当前位置: 仪器信息网 > 行业主题 > >

质谱高分子化合物分析

仪器信息网质谱高分子化合物分析专题为您提供2024年最新质谱高分子化合物分析价格报价、厂家品牌的相关信息, 包括质谱高分子化合物分析参数、型号等,不管是国产,还是进口品牌的质谱高分子化合物分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱高分子化合物分析相关的耗材配件、试剂标物,还有质谱高分子化合物分析相关的最新资讯、资料,以及质谱高分子化合物分析相关的解决方案。

质谱高分子化合物分析相关的资讯

  • 钱义祥——高分子物理与聚合物热分析
    高分子物理与聚合物热分析热分析老人钱义祥2018-05-10  « 高分子物理» 、« 高分子物理的近代研究方法» 、« 新编高聚物的结构与性能» 、« 聚合物结构分析» 、« 聚合物量热测定» 、« 热分析与量热学» 手册、« 高聚物与复合材料的动态力学热分析» 等专著中,论述了高分子物理理论和近代研究方法。聚合物热分析是高分子物理的近代研究方法之一,高分子物理是高聚物热分析的理论基础,用高分子物理的概念解析热分析曲线,探索聚合物结构与性能的关系。  一、高分子物理与聚合物热分析  1.聚合物热分析  热分析是在程序控温(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术。热分析是研究物质变化和变化规律及调控变化的近代研究方法。聚合物热分析的研究对象是高聚物。聚合物热分析最常用的热分析方法是差示扫描量热仪DSC和动态热机械分析DMA。在特别情况下,也采用热机械分析(TMA)和热分析联用技术(TG/气体分析)。差示扫描量热仪DSC是在程序控温(和一定气氛)下,测量输入给试样和参比物之间的热流速率或加热功率(差)与温度或时间关系的技术。DSC在高聚物研究中的应用有:  研究结构及动态变化   表征玻璃化转变和熔融行为   分析多组分高聚物体系的组成   研究高聚物链缠结及化学交联   研究高聚物的结晶行为   表征高聚物的微相结构   研究高聚物共混相溶性   反映共混高聚物中组分间的相互作用   研究聚合物的热历史和处理条件对高聚物结构的影响。  动态热机械分析DMA是用来测量样品在周期交变应力作用下,其动态力学性能与时间、温度、频率等函数关系的一种仪器。动态力学热分析测定高分子材料(非晶高聚物、结晶聚合物、交联聚合物、共混高聚物)在一定条件(温度、频率、应力或应变水平、气氛和湿度)下的刚度与阻尼 测定材料的刚度与阻尼随温度、频率或时间的变化,得到高聚物的温度谱、频率谱和时间谱。用高分子物理理论解读DMA的温度谱、频率谱和时间谱,获得与材料的结构、分子运动、加工与应用有关的特征参数。  聚合物热分析是高分子物理的近代研究方法之一,是近几十年中热分析发展最活跃的领域。它已经应用到聚合物结构与性能研究的几乎所有领域。运用聚合物热分析研究(测试)聚合物的非晶态(玻璃化转变及ΔTg) 聚合物的结晶态(结晶-熔融过程、熔点和熔融晗ΔH、结晶温度和结晶晗、温度对结晶速度的影响、结晶温度对熔点的影响、、高分子的链结构对熔点的影响、共聚物的熔点、杂质对聚合物熔点的影响、结晶度测定) 聚合物液晶态 高分子共混物的相容性、嵌段共聚物的微相分离、聚合物的高弹性与黏弹性(聚合物的力学松弛-蠕变、应力松弛、滞后现象、力学损耗、黏弹性与时间、温度的关系-时温等效)、表征力学松弛和分子运动对温度和频率的依赖性等。上述热分析研究的问题都是高分子物理所关注的问题。  热分析是高分子物理的近代研究方法,它辅以其它近代研究方法,如光谱、波谱、色谱、激光光散射、X射线和电子显微技术等方法,运用高分子物理理论,弄清高聚物的一级、二级和聚集态结构,并研究结构与材料功能和性能之间的关系。由此合成具有预定性能的高分子材料,或根据需要通过物理和化学方法改性合成高聚物或天然高分子以创建新的材料。同时,研究高聚物结构对材料加工流动性的影响,确定材料加工成型工艺。研究高聚物分子运动,弄清材料的力学性能、流变性、电学性能。由此,在高分子物理指导下不断制备出预期的高分子材料。  热分析方法是在不断发展的。如示差扫描量热仪DSC技术,自20世纪60年代以来,DSC技术的快速发展使其成为高分子物理尤其是高分子结晶学相关问题研究的常规实验手段。然而随着对高分子结晶和熔融研究的进一步深入,研究者们对DSC的温度扫描速率提出了更高的要求。首先,对于结晶速率较快的半结晶高分子而言,在不够快的冷却速率条件下从熔体降温至较低温度的过程总是能够发生结晶成核,从而干扰了在较低温度区域对高分子结晶成核行为的研究。  其次,高分子材料在诸如注射、吹拉膜和纺丝等实际加工过程中发生结晶时的冷却速率均大于常规DSC所能提供的降温速率,因此很难利用常规DSC模拟研究高分子在实际加工过程中所经历的结晶环境。第三,大多数半结晶高分子折叠链片晶都处于亚稳状态。在常规DSC的升温扫描过程中将不可避免地伴随高分子片晶由亚稳态向更稳定状态的转变,从而干扰最终的熔融实验结果,使得我们难以获得最初的高分子晶体内部聚集态结构相关信息。  近年来,出现了商业化的闪速示差扫描量热仪FlashDSC。推动了高分子结晶研究的进展。因为高分子结晶与熔融问题的研究不仅对高分子科学的发展至关重要,与高分子材料在生产生活中的实际应用也密切相关。随着对相关问题的深入研究,高分子结晶与熔融行为的表征对实验手段提出了新的、更高水平的要求。闪速示差扫描量热仪FlashDSC所具备的快速升降温能力、超高的时间分辨率、易于操作等特点,在高分子结晶与熔融问题的研究上已经得到了广泛的应用。  FlashDSC在高分子的结晶方面的应用有:FlashDSC可以实现对熔体降温过程中结晶成核和生长的精确控制,甚至可以得到大多数半结晶高分子的无定形态,从而为大过冷度下高分子等温结晶的研究创造了有利条件。同时,FlashDSC所具备的超快速降温能力可与加工过程中的冷却速率相匹配,这为加工过程中结晶行为的模拟研究提供了更多的可能。  FlashDSC研究高分子结晶问题的实例有:等温总结晶动力学 等温晶体成核动力学 非等温结晶峰比较 成核剂和填料对结晶行为的影响 共聚单元对高分子结晶的影响。  FlashDSC用于高分子晶体的熔融研究:快速升温可精确地判断高分子晶体的升温退火行为,并且时间窗口与分子模拟相互衔接,在一定程度上可了解亚稳态原生高分子晶体的信息。通过进一步的应用与拓展,诸如多尺度下高分子晶体的熔融行为和极性大分子热降解温度之上的熔融行为都可以得到有益的探讨。  FlashDSC研究高分子晶体熔融问题的实例有:升温扫描过程中多重熔融峰的鉴别 高分子片晶不可逆熔融 高分子片晶可逆熔融 极性大分子晶体的熔融。  总之,FlashDSC在高分子结晶和熔融行为相关问题的研究上有望发挥更加重要的作用,有助于推动高分子结晶学相关基础理论的进一步深化与完善。[1]  2.高分子物理  高分子物理物理学是探讨物质的结构和运动基本规律的学科。高分子物理属于物理学的一个分支。高分子物理从分子运动的观点阐明高分子的结构和性能的关系。通过分子运动揭示分子结构与材料性能之间的内在联系及基本规律。  高分子物理的内容主要由三个方面组成。第一方面是高分子的结构,包括单个分子的结构和凝聚态结构。结构对材料的性能有着决定性性的影响。第二方面是高分子材料的性能,其中主要是黏弹性,这是高分子材料最可贵之处,也是低分子材料所缺乏的性能。研究黏弹性可以借助于力学方法(DMA方法)。结构和性能之间又是通过什么内在因素而连接起来的呢?这就是分子运动。因为高分子是如此庞大,结构又如此复杂,它的运动形式千变万化,用经典力学研究高分子的运动有着难以克服的困难,只有用统计力学的方法才能描述高分子的运动。通过分子运动的规律,把微观的分子结构与宏观的物理性能联系起来。因此,分子运动的统计学是高分子物理的第三个方面。  高分子结构、高分子材料的性能和分子运动统计学三部分组成高分子物理。高分子物理涉及高聚物结构表征、分子运动、物理改性及理论研究。在高分子科学的发展历程中,高分子化学是基础。高分子化学研究高分子化合物的分子设计、合成及改性,它担负着高分子科学研究提供新化合物、新材料及合成方法的任务。高分子物理是高分子科学的理论基础,它指导着高分子化合物的分子设计和高聚物作为材料的合理使用。高分子物理涉及高分子及其凝聚态结构、性能、表征,以及结构与性能、结构与外场力的影响之间的相互关系。另一方面高分子工程研究涉及聚合反应工程、高分子成型工艺及聚合物作为塑料、纤维、橡胶、薄膜、涂料等材料使用时加工成型过程中的物理、化学变化及以此为基础而形成的高分子成型理论、成型新方法等内容。当前的高分子科学已形成高分子化学、高分子物理、高分子工程三个分支领域互相交融、互相促进的整体学科。[2]  高分子科学是一门新兴科学。它经历了漫长的历程才艰难诞生。高分子物理也就在这个过程产生,并且为高分子科学的诞生和发展起了重要作用。高分子科学领域诺贝尔奖获得者H.Staudinger(1953年),Ziegler和Natta(1963年)、P.J.Flory(1974年)、A.J.Heeger,GacDiarrnid及H.Shirakawa(2000年)的重大贡献主要是建立在可靠的高分子表征基础上。我国老一辈高分子科学家钱人元、唐敖庆、冯新德、钱保功、徐僖、程镕时等均具有坚实的高分子物理理论基础,他们为高分子科学与教育事业的发展做出了巨大贡献。[3]  3.高分子物理与聚合物热分析  高分子物理的基本理论、研究领域及研究方法是高分子物理的基本内容。聚合物热分析研究对象辖于高分子,是高分子物理的近代研究方法之一。聚合物热分析的研究领域和高分子物理的研究领域常常是相叠的,热分析研究的问题常常就是高分子物理所关注的问题。下面从四个方面讨论高分子物理与聚合物热分析的关系。  1)« 高分子物理» 关于高分子物理的研究方法的论述  何曼君编著的« 高分子物理» 一书的内容提要中,特别指出该书较为系统全面地介绍了高分子物理的基本理论及研究方法。表明高分子物理的基本理论及研究方法是高分子物理的基本内容。  « 高分子物理近代研究方法» 一书基于高分子物理基本原理和理论,介绍了如何测定和研究高聚物的近代研究方法。高分子物理近代研究方法很多,热分析是高分子物理近代研究方法之一。  2)高分子物理是一门理论和实验结合的精确科学  高分子物理是一门理论和实验结合的精确科学。为了有效地研究和开发高聚物新材料,常常运用高分子物理和近代研究方法(热分析)研究聚合物结构与性能和功能的关系。  3)高分子物理理论解析热分析曲线  热分析是高分子近代物理研究方法之一。热分析实验得到高聚物的热分析曲线,仅显示真理,却不证明真理。高分子物理是聚合物热分析的理论基础。只有用高分子物理理论对热分析曲线进行解析才能阐明高分子的性能与结构之间的关系。  用热分析方法研究新材料,通常步骤是:材料的热分析测试—用高分子物理理论解析热分析曲线—改进后的材料再进行热分析测试和热分析曲线解析。如此循环往复直至开发得到性能优异的新材料。当然,研发过程中辅以其它近代研究方法是必不可少的。  4)运用高分子物理和近代研究方法研发新材料  新材料的研发是建立在可靠的表征上。高分子物理在高分子科学中的地位体现在运用近代研究方法(热分析)表征高聚物的结构与性能,研究高分子结构与功能和性能之间的关系,在高分子物理指导下制备出预期的高分子材料。表征高聚物结构与性能和功能关系的近代研究方法有光谱、波谱、激光光散射、X射线、电子显微技术和热分析。热分析是表征高聚物结构、性能和功能的重要方法之一。运用高分子物理近代研究方法(热分析)研究高分子结构和性质的关系离不开高分子物理理论的指导。  由上表明:高分子物理的基本理论及研究方法是高分子物理的基本内容。高分子物理与聚合物热分析的关系是:热分析是高分子物理的近代研究方法,高分子物理是高聚物热分析的理论基础。运用高分子物理理论解析热分析曲线,关联转变与高聚物结构与性能的关系。高分子物理与热分析是相辅相佐的学科。许多学者进行两栖跨界研究。如中科院长春应化所刘振海长期从事高分子物理和热分析工作。编著了十八本热分析著作。他师从唐敖庆、冯之榴,在高分子物理方面也很有建树。1962年,在中科院长春应化所举办的全国高分子学术论文报告会上,发表的论文“聚丁二烯吸氧动力学”评为优秀论文 在上世纪60年代初,从苏联杂志“高分子化合物”翻译的译文,有关聚丁二烯结构与性能的文章发表在« 化学通报» 上,另外,还有多篇有关高分子物理的译文发表在四川主办的一份快报上。  在上世纪50年代末60年代初,常常是利用手头现有的设备亲自动手制备线膨胀仪、应力松弛仪等,为实现自动记录,迫切需要将变量转换成电信号,这其中的关键部件就是差动变压器。刘振海最先绕制了零点低、对称性好的差动变压器,这在当年的科学报上曾有过报道。北京航天航空大学过梅丽跨界高分子物理和热分析两个领域,既教授« 高分子物理» 课程,又从事热分析,特别是DMA的实验研究。她编著了« 高分子物理» 、« 高聚物与复合材料的动态力学热分析» 的著作。  南京大学胡文兵编著了« 高分子物理» ,参加翻译出版了斯特罗伯著的高分子物理教材。他的最新研究是高分子结晶和熔融行为的FlashDSC研究。在张建军教授承办的中国化学会第四届全国热分析动力学与热动力学学术会议上发表了FlashDSC研究聚丙烯的结晶和熔融行为的论文。陆立明:1985年就读华东理工大学获得聚合物材料工学硕士,后又前往德国柏林技术大学攻读高分子物理三年。在上海市合成树脂研究所工作期间,从事聚合物开发研究,运用热分析等近代研究方法表征高分子塑料合金的特性和特征。2009年,陆立明等人编译出版热分析应用手册丛书,这套丛书汇集梅特勒-托利多公司瑞士总部和梅特勒-托利多(中国)公司科技人员的智慧而潜心编著的。有热塑性聚合物、热固性树脂、弹性体、热重-逸出气体分析、食品和药物、无机物、化学品、认证等分册。其中塑性聚合物、热固性树脂、弹性体等分册通过大量实例深入地介绍和讨论了热分析在聚合物方面的应用,并用高分子物理解析聚合物的热分析曲线。  4.用高分子物理解析高聚物热分析曲线  论述« 热分析曲线解析» 的文章初见于2006年的热分析专业会议上。十多年过去了,热分析曲线解析的现状还是像« 热分析法与药物分析» 一书中所说的那样,至今还没有一本通用的专著可查考,也没有一套完整的解析方法可借鉴,各种物质的热分析表征散见于有关学术期刊与著作中。聚合物热分析曲线解析的现状亦如此。  下面说说用高分子物理解析高聚物热分析曲线的问题。在科学研究中,实验和解析是认知学中的两个元素。用高分子物理解析高聚物热分析曲线具有探索性和研讨性。热分析曲线是热变化时物理量变化的轨迹。解析热分析曲线就是循着物理量变化的轨迹逆向追溯热变化的物理-化学归属。用高分子物理理论解析高聚物的热分析曲线,探索结构与材料功能和性能之间的关系,是热分析曲线的价值体现。用实验的真实数据作图得到热分析曲线。物质变化的现象在热分析曲线上显现是对事物本质和规律反映的一种形象,是显性信息。显性信息显示真理,却不证明真理。简单地说出曲线的变化情况,即看图说话而缺乏深度分析,它是不能揭示变化规律的。唯有用高分子物理理论对高聚物的热分析曲线进行解析,曲线才具有价值。  用高分子物理理论对热分析曲线进行解析,进行分子运动-高聚物结构-性能与加工之间的关联 解析热分析曲线时,既要解析显性信息,还要解析隐性信息,如变化的规律性、与热变化同时发生的结构变化及蕴含在曲线内的曲线(如DMA曲线中隐藏的李萨如曲线),追问曲线的内涵,诠释曲线,揭示变化的本质和规律,对曲线进行深层次的探索和关联,这就是热分析曲线的解释学。用高分子物理理论解析热分析曲线完成了“存在→价值”的转换过程。热分析曲线是存在,当热分析曲线同你的研究(需要)发生联系时,曲线便产生了价值!愿你踏上解析热分析曲线的实践活动之旅,使热分析曲线由存在转变为价值的曲线。  为了要解析高聚物的热分析曲线,热分析工作者要通晓高分子物理,要像物理学家那样思考高分子物理问题。用高分子物理理论解析热分析曲线就是将高聚物的转变与高聚物结构-性能-加工进行关联的过程。关联是一种受经验、知识、理论支配的活动,不同的人由于其具备的经验、知识、理论的背景不同,关联的深度和宽度不尽相同。  下面列举一个用高分子物理解析典型非晶态聚合物的DMA曲线实例:高分子材料黏弹性是高分子物理研究的主要内容,通常选用动态热机械分析DMA来研究高分子材料黏弹性(动态模量和力学损耗)。典型非晶态聚合物的DMA曲线(温度谱)如图所示:典型非晶态聚合物的DMA曲线(温度谱)  由图可以看到,随温度升高,模量逐渐下降,并有若干段阶梯形转折,Tanδ在谱图上出现若干个突变的峰,模量跌落与Tanδ峰的温度范围基本对应。温度谱按模量和内耗峰可以分成几个区域,不同区域反映材料处于不同的分子运动状态。转折的区域称为转变,分主转变和次级转变。这些转变和较小的运动单元的运动状态有关,各种聚合物材料由于分子结构与聚集态结构不同,分子运动单元不同,因而各种转变所对应的温度不同。玻璃态与高弹态之间的转变为玻璃化转变,转变温度用Tg表示 高弹态与黏流态之间的转变为流动转变,转变温度用Tf表示。  玻璃化转变反映了聚合物中链段由冻结到自由运动的转变,这个转变称为主转变或α转变,这段模量急趋下降外,Tanδ急剧增大并出现极大值后再迅速下降。在玻璃态,虽然链段运动已被冻结,但是比链段小的运动单元(局部侧基、端基、极短的链节等)仍可能有一定程度的运动,并在一定的温度范围发生由冻结到相对自由的转变,所以在DMA温度谱的低温区,E’-T曲线上可能出现数个较小的台阶,同时在E”-T和Tanδ曲线上有数个较小的峰,这些转变称为次级转变,从高温到低温依次命名为β、γ、δ转变,对应的温度分别记为Tβ、Tγ、Tδ。每一种次级转变对应于哪一种运动单元,则随聚合物分子链的结构不同而不同,需根据具体情况进行分析。据文献报道,β转变常与杂链高分子中包含杂原子的部分(如聚碳酸脂主链上的-O-CO-0-、聚酰胺主链上的-CO-NH-、聚砜主链上的-SO2-)的局部运动,较大的侧基(如聚甲基丙烯酸甲酯上的侧酯基)的局部运动,主链上3个或4个以上亚甲基链的曲柄运动有关。γ转变往往与那些与主链相连体积较小的基团如α-甲基的局部内旋转有关。δ转变则与另一些侧基(如聚苯乙烯中的苯基、聚甲基丙烯酸甲酯中酯基内的甲基)的局部扭振运动有关。  当温度超过Tf时,非晶聚合物进入黏流态,储能模量和动态黏度急剧下降,Tanδ急剧上升,趋向于无穷大,熔体的动态黏度范围为10~106Pa.s。从DMA温度谱上得到的各种转变温度在聚合物材料的加工与使用中具有重要的实际意义:对非晶态热塑性塑料来说,Tg是它们的最高使用温度以及加工中模具温度的上限 Tf是它们以流动态加工成型(如注塑成型、挤出成型、吹塑成型等)时熔体稳定的下限 Tg~Tf是它们以高弹态成型(如真空吸塑成型)的温度范围。对于未硫化橡胶来说,Tf是它们与各种配合剂混合和加工成型的温度下限。此外,凡是具有强度较高或温度范围较宽的β转变的非晶态热塑性塑料,一般在Tβ~Tg的温度范围内能实现屈服冷拉,具有较好的冲击韧性,如聚碳酸脂、聚芳砜等。在Tβ以下,塑料变脆。因此,Tβ也是这类材料的韧-脆转变温度。另一方面,正是由于在Tβ~Tg温度范围内,高分子链段仍有一定程度的活动能力,所以能通过分子链段的重排而导致自由体积的进一步收缩,这正是所谓物理老化的本质。[4]  以上实例说明,动态力学热分析是研究材料黏弹性的重要手段,非晶态聚合物的玻璃化转变和次级转变准确地反映了聚合物分子运动的状态,每一特定的运动单元发生“冻结”?自由转变(α、β、γ、δ)时,均会在动态力学热分析的温度谱和频率谱上出现一个模量突变的台阶和内耗峰。高分子物理从分子运动的观点出发解析非晶态聚合物的DMA曲线,揭示材料结构与材料性能之间的内在联系及基本规律。  二.高分子物理著作  五十年代未,高分子物理学基本形成。自六十年代以来,高分子研究重点转移到高分子物理方面,并出版了很多高分子物理的著作。何平笙所著的« 新编高聚物的结构与性能» 书未的附录详细地介绍了有关高分子物理的教学参考书。本文特将此附录列于文后,供参考。并把其中几本高分子物理的著作做一简单的介绍。  1.胡文兵« 高分子物理» 英文版Amolecularviewonthefundamentalissuesinpolymerphysicsisprovidedwithanaimatstudentsinchemistry,chemicalengineering,condensedmatterphysicsandmaterialsciencecourses.Anupdatedtranslationbytheauthor,arenownedChinesechemist,ithasbeenproventobeaneffectivesourceoflearningformanyyears.Up-to-datedevelopmentsarereflectedthroughouttheworkinthisconcisepresentationofthetopic.Theauthoraimsatpresentingthesubjectinanefficientmanner,whichmakesthisparticularlysuitableforteachingpolymerphysicsinsettingswheretimeislimited,withouthavingtosacrificetheextensivescopethatthistopicdemands.  该书受欢迎程度继续位列2017斯普林格出版社电子图书的前四分之一。胡文兵教授的另一本高分子物理译作是:  StroblG.1997.ThePhysicsofPolymers.2ndEd.Berlin:Springer  这是一本近十年来有影响的高分子物理教材,Strobl本人多次来国内讲授有关他提出的高聚物结晶的理论,中文译本是斯特罗伯著,胡文兵,蒋世春,门永锋,王笃金译《高分子物理学》,北京:科学出版社,2009。  胡文兵教授最新研究:高分子结晶和熔融行为的FlashDSC研究。  2.何平笙编著« 新编高聚物的结构与性能» 科学出版社2009前言  自中国科学技术大学1958年成立高分子化学和高分子物理系以来,由已故的钱人元院士开设的" 高聚物结构与性能" 课程已50余年了,根据钱先生讲课笔记整理出版的《高聚物的结构与性能》一书(科学出版引,1981年第二版)被许多高校选做教材。近10年来、编者不但在授课时添加了高分子物理的新成果、新发现,更重要的是对课程进行了深入的教学研究,加深了对已有体系、知识点的全新理解,深受学生好评,因而在2005年获得安徽省教学成果奖一等奖和国家级教学成果奖二等奖,“高聚物结构与性能”也被评为国家级精品课程。本书就是在上述教学研究的基础上新编而成的。  高分子科学由高分子化学、高分子物理和高分子加工三大部分组成。高分子化学主要是研究如何从小分子单体合成(聚合)得到高分子化合物——高聚物,高分子加工则是研究如何把高聚物制成实用的制品,而高分子物理则包含有以高聚为对象的全部物理内容。  作为大学本科生的课程,“高分子物理”实在难以承担这个“包含有以高聚物为对象的全部物理内容”的重任。这一方面是由于“高分子物理”目前还达不到通常物理学各分支的成熟程度,另一方面是由于仍隶属于化学大框架下的高分子专业学生也难以接受更多、更深的物理和数学知识。事实上,“高分子物理”目前还主要是讲述高聚物材料的结构与性能,以及它们之间的相互关系,因此,我们仍然采用“新编高聚物的结构与性能”作为书名。依据相对分子质量的大小,高分子化合物大致可分为低聚物和高聚物,但作为材料来使用的大多是相对分子质量很高的高聚物。低聚物主要用作黏合剂、高能燃料等,不包含在本书的范围之内。因此,全书仍然使用“高聚物”这个名称。  本课程的基本任务就是探求高聚物的结构与性能,揭示结构与性能之间的内在联系及其基本规律,以期对高聚物材料的合成、加工、测试、选材和开发提供理论依据。编者认为,高聚物结构与性能的关系有三个层次,即通过分子运动联系“分子结构与材料性能”关系、通过产品设计联系“凝聚态结构与制品性能”关系和通过凝聚态物理知识联系“电子态结构与材料功能”关系。由于历史的原因,无论是国内教材,还是国外教材大都只涉及上述的第一个结构层次,内容基本上只是“分子结构与材料性能”的关系,要详细理解第二和第三个结构层次,需要开设正规的“流变学”和“凝聚态物理”的专门课程,尽管这已经超出了本书的范围,但上述高聚物结构与性能关系三个层次的理念,已牢牢树立在编者心中,并力求在本书编写中体现出来。  值得指出的是,我国高分子物理学家以高分子链单元间的相互作用,特别是从链单元间的相互吸引在凝聚态形成过程中的作用这一国际上独创的观点出发,纵观高聚物的全部相态——高聚物溶液、非晶态、晶态和液晶态中存在的问题,开展了深入系统的研究工作、取得了若干国际前沿性的研究成果。在高分子物理领域提出了一些新概念,形成了有我国特色的高分子物理学派,还独创了全新的电磁振动塑化挤出加工方法等,编者都尽量在本书中反映这些成果。此外,本书还增添了高聚物宏观单晶体、可能的二维橡胶态等新内容,指出了不同结晶方式(先聚合、后结晶,还是先结晶、后聚合)会得到完全不同的高聚物晶体、重新考虑了Williams-Landel-Ferry(WLF)方程的意义,认为它是高聚物特有分子运动所服从的特殊温度依赖关系等,全面介绍了编者对已有体系和知识点的新理解。  如前辈所言,编书如造园,取他山之石,引他池之水,但一山一水如何排布却彰显造园者的构思。书中引用了众多国内外公开出版的教材和专著中的论述或研究成果,谨向所有作者致以深切的谢意,不及面询允肯,敬请海涵。感谢朱平平教授、杨海洋副教授对书稿所提的宝贵意见,感谢李春娥高工为本书打录和校订文稿 本书内容在中国科学技术大学高分子科学与工程系连年讲授,也在中国科学院长春应用化学研究所讲授过7次,校、所多届学生对课程内容和安排都提过不少好的建议,在此一并表示感谢。书后附录中列出了有关高分子物理详细的教材和参考书目录,以供读者查询和进一步阅读。附录中还列出了编者近十年来公开发表的三十余篇有关高分子物理教学研究论文的目录,读者可参考阅读并分享编者教学研究的心得。由于编者水平有限,书中难免存在缺漏和不足之处,敬请读者和专家不吝批评、斧正。  何平笙2009年4月内容简介  本书是国家级精品课程“高聚物的结构与性能”的新编教材,是2005年“全面提升高分子物理重点课程的教学质量”国家级教学成果奖二等奖内容的全面体现。全书系统讲述高聚物的近程、远程和凝聚态结构,以及高聚物的力学、电学、光学、磁学、热学、流变和溶液性能,通过分子运动揭示“分子结构与材料性能”之间的内在联系及基本规律,更进一步提出包括“凝聚态结构与制品性能”关系和“电子态结构与材料功能”关系在内的三个层次的结构与性能关系理念,以期对高聚物材料的合成、加工、测试、选材、使用和开发提供理论依据。全书还介绍了我国学者的研究成果及编者多年教学研究的心得和对已有体系、知识点的新理解、新认识。  本书可作为高等学校理科化学类、化工、轻工纺织、塑料、纤维、橡胶、复合材料等工科材料类本科学生的教材,也可作为有关专业研究生的参考教材、对从事高聚物材料工作的有关工程技术人员和科研人员也是一本有用的参考书。  3.何曼君张红东陈维孝等.« 高分子物理» 第三版复旦大学出版社2007  是国内有代表性的高分子物理教材,为多所高校所选用。序  本书自1983年出版以来,是国内高分子物理教学的首选用书,虽在1990年作了修订,到现在也达十多年了。为了反映高分子科学的飞速发展,需要更新。编者们结合多年来的教学经验,参考了大量的国内外新教材和有关文献,删繁就简,推陈出新,将本书重新编写,使之更能符合当前教学和科研的需要。相信本书会得到广大教师和学生们的欢迎。当然,还会有不尽完善的地方,欢迎使用者对编者提出宝贵意见与建议。  于同隐  2006年10月1990年修订版序  高分子科学的发展,以20世纪30年代H.Staudinger建立高分子学说为开端。此后高分子的化学,特别是高分子的合成方面,有了飞跃的发展,现代的大型高分子合成材料工业,大都肇始于这一时期的研究。其中最突出的成就,是W.H.Carothers的缩合聚合,K.Ziegler和G.Natta的定向聚合,对理论和生产都是巨大的贡献。与此同时,高分子物理化学也有相应的发展,主要是研究高分子的溶液,为测定高分子的分子量莫定了基础。  60年代以来,研究重点转移到高分子物理方面,逐渐阐明了高分子结构和性质的关系,为高分子的理论和实际应用建立了新的桥梁。这一时期的著名代表是P.J.Flory,他对高分子物理化学和高分子物理都作出了很多贡献。Staudinger,Ziegler,Natta和Flory都因此获得诺贝尔化学奖金。  本书的内容主要从分子运动的观点,来阐明高分子的结构和性能,着重在力学性质和电学性质方面,同时也兼顾到物理化学和近代的研究方法,可以供大专学校作为教材,也可供有关的高分子工作者参考。  本书由何曼君、陈维孝、董西侠编写,于同隐校订。最初以油印讲义的形式,在复旦大学试用,得到南京大学、四川大学、中国科技大学、交通大学、兰州大学、厦门大学、黑龙江大学、南开大学、华南工学院等单位有关同志的鼓励,特别是顾振军、王源身、史观一等同志提出宝贵意见,在此表示衷心的感谢。复旦大学高分子教研室的许多同志和复旦大学出版社协助本书的出版,也一并表示感谢。  由于高分子物理正处在蓬勃发展的阶段,本书内容有很多值得商讨的地方 加上编者的水平和技术上的原因,本书还存在很多错误,望读者不吝指正。  于同隐第三版前言  本书是为高等学校理科高分子专业高年级本科生编写的,也适用于低年级研究生和其他与高分子相关专业的学生。本书的内容涉及面较宽,阐述深入浅出,便于自学,还附有习题和详细的参考资料,也可供广大科技工作者阅读和参考。  建国初期,我国高分子方面的工作起步较晚,由于钱人元等老一辈科学家纷纷回国,在国内开创了高分子的教学和科研事业,在他们的带领下,少数高校中建立了课题小组或科研组,开始培养高分子方面的人才,并为教育事业打下扎实的基础,一批批的优秀人才脱颖而出,其中有些人已晋升为院士。  随着时代的前进、科技的进步,尤其是改革开放以来、高等教育突飞猛进,大部分商校都设有高分子专业,有的已发展成为一个系甚至一个学院,并设立了很多相关的专业,它们大都把高分子物理作为必修的课程。1983年我和陈维孝、董西侠合编的《高分子物理》一书编印出版,并在1990年作了修订,该书在国内被广泛采用,当时满足了广大师生的需求,得到了好评。此书曾获得国家教委颁发的优秀教材奖。然而,高分子物理这门学科近年来有较大的进展,理论在发展,观念在更新,国内外新的专著也很多。自从我翻阅了2005年全国高分子学术年会的论文后,更加感觉到,我们需要将这些新的内容介绍给读者。为此,本人特邀请陈维孝和董西侠两位抽出时间来和我一起在1990版教材的基础上,重新编写此书,同时还邀请了复旦大学在第一线从事教学工作的张红东教授参加本书的编写。  首先,在本书内加入“第一章概论”。使初学者对高分子物理有一初步的认识,并将相对分子质量及其分布的内容也写入这一章内 在第二章中引入了Kuhn链段的概念,并在高分子构象中介绍了末端距的概率分布函数的另一种推导方法 在第三章的高分子溶液性质中增加了deGennes的标度概念、θ温度以下链的塌陷,以及溶液浓度和温度对高分子链尺寸的影响等 在新增加的第四章高分子多组分体系中,介绍共混聚合物和嵌段共聚物的相分离和界面 关于高分子的凝聚态分设为非晶态和晶态两章,在非晶态章中删去了与高分子成型加工课程中有重复的部分,并在其黏流态中介绍了高分子链运动的蛇行理论 原先聚合物的力学性质内容较多,现也分设为第七、第八两章,在第八章中增加了高弹性的分子理论 在第九章中除了介绍聚合物的电学性能外,还介绍了聚合物的光学性质、透气性以及高分子的表面和界面等 在本书的最后一章中,除原先介绍的近代研究方法和有关的一些仪器、它们的原理和应用实例外,还介绍了各种仪器的近代发展情况,如测相对分子质量及其分布的绝对方法——飞行时间质谱,小角中子散射、激光共聚焦显微镜、原子力显微镜等。  本书的分工是:第一章由董西侠编写,本人修改 第二章由张红东编写,本人修改 第三、四、九、十章由我和张红东合编 第五、六、七、八章由陈维孝编写,本人修改 全书由我主审并定稿。  在编写此书时,我总是怀念起老一辈科学家们对我的教导和指点,谨以此书表示对他们的敬意和怀念。在编写过程中还得到了不少专家和学生们的支持和帮助,在此表示感谢。  何曼君  2006平10月1日内容提要  本书于1983年首次出版,1990年出版了修订版,曾获得过国家教委颁发的“优秀教材奖”等奖项、二十多年来一直是国内高分子物理教学的首选用书。为了反映高分子科学的飞速发展,编者们结合了多年的教学与科研经验,参考了大量的国内外新教材和有关文献,删繁就简,推陈出新、重新编写了本书,使之更能符合当前教学和科研的需要。  全书较为系统全面地介绍了高分子物理的基本理论及研究方法。共分十章,包括高分子的链结构,高分子的溶液性质,高分子的聚集态结构,高分子多组分体系,聚合物的结晶态、非晶态,聚合物的力学、电学、光学等性质,以及聚合物的分析与研究方法等等。从分子运动的观点出发,阐述高分子的性能与结构之间的关系。  本书内容涉及面较宽,阐述深入浅出,还附有详细的参考资料,适合作为高等学校高分子专业的教材某些较深入的内容可供教师参考和学有余力的学生阅读,也可供广大科技工作者和研究人员参考。  4.过梅丽赵得禄主编« 高分子物理» 北京航空航天大学2005序  处于知识爆炸时代,信息如原子裂变一样快速增长:处于改革年代,人们有更多的选择与机会。  与20世纪50年代我国高分子物理专业初创时期缺乏教材的情况不同,目前仅国内出版的《高分子物理》教材就已有多个版本。不论深浅,全都包括高聚物结构、分子运动及性能三大部分。但作为业基础课教材,各编者又自然而然地按所在专业后续课程的需要选择了具体内容,各具特色。  自我国改革开放以来,北京航空航天大学的高分子物理课程经历了较大的变更,1987年以前,与大多数工科院校一样,该课程定位为高分子材料专业的专业基础课,课堂教学约80学时,自1987年起,该校材料科学工程系在拓宽专业面的思想指导下,率先开设了全系公共专业基础课程——材料科学与工程导论。它以金属物理和高分子物理的部分内容为主,综述了金属、陶瓷和高分子材料在结构和性能上的共性与特性。与此同时,相应削减了高分子材料专业中高分子物理的教学时数。此后,随着教改的深人,不断调整教学计划。在2000年制定的教学计划中,高分子物理(54学时)与高分子化学、金属物理、电化学原理及近代测试技术等课程一起,被定位为材料科学与工程大类专业的公共基础课。  本教材就是在上述背景下,根据高分子物理在大类专业中的地位、作用和具体要求编写的。与国内大多数高分子物理教材相比,本教材的主要特点如下:  普及与提高相结合。全书由基础部分和提高部分(带*号)两大模块组成。在基础部分,主要通过与金属、陶瓷材料的对比,阐明高聚物在结构、分子运动和性能方面的基本特点、内在联系及基本研究方法 在提高部分,适度引进了理论推导、研究新方法与最新进展,为有兴趣深入高分子材料领域的学生提供必要的基础知识。  紧密结合高分子材料及成型加工的实践与应用,重点放在高聚物的凝聚态结构、力学状态、高弹性、粘弹性和熔体流变性方面 除结合热塑性高分子材料以外、较多地涉及热固性树脂体系与复合材料 除结合通用高分子材料以外,较多地涉及航空航天用高分子材料 此外,适当涉及功能材料的功能性。适当结合高分子科学发展史引入概念。简化已在其他课程中涉及的基础知识和基本研究方法,如晶体结构与研究方法、相图分析、波谱分析原理与方法及一般力学性能等。  本书所涉及量的名称和单位符合国标规定,但有下列例外:  聚合物的分子量:按照国标,应该用相对分子质量替换传统名称分子量。但由于聚合物的相对分子质量范围可以很宽,不像小分子物质那样有一个确定的值 对于一个具体的聚合物样品,其相对分子质量又具有多分散性,须用各种统计平均值表示,如数均相对分子质量、重均相对分子质量等 在聚合物-性能关系中,还涉及临界相对分子质量等。为简明起见,本书仍沿用分子量这一名称。  高分子溶液浓度按照国标,应该用溶液中溶质的摩尔分数表示。但在未知聚合物样品确切的平均分子量之前,无法从溶质质量计算其摩尔分数,因此,通常多以溶液中溶质的质量百分数表示浓度。本书也采用这一习惯表示法。  温度按照国标,T代表热力学温度,单位为K。但在本书引用的插图中,有相当一部分都以摄氏度为坐标,如果改为热力学温度,可能会改变曲线形状,为读者参考原文带来不便 如果用t代表摄氏温度,则又有悖于高分子物理中以T x表示各种特征温度的规则。为此,本书同时采用了T/K和T/℃这两种表示温度的方法。  本教材第2、9章由过梅丽和赵得禄(中国科学院化学研究所高分子物理和化学国家重点实验室研究员)合作编写。其他章由过梅丽编写。  在本教材编写过程中,还得到北京化工大学高分子材料系华幼卿教授的热情帮助,在此表示诚挚感谢。同时也非常感谢北京航空航天大学材料科学与工程学院高分子材料系杨继萍副教授在教材整理中的细致工作和良好建议。  编者希望本教材更适用于材料科学和工程大类专业。效果如何,尚待实践检验。诚请老前辈、同仁和学生们提出批评和建议。  编者  2005年3月14日内容简介  本书系统地介绍高分子物理的基本理论,即高聚物的结构、分子运动与性能和行为之间的关系,突出高聚物区别于金属、陶瓷和其他低分子物质的特点。内容涉及力、热、电及光学等性能,但从航空航天材料科学与工程的需要出发,以力学性能为主,兼顾其他性能。本书由基础和提高(带*号)两大部分构成,以适应不同层次专业对高分子物理的教学要求。基础部分重在基本概念、基本理论及基本研究方法 提高部分涉及一些理论推导。  本书可作材料科学和工程类专业的教材,也可供高分子材料科学与工程技术人员参考。  5.过梅丽« 高聚物与复合材料的动态力学热分析» 化工出版社2002,是一本很好的有关高聚物东台力学测试的著作。前言  著名高分子物理学家A.Tobolsky曾说过:“如果对一种聚合物样品只允许你做一次实验,那么所做的选择应该是一个固体试样在宽阔温度范围内的动态力学试验(Ifyouareallowedtorunonlyonetestonapolymersample,thechoiceshouldbeadynamicmechanicaltestofasolidsampleoverawidetemperaturerange)”。  材料的动态力学行为是指材料在振动条件下,即在交变应力(或交变应变)作用下做出的响应。它不同于材料的静态力学行为,后者是指材料在恒定或单调递增应力(或应变)作用下的行为。材料的疲劳行为也属动态力学行为之一,但疲劳测试通常是在较高的应力水平(例如在材料断裂强度的5O%以上)下进行的,而本书所述的动态力学分析则一般在很低的应力水平(远低于材料的屈服强度)下进行,所得到的基本性能参数是材料的动态刚度与阻尼。  测定材料在一定温度范围内动态力学性能的变化就是所谓的动态力学热分析(dynamicmechanicalthermalanalysis}简称DM-TA)。动态力学热分析是研究材料粘弹性的重要手段。在20世纪50~60年代,由于缺乏商品仪器,大多数实验室都用自行研制的设备进行研究。70年代以来,商品仪器一一问世,迅速更新换代。仪器的功能、控制与测试的精度、数据采集与处理的速度不断提高,在材料研究特别在高聚物与复合材料的研究中应用越来越广泛。  推动动态力学热分析技术迅速发展的根本动力无疑是该项技术在材料科学与工程中的重要意义。具体地说,主要表现在以下几方面。  ①于任何材料,不论结构材料或功能材料,力学性能总是最基本的性能。对于在振动条件下使用的材料或制品,它们的动态力学性能比静态力学性能更能反映实际使用条件下的性能。  ②聚物及其复合材料是典型的粘弹性材料。动态力学试验能同时提供材料的弹性与粘性性能。  ③态力学热分析通常只需要用很小的试样就能在宽阔的温度和/或频率范围内进行连续测试,因而可以在较短的时间内获得材料的刚度与阻尼随温度、频率和/或时间的变化。这些信息对检验原材料的质量、确定材料的加工条件与使用条件、评价材料或构件的减振特性等都具有重要的实用价值。  ④态力学热分析在测定高分子材料的玻璃化转变和次级转变方面,灵敏度比传统的热分析技术如DTA、DSC之类的高得多,因而在评价材料的耐热性与耐寒性、共混高聚物的相容性与混溶性、树脂-固化剂体系的固化过程、复合材料中的界面特性和高分子的运动机理等方面具有非常重要的实用与理论意义。  目前,先进的动态力学热分析仪已拓展到能兼测材料的静态粘弹性,如蠕变、应力松弛等。  但是,与静态力学测试技术和传统的热分析技术相比,动态力学热分析技术的发展历史毕竟较短,因而人们对它的原理与应用潜力还认识不足。虽然在国内已出版过一些有关动态力学分析的译著,但一方面,其中所涉及的数学与物理理论较深,另一方面,所涉及的仪器已明显跟不上动态力学热分析仪蓬勃发展的趋势。而在有关热分析的著作中,则对动态力学分析技术的介绍一般都相对单薄。  笔者所在的北京航空航天大学高分子物理实验室,于20世纪70年代学习、仿制并改进了振簧仪和悬线式动态粘弾谱仪,从此开始了动态力学热分析技术的应用研究。80年代引进了杜邦公司的DuPontDMA982/1090B,在多项研究工作的基础上,汇集了数十幅DMA温度谱,纳入《高分子材料热分析曲线集》,由科学出版社于1990年正式出版。同时,也开展了超声传播法测定各向异性复合材料动态刚度的研究。但是上述动态力学试验法均主要适用于刚性材料,且不便于测定材料的动态力学性能频率谱。为适应品种繁多、性能范围宽阔、试样形式多样和应用目标各异的高分子材料与复合材料的研究,本实验室于90年代引进了RheometricScientificDMTAⅣ,并在研究工作的基础上,编制了中华人民共和国航空工业标准《塑料与复合材料动态力学性能的强迫非共振型试验方法》(HB7655~1999)。在近30年的实践中,笔者对动态力学热分析技术及其应用有了一些体会,也获得了一些经验,遂萌生了总结一下的想法,以便与同行交流共勉。  动态力学热分析是一门理论性和应用性都很强的科学与技术。但对大多数同行而言,更侧重于应用。因此,本书撰写的指导思想是实用。目的是阐明几个普遍关注的问题。  动态力学热分析能提供哪些信息?  这些信息的物理意义是什么?  如何处理与应用这些信息了?  为此在撰文中坚持下列几项原则。避免过于深奥的理论与数学推导重点阐明物理概念。  在全面阐述自由衰减振动法、强迫共振法、强迫非共振法和声波传播法的基础上,介绍目前应用越来越广泛的强迫非共振法。紧密结合最新的ISO和ASTM标准讨论试验方法。结合典型实例(但无意作文献综述〉阐明动态力学热分析的应用性突出在新材料与新工艺中的应用。结合实践讨论动态力学热分析数据的相对性与绝对性。提供较多图谱,提高直观性与可读性。但不同于手册,不求全。原理部分,给出示意图谱实例部分,给出实测图谱。  但是,囿于本实验室的仪器类型有限,笔者只可能主要围绕所使用过的仪器进行讨论,难免有挂一漏万之嫌。所幸者,目前国际上许多先进的商品动态力学热分析仪,尤其是强迫非共振仪,尽管在结构、外形上各具特色,规范、明细上略有差异,但它们的基本原理与功能正日趋一致。因此,相信“解剖麻雀”的哲学思想定会被同行所理解与接受。  在本实验室动态力学热分析技术的建设与发展中,刘士昕先生曾做出重要贡献,虽然他目前不再从事该项工作。在本书撰写过程中,得到了他的热忱支持,并获得他的同意,引用我们曾经的合作成果,在此谨表示诚挚的感谢。  在动态力学热分析技术的应用与推广中,笔者的研究生孙永明、刘贵春、阳芳、王志、范欣愉、汪少敏和董伟等做了许多实验工作,笔者深切地体会到师生合作、教学相长的愉悦。  在本书撰写过程中,美国RheometricScientific有限公司及其中国总代理北京瑞特恩科技公司在提供资料、联络同行专家、养护设备等方面都给予了大力支持,在此一并感谢。  在本书图谱绘制过程中,笔者的丈夫,陈寿祜先生,以惊人的毅力和耐心,帮助笔者完成了细致繁琐的工作,笔者的感激之情难于言表。鉴于笔者水平有限,书中难免有误,诚请读者批评指正。  内容提要  本书分三角部分。介绍了动态力学热分析的基本原理、试验方法及其在高分子材料、工艺研究中的应用。在原理部分,介绍了高分子材料的粘弹性在动态力学行为上的反映、主要参数的物理意义及时-温叠加原理。在式验方法中,结合ISO、ASTM和GB试验标准,全面介绍了自由衰减振动法、强迫共振法、强迫非共振法和超声传播法的仪器与计算分析,并以强迫非共振法为重点,详细讨论了形变模式与试验模式的选择原则、可能获得的信息及影响试验结果的因素。在应用部分,列举了大量研究实例,说明动态力学热分析技术在塑料、橡胶、纤维、复合材料的评价、设计和工艺研究中的实用性,还给出了数十幅典型材料(包括部分金属材料在内)的典型动态力学性能温度谱,或频率谱,或时间谱。本书可供大专院校的学生和研究测试人员参考。  6.朱诚身« 聚合物结构分析» 科学出版社2010该书用101页的篇幅介绍了热分析方法。第一版序  聚合物是重要的结构与功能材料。随着当代科学的发展,合成高分子材料在工农业生产、国防建设和日常生活的各个领域发挥着日益重要的作用,21世纪将成为高分子的世纪。以前那种仅停留在研究合成方法、测试其性能、改善加工技术、开发新用途的模式已远不能适应现代科学技术对聚合物材料发展的需要,而代之以通过研究合成反应与结构、结构与性能、性能与加工之间的各种关系,得出大量实验数据,从而找出内在规律,进而按照事先指定的性能进行材料设计,并提出所需的合成方法与加工条件。在此研究循环中,对聚合物结构分析提出了越来越高的要求,从而使之成为高分子科学各个领域中必不可少的研究手段。因此聚合物结构分析已成为高分子材料科学与工程学科的重要组成部分,熟练掌握高聚物结构分析技术不仅对学术研究至为重要,也将为生产实际提供必要的技术保证。  由华夏英才基金资助、郑州大学朱诚身教授主编的《聚合物结构分析》一书,正是为从事高分子材料科学与工程研究的学者、教师、学生、工程技术人员提供的一本有关聚合物分析方面的专著与参考书。本书主要内容是关于现代仪器分析技术在聚合物结构分析中的应用,以及结构分析中所涉及的理论、思维方式、实验方法等。有关材料来源于最新出版的学术专著、学术期刊中的有关论文,以及作者多年从事该领域研究的成果与经验。  与目前已出版的国内外同类著作相比,本书具有以下特点:①内容全面。本书是目前已出版著作中内容相对最完备,介绍方法最多的著作 ②操作与思维方法并重。本书一改同类著作中仅介绍方法原理与操作方法的传统,通过对各种方法发展历史、现状与展望,全面介绍其发展历程与趋势,在方法介绍的同时使读者学到系统的思维方法,使之从发展的角度掌握各种研究方法,指出了创新之路 ③应用性强。通过对各种应用实例,特别是作者亲自研究体会的介绍,使读者能更容易掌握各种结构分析方法的应用。因此本书是一本内容完整,体例新颖,富有特色的学术著作。  相信本书的出版,将对我国高分子材料科学与工程学科的发展做出积极的贡献。  程镕时  中国科学院院士第一版前言  随着高分子材料科学与工程的迅猛发展,对高聚物结构的认识愈加深人和全面的同时,对聚合物结构分析提出了更为繁重的任务,掌握现代分析技术,测定高分子各层次的结构,探讨结构与性能之间的关系,已成为每位从事高分子科学与工程工作、研究与学习的人士必备的基本功。本书正是为从事高分子物理、高分子化学、高分子材料、高分子合成、高分子加工等领域的学者、教师、学生、工程技术人员等提供的一本有关聚合物结构分析方面的专著与参考书。  本书是在作者多年来从事高分子科学研究,并吸取该领域最新研究成果的基础上集体完成的。其中第一章绪论由朱诚身执笔 第二章振动光谱与电子光谱由王红英、孙宏执笔 第三章核磁共振由孙宏、王红英执笔 第四章热分析由朱诚身、任志勇、何素芹执笔 第五章动态热力分析与介电分析由何索芹、朱诚身执笔 第六章气相色谱与凝胶色谱由汤克勇执笔 第七章裂解色谱与色质联用由汤克勇执笔 第八章透射电镜与扫描电镜由何家芹、朱诚身执笔 第九章广角X射线衍射和小角X射线散射由毛陆原、李铁生执笔 第十章液态与固态激光光散射由李铁生、毛陆原执笔。全书由朱诚身统稿。  本书的出版得到了华夏英才基金的资助,以及北京化工大学金日光教授、四川大学吴大诚教授的热情推荐。在此表示衷心的感谢。在编辑过程中,本书责任编辑、科学出版社杨震先生给予多方指导,杨向萍女士在立项过程中给予热情帮助 在撰写过程中郑州大学材料工程学院王经武教授、曹少魁教授对本书内容的确定提供了宝贵意见!郑州大学材料学专业硕士生陈红、张泉秋、刘京龙、历留柱在文字打印和插图绘制等方面作了许多具体工作,在此一并表示衷心地感谢。  特别要感谢中国科学院院士程镕时先生,百忙中为本书写序,给予热情推介。最后还要感谢作者的家人,在事业与写作方面给予的理解与支持。  由于作者学识、经验方面的局限,和学科方面的飞速发展,本书内容与行文方面难免存在欠妥之处,敬请读者不吝赐教。  朱诚身第二版前言  本书自2004年出版以来,受到读者的欢迎与支持,很快被第二次印刷、被许多学校选做教材和考研参考书,并在2007年获得河南省科技进步三等奖。由于近年来高分子科学的飞速发展,聚合物结构分析方面的研究对象日益增多,深度与广度越来越大,研究方法与手段日新月异,因此在本书库存几乎告罄之际,责任编辑杨震先生建议作者修订再版,就有了本书,即《聚合物结构分析》的第二版。  参加第一版撰写的作者,除王红英不幸英年早逝,任志勇、孙红因其他工作没有参加编写外,其余都参加了修订 刘文涛、申小清、郑学晶、周映霞、朱路也参加了修订工作。  与第一版相比,第二版主要删除了每种研究方法中一些较老、目前已不采用的研究内容与制样手段,补充了最新的研究成果和每种研究方法的最新发展趋势。每章参考文献删除了一些较早文献,补充了最新研究文献。  修订较大的章节有:  第四章热分析。删除了部分由仪器本身误差造成的影响,增加了近年来受关注的操作条件影响因素 增加了若干近年来出现的新型仪器,以及新近出现的各种仪器之间的联用技术。  第八章考虑到涉及的各种分析方法,将题目由。“透射电镜与扫描电镜”改为“显微分析” 删除了透射电镜制样技术,增加了电子能谱和扫描隧道显微镜的内容。  第十章在第一版中的体例与其他章有些不一致,第二版中第九、十两章作了较大的调整:第九章题目由“广角X射线衍射和小角X射线散射”改为“广角X射线衍射” 原来小角X射线散射的内容调到第十章,该章题目由“液态与固态激光光散射”改为“小角激光散射和小角X射线散射”。  全书由朱诚身策划,其中第一章绪论由朱诚身执笔 第二章振动光谱与电子光谱由刘文涛、申小清、周映霞执笔 第三章核磁共振与顺磁共振由毛陆原、申小清、郑学晶执笔 第四章热分析由申小清、刘文涛、朱诚身执笔 第五章动态热机械分析与介电分析由何素芹、申小清、刘文涛执笔 第六章气相色谱与凝胶色谱由汤克勇、郑学晶、朱诚身执笔 第七章裂解色谱与色质联用由郑学晶、汤克勇、周映霞执笔 第八章显微分析由何素芹、刘文涛、朱诚身执笔 第九章广角X射线衍射由毛陆原、朱路、李铁生执笔 第十章小角激光散射和小角X射线散射由李铁生、朱路、毛陆原执笔,全书由朱诚身统稿。  本书责任编辑科学出版社杨霞、周强先生在修订过程中给予多方指导,在此表示衷心地感谢。  鉴于学科方面的发展之迷,而作者见闻之携、本书桀误之处势所难免,尚请读者不吝赐教。  朱诚身  2009年7月16日内容简介  本书系统介绍了现代仪器分析技术在高聚物结构分析中的应用以及结构分析中所涉及的理论、思维方式、实验方法等。内容包括:振动光谱、电子光谱、核磁共振、顺磁共振、热分析、动态热机械分析、动态介电分析、气相色谱、凝胶色谱、裂解色谱、色质联用、显微分析、广角X射线衍射、小角激光散射、小角X射线散射等方法的基本原理、仪器结构、发展历史、发展趋势,在聚合物结构分析中的应用实例及解析方法等。  本书可供高分子科学与工程专业本科生、硕士生、博士生以及从事有关高分子物理、高分子化学、高分子材料合成与加工研究和生产方面的专家、学者和工程技术人员参考。  7.现代高分子物理学(上、下册)殷敬华莫志深主编科学出版社2001内容简介:  本书为中国科学院研究生教学丛书之一。本书全面介绍高分子物理的主要发展领域和现代高分子物理的主要研究方法和手段。全书共二十六章,分上、下两册出版,上册,主要介绍高分子物理的主要研究领域包括高分子链结构和聚集态结构、高分子的形态学、晶体结构和液晶态、高分子杂化材料、导电高分子和生物降解高分子结构特点和应用、高聚物共混体系的界面和增容及统计热力学、高聚物的物理和化学改性等。下册主要介绍现代高分子物理的主要研究方法和手段,包括原子力显微镜、X射线衍射、质谱学基础、电子显微镜、热分析、表面能谱、顺磁共振、电子自旋共振波谱、振动光谱和光学显微镜等的基本原理及其在高聚物中的应用。各章既有基础理论、基本原理深入浅出的介绍,也有翔实的应用实例。本书可作为高等院校和研究院所攻读高分子科学硕士和博士学位研究生的教学用书,也可供从事高分子科学研究和高分子材料生产的研究人员、工程技术人员参考。  8.张俐娜薛奇莫志深金熹高编著« 高分子物理的近代研究方法» 武汉大学出版社2003该书的第五章高聚物热分析和热-力分析,详细介绍了热分析在高聚物研究中的应用。DSC在高聚物研究中的应用研究结构及动态变化表征玻璃化转变和熔融行为分析多组分高聚物体系的组成研究高聚物链缠结及化学交联研究高聚物的结晶行为表征高聚物的微相结构研究高聚物共混相溶性反映共混高聚物中组分间的相互作用研究热历史和处理条件对高聚物结构的影响DMA动态力学分析在高聚物研究中的应用评价高聚物材料的使用性能研究材料结构与性能的关系表征高聚物材料的微相结构研究高聚物的相互作用表征高聚物的共混相容性研究高聚物的溶液-凝胶转变行为。  序言  高分子化学是一门迅速发展起来的基础和应用科学,并且高聚物材料及产品的迅速增长已经对世界经济产生了巨大影响。进入21世纪后高分子科学与技术将发生更大变革和突破,而且对人类生存、健康与发展起更大作用。为适应高分子科学的发展,要求在该领域的工作者对高分子物理的理论、实验方法和原理以及实际应用有足够的了解和认识。尤其对于很多高分子科学工作者而言,他们需要知道运用哪些高分子物理近代仪器和方法以及如何得到可靠的数据和信息采指导他们的科研。  同时,为了培养一大批从事高分子科学与技术的高级科技人才,必须全面提高研究生培养的质量。研究生教材建设是提高研究生培养质量的重要工作之一,为此武汉大学研究生院组织了国内一批在高分子物理前沿工作而且又具有丰富教学经验的教授和科学家以及该校青年教师编写《高分子物理近代研究方法》一书。环顾近年高分子化学与物理方面的教科书及专著,都力求包含最新成果,因而内容越来越广,深度越来越深,篇幅也越来越长。为此,这本书采用了创新的格式把研究生必修的内容用简明的语言和图表阐明,同时列举大量的最新研究成果作为实例帮助读者理解、记忆和正确运用高分子物理理论和方法。因此,这本书具有简单、明确、知识新和学习效率高的特点。我衷心祝愿新一代高分子学子能从书中受益,并为我国高分子科学发展作出重大贡献。  中国科学院院士  南京大学教授  2002年5月内容简介  本书基于高分子物理基本原理和理论,简要介绍了如何测定和研究高聚物的分子量及其分布、链构象、化学结构及其组成、结晶度及取向、熔点、玻璃化转变温度、分子运动及力学松弛、热性能、界面及表面、复合物粘接、力学性能、电学性能及生物降解性等方面的先进方法,以及光谱、波谱、色谱、激光光散射、X射线和电子显微技术。本书收集了大量具有创新思想和科学价值的实例,以指导读者更有效地应用先进仪器和方法从事高分子科学与技术的基础研究和应用开发。全书共收集约400篇参考文献,内容丰富、新颖、简明易懂,是一本较全面、深入的高分子物理教材,适合高分子化学和物理、橡胶、塑料及高聚物材料工程等方面的研究生、教师、科技人员及企业管理人员参考。  9.刘振海« 聚合物量热测定» 化工出版社2002前言  自1963年差示扫描最热法(differentialscanningcalorimetry,DSC)产生以来,在高分子材料的研究和表征中这种方法一直扮演着重要角色,虽然DSC仅是诸多热分析方法中的一种,可从近年高分子热分析的发展趋向来看,DSC这种方法构成了高分子热分析的主要组成部分。近年高分子科学出现了一系列以DSC为主或仅基于此种方法的学术著作,诸如《聚合物材料的热表征》(E.A.Turied.ThermalCharacterizationofPolymericMaterials.NewYork:AcademicPress,1981 2ndEdition,1997),该书由第1版的970页发展到第2版的2420页《热分析基础及其在聚合物科学中的应用》(T.Hatakeyama,F.X.Quin,ThermalAnalysisFundamentalsandApplicationstoPolymerScience,Chichester:JohnWiley&Sons,19942ndEdition,1999) 《高分子DSC》(V.A.Bershtein,V.M.Egorov.DifferentialScanningCalorimetryofPolymers.NewYork:EllisHorwood,1994) 国际刊物JournalofThermalAnalysisandCalorimetry于2000年第1期出版专辑AdvancesinThermalCharacterizationofpolymericMaterials。  尤应注意到,就在近年(1992年)在DSC的基础上推出一种更新的热分析方法——调制式差示扫描量热法(temperaturemodulateddifferentialscanningcalorimetry,TMDSC),这种方法一出现,就引起了人们的极大兴趣,就1998年的不完全统计已有300多篇论文发表,并很快出版了专辑【JThermAnal,1998,54(2)】。预计这种调制技术可用于各种热分析方法,将引起热分析技术一系列新变革。  作者长期从事高分子热分析科研、教学和学会工作,近年还各自主持了一段学术期刊工作,我们有着几乎完全相同的业务经历。我们合著有中、英文版《热分析手册》(中文版,北京化学工业出版社,1999 英文版,Chichester:JohnWiley&Sons,1998)。并分别出版了《热分析导论》(北京:化学工业出版社,1991)与" ThermalAnalysisFundamentalsandApplicationstoPolymerScience" (详见上述),主编《应用热分析》(东京:日刊工业新闻社,1996)。我们合著这本《聚合物量热测定》,连同上述著作,望能描绘出热分析一个较为完整的轮廓。  这本书系统介绍高分子DSC的基础(如热力学基础,DSC和MDSC的基本原理及其产生与发展,高分子的结晶、熔融和玻璃化转变等及由此而引申的各项应用,如相图、单体纯度的测定),及其在该领域在国内外取得的最新成就(如高分子合金的相容性、液晶的多重转变、水在聚合物中的存在形式及其相互作用、联用技术等)。热力学和量热学分别是热分析的理论与技术基础,Wunderlich教授所著由AcademicPress(NewYork)出版的学术专著:MacromolecularPhysicsVol3CrystalMelting(1980),ThermalAnalysis(1990)和ThermalCharacterizationofPolymericMaterials(2ndEdn,TuriEDed,1997)一书的第二章对热分析的热力学基础做了十分精辟和系统的论述 G.W.H.Hohne,W.Hemminger,H.J.Flammersheim所著DifferentialScanningCalorimetryAnIntroductionforPractitioners(Berlin:Springer,1996)堪称在阐述量热学(量热仪的传热过程)方面的佳作。作为国际热分析协会教育委员,我们愿将上述著作的有关内容介绍给国内的广大读者,本书基础部分——第一、三章和第二章的编写,分别参考了上述著作,以飨读者。  本书的第一、二、三章及附表由刘振海参考上述学术专著编写,第四、六、七、十章由畠山立子(T.Hatakeyama)编写,第五章由刘振海、陈学思、宋默编写,第八章由刘振海、陈学思编写,第九章由张利华编写。  借此机会,对于此书撰写和出版过程中给予我们鼎力相助的热分析与量热学杂志主编J.Simon教授、国际热分析协会教育委员会主席E.A.Turi教授、福井工业大学畠山兵衞教授、中科院长春应用化学研究所黄葆同院士、汪尔康院士、中科院长春分院黄长泉研究员、吉林大学陈欣方教授、中科院长春应用化学研究所王利祥研究员、唐涛研究员、化学工业出版社任惠敏编审、杜进祥编辑,以及对给予出版资助的国家科学技术学术著作出版基金委员会和精工电子有限公司一并表示衷心感谢。  受篇幅所限,本书侧重于原理的叙述,而对于浩如烟海的大量文献资料未能充分收入,日后如有机会出增订版,乐于做进一步的增补。也因时间仓促,本书定有许多疏漏,望读者不吝指正。  刘振海(长春)畠山立子(东京)2001年9月内容提要  本书系统地介绍了聚合物材料量热分析的基本原理和各类应用,着重介绍差示扫描量热法和近年出现的调制式差示扫描量热法,突出反映了该领域国内外最新成果与研究进展。全书分为两部分,共10章:第1-3章为基础部分,介绍热分析的热力学基础知识、差示扫描量热法、调制式差示扫描量热法以及结晶聚合物的熔融与结晶过程 第4~9章介绍DSC在聚合物分析方面的应用,包括在聚合物的玻璃化转变、热焓松弛、多相聚合物体系、液晶性质、水与高分子的作用、高分子合成、聚合物辐射效应等方面的研究与应用 第10章介绍热分析与其他分析方法的联用技术。  本书资料翔实,内容丰富,语言精炼,可供从事聚合物热分析、高分子材料研究及其相关专业技术人员学习参考。  近年来,国内又出版了几本新的高分子物理著作,如马德柱主编« 聚合物结构与性能» (结构篇、性能篇)科学出版社2013。华幼卿金日光2013,« 高分子物理» ,第四版,北京:化学工业出版社  焦剑主编2015高分子物理西北工业大学出版社  本文编撰过程中,参阅了上述高分子物理著作并作为文献引用,在此表示感谢!  参考文献  [1]« 高分子结晶和熔融行为的FlashDSC研究进展» 李照磊1,2周东山1胡文兵1  [2]何曼君张红东陈维孝.« 高分子物理» 第三版复旦大学出版社2007  [3]张俐娜薛奇莫志深金熹高编著« 高分子物理的近代研究方法» 武汉大学出版社2003  [4]朱诚身« 聚合物结构分析» 科学出版社2010  [5]何平笙编著« 新编高聚物的结构与性能» 科学出版社2009  附录  有关高分子物理的教学参考书(按出版时代排列)  Alfrey.1948.MechanicalPropertiesofHighPolymers.NewYork:IntersciencePublishers  是早期有关高聚物力学性能的专著、至今仍有参考价值。  FloryPJ.1953.PrincipleofPolymerChemistry.Ithaca:CornellUniversityPress  是高分子科学的经典教材,被誉为高分子科学的”圣经”,一直到现在仍被美国众多大学选为教材,Flory也是高分子界获得诺贝尔化学奖的科学家。  钱人元,1958,高聚物的分子量测定,北京:科学出版社  是我国科学家自己的科研成果和撰写的有关专著,被翻译成英文和俄文出版,至今仍有现实的参考价值。  柯培可ⅡⅡ,1958,非晶态物质。钱人元,钱保功等译,北京:科学出版社  介绍原苏联学者的研究成果和观点,对我国有相当影响。  MasonP.WookeyN.1958.TheRheologyofElastomers.Paris:PergamonPress  是为数不多专门讲授弹性体力学性能的著作。  徐僖,1960,高分子物化学原理。北京:化学工业出版社  为国内高校工科院校早期的高分子专业教科书,有一定影响。  TobolskyAV.1960.PropertiesandStructureofPolymers.NewYork:JohnWiley&Sonslnc  是一本比较经典的高分子物理教材性质的书,对我国高分子物理教学有相当的影响。其中有关化学应力松弛的内容仍然具有权威性。  TanfordC.1961.PhysicalChemistryofMacromolecules.NewYork:JohnWiley&SonsInc  是一本在高分子溶液方面写得较好的教材。  卡尔金,斯洛尼姆斯基,1962。聚合物物理化学概论、郝伯林等译。北京:科学出版牡  是前苏联学者的一本著作,对我国高分子物理起步有较大影响。  BuecheF.1962.PhysicalPropertiesofPolymers.NewYork:IntersciencePublishers  是一本比较经典的高分子物理教材性质的书,对我国高分子物理教学有相当的影响。  NielsenL.E.1962.MechanicalPropertiesofPolymers.NewYork:ReinholdPublishingCorporation  也是一本比较经典的高分子物理教材性质的书,对我国高分子物理教学有较大的影响,有中文翻译本,即1965年冯之榴等译《高聚物的力学性能》,上海科学技术出版社。  VolkensteinMV.1963.ConfigutationalStatisticsofPolymericChains.NewYork:Interscience  是原苏联学者的专著,俄丈原书系1959年莫斯科苏联科学院出版社出版· 有很高价值,  卡尔金等,1964,高分子物理进展(论文集),钱人元等译,北京:科学出版社  是一本较全面介绍原苏联学者成果的书。  高分子学会,1965,レオロジーハンドブック(流变学手册),东京:丸善株式会社  有很多早期的实验教据图。  MandelkernL.1965.CrystallizationofPolymers.NewYork:McGraw-HillBookCompany  AndrewsE.H.1968.FractureinPolymers.Edinburgh:Oliver&Boyd  是有关高聚物断裂和强度的专著,因为是文革期同出的书,国内图书馆较少有收藏。  AlexanderLE.1970.X-rayDiffractionMethodsinPolymerScience.NewYork:JohnWiley&.SonsInc  和田八三久.1971.高分子的固体物性,东京:培风馆  日本学者撰写的内容比较深的高分子物理著作。国内没有流行。  BillmeyerFW.1971.TextbookofPolymerScience.NewYork,:WileyInierscienceInc  这是一本在西方影响很大的教材,但一直没有再版,  PeebolsJJH.1971.MolecularWeightDistributionsinPolymers.NewYork,:JohnWiley&SonsInc  有不少关于聚合反应动力学统计理论的内容,  TobolskyAV,MarkHF.1971.PolymerScienceandMaterials.NewYork,:WileyInterscience  有中文译本,即1977年托博尔斯基AV,马克HF编,聚合物科学与材料翻译译组译《聚合物科学与材料》,北京:科学出版社。  KakudoM.KasaiN.1972.X-rayDiffractionMethodsinPolymerScience.NewYork:WileyInterscience  JenkinsAD.1972.PolymerScience,Amaterialssciencehandbook,1and2.Amsterdam:North-HollandPublishingCompany  这是一本上下两册大部头著作,内容极为丰富。  TreloarLRG.1958.ThePhysicsofRubberElasticity.3rdEd.Oxford:UniversityPress  一本最详细介绍有关橡胶高弹性的专著。国内有中文译本,20世纪60年代的第一版就翻译成中文,第三版由王梦蛟,王培国,薛广智译,吴人洁校,北京:化学工业出版社,1982。  高分子学会,1972,高分子的分子设计3:分子设计和高分子材料的展望,东京:培风馆  论述通过分子设计来制备高分子材料的设想· 在当时有相当的影响。  小野木重治,1973,高分子材料科学,东京:诚文堂新光社  是来自日本的一本教材,也有一定影响,  KauschHH,HassellJA,JaffeeRI.1973.DeformationandFractureofHighPolymers,NewYork:PlenumPress  内容较专一。  HawardRN.1973.ThePhysicsofGlassyPolymers.London:AppliedSciencePublishersLtd  对玻璃态高聚物的力学性能有详细介绍,  晨光化工厂,1973,塑料测试,北京:燃料化学工业出版社  这是一本有管高聚物性能测试早期的著作,当时有相当的影响。  WunderlichB.1973.MacromolecularPhysics.Vol.Ⅰ,Ⅱ,Ⅲ.NewYork:AcademicPress  三卷的大著,专门讲述高聚物的结晶行为,很有参考价值。  SamuelsRJ.1974.StructuredPolymerProperties.NewYork:WileyInterscience  莫特N等.1975.材料——微观结构及物理性能的概述.中国科学技术大学《材料》翻译组译,  北京:科学出版社  该书有关“高聚物材料的本质" 和' ' 复合材料的本质”两章有很好的参考价值,其中Mark提出的提高高聚物性能的三角形原理有参考价值。  ArridgeRGC.1975.MechanicsofPolymers.Oxford:ClarendonPress  是一本从力学观点讲述的高聚物力学性能的专著。  TagerA.1978.PhysicalChemistryofPolymers.Moscow:MIPPublisher  是一本由原苏联学者撰写的高分子物理教材,用英文出版,从中可了解不少原苏联学者的科研成果。  AndrewsEH.1979.DevelopmentsinpolymerFracture-1.London:AppliedSciencePublishers  是Andrews又一本关于高聚物断裂和强度的编著,有相当参考价值。  TadokoroH.1979.StructureofCrystllinePolymers.NewYork:JohnWiley&.SonsInc  BlytheAR1979.ElectricalPropertiesofPolymers.Cambridge:CambridgeUniversityPress  是剑桥大学" CambridgeSolidStateScienceSeries" 系列中的一本书。  中国科学院上海有机化学研究所十二室,1980,压电高聚物,上海:上海科学技术文献出版社  CherryBW.1980.PolymerSurfaceCambridge:CambridgeUniversityPress  是剑桥大学”CambridgeSolidStateScienceSeries”系列中的一本书。  WilliamsJG.1980.StressAnalysisofPolymers.2ndEd.NewYork:JohnWiley&SonsInc  是一本从力学观点讲述的专著,书中数学内容较深。  FerryJD.1980.ViscoelasticPropertiesofPolymers.NewYork:JohnWiley&SonsInc  是一本高聚物黏弹性的专著,有很好的参考价值。  林尚安,陆耘,粱兆熙,1980,高分子化学,北京:科学出版社  由于全书既有高分子化学又有高分子物理内容,不便使用,影响不大。  施良和,1980,凝胶色谱法,北京:科学出版社  对普及凝胶色谱法有很好作用。  BaileyRT,NorthAM,PethrickRA.1981.MolecularMotioninHighpolymers.Oxford:Clar-  endonPress  YoungRJ.1981.IntroductiontoPolymers.London:ChapmanandHall  这是一本非常简明的高分子教材,其中有不少有关作者本人的研究成果,如聚双炔类宏观单晶体的结构与性能。英文也非常通顺易读。  BassettDC.]981.PrinciplesofPolymerMorphology,Cambridge:CambridgeUniversitypress  是剑桥大学”CambridgeSolidStateScienceSeries”系列中的一本书。有中文译本,即1987  年巴西特著,张国耀,梨书樨译《聚合物形态学原理》,北京:科学出版社。  潘鉴元,席世平,黄少慧.1981.高分子物理,广州:广东科技出版社  该书介绍的有关形变-温度曲线的论述仍有参考价值。  彼得· 赫得维格,1981,聚合物的介电谱,第一机械工业部桂林电器科学研究所译,北京:机械工业出版社  范克雷维伦DW.1981.聚合物的性质:性质的估算及其与化学结构的关系,许元泽,赵得禄,吴大诚译,北京:科学出版社  至今仍有参考价值。  尼尔生LE.1981,高分子和复合材料的力学性能.丁佳鼎译,北京:轻工业出版杜  赵华山,姜胶东,吴大诚等,1982,高分子物理学,北京:纺织工业出版社  是为化学纤维专业写的教材。  沈得言.1982、红外光谱法在高分子研究中的应用.北京科学出版社  是我国学者写的较早的有关高分子物理的专著。  SeanorDA.1982.ElectricalPropertiesofPolymers.NewYork:AcademicPress  WardIM.1982.DevelopmentsinOrientedPolymers.London:AppliedSciencePublishers  BohdaneckyM,Ková rJ.1982.ViscosityofPolymerSolutions.NewYork:ElsevierScientific  BurchardW,PattersonGD.1983.LightcatteringfromPolymers.NewYork:Springer-Verlag  尼尔生LE.1983,聚合物流变学。范庆荣,宋家琪译,北京:科学出版社。  WilliamsDJ.1983.NonlinearOpticalPropertiesofOrganicandPolymericMaterials.WashingtonD.C.:AmericanChemicalSociety  是一本以编著形式撰写的书。  WardIM1983.MechanicalPropertiesofSolidPolymers.2ndEd.NewYork:Wiley-Interscience  这是一本Ward写的英国研究生教材,国内曾前后两次把它的第一版和第二版翻译成中文出版,即1988年沃德著,徐懋,漆宗能等译校《固体高聚物的力学性能》,第二版,北京:科学出版社。仍有相当的参考价值。  斯坦RS.1983.散射和双折射方法在高聚物织态研究中的应用,徐懋等译.北京:科学出版社  KinlochAJ,YoungRJ.1983.FractureBehaviorofPolymers.London:AppliedSciencePublishers  内容比较全面的有关高聚物断裂的专著。  北京大学化学系高分子化学教研室,1983,高分子物理实验,北京:北京大学出版社  WilliamsJG.1984.FractureMechanicsofPolymers.NewYork:JohnWiley&Sonslnc  塞缪尔斯RJ.1984.结晶高聚物的性质,徐振森译。北京:科学出版社  EliasHG.1984.MacromoleculesI,structureandProperties.2ndEd.NewYork:PlenumPress  韩CD、1985.聚合物加工流变学、徐僖,吴大诚等译,北京:科学出版社  AklonisJ.MacKnightWJ.1972.MinchelShen,IntroductiontoPolymerViscoelasticity.NewYork:Wiley-Interscience  这是一本很好的有关高聚物黏弹性的入门书,1983年第二版,并由吴立衡翻译为中文,即吴立衡译,徐懋校《聚合物粘弹性引论》,北京:科学出版社,1986。可惜的是作者之一的华人科学家沈明琦英年早逝,没有能参加这第二版的写作。位沈明琦1979年在复旦大学讲课为后来出版的《高聚物的粘弹性》一书打下了基础,即于同隐,何曼君,卜海山,胡加聪,张炜编著《高聚物的粘弹牲》,上海:上海科学技术出版社,1986。  冯新德,唐敖庆,钱人元等,1984,高分子化学与物理专论,广东:中山大学出版社  其中钱人元和于同隐有关高分子凝聚态基本物理问题和玻璃化转变的章节很有参考价值。奥戈凯威斯RM.1986,热塑性塑料的性能和设计,何平笙等译,北京:科学出版社  是钱人无院士推荐翻译的有关材料性能与制品关系的专著,是高聚物结构与性能的进一步深入。  吴大诚,1985,高分子构象统计理论导引,成都:四川教育出版社  可供有关专业研究生阅读。  唐敖庆等,1985,高分子反应统计理论,北京:科学出版社  卓启疆,1986,聚合物自由体积,成郁:成都科技大学出版社  是一本专门讲述高聚物中自由体积的小册子。  钱保功,许观藩,余赋生等,1986,高聚物的转变与松弛,北京:科学出版社  是中国科学院长春应用化学研究所多年工作的总结,有大量的实验数据。  考夫曼HS,法尔西塔JJ.1986,聚合物科学与工艺学引论,吴景诚,钱文藻,杨淑兰译,北京:科学出版社  郑昌仁,1986,高聚物分子量及其分布,北京:化学工业出版社  DoiM,EdwardsSF.1986.TheTheoryofPolymerDynamics.Clarendon:OxfordUniversity  Press  有机玻璃疲劳和断口图谱编委会.1987,有机玻璃疲劳和断口图谱,北京:科学出版社  夏炎.1987.高分子科学简明教程,北京:科学出版社  是为师范生写的教材。  拉贝克JF.1987,高分子科学实验方法,物理原理与应用,吴世康,漆宗能等译,北京:化学工业出版社  提供大量的高分子实验,是一本高分子实验方面的权威性著作。  何家骏,1987,高分子溶液理论导论,兰州:兰州大学出版社  斯珀林LH.1987,互穿聚合物网络和有关材料,黄宏慈,欧玉春译,佟振合校、北京:科学出版社  吴大诚,1987~1989,现代高分子科学丛书,成都:四川教育出版社  共十本书,其中与高分子物理有关的是:  (1)孙鑫,《高聚物中的孤子和极化子》,1987。  (2)吕锡慈,《高分子材料的强度与破坏》,1988。  (3)吴大诚,谢新光,徐建军,《高分子液晶》,1988。  (4)许元泽,(高分子结构流变学》,1988。  (5)古大治。《高分子流体动力学》,1988。  (6)江明,《高分子合金的物理化学》,1988。  (7)赵得禄,吴大诚,《高分子科学中的MonteCarlo方法》,1988。  (8)吴大诚,HsuSL,《高分子的标度和蛇行理论》,1989。  日本纤维机械学会,纤维工学出版委员会,1988,纤维的形成、结构及性能、丁亦平译,北京:纺织工业出版社  朱永群,1988,高分子物理基本概念与问题,北京:科学出版社  是第一本有关高分子物理习题的书。  鲁丁JA.1988,聚合物科学与工程学原理,徐支祥译,北京:科学出版社  潘道成,鲍其鼎,于同隐,1988,高聚物及其共混物的力学性能,上海:上海科学技术出版社  朱善农等,1988,高分子材料的剖析,北京:科学出版社  穆腊亚马,1988,聚合物材料的动态力学分析,福特译,北京:轻工业出版社  李斌才,1989,高聚物的结构与物理性质,北京:科学出版社  周贵恩,1989,聚合物X射线衍射、合肥:中国科学技术大学出版社  CampbellD,WhiteJR1989.PolymerCharacterization:PhysicalTechniques.London:Chapman&Hall  国内少有人拥有此书。  王正熙,1989,聚合物红外光谱分析和鉴定,成都:四川大学出版社  林师沛,1989,塑料加工流变学,成都:成都科技大学出版社  雀部博之,1989,导电高分子材料,曹镛,叶成,朱道本译,北京:科学出版社  克里斯坦森RM.1990,粘弹性力学引论,郝松林,老亮译,北京:科学出版社  杨挺青,1990,粘弹性力学,武汉:华中理工大学出版社  胡徳,1990,高分子物理与机械性质(上、下册),台北:渤海堂文化公司  是我国台湾学者编写的高分子物理教材,内容偏重高聚物本体的性能,不涉及凝聚态以及溶液和相对分子质量等。  FujitaH.1990.PolymerSolutions.Amsterdam:Elsevier  SchmitzKS.1990.AnIntroductiontoDynamicLightScatteringbyMacromolecules.SanDiego,AcademicPress  弗洛里PJ.1990,链状分子的统计力学,吴大诚,高玉书,许元泽等译,吴大诚校,成都:四川科学技术出版社  是弗洛里又一本大著,是高分予理论最重要的经典著作之一。  朱锡雄,朱国瑞,1992,高分子材料强度学,杭州:浙江大学出版社  JoachimDE.1992,RelaxationandThermodynamicsinPolymersGlassTransition.Berlin:AkademieVerlag  郑武城,安连生,韩娅娟等,1993,光学塑料及其应用.北京:地质出版社  周其凤,王新久,1994,液晶高分子,北京:科学出版社  有不少作者自己的研究成果。  GrosbergAY,KhokhlovAR.1994.StatisticalPhysicsofMacromolecules.Woodbury:AIPPress  黄维垣,闻建勋,1994,高技术有机高分子材料进展,北京:化学工业出版社  是当年的一本进展性质的汇编。  左渠,1994,激光光散射原理及在高分子科学中的应用,郑州:河南科学技术出版社  谢缅诺维奇,赫拉莫娃,1995,聚合物物理化学手册,闫家宾,张玉昆译,北京:中国石化出版社  薛奇,1995,高分子结构研究中的光谱方法,北京:高等教育出版社  GeddeUW.1995.PolymerPhysics.London:Chapman&Hall  叶成,习斯J.1996,分子非线性光学的理论与实践,北京:化学工业出版社  大柳康,1996,实用高分子合金,吴忠文等译,长春:吉林科学技术出版社  周光泉,刘孝敏,1996,粘弹性理论,合肥:中国科学技术大学出版社  这是一本由力学专家写的书,对数学的推导有独特之处。  吴培熙,张留成,1996,聚合物共混改性,北京:中国轻工业出版社  朱善农等,1996,高分子链结构,北京:科学出版社  DoiM.1996.IntroductiontoPolymerPhysics.Clarendon:OxfordUniversityPress  复旦大学高分子科学系,高分子科学研究所,1996,高分子实验控术,修订版,上海:复旦大学出版社  已出第二版。  Hans-GeorgE.1997,AnIntroductiontoPolymerScience.NewYork:VCHPress  刘凤歧,汤心颐,1997,高分子物理,北京:高等教育出版社  2004年出了第二版。  何天白,胡汉杰,1997,海外高分子科学的新进展,北京:化学工业出版社  StroblG.1997.ThePhysicsofPolymers.2ndEd.Berlin:Springer  这是一本近十年来有影响的高分子物理教材,Strobl本人多次来国内讲授有关他提出的高聚物结晶的理论,中文译本是斯特罗伯著,胡文兵,蒋世春,门永锋,王笃金译《高分子物理学》,北京:科学出版社,2009。  ShiLH,ZhuDB.1997.PolymersandOrganicSolids,Beijing:SciencePress  这是为纪念钱人元院士80寿辰而汇编的文集,由国内外著名学者介绍当今最新科技成果,钱人元,1998,无规与有序——高分子凝聚态的基本物理问题研究,长沙:湖南科学技术出版社  是钱人元院士带领开展的国家攀登项目“高分子凝聚态的基本物理问题研究”的研究成果的通俗介绍,我国很多科学家对高分子物理的贡献都有深入浅出的论述。  蔡忠龙,冼杏娟,1997,超高模量聚乙烯纤维增强材料,北京:科学出版社  该书中有关聚乙烯热学性能的介绍很有参考价值。  邵毓芳,嵇根定,1998,高分子物理实验,南京:南京大学出版社  江明,府寿宽,1998,高分子科学的近代论题,上海:复旦大学出版社  是纪念于同隐教授和钱人元院士80寿辰而汇编的文集,由国内外著名学者介绍当今最新科技成果。  吴人洁等,1998,高聚物的表面与界面,北京:科学出版社  吴培熙,张留成,1998,聚合物共混改性,北京:中国轻工业出版社  沈家瑞,贾德民,1999,聚合物共混物与合金,广州:华南理工大学出版社  托马斯EL.1999,聚合物的结构与性能,北京:科学出版社  是一本详细介绍高分子物理近年成果的专著,适合作为进一步深造的参考书。  朱道本,王佛松,1999,有机固体,上海:上海科学技术出版社  介绍导电高聚物的专著,有许多我国科学家的研究成果。  王国全,王秀芬等,2000,聚合物改性,北京:中国轻工业出版社  梁伯润,屈凤珍等,2000,高分子物理学,北京:中国纺织出版社  是为合成纤维专门化的学生写的教材。  顾国芳,浦鸿汀,2000,聚合物流变学基础,上海:同济大学出版社  金日光,华幼卿,2000,高分子物理,第二版,北京:化学工业出版社  工科院校所用教材,2007年已出第三版。  闻建勋,2001,诺贝尔百年鉴——奇妙的软物质,上海:上海科学教育出版社  是一本有关高分子学界诺贝尔奖获得者的通俗介绍,对了解高分子科学的发展轨迹有启发。  杨玉良,胡汉杰,2001,跨世纪的高分子科学丛书——高分子物理(分册),北京:化学工业出版社  何天白,胡汉杰,2001,功能高分子与新技术,北京:化学工业出版社  平郑骅,汪长春,2001,高分子世界,上海:复旦大学出版社  是一本有关高分子科学的高级通俗读本。  SperlingLH.2001.IntroductionofPhysicalPolymerScience.3rdEd.NewYork:Wiley  布里格,2001,聚合物表面分析,曹立礼,邓宗武译,北京:化学工业出版社  殷敬华,莫志深,2001,现代高分子物理学(上、下册),北京:科学出版社  名为研究生教材,实际上是一本很好的进展性专著。  韩哲文,张得震,杨全兴等,2001,高分子科学教程,上海:华东理工大学出版社  既有高分子化学内容也有高分子物理内容。  BowerDI.2002.AnIntroductiontoPolymerPhysics.Cambridge:CambridgeUniversityPress  化学工业出版社2004年以”国外名校名著”系列影印出版了该书。  刘振海,2002,聚合物量热测定,北京:化学工业出版社  杨小震,2002,分子模拟与高分子材料,北京:科学出版社  附有软件光盘,很实用,其软件可利用来开设高分子物理实验。  过梅丽,2002,高聚物与复合材料的动态力学热分析,北京:化学工业出版社  是一本很好的有关高聚物动态力学测试的著作。  吴其晔,巫静安,2002,高分子材料流变学、北京:高等教育出版社  是一本详细介绍聚合物流变学的研究生教材。内容详尽,很有参考价值。  QianRY(钱人元),2002.PerspectivesontheMacromolecularCondensedState.Singapore:WorldScientific  这是钱人元院士把自己在' ' 高分子凝聚态物理中若干基本问题”国家攀登项目中的成果介绍给世人的一本专著,包括很多我国科学家对高分子物理的贡献。  ColbyRB.2002.PolymerPhysics.Oxford:OxfordUniversityPress  TeraokaI.2002.PolymerSolutions:AnIntroductiontoPhysicalProperties.NewYork:John  Wiley&SonsInc  非常好的有关高分子溶液的专著,内容较深。  张祖德,朱平平等,2001,中国科学院一中国科学技术大学硕士研究生入学考试化学类科目考试纲要,合肥:中国科学技术大学出版社  是中国科学院各研究所和中国科大研究生必读参考书,2002第二版。  deGennes.1979.ScalingConceptsinPolymerPhysics.Ithaca:CornellUniversityPressGennes  Gennes是又一位高分子界获得诺贝尔奖的科学家,他把理论物理中的许多概念用在了高分子科学上,创立了高分子物理中著名的“标度理论“。该书已由吴大诚等翻译成中文、即德让  摘自« 新编高聚物的结构与性能» 何平笙编著科学出版社
  • 安捷伦高分辨气相色谱-质谱分析方案 | 针对持久性全氟化合物(PFAS)的分析
    什么是 PFAS?它具有哪些功能?又存在哪些危害?1PFAS 即全氟/多氟烷基类物质,是一系列人工合成的有机化合物,主要由碳原子和氟原子构成。2凭借其优异的高热稳定性和化学稳定性,PFAS 在纺织、表面活性剂、食品包装、不粘涂层、防水涂层和灭火泡沫等领域广泛使用。3“成也萧何,败也萧何”,PFAS 进入环境之后,由于极其稳定,几乎不被生物降解,它可在环境中持久存在。而作为一种典型的内分泌干扰物,极微量的 PFAS 暴露就可能带来健康风险;同时考虑到不同人的体质,其安全水平难以预测。已经成为重点关注的环境新污染物之一。PFAS 监测的难点是什么?1目标化合物的数量庞大,已经报告的超过 6000 多个;且标准品不易获得;2涵盖不同的挥发性、极性和官能团。无法使用一种设备或者一个方法分析所有化合物;3浓度低(通常为低 ppt 和亚 ppt 级),要求设备有较高检测灵敏度;虽然高倍富集可以提高检测灵敏度,但同样会带来严重干扰;4实际环境中存在的 PFAS 化合物的种类和含量尚不清楚。安捷伦 7250 气相色谱-高分辨质谱联用仪具有灵敏度高、扫描速率快,高分辨抗干扰,精确质量数采集定性准确的特点,非常适合环境样品当中挥发性和部分半挥发性 PFAS 化合物的检测。因此安捷伦公司与美国加州大学戴维斯分校用户合作建立了包含上百种不同类型的 PFAS 化合物的气质高分辨谱库,包含全氟烷基碘化物(PFAIs)、氟聚物碘化物(FTIs)、氟聚物醇(FTOHs)、含氟聚物烯烃(FTO)、含氟聚物丙烯酸酯(FTAC)、含氟聚物甲基丙烯酸酯(FTMAC)和全氟烷基羧酸(PFCAs)等(图 1)。除了化合物高分辨质谱图、每个碎片的精确质量数及对应化学组成,谱库当中还包括了每个化合物的分子式、结构式、特定分析条件下的保留时间等信息(图 2)。图 1. 不同类型 PFAS 化合物的高分辨质谱图 图 2. 谱库当中 PFAS 化合物的高分辨质谱图、分子式、结构式、保留时间等信息基于 PFAS 气质高分辨质谱库、7250 SureMass 算法和安捷伦未知物分析软件,对饮用水和土壤样品当中的 PFAS 化合物进行了检测。图 3 显示的是样品高分辨质谱图经解卷积后通过与高分辨质谱库比对和保留时间辅助确认,对样品当中包含的 PFAS 化合物进行准确定性的结果(分别以一个化合物示例)。图 3. A:土壤当中检测到乙基全氟丁基醚;B:饮用水当中检测到甲基全氟辛酸数据结果表明:7250 高分辨气质和 PFAS 化合物高分辨质谱库的配合使用相得益彰,能够显著降低对 PFAS 这类复杂化合物的分析难度,提高定性准确性,加快分析速度。结 语 在上述实验过程中,7250 工作的扫描范围是 50-1200m/z,在这样宽广的范围内采集的质谱数据的分辨率和准确性不会受到影响,方便对环境当中各种类型的污染物进行大范围的筛查检测。利用 7250 这一优势,除了 PFAS 化合物,上述水样当中还检测到了包括消毒副产品、个人护理产品中的化学品、药物、杀虫剂等环境污染物,真正体现了 7250 高分辨质谱“一网打尽”的强大能力。
  • 分析利器丨MALDI-TOF 高效表征小分子化合物的分子量
    MALDI-TOF对小分子化合物分子量的快速确认小分子通常指分子量小于1000 Da(尤其小于400 Da)的有机化合物,包括天然产物(生物体合成)及各类人工合成的有机小分子。质谱技术由于可以精确测量各类化合物的质量,被广泛应用于小分子的分子量表征及结构鉴定工作。通常小分子分子量表征常用手段是LCMS,实则MALDI-TOF同样可以用于小分子化合物的分子量确认,且具有更高的效率。MALDI-TOF MS表征小分子分子量的方案特点:1快!每天可分析数千个样品2直接上样分析,无需样品分离3所需样品量较少,单次上样体积只需1 μL以内4除可溶性样品外,还能够分析难溶性样品MALDI-TOF分析小分子的工作流程小分子测试案例分享01各类化合物(原料、物料、产品)分子量及杂质检测在药品、化工品等产品生产过程中,对投入的原料、物料以及终产品进行分子量和杂质检测,是生产质量控制的重要内容。下图中,通过质谱信息可以直接了解寡核苷酸合成原料亚磷酰胺单体的分子量及杂质信息。寡核苷酸合成原料亚磷酰胺单体质谱图02小分子有机合成反应跟踪、产物确认在有机合成中,鉴定反应产物和了解反应进程极其重要。MALDI-TOF MS可以快速测量化合物进行半定量反应跟踪和产物确认。通过化合物单同位素峰的分布,还能轻松识别出溴和氯的存在与否。下图中原料双(氯甲基)苯的信号强度在反应18小时后降低,产物双(溴甲基)苯在反应18小时后强度增加。反应不同时间获得的反应产物的质谱图比较03有机功能材料合成确认有机功能材料包括有机光电材料、有机导电材料、有机磁性材料、有机催化材料等。MALDI-TOF MS可以快速进行有机功能材料的合成确认。下图中,通过样品同位素分布模式及质量数的实际检测结果与理论值的比较,可以准确判断产品合成是否成功。半导体材料及有机发光二极管材料的质谱图04难溶性颜料分子量分析颜料通常不溶于水和一般有机溶剂,常见的颜料包括无机颜料、偶氮颜料、钛菁颜料等。由于颜料的难溶解性,不能使用传统LCMS或GCMS方法进行分子量检测,而MALDI-TOF MS由于不需要分离,分析时不受溶解性限制,可以检测不溶性颜料的分子量,用于鉴别颜料种类或者颜料生产合成质控。难溶性颜料钛菁红的质谱图结语MALDI-TOF MS具有前处理简单、能够快速获取从低分子量到高分子量各类样品的分子量信息,无需分离、不受样品溶解性限制等优点,为医药行业药物发现、有机合成产物确认、化工领域颜料、乳化剂等各类化工产品分子量分析、有机功能材料的合成确认提供快速检测手段。撰稿人:顿俊玲本文内容非商业广告,仅供专业人士参考。
  • 5位顶级大咖从专业视角剖析高分子材料 精彩不容错过!
    p  strong仪器信息网讯/strong 高分子材料也称为聚合物材料,是以高分子化合物为基体,再配有其他添加剂(助剂)所构成的材料。高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。高分子材料在科研和日常生活有着广泛的应用,涉及各行各业。/pp  仪器信息网特此邀请到高分子材料及表征领域的5位专家,于2019年12月11日带来 “span style="color: rgb(255, 0, 0) "strong先进高分子材料/strong/span”主题网络研讨会,为广大高分子行业的科研人员和从业人员介绍高分子相关知识与应用技巧。/pp  strong会议日程/strong如下:/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 313px " src="https://img1.17img.cn/17img/images/201912/uepic/e3ce1f11-95bf-4be0-98a6-433d11b1629a.jpg" title="会议日程-先进高分子.png" alt="会议日程-先进高分子.png" width="600" height="313" border="0" vspace="0"//pp  strong演讲嘉宾阵容/strong:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/222dab4f-9e77-4f4d-ad5d-962407f5dfdf.jpg" title="北京大学 林崇熙.png" alt="北京大学 林崇熙.png"//pp style="text-align: center "strong北京大学 林崇熙/strong/pp  林崇熙,1958 年出生于台湾高雄, 台湾大学化学系毕业, 美国 Clemson 大学化学硕士、Kentucky 大学化学博士、SUNY Buffalo (纽约州立大学布法罗分校) 化学博士后。1996 年从美国来北京大学化学学院有机所任教并且负责核磁共振谱仪。在北大化学学院主讲的课程有《立体化学》、《有机化学实验》、《有机合成化学》、《化学信息学》、《核磁共振在化学中的应用》等课程,并且一直负责北京大学多台核磁共振谱仪的管理与培训工作, 仪器型号涵盖美国 Varian、德国Bruker、日本电子JEOL、中科波谱牛津谱仪Wnmr等各种机型. 在国内首倡与推动核磁共振谱仪开放给老师学生自行上机操作的风气。是国内两大核磁共振论坛 (仪器信息网, 中国核磁共振论坛) 的资深版主。林崇熙目前担任北京波谱学会副会长、中国仪器仪表学会分析仪器学会理事、中国分析测试协会仪器评议波谱专家组组长等,在国内核磁共振界具有一定的声誉与贡献。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/005068b8-e8fb-4f34-9f6a-fe1bfde04ed0.jpg" title="北京大学 李红卫.png" alt="北京大学 李红卫.png"//pp style="text-align: center "strong北京大学 李红卫/strong/pp  李红卫,2005年7月毕业于郑州大学化学系,获得理学学士学位。2005年9月进入北京大学化学学院北京核磁从共振中心攻读博士学位,于2011年1月获得理学博士学位。2011年6月参加布鲁克德国总部举办的核磁共振仪器技术培训。2011年6月入职担任北京大学北京核磁共振中心仪器工程师。目前主要负责北京核磁共振中心仪器维护,测试服务及人员培训等工作。目前,已在北京核磁共振中心开展了DOSY、多肽结构解析,蛋白质结构解析等多种新的测试服务,同时也正在参与国家重大研发计划一项,负责青年科学基金一项。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/3af3a7c7-7a18-475b-8fc0-171cf2b07c51.jpg" title="北京化工大学 杜振霞.png" alt="北京化工大学 杜振霞.png"//pp style="text-align: center "strong北京化工大学 杜振霞/strong/pp  杜振霞,教授,博士生导师,北京化工大学分析测试中心。先后从事了红外光谱、气/质,液/质,超临界色谱/质谱等大型仪器的管理和功能开发等工作。基于与企业的广泛接触,在各种复杂基质样品的分析方法的建立、谱图解析积累了丰富的经验,解决了许多企业的难题。与检科院、国家电网、同方威视、同仁堂及许多高校开展很多合作。2012年在美国普渡大学做访学,期间与美国Waters公司总部建立了合作关系,合作开发了包材中常用聚合物添加剂(300多种物质)的液质联用的谱库,用于E& L高通量多靶标的快速筛查。作为负责人承担和参加了国家科技支撑项目、国家自然科学基金、质检总局公益项目及企业合作项目。在 Analytical Chemistry,Journal of Chromatography A,,Journal of Hazardous Materials,Food Chemistry.等期刊上发表论文100多篇,SCI论文60多篇。完成专著一部,参与编写专著三部。获中国检验检疫学会科技二等奖(排名2,2017),获得北京化工大学十佳教师称号,获得北京化工大学教改一等奖。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/f3e7f192-a5ed-456d-9de7-f8ac0c7c20be.jpg" title="北京化工大学 刘玲.png" alt="北京化工大学 刘玲.png"//pp style="text-align: center "strong北京化工大学 刘玲/strong/pp  刘玲,2002年毕业于中科院研究生院,获得博士学位,现北京化工大学材料科学与工程学院,副教授。研究领域:聚合物材料结构与性能表征,自愈合超分子弹性体,功能化高分子复合材料。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/db07bea3-2164-4a1f-95b0-c1f98f65777d.jpg" title="岛津企业管理(中国)有限公司 陈强.jpg" alt="岛津企业管理(中国)有限公司 陈强.jpg"//pp style="text-align: center "strong岛津企业管理(中国)有限公司 陈强/strong/pp  陈强,岛津企业管理(中国)有限公司,具有十六年原子力显微镜应用及工作经历,熟悉原子力显微镜技术和市场。长期技术支持各类碳材料的科研院所及生产企业,熟悉研发、生产、检测流程中所需的各类测试要求。/pp  strong如何报名参与?/strong/pp  方式一、复制粘贴下方链接到浏览器中或直接点击下方链接,进入会议报名页面,点击页面上的“我要参会”按钮,填写报名信息即可报名参与。/ppa href="https://www.instrument.com.cn/webinar/meetings/polymer2019/" target="_self"https://www.instrument.com.cn/webinar/meetings/polymer2019//a/pp  方式二、点击或扫描下方二维码,点击页面上的“我要参会”按钮,填写报名信息即可报名参与。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/86b5fddf-12e5-4297-bf80-f06d20db3f0f.jpg" title="报名页面-先进高分子材料.png" alt="报名页面-先进高分子材料.png"//pp  报名开放时间为即日起至2019年12月11日,您也可以通过扫描上方的二维码了解实时的会议日程(会议日程以活动页面实时日程为准) 为使更多用户能够通过网络平台进行学习与交流,“先进高分子材料”主题网络研讨会不收取任何费用。/pp  strong参会指南/strong/pp  1.报名参会并通过审核后,您将会在会前一天收到提醒参会的短信通知。/pp  2.会议当天进入a href="http://webinar.instrument.com.cn" target="_self"仪器信息网网络讲堂首页/a(webinar.instrument.com.cn),点击“进入会场”,填写报名时手机号,即可登录会场参会。/pp  扫下方二维码,进入先进高分子材料交流群,第一时间了解会议信息,以及高分子材料在行业的最新应用,与同行进行互动交流。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/8f75c31b-3aba-4d75-9518-d03f2e744a05.jpg" title="先进高分子材料交流群.png" alt="先进高分子材料交流群.png"//pp style="text-align: center "先进高分子材料交流群/ppbr//p
  • 岛津在日公布新型高端质谱仪MALDI-7090
    &mdash &mdash MS/MS分辨率领先世界 日前,岛津制作所推出具有领先世界水平的MALDI串联TOF型质谱仪「MALDI-7090」。本产品为MALDI型质谱仪,属于在世界上广泛使用的串联飞行时间型质谱仪。岛津公司拥有该类型质谱仪的产品线AXIMA系列。通过大幅度的设计变更与引入新技术,达成前所未有的分析速度,实现了领先世界水平的MS/MS分辨率。 基质辅助激光解离离子化飞行时间型质谱仪 MALDI-7090 本装置继承该质谱系列广获好评的高能量CID功能,对应从肽・ 蛋白质、脂质等生物大分子到各种合成高分子化合物的构造解析。多用户访问、对应多板(最多放置10枚MALDI板)的新设计平台(软件),实现了简便与高通量的分析,具有大大不同于以往MALDI型质谱仪的先进性能与功能。 近年来,基于蛋白质组学解析技术的生物医药品开发快速发展,要求详细且快速地分析・ 解析庞大数目的蛋白质样品。蛋白质、脂质等相关的基础研究也要求更高的分析通量与数据精度。本产品是能够满足上述要求的高性能MALDI 串联TOF质谱仪。可望广泛应用于进行医药品开发、委托分析的制药相关企业,从事材料开发等的石化相关企业以及大学、研究机构等方面。 【本产品特长】1. 革新性离子源设计,实现超高速测定本产品作为MALDI型装置采用世界最高速、最大重复频率2 kHz的固体激光(波长:355 nm、 重复频率:1~2,000 Hz可变),替代过去AXIMA系列配备的N2气激光(最大重复频率:50 Hz),实现了最高达2 kHz的超高速MS、MS/MS,大幅缩短了约十数倍的测定时间(与本公司原有产品比较),可以在10~100 µ m以上范围内自由变更激光照射直径,因此,可以实施范围广泛的超高速解析,从通常使用MALDI板的样品点测定到高解像度MALDI MS成像以及使用多板的自动分析,2. 基于高分辨率MS/MS Hyper MS2 TM ,实现更高可靠性的解析采用新开发的ASDF(Axial Spatial Distribution Focusing)机构,达成领先世界水平的高分辨率(10,000 FWHM)、高精度(50 ppm)的MS/MS。本功能可以明确识别质量近似的碎片离子,因此,在肽・ 蛋白质序列解析等中可以获得高可靠性的结果。3. 基于High Energy CID取得准确的结构信息继承AXIMA Performance 功能,无需进行母离子减速或二次加速,可以基于采用MALDI串联TOF最高水平20 keV高碰撞能的High Energy CID进行MS/MS。通过与ASDF机构组合,能够更多更准确地获取多样的测定目标分子的结构信息,应对从肽・ 蛋白质、脂质等生物大分子到各种合成高分子化合物等多样化合物的结构解析。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以&ldquo 为了人类和地球的健康&rdquo 为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 2020先进高分子材料网络会议通知
    p  高分子材料也称为聚合物材料,是以高分子化合物为基体,再配有其他添加剂(助剂)所构成的材料。高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。高分子材料的研究、应用与分析检测的研究对于高分子领域的发展具有重要意义,仪器信息网特此邀请到高分子领域的专家,于strong2020年11月10日带来“先进高分子材料”主题网络研讨会/strong,为广大高分子领域研究人员搭建沟通交流的平台,推动高分子领域的发展。/pp style="text-align: center "a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"img style="max-width: 100% max-height: 100% width: 600px height: 131px " src="https://img1.17img.cn/17img/images/202011/uepic/3c657432-56d2-40b6-9171-43b06ac93044.jpg" title="1920_420_20201020.jpg" alt="1920_420_20201020.jpg" width="600" height="131" border="0" vspace="0"//a/pp  strong豪华专家阵容:/strong/pp style="text-align: center "a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"img style="max-width: 100% max-height: 100% width: 600px height: 181px " src="https://img1.17img.cn/17img/images/202011/uepic/2aa4361e-a9ac-4a0e-b3ed-999b6928e1ff.jpg" title="豪华专家阵容.png" alt="豪华专家阵容.png" width="600" height="181" border="0" vspace="0"//a/pp  strong会议日程:/strong/ptable border="0" cellpadding="0" cellspacing="0" style="" align="center"colgroupcol width="115" style=" width:115px"/col width="432" style=" width:432px"/col width="499" style=" width:499px"//colgrouptbodytr height="60" style=" height:60px" class="firstRow"td colspan="3" height="60" width="587" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"strong11span style=""月/spanspan style=""10/spanspan style=""日/spanspan style="" /spanspan style=""先进高分子材料/span/strong/a/td/trtr height="60" style=" height:60px"td height="60" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"strongspan style=""报告时间/span/strong/a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"strongspan style=""报告题目/span/strong/a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle" width="218"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"strongspan style=""报告嘉宾/span/strong/a/td/trtr height="60" style=" height:60px"td height="60" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"09:30--10:00 /a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""动态键的实时原位表征及其对聚合物多尺度链段动力学的影响/span/a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle" width="218"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""张荣纯(华南理工大学/span span style=""副研究员)/span/a/td/trtr height="60" style=" height:60px"td height="60" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"10:00--10:30 /a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"Flash DSCspan style=""在高分子行业的应用/span/a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle" width="218"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""陈成鑫(梅特勒/spanspan style=""-/spanspan style=""托利多国际贸易(上海)有限公司/span span style=""技术专家)/span/a/td/trtr height="60" style=" height:60px"td height="60" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"10:30--11:00 /a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""超简单、实用场发射扫描电镜/spanspan style=""JSM-IT700HR/spanspan style=""介绍/span/a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle" width="218"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""朱明芬(捷欧路(北京)科贸有限公司/span span style=""应用工程师/spanspan style="")/span/a/td/trtr height="60" style=" height:60px"td height="60" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"11:00--11:30 /a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""核磁共振波谱法在高分子材料研究中的应用/span/a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle" width="218"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""扶晖/spanspan style=""(/spanspan style=""北京大学/span span style=""高级工程师/spanspan style="")/span/a/td/trtr height="60" style=" height:60px"td height="60" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"11:30--12:00 /a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""多功能聚合物制备及其在酶解代谢分析中的应用/span/a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle" width="218"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""乔/span span style=""娟/spanspan style=""(/spanspan style=""中国科学院化学研究所/span span style=""副研究员/spanspan style="")/span/a/td/trtr height="60" style=" height:60px"td height="60" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"14:00--14:30 /a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""生物基橡胶改性剂/spanspan style=""——/spanspan style=""杜仲树脂的表征及应用性能的研究/span/a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle" width="218"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""杜振霞/spanspan style=""(/spanspan style=""北京化工大学/span span style=""教授/spanspan style="")/span/a/td/trtr height="60" style=" height:60px"td height="60" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"14:30--15:00 /a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""以聚酰亚胺为例浅谈色谱、质谱技术在材料表征中的应用/span/a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle" width="218"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""李欣蔚/spanspan style=""(/spanspan style=""沃特世科技(上海)有限公司/span span style=""材料科学市场部高级应用工程师/spanspan style="")/span/a/td/trtr height="60" style=" height:60px"td height="60" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"15:00--15:30 /a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""激光光散射在高分子药物载体中的应用/span/a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle" width="218"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""黄潇楠/spanspan style=""(/spanspan style=""首都师范大学化学系/span span style=""副教授/spanspan style="")/span/a/td/trtr height="60" style=" height:60px"td height="60" style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"15:30--16:00 /a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""布鲁克原子力显微镜在高分子材料中的应用/span/a/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " align="center" valign="middle" width="218"a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"span style=""刘/span span style=""阳/spanspan style=""(/spanspan style=""布鲁克(北京)科技有限公司/span span style=""应用科学家/spanspan style="")/span/a/td/tr/tbody/tablep br//pp a href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self" strong报名方式/strong:点击下方链接立刻免费报名/a/ppa href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"  https://www.instrument.com.cn/webinar/meetings/XJGFZ2020//a/ppa href="https://www.instrument.com.cn/webinar/meetings/XJGFZ2020/" target="_self"  /a/ppbr//ppbr//p
  • 飞纳台式扫描电镜应邀参加 2016 年第七届国际高分子化学学术研讨会
    为了进一步加强我国高分子科学界与国外同行的学术交流,促进我国高分子科学的进一步发展,中国科学院长春应用化学研究所高分子物理与化学国家重点实验室定于 2016 年 09 月 07-10 日在长春召开第七届国际高分子化学学术研讨会 (pc 2016)。主办方中国科学院长春应用化学研究所是飞纳台式扫描电镜的用户单位之一,飞纳台式扫描电镜受主办方的邀请,将携飞纳台式扫描电镜能谱一体机 phenom prox 出席参加此次会议。飞纳台式扫描电镜能谱一体机 phenom prox说起飞纳台式扫描电镜在高分子领域的应用。不得不提到飞纳台式扫描电镜所采用的长寿命,强信号 ceb6 灯丝,灯丝的信号强度显著影响扫描电镜的成像质量,ceb6 灯丝的信号是钨灯丝的 10 倍,场发射扫描电镜的灯丝信号是 ceb6 灯丝的 5 倍,这是钨灯丝扫描电镜,ceb6 灯丝扫描电镜,场发射扫描电镜成像质量差异的关键因素,灯丝信号越强,图像更明亮,细节更加丰富。此外,灯丝的信号强度结合样品仓低真空设计,可以实现不喷金直接观察导电性不好的高分子样品,直接观察到导电性不好的高分子样品表面最真实的形貌。灯丝的信号越强,不喷金观察的效果越佳。20000x 电池膜 背散射电子40000x 静电纺丝 背散射电子50000x 纤维 背散射电子纤维未喷金-6850x国际高分子化学学术研讨会 (international symposium on polymer chemistry) 是高分子物理与化学国家重点实验室每两年举办的系列国际会议,目前,已成功举办六届(长春:pc 2004;大连:pc 2006;合肥:pc 2008;苏州:pc 2010;长春:pc 2012;上海:pc 2014)。在国内外同仁的大力支持下,pc 会议已经成为国内外从事高分子科学研究的科技工作者开展学术交流的重要平台。pc 2016 将集欧、美、亚和我国著名高分子科学家及青年学者于一堂,报道国际高分子科学领域的最新研究成果,发展趋势,热点难点及科学问题,共同研讨高分子科学领域最新学术思想和学术进展。飞纳台式扫描电镜诚挚地邀请国内高分子科学领域研究人员踊跃参加。会议联络联系人:乔文强,张璐地 址:长春市人民大街 5625 号 单 位:中国科学院长春应用化学研究所邮 编:130022 电话:0431-85262530 85262351 传 真:0431-85262901 85262351e-mail: pc2016@ciac.ac.cn会议网站: http://pc2016.csp.escience.cn
  • 样品前处理技术及其小分子化合物的液相色谱-质谱分析
    Tutorial 1: 样品前处理技术及其小分子化合物的液相色谱-质谱分析——2010年慕尼黑上海分析生化展同期论坛  时间:2010年9月17日  地点:上海新国际博览中心W2号馆,W2-M2会议室  主办单位:德国慕尼黑大学医疗中心医疗化学研究所生物分离实验室  演讲嘉宾:Dr. Karl-Siegfried Boos, Dr. Rosa Morello  参会方式:免费注册参会  会议网址:http://www.a-c.cn/ac/0126_2.html  该课程主要针对方法开发技术人员、化学分析师、实验室主管和生物、制药以及治疗等领域的科学家。课程包括复杂体液处理仪器介绍、操作程序和应用准则等。 其中主题之一为液态分离(SPE)与耦合串联质谱LC系统的整合应用。参加者将能了解多维度SPE在高度选择性样本清理中的应用和原则。课程将就详细介绍各类SPE材料(如限制查阅材料、RAM、分子印记聚合物、MIP、混合模式材料等)的特性和表现以及SPE-LC的产出提高方式与小型化手段。除尿液和离子样本直接注入和在线SPE分析外,课程还将介绍全血直接注入和整体处理。 我们还将讨论干血点(DBS)样本制备和分析的优缺点。课程将就LC-MS/MS生物分析离子抑制/基质效应的理解和监控做简要介绍,主要关注通过样本预处理和分离消除离子抑制的方法。在此背景下,我们将重点介绍优化液相色谱(POPLC)工具,以及该方法在各种生物分析中的广泛应用,如治疗药物监测、生理监测、环境和医疗化学分析。课程将在开放和交互的氛围中进行。  2010年慕尼黑上海分析生化展(analytica China 2010)  时间:2010年9月15日-17日  地点:上海新国际博览中心 (上海市浦东新区龙阳路2345号), W1-W2馆  更多同期活动:  第五届上海国际分析化学研讨会  “蛋白质组学与疾病”专题研讨会  色谱技术中德论坛:复杂样品的分离分析  FDA/EU认证:实验室质量控制  样品前处理技术及其小分子化合物的液相色谱-质谱分析  代谢组学在生物技术和生命科学上的进展  展商技术交流会  主办方联系方式:  慕尼黑展览(上海)有限公司  赵晨光 洪燕  电话:86-21-2020 5500  传真:86-21 2020 5688  邮箱:zhao.chenguang@mmi-shanghai.com hong.yan@mmi-shanghai.com  网站:www.a-c.cn
  • 著名高分子化学家胡亚东先生逝世 享年91岁
    p style="text-align: center "img title="01300000245463123532138917520.jpg" src="http://img1.17img.cn/17img/images/201805/noimg/faebd514-815c-4e18-9574-a89bcf2ddcc7.jpg"//pp  中国共产党党员,中国科学院化学研究所原所长、研究员,中国化学会原理事长,著名高分子化学家胡亚东先生,因病医治无效,于2018年4月29日22时21分在北京逝世,享年91岁。/pp  胡亚东先生历任中国化学会副秘书长、常务理事、理事长,躬身领导学会数十载。他曾致力推动恢复中国化学会在国际纯粹化学与应用化学联合会(IUPAC)中的合法地位,参与推动恢复中国在国际科学联合会的席位,为中国化学的国际交流与合作开辟了道路。他积极参与筹建中国化学会高分子学科委员会,先后任《化学通报》副主编、主编、顾问20余年。胡先生倾力支持、关怀中国化学会的发展,与学会感情笃深,为中国化学会的发展做出了重要贡献。/pp  沉痛悼念胡亚东先生,深切缅怀胡亚东先生!胡亚东先生千古!/pp style="text-align: right "  中国化学会/pp style="text-align: right "  2018年5月1日/p
  • “100家实验室”专题:访国家电化学和光谱研究分析中心
    为广泛征求用户的意见和需求,了解中国科学仪器市场的实际情况和仪器应用情况,仪器信息网自2008年6月1日开始,将用一年半的时间对不同行业有代表性的“100个实验室”进行走访参观。 2008年7月30日,仪器信息网工作人员专程前往长春参观访问了本次活动的第七站:国家电化学和光谱研究分析中心。  国家电化学和光谱研究分析中心于1990年由中科院汪尔康院士发起成立,行政上隶属于中国科学院长春应用化学研究所,业务上受科技部条财司指导。中心具有一批富有经验的资深研究人员及年轻博士、硕士组成的研究及测试队伍。其中有院士2人,6人为国外院校博士学位获得者,所有研究员都有在国外中长期工作的经历。研究分析中心成立以来在分析和研究领域多次获奖,其中国家自然科学奖一项,国家科技进步奖一项,国际奖一项、中国科学院自然科学奖五项,科学技术进步奖三项、省级奖四项、行业奖十项。共发表论文超过1500篇,其中60%以上为国际刊物,有很强的测试和研究能力。中科院长春应用化学研究所国家电化学和光谱研究分析中心  从该中心的名称上看,似乎是以电化学和光谱类仪器为主,但实际上该中心的各类仪器配置非常全,拥有光谱(原子吸收、红外、拉曼、紫外、ICP等)、色谱(气相、液相)、质谱(气质联用、液质联用、ICP-MS、Maldi-TOF-TOF等)、核磁、顺磁、能谱、元素分析、热分析、X射线、电镜、试验机等很多种类的大中型精密分析仪器,可进行材料的化学组份的定性定量分析、物质的结构分析和物性测试等全套分析测试工作。  该中心的一些有特色的大型仪器有:  布鲁克公司的600M超导核磁共振谱仪:主要应用于生物大分子溶液结构研究、多肽/皂甙/多糖等天然药物的分子结构和序列研究、中药复方的活性成分及作用机理研究、药物合成与手性合成NMR研究、中草药活性成分筛选及新药开发、有机高分子材料以及高性能高分子材料的凝聚态结构研究。布鲁克公司的600M超导核磁共振谱仪  Thermo-Fisher公司的 ESCALAB 250光电子能谱仪:主要应用于元素定性定量分析、有机官能团定性定量分析、无机物/有机物/聚合物表面组成测定、固体表面的吸附作用、催化剂载体/活性/衰老/中毒测试研究、无机/有机/高分子化合物的元素价态和结构鉴定、含氮/硫/碳/磷等污染的化合物状态分析。Thermo-Fisher公司的 ESCALAB 250光电子能谱仪  FEI公司的XL30场发射环境扫描电子显微镜:主要应用于各种条件下的样品的表面形貌和粒径大小的观察和测量,最高分辨率可达3nm,同时还配有EDAX能谱仪、高低温台、拉伸台等配件,可以对所观察视野范围内的元素进行定性、定量及分布观察和形貌的动态观察。FEI公司的XL30场发射环境扫描电子显微镜及EDAX能谱  INSTRON公司5869型材料试验机:最大载荷为5吨,可进行各类材料的拉伸、弯曲、剪切和压缩等实验,测定各类材料的力学性质。INSTRON公司5869型材料试验机  布鲁克道尔顿公司的autoflex III MALDI- TOF/TOF质谱仪:主要应用于高分辨多肽、蛋白生物标记物发现、鉴定和验证、MALDI分子成像、研究多肽和蛋白质在组织样品中的分布、高成功率的蛋白质鉴定、功能基因组学等研究布鲁克道尔顿公司的autoflex III MALDI- TOF/TOF质谱仪  在参观的过程中,仪器信息网还发现中心新购进了一台布鲁克的D8 Advance X射线衍射仪,正在进行安装,该仪器可用于定性和定量相分析、带介质和无介质条件下的衍射分析、粉末样品的晶体结构解析、微晶尺寸分析、微应变分析、残余应力分析以及择优取向分析。布鲁克D8 Advance X射线衍射仪  国家电化学与光谱研究分析中心通过了实验室认可和CMA计量认证,获得国家认监委和国家技术监督局颁发的实验室认可和计量认证的证书,因此中心除了进行研究外,还开展对外测试服务,多年来为科研、生产、环保、医疗卫生、出口贸易和公安侦破等部门承接大量的分析测试任务,样品涉及无机、有机、生物、冶金、石化、环境等广泛领域, 2001到2007年,中心总测试样品数 36.5万个,对外测试服务样品占了10%,据中心主任徐经纬博士介绍,该中心的仪器开机率是国家各类中心中最高的,在参观过程中,仪器信息网也发现很多实验室里样品都排着长队等待测试。  除以上分析仪器可进行的各种常规测试服务外,依托雄厚的技术力量,该中心可提供的特色测试服务有:  1、有机化合物和药物性质的测定:包括测定有机化合物,特别是药物的分子式、精确分子量、分子结构,包括空间构型。帮助制药企业进行新药申报的结构确证,产品和原材料的质量控制。  2、各类物质的化学成分的测定。即各类物质的化学元素的组成。这些物质包括土壤岩石,金属合金,稀土材料,食品、生物制品、药品和高分子材料等。  3、高分子材料性质的测定。包括高分子材料的化学、力学和热力学性质。例如分子量分布,玻璃化转变温度,泊松比等。  4、未知物分析。对各类未知样品,进行定性定量分析。即样品中所含的成分的名称、结构和含量等。  5、帮助企业的生产建立分析方法,分析实验和生产中的各类现象和原因  国家电化学与光谱研究分析中心主任徐经伟博士为仪器信息网此次拜访提供了很多便利,全程陪同我们参观而且做了详细的介绍,在此表示衷心的感谢。  附:国家电化学和光谱研究分析中心联系方法:  地址:长春市人民大街5265号 邮政编码:130022   主任:徐经伟研究员 电话:0431-85262643
  • 鱼贝类毒素之质谱分析
    导读春季是细菌病毒等滋生的活跃期,对于吃河鲜海鲜来说不是好季节,中毒事件往往会在每年的这段时间频发。那么如何避免吃到有毒海鲜?对吃了染毒的海鲜中毒的病人如何快速检测从而采取有效的救治措施呢?让我们从毒素本身说起。 对人类有毒害的鱼、虾及贝类食品一般是因有毒藻类污染产生的,海洋中的有毒藻类通过食物链传递给藻食性的鱼、虾及贝类等生物,并在其体内蓄积形成的有毒高分子化合物。由于这些毒素最早是从摄食有毒微藻的鱼类和贝类体内发现的,往往被大家习惯性地称为鱼类毒素或贝类毒素。对水体或鱼贝类进行有害物质的监测,或者发生群体性中毒事件后能迅速检测并协助临床进行救治是应对的关键。 鱼类毒素质谱分析 世界上可食用的鱼类约有3万种,其中约有600种鱼类体内含有毒素不可食用。鱼体内含有两大天然毒素,即雪卡毒素和河豚毒素。另外还有一种常见的鱼类过敏物质毒素—组胺,当人体摄入较多组胺时会产生组胺中毒。【1】 ①雪卡毒素雪卡毒素(Ciguatoxin,CTX,亦称西加毒素)是目前赤潮生物产生的主要毒素之一。属神经毒素,是已知的对哺乳动物毒性最强的毒素之一,比河豚毒素强100倍。中国南海诸岛、台湾海峡和香港地区常有雪卡毒素中毒事件发生,【1】已成为影响渔业经济发展和公共卫生的一大障碍。由于毒素在鱼体内含量低,而染毒鱼类在感官、嗅觉、味觉上均没有什么异常,用常规化学分析法很难检测出来,需要使用质谱仪器进行高灵敏度的分析。但是,由于对于雪卡毒素的检测尚缺少相应的检测标准,【2】以及很难购买标准品,有关检测还处于研究阶段。岛津使用液相色谱三重四极杆质谱进行了两种雪卡毒素的分析。【3】 仪器:LCMS-8050色谱柱:L-column 2 ODS (100 mmL. x 2.1 mmI.D., 3μm)流动相:A: 2 mmol/L Ammonium formate aqueous solution;B: Methanol containing 2 mmol/L ammonium formate洗脱梯度:B conc. 70%(0 min)→ 95%(10-20 min)→ 70%(20.01 - 25 min)离子源:ESI+接口电压:+1 kV雾化气流速:2.5 L/min加热气流速:15 L/min样品分析结果:CTX1B 43 ng/mL C60H86O19 单同位素质量 1110.57CTX3C 39 ng/mL C57H82O16 单同位素质量 1022.56 ②河豚毒素春季是河豚鱼产卵季节,此时河豚鱼的毒性最强,是河豚鱼中毒的高危险期,因鱼体内毒素含量高且热稳定性好,不能通过加热烧煮解毒,中毒两三小时就会导致死亡,无快速治疗药物。【4】 仪器:LCMS-8050色谱柱:XBridge Amide column (2.1x100 mm, 1.7 μm)流动相:A-acetonitrile B-water containing 10 mM formic acid / 5 mM ammoniumformate in channel B. 0-5min: 85 %-60 % A 5-8 min: 60 % A 8-8.5 min: 60 %-85 % A离子源:ESI+加热气流量:10 L/min干燥气流量:10 L/min 河豚毒素实际样品检测结果鱼干24 μg/kg织纹螺 387μg/kg ③组胺鱼体不新鲜或腐败时,污染鱼体的细菌如组胺无色杆菌,产生脱羧酶,使组氨酸脱羧生成组胺。在某些罐装食品中也会含有少量的组胺。【5】 岛津开发了液质质的方法应对包含组胺在内的多种生物胺的同时分析技术。 仪器:LCMS-8045色谱柱:HILIC 2.1 mm I.D. × 100 mm L., 1.7 μm流动相:A相:乙酸铵水溶液;B相:乙腈离子源:APCI干燥气流速:5 L/min雾化气流速:3 L/min 实际样品中9个生物胺化合物检测结果,定量限值在2-10 μg/L之间。 贝类毒素质谱分析 每年的4-6月份我国经常发生群体性贝类中毒事件,这类食源性中毒事件大多是由于食用了被污染的贝类食品导致。 贝类毒素按中毒症状分为以下四类:• 麻痹性贝毒(PSP):石房蛤毒素STX、河豚毒素TTX等• 腹泻性贝毒(DSP):软海绵酸OA、鳍藻毒素DTXs等• 神经性贝毒(NSP):Brevetoxin A&B(BTX-A&B)• 失忆性贝毒(ASP):多莫酸(DA) 已发生了群体中毒事件,如何能快速对样本中的微量或痕量目标物进行检测以协助临床进行救治? 首先要保存好中毒样品,首选样本如剩余的鱼或者贝类食物、吃剩的残渣、汤汁,中毒后第一次抽的血和留尿等,同时注意保存治疗前后和治疗过程中的血尿样本,样本经前处理后进质谱分析。理化实验室通常使用在线SPE-LCMSMS系统,用于生物样本中微量或痕量目标物的检测。样本经前处理后大体积上样,通过在线固相萃取系统净化以祛除干扰物,从而获得比常规LCMSMS分析灵敏度更高的分析结果。以水溶性麻痹性贝类毒素(PSPs)分析举例。【6】【7】 在线SPE-LCMSMS系统 2mL样品通过样品环实现大体积进样,FCV阀切换使得目标物在SPE柱中捕集,再通过FCV 阀的切换实现SPE柱解析,解析后的样品经色谱柱分离,MS定性定量分析。【8】 仪器:LCMS-8050/60色谱柱:Amide column 2.1 × 100 mm, 1.7 μm或相当色谱柱流动相:A(含6 mmol/L甲酸铵,10 mmol/L甲酸的水溶液);B:乙腈离子源:ESI正负同时扫描方式 经在线SPE-LCMSMS分析的典型阳性样品结果见下图。阳性的是GTX2&3, GTX1&4, NEO和STX。 使用在线SPE-LCMSMS方法进行食品或者血尿样本检测时灵敏度更高,前处理快速,能迅速协助临床医生判断病因,从而进行有效的救治。 微囊藻毒素 水中的微囊藻毒素是鱼贝类毒素产生的罪魁祸首,如何检测水中的多种微囊藻毒素也非常重要。通常使用LCMSMS进行多种微囊藻毒素的分析,如使用岛津的LCMS-8045/50/60检测水中10种微囊藻毒素举例(参数略)。 更多分析数据请登录岛津官网或与岛津相关工作人员联系获取。 注:以上产品仅供科学研究,不用于临床诊断。 参考文献【1】李春媛,周玉,张磊等。雪卡毒素的研究概况[J].上海海洋大学学报,2009,18【2】吕颂辉,李英。我国雪卡鱼毒流行现状研究进展[J].中国公共卫生,2006,22【3】Analysis of Diarrhetic Shellfish ToxinUsing Triple Quadrupole LC/MS/MS (LCMS-8050). LAAN-A-LM-E075, ShimadzuApplication News.【4】Profile differences in tetrodotoxintransfer to skin and liver in the pufferfish Takifugu rubripes [J]. RyoheiTatsuno, Wei Gao, Kotaro Ibi, Tomoka Mine, Kogen Okita, Gregory Naoki Nishhara,Tomohiro Takatani, Osamu Arakawa. Toxicon. 2017【5】崔成祥,于夕娟,曹珊珊食用变质鲐鱼引起急性组胺中毒87例报告[J],预防医学论坛,2012, 18(10):781-782. 【6】Xiao-min Xu?, et al. Fast and quantitativedetermination of saxitoxin and neosaxitoxin in urine by ultra performanceliquid chromatography-triple quadrupole mass spectrometry based on the cleanupof solid phase extraction with hydrophilic interaction mechanism.Journalof Chromatography B 1072 (2018) 267–272.【7】岛津脂溶性和水溶性贝类毒素测定标准操作程序【8】Screening of pesticides in water using SPEon line, PO-CON 1360E, Shimadzu Application News.岛津超快速液相质谱联用仪LCMS-8050
  • 全自动乌氏粘度计在PVP(聚乙烯吡咯烷酮)材料中的应用
    聚乙烯吡咯烷酮(polyvinyl pyrrolidone),简称PVP,是一种非离子型高分子化合物,是N-乙烯基酰胺类聚合物中独具特色的精细化学品。已发展成为非离子、阳离子、阴离子3大类,工业级、医药级、食品级3种规格,相对分子质量从数千至一百万以上的均聚物、共聚物和交联聚合物系列产品,并以其独特的性能获得广泛应用。PVP(聚乙烯吡咯烷酮)材料作为一种合成水溶性高分子化合物,具有水溶性高分子化合物的一般性质,胶体保护作用、成膜性、粘结性、吸湿性、增溶或凝聚作用,其受到人们重视的独特性质是其优异的溶解性能及生理相容性。在合成高分子中像PVP(聚乙烯吡咯万通)材料这样既溶于水,又溶于大部分有机溶剂、毒性很低、生理相溶性好的并不多见,特别是在医药、食品、化妆品这些与人们健康密切相关的领域中,随着其原料丁内酯价格的降低,展示出发展的良好前景。PVP(聚乙烯吡咯烷酮)材料按其平均分子量大小分为四级,习惯上常以K值表示,不同的K值分别代表相应PVP(聚乙烯吡咯烷酮)材料的平均分子量范围。K值实际上是与PVP水溶液的相对粘度有关的特征值,而粘度又是与高聚物分子量有关的物理量,因此可以用K值来表征PVP的平均分子量。通常K值越大,其粘度越大,粘接性越强。在PVP(聚乙烯吡咯烷酮)材料的生产和研发中,K值通常使用乌氏毛细管法进行测量,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌式粘度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列全自动乌式黏度计、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列全自动乌式黏度计可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间的精度可到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列全自动乌式黏度计连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 高分子科学走向国际前沿 凝胶色谱仪等仪器推广功不可没
    1983年,化学所高物实验室,钱人元先生(右二)和中科院化学所高分子物理实验室的同事们讨论聚丙烯丙纶纺丝的工作PI 薄膜复合膜生产线  从上世纪50年代到今天,中国高分子科学从无到有、从弱到强,这与中科院化学所的贡献密不可分。  化学所是国内最早开展高分子科学与材料研究的科研单位之一。早在建所之初,高分子科学就成为化学所的主要学科方向之一。六十年来,化学所重视基础研究,不断拓展研究领域,按照国民经济和国防科技需求,在高分子化学、高分子物理和高分子材料等重要学科前沿和应用领域开展了系统的创新性研究,有力地促进了高分子学科的发展。  高分子科学“从无到有”  上世纪50年代,新中国成立之初,我国高分子工业刚刚起步。1956年,中科院化学所成立,时任上海有机化学研究所副所长的王葆仁带领多名研究人员迁入化学所,成立了高分子研究室。这便是如今高分子物理与化学国家重点实验室的前身。  中科院化学所副所长王笃金告诉《中国科学报》记者说:“研究人员围绕当时国家最迫切的需要开展科技创新,完成了我国高分子学科从无到有的过程。”  在高分子物理方面,研究人员建立并推广了测定高分子最基本的结构参数—分子量和分子量分布的方法,逐渐延伸到高分子溶液性质、高分子链结构与表征等方向。高分子化学方面,聚甲基丙烯酸甲酯、聚己内酰胺、离子交换树脂等成为主要研究方向之一。此外,常温/高温凝胶色谱仪、气相渗透仪、沸点升高仪、裂解色谱仪等科研仪器,也逐步实现了批量生产并推广到许多科研机构,对提升我国高分子科学整体水平发挥了引领作用。凝胶色谱仪(来自互联网)热裂解-色谱/质谱联用仪(来自互联网)  助力国家重大任务  化学所的高分子科学研究从成立起,就重点服务于国家重大任务。为国家“两弹一星”的研制,化学所老一辈科学家开展了酚醛树脂、环氧树脂以及推进剂、黏结剂的研制。上世纪60年代,在“任务带学科”的思想指导下,开展了“复合材料”与“感光材料”两大领域的研究。  2001年,为了满足国家高新技术产业,尤其是航天、航空、空间、微电子等发展的需要,高技术材料实验室在化学所组建。  高性能有机硅材料是航空、航天、电子等高技术领域必不可少的关键材料之一。化学所先后在国内率先研究并开发了甲基乙烯基和苯基硅橡胶、耐油硅橡胶、高强度硅橡胶等重要高性能有机硅材料。自主研制的系列耐高温硅橡胶、系列空间级硅橡胶也达到国际先进水平,为我国“载人航天”等重大工程作出了贡献。  据了解,该实验室还在耐高温聚酰亚胺、耐烧蚀防热酚醛树脂、特种环氧树脂等高分子材料领域取得了具有重要影响的研究成果,形成了近百种系列化货架产品,支撑着我国高新技术领域中许多重要工程型号的研制与发展。  与世界科学前沿并行  60年来,高分子科学在中科院化学所生根发芽,在多个领域已实现与世界科学前沿并行。  最近,高分子科学方向得到持续稳定的发展。高分子化学作为化学所的主要研究方向之一,已在共轭高分子的设计、合成和光电性能研究,有机聚合物电子学和光子学等研究方面在国际上产生重要影响。高分子物理研究主要集中在高分子单链结构、动态性质以及与界面相互作用、各种散射技术在高分子中的应用等领域。高分子理论与模拟研究则集中在聚合物结晶动力学、软凝聚态物理理论等方面。  此外,研究人员在聚合物太阳能电池、高分子仿生材料等方面也取得了诸多新进展。基于坚实的科学基础,化学所在高分子材料领域开展了丰富的成果转化工作,为国民经济作出了贡献。例如,在辽宁营口向阳化工厂实现了聚丙烯催化剂的产业化,同时,科研人员开发出具有我国自主知识产权的三代聚丙烯纤维制造技术,使我国衣着用化纤新品种丙纶的开发处于国际前列,创造了巨大的经济效益和社会效益。  展望未来,化学所的高分子科学将继续坚持高分子化学、高分子物理和高分子材料等研究领域的创新性研究,继续为化学科学的发展做出不懈努力,继续为国家经济建设和国防建设所作出卓越贡献。
  • 一流的高分子材料不止于一流的仪器——五位专家评价高分子材料表征现状及新趋势
    p  高分子材料表征对于高分子材料性能的研究至关重要,仪器信息网采访了五位高分子领域不同方向的专家,共同探讨对于高分子表征仪器现状和未来发展趋势的看法。/pp  strong张荣纯(华南理工大学 副研究员)/strong:/pp  高分子材料宏观性质往往取决于微观分子结构和链段动力学,而当前对于高分子新材料的表征往往更多侧重于宏观性能的表征,比如力学性能、流变、溶胀等,但对于高分子新材料微观结构和链段动力学分子水平的表征却往往较少。/pp  一方面,分子水平的表征需要更高精尖的仪器设备和方法;另一方面,需要对分子水平结构和动力学的相关理论有足够认识才能准确地建立起微观与宏观之间的定量关系。同时,高分子新材料的发展往往伴随着高分子化学的新进展,比如新的化学合成方法,新的化学反应机理等,而阐明这些机理也需要更多原位的分子水平表征技术和分析仪器。因此,随着高分子材料的发展,对高精尖分子水平的分析和表征仪器和手段方法的要求也会越来越高,包括分辨率,灵敏度,精确度等。/pp  strong扶晖(北京大学 高级工程师)/strong:/pp  对于高分子材料,尤其是具有特殊性能的新型材料的发展或者制造,我国的现状是很多配方组成都是经验式进行。但是这种靠着经验来进行的话,有时候你并不了解你是如何获得了性能好的材料。如果要再进一步提升其性能,你必须知道分子内部的情况,所以就需要各种各样的分析仪器的帮助。/pp  对于固体核磁来说,因为固体核磁是一种能够在多种微观尺度上了解高分子材料分子内部组成、结构、相互作用和动力学性质的一种比较简便的分析方法,而且固体核磁对样品是无损的。在一定的情况下,它也能实现在线的、直观的研究,比如材料随外界环境的变化(温度、光照等)的影响。这些外界条件的改变导致的材料性能的转变,也就用这种在线的方式来进行研究。/pp  现在材料研究的发展的不但是对人员背景素质要求比较高,而且对仪器本身配置要求也比较高。就我自己的经验来看,很多来做测试的人员,可能他研究这个体系非常好,但他并不知道他应该要用什么方法来体现出这个材料的独特的地方,有时候就只做一些非常简单的核磁表征,结果文章发表出来,质量可能就不会高。第二,他没有把它真正的这个他这个研究体系里的这个亮点给挖掘出来。/pp  此外,核磁这种仪器,场强越高,呈现的结果就越好,现在还有新型的带DNP的这种核磁。这种带DNP的核磁,仪器本身比较昂贵,但是它能够提供特别好的信噪比,所以它就可能可以在信号上捕捉到一些以前没有捕捉到的信号,然后可以更进一步的探索材料分子内部的一些情况。/pp  strong乔娟(中国科学院化学研究所 副研究员):/strong/pp  高分子材料及聚合物的飞速发展使其成为众多领域的基础,其成品的性能与高分子结构的化学、物理性能等密切相关,结构决定性能。为了更好地表征高分子材料的性能与组成、结构的联系,多种分析测试手段必不可少也决定了我们对于高分子材料理解的深度和广度。/pp  结合刺激-响应荧光聚合物材料的制备及应用,我们的期望是:/pp  (1)新型的分析测试手段能更加直观地表征聚合物在刺激变化时的内部分子、电子及原子层次的变化 /pp  (2)通过成像等手段将传递于聚合物和荧光分子之间的时间-空间的变化信息更加直观及高效地呈现出来。/pp  总之,就是提高分析方法的速率、分辨率及可视化。/pp strong 杜振霞(北京化工大学 教授):/strong/pp  终端市场对材料的性能要求越来越高,高分子材料本身细微的差异(结构差异、分子量分布差异和添加剂差异)就可能造成物性的巨大改变,所以未来对于高分子材料的表征,一定是物理表征和化学表征双管齐下,不仅需要通过一些物理和应用参数证明材料的性能,还需要从分子层面对于材料的研究将会更科学地诠释材料的构效关系。/pp  对高分子材料细微差异的研究需要分辨率高、灵敏度高的表征手段,才可以捕捉到材料间细小的差异变化。高分子材料细微差异有时跟聚合机理和预聚体的结构紧密相关,因此研究聚合机理或预聚体的精细结构很重要。对于某些预聚体成分和结构可以用ESI—MS或APCI-MS,或MALDI-TOF进行精细表征,但考虑到电离竞争效应,分子量大的难于电离,甚至没有电离,不能看到其全貌,需要进一步结合凝胶渗透色谱。 Waters公司推出的APC相对常规GPC来说具有效率高、分离度高的特点,如果能跟ESI-TOF或APCI-TOF联用,将来在材料表征应该是利器。/pp  材料的化学成像(质谱成像)技术越来越普遍,用以研究材料在不同工艺或者使用环境下的表面化学成分差异。配合电镜等手段,可以更全面地了解材料。/ppbr/script src="https://p.bokecc.com/player?vid=0E3AA5129BA0FD249C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=621F7722C6B7BD4E&playertype=1" type="text/javascript"/script/pp style="text-align: center "strong生物基橡胶改性剂——杜仲树脂的表征及应用性能的研究(视频节选自2020年先进高分子材料网络会议)/strong/pp  strong黄潇楠(首都师范大学化学系 副教授):/strong/pp  作为溶液态高分子,在溶剂中的微观状态现在主要可以通过光散射,辅助其他表征仪器进行检测。但是,光散射的测量现在只适用于纳米尺度的测量,更小尺度的测量编的很不准确。而高分子结构在溶剂中的溶剂化作用,目前还没有特别好的手段能够测量和表征,这一作用在智能响应高分子中新的尤为重要,因为随着智能响应高分子在材料领域的应用越来越多,需要设计具有适应于生物体环境的高分子,生物体环境变化小,例如温差,pH值,要设计此类高分子的基础是对于智能高分子的智能响应性机理具有很透彻的研究,而其智能响应性的根本激励目前根据推测是溶剂分子尤其是水分子和高分子分子链之间的作用导致,但是目前尚未有能够直接测定溶液中溶剂和溶质分子将作用的检测方法,因此,发展更为微观尺度的检测方法是一个研究方向。/ppbr/script src="https://p.bokecc.com/player?vid=D521B0919035869E9C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=621F7722C6B7BD4E&playertype=1" type="text/javascript"/script/pp style="text-align: center "strong激光光散射在高分子药物载体中的应用(视频节选自2020年先进高分子材料网络会议)/strong/ppbr//p
  • 毛细管电泳-质谱技术在手性化合物分离分析中的研究进展
    手性是自然界和生命体的基本属性之一,诸如生物结构中的核酸、蛋白质及糖类等都具有手性。目前绝大多数药物都是以手性形式存在,这些药物在生命体内的药理活性、代谢作用和速率及毒性等方面均存在显著差异,比如一种对映体有活性,而另一种无显著的药理活性,甚至有毒副作用或可发生拮抗作用。除了旋光性上的差异,手性药物具有相同的物理和化学性质,故对其分离分析一直都是药物分析、分离纯化领域研究的重点和难点。新药的研发和应用亦需要研究人员继续开发新的高效手性分析方法,以实现高选择性和高灵敏度的手性化合物定量和定性分析。高效液相色谱-质谱(HPLC-MS)具有较高的灵敏度和重现性,是目前手性药物分离分析的主要方法。然而,HPLC-MS需要昂贵的手性柱和与MS兼容的色谱柱流动相,而且手性色谱填料的柱效和拆分能力仍有待提高。毛细管电泳(CE)技术凭借其高效、低样品消耗、分析快速、分离模式多样化等诸多优势,已经发展成为手性分离研究领域极具吸引力和应用前景的分析方法之一。紫外可见检测器(UV-Vis)是CE最常用的检测器,但是毛细管的光程长度较短,导致灵敏度较低,因此难以满足生物样品中痕量手性化合物的分析要求。激光诱导荧光检测器(LIF)可以提高检测的灵敏度,但是只适用于本身带有荧光或被荧光标记的物质。而毛细管电泳-质谱联用技术结合了CE的分离效率高、分析速度快、样品消耗低以及MS的高灵敏度和强结构解析能力,近些年来在蛋白质组学和代谢组学等领域发挥了重要作用。CE杰出的手性拆分能力与MS优势的结合,亦使CE-MS成为实现手性化合物高效分离分析的完美组合,尤其是在复杂生物基质中手性化合物分析的灵敏度和分辨率方面,为药物、医学以及食品科学等领域重要手性分子分析提供了新视角。手性CE-MS联用技术,在一次分析中能同时得到样品的迁移时间、相对分子质量和离子碎片等定性信息,解决了实际样品中未知手性化合物(包括无紫外吸收基团或荧光基团的手性化合物)的识别问题,在减少生物样品基质效应的同时,可以对多组手性对映体实现高通量分析。在过去的十几年里,基于不同CE-MS分离模式的高性能手性分析体系层出不穷,并成功应用于医药、生物、食品和环境科学等领域的手性化合物分析中。这篇综述着重评述了电动色谱-质谱(EKC-MS)、胶束电动色谱(MEKC-MS)和毛细管电色谱-质谱(CEC-MS)手性分离模式从2011年到2021年的最新发展和应用。综述介绍了CE-MS各种手性分析模式下的分离原理、手性选择剂以及在医药等领域中重要手性化合物的分析应用,并讨论了不同手性分析模式的局限性。最后总结了CE-MS联用模式在手性化合物分离分析中的应用前景。相比于广泛应用的HPLC-MS, CE-MS凭借其高效率、低消耗、高选择性、分离模式多样化等诸多优势,已发展成为手性分析领域应用前景广阔的分析方法之一,并且已成为HPLC-MS等其他经典手性分离方法的一个强有力补充技术。目前CE-MS手性分析的研究挑战之一是实现快速和超灵敏的手性分析。采用基于短毛细管的快速毛细管电泳(HPCE)结合在线样品富集有望解决这个难题。此外,CE-MS的不同手性分析模式大多数采用的是三管设计的鞘状流动界面,灵敏度较低。新进研发的新型界面技术,如通过微瓶辅助的界面流动、无套多孔尖端的设计以及CE-MS离子源的引入等,在提高手性化合物分析灵敏度方面显示出巨大应用前景。另一方面,开发同时对多种手性药物进行对映体分离、检测和定量的CE-MS手性分析方法,也是目前研究的重点和难点。这些研究将对开发制药工业中的通用方法和高通量分析生物样品中的手性药物及其手性代谢物具有重要意义,对手性药物和代谢物的药物-药物相互作用和毒性研究也具有指导价值。EKC-MS和MEKC-MS应用中的手性选择剂具有多样性,使其在新药开发和药物质量控制、药代动力学以及药效学研究中具有巨大的潜力。进一步开发MS友好、绿色和高选择性的手性选择将拓宽待分离手性化合物的应用范围。目前,CEC-MS手性分析研究中,研究者更多致力于开发用于整体柱或填充柱的新型毛细管手性固定相。使用功能化纳米颗粒增加CEC手性柱表面积以及CE-MS的微型化微芯片设备的研发,目前仍是尚未充分探索的领域,尤其在实际应用方面与相对更加通用的手性分离模式相比仍有较大差距。文章信息:色谱, 2022, 40(6): 509-519DOI: 10.3724/SP.J.1123.2021.11006迟忠美1, 杨丽2*1. 渤海大学化学与材料工程学院, 辽宁 锦州 1210132. 东北师范大学化学学院, 吉林 长春 130024
  • 热分析在高分子材料中的应用(DSC/TGA/导热系数/TMA/DMA)
    热分析是测量材料热力学参数或物理参数随温度变化的关系,并对这种关系进行分析的技术方法。对材料进行热分析的意义在于:材料热分析能快速准确地测定物质的晶型转变、熔融、升华、吸附、脱水、分解等变化,在表征材料的热性能、物理性能、机械性能以及稳定性等方面有着广泛的应用。由于热性能是材料的基本属性之一,对材料进行热分析可以鉴别材料的种类,判断材料的优劣,帮助材料与化学领域的产品研发,质检控制与工艺优化等。既然热分析是对材料进行质量控制的重要技术手段,那么热分析到底是如何进行的呢?根据国际热分析协会(ICTA)的归纳和分类,目前的热分析方法共分为九类十七种,而常用的热分析方法(如下图所示)包括:差示扫描量热(DSC)、热重分析(TGA)、导热系数测试、热机械分析(TMA)、动态热机械分析(DMA)等5种方法。根据不同的热分析方法采用不同的热分析仪器设备,对材料的热量、重量、尺寸、模量/柔量等参数对应温度的函数进行测量,从而获得材料的热性能。接下来,让我们简单了解一下这5种热分析方法:(1)差示扫描量热(DSC)差示扫描量热法(DSC)为使样品处于程序控制的温度下,观察样品和参比物之间的热流差随温度或时间的函数。材料的固化反应温度和热效应测定,如反应热,反应速率等;物质的热力学和动力学参数的测定,如比热容,转变热等;材料的结晶、熔融温度及其热效应测定;样品的纯度等。(2)热重分析(TGA)热重分析法(TGA)用来测量样品在特定气氛中,升温、降温或等温条件下质量变化的技术。主要用于产品的定量分析。典型的TGA曲线可以提供样品易挥发组分(水分、溶剂、单体)的挥发、聚合物分解、炭黑的燃烧和残留物(灰分、填料、玻纤)的失重台阶。TGA这种方法可以研究材料和产品的分解,并得出各组分含量的信息。TGA曲线的一阶导数曲线是大家熟知的DTG曲线,它与样品的分解速率成正比。在TGA/DSC同步测试中,DSC信号和重量信息可以同时记录。这样就可以检测并研究样品的吸放热效应。下图中的黑色曲线为PET的TGA曲线,绿色为DTG曲线。下面的为在氮气气氛下的DSC曲线。右侧红色的DSC曲线显示了玻璃化转变、冷结晶和熔融过程。在测试过程中的DSC信号 (左)可以用样品质量损失进行修正。蓝色为未修正的DSC曲线,红色为因质量损失而修正的曲线。图 使用TGA/DSC(配备DSC传感器)测试的PET曲线分解过程中,化学骨架和复杂有机组分或聚合物分解形成如水、CO2或者碳氢化合物。在无氧条件下,有机分子同样有可能降解形成炭黑。含有易挥发物质的产品可以通过TGA和傅里叶红外(FTIR)或者质谱联用来判定。(3)导热系数测试对于材料或组分的热传导性能描述,导热系数是最为重要的热物性参数。LFA激光闪射法使用红外检测器连续测量上表面中心部位的相应温升过程,得到温度升高对时间的关系曲线,并计算出所需要的参数。稳态热流法热流法(HFM)作为稳态平板法的一种,可用于直接测量低导热材料的导热系数。(4)热机械分析(TMA)热机械分析,指在使样品处于一定的程序温度下和非震动载荷作用下,测量物质的形变与温度时间等函数关系的一种技术,主要测量材料的膨胀系数和相转变温度等参数。一条典型的TMA曲线表现为在玻璃化转变温度以下的膨胀、玻璃化转变(曲线斜率的变化),玻璃化转变温度以上的膨胀和塑性变形。测试可以以膨胀模式、穿透模式或者DLTMA模式(动态负载TMA模式)进行。膨胀模式的测试目的是表征样品的膨胀或收缩。基于这个原因,仅使用较小的力来保证探头和样品接触完好。测试的结果就是热膨胀系数。下图是0.5mm的样品夹在2片石英盘之间测试的膨胀曲线。样品先在仪器中升温至90˚C消除热历史。冷却至室温后,再以20K/min的升温速率从30˚C升温到250˚C,测试的探头为圆点探头,同时探头上施加很小的力0.005N。图2中上部的曲线显示样品在玻璃化转变之前有很缓慢的膨胀。继续升温,膨胀速率明显加快,这是因为在样品在经历玻璃化转变后分子的运动能力提高。之后冷结晶和重结晶发生,样品收缩。高于150˚C样品开始膨胀直至熔融。熔融伴随着样品粘度降低和尺寸减小。图 膨胀模式测试的PET的TMA曲线穿透模式主要给出温度相关的信息。样品的厚度通常不是很重要,因为探头与样品的接触面积在实验中持续变化。刺入深度受加载的力和样品几何形状的影响。在穿透模式测量中,把0.5mm厚的样品放在石英片上,圆点探头直接与样品接触。试验条件为从30˚C升温到300˚C,升温速率20K/min,加载力0.1和0.5N。这时样品未被刺入。在穿透测试过程中,探头一点一点地刺入样品。纵坐标信号在玻璃化转变发生时明显的减小,冷结晶发生时保持基本不变,到熔融又开始减小(图下图)。图 TMA穿透模式测试PETDLTMA是一种高灵敏度测试物理性能的方法。和DSC相比,它可以描述样品的机械行为。在DLTMA模式下,加载在样品上的力以给定频率高低切换。它可以测试出样品中微弱的转变,膨胀和弹性(杨氏模量)。样品刚度越大,振幅越小。图4测试的样品玻璃化转变在72˚C,之后为液态下的膨胀。振幅大是因为样品太软。然后会出现冷结晶,PET收缩,振幅开始减小。140˚C,样品重新变硬,继续膨胀直至160˚C。图 DLTMA(动态负载TMA模式)测试PET(5)动态热机械分析(DMA)使样品处于程序控制的温度下,并施加单频或多频的振荡力,研究样品的机械行为,测定其储能模量、损耗模量和损耗因子随温度、时间与力的频率的函数关系。热分析技术的实际应用热分析技术在材料领域应用广泛,如高分子材料及制品(塑料、橡胶、纤维等)、PCB/电子材料、金属材料及制品、航空材料、汽车零部件、复合材料等领域。下面通过我们实验室技术工程师做的两个热分析测试案例来展示它的应用:1.高分子材料的热裂解测试玻纤增强PA66主要应用于需要高刚性和尺寸稳定性的机械部件护罩。玻纤含量影响到制件的拉伸强度、断裂伸长率、冲击强度等力学性能。2.PCB板的爆板时间测量将样品升温到某一温度后,保持该温度并开始计时,样品发生爆板现象的时刻与保温初始时刻的时间间隔为爆板时间。其实,对于不同的材料和关注点的不同,我们所采用的热分析方法也存在差异,通常会根据实际样品情况和测试需求来选择不同的分析方法。例如,高分子材料:想要了解它的特征温度、耐热性等性能,要用DSC分析;想要了解它的极限耐热温度、组份含量、填料含量等,要用TGA分析。
  • 关于举办“红外光谱分析技术”培训通知
    红外光谱学作为四大光谱学之一,红外光谱分析技术(IR spectroscopy)是利用分子振动跃迁来研究和识别固体、液体或气体形式的化学物质或官能团的分析技术,对样品进行定性和定量分析,广泛地应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域,以及物理、天文、气象、遥感、生物、医学等领域也有广泛的应用。红外光谱对样品的适用性相当广泛,固态、液态或气态样品都能应用,无机、有机、高分子化合物都可检测。此外,红外光谱还具有测试迅速,操作方便,重复性好,灵敏度高,试样用量少,仪器结构简单等特点,因此,它已成为现代化学、药物和材料分析最常用和不可缺少的工具。为适应广大分析技术工作者的需求,进一步提高技术工作者的应用和研究水平,推动红外光谱分析应用的进一步发展,上海交通大学分析测试中心特举办“ATC 009 红外分析技术”培训班,NTC授权单位培训机构上海交通大学分析测试中心承办并负责相关会务工作。现将有关事项通知如下:1、 培训目标:熟悉红外光谱的基本理论与原理;了解傅里叶变换红外光谱仪原理及应用;掌握红外光谱制样的基本技能;熟悉红外光谱附件ATR、积分球和变温附件使用;了解国家标准中红外光谱分析方法通则和傅里叶变换红外光谱仪检定的操作规程。(一)通过学习理论知识,观摩实际操作,排查仪器故障,调谐最佳机器运转状态。(二)面对应急问题,学员可理论联系实际,查找故障原因,进行仪器自检及修复。2、 时间地点: 培训时间:2023年11月1日-11月3日 上海 (时间安排:授课2天,考核1天)3、 课程大纲:课程内容11月1日上午红外光谱基本原理、红外光谱仪仪器结构和功能11月1日下午国家标准红外光谱分析方法通则的应用、红外光谱仪检定的操作规程11月2日全天红外光谱仪和附件基本操作,红外制样操作11月3日全天考核4、 主讲专家:主讲专家来自上海交通大学分析测试中心,熟悉ATC 009 红外分析技术大纲要求,具有NTC教师资格,长期从事红外光谱分析技术研究的专家。5、 授课方式:(1) 讲座课程;(2) 仪器操作6、 培训费用:(一)培训费及考核费:每人3000元(含报名费、培训费、资料费、考试认证费),食宿可统一安排费,用自理。(二)本校费用:每人1500 元(含报名费、培训费、资料费、考试认证费;必须携带学生证)。7、 颁发证书:本证书由国家科技部、国家认监委共同推动成立的全国分析检测人员能力培训委员会经过严格考核后统一发放,证书有以下作用:具备承担相关分析检测岗位工作的能力证明;各类认证认可活动中人员的技术能力证明、该能力证书可作为实验室资质认定、国际实验室认可的技术能力证明;大型仪器共用共享中人员的技术能力证明。 考核合格者将由发放相应技术或标准的《分析检测人员技术能力证书》。考核成绩可在全国分析检测人员能力培 训委员会(NTC)网站上查询(https://www.cstmedu.com/)。 8、 报名方式:(一)请详细填写报名回执表(附件1)和全国分析检测人员能力培训委员会分析检测人员考核申请表(附件2),邮件反馈。 (二) 注:请学员带一寸彩照2张(背面注明姓名)、身份证复印件一张,有学生证的学员携带学生证复印件。 (三) 报名截止时间是10月25日16:00前。 (四) 如报名人数不足6人取消本次培训。9、 联系方式联系人:吴霞(报名相关事宜)、朱邦尙(技术咨询)电话: 021-34208499-6102(吴霞)、021-34208499-6321(朱邦尙)E-mail:iac_office@sjtu.edu.cn官方网址:iac.sjtu.edu.cn
  • 上海有机化学所郭寅龙团队最新成果:实现常压有机化合物的指纹图谱质谱分析
    p style="text-align: justify text-indent: 2em line-height: 1.75em "strongspan style="text-indent: 2em "仪器信息网讯/span/strongspan style="text-indent: 2em " 以 ESI 为代表的大气压离子化技术(API)产生以来,质谱技术与许多分离技术的联用日渐成熟,在环境监测、药物研发、法医鉴定、组学研究等诸多领域发挥出越来越重要的作用。但是与需高真空环境的经典离子源如电子电离源(EI)相比,API用于质谱定性分析存在明显缺陷。这主要是由于API离子源往往基于软离子化机理,化合物经软电离过程得到的多为偶电子离子,很难得到奇电子离子;常压离子化过程能量有限,得到化合物的碎片很少,不能获得丰富的“指纹“信息,无法全面地反映出目标化合物的结构。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "目前已有的质谱解离技术或碎裂模式局限(如碰撞诱导解离往往发生中性丢失)或无法与API进行方便联用(如电子捕获解离和高能诱导裂解需要高真空仪器环境),因此,API用于质谱定性分析的缺陷并没有得到根本性的解决和弥补。 /span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "近日,strong中国科学院上海有机化学研究所郭寅龙课题组发展了一种基于电弧等离子体的新型质谱解离(APD)技术/strong,使大气压环境下有机化合物分子的指纹图谱质谱分析得以实现,很好地弥补了上述缺陷。电弧放电产生的热等离子体同时具备高温、高能和特殊的化学反应性能,对分析物实现离子化的同时还伴随明显的碎裂现象。span style="text-indent: 2em "这种基于电弧等离子体的解离装置(APD)利用施加有约20千伏高压的两个电极,即可很方便地在常压环境下产生稳定的电弧等离子体。APD引起的化合物碎裂包含电荷诱导、自由基诱导以及等离子体独特的化学反应性诱导的断裂,可同时产生大量奇、偶电子碎片离子,所得化合物的“指纹”质谱图包含丰富的结构信息。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "题为《Arc Plasma-Based Dissociation Device: Fingerprinting Mass Spectrometric Analysis Realized at Atmospheric Condition》的成果近期发表在 Analytical Chemistry 上,文章的第一作者是上海有机所博士生朱苏珍。(DOI: 10.1021/acs.analchem.0c03127 )/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 232px " src="https://img1.17img.cn/17img/images/202011/uepic/634aa914-21a3-49af-b66a-7a51bf7fef8d.jpg" title="1.jpg" alt="1.jpg" width="600" height="232" border="0" vspace="0"//pp style="text-align: center text-indent: 2em line-height: 1.75em "图1. APD装置示意图(左)和APD分析所得芬太尼指纹图谱(右)/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "APD的优异解离性能在多种化合物类别中都已得到确认,包括毒品类化合物(甲基苯丙胺等)、精神活性类化合物(芬太尼等)、甾体激素类化合物(地塞米松等),不仅可分析极性化合物,对黄酮类、酚类、蒎烯类等ESI信号响应不好的化合物同样能取得良好解离分析效果。且当与纳升电喷雾电离源(nano-ESI)和零压纸喷雾(zero volt PSI)两种经典的API技术联用时,能很好地实现两种毒品类化合物的指纹图谱分析。利用APD与零压纸喷雾联用装置作者分析了一份来自吸毒者的原尿样品(由上海司法鉴定研究院提供),通过谱图比对,成功鉴定出其中的毒品甲基苯丙胺(冰毒)。此外,作者还发现APD解离模式中存在可能源于等离子体化学的消除亚甲基和芳构化两种特殊碎裂过程,并将后者成功应用于4-丁基苯胺和N-丁基苯胺两种同分异构体的区分中。/spanbr//pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 443px " src="https://img1.17img.cn/17img/images/202011/uepic/ff54c960-bbe3-4396-9775-d1ee0abe2e98.jpg" title="2.jpg" alt="2.jpg" width="600" height="443" border="0" vspace="0"//pp style="text-align: center text-indent: 2em line-height: 1.75em "图2. APD装置与nano-ESI联用装置(a)分析美沙酮标准品所得谱图(c);APD装置与zero-volt PSI联用(b)分析甲基苯丙胺标准品所得质谱图(d)分析原尿样品所得质谱图(右下)/pp style="text-align: justify text-indent: 2em line-height: 1.75em "该解离技术有望实现基于APD的化合物指纹图谱库的构建,并进一步与液相色谱联用,成为一种有效的定性分析手段。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "strong郭寅龙研究员简介/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/2966ca54-17b6-44e5-b59c-9b477e45d647.jpg" title="郭.jpg" alt="郭.jpg"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "郭寅龙,中国科学院上海有机化学研究所研究员, 国家大型科学仪器中心上海有机质谱中心主任。主要从事质谱学研究,在新型离子源研发、反应机理研究、质谱衍生化试剂研发和质谱成像等领域,取得了突出的创新性成绩,2000年以来,在J. Am. Chem. Soc.、Angew. Chem. Int. Ed.、 Nat. Catal.、Anal. Chem.等国内外著名期刊发表研究论文近300篇,获得发明专利20余项。 /pp style="text-align: justify text-indent: 2em line-height: 1.75em "论文链接span style="color: rgb(255, 0, 0) ":/spana href="https://pubs.acs.org/doi/abs/10.1021/acs.analchem.0c03127" target="_blank" style="color: rgb(255, 0, 0) text-decoration: underline "span style="color: rgb(255, 0, 0) "stronghttps://pubs.acs.org/doi/abs/10.1021/acs.analchem.0c03127/strong/span/a/p
  • 看在线拉曼光谱技术与高分子材料研究的契合点——拉曼光谱监测原理与应用在线技术交流会
    p  曾有研究报告显示,2017-2023年全球过程分析技术市场将以12.9%的年复合增长率增长,预计2023年将达到40亿美元。过程分析设备可以洞察生产线过程中的关键点、产品特性等,实现最高级别的过程质控,可称为整个生产过程的“侦查兵”。随着日益重视的质量源于设计(QbD)和制造工艺效率,过程分析技术市场正在不断增长。br//pp  作为一类优异的在线分析设备,在线拉曼光谱,以其物质指纹谱、检测速度快、无损、多组分、多通道、运行成本低等优点正逐渐广泛地用于制药、石油化工、高分子化工、能源、精细化工、食品等领域。拉曼光谱所能提供的及时、准确的分析数据为稳定生产、优化操作、节能降耗起到了不可替代的作用。/pp  其实,早在2001年,FDA就建议要重视在线拉曼光谱等过程分析技术对工艺和生产过程的应用意义。在欧美、日本、新加坡等国家,在线拉曼光谱的过程分析已经成功应用了至少近20年。就国内而言,在线拉曼光谱技术也应用了很多年,但是普及度以及认识度还不够。不过,近几年,随着国内化工、制药等领域日趋激烈的竞争形式,高校科研、制药、化工等领域对在线拉曼光谱的需求日益增多。德国耶拿公司拉曼产品经理王兰芬博士表示,在线拉曼光谱未来一定是一个新的重要发展方向,非常具有发展潜力,该市场在中国每年至少以两位数的速度在递增!/pp  作为全球知名的过程拉曼光谱供应商,凯撒光学系统公司自2016年正式携手德国耶拿分析仪器股份公司进入中国市场以来,一直保持着强劲的发展势头。据王兰芬博士介绍,凯撒拉曼年销售额基本以倍增趋势增长。据悉,目前凯撒公司的在线拉曼产品在高校科研、化工以及制药等领域都具有了一定的市场,比如中科院化学所、中国科技大学、天津大学、中科院固体物理所、中科院青岛海洋研究所等单位的重点实验室已经利用凯撒公司的拉曼光谱仪开展了科学研究 在高分子化工、煤化工以及天然气化工领域,中化泉州、广东炼化、烟台万华、中海油惠州、神华内蒙、星火有机硅等大型化工厂也已经是凯撒公司在线拉曼的用户;另外,在线拉曼在制药领域也具有良好的发展趋势等。/pp  其中,高分子化工对在线拉曼光谱而言是一个极具潜力的大市场。王兰芬博士解释说,高分子化工市场的重要性不言而喻,一方面,高分子材料与人类生活密不可分,另一方面,高分化工已经成为化学工业的主导产业,产值占整个石油化工的近70%,高分子材料的体积产量已远远超过钢铁和其他有色金属之和。/pp  高分子材料本身具有非常强的拉曼信号,拉曼光谱可以很好地区分同分异构体,基于此,在线拉曼光谱已经成功用于高分子合成研究、产品质量检测(高分子密度、共聚物组份分析、结晶)、聚合过程监测等。而且,在线拉曼光谱用于HDPE生产装置的工艺方法也写进了高分子著名的工艺专利商CP的工艺包中。在该工艺应用中,可以通过在线拉曼光谱实时控制反应釜中的氢气、乙烯、α-烯烃的浓度,从而控制生产出所期望的具有一定密度以及分子量的聚乙烯。例如,通过实时控制α-烯烃单体的浓度,可以调整HDPE的短支链数量,从而控制HDPE的密度。据悉,基于高密度聚乙烯HDPE的生产工艺优化,凯撒公司已经开发了杜邦、雪弗龙、埃克森美孚公司、泉州石化、广州炼化等众多实际的应用案例。/pp  为了让更多的同行解拉曼光谱与拉曼光谱在高分子化学与化工的应用,中科院物理所刘玉龙研究员和德国耶拿公司的王兰芬博士携手于3月27日就拉曼光谱原理以及在高分子化学化工的应用进行了报告分享。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 150px height: 206px " src="https://img1.17img.cn/17img/images/202003/uepic/58499fb6-14b1-44d3-9ddb-9abeef2cd337.jpg" title="微信图片_20200331114509.jpg" alt="微信图片_20200331114509.jpg" width="150" height="206" border="0" vspace="0"//pp style="text-align: center "strong报告人:中科院物理所 刘玉龙研究员/strong/pp style="text-align: center "strong报告题目:拉曼散射原理与光谱分析应用/strong/pp  在报告中,刘玉龙研究员不仅介绍了拉曼散射基本原理与特点,而且就分析拉曼光谱的必要条件,拉曼光谱在材料中的在线分析应用等方面内容进行了详细的阐述。据刘玉龙研究员介绍,大型实验室光谱仪与现场、在线测控实用级光谱仪器或系统,将会将数字化、智能化、高灵敏、高分辨、高速度与光谱及光学成像技术巧妙结合,发展出集成化光谱分析技术,将光谱技术“进化”到既能对物质完成定性、定量分析,又可进行定位分析的新科技,满足新世纪提出的看到物质与生物组织中化学、生化成分分布图等新要求。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/4874cdac-a245-45fe-bc1d-ed6fb1e95561.jpg" title="微信图片_20200331114518.png" alt="微信图片_20200331114518.png"//pp style="text-align: center "strong报告人:德国耶拿公司的拉曼产品经理王兰芬博士/strong/pp style="text-align: center "strong报告题目:在线拉曼光谱在高分子化学化工中的应用/strong/pp  王兰芬博士从高分子材料以及生产研究的目的、“RbD”设计理念讲起,介绍了拉曼光谱监测的优势,以及拉曼光谱在高分子化学化工中的应用。报告中,王兰芬博士还总结了在线拉曼光谱仪需要考虑的问题,并针对这些问题介绍了凯撒公司可以提供的在线拉曼光谱新技术及解决方案,如全谱直读的体相全息光栅新技术、轴向分光多色仪、多通道反应与过程同时监控技术、固定设计与智能恒温设计、原位共焦采样技术、多种多样的原位探测光学元件、浸入式采样光学元件设计等。/p
  • 天津能谱科技应邀参加南开大学第19届中国化学高分子学术研讨会活动
    经中国化学会批准,《中国化学会第19 届反应性高分子学术研讨会》定于2018年8月24日~8月26日在南开大学召开。本次会议由南开大学化学学院,南开大学高分子化学研究所,功能高分子材料教育部重点实验室和《离子交换与吸附》编辑部共同承办。作为化学实验室及工业领域优秀的仪器供应厂商,天津能谱科技将参加并赞助此次研讨会。会议现场  本次研讨会首先以“缅怀中国离子交换之父何炳林院士为中国高分子化学研究做出的突出贡献”而后由国内高分子化学研究领域高端研究员做相关研究报告,来自国内各著名高校化学高分子行业的400多名与会者参加了会议,并在学术交流时间参观了我们的展台。 何炳林院士是我国著名的高分子化学家、教育家、中国科学院院士,中国离子交换树脂工业的开创者,被誉为“中国离子交换树脂之父”,为我国第一次核试验的成功和我国高分子学科的发展做出了巨大贡献,历任南开大学化学系系主任、高分子化学研究所所长,曾兼任青岛大学校长、中国化学会常务理事、中国化学会高分子化学委员会副主任等职务。  会场外交流研究报告展示能谱科技产品海报会场展示公司展台 会议期间,天津能谱科技展出了部分实验室设备,如红外光谱仪、红外测油仪、 lab press 15t 粉末压片机、电热压片模具、压片模具等通用实验室产品。  特别感谢组委会的亲切邀请和安排。 作为领先的科学仪器公司,希望天津能谱科技有限公司能为更多的化学高分子行业用户送去优质的科研仪器及解决方案。
  • Waters 凝胶色谱用户交流会在广州圆满落幕
    2016年5月13号,德祥组织的Waters 凝胶色谱(GPC)用户交流会在广州顺利举行,此次参会老师来自高校、企业、政府单位等。会议得到Waters公司的支持,由Waters应用化学家钱柯君与李昕蔚讲解凝胶色谱原理与实践,并邀请华南理工大学食品学院陈健老师分享水相凝胶色谱应用,德祥工程师张杰为大家讲解了凝胶色谱实际使用过程中仪器操作维护。  会议首先由钱工介绍了凝胶色谱基本原理,样品前处理过程中注意事项,异常测试结果的分析,仪器各个部件的使用等;随后华南理工大学陈健老师分享了水相凝胶色谱测试多糖、多肽等天然高分子化合物的分子量与分布的经验;紧接着Waters李工介绍了新的高分子量材料表征手段;会议*德祥工程师张杰为大家演示了Waters Breeze系列GPC各部件在实验过程中维护操作,参会老师积极提问并与工程师仔细讨论,会议取得用户的良好反馈。
  • 可辨白酒可上天!国产质谱仪秒级分析数十种化合物
    此前几十年,在国内厂房产线上运作的质谱仪都来自国外。当国产质谱仪配备在进口设备上并亮起屏幕,中国航天科技集团有限公司八院812所裕达公司显示出了打破国外技术垄断的实力。从0到1,是从无到有,从1到10,是不断走向成熟,而从10到100,则是812所不断对高端科学分析仪器发起攻关的每一步。打造科学检测的“终极手段”在深空探测领域,质谱仪可作为直接分析外星大气和矿物成分的主载荷,美国好奇号火星车就搭载着质谱仪在火星上探寻生命元素。质谱仪还可进行航天材料分析、载人空间舱内空气质量分析研究等,为航天器研制和航天员安全提供保障。812所的质谱仪曾用于进行梦天实验舱地面空间环境分析检测,只需5分钟便获得分析结果,而传统分析方法需要3~5天。“质谱仪研发周期漫长,技术壁垒高,国内质谱仪又起步晚,核心技术不足,大量关键核心部件长期面临被禁运或提价的风险,国内质谱仪市场长期被国际行业巨头垄断。”裕达公司总经理景加荣感叹。如今,借助航天技术转化来的质谱仪技术,中国市场正在悄然改变。“国人对国产高端设备持谨慎态度,但我们相信航天产品的品质。”2021年,在合肥某半导体公司,裕达公司质谱仪事业部负责人薛兵感受到一种“双重震撼”。当他们第一次把自产质谱仪配备在产品检测机台上,屏幕亮起时,用户震惊于国内质谱技术已经这么成熟,他们也亲眼看到,国内仪器自主研发的路已经走了这么远。质谱仪作为一种高端科学分析仪器,由进样系统和真空系统等系统组成,可以直接测量出物品的组成部分。因为技术壁垒高、用途广泛,质谱仪在业内享有美誉,人们将之誉为科学仪器皇冠上的“明珠”,更因为“如果质谱仪都无法检测到,那其他仪器更难以做到”这一现实,而称其为“终极的检测手段”,是目前物质鉴定的利器。“质谱仪可以对检测物进行定性定量分析,‘定性’能看出是什么,‘定量’能看出有多少。”薛兵介绍,质谱仪分析速度快,准确率高,擅长对混合物进行分析,特别是对大量混合物中少量目标的分析。812所主要研制的四级质谱仪能在秒级时间同时分析数十种化合物,满足工业现场的快速、高灵敏度检测要求。从“用户”变身“厂家”当把质谱仪带到用户面前时,812所遇到过各种质疑,最大的问题就是客户对国产仪器不够认可,表现出将信将疑的态度。“因为不相信国内有人真的在攻克质谱仪相关技术,我最初第一反应就是不可能。”跟这些用户一样,裕达公司质谱仪事业部负责人蒋公羽起初自己都不相信中国人可以生产出这样的高端仪器装备,直到读博期间开始整机搭建,看到国产质谱仪的每一个组成部分甚至能比国外更优秀时,蒋公羽不再有任何怀疑。在2013年,国外开始限制对中国航天领域高端质谱仪的供应,812所陷入“卡脖子”的困局,为了不耽误所里对航天器污染物检测的工作,他们依托多年的真空装备技术积累,在短时间内完成质谱仪初代样机的研发,打破了我国对国外质谱仪依赖的局面。从用户到厂家,这一身份转变也成为812所的独特优势。“我们从质谱仪的资深用户成为质谱仪的生产者,又去寻找相关领域的具体应用。”景加荣认为,“从研发转到生产,重要的是直接了解用户需求,给出最佳解决方案,这在实验室里是想不到的。”近10年来,812所的足迹从华东挺进全国,不断拓展新的应用方向,他们聚焦熟悉的航天军工及相关工业领域,瞄准生物医药和集成电路两大方向进行质谱仪的研发生产,建立起具备百套级批量生产能力的质谱产线。走出国门技术过硬在任何地方都是最好的敲门砖。2018年,812所经历了一场“鸡蛋战胜石头”式的挑战。当时,他们研制的医药生产PAT质谱仪还只是一个“裸机”,凭借良好的问题解决方案和扎实的技术,打败了竞争对手。此后,他们不断给自己增加“考题”的难度,在后期又经过3年的反复迭代论证,最终交付给用户一款真正解决需求的产品。2022年,812所的质谱仪销往了土耳其等国家。“想把一项科学技术搞懂吃透,最重要的就是要掌握原理。在整个产品供应链上,812所也自主攻克了多项关键技术。”蒋公羽认为。2022年珠海航展上,一款“能辨白酒”的仪器吸引了众人驻足,这是蒋公羽带头研制的便携式快检质谱仪,“这款仪器一次可以实现数十种组分的检测,目前在环境监测及安防领域都有广泛应用。”如今,812所生产的质谱仪产品不但在航天领域推广应用,也在生物医药、环境监测、科研等民用领域崭露头角,不断为实现高端分析仪器国产化替代贡献航天力量。
  • 秒级分析数十种化合物,国产质谱仪可辨白酒可上天
    此前几十年,在国内厂房产线上运作的质谱仪都来自国外。当国产质谱仪配备在进口设备上并亮起屏幕,中国航天科技集团有限公司八院812所裕达公司显示出了打破国外技术垄断的实力。从0到1,是从无到有,从1到10,是不断走向成熟,而从10到100,则是812所不断对高端科学分析仪器发起攻关的每一步。打造科学检测的“终极手段”在深空探测领域,质谱仪可作为直接分析外星大气和矿物成分的主载荷,美国好奇号火星车就搭载着质谱仪在火星上探寻生命元素。质谱仪还可进行航天材料分析、载人空间舱内空气质量分析研究等,为航天器研制和航天员安全提供保障。812所的质谱仪曾用于进行梦天实验舱地面空间环境分析检测,只需5分钟便获得分析结果,而传统分析方法需要3~5天。“质谱仪研发周期漫长,技术壁垒高,国内质谱仪又起步晚,核心技术不足,大量关键核心部件长期面临被禁运或提价的风险,国内质谱仪市场长期被国际行业巨头垄断。”裕达公司总经理景加荣感叹。如今,借助航天技术转化来的质谱仪技术,中国市场正在悄然改变。“国人对国产高端设备持谨慎态度,但我们相信航天产品的品质。”2021年,在合肥某半导体公司,裕达公司质谱仪事业部负责人薛兵感受到一种“双重震撼”。当他们第一次把自产质谱仪配备在产品检测机台上,屏幕亮起时,用户震惊于国内质谱技术已经这么成熟,他们也亲眼看到,国内仪器自主研发的路已经走了这么远。质谱仪作为一种高端科学分析仪器,由进样系统和真空系统等系统组成,可以直接测量出物品的组成部分。因为技术壁垒高、用途广泛,质谱仪在业内享有美誉,人们将之誉为科学仪器皇冠上的“明珠”,更因为“如果质谱仪都无法检测到,那其他仪器更难以做到”这一现实,而称其为“终极的检测手段”,是目前物质鉴定的利器。“质谱仪可以对检测物进行定性定量分析,‘定性’能看出是什么,‘定量’能看出有多少。”薛兵介绍,质谱仪分析速度快,准确率高,擅长对混合物进行分析,特别是对大量混合物中少量目标的分析。812所主要研制的四级质谱仪能在秒级时间同时分析数十种化合物,满足工业现场的快速、高灵敏度检测要求。从“用户”变身“厂家”当把质谱仪带到用户面前时,812所遇到过各种质疑,最大的问题就是客户对国产仪器不够认可,表现出将信将疑的态度。“因为不相信国内有人真的在攻克质谱仪相关技术,我最初第一反应就是不可能。”跟这些用户一样,裕达公司质谱仪事业部负责人蒋公羽起初自己都不相信中国人可以生产出这样的高端仪器装备,直到读博期间开始整机搭建,看到国产质谱仪的每一个组成部分甚至能比国外更优秀时,蒋公羽不再有任何怀疑。在2013年,国外开始限制对中国航天领域高端质谱仪的供应,812所陷入“卡脖子”的困局,为了不耽误所里对航天器污染物检测的工作,他们依托多年的真空装备技术积累,在短时间内完成质谱仪初代样机的研发,打破了我国对国外质谱仪依赖的局面。从用户到厂家,这一身份转变也成为812所的独特优势。“我们从质谱仪的资深用户成为质谱仪的生产者,又去寻找相关领域的具体应用。”景加荣认为,“从研发转到生产,重要的是直接了解用户需求,给出最佳解决方案,这在实验室里是想不到的。”近10年来,812所的足迹从华东挺进全国,不断拓展新的应用方向,他们聚焦熟悉的航天军工及相关工业领域,瞄准生物医药和集成电路两大方向进行质谱仪的研发生产,建立起具备百套级批量生产能力的质谱产线。走出国门技术过硬在任何地方都是最好的敲门砖。2018年,812所经历了一场“鸡蛋战胜石头”式的挑战。当时,他们研制的医药生产PAT质谱仪还只是一个“裸机”,凭借良好的问题解决方案和扎实的技术,打败了竞争对手。此后,他们不断给自己增加“考题”的难度,在后期又经过3年的反复迭代论证,最终交付给用户一款真正解决需求的产品。2022年,812所的质谱仪销往了土耳其等国家。“想把一项科学技术搞懂吃透,最重要的就是要掌握原理。在整个产品供应链上,812所也自主攻克了多项关键技术。”蒋公羽认为。2022年珠海航展上,一款“能辨白酒”的仪器吸引了众人驻足,这是蒋公羽带头研制的便携式快检质谱仪,“这款仪器一次可以实现数十种组分的检测,目前在环境监测及安防领域都有广泛应用。”如今,812所生产的质谱仪产品不但在航天领域推广应用,也在生物医药、环境监测、科研等民用领域崭露头角,不断为实现高端分析仪器国产化替代贡献航天力量。
  • 直播预告!先进高分子材料主题网络会议之高分子表征测试技术专场
    仪器信息网联合《高分子学报》将于2022年11月10-11日合作举办“先进高分子材料”主题网络研讨会(2022),本届会议报告将聚焦于高分子材料研究与表征测试技术,邀请国内高分子领域的知名专家和国内外科学仪器厂商代表分享研究成果和前沿技术,致力于为国内高分子材料研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到相关专家的精彩报告。主办单位:仪器信息网&《高分子学报》会议日程及报名链接:https://www.instrument.com.cn/webinar/meetings/polymer2022/本届先进高分子材料主题网络研讨会共设置了4个主题会场 ,分别是:高分子材料研究、大科学装置在高分子研究中的应用、高分子表征测试技术(上)、高分子表征测试技术(下)。高分子表征测试技术专场报告嘉宾简介:南京大学教授 胡文兵 1989年本科毕业于复旦大学材料科学系,1995年博士毕业于复旦大学高分子科学系,随后留校任讲师。1998-2003年 先后留学德国、美国和荷兰从事博士后研究,2004年任南京大学化学化工学院高分子系教授。主要从事高分子结晶相关的分子理论模拟和超快热分析研究。2005年入选教育部新世纪优秀人才培养计划,2008年获得国家自然科学基金委员会杰出青年科学基金资助,2020年获美国物理学会会士荣誉称号。目前担任Springer Nature 出版集团“软物质和生物物质”系列丛书高级编辑,《高分子学报》副主编,《功能高分子学报》、Chinese Journal of Polymer Science、Polymer Crystallization、Polymer International 和Molecular Simulation 期刊编委。本报告介绍最新发展起来的高速扫描量热技术及其Flash DSC设备,利用高速热流的准直性和样品的小尺度,根据傅里叶热导定律,可较为准确地测量微米厚度高分子薄膜的跨膜热导率。该方法具有材质普适性好和微尺度表征等优点,适应当前热管理系统微型化对高分子材料热导率表征的技术需求。报告题目:Flash DSC表征高分子薄膜材料热导率青岛科技大学教授 闫寿科1985年毕业于曲阜师范学院获学士学位,同年考入中国科学院长春应用化学研究所攻读硕士学位,1988年获理学硕士学位后在中国科学院长春应用化学研究所从事研究工作。1993-1996年在德国多特蒙德大学(Dortmund University)攻读中科院长春应用化学研究所和德国多特蒙德大学联合培养博士学位,获得博士学位后在德国多特蒙德大学化工系以固定研究人员身份从事研究工作。2000年获中国科学院百人计划,于2001年回中国科学院化学研究所工作任研究员、博士生导师。现在北京化工大学材料科学与工程学院/青岛科技大学高分子科学与工程学院从事教学和科研工作,任教授、博士生导师。主要研究方向是聚合物不同层次结构与性能。作为项目负责人承担和完成国家自然科学基金重大仪器、重点、面上、杰出青年以及山东省重大基础等科学基金项目。在Nat. Rev. Mater., Prog. Mater. Sci., Angew. Chem. Int. Ed., J. Am. Chem. Soc., Adv. Mater., Adv. Funct. Mater., Adv. Sci, Nano Energy, Macromolecules 等学术期刊发表论文400余篇、出版专论3章,申请发明专利10项。曾获山东省自然科学二等奖(2016)和云南省科技进步二等奖(2015)。准确揭示调控聚合物不同层次结构形成机制与精准调控技术具有重要学术价值和实际意义,得到广泛关注。透射电镜在聚合物不同层次结构研究发挥了重要作用,本文在简要介绍工作原理的基础上,以科研实例详细介绍其在聚合物晶体结构、形态结构等不同层次结构研究中的应用。报告题目:透射电镜在聚合物不同层次结构研究中的应用吉林大学教授 张文科吉林大学超分子结构与材料国家重点实验室、化学学院教授。分别于1997年和2002年在吉林大学化学学院获学士和博士学位。2001年4月至2002年3月,在德国慕尼黑大学应用物理系博士联合培养。2003年3月至2007年5月先后在英国诺丁汉大学药学院及化学学院从事博士后研究。2007年6月加入吉林大学超分子结构与材料国家重点实验室,并被聘为教授。2015年获得国家杰出青年科学基金资助,2018年入选国家万人计划领军人才。目前主要研究方向为:1)单分子力谱方法学;2)高分子结晶与形变;3)超分子及共价键力化学;4)纳米药物递送。担任中国化学会生物物理化学专业委员会委员。担任Giant, Chinese Journal of Polymer Science, Langmuir及 ACS Macro Letters杂志编委。本次报告将介绍我们研究组近年来在利用基于原子力显微镜技术的单分子力谱以及单分子磁镊方法研究聚合物纳米尺度力学性质以及聚合物高级结构动态演化方面的进展。报告题目:聚合物链的单分子操纵 - 从纳米力学性质到动态结构演变 赛默飞世尔科技(中国)有限公司高级应用工程师 邝江濛邝江濛,博士毕业于英国University of Birmingham地理地质及环境科学系,主要研究方向为利用质谱技术分析环境中的痕量污染物。本科及硕士毕业于清华大学环境学院。2021年加入赛默飞世尔科技(中国)有限公司,负责环境化工领域液相色谱质谱仪的应用支持工作,于质谱分析特别是高分辨质谱分析有着丰富的经验。化工材料, 尤其是高分子聚合材料由于其复杂的分子组成给其表征带来了很大的困难。赛默飞Orbitrap静电场轨道阱超高分辨质谱仪拥有超高的分辨率、准确的质量测定和稳定的质量轴,使得复杂材料的元素组成信息纤毫毕见,是材料表征的有力工具。本报告将简要介绍Orbitrap质谱仪的独特优势及其在材料分析领域的应用。报告题目:赛默飞Orbitrap静电场轨道阱超高分辨质谱在材料分析中的应用 中国科学院长春应用化学研究所研究员 门永锋门永锋,中国科学院长春应用化学研究所研究员,博士生导师。1995年7月毕业于东南大学,获学士学位 1998年7月毕业于中国科学院长春应用化学研究所,获硕士学位;2001年10月毕业于德国弗赖堡大学,获博士学位。2001年10月至2002年3月在弗莱堡大学物理系做研究助理,2002年4月至2004年3月在德国BASF公司做博士后,2004年4月起任职BASF公司Physicist。2005年3月起在长春应用化学研究所工作,现任高分子物理与化学国家重点实验室主任,高分子结构物理课题组组长,主要应用散射(X射线及中子)技术从事高分子结构演化及其与性能关系领域的研究,在高分子结晶机理、晶型选择及转变、力学形变破坏机理等方面取得系列成果。作为课题负责人先后承担了国家自然科学基金重点、杰青、面上等项目、国家重点研发计划项目、企业委托项目多项。发表论文140多篇,申请专利8项,其中授权6项。专业方向为“高分子物理”。曾任Macromolecules及Polymer Crystallization杂志顾问编委、现任Polymer Science杂志编委,中国晶体学会小角散射专业委员会主任、IUPAC Polymer Division Titular Member及其商用聚合物结构与性能委员会主席、中国化学会应用化学学科委员会委员。2014年入选科技部中青年科技创新领军人才,2015年获得国家自然科学杰出青年基金及英国皇家学会牛顿高级学者基金,2016年入选第二批万人计划科技创新领军人才,享受2018年度国务院政府特殊津贴。快速扫描芯片量热仪(FSC)是近年来发展起来的热分析技术,其快速的扫描速率可有效抑制材料升降温过程中的结晶、焓松弛、冷结晶、重结晶等行为,为动力学研究带来极大便利。本报告介绍应用FSC研究热塑性聚氨酯在不同温度下丰富的相分离、结晶及焓松弛等行为。报告题目:热塑性聚氨酯的快速扫描芯片量热仪研究 中国科学技术大学教授级高级工程师 丁延伟丁延伟,博士、中国科学技术大学教授级高级工程师。自2002年开始从事热分析与吸附技术的分析测试、实验方法研究等工作,现任中国化学会化学热力学与热分析专业委员会委员、全国教育装备标准化委员会化学分委会委员、中国材料与试验团体标准委员会科学试验领域委员会委员等。曾获中国分析测试协会科学技术奖(CAIA奖)二等奖,主持修订教育行业标准《热分析方法通则》(JY/T 0589.1~4-2020),以主要作者发表SCI论文30余篇,获授权专利7项。以第一作者或唯一作者身份出版《热分析基础》、《热分析实验方案设计与曲线解析概论》、《热重分析 —方法、实验方案设计与曲线解析》等热分析相关著作5部。热分析技术是高分子表征的常规手段之一,作为热分析中最常用的一种分析技术,热重分析技术在与高分子相关的热稳定性、组成分析、热力学和动力学性质研究中发挥着十分重要的作用。在实际应用中,完美的实验方案和科学、规范、准确、合理、全面的曲线解析是决定热重实验成败的关键因素。本报告结合报告人从事热分析的工作经历,对于如何充分发挥热重分析技术在材料分析表征中的作用、拓宽应用范围和数据质量等方面提出了一些建议。报告题目:热重分析技术在高分子科学中应用的常见问题分析西南大学教授 郭鸣明郭鸣明,教授,博士生导师,国家特聘专家,俄罗斯自然科学院美籍院士,南京大学化学系获学士(1982),硕士学位(1985)。复旦大学材料系获博士学位(1987)。先后在德国汉堡大学高分子科学研究所(洪堡学者。1990-1992)、美国纽约大学(1992-1994)从事高分子研究工作,曾任美国阿克伦大学高分子科学和工程学院核磁共振中心主任(1994-2013),中石化北京化工研究院首席专家,中石化高级专家(2013-2018)。现任西南大学化学化工学院教授,博士生导师,(2018至今), 俄罗斯自然科学院院士(2021至今)。发表专利20篇.在国内外学术刊物上发表SCI收录论文140篇, 包括论著章节6篇,综述 7篇。研究方向:高分子化学,高分子物理,核磁共振,碳量子点,新型水溶性非共轭发光聚合物,金属纳米材料,碳纳米材料。新型石墨烯高分子纳米复合物。报告题目:原位核磁共振研究单体和高分子反应动力学和机理 清华大学副系主任/副教授 徐军徐军,博士,长聘副教授,博士生导师。1997 年清华大学化工系本科毕业,2002 年清华大学化工系博士毕业。2002 年毕业后留在清华大学化工系工作,聘为助理研究员。2006 年晋升为副教授。2011年到德国弗莱堡大学物理系Günter Reiter教授研究组进行洪堡学者访问研究。主要研究兴趣包括高分子结晶、生物降解高分子、动态共价高分子等。2011年入选洪堡学者,2012年入选教育部“新世纪优秀人才”,同年获得冯新德高分子奖(Polymer 刊物年度中国最佳文章提名)。理论和实验相结合,揭示了环带球晶的形成机理,测得了几种高分子结晶的次级临界核尺寸。生物降解聚二元酸二元醇酯研究成果在企业实现了万吨级产业化和广泛应用。本报告将介绍普通偏光显微镜、拥有可变偏振方向的PolScope系统以及Müller矩阵显微镜的基本工作原理。并结合具体案例,针对手性高分子环带球晶的形成机理问题,采用几种光学显微镜和原子力显微镜,确证了片晶连续扭转的微观机理。运用Müller矩阵显微镜,揭示了片晶扭转对固体薄膜旋光手性的影响。报告题目:运用先进光学方法研究高分子环带球晶的形成机理 北京大学教授 梁德海1994年获南开大学环境科学系学士学位,同年进入南开大学化学系攻读硕士。2001年在美国纽约州立大学石溪分校获得理学博士学位,并留任博士后。2006年加入北京大学化学与分子工程学院高分子科学与工程系,任副教授;2012年提升为教授。2011年得到教育部新世纪优秀人才计划的支持,2015年Elsevier第九届冯新德高分子奖最佳文章奖获得者。主要研究方向包括:基于生物大分子的非平衡态原始细胞模型的构筑及动态行为研究;多肽诱导脂质体膜内吞及外吐机理研究;大分子拥挤及限制作用的定量化研究;体内自调控的肺靶向siRNA传递载体研究。光散射技术是高分子领域中重要的表征手段之一,能够测得重均分子量、回转半径、第二维里系数、流体力学半径等重要的物理量。除合成高分子外,光散射技术同样适用于研究生物大分子、微生物、胶体、纳米粒子、病毒、囊泡等在溶液或悬浮液中的行为。本报告重点介绍光散射的基本理论、实验技巧以及应用中要注意的事项。报告题目:光散射在高分子溶液表征中的应用 郑州大学教授 张彬张彬,郑州大学材料学院教授,博士生导师。2004年本科毕业于郑州大学计算机信息管理专业,2010年于郑州大学获得材料加工工程专业硕士学位,2014年在德国弗莱堡大学化学系获得博士学位 (施陶丁格大分子研究所荣誉毕业)。2015年3月入职郑州大学,2020年6月受聘为郑州大学学科特聘教授。主要研究方向为高分子薄膜结晶,高分子成型加工中的物理问题,高分子相转变的微观机制。近年来,发表第一作者或通讯作者论文三十余篇(包括13篇Macromolecules,7篇Polymer,1篇高分子学报特约专论和1篇高分子学报特约综述)。原子力显微镜是一种在纳米尺度表征材料相变过程、微观形貌结构与性能的有效工具,在高分子科学领域具有广泛应用。超薄膜中单层片晶可为研究高分子结晶提供合适的模型体系,与原子力显微镜相结合,不但可以在原位、实空间、高分辨的研究高分子成核与片晶生长过程,还有利于研究多晶型高分子复杂的结晶与熔融行为。报告题目:原子力显微镜研究高分子超薄膜结晶会议日程及报名链接:https://www.instrument.com.cn/webinar/meetings/polymer2022/
  • 安捷伦科技的超临界流体色谱质谱联用解决方案简化了复杂化合物的高通量分析
    安捷伦科技的超临界流体色谱质谱联用解决方案简化了复杂化合物的高通量分析 2014 年 6 月 16 日,北京 — 安捷伦科技公司(纽约证交所:A) 今日宣布该公司的所有液质联用仪包括软件支持对于超临界流体色谱 (SFC/MS) 的控制。这一增强型功能有助于加快分离速度、降低有机溶剂用量,并实现液相色谱的正交选择。这种硬件-软件高度整合的SFC/MS解决方案,进一步简化了复杂化合物的高通量分析过程,使其成为适合于多种行业的理想产品。 制药、食品科学、脂质组学、代谢组学、环境和石化实验室可使用 SFC/MS 分析一系列的化合物(例如,手性、非手性、极性和非极性化合物),包括复杂基质中高度类似的化合物。SFC与液相色谱质谱的大气压电离源完美兼容,通过与质谱联用,提高了峰的分离能力,使 SFC 的应用范围更广。 “以前安捷伦的LCMS产品 6400 系列 QQQ 和 6200/6500 TOF/Q-TOF与SFC联用时需要使用两个软件平台,”安捷伦的 LC/MS 产品市场部总监 Lester Taylor 说道,“现在安捷伦 MassHunter 软件能完美控制 Agilent 1260 Infinity 分析型 SFC 系统。使用这个单一软件平台将仪器控制、数据采集和分析过程集于一身,将使我们的客户收益。” 除了分析型 SFC 系统,安捷伦还是唯一可提供混合型 SFC/UHPLC系统的公司,该系统可在两种模式间进行无缝转换,使方法开发变得更加快速简单。SFC 和 SFC/UHPLC 系统均可与安捷伦液质联用。 现在,SFC/MS 的集成软件为方法开发和日常分析提供了可靠的仪器控制。仅使用有限的有机溶剂,SFC/MS 即可对用液相色谱方法难以分离的化合物进行快速高效的分离。 更多信息,请访问安捷伦的在线资源,了解扩展的液相色谱系统工作流程解决方案。您还可以访问安捷伦的 2014 ASMS 媒体资料包以获取更多产品相关信息,并了解安捷伦公司的 ASMS 会议活动安排。关于安捷伦科技公司 安捷伦科技公司(纽约证交所:A) 是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20600 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2013 财年,安捷伦的净收入达到 68 亿美元。如欲了解关于安捷伦的详细信息,请访问:www.agilent.com。 2013 年 9 月 19 日,安捷伦宣布将通过对旗下电子测量公司进行免税剥离,分拆为两家上市公司的计划。分拆后的电子测量公司命名为是德科技 (Keysight Technologies, Inc.),此次分拆预计将于 2014 年 11 月初完成。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 超短链全氟烷基化合物“三氟乙酸”分析利器——超临界流体色谱质谱联用技术
    近年来,以三氟乙酸(TFA)为代表的超短链全氟烷基化合物(超短链PFAS)大量赋存于城市河水中这一问题已对城市生态及饮用水生产带来了巨大挑战,监测和精确定量饮用水源中的超短链PFAS已经迫在眉睫。针对高极性的超短链PFAS,高效环保的超临界流体色谱质谱联用技术可以提供良好保留和高灵敏度检测结果。背景介绍PFAS是一类广泛用于消费品和工业生产的含氟有机化合物。全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)是两种含八个碳的全氟烷基酸类化合物(PFAA),因具有较高的环境持久性和毒性,已在全球范围内逐步淘汰。然而,取而代之的是一些超短链(C1&minus C3)(图1)和短链(C4&minus C7)PFAA,其在环境、血液及尿液样本中正在被广泛检出【1,2】,引发了人们对健康影响的担忧。图1 超短链(C1&minus C3)全氟烷基化合物特别是含量较高的三氟乙酸被认为含有损坏生育能力和儿童发育毒性,正在全球范围内引起广泛关注。据欧洲新闻网报道,欧洲农药行动网络(PAN Europe)及其成员于5月27日联合发布了一项研究报告,对来自10个欧盟国家的23个地表水样本和6个地下水样本的联合调查发现,所有检测的水样中均检测到PFAS,其中23个样本(79%)的TFA浓度超过了欧盟饮用水指令中“PFAS总量”的拟议限值;而在检测到的总PFAS中,TFA占总量的98%以上【3】。TFA是含有两个碳的全氟羧酸,属于超短链(C1&minus C3)全氟烷基化合物。其在环境中普遍存在,主要来源包括PFAS农药、氢氟碳化物制冷剂、污水处理和工业污染(图2)。尽管目前对TFA的生物毒性效应研究有限,考虑到其持久性和全球传播特性,正在引起全球多国的密切关注【4,5】。图2 杀虫剂、杀菌剂和药品中的碳键全氟甲基在环境条件下通过氧化裂解转化为TFA特色应用方案使用高效环保的超临界流体色谱(SFC)分离技术,结合超高灵敏度三重四级杆质谱检测器,岛津中国创新中心开发了包括TFA在内的五种超短链PFAS快速分析方法。与反相液相色谱不同,SFC可以充分保留仅有一到三个碳的超短链PFAS,有效降低基质的干扰(图3)。图3 SFC-MS/MS和LC-MS/MS分析超短链PFAS色谱对比图(1ng/mL标液)使用SFC-MS/MS对纯水配置的系列标准溶液进行分析,可得到良好线性和较低检测限(见表1),进一步,对不同地表水样品进行检测,结果发现,均检测到一定量TFA,使用内标法定量,分别为几百个到几千个ppt,说明TFA在城市水体都存在较为严重的污染(图4、图5)。图4 SFC-MS/MS分析地表水样品1中超短链PFAS图5 SFC-MS/MS分析地表水样品2中超短链PFAS表1 SFC-MS/MS分析水样中超短链PFAS线性和检出限总结采用超临界流体色谱串联三重四极杆质谱仪(SFC-MS/MS)建立超短链(C1&minus C3)全氟烷基化合物的快速分析方法。由于超临界流体色谱独特的分离选择性,使用SFC-MS/MS分析种类繁多的PFAS,可以得到与反相色谱截然不同的溶出顺序和出峰行为。SFC-MS/MS可作为反相液相色谱质谱联用技术一种有力补充,对超短链PFAS进行更准确定量。随着对PFAS及其降解产物(TFA等)认识的不断深入,全球各国需要加强对这些持久性化学品的监管和限制, 旨在减少PFAS污染,保护生态系统和人类健康。超临界流体色谱串联三重四极杆质谱仪(SFC-MS/MS)注解*:超临界流体色谱(SFC):使用超临界流体作为流动相的色谱分离技术。以超临界流体CO2为流动相的SFC分离技术不仅高效而且节能环保,作为一种绿色分离技术在制药、食品和石油领域得到越来越广泛的应用。参考文献1. Guomao Zheng, Stephanie M. Eic, Amina Salamova. Elevated Levels of Ultrashort- and Short-Chain Perfluoroalkyl Acids in US Homes and People. Environ. Sci. Technol. 2023, 57, 42, 15782–15793.2. Isabelle J. N., Daniel H., Hanna L. W., Vassil V., Ulrich B., Karsten N., Marco S., Sarah E. H, Hans P. H. A., and Daniel Z., Ultra-Short-Chain PFASs in the Sources of German Drinking Water: Prevalent, Overlooked, Difficult to Remove, and Unregulated. Environ. Sci. Technol. 2022 56, 10, 6380-6390.3. 欧洲水体中的PFAS污染引发关注:塞纳河等河流中令人惊讶的三氟乙酸浓度.【微信公众号:新污染物监测与分析】4. Cahill, T. M. Increases in Trifluoroacetate Concentrations in Surface Waters over Two Decades. Environmental Science & Technology, 2022, 56,9428-9434.5. Thomas M. Cahill. Assessment of Potential Accumulation of Trifluoroacetate in Terminal Lakes. Environ. Sci. Technol. 2024, 58, 6, 2966–2972.本文内容非商业广告,仅供专业人士参考。
  • 许国旺课题组提出基于液相色谱-高分辨串联质谱的糖苷类化合物规模化注释新方法
    近日,中科院大连化学物理研究所许国旺课题组在糖苷类化合物规模化注释方面取得新进展。通过构建in silico苷元库和糖基/酰基-糖基碎裂模式库,以及发展利于苷元离子检出的LC-HR MS/MS分析条件,建立了苷元离子的高通量识别方法以及高效去除假阳性候选结果的方法,并开发了相应的糖苷类化合物规模化注释程序plantMS2(https://github.com/zhengfj1994/plantMS2)。 糖苷类化合物是一类重要的次生代谢产物,在植物生长发育过程中起着关键作用,全景注释植物中已知和未知糖苷类化合物具有重要的研究意义。由于市售标准品和数据库收录的二级质谱规模有限,现有的基于液相色谱-高分辨质谱(HRMS)的糖苷类成分注释方法难以有效地对糖苷类化合物进行注释、定性。研究团队发展了一种基于液相色谱-HRMS/MS的糖苷类化合物规模化定性新方法。构建了具有植物种属特异性的in silico苷元库以及糖基/酰基-糖基的in silico碎裂模式库。优化出利于苷元离子检出率的LC-HR MS/MS分析条件,并建立了苷元离子的高通量识别方法。最后,通过候选糖苷-苷元质谱相似性发展了高效去除假阳性候选结果的方法。方法评估表明,该注释流程适用于多种类型的HRMS仪器不同碎裂模式(HCD和CID等)下建立的方法,定性准确性和特异性均优于现有注释方法。将该方法应用于玉米叶片,种子和花丝中糖苷类成分的注释,共注释出274个糖苷类成分。相关研究成果以“Novel Method for Comprehensive Annotation of Plant Glycosides Based on Untargeted LC-HRMS/MS Metabolomics”为题,发表在Analytical Chemistry上。该工作的第一作者是我组博士研究生张秀琼,通讯作者为路鑫和许国旺。上述工作得到了国家重点研发计划、国家自然科学基金等项目的资助。文章链接:https://pubs.acs.org/doi/10.1021/acs.analchem.2c02362(文/图 张秀琼)
  • 全国仪器分析及样品预处理研讨会在镇江召开
    国际化学年在中国——中国化学会第六届全国仪器分析及样品预处理学术研讨会在名城镇江召开  仪器信息网讯 2011年10月29-30日,由中国化学会主办,清华大学、北京大学和解放军防化研究院共同承办的“第六届全国仪器分析及样品预处理学术研讨会”在江苏镇江金鳌苑大酒店顺利召开。110余位来自全国多地高等院校、科研院所及生产企业等单位代表参加了此次会议。会议现场中国化学会微量元素研究与进展专业委员会主任 黄启斌研究员致开幕词中国化学会微量元素研究与进展专业委员会副主任 李玉珍高工致开幕词  本次会议共进行学术报告近40个,内容涉及:样品预处理方法开发及其在多个领域的应用研究、样品预处理新技术研究和新仪器开发、在线样品预处理技术及其应用研究、仪器分析方法在环境等多个领域的应用研究以及分析仪器及功能部件的研制、改进和应用开发等。本编辑对其中一些令本人印象深刻的报告作简要介绍,以飨网友:  清华大学丁明玉教授以“凝胶色谱样品净化技术”为题,细致介绍了凝胶色谱的定义、分类、工作原理及其应用,他提到:在凝胶色谱中,流动相只起溶解样品的作用,以有机溶剂为流动相的凝胶渗透色谱(GPC)应用较多,而以水为流动相的凝胶过滤色谱(GFC)的应用相对较少,这主要是因为水溶性大分子不仅可以溶于水,通常也能溶于有机溶剂中。凝胶色谱主要用于高分子化合物的分子量及其分布的测定、中小分子有机物的分离与定量分析、生物大分子纯化(制备凝胶色谱)、凝胶色谱指纹图谱(如原油及其重质组分的评价)和样品净化,是一种具有独特分离机理和鲜明应用特色的样品前处理技术,其应用领域有望进一步拓展。报告人:清华大学丁明玉教授报告题目:凝胶色谱样品净化技术  山西省产品质量监督检验所李学哲高工在报告中浅析了一个较新的概念——化学安全监测,它是指通过在生产线、设备和设施上使用的各类仪器、仪表及化学、物理、生物等安全监控手段,对涉及危险、有毒、有害化学品及中间化学反应产物状况,进行在线、实时、动态、跟踪等检测过程,从而预测、预警、预防事故的发生。报告人:山西省产品质量监督检验所李学哲高工报告题目:浅析化学安全监测  清华大学杨成对高工以“常压质谱离子源的设计与应用”为题,从三个方面进行了介绍:常压质谱离子源的研究、解吸附电喷雾离子源(DESI)的应用、介质阻挡放电离子源(DBDI)的应用。他介绍说,2003年以后,越来越多的质谱研究者关注大气压下直接从固体表面分析的质谱离子源技术(APDI),2004年以来,国外主要研究杂志上发表的新型离子源近20种,包括其所在研究组研发的DBDI、LTP离子源及其它研究组或公司开发的DESI、DART离子源等。杨成对老师还介绍了解吸附电喷雾离子源在枪击残留物分析中的应用、介质阻挡放电离子源在实时反应监测及质谱成像技术中的应用等。最后指出,介质阻挡放电离子源适合作为小型化质谱的离子源,可用于直接分析气体、固体样品,也可进行液体表面的直接分析,无须样品预处理。报告人:清华大学杨成对高工报告题目:常压质谱离子源的设计与应用  此外,中国检验检疫科学研究院许秀丽女士介绍了有关于GC大体积进样与微型固相萃取样品快速前处理的研究成果:采用该单位研发的大体积进样器,建立了基于大体积进样的快速测定方法。在GC-MS仪器检测灵敏度不变的情况下,采用大体积进样法,进样体积由原来的1μL增加到25μL。因此在达到与常规方法相同检测灵敏度、保持绝对进样量相同的条件下,大体积进样法省略了液液分配、减压浓缩等步骤,从而大大缩短前处理时间、提高了分析检测效率、降低了实验成本。已有方法完成整个前处理过程约需5-6 h,大体积进样法由于使用微型固相萃取柱,因此完成整个前处理过程只需50-60 min。  来自东南大学的康学军教授及其所在研究组近年来致力于纳米纤维用于分离、净化的研究,她在报告中介绍了纳米纤维独特优异的性能:与现有萃取填料相比,纳米纤维具有高比表面积,与目标分子相互作用的位点明显增加,使得提取富集效率显著提高 有机溶剂用量大大减少,最大限度的降低对人体的危害 萃取操作简便易行,易于自动化。基于纳米纤维的前处理技术,集分离和富集于一体,简化了操作步骤,大大缩短前处理时间。据了解,该研究组的相关成果已经得到了商品化。  从此次会议报告内容看,主要被提及的样品预处理技术有:固相(微)萃取技术、凝胶净化技术、快速溶剂萃取技术及分子印迹技术、纳米材料等。  此次会议得到了莱伯泰科、赛默飞世尔、天美(中国)、耶拿、瑞士万通、普立泰科、苏州东奇、绿绵科技等仪器或耗材供应商的赞助,仪器信息网作为独家支持媒体也参加了此次会议。大会合影
  • 非变性质谱代谢组学鉴定金属结合化合物
    大家好,本周为大家介绍的是一篇发表在Nature Chemistry上的文章Native mass spectrometry-based metabolomics identifies metal-binding compounds1,文章通讯作者是来自美国加州大学斯卡格斯药学和药物科学学院的Pieter C. Dorrestein教授。生命活动的正常运行离不开金属的帮助,微生物获取金属的一种常见策略是通过生产小分子电离团来结合金属并形成非共价复合物。尽管结合金属的小分子具有各种生理功能和潜在的药学应用,在复杂生物成分(如微生物培养提取物)中找到金属结合化合物仍具有挑战。由于小分子-金属结合位点是多样的,金属结合情况必须通过实验来确定,常用的实验方法有电感耦合等离子体质谱(ICP-MS)、原子吸收光谱(AAS)、X射线荧光光谱(XRF)、紫外-可见吸收光谱和核磁共振(NMR)等方法,这些方法通常通量较低,且在小分子成分不确定和金属种类复杂的情况下无法判断小分子-金属结合情况。为了发现新的小分子-金属复合物,本文开发了一种非靶向LC-MS/MS方法,结合非变性质谱(native MS)和一种新的计算工具离子识别分子网络,通过相关性分析、用户定义的质量差异和MS/MS相似性匹配相关化合物。该方法能够在复杂的生物样品中筛选金属结合化合物,作者把这个方法称为非变性质谱代谢组学。一、非变性代谢组学概念小分子非靶向分析采用的萃取、样品制备和LC-MS/MS方法通常在低pH值、高比例有机相和低金属浓度的条件下,这些条件不利于金属络合。因此作者采用了非变性质谱的实验思路,考察了在较高的pH值下,小分子与金属的结合比例较高,并开发了一个两步非变性ESI-LC-MS/MS工作流程,该流程具备在线柱后pH调节和金属引入的能力(图1),在金属引入后有足够的时间形成小分子-金属复合物。使用MZmine和GNPS中的计算离子身份分子网络(IIMN)来分析数据。该实验流程是作者开发的第二代方法,此前的第一代方法使用的是双管注射泵(double-barrel syringe pump)注射氢氧化铵溶液,随后注射一种或多种金属盐。二代方法与一代的区别在于使用了HPLC二元泵进行乙酸铵溶液的补液过程,使溶剂组成和梯度更稳定。图1. 基于非变性质谱的代谢组学实验流程。二、方法考察作者首先制备了市售的铁载体标准混合物,即耶尔森菌杆菌素(1)、弧菌杆菌素(2)、肠杆菌素(3)、高铁环六肽(7)和红酵母酸(6),编号与图2相对应。标准品通过HPLC分离,然后通过第一代装置进行液相色谱后pH调节和过量(毫摩尔)氯化铁注入,仅在铁注入后观察到每种铁载体的三价铁加合物(图2a)。随后,作者进行了以下的考察:①考察了加和物峰面积呈现铁的浓度依赖性,但不完全与铁载体本身对铁的亲和力相对应,这可能由于每种载体的电喷雾效率不同以及流动相溶液组成的变化,因此作者开发了带有补流泵的第二代装置,可减少由梯度导致的溶剂组成的变化,并将有机溶剂浓度降低约50%。②考察了铁载体与铁的加和是否是非特异性加和,将能与铁结合的高铁色素分子与一系列不能结合铁的其他分子混合,同样实验流程下发现只有高铁色素结合了铁,证明加和物的形成是特异性结合(图2b)。③考察了载体的金属选择性,向载体加入生理水平(微摩尔)的金属混合物,包括铁、铜、钴、镍、锌和锰盐,发现载体对金属的选择性与文献报道一致,例如两种铁载体对铁的选择性都高于其他金属;两个相似的物质的区分,去铁胺B(DFB)可与铜结合,而去铁胺E(DFE)不能。图2. 液相后注入金属法在标准铁载体样品中的测试。接着,作者将此方法应用于谷氨酰杆菌JB182的培养提取物。该微生物是从液体奶酪培养基中分离出来的,而奶酪是一个缺铁的环境。作者利用非变性代谢组学工作流程,从培养提取物中观察到未结合铁的去铁胺E和结合了三价铁的铁胺E。去铁胺E是使用IIMN观察到的唯一结合铁的分子(图3),检测到的其他分子都不是铁结合的。图3. 谷氨酰杆菌JB182培养提取物的非变性代谢组学测试。a. 去铁胺E是使用IIMN观察到的唯一结合铁的分子;b. 标准液相方法鉴定到的去铁胺E大多没有结合金属,其3.03分钟处的MS1为图d;c. 液相后注入铁鉴定到的去铁胺E结合了金属,其3.05分钟处的MS1为图e。作者用同样的方法测试了大肠杆菌Nissle 1917提取物,并在液相后将pH调整为7(模仿大肠杆菌胞质pH),发现了一些结合铁的载体分子(图4a)及其相应的铁复合物(图4b-d),除图4标注的三种,还存在一些yersiniabactin和aerobactin的衍生物也能结合铁,共发现了至少15种额外的铁载体。衍生物的发现也说明了IIMN识别结构相似性的能力,且修饰也通常与生物合成或代谢有关。除了研究生理条件下的铁结合外,作者也尝试鉴定了锌结合分子,因为大肠杆菌Nissle的锌获取机制尚未完全阐明。使用本文的方法,作者发现了yersiniabactin及其许多衍生物也与锌结合,包括HPTzTn-COOH,这种结合也通过NMR进行了辅助验证。由此可推断yersiniabactin通过获取锌来逃避抗菌蛋白对锌的螯合,增强大肠杆菌Nissle在发炎的肠道中繁殖的能力。此外,作者还测试了比大肠杆菌Nissle基因组大十倍的酒用真菌Eutypa lata,也发现了结合铁的分子衍生物(图4e-f)图4. 非变性代谢组学方法用于鉴定细菌和真菌培养提取物。最后,作者将本方法应用到环境样品中,测试该方法是否可以在超复杂样品中识别金属结合化合物。作者分析了2017年6月浮游植物爆发期间在加州海流生态系统中收集的固相萃取的表层海洋样本。表层海水中的溶解有机质(dissolved organic matter,DOM)是十分复杂的样本,在液相后调节pH至8后,鉴定到了软骨藻酸为铜结合分子,与文献报道的一致。IIMN还分析到软骨藻酸以二聚体的形式与铜离子结合(图5),可能以类似于EDTA的构型与铜配位。图5. 非变性代谢组学方法用于鉴定表层海水中的溶解有机质。总结:本文开发的非变性代谢组学方法通过液相后补充金属或调节pH,可以从复杂的样本中识别已知的和新的金属离子载体。1.Aron, A. T. Petras, D. Schmid, R. Gauglitz, J. M. Büttel, I. Antelo, L. Zhi, H. Nuccio, S.-P. Saak, C. C. Malarney, K. P. Thines, E. Dutton, R. J. Aluwihare, L. I. Raffatellu, M. Dorrestein, P. C., Native mass spectrometry-based metabolomics identifies metal-binding compounds. Nature Chemistry 2022, 14 (1), 100-109.
  • 季胺化反应的发展及P-SAX季胺盐高分子聚合物的使用场景
    季铵盐中由于含有季铵基甚至有的还含有双键,故可以和诸多的不饱和单体共聚,在水溶液中带正电荷,生成阳离子型或两性离子型水溶性聚合物,很容易吸附于固一液或固一气界面上而被用作絮凝剂、抗静电剂、导电纸涂层及油田化学剂。另外,在现代社会中,表面活性剂的应用日趋广泛。季按盐类表面活性剂具有重要的用途,此外也可被用作柔软剂、抗静电剂、颜料分散剂、矿物浮选剂和沥青乳化剂、金属缓蚀剂及相转移催化剂等,在纺织印染、塑料加工、医疗卫生、日用化工、石油化工、金属加工等行业得到广泛应用。能够合成季铵盐的反应就是季胺化反应。过去几年,大部分是通过简单的合成反应获得季铵盐,例如:○ 在乙酸乙酯作溶剂的条件下与三乙胺混合加热、回流、搅拌进行季胺化反应得到三乙基对(邻)硝基苄基氯化铵;○ 以N-乙基苯胺为原料,经羟乙基化、氯乙基化、季铵化合成N-苯基-N-乙基氨基乙基三甲基氯化铵;○ 通过γ-氯丙基甲基硅氧烷—二甲基硅氧烷共聚物和N,N-二甲基苄基胺的季铵化反应合成了带有苄基二甲基γ-硅丙基氯化铵侧基的聚硅氧烷;○ 用雌二醇经溴乙基化、咪唑乙基化、季铵化和水解反应,合成一类新型的取代苯甲基雌甾咪唑鎓盐;○ 由1,3,5-三甲基-2,4,6-三(咪唑甲基)苯与1,3,5-三(溴甲基)苯直接合成了洞状咪唑鎓环番3(C30H33N63+Br-33H2O)等。P-SAX季铵盐高分子聚合物就是Welchrom P-SAX固相萃取小柱中主要的填料原料,其聚合物的合成方法就是会用到季胺化的反应方法。P-SAX是一种混合型阴离子交换反相吸附剂,对酸性化合物具有高的选择性和灵敏度。Welchrom P-SAX固相萃取小柱设计用于克服传统高分子聚合物基质混合型固相提取吸附剂的局限性。它是一种在pH0~14范围内稳定的混合型强阴离子交换、水可浸润性合物吸附剂。现在可使用可靠的固相提取来检测、确认或定量各种样品基质中的酸性化合物及其代谢物。利用Welchrom P-SAX固相萃取小柱的选择性和稳定性,可通过固相提取步骤从复杂的样品中将分析物分成两部分:酸性化合物和碱性/中性化合物。分流提取物可通过多种分析方法或多种联用分析技术(LC/MS和GC/MS)进行分析。Welchrom P-SAX固相萃取小柱广泛应用于净化不同基质如血清、尿液、塑料制品或者食品中的酸性和中性化合物,如奶粉及奶制品中三聚氰酸的检测。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制