类离子化技术主要有DESI、DART、ASAP、EESI、DAPCI等。一些最新的离子化技术如纸喷雾(PSI)/叶喷雾离(LSI)子化技术,PSI适合于分析肽类、蛋白质以及全血/尿中的药物,LSI适合于植物材料和活体植物的直接化学分析。高通量薄层敞开式质谱技术采用积木式构件分配、传送薄层板到离子源,其特点是易于实施、廉价,可重复利用。固体探针辅助纳喷雾离子化是将探针插入生物组织蘸取组织液,然后将探针插入负载溶剂的nanoESI毛细管进行电喷雾,该方法操作简单,适用于生物样品或组织的内部检测。另外在最新的离子化技术有热解析辅助常压敞开式离子化、激光解析喷雾离子化、空气动力辅助离子化等。  在质谱质量分析方面,基于Orbitrap技术的质量分析器,分辨率已经达到了140,000FWHM,质量范围扩展至了50-6000m/z。Citius HRT质谱采用多次反射折叠路径技术,分辨率达10,000FWHM,图谱采集速度达200张图谱/秒。另外还有小型高分辨TOF质谱、飞行距离质谱技术(DOFMS)等。质谱成像技术(IMS)也是近期研究的热点,对组织切片表面直接进行扫描和质谱分析,将获得的信号通过数据处理与图像重建技术相结合,主要有整体动物质谱成像技术、纳米结构启动质谱技术和三维质谱成像技术等。复旦大学 丁传凡  丁传凡教授的报告题目是:小型化、高通量离子阱质谱的研制。主要介绍了课题组最近几年新研发出的具有自主知识产权的三种新型线性离子阱:基于陶瓷材料的矩形离子阱、栅网电极离子阱和离子阱阵列。研究结果显示,陶瓷材料的矩形离子阱被证实具有优异分析性能,栅网电极离子阱具有更高的离子引出效率,离子阱阵列具备多个样品同时分析能力,在离子阱仪器的小型化和通量领域具有强大的潜力。钢研纳克检测技术有限公司 肖滋兰  肖滋兰博士报告了“ICP-MS技术新进展和钢铁行业需求分析”。冶金和材料分析面临的三大问题:原位定量分布分析 复杂体系痕量元素分析和冶金工艺现场在线分析。针对这些问题,大致可以将在冶金和材料工业中的常用的质谱分以下几类:成分分布分析,状态分析-ICPMS和GDMS 痕量分析ICPMS-冶金分析与飞行时间质谱联用 质量控制在线分析-熔融释放与飞行时间质谱联用仪。ICPMS技术近期的新进展主要有Agilent 8800Triple Quadrupole ICPMS Bruker Aurora M90,采用了90度偏转离子透镜系统,双重离轴四极杆 PerkinElmer NexION 300,采用了四极杆离子偏转装置 Thermo fisher iCap-Q采用了RAPID透镜系统以及Qcell技术。此外The Nu instrument、Spectro、DVS Science也有技术革新产品。广州禾信分析仪器有限公司 周振  周振教授报告的题目是:飞行时间质谱仪器及产业生态认识。周振教授详细分析了质谱仪器技术的整个生态圈,质谱技术上下游产业链,维持产业链运转的的营养源,以及行业的竞争态势等。在这个生态圈,有一些问题需要考虑:国家是否支持,或者能够持续支持?国内质谱技术团队能够坚持下来的有几个?在仪器人才培养方面,工程系培养了多少仪器人才?上游的核心技术由谁在掌握?做质谱仪器不是简单的做一台样机出来,是一个过程,至少要解决产业化、产业链、批量生产、涉足高端、能够出口、研发各种质谱等问题。“做中国人的质谱仪器”是基于多方面的战略考虑,当国内涌现出一批本土的专业质谱公司,并且至少有公司能够进入世界前10名,这个口号才会过时。清华大学 张新荣  张新荣教授在将ICPMS用于有机分析领域做了很多开拓性的工作,从早期的我国海产品中砷含量的调查,到免疫分析和近期的ICPMS单细胞分析方法研究。关于ICPMS在有机分析领域,张新荣教授做了如下总结:在元素形态分析领域,难以区分元素在有机和生物分子的存在形态 在蛋白质组学研究中很有意义 在免疫分析领域能在蛋白质分析中发挥作用 在DNA分析领域,能在基因分析中发挥作用 在生物组织的成像研究领域是一个值得关注的新的研究方向。军事医学科院北京蛋白质组研究中心 魏开华  魏开华研究员的报告题目是质谱技术在蛋白质检测中的热点与难点,内容涉及蛋白质复杂二硫键分析,蛋白质PEG修饰分析,蛋白质降解分析和体内蛋白定量新方法。蛋白药物的热点和结构分析难点主要有几个方面:特殊修饰长效蛋白,如高糖基化修饰,国内已经有多家药企正在开展 PEG修饰蛋白,国内已有多个成熟的蛋白药被PEG化,一些新的PEG化方案和试剂正在发展 蛋白药物体内定量,是药物临床前评价中必须内,长期以来都是放射标记为主体。军事医学科院北京蛋白质组研究中心 钱小红  钱小红研究员的报告题目是质谱技术在蛋白质组学中的应用。报告中提到能否用质谱峰的信号强度对蛋白质直接定量?影响质谱强度的因素:离子化效率和基质效应等,不同的化合物的离子化效率不同,相同的化合物在不同基质条件下离子化效率也可能不同。北京普析通用仪器有限责任公司 张华  张华的报告题目是:质谱仪器的数学物理方法,报告主要内容涉及二阶递推数列 拉普拉斯方程平均值定理 拉普拉斯方程解的线性性质 新型的Orbitrap设计。岛津企业管理(中国)有限公司 文艳  文艳的报告题目是:超快速液质助力食品安全检测。食品安全检测面临的挑战主要有:日益严格的农残、兽残检测标准、越来越多的农药种类和已知农药的类似物。针对这些需要解决的问题,岛津系列液质LCMS-8030、LCMS-8040、LCMS-8080可以胜任。岛津超快速液相Nexera 30A耐压130MPa,填料直径可达1.6微米,进样速度最小10s。LCMS-8040结合岛津的UFsweeper碰撞池技术,高精四极杆性能和独特的高压电源技术,可以进行超快的MRM离子对采集,最高达555MRM/sec LCMS-8040具有最快15ms的正负极性切换和小于1ms的超快速离子响应能力显著提升分析能力。
  • 基于离子淌度质谱对完整蛋白质形态进行非标记定量
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Improved Label-Free Quantification of Intact Proteoforms Using Field Asymmetric Ion Mobility Spectrometry [1],文章的通讯作者是美国俄克拉荷马大学的Luca Fornelli教授。完整proteoforms的非标记高通量定量方法的应用对象通常为从整个细胞或组织裂解物中提取的0 - 30 kDa质量范围内蛋白质。然而当前,即使通过高效液相色谱或毛细管电泳实现了proteoforms的高分辨率分离,可鉴定和定量的proteoforms的数量也不可避免地受到固有的样品复杂性的限制。近年来,随着质谱技术的发展,自上而下蛋白质组学质谱(top-down proteomics)研究中蛋白质的鉴定数量大大提升,生成了包含数万种proteoforms的数据集,但在proteoforms的量化能力方面并没有得到相应的性能提升。为克服这一问题,本文中作者通过应用场不对称离子迁移谱法(Field asymmetric ion mobility spectrometry, FAIMS)对大肠杆菌中的proteoforms进行了非标记定量。由此产生的改进允许在单次LC-MS实验中采用多个FAIMS补偿电压(Compensation voltages, C.V.),而不会增加整个数据采集周期。与传统的非标记定量实验相比,FAIMS的应用在不影响定量准确性的情况下,大大增加了鉴定和定量的proteoforms数量。首先,作者优化了质谱stepped-C.V.数据采集方法对Orbitrap Eclipse性能的影响,并从中筛选出了最优条件(−40、−20、0 V组合)。所有最新的基于Orbitrap的质谱仪(包括Exploris platform和Orbitrap Ascend)都可以采用single time-domain transients(即单次微扫描)在top down FTMS实验中生成高质量的质谱图。作者认为这对于在单次LC - MS2运行期间应用多个C.V.值的采集策略特别有益。接下来,作者应用该方法对大肠杆菌中的蛋白质进行了检测,并与传统的LC - MS2 DDA采集方法进行了比较(图1)。如图所示,每个C.V.值下的总离子流图都不同,且这一额外的分离导致在LB(Luria broth)和M9(醋酸钠处理)样品中鉴定到的proteoforms的数量显著提升。  图1. 样本制备方法和proteoforms鉴定结果总结虽然在LC-FAIMS和LC-only数据集中,大多数鉴定到的proteoforms质量都小于15 kDa,但其中约20%的质量大于18 kDa甚至高达33.3 kDa(图2)。对已鉴定的proteoforms列表的深入分析表明,达到鉴定低丰度proteoforms的关键参数之一是在串联质谱(MS2)中有足够的时间注入离子。  图2. A. FAIMS和非FAIMS鉴定到的proteoforms的质量分布。B. 鉴定到的proteoforms与注射时间之间的关系。最后,作者采用ProSight PD v 4.2 (Proteineous, Inc)进行了基于MS1的非标定量,结果显示基于FAIMS的数据集在LB样品(蓝色)和M9样品中检测到的差异表达的proteoforms均有所增加(图3)。作者评估了两个数据集之间的差异(使用和不使用FAIMS采集数据),以验证FAIMS的应用是否会对量化准确性产生不利影响,结果只有1个proteoform显示相互矛盾的丰度趋势。这种差异是由于该蛋白和一个共流出蛋白之间质谱峰几乎完全重叠造成的。它们具有非常接近的单同位素质量,这样高水平的信号干扰可以很容易地干扰基于MS1的量化。启用FAIMS可以使MS1谱图简化,因为两种proteoforms可以富集在两种不同的C.V. 值下。  图3. 大肠杆菌proteoforms无标记定量结果分析。作者将LC - FAIMS - MS2数据集与通过BUP在类似样品上获得的非标定量结果进行比较,得出两个主要的结论:1. BUP仍然对蛋白质组提供了更深层次的定量表征 2. BUP提供了与单个基因相关的所有产物的整体丰度水平信息 而TDP方法表明,给定的UniProt accession可以由多个差异表达的proteoforms组成,可能具有不同的行为(即在给定条件下,一些被上调,另一些被下调)。这一额外的信息可能具有潜在的生物学意义,但在基于BUP的定量分析中可能会被遗漏。本文描述的基于FAIMS的定量数据采集方法与PEPPI(Passively eluting proteins from polyacrylamide gels as intact species)蛋白分离技术完全兼容,产生0 - 30 kDa的组分,并且可以方便地根据待分析蛋白的平均质量调整质谱参数(C.V.值),未来在更大的蛋白质定量方面具有广阔的应用前景。  撰稿:张颖  编辑:李惠琳  原文:Kline JT, Belford MW, Huang J, Greer JB, Bergen D, Fellers RT, Greer SM, Horn DM, Zabrouskov V, Huguet R, Boeser CL, Durbin KR, Fornelli L. Improved Label-Free Quantification of Intact Proteoforms Using Field Asymmetric Ion Mobility Spectrometry. Anal Chem. 2023 Jun 13 95(23):9090-9096.  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  1.Kline JT, Belford MW, Huang J, Greer JB, Bergen D, Fellers RT, Greer SM, Horn DM, Zabrouskov V, Huguet R, Boeser CL, Durbin KR, Fornelli L. Improved Label-Free Quantification of Intact Proteoforms Using Field Asymmetric Ion Mobility Spectrometry. Anal Chem. 2023 Jun 13 95(23):9090-9096.
  • 复旦大学杨芃原团队建立糖蛋白质/糖链质谱定量新方法
    糖是组成生命体的四大类重要分子之一,糖蛋白质是由糖链与肽链中的特定氨基酸残基以糖苷键共价连接而成的蛋白质。糖蛋白质普遍存在于生物体内,在很多生命过程中起着重要作用,如蛋白质的折叠、细胞之间的相互识别、炎症反应等。同时,糖基化修饰在疾病中,特别是肿瘤的发生、发展和转移过程中也起到重要作用,许多疾病诊断标志物及治疗的靶标都是糖蛋白质。糖蛋白质组学和糖组学的研究具有重要的科学意义。以基质辅助激光解吸电离质谱(MALDI-MS)和电喷雾质谱(ESI-MS)为代表的生物质谱技术,因具有快速、灵敏、可提供结构信息等优点,已成为糖蛋白质组和糖组分析的重要工具。  由复旦大学杨芃原教授团队撰写的综述文章“质谱技术在糖蛋白质组学与糖组学方面的研究进展”发表于2016年第3期的《国家科学评论》。这篇综述论文系统介绍了近年来以质谱为核心的糖蛋白质组和糖组的研究策略和方法,以及该领域重要的生物和临床发现。重点讨论了国内糖蛋白质组学和糖组学研究团队在糖蛋白质和糖链的分离富集、糖链的衍生,糖链和糖蛋白质的质谱碎裂技术,糖链及糖蛋白质序列组成分析的软件技术等方面的进展,并分析了基于质谱技术的糖蛋白质组和糖组研究的关键问题,展望了该领域未来的发展趋势。  杨芃原教授团队在基于质谱的糖蛋白质组学和糖组学方面展开了系统的研究。他们发展了一系列糖蛋白质/糖链富集和质谱定性的新方法,建立了基于复合纳米材料的富集新方法,基于新的共价反应的富集新策略,以及基于协同富集思路的富集新流程 建立了一系列糖蛋白质/糖链的质谱定量新方法,提出了酶促去糖链过程中的标记定量新方法和糖蛋白质组在蛋白质水平、糖基化程度水平及糖链水平的同时定量新方法等 开发了高通量糖蛋白质质谱检索的新算法等。这些工作提升了中国糖蛋白质组学和糖组学的研究水平,为糖蛋白质组学和糖组学研究提供了新的研究方法。
  • ESI Q-TOF质谱分析PEG化蛋白药物方法简介
    贾伟沃特世科技(上海)有限公司实验中心 PEG修饰蛋白及多肽类药物后,可在不产生毒性、不损害药效的情况下,通过增加蛋白类药物的溶解性、减少免疫原性、增加稳定性、延长体内药物半衰期等功效增强大分子药物的疗效。PEG的这种功效在1970年代后期被发现,到了1990年PEG化修饰的Adagen被美国FDA批准,至今已有若干个PEG修饰的大分子药物上市销售,这些药物在癌症、肝炎、痛风、糖尿病等疾病治疗中为患者带来了福音。 明确PEG修饰位点、确定修饰位点的数量、以及表征PEG的聚合度分布性是PEG化大分子药物运用于临床前以及药品质量监控必须且非常重要的工作。由于PEG的高分子聚合物性质,由PEG修饰后的蛋白及多肽的结构变得极为复杂。在早期对其进行质谱分析,特别是对PEG的聚合度分布性分析方面,多使用MALDI离子源类型的质谱。这是因为MALDI源离子化的样品,所带电荷数较少(单电荷离子居多),因此其质谱图相对简单;而通过ESI源离子化的样品将携带多个电荷,这使离子信号复杂,致使其质谱图谱较难解析。随着LC-ESI技术的发展, 美国Indiana大学的Lihua Huang等学者通过在色谱分析柱后加胺的技术,使样品的ESI离子化时的荷电数适当减少,从而使PEG化样品的ESI图谱得到高效的解析[1]。而MALDI TOF类质谱由于质谱分辨率的限制(目前MALDI TOF分辨率在8万内),面对分子量动辄十几万甚至更高的PEG化蛋白,其可获得的数据质量较差,因而MALDI方法可得到的PEG化蛋白的有效结构信息非常有限。 Lihua Huang等学者进一步开发了ESI Q-TOF分析PEG化蛋白的修饰位点的质谱方法[2]。这种方法包括源内裂解(ISF,In Source Fragmentation)与二级质谱(MS/MS)两个步骤。在第一步ISF过程中,PEG化多肽的PEG部分被裂解而变短;在第二步MS/MS过程中,多肽被打碎产生b、y离子碎片。通过分析携带缩短的PEG链的b、y离子信息,最终得出确切的PEG化修饰位点。ISF与MS/MS为什么可以分别 &ldquo 选择&rdquo 碎裂PEG化多肽的PEG与多肽两个部分呢?推测与PEG化多肽的电荷分布有关。在PEG化多肽的离子化过程中,PEG的醚键附着了大量的H+,并在ISF下完全断裂,而使冗长的P EG链缩短到一两个单位大小。之后的MS/MS过程中,由于缩短的PEG链已无H+附着不再断裂。而多肽在MS/MS中获得了碎裂的机会,并产生携带&ldquo PEG短标签&rdquo 的b、y离子碎片。论文中,研究人员运用此方法成功地分析了IgG4与胰高血糖素的PEG修饰位点。 参考文献(1) Huang L, Gough PC, Defelippis MR. Characterization of Poly(ethylene glycol) and PEGylated Products by LC/MS with Postcolumn Addition of Amines. Anal Chem. 2009, 81, 567-577.(2) Lu X, Gough PC, DeFelippis MR, Huang L. Elucidation of PEGylation site with a combined approach of in-source fragmentation and CID MS/MS. J Am Soc Mass Spectrom. 2010, 21, 810-818
  • 精彩回顾 | 禾信仪器亮相广西质谱技术及生物毒素检测高峰论坛
    7月21日,广西质谱技术及生物毒素检测高峰论坛在南宁举行,本次论坛由广西分析测试协会主办,广西产研院新型功能材料研究所下属检测公司(下称“功能材料所检测公司”)协办,与质谱行业巨头沃特世公司、广州华培实验设备有限公司、广州禾信仪器股份有限公司等区内外优秀企业,共同呈现了一场高规格的交流盛宴。质谱技术与应用方面的专家学者、质谱厂商代表及相关用户共200余人参会。 本次论坛围绕质谱新技术引领、食品中有机污染物检测新方法研究等主题作了十余项精彩报告,针对用户实验中遇到的常见问题展开研讨,以互动式答疑提供解决方案。质谱生产厂商也带来最新的产品与技术,现场展示了先进仪器设备的使用。会议促进了医科大学、检测中心、研究机构、质谱仪器企业和用户之间更好的沟通和交流。 禾信仪器在论坛上展开了关于《复杂体系样品中有机物的非靶向分析》的报告。复杂样品体系涵盖环境、材料、代谢组学、食品与天然产物(中药)、香精香料、石油化工等方面,因其具有化合物众多、共流出严重、基质复杂、干扰严重等特征,所以对检测仪器的定性和定量能力提出了更高的要求。全二维气相色谱GGT 0620禾信仪器自主研发的GGT 0620是一款集合全二维气相色谱仪和飞行时间质谱仪以及全自动智能化前处理平台为一体的可有效应用于复杂样品精准定性定量的分析系统,具有极强的色谱分离能力和极灵敏的质谱分析能力。检测物种更全: 峰容量较一维GC-MS方法提高10倍以上,一次进样可分离并检测出上千种物质;灵敏度提高5-10倍,痕量物质不漏检。定性结果更精准: 飞行时间质谱超快采集速度全谱采集,500谱/s(同类产品最高),确保超窄色谱峰的完整呈现,提高检测准确性;可结合双检测器,实现定性定量同时分析。适用场景更广:使用新型固态热调制器,无需使用制冷剂,体积小巧,即插即用,操作简单,使用场景可从实验室扩展到车载、现场在线监测。数据处理更智能: 海量数据自动处理,分类、对比、鉴定,极大提高效率;集成化的采集操作软件,操作简单;可满足定制化需求,支持在线处理模块定制、电离源定制。2021年4月19日,GGT 0620凭借出色的性能品质、广泛的应用脱颖而出,成功入选《2020年广东省名优高新技术产品名单》。气相色谱质谱联用仪GCMS 2000禾信仪器推出的便携式气相色谱质谱联用仪GCMS 2000在会上也吸引了众多专家的目光。仪器将低热容快速气相色谱技术和先进的线形离子阱质量分析器技术相结合,充分发挥了色谱分离效率高和质谱定性能力强的优势,能够快速地对事故现场的有机污染物进行准确定性和定量检测。精准:内标校正,可实现固液气多种基质、浓度从PPT至PPM的样品检测,准确分析上百种挥发性有机物。快启:冷启动15min进入检测状态,单次分析时间小于4min,现场直接得到定性定量结果。持久:连续监测达2小时以上,待机4小时以上;支持在线更换电池,无需关机。便携:可单人携带,无需外部电气供给,移动性强。会议期间,禾信仪器展位人气满满,吸引不少客户和经销商对禾信仪器的产品进行咨询和了解。创新发展赢未来,分析科学承担当。科学仪器是高端制造业和工业的基础支撑,也是科研技术水平的体现。在本次研讨会中,大家围绕质谱探讨生物毒素的最新检测技术,碰撞出不同的思维火花。
  • 李灵军团队新成果:CIU与AIU两种去折叠方法在蛋白质构象表征中的比较研究
    大家好,本周为大家分享一篇发表在Journal of the American Society for Mass Spectrometry上的文章,Comparing Selected-Ion Collision Induced Unfolding with All Ion Unfolding Methods for Comprehensive Protein Conformational Characterization ,文章的通讯作者是美国威斯康星大学的李灵军教授和南开大学的李功玉教授。近年来,离子迁移质谱(Ion mobility−mass spectrometry, IM−MS)不断发展,成为了探究生物分子结构和稳定性的有力工具。IM-MS实验中测量得到的漂移时间可以转换为与分析物的大小或形态相对应的碰撞截面值(CCS)。碰撞诱导去折叠(collision-induced unfolding, CIU)通过将碰撞能量(CE)应用于气相分析物,研究其在去折叠过程中CCS值的变化,从而提供更多的结构细节。尽管电荷分离的CCS分布代表了气相中丰富的结构信息,但预测具有最接近native状态结构的蛋白质离子电荷态仍然存在困难。另一种方法是记录所有蛋白质电荷状态的四极杆无选择全离子去折叠方法(all ion unfolding, AIU)。如图1所示,本文中作者首先比较了四极杆选择对去折叠的影响及其产生的数据质量。然后,作者引入了一种CCS积累方法,用一个新的CCS参数——CCSacc(accumulated CCS)进行去折叠数据解析,该参数对所有观察到的电荷状态的数据进行汇总,以更好地区分气相中蛋白的结构和构象。作者发现,使用这种CCSacc方法生成的去折叠差异图更稳健,对nESI过程中产生的蛋白质电荷状态的变化具有更高的耐受性。此外,作者观察到用于比较的整体信号强度的增加,使去折叠指纹图谱质量得到改善。另外,这种CCSacc方法保留了电荷分离的CIU信息,也可以按需提取。图1.AIU和CIU工作流程比较图2a展示在不同的碰撞电压下,HSA的CCSacc的分布。CCSacc是综合的气相离子特征,以红色表示。通过CCSacc特征可以分析每个离子对结构的贡献,有助于全面了解现有的HSA结构异质性。通过计算HSA的CCSacc数据可以创建一个新的去折叠指纹图谱,将其与HSA的两种主要电荷态进行比较(图2c)发现,如果只分析单个电荷状态数据,而不将收集到的所有信息合并,就会导致信息丢失。CIU50值揭示的构象稳定性信息也显示了累积指纹图谱与单电荷态指纹图谱的差异,进一步强调了考虑所有电荷态结构信息的必要性。(图3)图2.CCSacc结构分析AIU指纹图谱结合CCSacc数据处理可以更全面地阐明蛋白质变体之间的构象差异。为了证明这一点,作者获取了BSA和HSA的AIU数据,然后提取CCSacc数据,用CIUSuite软件进行定量分析。总的来看,基于CIU50的构象稳定性比较和基于RMSD的整体去折叠指纹图谱比较都清楚地表明,AIU和CCS的累积能够提供更全面的结构信息,并对生物相似性蛋白的细微结构差异进行全面表征。图3.利用CCSacc全面比较HSA和BSA结构最后,作者将CCSacc应用于唾液化的糖蛋白bovine transferrin(bTF),快速分析糖基化对蛋白质结构的影响。图4a显示了bTF的非变性质谱图以及相应的漂移时间热图。先前的糖链研究证明,转铁蛋白是一种具有多种糖型的异质性蛋白,作者的非变性质谱数据(图4a)也明确支持多种糖型的存在。接下来,作者在AIU操作模式下追踪bTF的逐步去折叠行为(图4b-e)。图4f展示了通过CCSacc获得的累积去折叠指纹图谱。可以清楚地观察到,四种不同的构象主导了bTF去折叠过程。CCSacc弥补了不同离子种类观察到的结构差异。此外,构象特征CCS分析和相应的基于CIU50的稳定性分析表明,CCSacc主导的数据与传统CIU分析中常用的最丰富的电荷态所得数据不匹配。这些差异应该主要源于离子种类的贡献,而不是最丰富的离子种类,结果突出了在溶液中使用单一电荷态作为整个蛋白质种类的结构特征时存在的潜在偏差和/或结构损失。图4.通过CCSacc探究唾液酸化糖蛋白的结构CCSacc策略可以更好地维持蛋白质的天然构象,并降低由于仪器条件或溶液中蛋白质电荷态变化造成的影响。在提高去折叠指纹图谱的信噪比并丰富拓扑结构信息的情况下,该策略可以得到更广泛的应用。参考文献:Ashley Phetsanthad, Gongyu Li, Chae Kyung Jeon, et al. Comparing Selected-Ion Collision Induced Unfolding with All Ion Unfolding Methods for Comprehensive Protein Conformational Characterization. Journal of the American Society for Mass Spectrometry, 2022.
  • 生命科学谱聚医疗「质谱仪器研发及临床应用新进展高峰论坛」成功
    谱聚医疗.谱聚医疗是专注于临床质谱学医学应用的高科技企业,主要从事质谱仪、质谱试剂盒研发、生产、销售的服务。盛况直击News5月19日,谱聚医疗主办的质谱仪器研发及临床应用新进展高峰论坛(简称“高峰论坛”)在杭州西子湖畔顺利召开。高峰论坛线下会议现场关于质谱自1912年英国物理学家Joseph John Thomson研制出世界上第-一台质谱仪开始已逾百年,质谱检测技术因高特异性、高灵敏性和多组分同时检测、开发灵活等优点,受到人们的广泛关注。近年来,已经成为临床实验室检测技术的重要组成部分。会议概要此次高峰论坛采用线上线下同步直播形式进行,国内多位仪器研发及临床检测领域的知名专家在线下与云端共聚一堂,基于临床质谱的研发及应用这一背景,围绕“全自主知识产权质谱研发、质谱在临床激素检测应用、临床质谱应用发展和质谱在TDM中的应用”等热点问题,展开深入交流,探讨了质谱仪器研发及临床应用的最-新进展。高峰论坛会议线上直播本次论坛邀请到了复旦大学附属中山医院、遵义医科大学、浙江大学医学院附属第-一医院、浙江大学医学院邵逸夫医院、浙江大学医学院附属杭州市第-一人民医院、上海市临床检验中心、西北大学附属第-一医院、山东大学第二医院和南昌大学第一附属医院等在内的十余个单位的专家,围绕质谱仪器研发及临床应用的最-新进展展开讨论,为大家带来了精彩纷呈的论坛内容,高峰论坛线上线下吸引超过2500人次行业内人员参与观看。会议回顾浙江大学医学院附属邵逸夫医院的张钧教授作为高峰论坛的大会主席兼主持人。高峰论坛在张教授热情洋溢的致辞中盛大开场,张钧教授说到:质谱仪应用于临床检验市场,其技术具有非常特殊的优势,未来在临床生化检验、临床免疫学检验、临床微生物检验以及临床分子生物诊断等多领域对传统诊断方法进行替代。国内对临床质谱的产业的不断加大投入,一批如谱聚医疗为代表的国内企业在一些关键技术瓶颈的逐步突破,相信质谱在临床检验领域的应用前景会越来越好。高峰论坛主席兼主持张钧教授致辞作为大会主办方专家,谱聚医疗总经理俞晓峰先生分享了目前国内全自主知识产权质谱仪器研发的最-新进展,详细介绍了谱聚医疗作为国内临床质谱仪器研发制造头部厂商的核心技术优势,并展示了谱聚医疗最-新一代产品液相色谱串联质谱检测系统 PreMed 5200。这款产品的发布是谱聚医疗实现三重四极杆串联质谱系统的国产化和产业化的重大突破,彻底打破了国外液相色谱串联质谱厂商对国内医疗行业的垄断。谱聚医疗总经理俞晓峰浙江大学医学院附属杭州市第-一人民医院副院长林能明教授的报告介绍了质谱在TDM中应用,报告中,林能明教授对TDM(治疗药物监测)进行了系统介绍,并从实际案例出发,介绍了质谱技术在TDM临床中发挥的巨大影响力。浙江大学医学院附属杭州市第-一人民医院林能明教授复旦大学附属中山医院的郭玮教授和遵义医科大学的鄢盛恺教授分别就质谱技术检测激素在临床中应用和我国临床质谱检测系统及量值溯源的现状和发展进行了精彩的报告。郭玮教授从激素检测的原理到临床质谱在激素检测的应用和优势做了详细的报告,并重点介绍了中山医院应用LC-MS检测激素的成功经验,郭教授指出:“LC-MS进入临床检验引领了21世纪的医学检验方法学革-命。”最-后郭教授总结了中山医院在LC-MS检测临床应用的挑战与实践经验。复旦大学附属中山医院郭玮教授鄢教授报告系统的回顾了临床质谱的发展历程,应用场景的现实需求和国内相关质谱制造的基本情况。深入浅出地介绍质谱技术及其临床应用、我国商品化质谱分析仪与配套检测试剂及其质量评价方法,同时对该领域的量值溯源情况(包括参考方法和参考物质)进行简要总结。最-后,鄢教授对像谱聚医疗这样以质谱仪器为核心的,国产质谱产业化单位给予了很大的期望,期望谱聚这样的企业在全自主知识产权质谱仪器的研发和制造上做出更大的突破。遵义医科大学的鄢盛恺教授高峰论坛的现场不仅有上述专家的精彩报告,还有一大批高水平点评专家的头脑风暴。上海市临床检验中心参考实验室李卿副主任、西北大学附属第-一医院赵雅教授、浙江大学医学院附属邵逸夫医院的于海涛博士、谱聚医疗资-深产品经理杨继伟高级工程师、浙江大学医学院附属第-一医院的黄鑫老师和南昌大学第-一附属医院的肖雄博士等一大批专家学者做出了精彩绝伦的点评发言,现场和线上的观众都获益匪浅。谱聚医疗作为临床质谱领域内的重-要参与者,旨在能够提供普惠大众的临床质谱技术,让人民更健康。谱聚医疗邀请众多专家共聚此次盛会,探讨临床质谱研发及应用的最新进展,期望促进国产临床质谱的繁荣发展。正如各位专家所言,在高科技领域拥有全自主知识产权的完整产业链是一件殊为不易的事,在质谱研发制造等尖-端科技领域更是更加困难,但是以谱聚医疗为代表的国内质谱厂商的出现,让我们对于拥有全自主知识产权的质谱开始报有巨大的期待,并愿意为国产质谱的发展提供最大的支持。
  • 布鲁克:基于捕集型离子淌度质谱的4D-蛋白质组学
    p style="text-align: left background: rgb(255, 255, 255) margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "蛋白质组学是对复杂生物样品中蛋白质结构和功能的大规模系统性研究,生物样本的高复杂性和不均一性为蛋白质组学研究带来了极大挑战。近年来,离子淌度与高分辨质谱的联合使用,使得蛋白质组学进入了4D新时代。4D-蛋白质组学是指在3D分离即保留时间(retention time)、质荷比(m/z)、离子强度(intensity)这三个维度的基础之上,增加了第四个维度--离子淌度(mobility),根据离子的形态、大小进行分离(图1)。/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 305px " src="https://img1.17img.cn/17img/images/202007/uepic/7b2a33cb-0815-40c6-b214-afc66996233a.jpg" title="图片1.png" alt="图片1.png" width="600" height="305" border="0" vspace="0"//pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-align: center text-indent: 0em "图1. 新一代4D-蛋白质组学示意图/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "布鲁克推出的基于timsTOF Pro的4D-蛋白组学平台,采用了创新的TIMS(Trapped Ion Mobility Spectrometry,捕集离子淌度)技术和PASEF(Parallel Accumulation Serial Fragmentation,平行累积连续碎裂)采集模式(图2)。捕集型离子淌度TIMS是指离子在气流的推动下向前运动,将离子按大小和形状分开,在离子运动的反方向施加电场,阻滞离子的运动,将离子trap在特定的位置,然后逐渐降低电场,将离子由大到小逐个释放。timsTOF Pro使用了双TIMS结构,具有独特的PASEF扫描模式,离子在第一个TIMS部分中进行累积并聚焦,然后传输到第二个TIMS中,进行淌度分离和释放;同时第一段TIMS会重新进行新一批离子的累积;并且,四级杆对母离子的选择、碰撞池对离子的碎裂与TIMS中离子的释放同步进行,实现快速、高效的二级采集。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 600px height: 279px " src="https://img1.17img.cn/17img/images/202007/uepic/60853c3f-0b18-48df-8afc-114acc2bc4ab.jpg" title="图片2.png" alt="图片2.png" width="600" height="279" border="0" vspace="0"//pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center "图2. timsTOF Pro的结构示意图/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "基于timsTOF Pro的4D-蛋白组学平台,具有鉴定深度、定量准确性、检测速度、仪器稳定性等性能的全面提升:/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "· 具有色谱保留时间、离子淌度、质荷比、谱峰强度4维信息,显著提高对复杂样本的分离能力和谱图质量,促进了共流出组分的同分异构体区分;/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "· 创新双TIMS设计,使离子的累积和淌度分离同步进行,带来近100%的Duty Cycle;/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "· 离子碰撞截面积(CCS)值的准确、高重现性测量;/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "· 灵敏度的革命性提升,适合微量样本的组学分析;/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "· 超过100 Hz二级扫描速度;/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "· 超级稳定的整体设计,能够保证长时间连续样本测试的稳定性,耐用性,易维护。span style="text-indent: 2em " /span/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "基于timsTOF Pro的4D-蛋白组学平台不仅适合于蛋白质组的深度鉴定、定量分析,还适合于翻译后修饰的精准研究,临床大队列样本的快速检测,微量样本甚至单细胞蛋白质组研究、蛋白质复合体交联分析等。该平台发布两年多以来,已经得到越来越多的蛋白组学研究团队认可并开始使用此革命性技术,一方面,是因为过去两年多已经有大量的数据证明,timsTOF Pro的采集速度和灵敏度的同时提升大大突破了蛋白组学研究现有瓶颈,这提高了基础蛋白组学研究的水平;另一方面,timsTOF Pro灵敏度和扫描速度上的独特优势,意味着所以可以用更低的进样量和更短的色谱梯度鉴定到更多的蛋白,同时离子淌度的引入,更是大幅提高了数据的完整性和谱图的归属性,这些特点对基础蛋白组学研究向临床蛋白组学应用的转化至关重要。/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "span style="color: rgb(79, 129, 189) "strong4D-蛋白质组学技术提高蛋白和多肽覆盖深度/strong/span/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "strong基于质谱技术的蛋白质组学研究方法在生命科学研究的各个领域都取得了傲人的成果,但由于蛋白质组学样本的自身复杂性(蛋白丰度的动态范围 106)和目前质谱仪采集速度和灵敏度的局限性,低丰度蛋白鉴定异常困难,这让深度覆盖蛋白组学面临着巨大的挑战,提高蛋白质组学覆盖深度一直是科研工作者努力的方向之一。/strong/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "4D组学质谱平台timsTOF Pro的出现,让蛋白组学技术产生了革命性的变化,timsTOF Pro采用双TIMS结构,并采用独特的PASEF扫描模式,可以提供超过100 Hz的MSMS扫描速度,能使二级采集速度和灵敏度同时提高,这个特性可以完美应对传统质谱在采集速度和灵敏度方面的挑战。timsTOF Pro出色的灵敏度,只需要传统分析十分之一的进样量,就可以得到更好的鉴定深度(图3),这让timsTOF Pro更加适合生物标志物研究、药物发现、临床蛋白组学研究和单细胞蛋白组学等这些样本量通常会比较少的应用。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 600px height: 258px " src="https://img1.17img.cn/17img/images/202007/uepic/c49572a1-0f8c-4b8e-ad7e-510ac1369573.jpg" title="图片3.png" alt="图片3.png" width="600" height="258" border="0" vspace="0"//pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center "图3. timsTOF Pro的蛋白水平和多肽水平深度覆盖/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "span style="color: rgb(79, 129, 189) "strong4D-蛋白质组学技术带来更精确的翻译后修饰组学研究/strong/span/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "蛋白质翻译后修饰(如磷酸化、糖基化、甲基化、乙酰化和泛素化等)通过动态调控蛋白的结构和功能,参与信号传导、基因表达、物质代谢等多种生命活动,成为了科研工作的关注焦点。近年来,随着样品制备手段和质谱技术的快速发展,翻译后修饰的研究方法不断涌现。/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "传统的质谱分析技术在蛋白质翻译后修饰研究中常面临着巨大的挑战:/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "· 蛋白质的翻译后修饰在样本中含量低且动态范围广;/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "· 应用于蛋白质翻译后修饰的研究策略主要还是基于鸟枪法的蛋白组学,酶切极大提高了样本复杂度;/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "· 由修饰位点不同带来的同分异构多肽会在色谱上存在严重的共洗脱问题,而这些同分异构肽段在传统蛋白组学质谱平台上不能得到有效分离。/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "由于翻译后修饰分布广泛且含量较低,往往需要进行修饰肽段的富集,所得到的样本量较少,需要灵敏度更高的仪器进行检测;此外,翻译后修饰位点、修饰类型的确认,对于蛋白功能的解析至关重要。布鲁克推出的4D-蛋白组学平台timsTOF Pro,提高了峰容量和修饰位点异构鉴定的可信度,具有大于100Hz的扫描速度和优越的灵敏度,显著提高了翻译后修饰的鉴定深度和位点鉴定的准确性(图4)。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 600px height: 265px " src="https://img1.17img.cn/17img/images/202007/uepic/5bfed120-716a-48f7-b0e9-9801dd628a74.jpg" title="图片4.png" alt="图片4.png" width="600" height="265" border="0" vspace="0"//pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em "图4. 磷酸化组学分析。A. 50-100 ug起始蛋白量进行IMAC富集,采用不同色谱梯度,单针分析磷酸化多肽鉴定数目。B. 离子淌度可以准确区分修饰位点异构,提高修饰鉴定和定量的可靠性。/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "span style="color: rgb(79, 129, 189) "strong4D-蛋白质组学加快组学研究向临床应用转化/strong/span/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "蛋白质组学不仅是研究生命活动、疾病机理的最有效方法之一,而且在对癌症、老年痴呆等人类重大疾病的分子诊断和临床治疗方面也有十分广阔的前景。随着样本制备、色谱分离和质谱技术的进步,临床蛋白组学渐渐开始走向大队列研究,矩形研究策略则是趋势。高通量蛋白组学则成为了生物医学基础研究和应用开发的重要前沿和突破口,而如何实现对大队列样本稳定可靠地分析也逐渐成为了科研热点和难点。总的来说,实现高通量临床蛋白组学面临如下挑战:/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "· 蛋白质组学样本自身的复杂性和不均一性(蛋白丰度的动态范围 106),使得低丰度蛋白鉴定和定量异常困难;/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "· 目前质谱仪采集速度和灵敏度的局限性,使得短梯度下难以实现蛋白深度覆盖;/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "· 大队列样本分析对高通量方法和仪器稳定性提出了很高的要求。/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "基于timsTOF Pro的4D-蛋白组学平台具有更快的扫描速度、更高的灵敏度和更好的离子选择性,显现出了向临床转化的广阔前景。布鲁克应用专家以及timsTOF Pro的用户做了大量工作,开发了多个成熟的高通量样本检测的应用方案,以探索蛋白组学技术用于临床研究的可能。/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "布鲁克nanoElute LC为timsTOF Pro质谱标配的纳升流液相,采用短梯度色谱方法(图5A)28.8min一个循环,单针进样200ng的HeLa平均可以鉴定4180种蛋白质(图5B),26000条多肽(图5C),30针重复的相关系数R 0.97(图5D)。这些结果表明,此方法与timsTOF Pro的高扫描速度和灵敏度结合,能同时兼顾分析通量和蛋白覆盖深度。我们将此方法用于多组份样本分析,小于12小时即可完成24个组份分析(图5E),HeLa样本24个组份可以鉴定大于9000种蛋白质,小鼠小脑样本24个组份可以鉴定大于10000种蛋白质。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 600px height: 359px " src="https://img1.17img.cn/17img/images/202007/uepic/999652fb-442b-4b16-bebd-29d5867ff800.jpg" title="图片5.png" alt="图片5.png" width="600" height="359" border="0" vspace="0"//pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center "图5. 基于nanoElute短梯度高通量方案/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "span style="text-indent: 2em "布鲁克与Evosep公司合作,联合推出用于临床蛋白质组学研究的整体解决方案,timsTOF Pro出色的扫描速度和灵敏度与Evosep One LC强大的分离能力和稳定性完美适配。英国牛津大学纳菲尔德医学系Roman Fischer教授,采用这套系统进行临床大队列的的血液蛋白组研究,用于快速发现疾病标志物。将收集的192例血浆样本去除12个高丰度蛋白,在timsTOF Pro与Evosep液相平台上使用11.5分钟梯度(100例样品/天)分析,样本测试中插入20针QC样本进行质控,总计212个样本仅需51小时测试时间(图6A),这项工作采用传统的质谱方案可能需要接近10天。实验结果显示,采用4D Match Between Runs,192个样本中,可以对500个蛋白进行定量分析,并且CV值小于10%,而QC样本的CV值小于5%(图6B、6C)。/span/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " /pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/7c042971-4e8a-4eca-ae3c-d7e819e5b0f9.jpg" title="图片6.png" alt="图片6.png"//pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center "图6. Roman Fischer教授采用的临床血液蛋白组研究案例/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " /pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "创新的4D-DIA非标记定量技术:dia-PASEF@/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "布鲁克与苏黎世联邦理工学院、德国马普研究所和多伦多大学合作,将PASEF与DIA(Data-Independent Acquisition,数据非依赖采集)的优势相结合,产生了一种新的采集模式称为dia-PASEF@(图7)。/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " /pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/5d5aae78-f80d-488e-a9e9-da3eab36fa54.jpg" title="图片7.png" alt="图片7.png"//pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center "图7. 全新dia-PASEF@采集策略span style="text-indent: 2em " /span/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "在dia-PASEF@扫描模式中,母离子在进入四级杆之前已经通过淌度进行了累积和分离,根据碰撞截面积(CCS)大小依次洗脱(与m/z有一定相关性),这样四级杆就可以根据洗脱离子的m/z进行离子选择,并且每批PASEF都会有多个窗口进行扫描,从而提高离子的利用率,避免了传统DIA方法中离子利用率低的问题。此外,使用离子淌度和质量数双重隔离窗口来触发MS/MS,提高了母离子选择和匹配的准确性,并降低了二级混合谱图的复杂性。并且在一级热图中,可以选择多电荷区域作为dia-PASEF@的母离子窗口,有效屏蔽单电荷杂质的干扰。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 600px height: 306px " src="https://img1.17img.cn/17img/images/202007/uepic/df424259-85f1-478c-8cd3-dc81f106d619.jpg" title="图片8.png" alt="图片8.png" width="600" height="306" border="0" vspace="0"//pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center "图8. dia-PASEF@进行高通量、微量样本的蛋白质组定量分析span style="text-indent: 0em " /span/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "dia-PASEF@具有更深的蛋白质组覆更高的分析通量和更优异的灵敏度,适合于高通量、微量样本的蛋白质组定量分析。采用95min梯度,单针进样200ng的HeLa,利用dia-PASEF@可以鉴定超过7,600种蛋白质、66,000种肽段。采用不同长度的梯度,30min可以鉴定6395个Hela细胞蛋白、4032个Yeast蛋白,达到快速、深度覆盖。即使在微量样本时,如单针进样10ng的Hela,仍能鉴定3000种蛋白质。/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "布鲁克在ASMS 2020发布了高通量dia-PASEF@方案(图9A),即将Evosep One LC与timsTOF Pro再次联合,最大程度发挥Evosep One LC快速分离和timsTOF Pro扫描速度和稳定性的优势。该方案目前有4种方法(图9B),分别采用4.8min、7.2min、14.4min和24min色谱方法,对应的每天可以分析300、200、100和60蛋白质组学样本,把蛋白组学分析通量提升到一个全新的高度。分析结果(图9C,9D)显示出此方案在保证分析通量的同时,蛋白覆盖深度也有很好的保证,4.8min的分析单针可以鉴定2158蛋白,24min可以得到与传统蛋白组学长梯度分析相当的结果。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 600px height: 284px " src="https://img1.17img.cn/17img/images/202007/uepic/fb3f5696-51bb-453a-8e70-cf3ba53b5151.jpg" title="图片9.png" alt="图片9.png" width="600" height="284" border="0" vspace="0"//pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center "图9. 高通量dia-PASEF@方案/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "英国牛津大学Roman Fischer教授采用高通量dia-PASEF@方案,进行血液蛋白质组学大队列研究,43天完成4300针连续进样,总共采集2.5亿张二级谱图,整个采集过程只需一次离子传输管清洗(图10)。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 600px height: 324px " src="https://img1.17img.cn/17img/images/202007/uepic/4ca80514-f97a-4b36-b172-fa4ce1cf4a03.jpg" title="图片10.png" alt="图片10.png" width="600" height="324" border="0" vspace="0"//pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center "图10. Roman Fischer教授采用dia-PASEF@技术进行大队列研究/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "创新的4D-PRM靶向定量技术:prm-PASEF@/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "在布鲁克的革命性timsTOF Pro平台上,通过将PASEF与平行反应监测(PRM)相结合,使其非标记靶向蛋白质组学性能得到了进一步增强。/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "prm-PASEF@技术在保持高灵敏度的同时,使靶向离子数目最大化,100ms的PASEF扫描时间可以靶向10个以上的肽段,有效离子利用率提高10倍以上,实现了谱峰上采集点数目最大化,显著提高数据的完整性(图11A)。prm-PASEF@技术根据色谱流出时间、淌度、质荷比以及碎片离子的分辨能力进行离子筛选,具有更好的选择性,定量更加准确(图11B)。此外,来自卢森堡健康研究所Antoin Lesur教授采用prm-PASEF@技术在细胞样本里30min梯度检测213种靶向肽段,在5amol到50fmol范围都可以准确定量,具有优秀的灵敏度(图11C)。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 600px height: 428px " src="https://img1.17img.cn/17img/images/202007/uepic/4aa99cb0-4e1d-46da-87c1-f588c4faa99a.jpg" title="图片11.png" alt="图片11.png" width="600" height="428" border="0" vspace="0"//pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center "图11. prm-PASEF@进行靶向蛋白质组定量分析/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "综上,捕集型离子淌度技术引领蛋白质组学进入4D新时代,基于timsTOF Pro的4D-蛋白质组学平台在蛋白质组分析方面展现出极佳的灵敏度、采集速度和覆盖深度,有利于实现更精确的翻译后修饰分析、高通量的临床大队列样本分析。新开发的dia-PASEF@和prm-PASEF@离子利用率高,具有更高的鉴定深度和定量准确性。随着布鲁克和合作团队对蛋白组学方案的不断开发,4D-蛋白质组学必将越来越完善,展现出更加广泛的应用前景。/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " /pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "参考文献/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "· Antoine Lesur, et al., New prm-PASEF for highly multiplexed targeted acquisition in clinical samples. ASMS 2020, Poster TP470./pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "· Christopher M. Adams, et al., Identification and Quantitation of Phosphopeptide PositionalIsomers using Trapped Ion Mobility Spectrometry and PASEF. ASMS 2019, WP 662/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "· Florian Meier, et al., Online Parallel Accumulation–Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. Molecular & Cellular Proteomics, 2018,17(12),2534-2545./pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "· Florian Meier, et al., Parallel Accumulation–Serial Fragmentation (PASEF): Multiplying Sequencing Speed and Sensitivity by Synchronized Scans in a Trapped Ion Mobility Device. J. Proteome Res. 2015, 14,12, 5378-5387/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "· Matthew Willetts,et al., High Sensitivity PTM Characterization in Complex Cell Lysates Using Trapped Ion Mobility. ASMS 2019, Poster TP630/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "· Shourjo Ghose,et al., Analysis of Histones from HEK293T Cells using a QTOF with Trapped Ion Mobility and PASEF Workflows. ASMS 2019, Poster TP642/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "· Stephanie Kaspar-Schoenefeld, et al., High throughput 4D-Proteomics – Application of dia-PASEF ® and the Evosep One for short gradients. App Note 1867805/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "· Thomas Kosinski, et al., Maximized throughput and analytical depth for shotgun proteomics using PASEF on a TIMS equipped QTOF. ASMS 2018, TP 685/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "· Thomas Kosinski, et al., Plasma proteomics goes high throughput-timsTOF Pro with PASEF and 4D feature alignment to quantify 500 plasma proteins in 11.5min. App Note 1867805/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "· Thomas Kosinski, et al., Short nanoLC gradients optimize throughput on a tims equipped QTOF with PASEF, ASMS 2019, TP 514. /p
  • Astral与Ultra谁与争锋?单细胞蛋白组学质谱数据展示
    最近发表的论文显示,新型质谱平台正在显著增强单细胞蛋白质组学实验的覆盖深度。研究人员在单细胞实验中发现,使用Bruker timsTOF Ultra和Thermo Fisher Scientific Orbitrap Astral仪器后,检测的蛋白质数量增加了一倍多。这两种仪器都在6月份的美国质谱学会年会上(ASMS 2023)首次亮相。timsTOF Ultra是Bruker timsTOF系列的最新产品,它提高了现有timsTOF SCP对小样本的分析能力,还可以对较大样本进行高性能分析。(新产品详情了解)Orbitrap Astral标志着赛默飞世尔公司进军一项新技术,即Astral(用于不对称轨道无损)分析仪,该分析仪与飞行时间(TOF)分析仪一样,测量离子沿仪器内轨道的行进及其到达探测器表面的情况。(新产品详情了解)哥本哈根大学的研究人员于11月发布在BioRxiv预印本上的文章首次展示了Astral在单细胞蛋白质组学研究中的分析能力。在这项研究中,科学家们能够在单个HeLa细胞中识别出5000多种蛋白质。他们指出,这是之前单细胞实验通常达到数量(约2000种蛋白质)的两倍多。哥本哈根大学Novo Nordisk基金会蛋白质研究中心教授兼副主任、预印本资深作者Jesper Olsen表示,Astral “真正改变了游戏规则”,并指出Astral分析仪“提供了极高的灵敏度”。东北大学(美国)生物工程副教授、专注于单细胞蛋白质组学研究的PTI所长Nikolai Slavov表示:“我们注意到单细胞蛋白质的分析性能大幅提高,而新仪器占据了主要原因。”并表示,新的质谱仪器能够准确地定性定量多种肽和蛋白质。维也纳分子病理学研究所蛋白质组学技术中心负责人Karl Mechtler认为,如果没有新的仪器,很难进行单细胞的最近研究。他说:“通过和单细胞领域的研究者讨论,我们都认为新仪器是向前迈进的重要一步。”Mechtler的实验室拥有Ultra,并计划购买Orbitrap Astral,这两种仪器都将用于单细胞实验。在ASMS上,Mechtler展示了Ultra的研究数据。在250pg(大约相当于单个细胞中的蛋白质量)中,他和同事测量了约6000个蛋白质组,中位变异系数(CV)为10%,而使用旧的timsTOF SCP,测量约5000个蛋白质组,CV为12%。在研究实际的单个HeLa和K562细胞(与标准细胞相反)过程中,他们分别鉴定了3803和3221种蛋白质。Mechtler说,自从安装Ultra以来,实验覆盖深度略低,比在ASMS报告的数字下降了5%-10%。由于该系统只使用了六个月,他和同事们将继续优化其性能。在Slavov及其同事在11月发表的BioRxiv预印本中,研究人员将timsTOF Ultra用于单细胞实验,每个细胞量化了3000-3700种蛋白质。Slavov表示,虽然这两种仪器都能大幅提高单细胞研究的分析能力,但timsTOF Ultra更具优势。与Orbitrap Astral相比,Ultra的捕获离子迁移率(TIMS)使仪器能够分离和破碎更大的离子。但是Orbitrap Astral灵敏度更好,尤其是在产生少量离子的单细胞实验中。Slavov补充说,在用于单细胞和大块蛋白质组学实验的数据独立获取(DIA)实验中,通过一系列m/z分离窗口循环,在给定的时间点分解m/z窗口中存在的所有前体离子。Ultra利用TIMS对离子的释放进行计时,以匹配当时碎片化的m/z窗口。但在Astral中不能以这种方式计时,因此在特定时间点被碎片化的m/z窗口外的离子将无法进行分析。Ultra收集的离子迁移率数据提高了检测的特异性。Olsen同样指出,Astral能够分析样本产生的一小部分(约1%)离子束。尽管如此,该系统“与我们以前使用过的任何仪器相比,仍然具有极高的灵敏度。”他和他的同事通过Astral进行单细胞实验时,调整了隔离窗和喷射时间,以便吸收更多的离子进行分析。在批量实验中,通常使用2个Thompson隔离窗。他们将该窗口的大小和允许的最大注射时间都增加了一倍。他认为现在是单细胞蛋白质组学研究的最佳时刻,并且握在自己手中。Olsen指出,Astral还能够在单细胞水平上分析翻译后修饰(PTM)。这在传统上是困难的,因为小尺寸单细胞样本在没有富集的情况下很难识别PTM,而富集方法又会导致样本丢失,这使得单细胞PTM分析具有很大挑战。样本制备流程的改进也推动了分析仪器行业的发展。Olsen的团队使用Evosep最近发布的ProteoCHIP EVO 96平台进行单细胞研究。该平台是Evosep与Cellenion合作设计,允许研究人员使用Cellenion的CellenOne X1平台分离单个细胞并将其分配到EVO 96平台中;最多可以并行处理96个细胞,然后转移到Evosep的Evotip分离设备中,并在该公司的Evosep One LC系统上运行。该系统的集成使样品制备过程几乎没有损失,并指出这是“提高质谱分析灵敏度的关键”。Slavov也使用CellenOne系统进行样品制备。这种方法被称为nPOP,在载玻片上以液滴形式制备单个细胞,可以同时制备数千个。研究人员表示,这种方法可以在一到两天内制备3000多个细胞。Mechtler还与Cellenion合作开发了单细胞样品制备的工作流程,以最小的样品损失同时处理大量单细胞。通量仍然是单细胞蛋白质组学面临的最大挑战。最近发布的仪器在一定程度上解决了这一问题,但许多工作流程仍然局限于每天分析几十个左右的细胞。Slavov说:“我们希望每天能够以分析每一个细胞的工作量去分析数千个细胞。我们目前在timsTOF Ultra上使用PTI继续开发plexDIA方法,该方法将样本复用与独立于数据的采集质量规范相结合,以实现更高通量的实验。”Olsen同样指出,“通量是我们目前的主要问题。”他说,实验室每天可以运行大约40个单细胞,但只要“稍作调整”,可以实现每天运行100个细胞。他和他的同事们正在探索多种复用方法,这些方法可以进一步提高通量,但“现在说它能起多大作用还为时过早。”---------------------------------------------------------------------------------------------------------------2023年,仪器信息网联合北美华人质谱学会(CASMS),于12月12-15日联合举办第十四届质谱网络会议(iCMS 2023),本届会议新增单细胞质谱技术及应用新进展专场,聚焦单细胞质谱新技术及最新研究进展。(点击了解相关质谱仪器专场)部分报告预告点击浏览  》》》会议报名点击下图
  • 2016成都国际生物医药产业高峰会暨 2016中国蛋白药质量与技术创新研讨会Ⅱ通知
    中国蛋白药物质量联盟定于2016年11月11-13日在四川省成都市召开 “2016成都国际生物医药产业高峰会暨2016中国蛋白药质量与技术创新研讨会Ⅱ”(Chengdu International Summit of Biomedicine 2016 Biomedicine China:Quality & Innovation 2016 II)。  一、会议介绍  中国蛋白药物质量联盟(以下简称“联盟”)是由我国从事蛋白药物行业的企业和学术研究机构等自愿组成的非营利性产品质量自律与产业技术创新专业团体,力图通过生物制药企业与学术研究机构合作,相互促进、共同提高我国蛋白药物的质量水平,保障患者用药安全,协助国家相关部门完善生物药质量标准与监督保障体系,提高我国生物药企业的国内外竞争力。联盟成员包括中信国健、苏州金盟、沃森嘉和、复宏汉霖、海正药业等国内近40余家生物制药领域领军企业与学术研究机构,这些联盟成员占据着中国整个生物医药产业链的制高点。自2013年联盟成立以来,联盟已连续成功举办过六届蛋白药质量与技术创新研讨会,逐渐成为我国具有广泛影响的蛋白药/生物药学术产业交流平台。  2016中国蛋白药质量与技术创新研讨会II(BioMed China 2016II)将聚集来自权威法规部门、生物科技、生物制药企业、医疗机构及科研院所等相关领域顶尖专家,探讨最新生物医药科技发展、法规政策、生物制药关键技术、质量与安全、临床研究与应用、产业平台及供应链等医药行业当下关注的焦点问题,如生物制药相关政策法规更新、生产过程优化、药学与质量分析、质控及标准、临床研究设计及生物药国际注册等。  会议亮点  产业高端:联盟成员单位近40家,遍布各省市直辖市,基本涵盖了中国主要生物医药企业及相关学术机构   影响广泛:联盟成员单位在生物医药行业的地位举足轻重,会议影响深远,吸引了众多生物医药相关产业和学术人士参会,会议预计人数300人以上   焦点关注:生物大分子药物开发与注册经验分享、技术转移及投融资   地理优势:成都是中国西南政治经济区,天府国际生物产业城是四川省、成都市发展生物产业的重要支撑性项目,重点围绕生物医药、生物医学工程、大健康服务等领域,建设生物医药园、生物医学工程园、健康产业园等三大园区。积极促进创新合作模式,加速高端资源的聚集热土。  二、会议时间、地点  时间:2016年11月11-13日(11月11日全天注册签到)  地点:成都望江宾馆(成都市下沙河铺街42号)一楼五福堂  三、会议组织机构  主办单位:成都市人民政府  中国蛋白药物质量联盟  承办单位:成都天府国际生物城管委会  四川国际生物医药产业技术研究院(筹)  天津市滨海新区蛋白药物质量和产业技术创新研究会  支持媒体:成都市电视台、成都日报、成都商报、仪器信息网、易科学  中国医药科技出版社、《中国药学》(英文版)、生物谷  四、会议同期活动  闭门座谈会、招商引资及签约  五、会议日程  2016成都国际生物医药产业高峰会  暨 2016中国蛋白药质量与技术创新研讨会Ⅱ  同期培训  (2016年11月11日)  会议日期:11月11日(星期五)  会议地点:成都望江宾馆一楼五福堂(成都市下沙河铺街42号)  2016成都国际生物医药产业高峰会  暨 2016中国蛋白药质量与技术创新研讨会Ⅱ  (2016年11月12-13日)  会议日期:11月12日(星期六)  会议地点:成都望江宾馆一楼五福堂(成都市下沙河铺街42号)时间 主题/内容 上午注册登记,领取会议材料史晋海博士,中国蛋白药物质量联盟秘书长,天津国际生物医药联合研究院副总裁,介绍来宾彭红卫,中国蛋白药物质量联盟理事长,苏州金盟生物技术有限公司总裁, 介绍中国蛋白药物质量联盟。成都高新区管委会领导致欢迎辞成都天府国际生物城管委会领导介绍当地及其发展规划参会人员合影、茶歇主题演讲主持人:吴辰冰博士,中国蛋白药物质量联盟前理事长,上海岸迈生物科技有限公司总裁上午魏于全 中国科学院院士,现任四川大学副校长,四川大学生物治疗国家重点实验室主任、教授、博士生导师,国家自然科学基金第七、八届学科评审组成员,国家新药评审委员会评审专家,第五届教育部科学技术委员会委员,中国临床肿瘤学会常委委员 题目一:TBDXinjing Wang, Director, NEI DNA Diagnostic Laboratory (CLIA certified) National Eye Institute/NIH Bethesda, Maryland 题目二:Precise molecular diagnostics after the whole genome sequencing张嗣良 博士,国家生化工程技术研究中心(上海)主任,华东理工大学教授,博士生导师,生物反应器工程国家重点实验室学术委员会副主任 题目三:大数据時代的生物过程研究与生物医药产品生产(我国生物反应器装备技术的发展机遇)小组讨论中午午餐:与会人员请至餐厅用餐新药研发主持人:王海彬博士,中国蛋白药物质量联盟前理事长,海正药业高级副总裁下午邓声菊,北京国之专利预警咨询中心副总经理 题目四:创新生物药专利技术标准战略周新华 博士, 嘉和生物药业有限公司首席执行官,沃森生物副总裁,研发总监 题目五:Discovering and Developing Innovative Biologics in China—Key consideration for mAb and biological therapeutics苏建华 博士, 苏州盛迪亚生物医药有限公司(恒瑞全资子公司)总经理 题目六:From Discovery to Commercialization – A Long Journey for a Successful Biological Product Development茶歇李浩 博士,杭州泰格益坦医药科技有限公司总经理 题目七:Good Clinical Development Plan汪裕 博士,北京博纳西亚医药科技有限公司首席科学家 题目八:肿瘤药物早期临床研发的关注的问题 园区参观晚上欢迎晚宴:与会人员请至马六甲餐厅(望江会馆一楼),期间抽奖 主持人:彭红卫,中国蛋白药物质量联盟理事长,苏州金盟生物技术有限公司总裁晚上创新药物研发闭门论坛 (限质量联盟成员高管及特邀嘉宾参加) 主持人:周新华博士, 中国蛋白药物质量联盟前理事长创始人,嘉和生物药业有限公司首席执行官,沃森生物副总裁,研发总监  2016成都国际生物医药产业高峰会  暨 2016中国蛋白药质量与技术创新研讨会Ⅱ  (2016年11月12-13日)  会议日期: 11月13日(星期日)  会议地点: 成都望江宾馆一楼五福堂(成都市下沙河铺街42号)新技术新产品 主持人:TBD上午Morris Zalman Posenberg,founder and CEO,Ardeagen 题目九:The recent advances and challenges in innovative biologics development屈向东 博士,上海海雁医药科技有限集团(扬子江药业集团)副总经理,上海海路生物技术有限公司总经理 题目十:Developability Assessment of Novel Antibody Therapeutics 吴辰冰 博士,上海岸迈生物科技有限公司总裁 题目十一:使用双特异性抗体进行新一代生物靶向药物的开发田文志 博士,宜明昂科生物医药技术(上海)有限公司董事长兼总经理 题目十二:肿瘤免疫治疗:技术、产品、临床茶歇分析质控 主持人:TBD 上午孟淑芳 副主任,中国食品药品鉴定研究院细胞室 题目十三:生物技术产品生产用细胞要求中的要点及问题 李婷婷,SCIEX高级应用工程师 题目十四:CE及CESI-MS技术在生物药领域的应用 李孟捷 高级总监, 三生国健药业(上海)股份有限公司 题目十五:从数据完整性到数据可靠性到药品数据管理黄岗 博士,上海药明康德新药开发有限公司副总裁,分析和制剂开发以及生物制药全球法规事务 题目十六:Analytical Strategy in Development of Protein Therapeutics and Understanding of Product Quality Attributes中午午餐:与会人员请至餐厅用餐下午贾国栋 博士,GE Healthcare Lifesciences Fast Trak China Leader 题目十七:单抗工艺放大的挑战及产业化成本分析 俞小淙 博士,Instructor of Medicine,Harvard Beth Israel Deaconess Medical Center 题目十八:A robust platform for generating fully human monoclonal antibodies against infectious diseases茶歇 生物药项目&投资论坛, Partnering Session 主持人:李梅 下午Dr. Dave Tapolczay,CEO, Medical Research Council Technology, UK 题目1:How international healthcare cooperation leads to a healthier ChinaDr. Lulu Li, Senior Innovation Officer, Innovation Centre Denmark, Shanghai 题目2:Building Strategic and Innovative Life Science Partnerships between China and Denmark倪振民 医学博士,美国南加创投平台发起人,美国汇盛科技转化平台合伙人,海西中美医疗项目牵头人 题目3:跨境医疗科技投资和转化平台Dr. Laszlo Urge, CEO DBH Investment Honorary Professor, Pannon University 题目4:Innovation ecosystems to expedite biomedicine research and development in the EU. Potential for transcontinental technology transfer Dr. Shelby Yue Zhang, Commercialization division / Senior Manager,Exploit Technologies–Agency for Science, Technology and Research (A*STAR) 题目5:Innovation & Enterprise, A*STAR - a case from Singapore 主持人:夏芳 蔡胜和 博士,天津石桥生物科技有限责任公司总裁 题目6:hyF-CAR-T迈向攻克癌症治愈的生物学障碍 邹培建 博士,中科院天津工业生物所特聘研究员 题目7:蛋白质药物载体技术-ZT技术杨成民 教授,中国医学科学院、中国协和医科大学输血研究所,协和同仁科技(天津)有限责任公司 题目8:新型肿瘤治疗增敏剂研发及其产业化 张加慧 修正生物医药(杭州)研究院有限公司 题目9:PEG修饰蛋白药物技术平台 于山 上海海抗生物药业有限公司董事长兼总经理,工商管理学硕士 题目10:碘[131I]爱克妥昔单抗注射液(DK-001) 杨志行 博士,中科院生命科学院湖州创新中心 题目11:生物技术药物和医疗产品的质控工具与服务 Vasilii Stepanovich Gvozdetsky博士Professor,乌克兰国家科学院院士(The Ukrainian National Academy of Sciences,UNAS) 题目12:电子癌症治疗仪(野战急救止血仪)(翻译:胡连军 博士)TBD 题目13:TBD马兴元 博士,华东理工大学生物反应器工程国家重点实验室 题目14:新型抗肿瘤重组蛋白药物及抗体研发技术平台简介Q&A  六、目标参会人员  制药生产企业的中高级管理层决策者、技术负责人,负责药物研发、法规事务、临床开发、工艺开发、分析开发、药品生产、质保,质控等领域的人员, 以及医药工业设计院、医药工程公司、制药设备和仪器制造企业的高级管理层、项目负责人和监管机构相关人员。  七、注册事宜  1)注册费用  2016中国蛋白药质量与技术创新研讨会Ⅱ  会议注册价格  注:注册费包含会议费、资料费和会议期间午餐、晚宴(12日)  参会代表住宿费、交通费用及早晚餐费用自理,联盟可协助订房。  2)银行汇款信息:  户名:天津市滨海新区蛋白药物质量和产业技术创新研究会  开户行:中国建设银行股份有限公司天津泰星支行  账号:1200 1830 4510 5251 5897  联系人:蒋婉莹  电 话:+86-22-65378072  手 机:+86-15900209767  邮 箱:office@cpdqa.org jiangxiaowan@126.com  2016年中国蛋白药质量与技术创新研讨会II筹备组  中国蛋白药物质量联盟秘书处  2016年10月16日
  • 基于质谱的血浆蛋白质组学领域新进展
    6月美国质谱学会年会(ASMS)上发布的最新数据表明,新的仪器和工作流程极大地提高了基于质谱的血浆蛋白组学实验的覆盖深度和通量。这些进步可使质谱成为各应用领域中更有用的工具,包括血浆蛋白生物标志物的开发以及迄今由Olink和SomaLogic等亲和性平台主导的大规模人群研究。  血浆是一种易于获取和常用的样本来源,尤其是在临床工作和人群研究中。然而,由于血浆含有大量丰度较高的蛋白质和较宽的动态范围,传统的质谱蛋白质组学分析能力不足。对于细胞裂解物的分析,质谱工作流程可测量8000到12000个蛋白质,但对血浆,类似的工作流程只能测量500到1000个蛋白质。虽然可通过去除丰度较高的蛋白质或进行粗分离来改善这一情况,但这也会牺牲通量。  去年,瑞士蛋白质组学公司Biognosys在Journal of Proteome Research杂志上发表了一项研究,他们使用赛默飞的Orbitrap Exploris 480质谱仪,通过两小时的液相色谱梯度测量了180个去除了高丰度蛋白的血浆样品中的2732个蛋白质,这是未进行血浆分离处理情况下最高深度的血浆蛋白质组分析。  最近,蛋白质组学公司Seer推出了一种新的血浆蛋白组学解决方案。该公司的Proteograph系统使用一组纳米颗粒来富集血浆蛋白质,然后可以使用质谱等技术对其进行鉴定和定量分析。与传统的血浆蛋白组学方法相比,Seer系统在覆盖深度和通量上都有所提升。在一份发表于四月BioRxiv 预印本的研究中,威尔康奈尔医学院-卡塔尔团队使用该系统分析了345个血浆样本,测量了大约3000种蛋白质,在其液相色谱-质谱法的运行时间下每天可分析大约10个样本。  根据以上数据,Biognosys分析和Seer系统的覆盖深度都接近于Olink的Explore平台,后者可以在血浆中测量大约3000种蛋白质,但它们仍远远落后于SomaLogic的SomaScan平台,后者可以在血浆中测量大约7000种蛋白质。在每周约70个样本的处理量上,Biognosys和Seer系统的通量仍然落后于Olink和SomaLogic平台,后者每周分别可以处理多达1000个和340个样本。  ASMS年会上,赛默飞展示了使用Seer最新发布的Proteograph XT试剂盒在其新的Orbitrap Astral仪器上测量大约6000种蛋白质的数据,每天处理大约30个血浆样本。这些数据标志着血浆蛋白组学工作流程的重大进展,并表明在大规模血浆研究方面,结合Seer Proteograph等血浆富集技术的质谱法与基于亲和性的平台现在可能成为竞争对手。  剑桥大学临床医学院MRC流行病学单位的生物信息学家Maik Pietzner表示:“坦白说,我们没有预见到这么大的飞跃。”他和他的同事在大规模蛋白质基因组学研究中使用了SomaLogic的SomaScan和Olink的Explore。他指出,根据ASMS展示的数据,“看起来现在似乎变得可行了”,因为他们的研究需要1000个或更大的样本队列。  华盛顿大学基因科学教授Michael MacCoss还表示,质谱技术具备的覆盖深度和通量使其成为大规模人群研究的有用工具。他说:“像英国生物库(UK Biobank)或弗雷明汉心脏研究(Framingham Heart Study)这样的大型队列……这些样本的价值是巨大的,研究人员希望能够以最少的资源获取最多的信息,很多实验都使用了Olink或SomaLogic。”  如果质谱技术能够可靠地提供ASMS演示中展示的覆盖深度和通量,它可能成为亲和性平台的有力补充和竞争对手。许多蛋白质存在多种形式,或称为蛋白质变体,其变异包括氨基酸变异、截断或翻译后修饰等,这些变化会影响它们的功能,在亲和性平台上往往不清楚或不确定测量的是蛋白质的哪种变体。质谱方法更适合分析这些不同的蛋白质变体。  Olink总裁Carl Raimond表示,他认为质谱和亲和性平台是“绝对互补的”,并补充说“看到蛋白质分析领域有创新是非常好的”。然而,他表示在Olink占据领先地位的大规模人群研究中质谱技术近期可能无法成为竞争对手,他同时也质疑ASMS展示的令人印象深刻的数据在广泛应用时是否能够经受考验。他说:“细节决定成败。提出要求很容易,但真正能够实现或提出关于这一要求背后的问题则是完全不同的事情。”Raimond补充说,虽然质谱技术不断改进,但亲和性平台也将不断进步。Olink正在将其Explore平台扩展到约5,000种蛋白质靶点,而SomaLogic计划在今年年底前将SomaScan平台扩展到覆盖约10,000种蛋白质。Pietzner同样表示,虽然在ASMS上发布的数据令人兴奋,但他和他的同事们期待看到更广泛的数据,包括总体的蛋白质覆盖范围,不同蛋白质和肽段在样本中检出的一致性和重复性。他说,“亲和性方法已经应用于规模大于50,000的人群队列中,并带来了惊人的发现。我们需要进行头对头的比较以评估这些新的质谱技术是否能够实现类似的扩展。”  MacCoss表示,使用质谱进行此类研究的公司或研究人员需要提供数据,证明他们能够在每个样本中一致且可重复地测量一组核心蛋白。他说:“当人们使用Olink时会有一个清单,上面列出了每次都会测到的蛋白质。我们仍然需要这样做。我们仍然需要说,这是每次实验都会返回定量值的蛋白质列表……以及测量中获得高质量分析数值的蛋白。”  Pietzner表示,他和他的同事目前正在努力扩展他们的蛋白质基因组学研究以包括质谱技术。强生和强生制药公司的神经科学数据科学主管,以及英国生物库药物蛋白质组学项目(PPP)主席Christopher Whelan表示,目前一个规模最大的蛋白质基因组学人群研究项目正在实施基于质谱的蛋白质组学。  Seer本月宣布推出Seer技术访问中心,该中心将组合其XT试剂盒与Orbitrap Astral质谱仪,为没有质谱仪的用户提供蛋白质组学服务。  尽管到目前为止很难全面评估赛默飞的Orbitrap Astral和Seer的Proteograph XT的性能,但一些早期用户表示其产生的结果很出色。  Cedars-Sinai精准生物标志物实验室主任Jennifer Van Eyk一直在使用Orbitrap Astral进行血浆蛋白质分析,在这方面它比先前的仪器有更强的能力。Van Eyk表示,在每天运行60个样本时,新仪器可测得的蛋白质数量是相同工作流程下使用Thermo Fisher的Exploris 480仪器的2到2.5倍。  她说:“我们不仅可以检测到更多蛋白质,而且可以定量更多蛋白质,并且这些蛋白质是可重复的,也就是说,如果我们运行一个样本五次,我们确实会五次都观察到同样的蛋白。这是一个很大的飞跃。”这台仪器最出色的或许是其高通量,Van Eyk表示,她和她的同事们每天可以运行多达180个的未去除高丰度蛋白的血浆样本并获得良好的数据和深度的覆盖。她说,“在每天运行180个样本的情况下,突然间你可以开始讨论运行10,000个样本,然后它就成为一个人群研究了。”Van Eyk和她的同事目前正在试验Seer Proteograph系统,以“充分测试”其性能,并评估是否要将其作为血浆蛋白质组学工作流程的一部分。  威斯康星大学麦迪逊分校的生物分子化学和化学教授Joshua Coon指出,他的实验室能够使用50分钟的液相色谱梯度在未处理的血浆中测量大约1,500种蛋白质,并且已经在该仪器上开发出了一种一分钟的直接注射方法,能够在每个样本中测量约200种蛋白质。  Coon还是SeerProteograph平台的用户,尽管他尚未将其与Orbitrap Astral结合使用。他的实验室一直在使用Seer XT试剂盒分析阿尔茨海默病患者的血浆样本以及长期新冠肺炎(long COVID)个体的样本。他说,尽管他的团队尚未开始处理大批量样本,但在初步工作中,实验室每个样本一致地测量到约3,000种蛋白质,这是不使用Seer系统时的五倍左右。他认为,当研究人员将工作流程应用于Orbitrap Astral系统时,这些数字还会进一步提高。  除了覆盖深度外,Coon表示,Proteograph对简化质谱样品制备非常有用。他说:“我没有完全认识到到它的自动化程度,它非常方便。现在主要的用户是一个一年级和二年级的研究生……所以他们必须快速学习。他们在处理样本、获得消化产物和肽段方面取得了很大的成功。当你有新人或者长时间不做该工作的人时,进行大规模蛋白质组学研究的样品制备将耗费整个实验一半以上的精力,只需使用该平台然后熟练掌握。”  尽管Seer Proteograph平台提供的覆盖深度使质谱血浆蛋白质组学在某些应用中与Olink和SomaLogic等亲和力平台更具竞争力,但Seer本身在血浆富集领域面临新的竞争。  在ASMS会议上,蛋白质组学样品制备公司PreOmics推出了其ENRICH-ist富集血浆和血清蛋白质的试剂盒。该试剂盒使用非功能化顺磁性微珠来富集低丰度蛋白质,据该公司称,与未去除高丰度以及未富集的血浆相比,用该试剂盒处理血浆可将蛋白质检出率从50%提升至100%。PreOmics首席执行官Garwin Pichler表示,微珠与缓冲液的结合可在去除高丰度蛋白的同时富集低丰度蛋白以提高覆盖深度。Biognosys推出了一种新的基于微珠的血浆蛋白质组富集试剂盒,作为其TrueDiscovery服务平台的一部分。据该公司称,这种试剂盒可以高通量定量人类血浆中约4,000种蛋白质。  此外,在本月,华盛顿大学研究人员领导的团队在BioRxiv预印本上发表了一篇论文,描述了一种使用ReSyn Biosciences的磁性微粒富集血浆蛋白质的方法,其通过结合血浆中的膜结合囊泡并分析相关蛋白质来提高覆盖深度。华大的MacCoss是这篇预印本的通讯作者,该预印本的第一作者Christine Wu也是该富集方法的主要开发者。他们能够在Orbitrap Astral上使用30分钟的液相色谱梯度稳定地定量约4,800种血浆蛋白质,每天可处理约40个样本。在使用一小时的液相色谱梯度时,他们能够测量5,000到6,000种蛋白质。MacCoss他们迄今没有过度挑战该方法的能力,所以这些数字是相对保守的。MacCoss表示,由于Seer公司的技术成本较高,研究人员对于血浆蛋白质组学富集的替代方法很感兴趣。他说:“Seer在制造这些产品方面做得很好,但成本是一个高门槛。”  维也纳分子病理研究所的蛋白质组学负责人Karl Mechtler表示,他与Seer的讨论中,每个样品的报价大约是600美元。他说:“如果我有100个样品,对于一个蛋白质组学实验室来说,这是一笔巨款。”他指出,对于一个典型的蛋白质组学实验室,一个合适的价格范围应该在每个样品25到50美元左右。Wu表示,使用华大的富集方法进行实验的每个样品成本低于5美元。PreOmics将ENRICH-ist试剂盒作为完整蛋白质组学样品准备工作流程的一部分销售,每个样品总共80美元。  在回答成本问题时,Seer公司董事长兼首席执行官Omid Farokhzad表示,他认为价格是“价值交换的问题”。他说:“并非所有内容都是等价的。问题在于,从Seer所提供的与其替代方案所提供的内容来说,价值交换是什么?”在血浆蛋白质组学领域最新的发展中,这个问题的答案似乎是一个不断变化的目标。  参考文献:[1] Tognetti Marco,Sklodowski Kamil,Müller Sebastian et al. Biomarker Candidates for Tumors Identified from Deep-Profiled Plasma Stem Predominantly from the Low Abundant Area.[J] .J Proteome Res, 2022, 21: 1718-1735.[2] bioRxiv - Genomics Pub Date : 2023-04-21 , DOI:10.1101/2023.04.20.537640Karsten Suhre, Guhan Ram Venkataraman, Harendra Guturu, Anna Halama, Nisha Stephan,Gaurav Thareja, Hina Sarwath, Khatereh Motamedchaboki, Margaret Donovan, Asim Siddiqui, Serafim Batzoglou, Frank Schmidt
  • 新型蛋白质结构分析手段-氢氘交换质谱技术进展
    贾伟、陈熙沃特世科技(上海)有限公司实验中心氢氘交换质谱法是一种研究蛋白质空间构象的质谱技术。它在蛋白质结构及动态变化研究、蛋白质相互作用位点发现、蛋白表位及活性位点鉴定方面有着广泛的应用。随着氢氘交换质谱技术的不断发展,它正在成为结构生物学家及生物药物研发的重要手段。 氢氘交换质谱(HDX MS,hydrogen deuterium exchange mass spectrometry)是一种研究蛋白质空间构象的质谱技术。其原理是将蛋白浸入重水溶液中,蛋白的氢原子将于重水的氘原子发生交换,而且蛋白质表面与重水密切接触的氢比位于蛋白质内部的或参与氢键形成的氢的交换速率快,进而通过质谱检测确定蛋白质不同序列片段的氢氘交换速率,从而得出蛋白质空间结构信息[1]。这个过程就像将握着的拳头浸入水中,然后提出水面并张开手掌。这时,湿润的手背表明它在&ldquo 拳头&rdquo 的结构中处于外表面,而较为干燥的手心表明它是&ldquo 拳头&rdquo 的内部。除样品制备外,氢氘交换质谱法的主要过程包括:交换反应、终止反应、将蛋白快速酶切为多肽、液相分离、质谱检测、数据解析。其中交换步骤需要在多个反应时长下进行,如0s、10s、1min、10min、60min等,以绘制交换率曲线,得到准确全面的信息。氢氘交换质谱技术在蛋白质结构及其动态变化研究[1]、蛋白质相互作用位点发现[2]、蛋白表位及活性位点鉴定方面有着广泛的应用[3]。 与经典的蛋白质结构研究方法相比,如X射线晶体衍射(X-Ray Crystallography)和核磁共振(NMR. Nuclear Magnetic Resonance)等方法,氢氘交换质谱不能够提供精确的蛋白空间结构,它直接提供的主要信息包括哪些氨基酸序列位于蛋白质空间结构的表面位置(包括动态变化中的)、可能的活性位点和蛋白-蛋白相互作用位点等。但是氢氘交换质谱技术有着其他经典方法不具备的优点:首先,可以进行蛋白质结构动态变化的研究是氢氘交换质谱的一个突出优点,包括变化中的活性位点及表位;其次,氢氘交换质谱在蛋白复合体构象的研究中也具有独到的优势;此外,氢氘交换质谱还具有对样品需求量小、纯度要求相对较低、研究对象为溶液环境下的蛋白质的天然构象而非晶体中构象等优势[1,4,5]。自1991年第一篇研究论文发表起,氢氘交换质谱技术不断发展,已经成为结构生物学及质谱技术中一个非常重要的应用领域[6]。但是氢氘交换质谱实验的复杂的实现过程在一定程度上影响了其应用的广泛度。主要的难点有:1、如何避免交换后氘代肽段的回交现象;2、实验控制的高精确性和重现性要求;3、交换后造成的叠加的质谱峰如何准确分辨;4、简易高效的分析软件需求;5、以氨基酸为单位的交换位点辨析。沃特世公司自2005年起,针对以上难点不断进行攻关,推出了目前唯一商业化的全自动氢氘交换质谱系统解决方案&mdash &mdash nanoACQUITY UPLC HD-Exchange System(图1)。在全世界范围内,这套系统已经帮助科学家在包括Cell、Nature等顶级研究期刊中发表研究论文[7,8]。除科研需求外,沃特世氢氘交换质谱系统也受到众多国际领先制药公司的认可,并用于新药开发中蛋白药物活性位点及表位的研究工作中。氢氘交换实验中的回交现象将严重影响实验数据的可信度,甚至导致错误结果的产生。要避免回交需要做到两点:尽量缩短液质分析时间和保证液质分析中的温度和pH为最低回交反应系数所要求的环境。沃特世UPLC系统采用亚二纳米色谱颗粒填料,较HPLC使用的大颗粒填料,UPLC具有无与伦比的分离度。因此UPLC可以做到在不损失色谱分离效果的要求下,极大缩短液相分析时间的要求[9]。对于对温度和pH控制问题,在多年的工程学改进中,nanoACQUITY UPLC HD-Exchange System已经实现了对酶切、液相分离等步骤的全程控制[10]。 对氢氘交换质谱实验精确性和重现性的要求是其应用的第二个主要难点。在实验中一般需要采集0s、10s、1min、10min、60min、240min等多个时间点的数据。如果进行人工手动实验,很难做到对10S-10min等几个时间点的精确操作。再考虑到重复实验的需求,人工手动操作会对最终数据可信度产生影响。而且实验过程重复繁琐,将给实验人员带来非常大的工作压力。nanoACQUITY UPLC HD-Exchange System完全通过智能机械臂,精确完成交换、终止交换、进样、酶切等一系列实验过程,而且始终保证各个步骤所需不同的温度环境。这些自动化过程不但保证了实验数据的可靠性,提高了实验效率,也将科学家从繁琐的重复实验中解放出来。 氢氘交换实验的质谱数据中,随着交换时间的延长,发生了交换反应的多肽,由于质量变大,其质谱信号将逐渐向高质荷比方向移动。因此,这些质谱峰可能与哪些未发生交换反应的多肽质谱峰逐渐叠加、相互覆盖。相互叠加的质谱信号,不但影响对峰归属的判断,更会增加交换率数据的误差。因为交换率判断需要通过对发生交换的多肽进行定量,毫无疑问因叠加的而混乱的质谱数据将极大的影响对质谱峰的准确定量。这点对于单纯通过质荷比进行分析的质谱仪来说完全无能为力。但是,这个看似不可能完成的任务却被沃特世 nanoACQUITY UPLC HD-Exchange System攻克了。这是因为,不同于其它常见质谱,沃特世的SYNAPT质谱平台还具备根据离子大小及形态进行分离的功能(行波离子淌度分离)。在数据处理时,除多肽离子的质荷比信息外,还可以通过离子迁移时间(离子淌度维度参数)将不同离子区分。因此这种SYNPAT独有的被命名为HDMSE的质谱分析技术可以将因质荷比相同而重叠的多肽分离开,轻而易举地解决了质谱信号叠加的问题,得到准确的交换率数据[11,12](图2)。SYNPAT质谱平台一经推出就夺得了2007年PITTCON金奖,目前已经推出了新一代的SYNAPT G2HDMS、SYNAPT G2-S HDMS等型号,并具备ESI、MALDI等多种离子源。除氢氘交换技术外,SYNAPT质谱系统在蛋白质复合体结构研究中也是独具特色,已有多篇高质量应用文献发表[13,14,15]。 实现氢氘交换质谱技术的第四个关键点,是如何高效分析实验产生的多时间点及多次重复带来的大量数据。人工完成如此巨大的信息处理工作,将消耗科学家大量的时间。沃特世氢氘交换质谱解决方案所提供的DynamX软件可以为科学家提供简便直观的分析结果,并包含多种呈现方式。 在某些特殊研究中,要求对蛋白氢氘交换位点做到精确到氨基酸的测量,这是氢氘交换质谱研究的又一个难点。在常规的研究中采用CID(碰撞诱导解离)碎裂模式,可能导致氘原子在多肽内重排,而致使不能对发生交换的具体氨基酸进行精确定位。SYNPAT质谱提供的ETD(电子转移解离)碎裂模式可以避免氘原子重排造成的信息混乱,并具有良好的碎裂信号[16]。沃特世的nanoACQUITY UPLC HD-Exchange System为氢氘交换质谱实验提供了前所未有的简易的解决方案,强有力地推动了氢氘交换技术在蛋白质结构及动态变化研究、蛋白质相互作用位点发现、蛋白表位以及活性位点鉴定方面的应用,正在成为众多结构生物学科学家和生物制药企业必不可少的工作平台。参考文献(1) John R. Engen, Analysis of Protein Conformation and Dynamics by Hydrogen/Deuterium Exchange MS. Anal. Chem. 2009,81, 7870&ndash 7875(2) Engen et al. probing protein interactions using HD exchange ms in ms of protein interactions. Edited by Downard, John Wiley & Sons, Inc. 2007, 45-61(3) Tiyanont K, Wales TE, Aste-Amezaga M, et al. Evidence for increased exposure of the Notch1 metalloprotease cleavage site upon conversion to an activated conformation. Structure. 2011, 19, 546-554(4) Heck AJ. Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods. 2008, 5, 927-933.(5) Esther van Duijn, Albert J.R. Heck. Mass spectrometric analysis of intact macromolecular chaperone complexes. Drug Discovery Today. Drug Discovery Today: Technologies Volume 3, 2006, 21-27(6) Viswanat ham Katta, Brian T. C hait, Steven Ca r r. Conformational changes in proteins probed by hydrogen-exchange electrospray-ionization mass spectrometry. Rapid Commun. Mass Spectrom. 1991, 5, 214&ndash 217(7) Chakraborty K, Chatila M, Sinha J, et al. Chaperonin-catalyzed rescue of kinetically trapped states in protein folding. Cell. 2010 Jul 9 142(1):112-22.(8) Zhang J, Adriá n FJ, Jahnke W, et al. Targeting Bcr-Abl by combining allosteric with AT P-binding-site inhibitors. Nature. 2010,463, 501-506(9) Wu Y, Engen JR, Hobbins WB. Ultra performance liquid chromatography (UPLC) further improves hydrogen/deuterium exchange mass spectrometry. J Am Soc Mass Spectrom. 2006 , 17, 163-167(10) Wales T E, Fadgen KE, Gerhardt GC, Engen JR. High-speedand high-resolution UPLC separation at zero degrees Celsius. Anal Chem. 2008, 80, 6815-6820(11) Giles K, Pringle SD, Worthington KR, et al. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom. 2004, 18, 2401-2414(12) Olivova P, C hen W, C ha kra borty AB, Gebler JC. Determination of N-glycosylation sites and site heterogeneity in a monoclonal antibody by electrospray quadrupole ion-mobility time-offlight mass spectrometry. Rapid Commun Mass Spectrom. 2008, 22,29-40(13) Ruotolo BT, Benesch JL, Sandercock AM, et al. Ion mobilitymass spectrometry analysis of large protein complexes. Nat Protoc.2008, 3, 1139-52.(14) Uetrecht C, Barbu IM, Shoemaker GK, et al. Interrogating viral capsid assembly with ion mobility-mass spectrometry. Nat Chem.2011, 3,126-132(15) Bleiholder C, Dupuis NF, Wyttenbac h T, Bowers MT. Ion mobility-mass spectrometry reveals a conformational conversion from random assembly to &beta -sheet in amyloid fibril formation. Nat Chem.2011, 3, 172-177(16) Kasper D. Rand, Steven D. Pringle, Michael Morris, John R., et al. ETD in a Traveling Wave Ion Guide at Tuned Z-Spray Ion Source Conditions Allows for Site-Specific Hydrogen/Deuterium Exchange Measurements. J Am Soc Mass Spectrom. 2011, in press
  • 国网江苏电科院:升级变压器高精度油色谱远程监护系统 保障江苏电网迎峰度冬
    1月9日,由国网江苏电科院自主研发并优化完善的“升级版”变压器高精度油色谱远程监护系统在特高压泰州换流站经过1个月试运行,状态保持稳定,正式投入使用,标志着江苏省变压器油色谱在线监测及缺陷预警能力建设取得新突破。油色谱分析是非停电状态下评估变压器(换流变)健康状况的关键手段,可预警其内部放电、过热等缺陷隐患,对保障设备安全稳定运行至关重要。目前,油色谱分析主要有实验室检测和在线监测两种手段。实验室检测精度高,但人工取样时效性差、人为因素干扰大且存在安全风险;在线监测相对及时,但检测误差大,可靠性和稳定性不足,误报警和漏报警现象频繁发生。为此,国网江苏电科院在省公司设备部指导下,创新提出油色谱远程监护技术路线,历时近一年成功研发出高精度油色谱远程监护系统,具体由油色谱监测装置和监护系统两部分组成。“第一代”油色谱远程监护系统已于2022年3月在特高压泰州换流站8221A相换流变部署应用,现场油色谱监测装置可将油色谱数据实时上传至后台监护系统,供特高压运维人员远程查看,监测设备运行状态。稳定运行9个月来,共排除在线监测装置误告警20余次。期间获取的近千条检测数据可证实,监护系统兼具实验室检测高精度和现场监测及时性,检测误差小于5%,重复性误差小于2%,最小检测周期为30分钟,装置稳定性以及时效性远优于传统在线监测装置(常规A级油色谱在线监测装置检测误差约为20%-30%,检测周期为1~2小时)。基于油色谱远程监护系统在检测精度和稳定性方面得良好表现,其在提升变压器异常缺陷及时预警能力方面有望发挥更重要作用。国网江苏电科院专业人员以进一步提升监测装置可靠性和降低现场安装运维难度为目标,结合“第一代”监护系统存在的问题和不足,历时近半年在完善整体结构布局、提高系统安全性能、集成和优化气源模块、装置小型化轻量化等方面对其进行了优化提升。“‘升级版’油色谱监测装置的体积减小为原来的二分之一,重量减轻了约三分之一,在相同运行条件下同等载气量的使用时间由大约40天延长至5个月左右,而且不再需要运维人员定期清理废油桶。因此‘升级版’监护系统可以在很大程度上减轻站内运维人员的工作压力,并更好地满足对变电站(换流站)现场设备状态监测可靠性的要求。”该院高级专家朱洪斌介绍,目前通过该系统实时监测特高压泰州换流站变压器油色谱情况,将根据一段时间运行情况,配合江苏公司进一步推进“升级版”高精度油色谱远程监护系统在超特高压变压器上的推广应用,作为油色谱在线监测装置的有力补充,确保准确实时掌握设备的异常发展,助力提升设备缺陷及时预警能力,保障江苏电网迎峰度冬。
  • 将质谱用于膜蛋白分析 英皇家学会院士Carol Robinson做客上海交大
    p  近日,英国皇家学会院士、美国科学院外籍院士、英国皇家化学会候任主席、牛津大学Doctor Lee冠名教授Carol Robinson教授在上海交通大学做客第95期大师讲坛,为交大师生带来题为“Mass spectrometry-from folding proteins to rotating motors”的精彩报告。/pp style="text-align: center "img width="350" height="473" title="001.jpg" style="width: 350px height: 473px " src="http://img1.17img.cn/17img/images/201711/insimg/9c5b334e-bdec-4b44-ae4d-2e6ca2dbdf7e.jpg" border="0" vspace="0" hspace="0"//pp  质谱分析是目前蛋白质研究的最重要工具之一。Carol Robinson教授介绍了质谱的原理和自己探寻质谱研究的历程,阐述了她领导的团队在strong质谱技术优化和应用质谱分析百万道尔顿级膜蛋白研究方面的进展/strong。关于质谱在生物领域的应用,她介绍了2002年诺贝尔化学奖获得者J. B. Fenn和K. Tanaka做出的贡献。在蛋白质的结构研究方面,她强调了对受体膜蛋白性质的研究在药物设计和研发领域的重要地位。/pp  strongCarol Robinson教授介绍,她的研究团队将膜蛋白溶入洗涤剂溶液,并通过毫微电喷雾电离汽化质谱技术对膜蛋白与脂类小分子之间的相互作用及计量性质和其自身在小分子稳定作用下的折叠过程进行了探索和研究。/strong在结合诸如离子淌度法、核磁共振法等其它技术后,进一步提取出更多关于折叠膜蛋白的拓扑结构信息和性质。Carol Robinson教授团队从1993年开始应用质谱分析证实了蛋白质折叠与伴侣分子稳定效果的关系,并于2008年使用质谱分析研究疏水膜蛋白并取得突破。最近,她的团队对螺旋低聚膜蛋白在界面脂分子作用下的稳定效果进行量化,取得的成果发表在Nature及Science系列期刊上。她展示了原始的质谱分析例图,讲解了如何使用图谱判断样品蛋白是否折叠,并讲解了在旋转马达ATP合成膜蛋白内部的亚单位相互作用及折叠机制。/pp  Carol Robinson教授总结,质谱分析对膜蛋白方面的研究意义重大,具有独特性和创新性。她指出,自己在最初决定进行这方面研究时遇到了很大困难和阻力,并因此鼓励年轻人不必拘泥形式,要敢于设计实验。/pp  在提问环节中,Carol Robinson教授回答了研究中遇到的困难、质谱与冷冻电镜等分析方法在生物结构研究方面的应用和蛋白质在真空中折叠的机理与现实环境中的区别等问题。Carol Robinson教授还和同学们探讨了如何平衡家庭和学术事业等话题。/pp  大师讲坛学生组委会向 Carol Robinson教授赠送了精心制作的泥塑人像作为纪念品,以表达交大学子对她到访由的衷感谢和诚挚祝福。/pp  【嘉宾介绍】/pp  Carol Robinson,英国皇家学会院士、美国科学院外籍院士、英国皇家化学会候任主席。现担任牛津大学化学系Doctor Lee冠名教授,牛津大学埃克塞特学院教授会员。她1982于剑桥大学获得博士学位,先后在基尔大学、牛津大学、剑桥大学工作。她2001年晋升为剑桥大学历史上第一位女教授,2011年被英国皇家学会授予跨领域奖,2013年在新年授勋中被授予大英帝国爵级司令勋章,2015年获得世界杰出女科学家成就奖。/pp  【背景介绍】/pp  质谱是一种通过ESI和MALDI等方法电离分子并根据其质荷比进行记录的分析方法,在化学及结构生物领域有着广泛的应用。使用质谱法分析膜蛋白质要求电离蛋白质分子,同时不破坏其分子结构。/pp  Carol Robinson教授长期从事质谱相关领域的研究。她在对生物高分子配合物进行汽化以用于质谱法分析领域进行了大量突破性研究,并在使用质谱研究例如膜蛋白等大配合物结构方面做出了杰出贡献。Carol Robinson教授以第一作者或通讯作者在Nature和Science等杂志上发表了一系列文章,是质谱在化学、生物等领域研究方面的权威学者。/pp /p
  • 磷酸化蛋白,液体活检全新维度——访北美华人质谱学会主席陶纬国教授
    p  span style="font-family: 楷体,楷体_GB2312, SimKai "回顾2017年,基于质谱的临床研究有一项突破性发现。普渡大学陶纬国教授团队在2017年3月20日的《美国国家科学院院刊》(PNAS)杂志上发表文章称,他们从人体血液中发现2400多种磷酸化蛋白。该发现首次证明了磷酸化蛋白可以作为基于液体活检的疾病标志物,能用于对癌症等重大疾病更早、更精准的非侵入性诊断,为 “液体活检”提供了全新的检测维度。近日,仪器信息网专访了陶纬国。/span/pp style="text-align: center "img title="1.jpg" src="http://img1.17img.cn/17img/images/201801/insimg/a21a903c-0479-4776-9e2a-5b5c719f76fc.jpg"//pp style="text-align: center "strong普渡大学 陶纬国教授/strong/pp  span style="color: rgb(255, 0, 0) "strong磷酸化蛋白突破性发现/strong/span/pp  通过液体活检来诊断肿瘤和癌症等疾病一直是临床科学家关注的焦点,研究对象多集中在循环肿瘤细胞(CTC)和循环肿瘤DNA(ctDNA),但是二者都有局限性:由于CTC在血清中的浓度非常低,取少量血液对其检测难度很大 癌症有很多基因突变,而这些突变不一定会显现出来,因此基于ctDNA进行的液体活检的诊断结果只能预测患病的概率,并不能确诊。/pp  蛋白质磷酸化是调节和控制蛋白质活力和功能的最基本,最普遍,也是最重要的机制,同时,与许多疾病的发生密切相关。在众多肿瘤致病机理中,当前学术界对蛋白质磷酸化机理的研究最为清楚,80%-90%的癌症都跟蛋白质磷酸化有关。因此,许多抗肿瘤药物的研制都着眼于磷酸化蛋白。理论上,磷酸化蛋白作为相关基因突变的表达,在临床上能够帮助医生做出更明确的诊断。但是,有关基于液体活检的磷酸化蛋白研究还很少。此前,有个别报道在血液中发现几十种磷酸化蛋白,均是高丰度蛋白,生物学意义不大。“原因就是磷酸化蛋白一旦从细胞进入血液中就被肝脏分泌的磷酸酶水解了。”陶纬国解释说,“所以虽然磷酸化蛋白跟癌症关系非常密切,但人们无法对其进行检测。”/pp  陶纬国团队是如何从人体血液中检测到大量磷酸化蛋白的呢?这要从三年前的一篇文献报道说起,当时陶纬国从这篇文章中了解到外泌体和微囊的结构,“当我看到类似于纳米微粒的外泌体、微囊结构时,我认为可能会有磷酸化蛋白被包裹在外泌体中,然后进入血液。如果真是这样,被外泌体包裹的磷酸化蛋白可能会避免被血液中的磷酸酶水解。”于是陶纬国团队对血液中的外泌体、微囊进行了超速离心分离、提取,然后用质谱进行检测。一周以后,实验结果让所有人都惊呆了,他们从中发现了几千个磷酸化蛋白。这个突破性的发现使得临床科学家们今后可以在1毫升血浆里找到几千个磷酸化的位点,并从中筛选出不同疾病的生物标志物。之后,陶纬国团队对乳腺癌病人血清中的磷酸化蛋白做了研究,发现乳腺癌病人体内的磷酸化蛋白与其病症密切相关。/pp  那么,磷酸化蛋白液体活检何时能够应用临床呢?陶纬国回答说:“虽然现在还不好断言,但我认为3-5年内都有可能。”他进一步解释,随着质谱技术的显著提升,一些原来检测不到的生物标志物现在能够检测了,后面的工作主要是考察重复性有多好,假阳性有多低。/pp  谈及未来的工作,陶纬国表示,一方面会继续做乳腺癌的磷酸化蛋白生物标志物确认的工作 另一方面也会做其他疾病磷酸化蛋白生物标志物找筛的工作,“还有很多其它疾病,比如阿尔茨海默病、帕金森综合征等,也都是蛋白磷酸化有关。”/pp  span style="color: rgb(255, 0, 0) "strong质谱用于生物大分子检测的思考/strong/span/pp  陶纬国教授做蛋白组学研究至今已有十几年,用到的研究工具主要是质谱。在攻读博士期间,陶纬国师从普渡大学著名质谱专家Graham Cooks教授。博士毕业后,陶纬国加入了西雅图系统生物研究所,在Leroy Hood教授(自动DNA测序仪发明人)和Ruedi Aebersold教授(著名蛋白质组学专家)课题组继续博士后研究。从那时起,陶纬国就开始了他的磷酸化蛋白质组学检测的研究,“重回普渡教书以后,我的工作基本上是围绕着怎么去提高磷酸化蛋白分析手段来开展的。质谱在我的工作扮演着中心角色,包括方法开发,蛋白生物标志物早筛,全靠质谱来做。”首先是早筛,用质谱(Orbitrap)筛选出相关的生物标志物(磷酸化蛋白) 然后对病人的样本进行检测,用统计学的方法对检测结果进行分类 最后,分析统计学上有意义的、跟病人相关的磷酸化蛋白。/pp  在过去二三十年里,质谱在生物大分子检测方面有几个重要的技术突破。首先,80年代末90年代初, ESI和MALDI的出现,使质谱能够用于分析生物样品 第二,近十几年来,高分辨质谱的飞跃发展,大大提升生物大分子的分析效率。“我读博士后时(2002年),很多仪器还是低分辨的,生物样品还是挺难做的,做完一个磷酸化的蛋白,单是数据库检索就要三天,而且,相对来说,得到的数据假阳性高。现在的高分辨质谱解谱很容易,差不多半个小时就够了,假阳性也降低很多。”此外,陶纬国还说到,“UPLC与质谱的结合在技术上是很大的进步,使色谱的分离效率赶上了质谱的速度,现在一个小时能检测到几千个蛋白,非常快。”/pp  同时,陶纬国也指出了目前利用质谱来检测生物大分子的难点。第一,生物样品基体复杂。“像我们实验室做磷酸化蛋白,它本身丰度就很低,假如样本不经过任何分离的话,谱图上将会只能看到高丰度蛋白。”第二,质谱检测假阳性比较高。“其实还是需要统计学算法方面的开发,来解决假阳性率高的问题,这也是现在很多质谱开发者在做的工作。”/pp  现如今质谱产品更新迭代非常快,对于质谱工作者来说,是好,也是坏。“新产品的确扫描速度更快了,精度更高。但是,也给质谱工作者带来了不小的压力。特别是像我们这种使用高分辨大仪器的,没有那么多钱换来换去。可是如果你想要紧跟前沿,这些新仪器又十分必要。”陶纬国说,这是目前质谱工作者普遍面临的两难境地。/pp  span style="color: rgb(255, 0, 0) "strong整合临床大数据/strong/span/pp  2017年,陶纬国作为海外高层次人才被东南大学引进回国。谈及回国的初衷,陶纬国表示,国内拥有更多、更丰富的病人样本,这是他选择回国的原因之一。此外,国内对于高分辨质谱等大型仪器的投入力度也更大,有助于前沿研究的开展。谈到选择东南大学的原因,陶纬国说到:“东南大学的生物医学工程学院有转化医学,有生物,然后又有工程,包括产业化,比较适合我。”/pp  现在国内,整合医学大数据来服务大健康的概念很热,“在全国,包括南京,都已经有相关工作在开展”。从临床检测这个角度来说,陶纬国希望找到办法来整合DNA检测,microRNA检测,磷酸化蛋白检测几个维度的数据,从而获得更为精准的临床诊断结果。“比如检测一个肿瘤,通过对DNA、mRNA、磷酸化蛋白、糖基检测多维度数据的不断积累,数据会越来越多,结合人工智能、计算机算法,检测结果会越来越精准。 我回来能赶上这个机会也是不容易。”陶纬国如是说到。/pp  目前,医学大数据的采集方式主要为第二代、第三代测序。“但是,质谱也是很重要的一块儿。”陶纬国指出,“比如乳腺癌,基因突变仅仅代表一种患病的可能性,但是到底有没有癌症还是要通过蛋白检测来确定,所以用质谱来检测蛋白的存在、活性、功能,比基因层面更可靠。所以,质谱检测肯定会慢慢跟上来。”/pp  陶纬国在东南大学生物医学工程学院的新实验室是电子生物国家重点实验室。对于自己的工作重心,陶纬国表示,现在是过渡时期,未来会逐步将重心转至国内。“国内实验室刚刚开始,看起来前途光明。”/pp span style="color: rgb(255, 0, 0) "strong 热衷学界公益事务 出任CASMS主席/strong/span/pp  作为质谱生物大分子检测方面的专家,陶纬国于2017年6月份当选北美华人质谱学会(CASMS)主席。该学会汇聚了众多顶尖的华人质谱学者,已经成为质谱学界重要的华人力量。在一年一度的“美国质谱年会(ASMS)”期间举行“北美华人质谱学术会议”已经成为CASMS的传统。据陶纬国介绍,CASMS已有二三十年的历史,目前注册人数在800人左右,覆盖了北美地区绝大部分优秀的华人质谱学者。ASMS每年参会人数6000-7000人,相当一部分是华人,中国面孔越来越多。“在美国,有很多华人学者做了非常出色的工作,但他们并没有获得相匹配的影响力和威望。” 陶纬国说,“我们学会的宗旨就是提升华人质谱学者在世界质谱领域的影响力。当然, 中国本身的国际地位的重要性是显而易见的。”/pp  CASMS的另一个宗旨是促进世界华人质谱界的互相交流。每两年召开一次的“世界华人质谱学术研讨会”是全世界华人的质谱盛会,汇聚了中国内地、台湾、香港、新加坡和北美地区的质谱学者,CASMS是该会议4个主办方之一。2016年,CASMS主办了第六届“世界华人质谱学术研讨会”,这是该会议首次在美国召开,恰逢该会议召开十周年。“我认为非常有意义,促进了两岸三地华人质谱学者的交流合作。我的亲身体会是通过这个会议结识了很多优秀学者,而在此前很多同仁相互间是不认识的。”/pp  未来,除了重要的线下会议组织工作,陶纬国希望通过加强线上日常交流,来使学会内部联系更为紧密。/pp  span style="font-family: 楷体,楷体_GB2312, SimKai "strong后记:/strong临床质谱技术被认为是医学诊断的下一个“基因测序”,应用前景被普遍看好。质谱用于临床检验具有灵敏度高、特异性高、重现性好的优点,可在临床多个领域对传统诊断方法学进行替代。陶纬国教授团队的磷酸化蛋白研究进一步提升了临床质谱应用的含金量。基于该研究,临床科学家们将会找到更多可靠的疾病标志物,从而实现癌症等重大疾病的早期发现和精准诊断。/span/pp style="text-align: right "采访编辑:李博/p
  • 中美精准医疗临床质谱高峰论坛暨“临床质谱研究与产业联盟”筹备启动仪式即将举行
    p style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/noimg/d38c6f26-4c82-44c2-a976-6c2b766f8994.jpg" title="1.png"//pp  健康是促进人类全面发展的必然要求,是经济社会发展的基础条件。实现国民健康长寿,是国家富强、民族振兴的重要标志,也是全国各族人民的共同愿望。 随着中国政府推出《“健康中国2030”规划纲要》,提高人民健康水平、推进健康中国建设被提到了一个前所未有的新高度。/pp  临床质谱技术近年来飞速进步,已经逐渐从科研向产业化发展。“临床质谱研究与产业联盟”(以下简称联盟)也正是在这样的时代风口上应运而生。众所周知,临床质谱与二代测序、精准影像并称为精准医疗三大检测工具。临床质谱既可以替代生化、免疫用于现有临床标志物的精准检测,又可以从分子层面对蛋白质组、代谢组进行动态且精准的监测,实现真正的疾病早期预警和精准诊断。联盟成立后,将致力于临床质谱的制造和应用的产业化、规范化、标准化,促进临床质谱技术为人类的健康事业做出更多的贡献。/pp  值此中华医学会第十四次全国检验医学学术会议召开之际,同期将举行中美精准医疗临床质谱高峰论坛暨“临床质谱研究与产业联盟”筹备启动仪式,共同推动中国临床质谱产业的发展,更好地为检验医学服务。/pp  新技术的发展离不开业内顶尖专家学者的共同努力,联盟的成立得到了中美专家的广泛关注和支持。中华医学会检验医学分会主任委员王成彬教授、中国人民解放军医学科学委员会检验医学专业委员会主任委员府伟灵教授、美国AACC临床转化科学科主席朱玉胜教授将出席大会并讲话。同时,美国劳伦斯伯克利国家实验室代谢组学技术中心主任Trent Northen教授、复旦大学附属中山医院检验科主任郭玮主任、中科院大连化学物理研究所研究员许国旺教授及中科院生物物理所研究员李岩教授将在筹备大会上分享各自的成功经验和对产业发展的观点。/pp  此外,联盟筹备期间得到了张玉奎教授、陈洪渊教授、马银法教授、赵英明教授、王则能教授、杨芃原教授、陆豪杰教授等多位质谱行业资深专家的指导。他们的支持必将成为产业发展厚积薄发的力量源泉。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/noimg/34e4c60b-ebcc-4cb0-892a-ead9f59cca62.jpg" title="2.png" width="200" height="286" border="0" hspace="0" vspace="0" style="width: 200px height: 286px "//ppstrong  理事长寄语:/strong/ppstrong  府伟灵教授/strong/pp  中国人民解放军医学科学委员会检验医学专业委员会主任委员/pp  中国研究型医院学会检验医学专业委员会主任委员/pp  中华医学会检验医学分会副主任委员/pp  “今年是中美精准医疗临床质谱高峰论坛在中国举办的第一年,它为临床医疗领域的专家们搭建了临床质谱研究的交流平台。我很高兴看到众多业界同仁积极响应此次论坛,为推动中国临床质谱技术的发展群策群力。此外,中国质谱发展正进入一个‘新时代’,临床质谱研究与产业联盟在这样的时代背景下成立必将促进质谱技术临床应用转化,助推精准医疗发展,为国家健康和疾病治疗战略服务。”/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201808/noimg/1277f28d-7d73-4049-9b38-b09d004f3c67.jpg" title="3.png"//pp style="text-align: center "更多详情请扫描二维码/pp style="text-align: center "会议联系人:林兆秋(联系电话:+86-13761649634)/ppbr//p
  • 施启乐诚邀您参加广西质谱技术及生物毒素检测高峰论坛
    随着质谱技术的发展,质谱技术在应用领域越来越广,由于质谱分析具有灵敏度高、样品用量少,分析速度快,分离和鉴定同时进行等优点,因此,质谱技术广泛的应用于食品安全、环境、医药、刑事科学技术、生命科学、材料科学等各个领域。为进一步开拓质谱技术新思路,提升质谱技术发展,广西分析测试协会特举办“广西质谱技术及生物毒素检测高峰论坛",本次论坛邀请各个领域的应用专家,从质谱应用技术、生物毒素检测技术、科技项目申报和管理等相关内容展开技术交流和讨论。施启乐作为实验室常用仪器制造商,受邀携带公司产品和解决方案参加此次会议交流。现诚邀新老朋友届时拨冗参会,共话实验室工作新发展。会议时间:2022年7月21日8:30会议地点:南宁红林大酒店(广西南宁市民族大道129号)
  • 盛况直击! 谱聚医疗『质谱仪器研发及临床应用新进展高峰论坛』成功举办!
    5月19日,谱聚医疗主办的质谱仪器研发及临床应用新进展高峰论坛(简称“高峰论坛”)在杭州西子湖畔顺利召开。高峰论坛线下会议现场自1912年英国物理学家Joseph John Thomson研制出世界上第一台质谱仪开始已逾百年,质谱检测技术因高特异性、高灵敏性和多组分同时检测、开发灵活等优点,受到人们的广泛关注。近年来,已经成为临床实验室检测技术的重要组成部分。此次高峰论坛采用线上线下同步直播形式进行,国内多位仪器研发及临床检测领域的知名专家在线下与云端共聚一堂,基于临床质谱的研发及应用这一背景,围绕“全自主知识产权质谱研发、质谱在临床激素检测应用、临床质谱应用发展和质谱在TDM中的应用”等热点问题,展开深入交流,探讨了质谱仪器研发及临床应用的最新进展。高峰论坛会议线上直播本次论坛邀请到了复旦大学附属中山医院、遵义医科大学、浙江大学医学院附属第一医院、浙江大学医学院邵逸夫医院、浙江大学医学院附属杭州市第一人民医院、上海市临床检验中心、西北大学附属第一医院、山东大学第二医院和南昌大学第一附属医院等在内的十余个单位的专家,围绕质谱仪器研发及临床应用的最新进展展开讨论,为大家带来了精彩纷呈的论坛内容,高峰论坛线上线下吸引超过2500人次行业内人员参与观看。浙江大学医学院附属邵逸夫医院的张钧教授作为高峰论坛的大会主席兼主持人。高峰论坛在张教授热情洋溢的致辞中盛大开场,张钧教授说到:质谱仪应用于临床检验市场,其技术具有非常特殊的优势,未来在临床生化检验、临床免疫学检验、临床微生物检验以及临床分子生物诊断等多领域对传统诊断方法进行替代。国内对临床质谱的产业的不断加大投入,一批如谱聚医疗为代表的国内企业在一些关键技术瓶颈的逐步突破,相信质谱在临床检验领域的应用前景会越来越好。高峰论坛主席兼主持张钧教授致辞作为大会主办方专家,谱聚医疗总经理俞晓峰先生分享了目前国内全自主知识产权质谱仪器研发的最新进展,详细介绍了谱聚医疗作为国内临床质谱仪器研发制造头部厂商的核心技术优势,并展示了谱聚医疗最新一代产品液相色谱串联质谱检测系统 PreMed 5200。这款产品的发布是谱聚医疗实现三重四极杆串联质谱系统的国产化和产业化的重大突破,彻底打破了国外液相色谱串联质谱厂商对国内医疗行业的垄断。谱聚医疗总经理俞晓峰浙江大学医学院附属杭州市第一人民医院副院长林能明教授的报告介绍了质谱在TDM中应用,报告中,林能明教授对TDM(治疗药物监测)进行了系统介绍,并从实际案例出发,介绍了质谱技术在TDM临床中发挥的巨大影响力。浙江大学医学院附属杭州市第一人民医院林能明教授复旦大学附属中山医院的郭玮教授和遵义医科大学的鄢盛恺教授分别就质谱技术检测激素在临床中应用和我国临床质谱检测系统及量值溯源的现状和发展进行了精彩的报告。郭玮教授从激素检测的原理到临床质谱在激素检测的应用和优势做了详细的报告,并重点介绍了中山医院应用LC-MS检测激素的成功经验,郭教授指出:“LC-MS进入临床检验引领了21世纪的医学检验方法学革命。”最后郭教授总结了中山医院在LC-MS检测临床应用的挑战与实践经验。复旦大学附属中山医院郭玮教授鄢教授报告系统的回顾了临床质谱的发展历程,应用场景的现实需求和国内相关质谱制造的基本情况。深入浅出地介绍质谱技术及其临床应用、我国商品化质谱分析仪与配套检测试剂及其质量评价方法,同时对该领域的量值溯源情况(包括参考方法和参考物质)进行简要总结。最后,鄢教授对像谱聚医疗这样以质谱仪器为核心的,国产质谱产业化单位给予了很大的期望,期望谱聚这样的企业在全自主知识产权质谱仪器的研发和制造上做出更大的突破。遵义医科大学鄢盛恺教授高峰论坛的现场不仅仅是专家的精彩报告,还有一大批高水平专家的头脑风暴,点评专家们做出了精彩绝伦的点评发言,现场和线上的观众都获益匪浅。包括上海市临床检验中心参考实验室李卿副主任、西北大学附属第一医院赵雅教授、浙江大学医学院附属邵逸夫医院的于海涛博士、谱聚医疗资深产品经理杨继伟高级工程师、浙江大学医学院附属第一医院的黄鑫老师和南昌大学第一附属医院的肖雄博士等一大批专家学者做出了精彩点评。谱聚医疗作为临床质谱领域内的重要参与者,旨在能够提供普惠大众的临床质谱技术,让人民更健康。谱聚医疗邀请众多专家共聚此次盛会,探讨临床质谱研发及应用的最新进展,期望促进国产临床质谱的繁荣发展。正如各位专家所言,在高科技领域拥有全自主知识产权的完整产业链是一件殊为不易的事,在质谱研发制造等尖端科技领域更是更加困难,但是以谱聚医疗为代表的国内质谱厂商的出现,让我们对于拥有全自主知识产权的质谱开始抱有巨大的期待,并愿意为国产质谱的发展提供最大的支持!
  • 同位素质谱高峰论坛成功举办 | 德国元素elementar
    为加强学术交流,进一步提升稳定同位素技术在科研领域的应用范围,11月2号,由德国元素elementar主办的2022年稳定同位素质谱线上高峰论坛成功举办。浏览德国元素elementar稳定同位素比质谱选型方案,助力科研贴息贷款浏览德国元素elementar125年来的传承和创新此次论坛特别邀请了奥地利伦茨水域生态研究中心Leonard I. Wassenaar博士、中国科学院沈阳应用生态研究所方运霆研究员和浙江农业科学院质量安全与营养研究所袁玉伟研究员,受邀嘉宾分享了稳定同位素技术在各自领域的研究进展,深入交流对稳定同位素技术的探索经验。在交流互动环节,与会者积极提问,互相碰撞出学术的火花,收获学术成果、增进友谊沟通。首先,袁玉伟研究员作了《肥料对有机食品蔬菜和大米氮同位素的影响》的精彩报告。近年来,我国农业生产从数量满足型向质量需求型转变,老百姓的饮食习惯也从以前的吃得饱转变为现在的吃得健康和吃得有营养,有机绿色消费成为新时尚,有机农业绿色发展成为现代农业的新模式。不同来源肥料的δ15N不同,有机肥的通常高于化学肥料的。采用氮稳定同位素δ15N来检测氮肥来源和有机食品的标识特征,可以为有机生产过程的监督和消费权益保障提供强有力的技术支持。随后,方运霆研究员分享了铵盐和硝酸盐15N丰度的测定技术,总结了过去几十年来铵盐和硝酸盐稳定同位素丰度测定方法的历史发展变化,重点介绍了次溴酸盐氧化结合羟胺还原法测定铵盐的氮同位素、反硝化细菌法和镉粉叠氮酸还原化学法测定硝酸盐的氮氧同位素等行业内通用方法。通过稳定同位素技术,方运霆研究员也对北京市冬季灰霾期间大气不同粒径气溶胶所含铵态氮15N自然丰度进行测定,成功推算出大气中不同氨气来源的贡献。最后,Leonard I. Wassenaar博士介绍了稳定同位素技术在生态取证的一些最新应用,比如稳定同位素在示踪动物食性信息、确定营养级位置关系、分析食物网结构以及研究鸟类迁徙等生态学应用。作为此次论坛的主办方,德国元素elementar致力于服务客户,与客户紧密合作,确保他们既有高质量的仪器,又有专业的技术支持,共同推动稳定同位素技术在国内的普及应用。以浓厚兴趣与责任为经,以奉献与专一为纬,120多年坚持做一件事 - 元素分析,德国元素Elementar正把他对科技的热诚汇入中国火热的经济发展大潮,为中国的未来,为中国的环境、材料、农业、食品医药等领域的研究发展,贡献自己的力量。
  • 超高分辨质谱助力组学发展|赛默飞助阵第二届全国代谢组学及蛋白质组学双星峰会
    上海 双星峰会2021年11月27-29日,第二届全国代谢组学及蛋白质组学双星峰会在上海隆重召开,此次会议汇集了近200位国内外相关领域的知名专家、学者以及临床疾病、中医药、肿瘤、植物等多个研究方向的研究人员积极参与,共同交流探讨基于质谱的蛋白组学及代谢组学在精zhun医学、创新药、植物生理、营养健康、环境和食品等转化应用,共商我国代谢组学和蛋白质组学在后疫情时代的研究与发展。为降低疫情影响,大会采取线上同步直播的方式,在线人数达到600人。在此次会议中,赛默飞质谱组学应用专家鼎力助阵,分享超高分辨质谱技术在组学研究中的应用及进展,助力组学研究发展。在本次大会主会场上,赛默飞质谱组学应用资shen工程师范自全报告了“组学前沿-超高分辨质谱技术在组学研究中的应用和进展”,引起大家高度关注。上世纪90年代初开展的人类基因组计划,在破译人类遗传信息密码的同时,为科研学者提供了大量的完整基因编码序列,从而奠定了大量、快速鉴定蛋白质序列的坚实基础。然而,蛋白质以及代谢物的数量远远超过基因组中基因数量——基因分析量在万级,而蛋白质分析量可能在十万-百万级。完整的组学分析对质谱的性能提出了非常高的技术需求。赛默飞Orbtrap超高分辨质谱技术具有超高分辨率、超高质量精度、超高的稳定性及灵敏度等性能优势,助力科学家进行高通量的蛋白质和代谢物的结构表征和定量分析。质谱技术作为蛋白质和小分子物质的主要检测手段,借助赛默飞Orbitrap高分辨率质谱凭借其高精zhun的定性、定量能力,助力蛋白质组学和代谢组学研究实现精确医疗研究。通过蛋白质组、代谢组、脂质组等多种组学的联合研究,为疾病致病机理发现、疾病的早期诊断及预后生物标志物、疾病分型以及新的治疗靶点研究提供理论依据。随着研究人员对蛋白质组学和代谢组学研究的深入,对样品中分子的空间分布情况及其相互作用的需求日益增加。质谱成像技术能够直观的检测样品中分子的空间分布信息,近年来受到了高度关注与广泛应用,成为与传统光学显微成像互为补充的新一代“分子成像显微镜”。基于Orbitrap的成像技术具有超高的质量及空间分辨率,ji致清晰的成像结果为多种应用领域提供全面丰富的多层次数据。例如在赛默飞质谱成像技术支持下,Spengler教授团队研发出低至1.4μm 空间分辨率的应用,小鼠脑组织成像结果更加清晰。这个水平的空间分辨率也使得单细胞质谱成像技术成为可能。在较大的组织甚至整体动物研究方面,国内学者采用自主研发的空气动力学气流辅助解吸电喷雾电离质谱成像技术,在大鼠脑、肾脏和人食道癌组织中观察到数千种代谢物,并且采用人工神经网络算法,突破了定量研究中的难题,为疾病研究提供了有力的分析工具。会场外赛默飞领xian的Orbitrap质谱技术在现场一众质谱厂商中尤显突出。展台上全方位展示了基于其超高分辨的静电场轨道阱(Orbitrap)质谱平台结合其功能强大的软件平台提供的蛋白质组学及代谢组学全流程的整体解决方案,助力科研超越。
  • 技术进步为质谱血浆蛋白组学带来了巨大飞跃
    近日美国质谱学会年会(ASMS)上发布的最新数据表明,新的仪器和工作流程极大地提高了基于质谱的血浆蛋白组学实验的覆盖深度和通量。这些进步可使质谱成为各应用领域中更有用的工具,包括血浆蛋白生物标志物的开发以及迄今由Olink和SomaLogic等亲和性平台主导的大规模人群研究。  血浆是一种易于获取和常用的样本来源,尤其是在临床工作和人群研究中。然而,由于血浆含有大量丰度较高的蛋白质和较宽的动态范围,传统的质谱蛋白质组学分析能力不足。对于细胞裂解物的分析,质谱工作流程可测量8000到12000个蛋白质,但对血浆,类似的工作流程只能测量500到1000个蛋白质。虽然可通过去除丰度较高的蛋白质或进行粗分离来改善这一情况,但这也会牺牲通量。  去年,瑞士蛋白质组学公司Biognosys在Journal of Proteome Research杂志上发表了一项研究,他们使用赛默飞的Orbitrap Exploris 480质谱仪,通过两小时的液相色谱梯度测量了180个去除了高丰度蛋白的血浆样品中的2732个蛋白质,这是未进行血浆分离处理情况下最高深度的血浆蛋白质组分析。  最近,蛋白质组学公司Seer推出了一种新的血浆蛋白组学解决方案。该公司的Proteograph系统使用一组纳米颗粒来富集血浆蛋白质,然后可以使用质谱等技术对其进行鉴定和定量分析。与传统的血浆蛋白组学方法相比,Seer系统在覆盖深度和通量上都有所提升。在一份发表于四月BioRxiv预印本的研究中,威尔康奈尔医学院-卡塔尔团队使用该系统分析了345个血浆样本,测量了大约3000种蛋白质,在其液相色谱-质谱法的运行时间下每天可分析大约10个样本。  根据以上数据,Biognosys分析和Seer系统的覆盖深度都接近于Olink的Explore平台,后者可以在血浆中测量大约3000种蛋白质,但它们仍远远落后于SomaLogic的SomaScan平台,后者可以在血浆中测量大约7000种蛋白质。在每周约70个样本的处理量上,Biognosys和Seer系统的通量仍然落后于Olink和SomaLogic平台,后者每周分别可以处理多达1000个和340个样本。  ASMS年会上,Thermo Fisher Scientific展示了使用Seer最新发布的Proteograph XT试剂盒在其新的Orbitrap Astral仪器上测量大约6000种蛋白质的数据,每天处理大约30个血浆样本。这些数据标志着血浆蛋白组学工作流程的重大进展,并表明在大规模血浆研究方面,结合Seer Proteograph等血浆富集技术的质谱法与基于亲和性的平台现在可能成为竞争对手。  剑桥大学临床医学院MRC流行病学单位的生物信息学家Maik Pietzner表示:“坦白说,我们没有预见到这么大的飞跃。”他和他的同事在大规模蛋白质基因组学研究中使用了SomaLogic的SomaScan和Olink的Explore。他指出,根据ASMS展示的数据,“看起来现在似乎变得可行了”,因为他们的研究需要1000个或更大的样本队列。  华盛顿大学基因科学教授Michael MacCoss还表示,质谱技术具备的覆盖深度和通量使其成为大规模人群研究的有用工具。他说:“像英国生物库(UK Biobank)或弗雷明汉心脏研究(Framingham Heart Study)这样的大型队列……这些样本的价值是巨大的,研究人员希望能够以最少的资源获取最多的信息,很多实验都使用了Olink或SomaLogic。”  如果质谱技术能够可靠地提供ASMS演示中展示的覆盖深度和通量,它可能成为亲和性平台的有力补充和竞争对手。许多蛋白质存在多种形式,或称为蛋白质变体,其变异包括氨基酸变异、截断或翻译后修饰等,这些变化会影响它们的功能,在亲和性平台上往往不清楚或不确定测量的是蛋白质的哪种变体。质谱方法更适合分析这些不同的蛋白质变体。  Olink总裁Carl Raimond表示,他认为质谱和亲和性平台是“绝对互补的”,并补充说“看到蛋白质分析领域有创新是非常好的”。然而,他表示在Olink占据领先地位的大规模人群研究中质谱技术近期可能无法成为竞争对手,他同时也质疑ASMS展示的令人印象深刻的数据在广泛应用时是否能够经受考验。他说:“细节决定成败。提出要求很容易,但真正能够实现或提出关于这一要求背后的问题则是完全不同的事情。”Raimond补充说,虽然质谱技术不断改进,但亲和性平台也将不断进步。Olink正在将其Explore平台扩展到约5,000种蛋白质靶点,而SomaLogic计划在今年年底前将SomaScan平台扩展到覆盖约10,000种蛋白质。Pietzner同样表示,虽然在ASMS上发布的数据令人兴奋,但他和他的同事们期待看到更广泛的数据,包括总体的蛋白质覆盖范围,不同蛋白质和肽段在样本中检出的一致性和重复性。他说,“亲和性方法已经应用于规模大于50,000的人群队列中,并带来了惊人的发现。我们需要进行头对头的比较以评估这些新的质谱技术是否能够实现类似的扩展。”  MacCoss表示,使用质谱进行此类研究的公司或研究人员需要提供数据,证明他们能够在每个样本中一致且可重复地测量一组核心蛋白。他说:“当人们使用Olink时会有一个清单,上面列出了每次都会测到的蛋白质。我们仍然需要这样做。我们仍然需要说,这是每次实验都会返回定量值的蛋白质列表……以及测量中获得高质量分析数值的蛋白。”  Pietzner表示,他和他的同事目前正在努力扩展他们的蛋白质基因组学研究以包括质谱技术。强生和强生制药公司的神经科学数据科学主管,以及英国生物库药物蛋白质组学项目(PPP)主席Christopher Whelan表示,目前一个规模最大的蛋白质基因组学人群研究项目正在实施基于质谱的蛋白质组学。  Seer本月宣布推出Seer技术访问中心,该中心将组合其XT试剂盒与Orbitrap Astral质谱仪,为没有质谱仪的用户提供蛋白质组学服务。  尽管到目前为止很难全面评估Thermo Fisher的Orbitrap Astral和Seer的Proteograph XT的性能,但一些早期用户表示其产生的结果很出色。  Cedars-Sinai精准生物标志物实验室主任Jennifer Van Eyk一直在使用Orbitrap Astral进行血浆蛋白质分析,在这方面它比先前的仪器有更强的能力。Van Eyk表示,在每天运行60个样本时,新仪器可测得的蛋白质数量是相同工作流程下使用Thermo Fisher的Exploris 480仪器的2到2.5倍。  她说:“我们不仅可以检测到更多蛋白质,而且可以定量更多蛋白质,并且这些蛋白质是可重复的,也就是说,如果我们运行一个样本五次,我们确实会五次都观察到同样的蛋白。这是一个很大的飞跃。”这台仪器最出色的或许是其高通量,Van Eyk表示,她和她的同事们每天可以运行多达180个的未去除高丰度蛋白的血浆样本并获得良好的数据和深度的覆盖。她说,“在每天运行180个样本的情况下,突然间你可以开始讨论运行10,000个样本,然后它就成为一个人群研究了。”Van Eyk和她的同事目前正在试验Seer Proteograph系统,以“充分测试”其性能,并评估是否要将其作为血浆蛋白质组学工作流程的一部分。  威斯康星大学麦迪逊分校的生物分子化学和化学教授Joshua Coon指出,他的实验室能够使用50分钟的液相色谱梯度在未处理的血浆中测量大约1,500种蛋白质,并且已经在该仪器上开发出了一种一分钟的直接注射方法,能够在每个样本中测量约200种蛋白质。  Coon还是SeerProteograph平台的用户,尽管他尚未将其与Orbitrap Astral结合使用。他的实验室一直在使用Seer XT试剂盒分析阿尔茨海默病患者的血浆样本以及长期新冠肺炎(long COVID)个体的样本。他说,尽管他的团队尚未开始处理大批量样本,但在初步工作中,实验室每个样本一致地测量到约3,000种蛋白质,这是不使用Seer系统时的五倍左右。他认为,当研究人员将工作流程应用于Orbitrap Astral系统时,这些数字还会进一步提高。  除了覆盖深度外,Coon表示,Proteograph对简化质谱样品制备非常有用。他说:“我没有完全认识到到它的自动化程度,它非常方便。现在主要的用户是一个一年级和二年级的研究生……所以他们必须快速学习。他们在处理样本、获得消化产物和肽段方面取得了很大的成功。当你有新人或者长时间不做该工作的人时,进行大规模蛋白质组学研究的样品制备将耗费整个实验一半以上的精力,只需使用该平台然后熟练掌握。”  尽管Seer Proteograph平台提供的覆盖深度使质谱血浆蛋白质组学在某些应用中与Olink和SomaLogic等亲和力平台更具竞争力,但Seer本身在血浆富集领域面临新的竞争。  在ASMS会议上,蛋白质组学样品制备公司PreOmics推出了其ENRICH-ist富集血浆和血清蛋白质的试剂盒。该试剂盒使用非功能化顺磁性微珠来富集低丰度蛋白质,据该公司称,与未去除高丰度以及未富集的血浆相比,用该试剂盒处理血浆可将蛋白质检出率从50%提升至100%。PreOmics首席执行官Garwin Pichler表示,微珠与缓冲液的结合可在去除高丰度蛋白的同时富集低丰度蛋白以提高覆盖深度。Biognosys推出了一种新的基于微珠的血浆蛋白质组富集试剂盒,作为其TrueDiscovery服务平台的一部分。据该公司称,这种试剂盒可以高通量定量人类血浆中约4,000种蛋白质。  此外,在本月,华盛顿大学研究人员领导的团队在BioRxiv预印本上发表了一篇论文,描述了一种使用ReSyn Biosciences的磁性微粒富集血浆蛋白质的方法,其通过结合血浆中的膜结合囊泡并分析相关蛋白质来提高覆盖深度。华大的MacCoss是这篇预印本的通讯作者,该预印本的第一作者Christine Wu也是该富集方法的主要开发者。他们能够在Orbitrap Astral上使用30分钟的液相色谱梯度稳定地定量约4,800种血浆蛋白质,每天可处理约40个样本。在使用一小时的液相色谱梯度时,他们能够测量5,000到6,000种蛋白质。MacCoss他们迄今没有过度挑战该方法的能力,所以这些数字是相对保守的。MacCoss表示,由于Seer公司的技术成本较高,研究人员对于血浆蛋白质组学富集的替代方法很感兴趣。他说:“Seer在制造这些产品方面做得很好,但成本是一个高门槛。”  维也纳分子病理研究所的蛋白质组学负责人Karl Mechtler表示,他与Seer的讨论中,每个样品的报价大约是600美元。他说:“如果我有100个样品,对于一个蛋白质组学实验室来说,这是一笔巨款。”他指出,对于一个典型的蛋白质组学实验室,一个合适的价格范围应该在每个样品25到50美元左右。Wu表示,使用华大的富集方法进行实验的每个样品成本低于5美元。PreOmics将ENRICH-ist试剂盒作为完整蛋白质组学样品准备工作流程的一部分销售,每个样品总共80美元。  在回答成本问题时,Seer公司董事长兼首席执行官Omid Farokhzad表示,他认为价格是“价值交换的问题”。他说:“并非所有内容都是等价的。问题在于,从Seer所提供的与其替代方案所提供的内容来说,价值交换是什么?”在血浆蛋白质组学领域最新的发展中,这个问题的答案似乎是一个不断变化的目标。
  • 蛋白分子质谱诊断先行者许洋:蛋白质谱目前有三种临床应用
    p  用于生物样品分析的蛋白指纹法,该专利技术被国际顶级科学杂志《科学》以及医学界权威杂志《柳叶刀》评为世界蛋白指纹图谱和蛋白质芯片排名第一的技术。针对这项技术的一些问题,火石创造对许洋博士进行了深度的专访。/pp style="text-align: center "img width="300" height="385" title="001.png" style="width: 300px height: 385px " src="http://img1.17img.cn/17img/images/201711/insimg/ebf3be8e-c0c2-49d6-9891-a76d207d183f.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "strong  许洋博士/strong/pp  许洋博士一直致力于蛋白质组学研究开发,怀揣近五十项蛋白分子质谱诊断技术的自主发明专利。2009年他创办了湖州赛尔迪生物医药科技有限公司,凭借专利产品蛋白指纹图谱仪成为行业领头羊,也成为此类器械行业标准的起草者。/ppstrong  火石:请问您为什么做蛋白质谱?/strong/pp  许洋博士:我研究蛋白质谱是偶然也是必然。在美国纽约著名的Sloan-Kettering研究所单克隆抗体实验室早期研究治疗白血病时,我们制造了全世界第一枚人源化单克隆抗体(抗CD33人源化单抗)。后来我又和顶尖美国公司合作第一个将人源化单克隆抗体做成了靶向药。有了扎实的基础,必然能在更窄的蛋白质谱领域做的更好。/pp strong 火石:蛋白质谱当前的临床应用情况如何?/strong/pp  许洋博士:只有拿到医疗器械注册证才算进入临床,蛋白质谱目前只有三种临床应用:对肿瘤的筛查 对早期肾脏疾病的分析 在细菌上的鉴定应用。蛋白质谱在国内仍处于非常早期的阶段,且具有垄断性,极少人能做且在做。/ppstrong  火石:作为国家“千人计划”医疗器械特聘专家,您认为蛋白指纹图谱仪在医疗器械中的角色是什么?/strong/pp  许洋博士:蛋白指纹图谱仪分析的大数据可以生动地比喻为人体疾病的健康地图。/pp  蛋白指纹究竟是什么?把质谱仪的显示屏中的每一个蛋白质都用一个分子量来表达,这些分子量组合起来就叫蛋白指纹。就像每个人的指纹都是不同的,每种疾病的特定蛋白质表达物也不同,称之为指纹图谱。蛋白指纹图谱技术是由蛋白质芯片及分析仪器——表面加强激光解析电离飞行时间质谱仪两部分组成,可以将病人血清中蛋白质成分的变化记录下来,绘制成蛋白指纹质谱图,并显示样品中各种蛋白的分子量、含量等信息。将这张图谱与正常人、某种疾病病人的谱图或基因库中的谱图进行对照,就能最终发现和捕获新的特异性相关蛋白及其特征。这种方法具有微量、精确、简易、快速的特点,适应于基础和临床等各个领域。/pp  之所以将蛋白指纹图谱仪分析的大数据比喻为人体疾病的健康地图(MAP),是因为既然β2—微球蛋白是11731、人绒毛膜促性腺激素是37580、转甲状腺素蛋白是13761(数字对于计算机的应用更好管理),而每个蛋白质在质谱仪分析中都是数字,它本身就是大数据。任何物质在质谱底下都是数字,综合起来就是大数据。我把大数据串联起来,就能将分子在身体的MAP做出来。譬如一位吸烟的男士来体检,能发现他吸了烟数年之后肺部出现影像学病理性位点,结合质谱仪分析发现相关的疾病标志物,我们能够模拟出肺部疾病的健康地图,即通过质谱仪检测的健康大数据,可以模拟出该患者肺部出现了数个小红点,点击每个红点后都会解释原因,如显示铅、铬等数据是否超标,以及告诉你相应的对策。这样的技术开启了全智能健康4.0时代。/pp  Tips:β2—微球蛋白(β2—MG)被认为是诊断早期肾功能损伤的敏感指标,尤其对于糖尿病肾病、高血压肾病、红斑狼疮肾炎的早期诊断具有重要参考价值,因此β2—微球蛋白的测定在临床上是有多种价值的。/pp  strong火石:您和您的团队在蛋白质组学研究的技术或者方法上有什么突破吗?/strong/pp  许洋博士:蛋白质作为标志物对肿瘤的诊断,确实没有太大的进展。/pp  一直以来蛋白质组学研究面临的重大瓶颈是蛋白质分离问题:人体内有十万种蛋白质与衍生物,多数可能与疾病有关联,但这十万种蛋白质与衍生物只有分开后,质谱才能分析清楚。此前蛋白质组学技术中最流行、最通用的蛋白质分离方法是双向电泳,基本上能分离近二千种血浆蛋白质,远远不及十万种,所以成为了瓶颈。/pp  2006年我提出了一个设想:和蛋白有关的抗体至少有一万多种,那为什么不用抗体来分离蛋白质?这件事一直有人在做,但之前都没有人想到用抗体组把一千个蛋白质一次性快速、实时地分离出来。之后就诞生了免疫质谱分析方法(专利号ZL 200610140652.0),可以在一个抗体组基质上同时捕获多个生物标志,并对捕获的变异的或修饰的生物标志进行质谱精确分析,还可以同时检测多个生物标志群。用免疫组质谱技术能测定抗原变异片段的分子量。另外,还可以将多种疾病特异性抗原的抗体同时标在一个基质点上。/pp  Tips:免疫质谱分析方法:质谱与抗体分离技术联合应用即为免疫组质谱(Immunomic mass spectrometry,IMS)。免疫组质谱检测为一组多种(类)抗体与质谱联合来精确地鉴别变异或修饰生物标志群的方法。在一个抗体组基质上同时捕获多个生物标志,并对捕获的变异的或修饰的生物标志进行质谱精确分析。可以同时检测多个生物标志群(biomarkers)。/pp  双向电泳(Two-dimensional electrophoresis):是一种等电聚焦电泳与SDS-PAGE相结合,分辨率更高的蛋白质电泳检测技术。目前是快速成长的蛋白质组学技术中最流行最通用的蛋白质分离方法。目前2D-PAGE能够在同一块凝胶上同步检测和定量数千个蛋白质。/pp  从整个2015年的政策看,医疗器械行业是受到国家大力扶持的,行业地位与重要性大幅提升,法规向国际化看齐,行业监管不断趋严,医疗器械正成为与药物齐头并进的新兴产业。/pp  strong火石:是什么驱动着行业的高增长?/strong/pp  许洋博士:一是需求,老龄化加剧,家庭支付能力增强,导致医疗需求高增长 二是政府加大医疗卫生投入,《医疗器械科技产业“十二五”专项规划》表示,“十二五”期间将扶植形成8~10家产值超过50亿元的大型医疗器械产业集团 三是为配合新医改完善基层医疗建设的目标 四是国内生物技术研发应用进入突破期。/pp  strong火石:您认为接下来医疗器械未来发展的特点和前景会是怎么样的?/strong/pp  许洋博士:未来5年,医疗器械和制药占比将会达到1:1。近十年,我国医疗器械市场规模快速增长,国内医疗器械工业总产值从2003年的189亿人民币上升到2013年的1889亿,2013年同比增长21%,增长速度远快于药品。预计在未来5年左右,我国医疗器械行业仍然将保持高速增长。医疗器械行业涉及到医药、机械、电子、塑料等多个行业,中高端医疗器械更是多学科交叉、知识密集、资金密集的高技术产业,研发成本高,决定了只有大型厂商才能在大中型医疗器械方面有所作为。此外,器械“国产化”也会成为必然趋势。/pp  strong火石:赛尔迪当前开展的业务、研发的产品有哪些?公司部署战略是怎么样的?/strong/pp  许洋博士:我们现在正在做一张人类的大健康MAP。通过精准医疗计划,基于环境健康大数据,通过蛋白指纹图谱仪完成健康管理。现在的疾病市场最关注的问题分别是:检测0~6岁儿童智力、优生优育(为什么生不出聪明宝宝)、高达5千万的肿瘤人群以及3.5亿的高血压、糖尿病人群。/pp  其中糖尿病肾病是糖尿病最常见且严重的并发症之一,是糖尿病所致的肾小球微血管病变而引起的蛋白排泄和滤过异常那个渐进性肾功能损害。而微量白蛋白尿即早期糖尿病肾病是可逆的,这不同于大量白蛋白尿即临床糖尿病肾病,因此积极防治早期糖尿病肾病就显得尤为重要。去年底,赛尔迪公司与中国医学科学院北京协和医院签署协议,承担国家对糖尿病肾病体内铅、镉毒素的临床大样本检测。全新升级的蛋白指纹图谱仪,是目前唯一获国家药监局批准、能检测含微量白蛋白、β2—微球蛋白以及泛素3项指标的医疗器械。这对糖尿病肾病的早发现、早治疗具有重大意义。/pp  赛尔迪接下来将按照个体化精准检测所附带的信息,由这些信息与大数据库交流,提出符合个体化治疗的方案,向个体化精准医学管理方式转变。/pp  随着大数据时代的来临,“互联网+”概念的提出让医疗健康事业呈现出了新的发展势态和特征。医学知识体系正被大数据、精准医疗所重构,信息化进程提高了知识传递速度与医疗协同效率。/ppstrong  火石:蛋白质组学技术如何助推精准医疗?/strong/pp  许洋博士:常识知道铅、镉会引起糖尿病性肾病。但铅、镉指标不是医院常规检测的项目。如果采取个体化精准治疗,每年常规检查一次体内铅与镉的指标,发现异常就能进行针对性的从尿液排泄的治疗。已经得了肾病正在透析的病人,检测铅与镉指标后进行针对性排泄也会增强治疗效果。利用蛋白指纹图谱仪能够发现早期的肿瘤和心血管标志物,这就会对疾病的治疗带来极大的希望。随着质谱技术在精准医疗的应用,越来越多的个体化标志物将会被发现,人体的蛋白指纹图谱测定将会成为医院的常规工作。/pp  精准医疗,即考虑每一个体健康的差异,制定个性化的预防和治疗方案。正确的选中一个工具,解决关键问题,这就是精准医疗。基于基因组测序技术、生物医学工具以及大数据工具逐步成熟和完善,精准医疗能够为个体基因特征、环境以及生活习惯进行疾病干预及治疗,但如何尽快与大数据结合才是发展重点。日前我与北京协和医院合作,创立了中国特色的首个百万人疾病与环境毒素数据库与IMS(爱睦世)特检中心:HZIMS2008,首次在复杂疾病系统中构建了基于环境毒素大数据的移动网络数据库的质量控制体系,使我国重大疾病,如高血压、糖尿病、肿瘤的大数据病因学研究处于世界领先。/pp/p
  • 李惠琳团队成果:非变性自上而下质谱用于蛋白及其复合物结构表征
    大家好,本周为大家分享一篇李惠琳课题组最近发表在Mass Spectrometry Reviews上的综述,Native top‐down mass spectrometry for higher‐order structural characterization of proteins and complexes1。结构生物学的快速发展极大地促进了蛋白结构表征工具的开发。其中,基于质谱的分析方法凭借其快速、灵敏、高通量的优势从中脱颖而出。相比于原子水平的高分辨结构表征工具如X-射线晶体学、核磁共振(NMR)、冷冻电镜(Cryo-EM)等,基于质谱的分析方法能够有效地补充蛋白动力学结构变化的信息,并且不受蛋白纯度、分子量大小的限制。而相较于低分辨的蛋白表征工具如圆二色光谱、动态光散射等,基于质谱的分析方法能够提供更高的肽段或残基水平分辨率,获取额外的序列、翻译后修饰(post‐translational modifications, PTMs)、局部空间结构等信息。常见的结构质谱包括:氢氘交换质谱(hydrogen‐deuterium exchange MS, HDX-MS)、交联质谱(cross‐linking MS, CX-MS)、表面标记质谱(covalent labeling MS, CL-MS)等。已有相当多的文献对这些方法进行了详细的介绍2,3,在此不再赘述。而此篇综述将重点介绍非变性至上而下质谱(native top‐down MS, nTDMS)在蛋白及其复合物结构表征中的应用。在过去的十年,非变性质谱(native MS, nMS)特别是nTDMS发展迅速。nMS作为一个桥梁将蛋白质组学与结构生物学相连,其保留非共价相互作用的特性使其广泛用于蛋白复合物四级结构表征,如推断亚基组成、化学计量比、亚基排布等。然而,对于一些深层次的结构信息,如氨基酸序列、PTMs、配体结合位点、亚基结合界面等,仅靠单一的nMS是无法获取的。与之对应的,变性条件下的自上而下质谱(TDMS)能够在完整蛋白水平下直接获得序列以及PTMs信息,虽然有助于PTM的准确定位以及蛋白、蛋白异质体(Proteoform)的鉴别,但却丢失了涉及非共价相互作用的高级结构信息。受限于质谱仪器的发展,在早期,nMS与TDMS通常在两个独立的实验中进行,随着质量分析器以及多种活化/碎裂方式的开发,nMS与TDMS的能够有效的结合,充分发挥各自的优势,在实现多层次结构信息获取的同时,也在不断挑战更加复杂的生物体系,如核糖体、膜蛋白、内源蛋白混合物等。实验设计nTDMS已成为表征蛋白质和复合物的初级到高级结构的重要工具。随着蛋白质样品的大小和复杂性的增加,用于nTDMS的仪器不仅需要符合某些特定标准,还需要不断提高其性能以满足这些增加的需求。nTDMS分析中几个关键的步骤包括:样品前处理、ESI离子化、二级碎裂、质量检测以及数据处理。样品前处理为了维持蛋白的自然状态,通常需要在生理环境中进行nMS分析。然而,缓冲液中的非挥发性盐会产生大量盐簇并与蛋白离子形成非特异性加合物,从而抑制离子信号、降低检测的准确度和灵敏度。因此,样品前处理过程中最重要的环节就是除盐。然而适当的离子强度有助于维持蛋白的三维结构,所以通常的步骤是对蛋白进行缓冲液置换,将蛋白置换至醋酸铵或碳酸氢铵等挥发性盐溶液中。目前已开发了多种在线或离线的除盐方法,详细内容的可在综述原文中查看,此处不再赘述。除了使用非挥发性缓冲盐,减小ESI喷针孔径大小也可以提高系统耐盐能力。碎裂/活化方式二级碎裂方式是实现nMS到nTDMS的关键。常见的活化方式按照原理可分为三类:基于碰撞(CID, SID)、基于电子(ECD, ETD, EID等)以及基于光子(UVPD, IRMPD)的活化/碎裂方式。值得注意的是,CID与IRMPD都属于慢加热的活化方式,能量累积的非常慢,以至于在发生碎裂之前已经进行了能量重排,一些较弱的或者不稳定的键会优先发生断裂,最终导致非共价相互作用在活化的过程中被破坏。而SID、ExD与UVPD则属于快加热的活化方式,碎裂发生在能量重排之前,非共价相互作用得以在这一过程保留下来,碎片化程度受到非共价相互作用的限制,因此可被用于表征蛋白的空间结构。此外,将多种活化方式的结合或与离子淌度技术串联也是获取多层次结构信息的关键。质量检测与变性条件下的质谱分析相比,蛋白复合物在天然环境下通过电喷雾电离产生的电荷数相对较少,因此需要具有较大m/z 范围的质量分析仪(高达m/z = 20,000 Da甚至更高)。最初,nMS分析高度依赖基于飞行时间(time of fight, TOF)质量分析器,因为TOF具有理论上无限的m/z范围。近年来,高分辨质量分析器如轨道阱(Orbitrap)和傅里叶变换离子回旋共振(FTICR)为生物大分子的nTDMS分析带来了新的活力。在综述中,我们简要介绍了每种质量分析器的最新进展,并重点强调了FTICR和Orbitrap在nTDMS分析中的发展和应用。数据处理除了基本的硬件设施,配套的数据处理软件也十分重要。nTDMS数据处理流程通常包括以下4个步骤:同位素峰选取、去卷积、数据库搜索、验证和可视化。正文中,我们对每个步骤进行了简要描述,并重点介绍用于数据库搜索和异质体鉴别的软件。多层次结构信息的获取得益于多种活化/碎裂方式的开发,nTDMS分析可同时获得多层次的结构信息(图1)。主要有以下两种策略:第一种策略,完整蛋白复物(MS1)首先被CID或SID碎裂至亚基(MS2),亚基可进一步碎裂肽段(MS3),在MS1及MS2中可获蛋白复合物结合计量比、拓扑结构、蛋白异质性等信息,在MS3阶段则可获取蛋白序列、PTMs定位以及异质性来源等信息。第二种策略则是完整蛋白复合物(MS1)直接被UVPD或ExD碎裂成肽段(MS2),受益于UVPD以及ExD独特的碎裂方式,发生碎裂的区域主要位于蛋白复合物的表面可及区,而未发生碎裂的区域可能位于蛋白复合物的核心区域或参与亚基相互作用界面。不同的碎裂情况反映不同的空间结构,带有配体的肽段碎片可以用于配体结合位点的定位。综述中,我们详细阐述了如何利用nTDMS获得蛋白复合物的多层次结构信息以及如何将碎片信息与结构信息相关联。图1. nTDMS可提供的多维度结构信息复杂生物体系中的应用蛋白质的空间结构决定了其生物功能,而蛋白质-蛋白质/配体相互作用是大多数生物进程的基础。通过突变、翻译后修饰、或者与金属、小分子配体、蛋白质、DNA、RNA等分子发生共价或非共价的相互作用,蛋白质功能在活细胞中不断受到调节。随着MS仪器、方法的不断开发和数据处理软件的逐渐成熟,nTDMS已被广泛应用于各种生物系统,从小蛋白质、蛋白质-配体复合物到大分子组装体,如膜蛋白、蛋白酶体、核糖体、病毒衣壳,甚至是内源性蛋白混合物。它们中的许多都是极具挑战性的体系,即便是采用NMR、X-射线晶体学或Cryo-EM等生物物理方法分析也是非常困难的。因此,来自nTDMS的见解对于理解这些蛋白质和复合物至关重要。在这里,我们总结nTDMS在所有生物体系中的应用实例,旨在全面了解nTDMS在解决生物学问题方面的潜力。小蛋白的结构表征和区分最初,nTDMS主要用于50 kDa以下单体蛋白的结构表征,大部分的研究都是围绕蛋白质气相结构与溶液相结构对比展开的。根据nTDMS的碎裂情况,推断蛋白的气相空间结构,并与NRM获得的溶液结构进行对比。此外,如果在二级碎裂前增加离子预活化有助于蛋白分子的展开,以便研究蛋白气相展开路径以及获取蛋白质内部空间结构信息。得益于碎片离子对蛋白空间结构的高度敏感性,nTDMS还被用于区分不同蛋白亚型、蛋白突变体的结构差异。蛋白-小分子配体相互作用随后,nTDMS应用到了蛋白-配体复合物中,不同的配体类型适合不同的活化/碎裂方式,除了金属离子、RNA/DNA等以静电作用为主的蛋白配体能够在CID活化时存活,大部分复合物的碎裂都需要选择ECD或UVPD等方式。nTDMS可用于蛋白-配体结合计量比、亲和力、结合位点、作用机制、结构动力学/变构效应的研究。它是一种强大的结构表征工具,其在抑制剂筛选、酶催化监控、RNA-蛋白质互作机制的应用实例在正文中已有详细的介绍。蛋白-蛋白相互作用随着仪器设备的快速发展,nTDMS已应用到更大的体系如蛋白-蛋白复合物,通过组合不同的活化/碎片化技术,在一次实验中可以获得多层次的结构信息。nTDMS可以帮助区分不同的蛋白异质体,并在完整复合物、亚基、肽段三个水平上确定异质性的来源。蛋白的异质性与其生物学功能密切相关,通过调整蛋白的异质性可以实现蛋白功能的转变,具体的应用案例已在正文详细介绍。除此之外,nTDMS还可以用作蛋白-蛋白复合物结合界面、气相展开以及深层次结构探索。治疗性抗体和抗原-抗体复合物在过去的几十年中,治疗性抗体已成为最受欢迎的候选药物之一,它们的高特异性和低副作用促进了治疗性抗体的快速增长。在综述中,我们还详细地介绍了nTDMS在治疗性抗体和抗原-抗体复合物体系中的应用。nTDMS可用于抗体可变区的测序、具有不同药物计量比(DARs)的抗体耦联药物的结构表征、以及抗体-抗原复合物中互补决定区及抗原表位区的鉴别。膜蛋白无论是对于传统的结构表征工具如:X-射线晶体学、NMR还是nTDMS,膜蛋白的结构表征一直以来面临着诸多困难。膜蛋白具有低丰度以及低溶解性等特点,最常见的方法是利用与nMS兼容的膜模拟物如:去污剂胶束、纳米微盘等去溶解膜蛋白,在nTDMS分析时再将膜蛋白从胶束中释放出来,释放出的蛋白可在nTDMS中进一步碎裂获取结构信息。具体的实验流程和应用实例可在综述正文中查看。大分子组装体正文中,还介绍nTDMS在极具挑战性的大分子组装体如:核糖体、蛋白酶体、病毒衣壳中的应用实例,这些生物体系普遍存在的问题是分子量非常大(接近MDa),且具有较高的异质性。对这些大分子机器进行nTDMS分析要求仪器具有较高的质量范围以及分辨率。大分子机器的结构表征充分说明nTDMS方法无论在深度还是广度上都有极大的提升。Native top-down MS蛋白质组学值得注意的是,当质谱前端结合非变性分离技术,如native GELFrEE,尺寸排阻色谱,毛细管区带电泳,离子交换色谱等,nTDMS还可以在靶向模式或发现模式下用于复杂蛋白质组的高通量分析,如内源性蛋白混合物。nTDMS分析最大的优势在于它能区分不同的蛋白异质体,并对每种蛋白异质体进行结构表征,这是其他在肽段水平进行分析的结构质谱法如:HDX-MS, CL-MS所无法实现的。总结与展望总之,在这篇综述中我们重点介绍了nTDMS的最新进展和在不同生物体系中的应用,强调通过nMS与TDMS结合可以获得额外的多层次结构信息。新技术的出现以及仪器的进步使nTDMS能够应用于结构生物学中日益复杂的生物样本体系,包括蛋白质配体、多聚蛋白复合物、大分子组装体和内源性复合物。尽管这样,nTDMS分析仍面临着的挑战,包括但不限于前端的样品分离、离子化、去溶剂化、高质荷比分子传输、异质性样本的分析以及软件的开发。未来nTDMS将与其他的一些结构表征方法相结合以获取更加全面的结构信息。正文中对未来发展趋势进行了讨论并提到了其他一些令人兴奋的创新技术如:基于MALDI离子源的质谱成像技术用于蛋白原位分析、电荷检测质谱(CDMS)用于异质性样本分析,多重技术的结合将为蛋白质复合物的nTDMS研究开辟新的道路。我们希望这篇综述能让读者更好地理解nTDMS提供的独特结构信息,并推动该方法的广泛应用。撰稿:刘蕊洁编辑:李惠琳原文:Native top‐down mass spectrometry for higher‐order structural characterization of proteins and complexes. 参考文献1.Liu RJ, Xia SJ, Li HL. Native top‐down mass spectrometry for higher‐order structural characterization of proteins and complexes. Mass Spec Rev. 2022 e21793. https://doi.org/10.1002/mas.217932.Britt HM, Cragnolini T, Thalassinos K. Integration of mass spectrometry data for structural biology. Chem Rev. 2022 122(8):7952-7986. 3.Liu XR, Zhang MM, Gross ML. Mass spectrometry-based protein footprinting for higher-order structure analysis: fundamentals and applications. Chem Rev. 2020 120(10):4355-4454.
  • 赛默飞精彩亮相2016中国第三方检测产业高峰论坛
    2016年7月15-16日(南京)-- 2016中国第三方检测产业高峰论坛于2016年7月中旬在南京顺利举行。本次论坛由易贸主办,南京检验检测认证产业联盟、南京检验检测服务业集聚区联合举办,南京市产品质量监督检验院、南京新港国家高新技术产业园、中国仪器仪表学会分析仪器分会、江苏分析测试协会协办,并得到了南京市质量技术监督局、南京经济技术开发区、中国食源性微生物检测技术创新战略联盟的大力支持。2016中国第三方检测产业高峰论坛本次论坛以“聚焦产业整合,推动科技创新,探寻合作机遇”为主题,聚集主管单位、检测机构、科研院校、生产企业、供应商,集中探讨了检验检测行业政策走势、法规新政、医学检验和食品检测行业热点,共同推动中国检验检测行业的进一步发展。中国国家认证认可监督管理委员会实验室与检测监管部主任乔东、南京市质量监督局副局长张建平、SGS中国区总裁杜佳斌、中国标准科技集团总经理赵宏春,华测检测认证集团股份有限公司董事会秘书陈砚(从左起)等第三方检测行业领头单位齐聚南京共同参与了大会主题访谈,钛和资本管理有限公司董事长、创始合伙人潘晶担任主持人,共同探讨了检验检测产业整合与未来趋势。会上Thermofisher邀请到浙江清华长三角研究院国家食品安全风险评估中心任一平老师做大会报告,报告中任老师就Q Exactive系列质谱在蛋白定量检测中的应用的优势作出详细的阐述。本研究建立了一个新的高灵敏、准确、简便的乳与乳制品蛋白定量检测方法,该方法利用超高效液相色谱Q Exactive高分辨质谱在PRM模式下,通过测定定量目标蛋白的特异肽来检测婴儿配方奶粉和乳清蛋白原料等乳制品中的多种乳清蛋白和酪蛋白。本方法经过方法学验证,并成功应用于婴儿配方粉等乳制品中总牛α -乳白蛋白和β -乳球蛋白的定量测定。该方法策略也适用于牛和羊的其它乳蛋白的定量测定,例如:血清白蛋白、IgG、CGMP、CPP、乳铁蛋白等各种蛋白质。报告吸引了包括上海理工大学、江苏中普检测等单位,对Q Exactive系列质谱予以肯定并且表示希望进一步了解在物种溯源上的应用。整个会议成果达到预期的期望,实现参与的价值。浙江清华长三角研究院任一平老师赛默飞展位
  • 科学家用质谱实现大规模标准化蛋白质检测
    日前,由弗雷德哈钦森癌症研究中心(Fred Hutchinson Cancer Research Center)领导的一个国际研究小组证实了大规模、标准化蛋白质检测的可行性,这是验证疾病生物标志物和药物靶点的必要条件。这项刊登在《自然-方法》(Nature Methods)杂志上的最新论文表明,科学家们开发的一种靶向性蛋白质检测方法具有系统地、可靠地检测人类蛋白质组的潜力。  论文主要作者、癌症蛋白质组学专家 Amanda Paulovich 博士和同事们开发的这项技术,可同时准确地检测许多不同样本中成百上千种蛋白质的丰度。来自西雅图、波士顿和韩国等其他地区的实验室重现了人类乳腺癌细胞中 319 种蛋白质的检测结果,证实这种方法可跨越实验室和国界实现标准化。  Paulovich 表示:&ldquo 这种方法有潜力彻底改变我们检测人类蛋白质的方式。利用全球资源对所有人类蛋白质进行标准化定量设立一些新标准,无疑将能提高临床研究的可重现性,其将对转化新型治疗和诊断带来巨大的影响。&rdquo   作为所有生物功能的执行分子机器,蛋白质掌控着早期疾病和疾病进程的信号传导。探求癌症生物标记物&mdash &mdash 细胞中的蛋白质指纹有可能促使开发出一些测试方法,更早期地检测疾病,早在癌症形成之前鉴别出个体的特殊风险,以及更好地指导患者的治疗。然而没有标准化和可重现的方法来检测它们的水平,验证新发现的候选生物标记物是一件不可能的事情。  每个有前景的生物标记物都必须在临床试验中开展进一步的研究,这就要求研究人员能够检测数百到数千个患者样本中每个候选标志物的丰度。由于将任何一种候选标记物转化至临床应用的机率都极其的低,鉴别一种具有临床价值的生物标记物必须对大量的蛋白质进行测试。  Paulovich 表示:&ldquo 现在,你还不能对大多数的人类蛋白质进行大规模检测。在我们完成人类基因组测序,获得DNA分子全目录10多年之后,仍然不能够采用一种标准化定量方法在各种通量模式下对人类蛋白质组开展研究。&rdquo   为了解决这一问题,Paulovich 和同事们利用了一种称作为多反应检测质谱法(MRM-MS)的敏感性靶向蛋白质检测技术。这种质谱法并非是全新的技术,多年来全球的临床实验室利用它来测量药物代谢产物和与先天性代谢缺陷有关的一些小分子。最近,Paulovich和其他研究人员开始利用它来检测人类蛋白质。  采用研究人员开发的这种方法,每天每台仪器能够对最少 20 个临床样本中的 170 种蛋白质进行高度特异性地、精确地、多路定量分析 任何其他的现有技术都没有这种能力。  由于质谱技术是针对性的,这意味着研究人员能够调整设备寻找癌细胞或其他样品类型中特殊的蛋白质亚群,相比于非针对性策略,它可以在更低的水平上检测微量血液样本或活检标本中目的蛋白质的存在。  研究的主要作者、Paulovich 实验室分析化学家 Jacob Kennedy 说:&ldquo 我们的目标是用这一技术来取代当前采用的一些非常老旧的技术。&rdquo   当前,研究人员通常是采用 Western blotting、ELISA 或是免疫组化(IHC)技术来检测临床样本中的蛋白质水平。这些方法往往无法在实验室之间重现结果,从而很难验证适用于临床的候选生物标记物,它们不适用于一次检测大量的蛋白质和样本。  Paulovich 和同事们通过分析乳腺癌细胞生成的 300 多种已知蛋白质验证了他们的技术 研究结果表明,MRM-MS 可以重现及扩展以往采用其他技术进行乳腺癌研究所生成的观察结果。  该研究证实了,MRM-MS 能够以一种标准化方式一次检测许多的蛋白质,为开展国际性的、有组织的研究工作定量人类蛋白质中的每种蛋白奠定了基础。  原文检索:  Jacob J Kennedy,Susan E Abbatiello,Kyunggon Kim,Ping Yan,Jeffrey R Whiteaker,Chenwei Lin,Jun Seok Kim,Yuzheng Zhang,Xianlong Wang,Richard G Ivey,Lei Zhao,Hophil Min,Youngju Lee,Myeong-Hee Yu,Eun Gyeong Yang,Cheolju Lee,Pei Wang,Henry Rodriguez,Youngsoo Kim,Steven A Carr& Amanda G Paulovich. Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins. Nature Methods, 08 December 2013 doi:10.1038/nmeth.2763
  • 蛋白质组学大师John Yates :质谱的狂热爱好者
    回顾质谱的百年发展史,得益于机械、电子和计算机行业的不断创新,质谱仪的性能也在不断提升。而真正推动质谱实现飞跃的是那些偶然的革命性创新,即具有颠覆性的技术创新——创造全新的分析规模和能力水平。蛋白质组学的大规模分析亦是革命性创新所推动实现的,John Yates III便是实现这项工作的关键科学家之一。John Yates:I was instantly hooked when I first saw a mass spectrometer. 迷恋 | 与质谱的初见作为MudPIT (Multi-dimensional Protein Identification Technology) 与SEQUEST的发明者,John Yates为蛋白质组学技术带来了突破性的进展,而他的每一份成就离不开对质谱的热爱。Yates也在某次采访中直言,在他第一眼看到质谱时,就被“迷倒了 (instantly hooked)”!MudPIT与SEQUEST的发明者——John Yates据Yates回忆,当时他还是个本科生,看到质谱仪是怎么运作的那个瞬间,他惊呼:“这好酷!”;而当看到实验室里满满当当的计算机时,他又被其强大的数据处理能力所震撼。因此,1980年获得缅因大学 (University of Maine) 动物学学士学位的Yates,选择继续在本校攻读化学专业的研究生课程。在学习过程中,为了深入探究质谱法与蛋白质组学研究的关联性,实干派Yates联系了弗吉尼亚大学(University of Virginia)的Don Hunt(弗吉尼亚大学的化学和病理学系教授)。不久后,他收到了一封手写的邀请函,并就此开展了他在弗吉尼亚大学的研究。与此同时,Yates已经看到了质谱的潜力,并希望将其应用于蛋白质组学研究中,但受限于“无法通过人工对数据进行快速解析”。因此,他带领团队在1994年开发了质谱数据的翻译器——软件工具SEQUEST。 John Yates发明SEQUEST算法释放质谱的魅力 | “翻译器”SEQUEST某种程度上而言,SEQUEST的开发是一种必然。1990年,美国能源部 (United States Department of Energy) 和美国国立卫生研究院 (National Institutes of Health, NIH) 向美国国会 (United States Congress) 提交了人类基因组测序的联合计划。自那时起,数据库开始充满了DNA序列信息,用于挖掘数据生物信息学的相关算法也大量涌现。1994年是数据依赖型采集 (data-dependent acquisition, DDA) 的诞生元年,开创性成果SEQUEST也在这一年诞生,万众瞩目。作为自下而上蛋白质组学(自下而上法:对蛋白质进行酶解处理后,得到多肽进行分析) 检索程序的开山鼻祖,SEQUEST的开创不仅奠定了蛋白质组学研究的核心基础,使更多生命科学领域中的研究人员意识并认同蛋白质组学的价值,更向全世界展示了质谱的魅力与潜力。简单来说,SEQUEST是通过利用人类基因组学的信息来解释质谱的信息(即肽和蛋白)。在研究细胞中的蛋白时,得益于这个方法,研究人员不需要对每个蛋白进行纯化,只需要对整体蛋白进行剪切,再通过质谱分析其中的每一种蛋白,便可获得全部蛋白的信息。SEQUEST分析方法可分为四步:(1)对质谱数据进行压缩;(2)通过比对蛋白质数据库 (database)与实验质谱数据在分子质量层面的信息,匹配 (compare)可能的多肽序列;(3)将从数据库中得到的序列的预测片段离子与质谱信息进行比较,从而产生最佳匹配序列表;这个序列被用于进行打分和统计学运算,进而(4)得到分析结果。SEQUEST分析步骤这套方法不仅采用了彼时最前沿的技术,如求互相关性的快速傅里叶变换(fast Fourier transform, FFT),还融入了作者在对质谱数据深入理解后的大胆假设,如对数据进行的系统归一化处理和多项经验打分权重等。SEQUEST提高了质谱技术的有效性和准确性,可以使关键性的生物和临床问题得以解决。自其开发以来,世界各地的研究人员对细胞器中的大部分蛋白质进行研究,根据正常和疾病状态中蛋白质表达差异进行“画像”,从而揭示疾病发生发展的机理。此外,这项工作也促进了蛋白质组学的大规模应用(将在下文进行介绍),他本人将其应用于确定单细胞生物体和哺乳动物细胞中蛋白质复合物成分的大规模研究中。一系列的其他软件亦在SEQUEST的影响下被开发,促进了蛋白质组在分子和细胞生物学研究中的各种应用,包括肽/蛋白的定性定量分析、翻译后修饰的鉴定、蛋白质结构动态研究等等。新战场 | 蛋白质大规模鉴定1998年,Yates提出鸟枪法蛋白质组学 (Shotgun proteomics),以推动蛋白质组的大规模鉴定分析。这个思路来源于人类基因组草图的制作方之一——塞莱拉基因组公司 (Celera Genomics)。他们采用了彼时非常先进的基因测序技术:鸟枪法 (Shotgun)。这种方法跳过将基因组拆分、克隆的过程,直接将其打成小片段进行随机测序,就像拼图一样:我们把一块完整的拼图买回家,彻底打乱后,再开启游戏之旅。2001年,基于鸟枪法蛋白质组学的想法,John Yates团队开发了MudPIT技术,并将其成果发表于 Nature Biotechnology,文章题目为Large-scale analysis of the yeast proteome by multidimensional protein identification technology。实现将鸟枪法应用于蛋白质组学是一件里程碑式的发展成就,其不仅颠覆了传统的蛋白质分析方法,还推动实现大规模分析。Yates带领团队开发MudPIT彼时应用最为广泛的蛋白质分析鉴定方法是二维聚丙烯酰胺凝胶电泳 (Two-dimensional gel electrophoresis, 2D-PAGE),该技术是通过等电点(isoelectric point, pI) 和分子量 (molecular weight, MW) 两个维度,对蛋白质进行鉴定,拥有高分辨率的特点。然而,2D-PAGE存在着一些难以克服的缺陷:(1)虽然该技术可以提供蛋白质的相对分子质量、等电点、表达丰度的相对量等信息,但它无法完成一些更为“精细”的任务,如低丰度蛋白质点的检测,极酸性和极碱性区蛋白质及高分子质量区蛋白质的分离等;另一方面,(2)这项技术自动化程度低,重复性差且耗时长;除此以外,(3)鉴定量和通量一直是这项技术的瓶颈。反观MudPIT,这是一种非凝胶技术,可以实现复杂蛋白质和多肽混合物中某一成分的分离与鉴定工作。首先,肽段先在二维液相色谱中被分离,然后再进入多维毛细管液相色谱中分离、而后进行串联质谱分析以及最后的数据库检索工作。该技术可对样品量较少的蛋白质进行快速分析,适用于蛋白质组学中大规模蛋白质的分离鉴定研究。Yates的文章将MudPIT较之2D-PAGE技术的优势全盘展示。他们完成了彼时鉴定量最大的蛋白质鉴定研究:从酿酒酵母 (S. cerevisiae) 的蛋白质组中分离鉴定了1484个蛋白质;作为对比,当时最大的基于2D-PAGE的蛋白质组学研究,仅鉴定出了流感嗜血杆菌 (Haemophilus influenza) 蛋白质组的502个蛋白质。总体来看,MudPIT的灵敏度和动态监测范围都有了更大的进步,且应用范围更广、自动化程度高。因此,MudPIT也成为了二十世的最初的十年里,研究复杂生物样本中大规模蛋白质表达、定性和定量的强有力工具。制胜密码 | 创新与协作John Yates:I’ve become very intrigued with the concept of innovation.科研进展十分依赖于研究人员的高强度攻坚,及不断创新。他们需要不停地“刁难”自己、“刁难”别人,保持新方向、新想法的敏感度。Yates也一直非常希望更多的科学家可以在他的方法上继续创新。为了帮助各位科学家早日创新、淘汰自己的方法,Yates分享了自己的“创新书单”,希望大家一起从书中学习创新路径并得到启发,如Jon Gertner的 The Idea Factory(这是一部关于传奇科研机构——贝尔实验室的传记,其中共孕育了9位诺贝尔奖得主),以及Steven Johnson的 Where Good Ideas Come from(在这本书中,作者深入发明的创新自然史,对其进行跨越学科、领域的追踪,确定了创新的七种关键模式)。Yates也回忆道,在2003年与一家质谱制造商讨论合作时,他的第一个问题是“扫描速度可以更快吗?”也正是这个问题使得我们迎来了现在的升级版质谱仪。此外,当新设备准备落地时,Yates还会不断提出新的想法,与合作方商讨,寻找更优解。除创新以外,Yates还十分主张团队协作性,并先后培养出来70多位优秀的科学家。其中一位曾在Yates实验室进行博士后工作的研究员Michael Washburn(目前是美国堪萨斯大学医学中心肿瘤生物学教授)称,Yates使他深刻认识到建立一个多学科团队的必要性。因为质谱研究不是一场单机游戏,它极度需要跨学科的方法论,复合型人才的相互教导,才能解决研究瓶颈取得成果。因此,在当年与Yates一起开发出MudPIT后,Washburn在蛋白质组学研究领域继续开疆拓土,并以基于质谱来研究染色质重塑复合物而闻名。Michael Washburn成就、扎根 | 年轻的蛋白质组学SEQUEST 与 MudPIT 的开发,及其他杰出的科研成果奠定了Yates在蛋白质组学领域的泰斗地位,他也毫不意外地入选了 2011年 “2000-2010年全球顶尖一百位化学家”名单。John Yates入选2011年 “2000-2010年全球顶尖一百位化学家”名单此外,他于2019年获得ASMS质谱杰出贡献奖及 Khwarizmi 国际奖,以表彰他对蛋白质组学的贡献。蛋白质组学诞生(1997年)至今才二十余年。得益于全球科学家和HUPO的不懈努力,这个年轻的前沿学科已获得许多令人振奋、惊叹的里程碑式成果。未来,我们亦期待、欢迎有更多的年轻研究人员参与进来,一同以蛋白质组学为支点,揭示生命的奥秘,开创疾病治疗的新篇章。年轻科研力量的崛起是科技创新、发展的重要引擎。2015年,HUPO特设Early Career Researchers (ECRs)项目,以推动年轻科研人员对新知识、新思想和前沿科技创新的引领作用。具体而言,该项目的主旨为:(1)为ECR提供更多研究和交流平台,提高他们的科学知名度:HUPO设立稿件竞赛 (Manuscript Competition),以便让杰出的年轻科学们展示自己最新工作成果;(2)为ECR策划职业发展相关活动,提高他们在学术界、工业界的竞争力:HUPO邀请来自不同科研、技术和商业领域的世界知名科学家,分享他们的科研经历与职业生涯;(3)提高蛋白质组学领域的公平性、多样性和包容性。参考资料1. Washburn, M. P., Wolters, D., & Yates, J. R. (2001). Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature biotechnology, 19(3), 242-247.2. Proteomics goes global. Nature biotechnology, 24, 302–303 (2006). https://doi.org/10.1038/nbt0306-3023. Eng, K. J., McCormack, A. L., & Yates, J. R. (1994). An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. Journal of the American Society Mass Spectrometry, 5(11), 976–989.4. Yates, J. R. (2013). The revolution and evolution of shotgun proteomics for large-scale proteome analysis. Journal of the American Chemical Society, 135(5), 1629-1640.5. Vivien, M. (2013). Digging deep into proteomes. Nature Method, 10(1), 3.6. MICHGAN STATE UNIVERSITY. (n.d). Dr. Michael Washburn. Retrieved from https://bmb.natsci.msu.edu/about/awards/john-a-boezi-memorial-alumnus-award/dr-michael-washburn/7. Scripps Research. (2019). Chemist John Yates receives 2019 ASMS John B. Fenn Award for innovations that advanced mass spectrometry. Retrieved from https://www.scripps.edu/news-and-events/press-room/2019/20190614-yates-amsmaward.html
  • 融智生物推出MALDI-TOF MS法糖化血红蛋白定量分析解决方案
    p  近日,融智生物宣布正式推出MALDI-TOF MS法定量分析糖化/非糖化血红蛋白解决方案。/pp  空腹血糖和餐后血糖是反映某一具体时间的血糖水平,容易受到进食和糖代谢等相关因素的影响。而由于人体红细胞的寿命一般在120天,在红细胞死亡前,血液中HBA1c含量也会保持相对不变,因此HBA1c水平反映的是在检测前120天内的平均血糖水平。所以说空腹和餐后两小时血糖只是诊断糖尿病的标准,而衡量糖尿病控制水平的标准是糖化血红蛋白。目前欧美等发达国家以糖化血红蛋白率诊断糖尿病。糖化/非糖化血红蛋白定量分析已在欧美发达国家取代传统的血糖测试。在中国,越来越多的诊断也开始使用糖化/非糖化血红蛋白定量分析。/pp  传统上,糖化/非糖化血红蛋白分析的主流技术是免疫法和高效液相色谱法。相较而言,高效液相色谱法精度更高,方法亦相对简单,目前,高效液相色谱法正快速取代免疫法。/pp  与目前的传统技术相比,融智生物基于新一代全谱可定量飞行时间质谱平台QuanTOF推出的质谱法,具有更高灵敏度、更高效率、更低成本、更简单操作以及更高通量等诸多优势。strong/strong/pp style="text-align: center "img width="500" height="333" title="quantof.jpg" style="width: 500px height: 333px " src="http://img1.17img.cn/17img/images/201803/insimg/1f511bc3-2b2d-4bfd-a2b4-7cb02e7ed6ae.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "strong融智生物新一代全谱可定量飞行时间质谱平台QuanTOF/strong/pp  所需要的设备除了QuanTOF主机外,只需一台离心机,要求最简化,在试剂方面,也仅需要纯水和基质。/pp  在定量精度方面,融智生物经多次验证结果显示,QuanTOF的定量重现性接近甚至高于高效液相色谱,完全可做到对传统方法的替代,span style="color: rgb(31, 73, 125) "strong该方法尤其适合于样本量较大、对测试成本敏感的大型用户。/strong/span/pp style="text-align: center "img width="600" height="532" title="1.jpg" style="width: 600px height: 532px " src="http://img1.17img.cn/17img/images/201803/insimg/72717b18-1acc-4633-bd62-6bc22b6c5887.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "strongQuanTOF方法与其他方法优劣比较/strong/pp  strongiTIPS:对糖化/非糖化血红蛋白定量分析方法的推出,意味着MALDI-TOF MS具备对更多蛋白的定量分析可行性。/i/strong/pp  span style="color: rgb(31, 73, 125) "ispan style="font-family: 黑体, SimHei "附:MALDI-TOF-MS检测糖化血红蛋白方法/span/i/span/ppspan style="color: rgb(31, 73, 125) "ispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "  一、标准曲线制定/span/i/span/ppspan style="color: rgb(31, 73, 125) "ispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "  /span/iispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "1、将6个不同水平的糖化血红蛋白标准品,用去离子水稀释200倍,形成稀释标准品待测液。/span/iispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "/span/i/span/ppspan style="color: rgb(31, 73, 125) "ispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "  2、将稀释标准品待测品与SA基质,按照1:8充分混合,形成待测样品溶液。/span/iispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "/span/i/span/ppspan style="color: rgb(31, 73, 125) "ispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "  3、将待测样品溶液点在靶板上,静置直至液点完全干燥结晶。/span/iispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "/span/i/span/ppspan style="color: rgb(31, 73, 125) "ispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "  4、编辑程序进行质谱上机检测,根据所得实验建立标准曲线得到线性关系公式。/span/iispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "/span/i/span/ppspan style="color: rgb(31, 73, 125) "ispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "  二、样品检测/span/iispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "/span/i/span/ppspan style="color: rgb(31, 73, 125) "ispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "  1. 血清的制备,将人全血用去离子水稀释200倍,形成稀释血样待测品。/span/iispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "/span/i/span/ppspan style="color: rgb(31, 73, 125) "ispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "  2. 将稀释血样待测品与SA基质,按照1:8充分混合,形成待测样品溶液。/span/iispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "/span/i/span/ppspan style="color: rgb(31, 73, 125) "ispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "  3. 将待测样品溶液点在靶板上,静置直至液点完全干燥结晶。/span/iispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "/span/i/span/ppspan style="color: rgb(31, 73, 125) "ispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "  4. 编辑程序进行质谱上机检测。/span/iispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "/span/i/span/ppspan style="color: rgb(31, 73, 125) "ispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "  5. 根据质谱图得出,糖基化蛋白峰面积(A)/糖基化蛋白峰面积(A)+非糖基化蛋白峰面积(B)。/span/iispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "/span/i/span/ppspan style="color: rgb(31, 73, 125) "ispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "  6. 计算得出糖化血红蛋白的质谱值=A/A+B,计算得到糖化值。/span/i/spanspan style="color: rgb(0, 0, 0) "ispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "/span/iispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "/span/iispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "/span/i/span/p
  • 沃特世推出新型质谱采集模式,推动蛋白质组学和脂类组学研究发展
    沃特世质谱技术研究人员Bob Bateman和John Hoyes荣获HUPO科学技术奖 沃特世公司(纽约证券交易所代码:WAT)近日于国际人类蛋白质组研究组织(HUPO)第15届国际大会上推出全新的数据采集模式SONAR™ ,该模式专为Xevo G2-XS四极杆飞行时间(QTof)质谱仪(MS)而开发,提供全新的非数据依赖型采集(DIA)方案获取MS/MS数据。这项技术能够帮助分析科学家们提升实验室工作效率,同时让他们对生成的结果更有信心。借助SONAR数据采集模式,科学家们只需执行一次进样即可完成复杂样品中脂质、代谢物和蛋白质的定量和鉴定,免去了采用MS/MS方法分析时通常需要额外进行方法开发的麻烦。 沃特世在HUPO国际大会期间隆重介绍了这一新型MS采集模式。会议同时表彰了沃特世公司的高级质谱技术专家Bob Bateman和John Hoyes为推动质谱技术发展所作的杰出贡献。在现代蛋白质组学实验中,基于DIA的质谱技术是分析人员获取包含大量数据的样品谱图时常用的一项技术。随着蛋白质组学和脂类组学研究的不断发展,科学家们越来越追求针对性更强的实验,来定量分析特定的肽和蛋白质,这就需要进行额外的方法开发和重复分析。面对越来越复杂的样品,沃特世新推出的SONAR数据采集模式能够提供更丰富的信息,同时提升数据的清晰度。 沃特世公司的组学业务开发高级经理David Heywood表示:“如今的蛋白质组学研究已十分成熟,科学家们已经能够收集到蛋白质的大部分相关信息。现在,他们希望实现的目标是先针对某种蛋白质或特定的肽提出假设,然后采用靶向MS/MS定量方法就这种假设观点展开研究,而无需额外开发新的方法或实验。现在,借助SONAR数据采集模式,科学家们可以完成一站式分析并具有更高的选择性。这种模式可兼容高速UPLC分离,工作流程更加高效,通过一次进样即可完成更准确的定性和定量分析。” 沃特世科学家荣获HUPO国际大会表彰此次HUPO国际大会还向沃特世公司的技术研究顾问Bob Bateman和质谱技术总监兼首席科学家John Hoyes颁发了HUPO科学技术奖,以表彰他们为推动蛋白质组学研究技术发展与开发QTof质谱仪所作出的杰出贡献。 HUPO执行委员会在颁奖辞中表示:“QTof串联质谱仪在其问世初期对蛋白质组学的发展产生了巨大影响,这类质谱仪与纳升级液相色谱(LC)联用后,能够在蛋白质组分析中表现出无与伦比的性能。”Waters(Micromass)Q-Tof™ 质谱仪自1996年进入市场以来不断进行技术创新,继上一次集成离子淌度分离技术之后,此次又增添了全新的SONAR MS数据采集模式。 SONAR为MS数据采集模式带来有效的性能提升SONAR在选择性方面实现的提升主要得益于质谱仪四极杆的运行方式。在SONAR模式下,四极杆并不会始终保持打开状态传输所有离子,而是扫描指定的质量范围,每次扫描可捕获200张谱图。这种四极杆运行方式让SONAR能够兼容快速的超高效液相色谱(UltraPerformance Liquid Chromatography,UPLC)分离,从而提高实验室分析通量。过去可能会发生色谱共洗脱的化合物现在可以通过四极杆实现分离并单独记录下来,数据库的搜索效率将随之得到提高。SONAR通过一次进样即可同时采集定量和定性数据。 HUPO国际大会于9月18日至22日在台北国际会议中心召开,期间将举办多场以SONAR技术为主题的研讨会。 SONAR数据可整合至Waters Progenesis和Symphony™ 软件分析工作流程,还可兼容Skyline等第三方软件包。由MassLynx软件控制的Waters Xevo G2-XS QTof质谱仪现已整合SONAR模式。 关于沃特世公司(www.waters.com)沃特世公司(纽约证券交易所代码:WAT)专注于为实验室相关机构开发和生产先进的分析和材料科学技术。50多年来,公司开发出一系列分离科学、实验室信息管理、质谱分析和热分析技术。
  • 1300万!国科大杭州高等研究院蛋白质组质谱离子淌度分析系统采购项目
    一、项目基本情况 1.项目编号:ZJ-2362483 项目名称:国科大杭州高等研究院蛋白质组质谱离子淌度分析系统 预算金额(元):8000000 最高限价(元):8000000 采购需求: 标项名称: 蛋白质组质谱离子淌度分析系统 数量: 不限 预算金额(元): 8000000 简要规格描述或项目基本概况介绍、用途:蛋白质组质谱离子淌度分析系统1套。具体以招标文件第三部分采购需求为准,供应商可点击本公告下方“浏览采购文件”查看采购需求。 备注:允许进口 合同履约期限:标项 1,按照招标文件要求 本项目(是)接受联合体投标。 2.项目编号:0625-23218D89 项目名称:国科大杭州高等研究院高效液相色谱-三重四级杆串联质谱联用分析系统 预算金额(元):5000000 最高限价(元):/ 采购需求: 标项名称: 高效液相色谱-三重四级杆串联质谱联用分析系统 数量: 3 预算金额(元): 5000000 简要规格描述或项目基本概况介绍、用途:详见招标文件 备注: 合同履约期限:标项 1,详见招标文件 本项目(是)接受联合体投标。二、获取招标文件 时间:/至2023年11月10日 ,每天上午00:00至12:00 ,下午12:00至23:59(北京时间,线上获取法定节假日均可,线下获取文件法定节假日除外) 地点(网址):政采云平台(https://www.zcygov.cn/) 方式:供应商登录政采云平台https://www.zcygov.cn/在线申请获取采购文件(进入“项目采购”应用,在获取采购文件菜单中选择项目,申请获取采购文件) 售价(元):0 三、对本次采购提出询问、质疑、投诉,请按以下方式联系 1.采购人信息 名 称:国科大杭州高等研究院 地 址:杭州市西湖区转塘街道象山支弄1号 传 真:/ 项目联系人(询问):宋老师 项目联系方式(询问):18321712725 质疑联系人:沈老师 质疑联系方式:0571-86080792 2.采购代理机构信息 名 称:浙江国际招投标有限公司 地 址:杭州市文三路90号东部软件园1号楼3楼317室 传 真:/ 项目联系人(询问):沈建平(18005883302)、倪樟如 项目联系方式(询问):0571-81061840,0571-81061802 质疑联系人:董福利 质疑联系方式:0571-81061818        3.同级政府采购监督管理部门 名 称:杭州市财政局政府采购监管处 /浙江省政府采购行政裁决服务中心(杭州) 地 址:杭州市上城区四季青街道新业路市民之家G03办公室 传 真:/ 联 系 人:朱女士/王女士 监督投诉电话:0571-85252453
  • 中山大学李惠琳:非变性质谱技术推动蛋白质结构研究,助力新药研发
    蛋白质是生命的物质基础,通过与不同生物分子间的相互作用在生物体内执行着各项重要工作,其功能与结构直接相关。因此,解析蛋白质及其复合物高阶结构对于深入理解蛋白质功能、生理现象及药物研发具有重要意义。过去的60余年,随着X-射线晶体衍射(X-ray)、核磁共振(NMR)以及冷冻电镜(cryoEM)等技术的出现和不断发展,蛋白质结构解析取得了长足发展。然而,如何在分析蛋白质时使其保持近似自然生理环境的非变性状态,对其动态、异质性、相互作用等属性的研究是结构生物学领域的热点和难点。  质谱技术的不断发展使其在蛋白质结构表征领域发挥了越来越重要的作用。非变性质谱(native MS)兴起于20世纪90年代,是一种可以分析蛋白高阶结构的生物质谱方法。与传统的破坏蛋白质立体结构和弱相互作用力的方法不同,非变性质谱采用质谱兼容的近生理pH值的溶液体系(主要为醋酸铵)和更温和的电离方式,使生物大分子在气相中能够最大程度地保持自然折叠状态、非共价相互作用和相关的生物学功能。因此,非变性质谱可以提供分子质量、寡聚态、构象(折叠vs 去折叠)、异质性、配体结合、靶蛋白-小分子亲和力以及复合物中蛋白亚基的相互作用网络关系等更具生物学意义的重要信息,为蛋白质“序列-结构-功能”关系提供分子基础,已成为结构生物学不可或缺的互补工具,在生物制药、蛋白一配体、蛋白一蛋白复合物结构分析等诸多领域具有广泛应用。  近年来,蛋白质结构研究领域经历着剧烈的技术迭代。2021年人工智能(AI) AlphaFol2横空出世,将蛋白质3D结构预测的精度从60%提升到90%以上,在给传统结构解析技术带来冲击的同时,也为结构质谱的发展提供了契机。  未来,非变性质谱技术的发展需要简化样品处理,提升仪器的灵敏度、分析通量和鲁棒性,实现内源性蛋白复合物样本的直接或原位分析,推动其在生物医药表征、蛋白多聚态等领域的更广泛应用。非变性质谱技术与离子消度(MS)、自上而下串联解离(top-down)、电荷检测质谱(CDMsS)等创新联用技术和方法的不断开发及完善,将极大地提升结构信息的广度、丰富度及精确度,补充生物物理学方法缺失的结构信息。同时,非变性质谱与cryoEM1、氢完交换质谱(HDX-MS)、交联质谱等技术联用将更加常态化,这些实验数据与AI结构预测算法的进一步整合将有效解决蛋白及蛋白复合物结构预测存在的精度问题,推动结构生物学发展,助力新药研发。  此外,非变性质谱技术的应用发展将更加关注:1)蛋白复合物结构一功能关系的研究,通过与计算机模拟(MD)、HDX-Ms、cryoEM等技术联用,揭示标志物蛋白在人类疾病发展过程中的作用,推动靶向药物设计和精淮医疗 2)通过研究小分子与靶蛋白的相互作用获取二者结合的亲和力信息,加速靶向药物筛选 3)翻译后修饰(PTMS)、突变等因素导致的蛋白高度异质性及其对蛋白或亚基折叠动力学、构象及构象变化、结合计量比等造成的结构和功能影响 4)蛋白与其他生物分子(配体、DNAA/RNA、金属离子等)之间的相互作用。  李惠琳,中山大学药学院教授,博士生导师。主要从事生物大分子质谱新技术的开发及应用,其研究主要侧重于1)开发整合结构质谱技术,并对蛋白质机器结构、功能和动态变化及靶向药物作用分子机制进行深入研究2)开发middle-down/top-down蛋白质组学技术,探索蛋白翻译后修饰在生命过程中的调控机制。承担国家自然科学基金项目3项,荣获美国质谱学会颁发的Postdoctoral Career Development Award (2014) ,入选珠江人才计划(青年拔尖人才,2019),其研究成果发表在Nature Chemistry, Analytical Chemistry, J. Am.Soc.Mass Spectrom.等杂志。  "非变性质谱技术研究与应用"专栏共收录7篇论文,既介绍了非变性质谱技术的样品制备、离子源、质量分析器、联用技术等基础内容,也涵括了样品提取、样品引入、离子化及电荷操控等方式,以及在蛋白结构及构象解析、蛋白・蛋白相互作用等领域的应用,代表了国内非变性质谱技术的发展现状。希望本专栏能成为《质谱学报》广大读者颇有价值的科技文献,同时也希望更多的学者加入到非变性质谱研究领域,推动我国结构质谱技术的创新发展。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制