当前位置: 仪器信息网 > 行业主题 > >

超带宽太赫兹时域系统

仪器信息网超带宽太赫兹时域系统专题为您提供2024年最新超带宽太赫兹时域系统价格报价、厂家品牌的相关信息, 包括超带宽太赫兹时域系统参数、型号等,不管是国产,还是进口品牌的超带宽太赫兹时域系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超带宽太赫兹时域系统相关的耗材配件、试剂标物,还有超带宽太赫兹时域系统相关的最新资讯、资料,以及超带宽太赫兹时域系统相关的解决方案。

超带宽太赫兹时域系统相关的资讯

  • 太赫兹脉冲时域反射计系统在半导体行业的开发与应用
    1、前言随着半导体封装变得更小、集成度更高,使用非破坏性、高分辨率技术定位故障的能力变得越来越重要。对失效分析手段提出了挑战,故障高分辨率定位能力的需求逐渐增大。为满足这些要求,Advantest开发了TS9001TDR方案,该系统分析通过利用专有的短脉冲信号处理技术进行高分辨率时域反射测量(Time Domain Reflectometry, TDR),对先进半导体封装、电子元件和印刷电路板中的导线故障区域进行快速、高精度和无损分析。 2、主要应用以3D集成电路为代表的高密度集成电路中存在着无限小的布线结构,布线故障在封装、印刷电路板封装过程中频繁出现。检测故障点需要几十微米分辨率。由于上升时间(约20ps)和抖动(约1ps)的限制,传统示波器TDR方法的故障距离分辨率仍保持数百微米的分辨率。使用TS9001TDR系统可以准确分析各种尖端半导体封装的布线质量,如倒装芯片BGA、晶圆级封装和2.5D/3D IC封装,能够直接连接客户的射频探测系统,针对其设备形状和故障分析环境,实现高速、高分辨率的测量,提供灵活的解决方案。(1) 高度集成的集成电路封装故障分析1) 封装引线故障分析:确定引线故障点位于Si Interposer内还是封装内,识别故障是由预处理还是后处理中的因素引起的2) C4 Bump故障分析:利用测试回路确定和分析安装Si Interposer的条件,对测试回路的菊花链结构进行故障点分析,并对安装条件进行反馈3) TSV、Micro-Bump故障分析:识别层压芯片的故障层4) 印刷电路板PCB故障分析:识别PCB板中通孔和信号线的故障点3、原理与优势(1)原理与技术太赫兹脉冲时域反射计的原理参见上图。其利用两个的飞秒激光器分别泵浦光电导电线,产生高频的太赫兹脉冲信号。飞秒激光器的中心波长1550nm,脉冲宽度50fs。其中,一个飞秒激光器的重复频率50MHz,另一个激光器的重复频率稍有区别。采用两个激光器的重复频率稍有差别的缘由在于,利用两个激光器的差频延迟,可以实现高频太赫兹信号的产生和探测。其工作是高频太赫兹信号通过探针接触芯片的管脚,高频太赫兹信号在芯片封装的引线中传播。当芯片封装没有开断路时,高频太赫兹沿着引线向前传播;当芯片封装的引线等出现开路时,将反射回正峰脉冲信号;当芯片封装引线出现短路时,将反射回负峰脉冲信号。(2)技术优势为了识别故障点,常用的封装无损检测方法包括光发射显微镜(emission microscope)和示波器时域反射计(Time domain Reflectometry, TDR)等,但是这些无损检测方法受到时域信号抖动的限制(信号抖动约1ps),导致分辨率不高,不能定位微米级的失效位置,无法以高分辨率检测开路、短路故障。故亟需高分辨率时域反射计,以提供快速且精准的失效定位。Advantest通过独有的光学采样和电短脉冲生成技术,借助飞秒激光技术,产生抖动小于30fs的超短采样脉冲。可以实现5μm的故障定位分辨率。通过使用自动探针的自动触地功能,进行精确的可重复测量,具有更高精度和效率的故障位置测量。TS9001TDR系统通过自动探针和与CAD设计联动,实例分析芯片封装的引线开路和短路故障定位,可以直观快速定位芯片封装的故障点,实现先进封装的失效分析。4、国内外发展现状Advantest的TS9001TDR系统中采用两个超短脉冲激光器异步采样,采取异步采样技术可以使系统不再需要机械式的光学延迟线,并且具有超高速的信号扫描速度。是目前全球独一的技术,目前国内外没有同类设备。5、发展趋势随着晶圆代工制程不断缩小,摩尔定律逼近极限,先进封装是后摩尔时代的必然选择,3D封装迅猛发展。作为一种全新的实现定位方法,在未来的几年里,太赫兹TDR技术将继续保持高速发展的势头。随着关键技术的不断发展,相关产品的种类将越来越丰富,行业应用和相关配套服务也将越来越广泛。搭载脉冲电磁波产生和高速采样的超短脉冲光纤激光器的太赫兹TDR设备,有助于半导体3D封装的故障分析。 6、总结与展望 在实际芯片测量过程中,太赫兹脉冲信号耦合至芯片内部衰减较为严重,对于太赫兹脉冲的信噪比提出了很高的要求。为了进一步提高测量精度和芯片内的传输路径,提高信噪比是亟需攻克的问题。另外芯片内部的引线存在阻抗不匹配又没有完全开路的情况,对于这类Soft Open的芯片检测,TDR波形分析需要结合信号模拟仿真,增强对信号的解读。对于材料的吸收系数、折射率、介电常数等光谱特性,可以用太赫兹时域光谱仪表征,这也是爱德万测试太赫兹技术的核心应用。目前爱德万测试已经有太赫兹时域光谱成像系统,通过发射和接收时域太赫兹信号至样品,可以实现生物医学样品、食品农产品、化学品、复合材料、通讯材料等的光谱特性表征。(爱德万测试(中国)管理有限公司 供稿)
  • 大恒科技牵头的国家重大仪器专项之太赫兹时域光谱仪开发通过验收
    3月13日,大恒新纪元科技股份有限公司(简称“大恒科技”)宣布,由公司牵头承担的国家重大科学仪器开发专项“基于飞秒激光的太赫兹时域光谱仪开发”项目进展顺利,进度和成果产出达到任务书要求的考核指标,顺利通过综合验收。“基于飞秒激光的太赫兹时域光谱仪开发”项目概述项目编号:2012YQ140005;项目组织单位:北京市科学技术委员会;项目牵头单位:大恒新纪元科技股份有限公司;项目第一技术支撑单位:首都师范大学;项目协作单位:北京大学、南京大学、中国科学院电子学研究所、上海理工大学、北京理工大学、清华大学、中国农业大学、北京农产品质量检测与农田环境检测技术研究中心、中央民族大学、北京中医药大学东直门医院、中国石油大学(北京)、东莞理工学院、中国科学院半导体研究所;项目起止年限:2012年10月至2017年9月;项目总体目标: 攻克太赫兹源、探测器等模块联用和集成关键技术,研发纳米金属薄膜宽频谱太赫兹源、Nb5N6超薄膜的室温太赫兹探测等关键部件,开发仪器操作平台软件与谱解析系统软件,通过系统集成和工程化开发,研发出性能稳定、质量可靠的基于飞秒激光的太赫兹时域光谱仪;通过在食品安全检测、药品分析、临床检测、油气分析等领域中的应用开发,丰富太赫兹时域光谱仪的测试应用功能,并在材料无损检测、环境监测等领域推广。该项目国家给予重大科学仪器设备开发专项资金人民币6,780万元,分阶段拨付,由牵头单位、第一技术支撑单位和协作单位共同使用。“基于飞秒激光的太赫兹时域光谱仪开发”项目验收情况该项目主要针对太赫兹时域光谱仪及各个关键模块进行了研究和开发,先后开发出具有自主知识产权的超快激光器、太赫兹源、太赫兹探测器等一系列核心产品,形成了四款各具特色的太赫兹时域光谱仪,打破了国外太赫兹技术在国内的价格垄断地位,具有较强的市场竞争力。目前太赫兹光谱仪已经在无损检测形成销售,该项目还在食品安全、民族医药、肾病检测、石油勘探、半导体材料等五个领域进行太赫兹的示范应用研究,进一步拓展了太赫兹时域光谱仪的应用,为太赫兹技术的产业化奠定了基础。关于大恒新纪元科技股份有限公司大恒科技于1998年12月14日注册成立,原名新纪元物产股份有限公司,1999年9月9 日更名为大恒新纪元科技股份有限公司;于2000 年11月29日在上海证券交易所上市(600288)。公司主营业务为光机电一体化产品、信息技术及办公自动化产品、数字电视网络编辑及播放系统、半导体元器件。据大恒科技业绩报告,2019年度实现营业收入33.06亿元,归属于上市公司股东的净利润7,308.76万元;2020上半年公司实现营业收入8.74亿元,实现归属于上市公司股东的净利润-2,201.73万元。
  • 西安交大:3D打印超宽带太赫兹超材料吸波器
    太赫兹波,指频率为0.1-10 THz的电磁波,位于微波和红外之间,属于电子学与光子学的过渡区间。由于具有光子能量低、穿透力强、特征光谱分辨能力好等属性,太赫兹技术在生物传感、无损检测以及高速无线通讯等领域具有重要的应用前景。然而,由于自然界中的天然材料在太赫兹频段没有电磁响应,导致太赫兹频段的功能材料和器件非常匮乏,这也是造成太赫兹技术尚未广泛应用的重要原因。THz超材料,一种新型的周期性人工电磁材料,其性质主要取决于所设计的结构,通过特定的结构设计,可获得与自然界已知材料截然不同的电磁性质,从而实现丰富的功能器件,如吸波器、调制器和偏振转换器等。目前常见的太赫兹超材料,主要由光刻工艺制备得到,存在制备工艺复杂、加工成本高的问题。此外,目前宽带吸波器常采用上下重叠式多层结构设计,其在太赫兹频段所需的多步光刻工艺更是进一步提高了加工难度及成本。因此,探索太赫兹器件的无光刻、低成本、简单高效的制备方法获得超宽带太赫兹吸波器,将有利于促进太赫兹技术的繁荣发展。 近日,西安交通大学张留洋教授课题组提出了一种偏振不敏感的超宽带太赫兹吸波器设计及其制备方法,该超宽带吸波器由叠堆于类宝塔基底表面的多层环形谐振器构成,通过相邻谐振器共振模式的重叠实现带宽的扩展,最终通过叠堆12层圆形和环形谐振器实现1.07-2.88 THz频段的近完美吸收。该研究结合微尺度3D打印技术(nanoArch S130,摩方精密)制备得到实验样件,实验测试结果验证了宽带吸收机理的准确性。该成果以“Three-Dimensional Printed Ultrabroadband Terahertz Metamaterial Absorbers”为题发表于国际期刊Physical Review Applied上,该研究工作由西安交通大学机械工程学院博士生沈忠磊与硕士生李胜男共同合作完成。图1 具有面外形态的太赫兹吸波器结构示意图图2 太赫兹超宽带吸收谱 通过结合微尺度3D打印技术,超宽带太赫兹吸波器可由简单的三步工艺制备得到。其中,周期性阵列的三维类宝塔结构采用面投影微立体光刻3D打印技术(nanoArch S130,摩方精密)加工得到。实验结果表明:得益于高精度的微尺度3D打印技术,测试所得的宽带吸收谱谐振频率和吸收幅值均与数值模拟结果较为吻合。图3 太赫兹超宽带吸波器实验验证(其中单元周期Px=Py=185μm,顶层圆形谐振器半径r12=10μm, 叠堆环形谐振器宽度w=6μm,叠堆层厚Dt=10μm) 此外,文章进一步证明了该制备方法之于常见太赫兹窄带吸波器制备的适用性。实验结果表明:两种太赫兹窄带吸波器的吸收谱测试结果与数值模拟结果和理论结果均较为吻合,表明基于微尺度3D打印技术的制备方法同样可实现对常见太赫兹窄带吸波器的高质量制备。图4 太赫兹窄带吸波器实验验证原文链接:https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.16.014066官网:https://www.bmftec.cn/links/10
  • 综述:高通量太赫兹成像进展与挑战
    无损评估、生物医学诊断和安全筛查等诸多令人兴奋的太赫兹(THz)成像应用,由于成像系统的光栅扫描要求导致其成像速度非常慢,因此在实际应用中一直受到限制。然而,太赫兹成像系统的最新进展极大地提高了成像通量(imaging throughput),并使实验室中的太赫兹技术更加接近现实应用。据麦姆斯咨询报道,近日,美国加州大学洛杉矶分校(University of California Los Angeles,UCLA)的科研团队在Light: Science & Applications期刊上发表了以“High-throughput terahertz imaging: progress and challenges”为主题的综述论文。该论文第一作者为Xurong Li,通讯作者为Mona Jarrahi。该论文主要从硬件和计算成像两个角度回顾了太赫兹成像技术的发展。首先,研究人员介绍并比较了使用热探测、光子探测和场探测的图像传感器阵列实现频域成像与时域成像时的各类硬件。随后,研究人员讨论了利用不同成像硬件和计算成像算法实现高通量捕获飞行时间(ToF)、光谱、相位和强度图像数据的方法。最后,研究人员简要介绍了高通量太赫兹成像系统的未来发展前景和面临的挑战。基于图像传感器阵列的太赫兹成像系统(硬件方面)然而,并非所有类型的图像传感器都能够扩展到大型阵列,但这是高通量成像的关键要求。这部分内容重点介绍了基于各类图像传感器阵列的高通量太赫兹成像系统。这些太赫兹成像系统的性能主要通过空间带宽积(SBP)、灵敏度、动态范围以及成像速度等指标在其工作频率范围内进行量化。太赫兹频域成像系统在热探测太赫兹成像仪中,微测辐射热计是最广泛使用的图像传感器之一,它将接收到的太赫兹辐射所引起的温度变化转化为热敏电阻材料的电导率变化。氧化钒(VOx)和非晶硅(α-Si)是室温微测辐射热计最常用的热敏电阻材料。使用微测辐射热计图像传感器阵列捕获太赫兹图像的示例如图2a所示。热释电探测器是另一类热成像传感器,它将接收到的太赫兹辐射所引起的温度变化转化为能以电子方式感测的热释电晶体的极化变化。图1 目前最先进的频域太赫兹图像传感器的性能对比图2 基于图像传感器阵列的太赫兹频域成像系统示例对于室温太赫兹成像,场效应晶体管(FET)图像传感器是微测辐射热计图像传感器的主要竞争对手。FET图像传感器的主要优势之一是具有出色的可扩展性。与室温微测辐射热计图像传感器相比,FET图像传感器通常工作在较低的太赫兹频率下,其灵敏度也较低。然而,由于无需热探测过程,FET图像传感器可以提供更高的成像速度。使用FET图像传感器阵列捕获太赫兹图像的示例如图2b所示。光子探测器作为可见光成像仪中最主要的图像传感器,在太赫兹成像中也发挥着至关重要的作用。除低温制冷要求外,太赫兹光子探测器还有另外两方面的限制:工作频率限制(高于1.5 THz)以及可扩展性限制(难以实现高像素的探测器阵列)。使用光子探测图像传感器阵列捕获太赫兹图像的示例如图2c所示。另外,可以利用量子点或激光激发的原子蒸汽将从成像物体接收到的太赫兹光子转换为可见光子,并且可以利用光学相机在室温下实现对大量像素的高通量成像。然而,太赫兹到可见光的光子转换过程需要复杂且笨重的装置来实现。与光子成像仪相比,超导太赫兹成像仪可以提供同等水平甚至更高的灵敏度。同时,它们具有更好的可扩展性,并且能够在较低的太赫兹频段工作。超导成像仪主要有四种类型:过渡边缘传感器(TES)、动态电感探测器(KID)、动态电感测辐射热计(KIB)和量子电容探测器(QCD)。使用超导图像传感器阵列捕获太赫兹图像的示例如图2d所示。到目前为止,所讨论的频率域太赫兹成像仪均是进行非相干成像,并且仅能解析被成像物体的强度响应。相干太赫兹成像可使用外差探测方案来解析成像物体的振幅和相位响应。通过将接收到的来自成像物体的辐射与本振(LO)波束混合,并将太赫兹频率下转换为射频(RF)中频(IF),可将高性能射频电子器件用于相干信号探测。超导体-绝缘体-超导体(SIS)、热电子测辐射热计(HEB)、肖特基二极管、FET混频器和光电混频器可用于太赫兹到射频的频率下转换。由于外差探测架构的复杂性,所展示的相干太赫兹成像仪灵敏度被限制在数十个像素。太赫兹时域成像系统基于时域光谱(TDS)的太赫兹脉冲成像仪是另一种相干成像仪,它不仅能提供被成像物体的振幅和相位信息,还能提供被成像物体的超快时间和光谱信息。THz-TDS成像系统使用光导天线或非线性光学操纵在泵浦探针成像装置中产生和探测太赫兹波(如图3)。图3 太赫兹时域成像系统示意图:(a)太赫兹光电导天线阵列成像;(b)太赫兹电光取样成像。传统的THz-TDS成像系统通常是单像素的,并且需要光栅扫描来获取图像数据;而为了解决单像素THz-TDS成像系统成像速度慢、体积庞大又复杂的问题,基于电光效应和光导效应的图像传感器阵列已被采用。图4a为使用光学相机的电光采样技术捕获太赫兹图像的示例。基于电光采样的无光栅扫描THz-TDS成像系统既可用于远场太赫兹成像,也可用于近场太赫兹成像(如图4b)。无光栅扫描THz-TDS成像的另一种方法是使用光导图像传感器阵列(如图4c)。基于光导效应和电光效应图像传感器的无光栅扫描THz-TDS成像系统能够同时采集所有像素的数据。然而,时域扫描所需的光学延迟阶段的特性对整体成像速度造成了另一个限制。图4 基于电光效应和光导效应的图像传感器阵列的太赫兹时域成像系统示例研究人员对基于图像传感器阵列的不同太赫兹成像系统的功能和局限性进行了分析,如图5所示。频域成像系统只能解析被成像物体在单一频率或宽频率范围的振幅响应,无法获得超快时间和多光谱信息;但同时,它们配置灵活,可以使用不同类型的太赫兹光源,以实现主动和被动太赫兹成像。时域成像系统则既可以解析被成像物体的振幅和相位响应,也可以解析超快时间和多光谱信息;然而,它们只能用于主动太赫兹成像,并且需要带有可变光学延迟线的泵浦探针成像装置,从而增加了成像硬件的尺寸、成本和复杂性。图5 基于图像传感器阵列的不同太赫兹成像系统的功能和局限性分析虽然太赫兹成像系统的功能通常由上述原理决定,但可以通过修改其运行架构,以实现新的和/或增强功能。太赫兹光谱各类成像方案如图6所示。图6 太赫兹光谱各类成像方案太赫兹计算成像这部分内容主要介绍了各类计算成像方法,这些方法不仅提供了更多的成像功能,而且减轻了由太赫兹成像带来的对高通量操作的限制(放宽了对高通量太赫兹成像硬件的要求)。太赫兹数字全息成像全息成像允许从与物体和参考物相互作用的两光束的干涉图中提取目标信息。太赫兹全息成像系统利用离轴或同轴干涉。与利用THz-TDS成像系统进行相位成像相比,太赫兹数字全息成像无需基于飞秒激光装置并且更具成本效益。对太赫兹辐射源和图像传感器阵列的选择也更加灵活,可以根据工作频率进行优化。然而,太赫兹数字全息成像对成像物体有着更多限制,并且在对多层次和/或高损耗对象成像时受到限制。基于空间场景编码的太赫兹单像素成像与使用太赫兹图像传感器阵列直接捕获图像相比,太赫兹单像素传感器可以通过利用已知空间模式序列来顺序测量并记录空间调制场景的太赫兹响应,从而重建物体的图像。与用于频域和时域成像系统的太赫兹图像传感器阵列相比,该成像方案得益于大多数太赫兹单像素传感器的优越性能(如信噪比、动态范围、工作带宽)。图7总结了太赫兹单像素成像系统的发展。值得一提的是,压缩感知算法不仅适用于单像素成像,也可用于提高多像素图像传感器阵列的成像通量。图7 基于空间波束编码的太赫兹单像素成像系统的发展基于衍射编码的太赫兹计算成像到目前为止,本文介绍的太赫兹成像系统遵循的范式主要依赖于基于计算机的数字处理来重建所需图像。然而,基于数字处理的重建并非没有局限性。为了解决的其中一些挑战,最佳策略可以是为特定任务的光学编码设计光学前端,并使其能够接管通常由数字后端处理的一些计算任务。近期,一种新型光学信息处理架构正兴起,它以级联的方式结合了多个可优化的衍射层;这些衍射表面一旦优化,就可以利用光与物质相互作用,在输入和输出视场之间共同执行复杂的功能,如图8所示。近年来,衍射深度神经网络技术(D²NN)在太赫兹成像方面有着非常广泛的应用,例如图像分类,抗干扰成像,以及相位成像。图8 基于衍射深度神经网络(D²NN)的太赫兹计算成像系统示意图总结与展望综上所述,高通量太赫兹成像系统将通过深耕成像硬件和计算成像算法而持续发展,目标是具有更大带宽、更高灵敏度和更大动态范围的超高通量成像系统,同时还能为特定应用定制成像功能。太赫兹计算成像技术有望与量子探测、压缩成像、深度学习等技术相结合,为太赫兹成像提供更多的功能及更广泛的应用。研究人员坚信太赫兹成像科学与技术将蓬勃发展,未来太赫兹成像系统不仅会大规模应用于科学实验室和工业环境中,而且还将在日常生活中显著增长。这项研究获得了美国能源部资金(DE-SC0016925)的资助和支持。论文链接:https://doi.org/10.1038/s41377-023-01278-0
  • 上海微系统所与加拿大合作研究太赫兹技术
    2004年5月11日记者从在上海召开的“太赫兹物理及超快过程”国际研讨会上获悉,中国较早开展太赫兹技术研究的中科院上海微系统与信息技术研究所,正在与加拿大国家研究所合作开展能够产生太赫兹电磁波的源发生器的研究与制作。  太赫兹频段,是指频率从十分之几到十几个太赫兹,介于毫米波与红外光之间相当宽范围的电磁辐射区域。长期以来,由于缺乏有效的太赫兹产生与检测方法,人们对该波段电磁辐射性质的了解非常有限,以致于该波段被称为电磁波谱中的太赫兹空隙。目前国际上对太赫兹的研究仅仅只有20多年的历史,中国则不到10年。  据介绍,在医学治疗过程中照射的X光的光子能量高,对人体造成的伤害非常大。而应用目前国际上电磁波研究领域的新宠——太赫兹技术(1太赫兹=1012赫兹)制成的用于医疗诊断的成像设备,则能将这种照射对人体的伤害降低100万倍。  中科院微系统所曹俊诚研究员介绍说,加拿大在太赫兹研究的实验水平方面比较发达,而中科院上海微系统所则在揭示太赫兹现象的理论研究方面比较成功,双方的合作将有利于将理论与实践相结合,促进太赫兹领域技术的研发进程。  据介绍,太赫兹电磁波由于频带宽,是微波的1000倍,因此在通信方面有很大的应用前景。
  • 大恒科技:太赫兹时域光谱仪开发尚处实验室阶段
    据参与《基于飞秒激光的太赫兹时域光谱仪开发》项目的专家介绍,目前该项目还处在实验室阶段。今年年初项目组已向相关主管部门申请立项和申报补贴资金,但目前还没有收到正式批文,至于相关的补贴资金量更无从得知。  “大恒科技股价异动属于游资炒作。”有券商研究员指出,短期来看,上述项目对大恒科技的业绩并不能产生直接影响,长期影响也要看,项目是否能够成功获得政府主管部门的支持,2014年能否实现部分产品商用,以及相关产品能够取得的市场的认可。
  • 我国太赫兹研究领域的实验室概览(图)
    太赫兹波是指频率在0.1~10THz之间的电磁波,在电磁波谱上位于微波和红外线之间。是电磁波谱中唯一没有获得较全面研究并很好加以利用的最后一个波谱区间,是人类目前尚未完全开发的电磁波谱“空白”区。由于太赫兹波所处的特殊电磁波谱的位置,它有很多优越的特性,在材料分子的特殊光谱信息分析、材料与结构的无损探伤及三维层析、违禁物品反恐检查、生物组织的活体检查、高精度保密雷达、卫星间宽带通信等方面的研究,在天体物理学、等离子体物理学、光谱学、材料学、生物学、医学成像、环境科学、信息科学等领域有着广阔的应用前景。  太赫兹波有非常重要的学术和应用价值(有的已处于实用),使得全世界各国都给予极大的关注,美国、欧州和日本尤为重视。我国近年来对于太赫兹技术的研究也日益关注。在近日陆续公布的“2011年国家重大科学仪器开发专项”与“2011年国家重大科研仪器研制专项”中,其中由中科院紫金山天文台史生才研究员作为负责人主持申报的国家重大科研仪器设备研制专项——“太赫兹超导阵列成像系统”项目成功获批立项,资助总经费6000万元,研究期限5年。此外中国工程物理研究院申报的国家重大科学仪器开发专项——“相干强太赫兹源科学仪器设备开发项目”也成功获批立项。  仪器信息网编辑整理了目前国内从事太赫兹技术研究的实验室和研究中心,供读者对我国太赫兹技术的研究情况做一基本了解。  太赫兹光电子学省部共建教育部重点实验室  首都师范大学物理系太赫兹实验室于2001年正式成立。2006年正式批准为北京市“太赫兹波谱与成像”重点实验室。2007年获批太赫兹光电子学省部共建教育部重点实验室。该实验室是目前国内最好的太赫兹研究基地之一。2009年起始,太赫兹实验室正式获批中关村开放实验室,依托实验室现有条件和中关村地区科技资源的优势和作用,深化产学研之间的合作,正式为中关村2万多家注册企业提供相应的技术服务,联合进行关键技术攻关。  目前,实验室具有科研用房1500平方米,其中千级超净实验室2间,面积170平方米。科研仪器设备总值超过千万元。在过去的三年中,实验室共承担包括国家973计划、国家863、国家自然科学基金重大项目等各类项目23项,总科研经费1328余万元。  本实验室主要研究方向:1.太赫兹波谱研究 2.太赫兹成像研究 3.太赫兹与红外无损检测研究 4.太赫兹与物质相互作用。  山东科技大学太赫兹技术研究中心  山东科技大学太赫兹技术研究中心成立于2003年,由我国著名太赫兹专家刘盛纲院士担任中心主任,是山东省唯一的太赫兹科学与技术研究机构。  目前实验室拥有太赫兹源研究室、太赫兹时域光谱技术应用研究室和太赫兹器件开发研究室共三个研究室,实验室面积约500平方米,设备价值约300万元。拥有60m2的千级超净实验室,奥地利产半导体泵浦飞秒激光器,德国产808nm、30W半导体激光器,相干公司激光光束质量分析仪,Gentec公司激光功率计,泰克公司200MHz示波器,光学平台等研究设备,锁相放大器, Golay探测器,精密电移台等专用研究设备。  主要研究方向包括:基于光子学太赫兹辐射源的研究、太赫兹应用技术研究、太赫兹器件的研究。  超快光电子与太赫兹技术实验室  超快光电子与太赫兹技术实验室是一个集合光学,半导体物理学,微电子学,生物学等多学科交叉的实验室。主要涉及微电子制造、半导体工艺、生物医学检测、太阳能光伏、红外传感、超高频电磁波应用等领域。实验室依托于上海理工大学。主要研究人员有庄松林院士、朱亦鸣、许健等。  实验室目前已有1000级超净室180平方米,美国相干公司飞秒激光器一台,时域太赫兹波谱测试系统一套,AFM原子力显微镜一台, SEM扫描电子显微镜一台,半导体参量测试仪一台,积分球光谱测试系统一套,磁共溅射/离子束溅射镀膜机一台等大型设备。  实验室主要研究方向:1.应用全新的超快光学方法-时域太赫兹波谱法,进行半导体材料和器件内超快电子的检测 同时设计开发新型的半导体超快电子器件。2.利用太赫兹波对物质进行研究 如通过太赫兹波和生物分子的作用,来鉴别区分不同类型的中草药,毒品等 通过太赫兹波和液晶材料、半导体材料的相互作用,来研究材料本身的一些物理特性。3.超高频电磁通信和传输及其器件的开发。4.微纳结构硅基光伏材料(黑硅)的制备、检测 基于黑硅的光伏电池的优化组装 5.微纳结构金属材料的制备、检测 基于此类微纳结构金属材料的应用 6.表面等离子波导中电磁场微小频率变化的探测7.表面等离子波导中电磁场的古斯汉欣位移增强效应的研究。  中国计量学院太赫兹技术与应用研究所  中国计量学院太赫兹技术与应用研究所成立于2006年7月,属于校级研究所,研究所所长:为洪治博士。研究所获得了浙江省“重中之重”学科“仪器科学与技术”的资助。  现有实验室面积1000余平方米。拥有基于BWO(返波振荡器)的连续THz实验平台 锁模钛宝石激光器及相关测试设备 太赫兹波TDS系统等实验设备。  主要研究方向1.太赫兹波器件、传输与系统 2.太赫兹波成像、传感技术及应用 3.太赫兹波与生物分子相互作用机理及应用 4.太赫兹波谱材料特性测试及应用。  中科院太赫兹固态技术重点实验室  2011年3月28日,中科院太赫兹固态技术重点实验室揭牌仪式举行,该重点实验室的成立,加强了中科院太赫兹研究基地建设。实验室依托于中国科学院上海微系统与信息技术研究所。曹俊诚研究员担任实验室主任,田彤研究员担任实验室副主任,封松林研究员担任实验室学术委员会主任。  实验室主要围绕半导体固态太赫兹源、探测器及其在通信与成像等领域的应用,开展基于光子学和电子学的固态太赫兹器件物理与工艺、太赫兹器件与模块、太赫兹检测与成像以及太赫兹信息传输与通信等方面的基础和应用研究工作。  中物院太赫兹科学技术研究中心  2011年12月12日,中物院太赫兹科学技术研究中心正式成立,中心主任由电子工程研究所所长姚军代理。  中心主要围绕太赫兹物理理论、半导体太赫兹技术、电真空太赫兹技术以及太赫兹在通信、雷达、光谱学和成像中的应用开展研究。太赫兹研究中心目前成立了4个研究室,包括太赫兹总体和应用技术研究室、太赫兹理论研究室、太赫兹半导体器件研究室和电真空太赫兹技术研究室,依托各相关研究所开展工作,并计划在中物院成都科技创新基地建设太赫兹实验室。  此外目前国内高校中电子科技大学,天津大学,南京大学,中山大学,国防科大,上海交通大学,西安理工大学,深圳大学,南开大学,清华大学 北京航空航天大学 北京理工大学等都有太赫兹研究计划。  研究所方面:中国科学院物理所,紫金山天文台,西安光机所,中科院上海应用物理所,半导体所也有研究项目。
  • 西安交大《Physical Review Applied》:3D打印超宽带太赫兹超材料吸波器
    太赫兹波,指频率为0.1-10 THz的电磁波,位于微波和红外之间,属于电子学与光子学的过渡区间。由于具有光子能量低、穿透力强、特征光谱分辨能力好等属性,太赫兹技术在生物传感、无损检测以及高速无线通讯等领域具有重要的应用前景。然而,由于自然界中的天然材料在太赫兹频段没有电磁响应,导致太赫兹频段的功能材料和器件非常匮乏,这也是造成太赫兹技术尚未广泛应用的重要原因。THz超材料,一种新型的周期性人工电磁材料,其性质主要取决于所设计的结构,通过特定的结构设计,可获得与自然界已知材料截然不同的电磁性质,从而实现丰富的功能器件,如吸波器、调制器和偏振转换器等。目前常见的太赫兹超材料,主要由光刻工艺制备得到,存在制备工艺复杂、加工成本高的问题。此外,目前宽带吸波器常采用上下重叠式多层结构设计,其在太赫兹频段所需的多步光刻工艺更是进一步提高了加工难度及成本。因此,探索太赫兹器件的无光刻、低成本、简单高效的制备方法获得超宽带太赫兹吸波器,将有利于促进太赫兹技术的繁荣发展。 近日,西安交通大学张留洋教授课题组提出了一种偏振不敏感的超宽带太赫兹吸波器设计及其制备方法,该超宽带吸波器由叠堆于类宝塔基底表面的多层环形谐振器构成,通过相邻谐振器共振模式的重叠实现带宽的扩展,最终通过叠堆12层圆形和环形谐振器实现1.07-2.88 THz频段的近完美吸收。该研究结合微尺度3D打印技术(nanoArch S130,摩方精密)制备得到实验样件,实验测试结果验证了宽带吸收机理的准确性。该成果以“Three-Dimensional Printed Ultrabroadband Terahertz Metamaterial Absorbers”为题发表于国际期刊Physical Review Applied上,该研究工作由西安交通大学机械工程学院博士生沈忠磊与硕士生李胜男共同合作完成。图1 具有面外形态的太赫兹吸波器结构示意图图2 太赫兹超宽带吸收谱 通过结合微尺度3D打印技术,超宽带太赫兹吸波器可由简单的三步工艺制备得到。其中,周期性阵列的三维类宝塔结构采用面投影微立体光刻3D打印技术(nanoArch S130,摩方精密)加工得到。实验结果表明:得益于高精度的微尺度3D打印技术,测试所得的宽带吸收谱谐振频率和吸收幅值均与数值模拟结果较为吻合。图3 太赫兹超宽带吸波器实验验证(其中单元周期Px=Py=185μm,顶层圆形谐振器半径r12=10μm, 叠堆环形谐振器宽度w=6μm,叠堆层厚▲t=10μm) 此外,文章进一步证明了该制备方法之于常见太赫兹窄带吸波器制备的适用性。实验结果表明:两种太赫兹窄带吸波器的吸收谱测试结果与数值模拟结果和理论结果均较为吻合,表明基于微尺度3D打印技术的制备方法同样可实现对常见太赫兹窄带吸波器的高质量制备。图4 太赫兹窄带吸波器实验验证原文链接:https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.16.014066
  • 国防军工行业:太赫兹,不再是黑科技
    太赫兹波技术-改变未来世界的十大技术之一。太赫兹波是人类迄今为止了解最少、开发最少的介于无线电波和光波之间一个波段。太赫兹波拥有低能量,宽频谱,强穿透,瞬态性等技术特点,在国防、国土安全、天文、医疗、生物、计算机、通信等科学领域有着巨大的应用价值。  太赫兹应用技术研究主要分为太赫兹波谱,成像,通信,军事等方向。  细分领域涉及基础科学研究,质量检测,医学成像,材料无损检测,安全检查,室内局域无线通信,高速局域网络通信,军事国土安全等。  高功率太赫兹辐射源,高灵敏度太赫兹波探测器,以及太赫兹波器件等关键组件是太赫兹波应用技术推广的基础。  国际太赫兹市场较为成熟,国内市场处于发展初期。国际太赫兹技术较为成熟,已经逐步进入产业化应用,国际市场高速扩容。全球太赫兹组件和系统的市场将从 2015年的5600万美元增加到2023年的4.15亿美元,2015-2023年复合增长率为25.9%。 (TransparencyMarketResearch)截止到2014年,组件方面,太赫兹源占据较大的市场份额。  系统方面,光谱系统占据最大市场份额。应用领域方面,非破坏性测试和研究实验室中的应用一起贡献了超过60%的市场应用。  我国处于太赫兹技术应用拓展初期,政策支持与研发成果落地有望带动相关产业。  太赫兹技术在国防军工和民用领域具有丰富的下游应用,国防军工领域主要涉及太赫兹雷达,爆炸物、毒气战剂和生物战剂的感测,军工通信(战术通信网,天基通信系统等),军用无损检测等。民用领域主要涉及人体安检,工业无损检测,生物医学(生化检测,医学成像,组织检测)等。  投资建议:我们建议短期内关注安检和无损检测方向,中期关注太赫兹通信,长期关注太赫兹全产业链化发展。中国电科国产化率达到90%的中国首台太赫兹安检仪研制成功,打破了国外垄断,填补国内空白,目前已经试点推广,随着使用范围进一步扩大,并带动安防安检上下游行业,未来将形成千亿规模。太赫兹波在无损检测非金属复合材料方面相比传统的工业手段有着明显的优势。无线通信带宽已经无法满足物联网迅速发展,无线载波必将进入太赫兹波谱范围,支撑物联网万亿市场规模。  太赫兹相关主要上市公司:四创电子(股东中国电科38所研发太赫兹人体安检仪),同方股份(子公司同方威视发展了在毫米波/太赫兹波领域业务-安检设备),华讯方舟(研发石墨烯太赫兹芯片,发展太赫兹成像和生物检测业务),大恒科技(太赫兹时域光谱仪),天瑞仪器(太赫兹波谱技术,液相色谱仪检测地沟油),聚光科技(太赫兹技术的地沟油快速检测仪合作研发单位),凤凰光学(太赫兹技术的地沟油快速检测仪合作研发单位),TCL(太赫兹通信)等。
  • 中科院研发太赫兹扫描隧道显微镜
    ▲图 | 太赫兹扫描隧道显微镜系统(来源:资料图)太赫兹,是介于远红外和微波之间的电磁波,具有光子能量低、穿透性好等特点,在高速无线通信、光谱学、无损伤成像检测和学科交叉等领域具备广泛应用前景,被誉为“改变未来世界的十大技术”之一。简单来看,太赫兹扫描隧道显微镜系统就是一个超快摄影机,只不过它要观察和拍摄的对象是分子和原子世界,并且拍摄的帧率在亚皮秒量级。对于非线性太赫兹科学来说,控制太赫兹脉冲的“载波包络相位”,即激光脉冲的载波与包络之间的关系至关重要,特别是用于超快太赫兹扫描隧道显微镜时。太赫兹载波包络相位移相器的设计和实现,在利用太赫兹脉冲控制分子定向、高次谐波生成、阈上电离、太赫兹波前整形等领域,均具备潜在应用价值。(来源:Advanced Optical Materials)1. 为调控太赫兹的载波包络相位提供新方案据介绍,王天武在中科院空天信息研究院(广州园区)-广东大湾区空天信息研究院担任主任和研究员等职务,研究方向为太赫兹技术。目前,其主要负责大湾区研究院的太赫兹科研队伍建设。该研究要解决的问题在于,常规探测手段只能得到静态的原子形貌图像,无法观察物质受到激发,例如经过激光辐照后的动态弛豫过程图像,即无法观察到激子的形成、俄歇复合、载流子谷间散射等过程,而这些机理的研究,对于凝聚态物理学包括产业化应用都非常重要。原因在于,这些动力学过程发生的时间尺度,往往都在皮秒量级,即万亿分之一秒的时间,任何普通调控手段均无法达到这一时间量级。利用飞秒脉冲激光技术,能显著提高扫描隧道显微镜(Scanning Tunneling Microscope,STM)这一扫描探针显微术工具的时间分辨率。但是,目前仍受到多种因素的限制,比如样品和针尖制备困难、针尖的电容耦合效应、脉冲光引起的热膨胀效应等。太赫兹的脉冲宽度位于亚皮秒尺度,其电场分量可被看作一个在很宽范围内、连续可调的交流电流源。因此,将太赫兹电场脉冲与 STM 结合,利用其瞬态电场,即可作用于扫描针尖和样品之间的空隙,从而产生隧穿电流进行扫描成像,能同时实现原子级空间分辨率和亚皮秒时间分辨率。如前所述,太赫兹扫描隧道显微镜系统好比一个超快摄影机。但是,太赫兹电场脉冲和 STM 的实际结合过程,却并非那么简单,中间要攻克诸多难题。其中一个最基础的重要难题,在于太赫兹源的相位调控技术。太赫兹扫描隧道显微镜系统是利用太赫兹激发针尖尖端和样品之间的空隙,来产生隧穿电流并进行采样。不同相位太赫兹源的电场方向不一样,这样一来所激发的隧穿电流的方向亦不相同。根据不同样品施加不同相位的太赫兹源,可以更好地匹配样品,进而发挥系统性能优势,借此得到高质量光谱。因此,通过简单高效的途径,就能控制太赫兹脉冲的载波包络相位,借此实现对于隧道结中近场太赫兹时间波形的主动控制,同时这也是发展超快原子级分辨技术的必备阶段。通常,超短脉冲的载波包络相位,必须通过反馈技术来稳定。除少数例子外,比如用双色场激光等离子体产生的太赫兹辐射源,大多数商业化设备产生的太赫兹脉冲的载波包络相位都是锁定的,例如人们常用的光整流技术生成的太赫兹脉冲。多个太赫兹偏振元件组成的复杂装置,可用于控制太赫兹脉冲的载波包络相位。然而,鉴于菲涅耳反射带来的损耗,致使其插入损耗很大,故无法被广泛应用。另外,在太赫兹波段,大部分天然材料的色散响应较弱、双折射系数较小,很难被设计成相应的载波包络相位控制器件,因此无法用于具有宽频率成分的太赫兹脉冲。与天然材料相比,超材料是一种由亚波长结构衍生而来的、具有特殊光学特性的人工材料,其对电磁波的色散响应和双折射系数,均可进行人为定制。虽然超材料技术发展迅猛。但是,由于近单周期太赫兹脉冲的宽带特性,利用超材料对太赫兹脉冲的载波包络相位进行控制,仍是一件难事。为解决这一难题,王天武用超材料制备出一款芯片——即柔性太赫兹载波包络移相器,专门用于控制太赫兹脉冲的载波包络相位。该芯片由不同结构的超材料阵列组成,可在亚波长厚度和不改变太赫兹电场极化的情况下,实现对太赫兹载波包络相位的消色差可控相移,其对太赫兹脉冲的载波包络相位的相移调制深度高达 2π。相比传统的太赫兹载波包络相位移相器,该移相器具有超薄、柔性、低插损、易于安装和操作等优点,有望成为太赫兹扫描隧道显微镜系统的核心部件。近日,相关论文以《基于超材料的柔性太赫兹载波环移相器》(Flexible THz Carrier-Envelope Phase Shifter Based on Metamaterials)为题发表在 Advanced Optical Materials 上,李彤和全保刚分别担任第一和第二作者,王天武和空天信息创新研究院方广有研究员担任共同通讯作者。▲图 | 相关论文(来源:Advanced Optical Materials)审稿人认为:“此研究非常有趣、简明扼要,研究团队完成了一套完备的工作体系。该芯片的设计和实现,为调控太赫兹的载波包络相位提供了新的解决方案。”2. 建立国际领先的太赫兹科学实验平台据介绍,王天武所在的研究院,围绕制约人类利用太赫兹频谱资源的主要科学问题和技术瓶颈,致力于形成一批引领国际的原创性理论方法和太赫兹核心器件技术,以建立国际领先的太赫兹科学实验平台。他说:“太赫兹扫描隧道显微镜是我们院的一大特色,该设备摒弃了此前施加电压的方式,以太赫兹为激发源,去激发探针尖端和样品之间的间隙,从而产生隧穿电流并进行成像。相关技术在国内属于首创,在国际上也处于领先水平。”在诸多要克服的困难中,太赫兹载波包络相位的调制便是其中之一。入射太赫兹的相位大小对激发的隧穿电流的幅值、相位等信息影响甚大,是提高设备时间和空间分辨率必须要解决的重要问题之一。由于设备腔体比较长,并且腔体内部为高真空环境,与外界空气是隔绝的。传统的太赫兹相位改变方式比较难以实现,因此需要研发新型的相位调制器件。而该课题立项的初衷,正是希望找到一种结构简单、但是对太赫兹载波包络相位调制效率高的方法和装置,以便更好地服务于太赫兹扫描隧道显微镜系统。在文献调研的初始阶段,该团队商定使用超材料来制作太赫兹相位调制器。具体来说,其利用特定的金属分裂环谐振器的几何相位、以及共振相位,来控制太赫兹脉冲的载波包络相位值。之所以选择金属分裂环谐振器作为基本相控单元,是因为在一定条件下,它对太赫兹具有宽谱响应。当任意方向的线偏振波与谐振器耦合时,入射电场分量可映射到平行于谐振器对称轴和垂直于谐振器对称轴,借此可以激发谐振器的对称本征模和反对称本征模。此时,通过改变金属分裂环谐振器的几何相位和共振相位,散射场的某一偏振分量的电场相位会相应延迟,大小可以轻松覆盖 0-2π。但是,由于存在电偶极子的双向辐射,导致金属分裂环谐振器存在明显的反射和偏振损耗。为此,课题组引入了一对正交的定向光栅,利用多光束干涉的方式解决了谐振器插入损耗大的问题。随之而来的另一难题是,由于正交光栅的存在,导致入射波和透射波之间的电场偏振始终是垂直的,在太赫兹扫描隧道显微镜系统的工作中,这是不被允许的。好在样品均是由互易材料制成的,于是这一问题很快迎刃而解。随后,该团队采用常规紫外光刻、电子束沉积以及聚酰亚胺薄膜上的剥离技术,制备出相关样品,并利用太赫兹时域光谱系统,对所制备的样品性能进行表征。当入射的太赫兹脉冲,依次被样品中不同的微结构阵列调制时,研究人员通过太赫兹时域光谱测量,清晰观察到了太赫兹脉冲的时间波形的变化,且与仿真结果十分吻合。此外,课题组还在广角入射和大样品形变时,验证了该样品的鲁棒性。总而言之,该成果为宽带太赫兹载波包络相位的控制,提供了一种新型解决方案,并在不改变太赫兹电场极化的情况下,利用“超材料”在亚波长厚度的尺度上,实现了针对宽带太赫兹载波包络相位的消色差可控相移。关于这一部分成果的相关论文,也已发表在《先进光学材料》期刊。(来源:Advanced Optical Materials)据介绍,此次芯片能把太赫兹的相位最高移动至 2π 大小,并且具有大的光入射角度和良好的柔韧性等优点,在太赫兹扫描隧道显微镜系统,以及其他相关领域有较高的应用价值。但是,该芯片目前仍存在一个缺点,即无法做到太赫兹载波包络相位的连续调制。这是由于,采用的金属分裂环谐振器是单次加工制成的,所能调制的几何相位和共振相位已经确定,无法再被人为改变。因此,使用过程中只能通过加工特定结构的芯片,来实现所需相位的调制。未来,该团队打算将当下比较热门的二维材料、相变材料、液晶材料等材料集成到芯片中,这些材料的优势在于光学性能可被人为改变。同时,其还将综合电、光、热等手段,实现金属分裂环谐振器几何和共振相位的主动控制,从而实现对太赫兹脉冲的连续载波包络相位调制。此外,课题组也会继续优化微加工工艺和原料制备流程,进一步提升芯片的综合性能指标,比如器件的低插入损耗、高工作带宽等,同时也将降低制造成本,以便后续的产业化推广。
  • 天津大学何明霞教授:主攻太赫兹工业无损检测 多领域推进产业化
    在满足目前各种应用需求的前提下,光谱分析仪器和方法也在不断的创新发展中,不论是分子光谱还是原子光谱都涌现了一系列创新的成果,特别是拉曼光谱、近红外光谱、激光诱导击穿光谱、太赫兹、超快光谱、荧光相关光谱、高光谱等相关技术彰显了极具诱惑的市场活力,引领着行业发展的方向。第十二届光谱网络会议(iCS 2023)中,近50位专家报告充分彰显了光谱创新潜力,纷纷展示了一系列的创新成果:从仪器整机到关键部件;从系统集成到方法开发;从大型科研仪器,到用于现场的便携、手持设备;从实验室检测设备,到过程分析技术……为了更好的展示这些创新成果,同时也进一步加深专家、用户、厂商之间的合作交流,会议主办方特别策划《光谱创新成果“闪耀”iCS2023》网络专题成果展,集中展示本次光谱会凸显的创新成果,包括但不限于仪器、部件、技术、方法、应用等。天津大学何明霞教授本次会议中,天津大学何明霞教授分享了《太赫兹科学技术应用近年新进展》(点击回看》》》)引发行业关注。会后,我们也再次邀请何明霞教授分享其团队在太赫兹技术及应用拓展方面的系列研究成果。1、成果简介基于太赫兹时域光谱技术的多层非极性复合材料检测系统太赫兹电磁波介于微波与红外之间(0.1THz -10 THz ),处于电子学与光子学的交叉领域,被誉为人类认识世界的“第三只眼睛”、“改变世界的十大科技”。太赫兹具有光子能量低、穿透性强、指纹谱特征、高信噪比、高分辨率、宽频带、瞬态性等独特优势,近年来在工业无损检测领域发展迅速。太赫兹时域光谱技术(THz-TDS)是一种新型的脉冲全息光谱技术,可获取物质的折射率、吸收系数、介电系数等多个物理参数信息。相比于红外光谱、拉曼光谱,太赫兹光谱覆盖了生物大分子、有机分子等物质独特的特征谱信息;相比于X射线,太赫兹辐射能量低,对人体安全;相比于超声检测、涡流检测,太赫兹检测为非接触式、穿透性更强,可表征多涂层的信息。利用新型的太赫兹技术进行物质光谱检测分析、无损扫描成像及超薄样品测厚应用,弥补传统检测手段不足之处,完成更高精度、更快速安全的检测。本团队基于高信噪比、高灵敏度、安全、快速的太赫兹时域光谱技术,开展在非极性电介质材料缺陷探测成像及微米级多涂层测厚领域相关研究。迭代开发智能化工业机器人手臂及协作控制系统,实现对非极性材料内部缺陷三维层析无损扫描成像,对多层的微米级别超薄涂层厚度可进行每单层的精准测量表征。系统覆盖太赫兹波谱宽度为0.1THz -3THz,太赫兹光纤长度10m,工作重复频率10Hz;无损扫描成像层数可达3层,平面扫描范围180×180mm,空间机械臂延伸测量半径为1.3m,最快扫描速度500mm/s;涂层测厚层数可达3层,最小测厚值可达10μm,绝对精度2μm;且满足空间、异形曲面移动多点位精准快速无损检测需求,具有全自动处理、高精度测量、多层厚度实时计算等优势,为超薄涂层类复合材料提供更加精准、高效和可靠的测量方式,适用于汽车工业、航空航天、锂电池电极、非金属管道、泡沫塑料等多领域无损检测场景。2、产业化探索智能化机器人手臂空间异形曲面无损检测系统在未来是考虑多个领域产业化的,拥有在材料检测、无损探伤、医疗检查,以及文物资料研究等多个领域发展的潜质。太赫兹时域光谱技术本身是一个多领域快速发展的检测技术,其测量方式依赖于平面扫描或者曲面扫描载荷技术,配合样本的空间建模,以完成自动化样本数据有序测量。具体到应用领域,需要根据样品的尺寸、规格以及空间特征,设计低成本、易便携、方便取样的测量装置。比如可以对皮肤表面进行快速扫描成像、对曲面的陶瓷文物信息鉴定等,这些有待合作单位的具体要求。3、课题组未来研究计划太赫兹波在电磁波谱中处于电子学向光子学的过渡区,也是宏观经典理论向微观量子理论的过渡区,其具有光子能量低、穿透性强、指纹谱特征等独特优势。太赫兹时域光谱技术利用飞秒脉冲产生并探测时间分辨的THz电场,通过傅立叶变换获得被测物品的光谱信息,检测过程快速、安全、精度高,且光谱具有物质特征峰,在物质鉴别分析、工业无损检测、产线在线质量监测、安检扫描成像等领域应用潜力巨大,弥补传统检测手段的缺陷不足。本研究团队重点主攻方向为太赫兹工业无损检测方向,分析、利用太赫兹时域光谱,建设标准太赫兹光谱数据库,实现物质太赫兹光谱检测分析、微米级多涂层太赫兹精准测厚及材料内部无损探测成像等多方面太赫兹无损检测研究。4、合作需求关于非极性材料无损扫描探测成像、物质太赫兹光谱检测分析及超薄涂层测厚方面,涉及生物医药、锂电池电极、半导体、复合材料、文物艺术品等领域检测需求可探索合作研究。联系方式:曲秋红 15122743715(手机、微信)附专家及课题组简介何明霞,博士,天津大学精密仪器与光电子工程学院电子物理学与仪器科学与技术专业教授、博导,首届“中国生物物理学会太赫兹生物物理分会”副会长兼秘书长、“毫米波太赫兹产业联盟”太赫兹光谱与检测工作组组长、中国仪器仪表学会图像科学与工程分会秘书长、中国光学学会光电技术专业委员会委员,是“天津大学太赫兹光子学”组建者之一和核心骨干。主要研究方向∶太赫兹光谱技术与成像应用和太赫兹生物效应研究。致力于太赫兹时域光谱技术实用化、多种非极性材料的太赫兹光谱成像无损检测及太赫兹生物医学基础研究,是国内最早将太赫兹光谱技术用于癌症组织、生物组织的研究者。太赫兹光谱技术与成像应用团队以高信噪比、高灵敏度、宽带、安全、快速的太赫兹时域光谱技术为核心,结合汽车工业、航空航天、管道塑材、生物医药、食品安全等领域实际应用需求,开展物质太赫兹光谱检测分析、太赫兹标准光谱数据库建设、非极性材料无损扫描成像、微米级多涂层系统精准测厚、太赫兹辐射成分鉴定以及实用化技术应用产品开发等研发工作。搭建太赫兹光谱与成像系统应用平台,完成三维层析太赫兹光谱快速扫描成像测厚设备及智能化工业机器人手臂空间异形曲面无损检测系统的开发,适用于各类涂层的微米级厚度测量和材料内部缺陷的无损检测,如汽车车身涂层、锂电池隔膜、锂电池电极、泡沫塑材、非金属管道、生物组织样品等,相关研究成果及产品拥有自主知识产权20余项。团队研发并已投入市场应用的全国产化高灵敏度太赫兹相机,适用于现有多种主流太赫兹源辐射探测,对非极性物质材料成像清晰,可在安检成像领域推广使用。针对太赫兹光谱检测市场需求,正进行应用标准化和实用数据库的工作,建立多类物质的开源太赫兹标准数据库,实现物质太赫兹光谱的定性与定量分析检测。
  • 国内首套真空太赫兹波段近场光学显微系统在电子科技大学太赫兹中心成功安装
    太赫兹有着光明的应用前景,还是一片未开垦的处女地。电子科技大学太赫兹中心自成立以来,为太赫兹科学研究搭建了更高的合作发展平台,也标志着我国以“国际前沿、”为目标的太赫兹科学研究迈入了崭新阶段。2018年6月,应电子科技大学太赫兹中心对真空环境下进行太赫兹近场光学研究的需求,QD中国工程师配合德国neaspec公司立即展开积响应并为客户量身定制了套真空太赫兹波段近场光学显微系统(HV-THz-neaSNOM),并已成功安装。 图1:电子科技大学太赫兹中心安装调试现场 图2:真空太赫兹波段近场光学显微系统(HV-THz-neaSNOM) 电子科技大学太赫兹中心原有一套大气环境太赫兹波段近场光学显微系统(THz-neaSNOM),空间分辨率~50nm、宽太赫兹时域近场响应波段0.5-2.2THz。由于更进一步的科研需要,客户需在更加严格的真空条件下进行太赫兹实验。为了满足客户的实验需求,德国neaspec公司在原有大气环境THz-neaSNOM的基础上,结合新的低温散射式近场光学显微镜(Cryo-neaSNOM)技术,设计了新的真空腔体系统,改进了原子力显微镜布局,并重新设计了光路,终成功研发出了套真空太赫兹波段近场光学显微系统(HV-THz-neaSNOM)。该套系统成功地继承了德国neaspec公司THz-neaSNOM的设计优势,采用保护的双光路设计,完全可以实现真空环境下太赫兹波段应用的样品测量。HV-THz-neaSNOM在实现30nm高空间分辨率的同时,由于采用0.1-3THz波段的时域太赫兹光源(THZ-TDS),也可以实现近场太赫兹成像和图谱的同时测量。这大地满足真空环境中太赫兹近场光学研究的需求,可以减少大气中水对太赫兹波段的吸收影响,能更好地保持样品的洁净,为用户进一步集成真空设备提供了基础。 图3:系统理论培训 图4:现场实时操作培训 太赫兹波有强的穿透性,对不透明物体能完成透视成像,用来做半导体材料、生物样品等的检测是其应用趋势之一。该套真空太赫兹波段近场光学显微系统(HV-THz-neaSNOM)的集成,将在生物应用、半导体元器件和相变材料载流子等研究及领域都有着广阔的应用前景,有望为广大太赫兹科研工作者提供更多实际研究工作中的便利和支持。
  • 被遴选为封面论文!上海微系统所黎华团队在太赫兹双光梳锁相方面取得进展
    近日,中科院上海微系统所曹俊诚、黎华领衔的太赫兹(THz)光子学团队基于电泵浦THz量子级联激光器(QCL)双光梳,突破激光自探测,利用锁相环技术,国际上率先实现THz QCL双光梳锁相。研究结果以“Active Stabilization of Terahertz Semiconductor Dual‐Comb Laser Sources Employing a Phase Locking Technique”为题发表在Laser & Photonics Reviews期刊,并被遴选为封面论文。光频梳与双光梳在高精度光谱检测、成像、通信等领域具有重要应用。在近红外波段,光频梳与双光梳技术相对较成熟。而在远红外尤其是THz波段,由于缺乏高效辐射源,光频梳与双光梳还处于实验室研究阶段。THz QCL具有电泵浦、大功率输出、高远场光束质量、宽频谱覆盖等特点,是实现THz光频梳和双光梳的理想载体。另外,THz QCL光频梳具有小的SWAP(尺寸、重量和功率消耗),在未来工业应用中具有优势。在前期工作中,中科院上海微系统所THz光子学团队在THz QCL光频梳与双光梳方面具有一定的积累,如实现了主/被动稳频THz QCL光频梳、THz片上双光梳、双光梳THz实时光谱检测等。而在THz QCL双光梳方面,目前国际上均采用的是自由运行THz QCL光频梳,其频率稳定性和相位噪声相对较差。到目前为止,提高THz QCL双光梳的频率稳定性是一个尚未解决的关键难题。图片来源于网络图1:THz QCL双光梳锁相工作原理及实验结果。上图:双光梳锁相工作原理。将THz QCL双光梳中的一根梳齿(蓝色圆圈)下转换到90 MHz附近,然后利用带通滤波器将其选出进行锁相。通过动态调控THz QCL的驱动电流对双光梳信号进行稳频锁相。左下图:锁相之后的测量得到的THz QCL双光梳频谱,其双光梳光学带宽为165 GHz。右下图:锁相之后的实验测量得到的THz QCL双光梳时域脉冲信号一个光频梳中的每根梳齿频率可以由两个频率完全定义,其一为载波漂移频率(fCEO),其二为重复频率(fREP)。对一个光频梳的锁定需要同时锁定fCEO和fREP。而对于双光梳的完全锁定,需要同时锁定四个不同的频率(两个fCEO和两个fREP),难度巨大。在本工作中,研究团队并非分别对两个THz QCL光频梳的fCEO和fREP进行控制,而是利用激光自探测,将THz QCL双光梳中的一根频率线进行下转换,然后利用锁相环进行锁定,最终提高整个THz QCL双光梳的频率稳定性并大幅降低其相位噪声。进一步,研究团队在锁相的条件下,对THz QCL双光梳成功进行了时域脉冲信号测量。由于该锁相技术并没有直接对单个光频梳的fCEO和fREP进行锁定,所以测量得到的双光梳时域脉冲信号可以证明单个THz QCL光频梳在没有锁相的条件可以产生时域脉冲。本工作为THz双光梳稳频提供了一项简单有效的方案,为THz光谱高分辨、成像和宽带THz通信等奠定重要基础。该论文的共同第一作者为中科院上海微系统所博士生赵逸然、博士后李子平、和博士生周康,通讯作者为黎华研究员。新微半导体许东研究员、法国微电子与纳米技术研究所(IEMN)Stefano Barbieri教授也为该工作做出了重要贡献。该项工作得到了中科院“从0到1”原始创新项目(ZDBS-LY-JSC009)、中科院仪器研制项目(YJKYYQ20200032)、国家优秀青年科学基金(62022084)、上海市优秀学术带头人计划(20XD1424700)、上海市青年拔尖人才开发计划等经费支持。关于黎华黎华,中国科学院上海微系统与信息技术研究所研究员,博士生导师,国家优秀青年科学基金获得者。2009年毕业于中国科学院上海微系统与信息技术研究所,获工学博士学位;2009至2015年,先后在德国慕尼黑工业大学肖特基研究所(洪堡学者)、日本东京大学生产技术研究所(日本学术振兴会JSPS特别研究员)、法国巴黎七大材料与量子现象实验室(博士后)开展合作研究;于2014年底加入中国科学院上海微系统与信息技术研究所,任研究员。黎华博士从事太赫兹(THz)量子级联激光器(QCL)与光频梳研究,在Advanced Science、Nature Communications、Optica、ACS Photonics、Advanced Optical Materials、Physical Review Applied等期刊发表SCI论文60余篇,在国际会议做邀请报告20余次,获授权中国发明专利15件。曾获得国家优青、入选上海市优秀学术带头人、上海市青年拔尖人才开发计划、中国科学院高层次人才计划、德国洪堡学者等。获得上海市自然科学奖二等奖(排名第三)、中国电子学会“优秀科技工作者”、国家人社部留学人员择优资助、中科院“从0到1”原始创新项目、中国科学院院长优秀奖等。
  • 滨松开发出全球首款基于超材料天线的太赫兹图像增强器
    据麦姆斯咨询报道,近日,滨松光子(Hamamatsu Photonics)开发出全球首款太赫兹图像增强器。该产品具有实时无损成像能力,可应用于食品异物检测和人体扫描等领域。滨松开发的太赫兹图像增强器“THz-I.I.”这款图像增强器“THz-I.I.”是基于滨松多年来开发的成像技术。该公司表示,“THz-I.I.”具有高分辨率和快速响应等特点,允许对通过目标物体传输或从目标物体反射的太赫兹波脉冲进行实时成像。太赫兹波在电磁波中的位置“THz-I.I.”概述图像增强器是主要为星光下的夜视(弱光情况下的辅助视觉)而开发的一种图像增强管。典型的图像增强器包括将入射光转换为电子的光电阴极、放大电子的微通道板、将电子转换为光的荧光屏,所有这些都密封在真空管之中。通过选择光电阴极材料,可以将包括可见光和不可见光在内的入射光转化为电子,然后在真空中进行倍增。这使得能够对发光现象进行高速、高分辨率和高灵敏度成像。滨松一直在与丹麦技术大学(Technical University of Denmark)进行合作研究,以开发利用小型超材料天线将太赫兹波转换为电子的光电转换技术。这种光电转换技术应用于滨松的成像技术,在“THz-I.I.”输入窗口的内表面形成超材料天线。滨松还重新设计了天线结构,以提高将太赫兹波转换为电子的效率——电子在真空中被有效地倍增。太赫兹图像增强器“THz-I.I.”工作原理太赫兹图像增强器“THz-I.I.”主要参数滨松评论说:“我们已经成功开发了一种快速响应、高分辨率的太赫兹图像增强器——THz-I.I.,能够对穿过目标物体或从目标物体反射的太赫兹波进行实时成像。这种太赫兹图像增强器还可以通过改变天线设计以匹配所需的应用,从而对任何频段的太赫兹波进行成像。”该太赫兹图像增强器有望扩大无损检测的应用范围,例如:(1)食品生产中的异物(指甲和薄膜等)的快速在线检测,(2)使用传统的X射线检测技术通常很难检测到污染物。由于太赫兹波对人体无害,“THz-I.I.”也有望应用于安检领域的人体扫描仪,在火车检票口和活动场地入口处进行安全检查时,这将被证明是非常有效的人体扫描手段。在科学研究领域,“THz-I.I.”将用作获取太赫兹光束轮廓或调整太赫兹光学系统的工具。滨松说:“作为未来的目标,我们将继续推进‘THz-I.I.’具有更高的实际使用灵敏度,目标是在一年内开始交付该产品的样品。”
  • 太赫兹无损检测技术及应用
    1. 太赫兹技术太赫兹(Terahertz,THz)又称远红外波,被评为“改变未来世界的十大技术”之一,其频率位于0.1 THz至10 THz,如图1所示。从能量辐射角度,太赫兹辐射能量介于电子与光子之间,在无线电领域被称为亚毫米波,在光学领域通常被命名为远红外辐射。太赫兹波段两侧的微波与红外波段技术研究已经非常成熟,且得到了广泛应用。然而,由于太赫兹源的功率强度和太赫兹接收器的探测灵敏度落后于邻近的微波和红外波段,一定程度上限制了太赫兹技术发展,使得该频段很长一段时间被称为“太赫兹间隙”。从本世纪八十年代中期以来,伴随着物理学超快激光技术的发展,太赫兹源越来越强大,探测器也越来越灵敏,太赫兹技术得以迅猛发展。太赫兹时域光谱技术、太赫兹成像技术以及利用非线性效应产生大功率太赫兹是其中为数不多的重大突破,将太赫兹研究推向了中心舞台。太赫兹技术在无极性非金属材料检测方面明显优于传统方法,而且比其他方法有更高的时间分辨率,极大促进了太赫兹技术在无损检测领域应用。图1 THz波频谱分布2. 太赫兹时域光谱系统依据太赫兹波源类型差异,太赫兹检测技术可分为脉冲型和连续型。连续型太赫兹成像系统效率较高,但其频谱宽度较窄且缺乏时间信息。这促使脉冲型太赫兹时域光谱(Terahertz-time domain spectroscopy, THz-TDS)技术成为无损检测与分析领域的“舞台新星”。该技术具有以下独特优点:(1)相干性:由于光电导与光整流产生太赫兹脉冲的独特机制,使得其单色性较好,具有极强时间与空间相干性,太赫兹脉冲的相干长度甚至可以达到ns量级。这一特性使太赫兹相干测量技术得以实现。(2)强穿透性:太赫兹的穿透性与物质的颜色等物理性质无关,仅仅取决于物质的极性,太赫兹无法透过极性物质,而对于纸张、陶瓷以及涂层等非极性材料,太赫兹对绝大部分非极性物质具有极强的穿透性,其透过非极性物质时能量衰减极小。(3)低能性:相较于物质中各种化学键的键能,1 THz单光子能量远低于键能,一般仅仅为4.1 meV,不会引起物质发生电离作用,也就不会导致被测物质损伤,从而保证了该技术的安全性。(4)瞬态性:太赫兹脉冲时间宽度通常仅为皮秒量级,甚至能达到亚皮秒量级,可以用于材料的超快过程研究。(5)特征指纹性:脉冲太赫兹辐射的频谱范围从数百GHz到几THz,而许多生物大分子的振动和转动能级、以及半导体和超导材料的声子振动能级均落在太赫兹频段。分子振动和转动能级在太赫兹频段往往具有独特的吸收峰,这种独特的吸收特性使得每种物质拥有独一无二的指纹吸收谱。因此,特征指纹性使得太赫兹技术在光谱分析和物质识别等方面具有得天独厚的优势和广阔的应用前景。太赫兹时域光谱系统检测原理,如图2所示。图2 太赫兹时域光谱系统原理飞秒脉冲激光器产生飞秒脉冲激光,脉冲激光在光纤中传输会产生色散、偏振以及非线性效应等,这些现象均会对脉冲品质产生不利影响。在光纤中传输后的飞秒脉冲激光首先需要进行色散补偿,再由偏振分束镜将飞秒激光分为探测光和泵浦光两束,探测光将会直接照射在用于探测的光电导天线上,另一束泵浦光先汇聚在太赫兹发射器上并通过光电导天线两侧的偏置电压产生THz脉冲。最后用准直透镜和非球面聚焦透镜对THz脉冲聚焦后,将THz脉冲准直聚焦照射在待测样品上,携带样品信息的THz信号再次经过分束器的反射后返回太赫兹探测器,光电导天线检测器上的探测光通过测量THz电场的变化来获得微弱的电流信号,该电流信号经过锁相放大等操作后转化为THz时域信号波形,最后计算机通过A/D转换器等效采样收集获得样品的THz检测信号。3. 太赫兹无损检测技术研究进展由于太赫兹技术的安全性、高分辨率和无接触非破环性等优点,在无损检测领域备受关注,该技术在检测领域主要可分为以下两个方面:(1)缺陷成像太赫兹(Terahertz, THz)成像技术在许多领域被视为最前沿技术之一,在无损检测中取得了巨大进步。中国矿业大学范孟豹教授课题组在THz成像取得了相关研究进展。2020年,该团队基于时域有限差分数值模型模拟了热障涂层不同脱粘缺陷情况下的太赫兹信号,基于支持向量机方法实现了缺陷自动辨识。同年,发表了太赫兹成像技术进展综述论文。2021年,团队分析了太赫兹图像乘性噪声产生机理,提出基于同态滤波的THz图像增强模型,消除了太赫兹图像局部伪影,提高了图像的边缘强度。同年,课题组结合蜂窝材料纹理提出了新型滤波算子,称为苯环算子,消除了边缘与高斯-泊松噪声在高频混叠现象,提高成像质量。同时,撰写了THz超分辨率成像系统与信号处理技术综述论文。图3 苯环算子去噪方法(2)参数检测参数测量是表征材料服役与状态关键一环,在无损检测行业中备受关注。White首次使用反射式THz时域光谱系统对热障涂层厚度进行检测,但在其研究中取热障涂层折射率为固定经验值,并不能适用不同制备工艺条件和所有服役工况下的热障涂层;Fukuchi提出定位THz反射信号的三个反射峰,通过朗伯比尔定理获得了热障涂层的折射率,该方法需要THz信号的反射峰,不适应于薄涂层与多层结构的涂层。Krimi等人利用广义的Rouard模型来模拟任意多层薄膜内的太赫兹波与物质的相互作用,然而其使用的遗传优化算法存在收敛速度慢、控制变量较多等问题。近年来,随着人工智能方法快速,发展太赫兹与机器学习相结合参数测量方法应用广泛。中国矿业大学范孟豹教授课题组在参数测量方面取得了相关研究进展。2020年,范孟豹教授团队构建了多层涂层太赫兹信号解析模型,提出了基于全局优化算法减小实验与仿真信号间残差,反演出涂层厚度与折射率参数。2021年,课题组提出了差分进化自适应教与学优化算法,平衡全局与局部寻优能力,准确求解出热障涂层材料参数。同年,课题组针对Fuhucki方法需要手动定位反射的问题,提出了将长短时记忆神经网络与太赫兹技术相结合,完成了时域信号中多反射峰自动定位,实现热障涂层厚度与折射率在线测量。2022年,团队从THz参数测量机理出发,分析出折射率测量需要频域信息,据此开展了小波时频研究,并基于卷积神经网络建立了时频图与厚度、折射率间数学映射。同年,团队提出了全新的THz参数测量视角,深入探究了THz波与热障涂层间作用机理,发现了THz信号前两反射峰携带了测厚关键信息,阐述了实验与仿真信号在峰值处吻合度高的原因。据此,提出了基于模型驱动的THzResNet网络新结构,形成了可解释网络框架,最终实验结果表明THzResNet能够准确预测出热障涂层厚度,测量误差小于1%。图4 多反射峰自动定位方法图5 THzResNet新结构4. 总结随着材料科学技术进步,非金属材料应用逐渐广泛,使得具有非接触、非电离、波长短等优点太赫兹技术必将成为无损检测行业新星,解决缺陷成像与光学参数测量的行业痛点问题。作者简介范孟豹,博士,教授,博士研究生导师,机器人工程系主任,专业负责人,入选江苏省六大人才高峰资助计划。2009年6月毕业于浙江大学控制科学与工程专业,获工学博士学位,2015年1月至2016年1月在英国Newcastle University大学做访问学者。主要研究方向为智能机器人感知理论及应用研究。作为项目负责人,主持国家自然基金项目3项、JKW基础加强项目子课题、“863”计划子课题、江苏省自然科学基金面上项目、高等学校博士学科点专项科研基金新教师项目、国家博士后科学基金特别资助项目、国家博士后科学基金面上项目等项目,承担各类项目近30项。在国内外期刊及学术会议上发表SCI收录论文50余篇、EI收录10余篇。申请国家发明专利40余项,授权发明专利25项,出版专著1部。获国家安全生产监督管理总局科技进步一等奖、浙江省科技进步三等奖、中国腐蚀与防护学会一等奖等省部级奖励3项。担任科技部重点研发项目评审专家、教育部和浙江省科技奖励评审专家、国家自然科学基金项目函评专家、重庆与江西省基金项目评审专家,担任IEEE Transactions on Industrial Informatics、IEEE Transactions on Industrial Electronics、Mechanical Systems and Signal Processing、IEEE Transactions on Instrumentation and Measurement、NDT&E International、Measurement、IEEE Sensors Journal、机械工程学报、中国机械工程等30多个期刊审稿人。欢迎对太赫兹检测技术有兴趣的同行通过邮件联系:wuzhi3495@cumt.edu.cn。近三年课题组与太赫兹检测技术相关的学术论文:(1) 参数测量[1] Binghua Cao, Mengyun Wang, Xiaohan Li, Mengbao Fan, et al. Accurate thickness measurement of multilayer coatings on metallic substrate using pulsed terahertz technology. IEEE Sensors Journal, 2020, 20(6): 3162-3171.[2] Fengshan Sun, Mengbao Fan, Binghua Cao, et al. Terahertz based thickness measurement of thermal barrier coatings using long short-term memory networks and local extrema[J]. IEEE Transactions on Industrial Informatics, 2022, 18(4): 2508-2517.[3] Fengshan Sun, Mengbao Fan, Binghua Cao, et al. THzResNet: A physics-inspired two-stream residual network for thermal barrier coating thickness measurement [J]. IEEE Transactions on Industrial Informatics, 2022, Early Access.[4] 孙凤山, 范孟豹, 曹丙花, 等. 基于时频关键信息融合的热障涂层太赫兹准确测厚方法. 机械工程学报, 2022. (录用).[5] 曹丙花, 郑德栋, 范孟豹, 孙凤山, 等. 基于太赫兹时域光谱技术的多层涂层高效可靠测厚方法[J]. 光学学报, 2022, 42(01): 127-137.(2) 缺陷成像[1] Binghua Cao, Enze Cai, Mengbao Fan. NDE of Discontinuities in thermal barrier coatings with terahertz time-domain spectroscopy and machine learning classifiers[J]. Materials Evaluation, 2021, 79(2) :125-135.[2] 曹丙花, 李素珍, 蔡恩泽, 范孟豹, 淦方鑫.太赫兹成像技术的进展[J]. 光谱学与光谱分析, 2020, 40(09): 2686-2695.[3] 曹丙花, 张宇盟, 范孟豹, 孙凤山, 等. 太赫兹超分辨率成像研究进展[J]. 中国光学, 2022, 15(03): 405-417.[4] 孙凤山, 范孟豹, 曹丙花, 等. 基于几何纹理与Anscombe变换的蜂窝材料太赫兹图像降噪模型[J]. 机械工程学报, 2021, 57(22): 96-105.[5] 孙凤山, 范孟豹, 曹丙花, 等. 基于混沌映射与差分进化自适应教与学优化算法的太赫兹图像增强模型[J]. 仪器仪表学报, 2021, 42(04): 92-101.
  • Science:具有超过500吉赫兹带宽的超材料石墨烯光电探测器
    01. 导读石墨烯已经实现了许多最初预测的特性,并且正朝着市场迈进。然而,尽管预测的市场影响巨大,基于石墨烯的高性能电子和光子学仍然落后。尽管如此,已经报道了一些令人印象深刻的光电子器件演示,涉及调制器、混频器和光电探测器(PDs),特别是利用石墨烯的高载流子迁移率、可调电学特性和相对容易集成的石墨烯光电探测器已经得到了证明,例如展示了利用光增益效应的高响应度或超过100 GHz的带宽。从紫外线到远红外线之间,尽管石墨烯几乎具有均匀吸收特性,但其相对低的吸收率约为2.3%,这是其中一个主要挑战。因此,大多数速度最快、性能最佳的探测器都是在硅或硅化物等光子集成电路(PIC)平台上进行演示的。通过石墨烯的电场的平行传播,可以提供更长的相互作用长度,从而增加吸收率。通过使用等离子体增强技术,甚至可以实现更短和更敏感的探测器。尽管在光子集成电路上使用石墨烯已经展示了多种功能应用,但光子集成电路的整合也有其代价。光子集成电路的整合限制了可访问的波长范围,无论是由于波导材料(如Si)的透明度限制,还是由于集成光学电路元件(如光栅耦合器、分光器等)的有限带宽。此外,光子集成电路的整合对偏振依赖性和占地面积都有一定的限制,这是由于访问波导的原因。光子集成电路的模式和等离子体增强也意味着所有光线只与石墨烯的一个非常有限的体积相互作用,导致早期饱和的发生,有效地将最大可提取的光电流限制在微安级别。作为一种替代方案,可以直接从自由空间垂直照射石墨烯。这种方法可以充分利用石墨烯的光电检测能力,而不会受到所选择光子平台的限制。然而,这需要一种结构来有效增强石墨烯的吸收。此外,由于器件尺寸较大,对整体器件几何结构和接触方案的额外考虑更加关键。尽管如此,已经证明即使是与自由空间耦合的石墨烯探测器也可以达到超过40 GHz的带宽。由于没有光子集成电路的一些约束,整体效率不会受到耦合方案的影响,而且其他属性,如不同波长和偏振,现在也可以自由访问。例如,最近利用任意偏振方向来演示了中红外区域的极化解析检测中的定向光电流。石墨烯提供了多种物理检测效应:与传统的光电探测器(如PIN光电二极管或玻璃热计)只使用一种特定的检测机制不同,石墨烯探测器具有多种不同的检测机制,例如基于载流子的机制[光电导(PC)和光伏(PV)],热机制[玻璃热(BOL)和光热电(PTE)],或者增益介质辅助的机制。最近的器件演示已经朝着光热电复合操作的方向推进,以克服依赖偏置检测机制时的高暗电流问题。对石墨烯的时间分辨光谱测量表明,载流子动力学可以实现超过300 GHz的热和基于载流子的石墨烯光电探测器。对于设计高速、高效的石墨烯光电探测器来说,目前仍不清楚哪种直接检测机制(PV、PC、BOL或PTE)可以实现最高的带宽,并且这些效应中的许多效应可以同时存在于一个器件中,使得专门的设计变得困难。02. 成果掠影鉴于此,瑞士苏黎世联邦理工学院电磁场研究所Stefan M. Koepfli报道了一种零偏置的石墨烯光电探测器,其电光带宽超过500 GHz。我们的器件在环境条件下可以覆盖超过200 nm的大波长范围,并可适应各种不同的中心波长,从小于1400 nm到大于4200 nm。材料完美吸收层提供共振增强效应,同时充当电接触,并引入P-N掺杂,实现高效快速的载流子提取。光可以通过标准单模光纤直接耦合到探测器上。直接的自由空间耦合使光功率可以分布,导致高于100 mW的饱和功率和超过1 W的损伤阈值。该探测器已经经过高速操作测试,最高速率可达132 Gbit/s,采用两电平脉冲幅度调制格式(PAM-2)。多层结构几乎可以独立于基底进行加工处理,为成本效益高的技术奠定了基础,该技术可以实现与电子器件的紧密单片集成。我们进一步展示了该方法的多样性,通过调整超材料的几何形状,使其在中红外波长范围内工作,从而在原本缺乏此类探测器的范围内提供高速和成本效益高的探测器。因此,这种新型传感器为通信和感知应用提供了机会。相关研究成果以“Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertz”为题,发表在顶级期刊《Science》上。03. 核心创新点本文的核心创新点包括:1. 基于图形石墨烯的光电探测器:本文提出了一种利用单层石墨烯的光电探测器。与传统的光电二极管或波尔计可以利用一种特定的探测机制不同,图形石墨烯探测器具有多种不同的探测机制,包括载流子机制、热机制和增益介质辅助机制。2. 电光带宽:本文展示了具有大于500 GHz的电光带宽的图形石墨烯探测器。这意味着该探测器能够高速响应光信号,适用于高速通信和数据传输。3. 多波段操作和宽光谱范围:图形石墨烯探测器能够在多个波段上工作,并且具有超过200 nm的宽光谱范围。这使得该探测器在通信和传感等领域具有广泛的应用潜力。4. 自由空间耦合和紧凑集成:本文展示了通过自由空间耦合的方式将光信号直接耦合到探测器中,避免了光子集成电路中的限制,并且实现了紧凑的集成。这使得探测器具有更好的灵活性和可扩展性。5. 高饱和功率和低压操作:图形石墨烯探测器具有高饱和功率,能够抵消响应度的影响。此外,它还能在低电压范围内进行操作,与CMOS技术兼容,使得探测器具有更低的功耗和更好的性能。04. 数据概览图1. 间隔式石墨烯超材料光电探测器的艺术视角。(A)从顶部直接通过单模光纤照射器件的艺术化表现。(B)器件结构的可视化。光电探测器由金反射层背板、氧化铝间隔层、单层石墨烯和相连的偶极子谐振器组成。金属线具有交替的接触金属,由银或金制成。然后,该结构由氧化铝钝化层封顶。图2. 制备的器件和模拟的光学和电子行为。(A至D)所提出的超材料石墨烯光电探测器(钝化前)的扫描电子显微图,放大倍数不同。显微图展示了从电信号线到活动区域再到谐振器元件的器件结构。在(D)中显示了四个单元格(每个单元格大小为1 mm × 1 mm),位于x和y坐标系中。比例尺分别为50mm(A),5 mm(B)和1 mm(C)。(E至G)同一单元格的模拟光学和静电行为。图(E)中展示了电磁场分布下的偶极子天线行为,图(F)中展示了相应的吸收分布。大部分吸收都集中在偶极子谐振器附近。图(G)中展示的模拟接触金属引起的电势偏移显示了由于交替接触金属而引起的P-N掺杂。沿着每种模拟类型((E)至(G))的中心线(y = 1000 nm)的横截面位于每个面板的底部,显示光学信号和掺杂在接触区域附近最强。图3. 用于电信波长的器件性能。(A)用光学显微镜拍摄的器件在与电子探针接触时的顶视图(顶部)和侧视图(底部)图像。图像显示了与单模光纤的直接光学耦合。DC表示直流,RF表示射频。(B)归一化的光电响应随照射波长变化的曲线图,显示了共振增强和宽带工作。FWHM表示半峰全宽。(C)光输入功率变化范围内提取的光电流,范围跨越了五个数量级(黑线)。蓝线对应于器件上的光功率(Int.),而黑线对应于单模光纤输出的功率(Ext.)。响应度分别为Rext = 0.75 mA/W和Rint = 1.57 mA/W。(D)石墨烯光电探测器在2至500 GHz范围内的归一化频率响应。测量结果显示平坦的响应,没有滚降行为。WR代表波导矩形。(E)不同射频音调下的归一化射频响应随栅压的变化。发现理想的栅压在-2.5 ±1 V附近,使得响应平坦,这对应于轻微的P掺杂,可以从底部的电阻曲线中看出。电阻曲线进一步显示靠近0 V的狄拉克点和非常小的滞后行为(在图S2中进一步可视化)。(F)测量栅电压范围的相应模拟电势剖面,显示了理想的栅电压(以红色突出显示),对应于两个接触电平中心处的掺杂。图4. 光谱可调性和多共振结构。(A至C)模拟(A)和测量(B)不同元件共振器长度的光谱吸收,展示了元件结构的可调性。图中给出了四个示例的极化无关设计的扫描电子显微镜图像(C),其中颜色对应于(A)中所示的共振器长度刻度。比例尺为1 mm。(D至G)多共振器件的概念。(D)针对1550和2715 nm的双共振器件的扫描电子显微镜图像。顶部比例尺为1 mm,底部比例尺为5 mm。(E)相应的电场模拟,使用3个单元单元格乘以2个单元单元格的双共振器件,激发波长分别为1550和2715 nm,显示了两个不同尺寸共振器的清晰偶极子行为。(F)器件上的光电流与光功率的关系图和(G)两个波长的测量响应度与电压的关系图。05. 成果启示我们展示的2 GHz至500 GHz以上的电光带宽光电探测器与传统的PIN光电探测器技术和单向载流子光电二极管相媲美。垂直入射的元件结构图形PD在单个器件中充分发挥了图形的预期优势。从概念上讲,该探测器的性能利用了元件吸收增强、通过图形-金属接触掺杂的内置电场、通过静电门实现的良好控制的工作点以及化学气相沉积生长的图形的有效封装。探测器依赖于相对简单的金属-绝缘体-图形-金属-绝缘体的层状结构,这种结构潜在地可以在几乎任何衬底上进行后处理,并支持与现有结构的高度密集的单片集成,类似于等离子体调制器的示例。与大多数先前关于图形探测器的工作不同,我们展示了在无冷却条件下的空气稳定操作,使用了与互补金属氧化物半导体(CMOS)兼容的低电压范围的栅压,这是由于直接生长的封装层结构与底部绝缘体设计的结合效果所致。通过这些器件,我们展示了132 Gbit/s的数据传输速率,这是迄今为止已知的最高速度的图形数据传输速率。高饱和功率使得高速检测成为可能。在受到射击噪声限制的通信系统中,高饱和功率可以抵消适度的响应度,因为信噪比与响应度和输入功率成正比。此外,适度的响应度可以改善。以前的自由空间照明的图形光电探测器依赖于载流子倍增或基于剥离的多层图形而达到了更高的响应度,而没有任何光学增强。因此,还有很大的空间来共同努力进一步完善这个概念,改进制造工艺,并实现更高质量的图形材料。这些努力很可能会导致新一代的基于图形的探测器,具有足够的响应度。最后,大于500 GHz的高带宽和图形的波长无关吸收使得探测器可以在从1400 nm到4200 nm及更远的范围内的任何波长上工作。这对于传感和通信都是相关的。例如,在电信领域,持续增长的数据需求导致了对新通信频段的强烈需求。这种具有紧凑尺寸和与CMOS集成能力的新型探测器可能能够满足当前迫切需求。原文详情:Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertzStefan M. Koepfli, Michael Baumann, Yesim Koyaz, Robin Gadola, Arif Gngr, Killian Keller, Yannik Horst, ShadiNashashibi, Raphael Schwanninger, Michael Doderer, Elias Passerini, Yuriy Fedoryshyn, and Juerg Leuthold.Science, 380 (6650), DOI: 10.1126/science.adg801
  • 亚赫兹激光器与超窄线宽测量技术
    成果名称亚赫兹激光器与超窄线宽测量技术单位名称北京大学联系人马靖联系邮箱mj@labpku.com成果成熟度□研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产成果简介:超窄线宽激光是光通信、光传感、高精度光谱学等应用中的一个关键技术,也是一些基本物理参数测量的重要工具,而超窄激光线宽测量是实现超窄线宽激光器所必需的辅助技术。在&ldquo 仪器创制与关键技术研发&rdquo 基金第三期项目中,北京大学信息学院李正斌教授申请的&ldquo 亚赫兹激光器与超窄线宽测量技术研制&rdquo 项目提出并研究了一种获得窄线宽激光器的新机制,即光路分形结构机制。课题组前期的实验发现,在单环有源光纤谐振腔中引入光路分形结构能够获得类似多谐振环耦合的特性,与相同长度的光纤谐振腔相比,其输出激光线宽明显变窄。基于这一发现,课题组在第三期基金的经费资助下,开展了深入的研制工作。其工作主要包括:(1)以理论与实验相结合为手段,以光纤结构为对象,探索利用光路分形结构设计和实现单纵模输出、高频率稳定、线宽赫兹(Hz)以下量级的超窄线宽激光器的原理和方法,并获得原理样机;(2)利用互拍以及光域鉴频的技术设计并搭建超窄线宽激光器的测试平台,实现赫兹(Hz)以下量级超激光线宽的测量。应用前景:目前,该项目主要工作已经顺利完成,项目成功通过验收。其研究成果为获得超窄线宽激光器提供新途径,也为光通信、光传感等研究和应用提供了新的手段,相关技术处于成果转化阶段。
  • 太赫兹器件研究取得系列进展
    p  中国科学技术大学教授陆亚林量子功能材料和先进光子技术研究团队在太赫兹主动调控器件研究方面取得系列进展。该团队研究了太赫兹波与超构材料、氧化物超晶格薄膜相互作用机制,并成功制备了超快的太赫兹调制器,率先实现了皮秒级的高调制深度的太赫兹超快开关 同时制备了多功能的太赫兹器件,在单一器件中实现电开关、光存储和超快调制多种功能。相关研究成果近期相继发表在国际学术期刊《先进光学材料》。/pp  太赫兹波具有独特的时域脉冲、低能、谱指纹、宽带等特性,它在物理化学、材料科学、生物医学、环境科学、安全检查、卫星通讯等领域有着广阔的应用前景。其中,影响太赫兹技术发展和应用的关键因素之一是难以获得主动太赫兹调控元器件。超构材料,一种由金属或介质材料的亚波长微结构阵列组成的人工材料,其奇异的电磁响应特性为太赫兹调控器件提供了绝佳的解决方案。遗憾的是,以往基于超构材料的太赫兹元器件均由金属材料构成,加工尺寸固定后,器件的功能在实际应用中便难以主动改变。因此,发展主动调控的太赫兹元器件有着重要的研究意义。/pp  通常主动调控是对太赫兹波偏振、振幅、相位等进行调控,调控速度是另外一个指标。一些实际应用也迫切需求对太赫兹波进行超快调控。陆亚林团队设计并制作了基于硅介质的超快调控超表面。通过对硅薄膜进行离子注入和快速热处理工艺,大大减小了硅的载流子寿命并提高了自由载流子浓度。然后通过光刻、刻蚀工艺将硅薄膜加工为能在太赫兹波段共振的圆盘阵列结构的超表面。利用红外飞秒脉冲的激发,率先实现了皮秒级的高调制深度的太赫兹超快开关(开20ps,关300ps),并基于半导体载流子动力学建立理论模型对其进行了合理的解释。相关研究成果近日在《先进光学材料》期刊上线。/pp  另外,当前研究的太赫兹主动调控器件功能比较单一,即只能在单一外场下实现单一的功能。但单一功能难以适应当今技术发展的要求。因此,在单一器件上,实现多物理场的调控,并实现对太赫兹波的多功能调控,是当前太赫兹技术的发展前沿之一,也是实际应用的现实需求。有鉴于此,该团队基于VO2的绝缘-金属相变,通过将VO2与金属非对称开口谐振环结合,设计了一种太赫兹波段的多功能可调谐复合超表面,并利用国家同步辐射实验室副研究员邹崇文提供的高质量VO2薄膜,通过刻蚀、光刻等工艺制备了器件。此复合超表面能够通过加热和施加电流的方式实现对透射太赫兹波的振幅调控,绝对调制深度高达54%,品质因数高达138%。基于VO2在相变过程中的回滞特性,该复合超表面可以通过电流触发实现室温下对太赫兹波的记忆存储功能。此外,利用超快强脉冲泵浦,此复合超表面还能实现对太赫兹波的超快调控。从而,在单一器件实现了对太赫兹波的多功能调控。相关研究成果近日在《先进光学材料》期刊上线。/pp  此外,很多材料在太赫兹波段的响应仍是未知的,而只有研究清楚了各类材料与太赫兹波相互作用的特性,设计主动太赫兹器件才能有迹可循。该团队利用自行搭建的两套太赫兹系统测量并分析了量子功能材料与太赫兹波的相互作用。重点研究了不同周期数的La0.7Sr0.3MnO3/ SrTiO3超晶格薄膜的太赫兹响应,发现了532 nm连续激光的泵浦对此超晶格在太赫兹波段的介电常数具有较大的调控作用,并通过Drude-Lorentz模型的拟合对此现象进行了微观机理的解释,这为寻找新的可用于太赫兹主动调控器件的功能材料开辟了新路径。相关研究成果发表在《光学快讯》[Opt. Express. 26, 7842 (2018)]上。/pp  上述论文的第一作者为合肥微尺度物质科学国家实验中心博士研究生蔡宏磊,通讯作者为黄秋萍、陆亚林。该工作得到了科技部、国家自然科学基金委、中科院和教育部等关键项目的资助。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/2420c70a-1699-4d09-9881-605198df6544.jpg" title="1.png"//pp style="text-align: center "硅介质超表面器件示意图以及其对太赫兹波超快调控的实验结果/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/c2bbe902-a857-47af-9110-dac15eec004e.jpg" title="2.png"//pp style="text-align: center "金属-VO2复合超表面器件示意图及其电开关、光存储功能的实验结果/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/d4a3ee1d-337a-4aa6-812d-3a05c3fe2e87.jpg" title="3.png"//pp style="text-align: center "La0.7Sr0.3MnO3/ SrTiO3超晶格薄膜在太赫兹波段的介电常数和激发光功率关系/ppbr//ppbr//p
  • 上海光机所在单层WSe2-Si超快太赫兹发射光谱研究方面取得进展
    近日,中国科学院上海光学精密机械研究所强场激光物理国家重点实验室与国科大杭州高等研究院和中国科学院空天信息研究院合作,在二维WSe2-Si的混合维度异质结中瞬态电流太赫兹发射动力学以及谷自由度探测方面取得研究进展。相关研究成果以 “Ultrafast Drift Current Terahertz Emission Amplification in the Monolayer WSe2/Si Heterostructure”为题发表于The Journal of Physical Chemistry Letters上。基于单层过渡金属硫族化合物(TMDs)的范德瓦尔斯异质结作为同时具有强的自旋动量锁定效应与能带可调等丰富的光电性质的二维半导体,在片上集成光源、新型光电探测和谷电子学技术中具有重要的应用潜力。图1 (a)太赫兹发射光谱系统示意图;(b) 太赫兹脉冲时域波形;(c) 异质结中耗尽电流辐射太赫兹示意图。本工作首次利用非接触的超快太赫兹发射光谱技术探测了TMDs-Si异质结中耗尽场放大的瞬态光电流,并利用其探测了其中单层二维材料放大的谷自由度并实现了全光操控。本工作为基于二维-三维混合维度异质结的谷电子学探索提供了新思路。在这项工作中,研究人员使用时间分辨太赫兹发射光谱系统,研究了单层WSe2-Si异质结经飞秒激光泵浦后的超快太赫兹发射动力学过程。通过对太赫兹发射机理的分析,发现并验证了WSe2-Si异质结中增强的耗尽电场加速载流子迁移,从而导致更大的瞬态电流与对应10倍增强的太赫兹辐射的作用过程。图2 (a) 光学选择定则示意图;(b) 单层WSe2与异质结中的泵浦光手性依赖现象。同时,利用时间分辨太赫兹发射光谱系统可在无需特殊环境(低温、磁场、应力)的室温条件下探测到单层WSe2与WSe2-Si异质结中泵浦光手性依赖的谷光电流,证实了二维-三维异质结中自旋动量锁定效应的存在,同时也发现单层WSe2材料的谷-动量锁定的光电流手性在异质结中得到了保留。由此利用谷光电流偏振依赖特性,也可以实现对半导体材料发射太赫兹的有效调控。硅基二维-三维材料异质结中实现太赫兹辐射放大的方法拓展了基于超快光学方法的太赫兹辐射源提升效率方式,对于新型片上可集成的太赫兹芯片研究具有重要的意义。此外,超快太赫兹发射光谱在室温条件下对于TMDs材料中谷光电流的无接触探测拓宽了探测自旋动量锁定效应的方法路径,为基于此类异质结的谷电子学的研究提供了新的思路。
  • 2023年全球太赫兹组件和系统市场将达4.15亿美元
    Transparency Market Research最近的一份市场研究报告显示, 2014年,全球太赫兹组件和系统的市场规模为5600万美元,预计2023年该市场将达4.15亿美元,2015年-2023年之间复合年增长率为25.9%。  太赫兹技术在各种工业过程控制监控和质量控制过程中的应用等将刺激全球市场需求的增长。此外, 太赫兹设备在研究实验室中应用的增加也是推动这一市场增长的主要因素。太赫兹技术的进步和太赫兹组件在非破坏性测试和医学成像方面日益增长的使用等都将有望推动该市场的增长。  从组件方面来说,该市场可以划分为太赫兹源、太赫兹探测器等。截至2014年,太赫兹源占据最大的市场份额。不同应用领域中对高性能太赫兹源不断增长的需求正在推动这部分市场的增长 在系统方面,该市场可以划分为太赫兹光谱、太赫兹雷达和太赫兹遥感。此外,基于光谱学的系统还可以进一步被划分为时域光谱、频域光谱和成像扫描。截至2014年,光谱学系统占据最大的市场份额 在应用方面,该市场可以划分为工业过程控制、研究实验室应用、医学成像、非破坏性测试等。截至2014年,非破坏性测试是最具吸引力的部分,其次是在研究实验室的应用。2014年,非破坏性测试和研究实验室中的应用一起贡献了超过60%的市场份额 从地理位置上来说,截至2014年,北美市场占最大的份额。太赫兹技术在生物学和医学科学中应用的增加是推动市场增长的一个因素。此外,过程改进中对材料的检查和测试是太赫兹技术在欧洲和亚太地区的主要应用领域。  这个市场的一些主要厂商有Advantest Corporation (日本),Digital Barriers PLC (英国),Applied Research & Photonics(美国),EMCORE(美国),Teraview(英国),Bruker(美国),M Squared Lasers (英国),NEC(日本),Menlo Systems GmbH (德国),Techcomp Group (香港),Bridge12 Technologies(美国)和Microtech Instruments (美国)等。
  • 基于高精度3D打印的垂直U型环太赫兹超材料
    由于能够对太赫兹电磁波产生有效的调制,近年来,太赫兹电磁超材料受到了科研界极大的关注。太赫兹超材料的单个单元的特征尺寸一般为几十微米,传统的加工主要基于MEMS微纳加工工艺流程。然而,这些工艺流程通常都需要昂贵的实验设备并且是多工序且高耗费的。为了克服这些缺点与不足,西交大张留洋老师课题组提出了一种基于微纳3D打印结合磁控溅射沉积镀膜的太赫兹超材料制造工艺:以基于垂直U型环谐振器的三维太赫兹超材料为原型,采用高精度微纳3D打印设备nanoArch S130(BMF摩方精密)对模型进行加工,随后通过磁控溅射沉积镀金属膜赋予该结构功能性。该成果以“3D-printed terahertz metamaterial absorber based on vertical split-ring resonator”为题发表于Journal of Applied Physics期刊。原文链接:https://aip.scitation.org/doi/10.1063/5.0056276 图1 基于垂直U型环的太赫兹超材料制备工艺示意图。采用面投影微立体3D打印工艺(nanoArch S130,摩方精密)在硅片表面制造树脂超材料模型,然后通过磁控溅射在树脂模型表面沉积覆盖金属铜膜。插图为基于垂直U型环的太赫兹超材料的模型剖视图。图1所示为所提出的基于垂直U型环的太赫兹超材料制造工艺流程示意图。首先,通过三维建模软件建立了超材料的数字模型,将该数字模型转化为STL格式就可以输入3D打印设备进行打印制造。打印所采用的树脂材料为一种耐高温的光敏树脂(High-temperature resistance photosensitive resin, HTL)。为了加强所打印的垂直U型环结构和硅片界面处的粘附性,在U型环和硅片表面之间额外打印了一层树脂基底。在树脂模型制造完成之后,采用磁控溅射镀膜工艺在树脂模型的表面沉积铜膜。所使用的3D打印设备(nanoArch S130,摩方精密)的光学精度为2 μm,最小打印层厚为5 μm。所采用的加工工艺主要依赖于3D打印技术,这使得整个制造过程相当的简单和高效。图2 所制造的垂直U型环太赫兹超材料扫描电镜照片与太赫兹时域光谱系统测量所得吸收谱。(a)垂直U型环局部阵列。(b)单个垂直U型环照片。(c)与(d)分别为测量和仿真所得的分别在x极化和y极化入射下超材料的吸收谱。 制造的超材料阵列的总体尺寸为9.6 ×9.6mm,一共包含了30×30个单元结构。从电镜图中可以看出,所选用的3D打印技术(nanoArch S130,摩方精密)可以很好地完成设计的微结构的成型。THz-TDS测量结果表明,在x极化下,超材料在0.8 THz处达到了96%的近一吸收,而在y极化下没有出现吸收峰,这与仿真所得的结果基本一致。图3 高Q值三维太赫兹超材料传感研究。(a)传感分析物的示意。(b)谐振峰频率随传感分析物的厚度而变化。(c)加载不同折射率分析物时的超材料吸收谱 (d)超材料传感折射率灵敏度。(e)加载乳糖与半乳糖粉末时的测量结果。(f)吸收峰频率的偏移。 通过仿真和实验研究了样品的传感特性。分析得出,随着传感物厚度的增大,频移逐渐加大,当厚度大于100μm时得到了最佳的效果。计算得到传感器的灵敏度为S = 0.5 THz/RIU,品质因数为FOM = 95.9。所制造的垂直U型环超材料的高度为75μm,适用于检测具有一定厚度的分析物。因此,该研究选择了典型的乳糖和半乳糖粉末作为分析物来验证垂直U型环传感器的传感能力。如图3 (e)所示,在样品表面加载乳糖和半乳糖粉末后,吸收峰的中心频率分别变为0.5335 THz和0.7603 THz,频移分别为0.2665 THz与0.0397 THz,获得了有效且明显地频移,验证了样品在折射率传感等领域的应用潜力。
  • 基于高精度3D打印的垂直U型环太赫兹超材料
    由于能够对太赫兹电磁波产生有效的调制,近年来,太赫兹电磁超材料受到了科研界极大的关注。太赫兹超材料的单个单元的特征尺寸一般为几十微米,传统的加工主要基于MEMS微纳加工工艺流程。然而,这些工艺流程通常都需要昂贵的实验设备并且是多工序且高耗费的。为了克服这些缺点与不足,西交大张留洋老师课题组提出了一种基于微纳3D打印结合磁控溅射沉积镀膜的太赫兹超材料制造工艺:以基于垂直U型环谐振器的三维太赫兹超材料为原型,采用高精度微纳3D打印设备nanoArch S130(BMF摩方精密)对模型进行加工,随后通过磁控溅射沉积镀金属膜赋予该结构功能性。该成果以“3D-printed terahertz metamaterial absorber based on vertical split-ring resonator”为题发表于Journal of Applied Physics期刊。 图1 基于垂直U型环的太赫兹超材料制备工艺示意图。采用面投影微立体3D打印工艺(nanoArch S130,摩方精密)在硅片表面制造树脂超材料模型,然后通过磁控溅射在树脂模型表面沉积覆盖金属铜膜。插图为基于垂直U型环的太赫兹超材料的模型剖视图。图1所示为所提出的基于垂直U型环的太赫兹超材料制造工艺流程示意图。首先,通过三维建模软件建立了超材料的数字模型,将该数字模型转化为STL格式就可以输入3D打印设备进行打印制造。打印所采用的树脂材料为一种耐高温的光敏树脂(High-temperature resistance photosensitive resin, HTL)。为了加强所打印的垂直U型环结构和硅片界面处的粘附性,在U型环和硅片表面之间额外打印了一层树脂基底。在树脂模型制造完成之后,采用磁控溅射镀膜工艺在树脂模型的表面沉积铜膜。所使用的3D打印设备(nanoArch S130,摩方精密)的光学精度为2 μm,最小打印层厚为5 μm。所采用的加工工艺主要依赖于3D打印技术,这使得整个制造过程相当的简单和高效。图2 所制造的垂直U型环太赫兹超材料扫描电镜照片与太赫兹时域光谱系统测量所得吸收谱。(a)垂直U型环局部阵列。(b)单个垂直U型环照片。(c)与(d)分别为测量和仿真所得的分别在x极化和y极化入射下超材料的吸收谱。 制造的超材料阵列的总体尺寸为9.6 ×9.6mm,一共包含了30×30个单元结构。从电镜图中可以看出,所选用的3D打印技术(nanoArch S130,摩方精密)可以很好地完成设计的微结构的成型。THz-TDS测量结果表明,在x极化下,超材料在0.8 THz处达到了96%的近一吸收,而在y极化下没有出现吸收峰,这与仿真所得的结果基本一致。图3 高Q值三维太赫兹超材料传感研究。(a)传感分析物的示意。(b)谐振峰频率随传感分析物的厚度而变化。(c)加载不同折射率分析物时的超材料吸收谱 (d)超材料传感折射率灵敏度。(e)加载乳糖与半乳糖粉末时的测量结果。(f)吸收峰频率的偏移。 通过仿真和实验研究了样品的传感特性。分析得出,随着传感物厚度的增大,频移逐渐加大,当厚度大于100μm时得到了最佳的效果。计算得到传感器的灵敏度为S = 0.5 THz/RIU,品质因数为FOM = 95.9。所制造的垂直U型环超材料的高度为75μm,适用于检测具有一定厚度的分析物。因此,该研究选择了典型的乳糖和半乳糖粉末作为分析物来验证垂直U型环传感器的传感能力。如图3 (e)所示,在样品表面加载乳糖和半乳糖粉末后,吸收峰的中心频率分别变为0.5335 THz和0.7603 THz,频移分别为0.2665 THz与0.0397 THz,获得了有效且明显地频移,验证了样品在折射率传感等领域的应用潜力。官网:https://www.bmftec.cn/links/10
  • 基于高精度3D打印的垂直U型环太赫兹超材料
    由于能够对太赫兹电磁波产生有效的调制,近年来,太赫兹电磁超材料受到了科研界极大的关注。太赫兹超材料的单个单元的特征尺寸一般为几十微米,传统的加工主要基于MEMS微纳加工工艺流程。然而,这些工艺流程通常都需要昂贵的实验设备并且是多工序且高耗费的。为了克服这些缺点与不足,西交大张留洋老师课题组提出了一种基于微纳3D打印结合磁控溅射沉积镀膜的太赫兹超材料制造工艺:以基于垂直U型环谐振器的三维太赫兹超材料为原型,采用高精度微纳3D打印设备nanoArch S130(BMF摩方精密)对模型进行加工,随后通过磁控溅射沉积镀金属膜赋予该结构功能性。该成果以“3D-printed terahertz metamaterial absorber based on vertical split-ring resonator”为题发表于Journal of Applied Physics期刊。原文链接:https://aip.scitation.org/doi/10.1063/5.0056276 图1 基于垂直U型环的太赫兹超材料制备工艺示意图。采用面投影微立体3D打印工艺(nanoArch S130,摩方精密)在硅片表面制造树脂超材料模型,然后通过磁控溅射在树脂模型表面沉积覆盖金属铜膜。插图为基于垂直U型环的太赫兹超材料的模型剖视图。图1所示为所提出的基于垂直U型环的太赫兹超材料制造工艺流程示意图。首先,通过三维建模软件建立了超材料的数字模型,将该数字模型转化为STL格式就可以输入3D打印设备进行打印制造。打印所采用的树脂材料为一种耐高温的光敏树脂(High-temperature resistance photosensitive resin, HTL)。为了加强所打印的垂直U型环结构和硅片界面处的粘附性,在U型环和硅片表面之间额外打印了一层树脂基底。在树脂模型制造完成之后,采用磁控溅射镀膜工艺在树脂模型的表面沉积铜膜。所使用的3D打印设备(nanoArch S130,摩方精密)的光学精度为2 μm,最小打印层厚为5 μm。所采用的加工工艺主要依赖于3D打印技术,这使得整个制造过程相当的简单和高效。图2 所制造的垂直U型环太赫兹超材料扫描电镜照片与太赫兹时域光谱系统测量所得吸收谱。(a)垂直U型环局部阵列。(b)单个垂直U型环照片。(c)与(d)分别为测量和仿真所得的分别在x极化和y极化入射下超材料的吸收谱。 制造的超材料阵列的总体尺寸为9.6 ×9.6mm,一共包含了30×30个单元结构。从电镜图中可以看出,所选用的3D打印技术(nanoArch S130,摩方精密)可以很好地完成设计的微结构的成型。THz-TDS测量结果表明,在x极化下,超材料在0.8 THz处达到了96%的近一吸收,而在y极化下没有出现吸收峰,这与仿真所得的结果基本一致。图3 高Q值三维太赫兹超材料传感研究。(a)传感分析物的示意。(b)谐振峰频率随传感分析物的厚度而变化。(c)加载不同折射率分析物时的超材料吸收谱 (d)超材料传感折射率灵敏度。(e)加载乳糖与半乳糖粉末时的测量结果。(f)吸收峰频率的偏移。 通过仿真和实验研究了样品的传感特性。分析得出,随着传感物厚度的增大,频移逐渐加大,当厚度大于100μm时得到了最佳的效果。计算得到传感器的灵敏度为S = 0.5 THz/RIU,品质因数为FOM = 95.9。所制造的垂直U型环超材料的高度为75μm,适用于检测具有一定厚度的分析物。因此,该研究选择了典型的乳糖和半乳糖粉末作为分析物来验证垂直U型环传感器的传感能力。如图3 (e)所示,在样品表面加载乳糖和半乳糖粉末后,吸收峰的中心频率分别变为0.5335 THz和0.7603 THz,频移分别为0.2665 THz与0.0397 THz,获得了有效且明显地频移,验证了样品在折射率传感等领域的应用潜力。
  • 首届全国太赫兹技术与应用交流会召开
    首届全国太赫兹科学技术与应用学术交流会日前在京召开。6位两院院士、23名特邀报告专家,及近300名全国专业学者和科研人员,共同探讨这项“改变未来世界”的新兴科技领域。  太赫兹波是频率范围在0.1T至10THz(波长在3mm至30um)的电磁频谱,它介于毫米波与远红外光之间,是至今人类尚未充分认知和利用的频谱资源,有望对通信(宽带通信)、雷达、电子对抗、电磁武器、安全检查等领域带来深刻变革。作为我国太赫兹领域的首次学术“峰会”,大会交流领域涵盖太赫兹物理与基础理论、太赫兹产生与放大技术、太赫兹传输与检测技术,以及太赫兹在光谱学、通信、雷达、成像中的应用技术等多个学科领域。据悉,我国近年来在太赫兹源、检测器件等领域进展显著,已有数十个高校和科研院所启动太赫兹相关研究。本届大会由中国兵工学会太赫兹应用技术专业委员会主办,太赫兹科学技术研究中心承办。  相关概念股包括大恒科技、天瑞仪器、四创电子等。昨天,受太赫兹概念利好影响,大恒科技开盘即一字封停,天瑞仪器盘中涨停,四创电子涨4.20%。  太赫兹技术可检测潜在的地沟油  据京华时报报道,23日,在上海市教委举办的首场专题新闻发布会上,上海理工大学首度展出“基于太赫兹技术的地沟油快速检测仪”。该仪器基于太赫兹电磁波可以与油脂中的有机物产生共振的原理,能找出潜在的地沟油。  合生财富首席分析师梁万章认为,昨天二级市场对太赫兹概念的追捧力度较大,大恒科技大单封死涨停,但此类涨停有非常明显的游资炒作痕迹。  目前来看,市场对太赫兹概念相对陌生,且此技术从实验室走向民用还需一段时间,而传闻涉及该概念的大恒科技、四创电子等上市企业在未来能否拿到订单实现业绩也是未知数,因此,该类个股“一日游”行情的可能性非常大。  对于市场传闻,记者采访了大恒科技董秘严宏深,他表示公司的确在研发太赫兹技术,目前已经和国外共同研发出光谱器,激光发射器目前还在实验阶段。目前正在申请国家经费,希望尽快取得突破。  大恒科技:太赫兹时域光谱仪开发尚处实验室阶段  据仪器信息网报道,2012年8月8-10日期间,由中国仪器仪表学会、“ 太赫兹光电子学教育部重点实验室”、《现代科学仪器》编辑部主办,中国分析测试协会、中国仪器仪表学会分析仪器分会、中国仪器仪表学会农业仪器应用技术分会多家单位支持的“太赫兹科学仪器及前沿技术专题研讨会”在北京紫玉饭店成功召开。  教育部重点实验室主任张存林教授以《基于飞秒激光的太赫兹时域光谱仪开发》为题讲解了其负责的国家重大科学仪器设备开发专项的项目工作进展。该项目由北京市科学技术委员会组织,大恒新纪元科技股份有限公司作为牵头单位,首都师范大学作为第一技术支撑单位。太赫兹光谱作为太赫兹应用技术之一,对经济社会发展及民生改善有支撑作用,而且产业化前景非常可观,据Thintri, Inc. 2010年度太赫兹市场报告预期,太赫兹在医学、安全和制造业领域相关产品的经济效益到2020年将可达到数千万至数亿美元,市场份额可达到数十亿美元,而张存林教授太赫兹时域光谱仪项目预期为中国带来经济效益数亿美元(以中国市场占10%的全球市场份额估算),产品将拉动中关村高科技示范区高端仪器制造业及相关产业年约10亿元人民币的产值。项目融合宽普、高能量、小型化的趋势特点,以光谱范围0.1-10THz、光谱分辨率7.5GHz、太赫兹脉冲能量10μJ为技术指标,在现有原理样机的基础上进行完善来实现工程化,使整机性能指标达到国际先进水平,并预期实现在2014年小批量试产25台、2016年批量投产100台的目标。  据中国证券报最新报道,参与《基于飞秒激光的太赫兹时域光谱仪开发》项目的专家介绍,目前该项目还处在实验室阶段。今年年初项目组已向相关主管部门申请立项和申报补贴资金,但目前还没有收到正式批文,至于相关的补贴资金量更无从得知。  “大恒科技股价异动属于游资炒作。”有券商研究员指出,短期来看,上述项目对大恒科技的业绩并不能产生直接影响,长期影响也要看,项目是否能够成功获得政府主管部门的支持,2014年能否实现部分产品商用,以及相关产品能够取得的市场的认可。  太赫兹安检技术具有巨大的市场前景  据仪器信息网报道,中国电子科技38所研发的太赫兹安检技术已取得关键性进展,首台样机即将于年内面世。  太赫兹安检技术将主要应用于机场、海关、地铁、文化遗产等重要建筑物以及大型活动现场的安全检查,可以快速准确地检测出是否有人携带武器、毒品、爆炸物等违禁品,有效保障大众的生命财产安全。  目前在公共场所的安检是以X射线成像为主,辅助以金属探测器及人工检查,但无法有效检测出人体隐藏的非金属危险物品,进而可能导致恶性暴力及恐怖袭击事件。太赫兹安检技术不仅对人体更加安全,且增加了物联网技术,实现了对被检测对象的智能化识别、定位跟踪、自动报警、管理监控以及信息存储分析和区域网络覆盖,其应用将显著增强城市中公共场所的安全防御能力,有效减少公共安全事件的发生率。  太赫兹安检技术具有巨大的市场前景,预计国内市场潜力在100亿元左右,在世界范围内,太赫兹成像产品潜在的市场销售额可达1000亿元以上。  附:太赫兹(地沟油检测)概念股一览  天瑞仪器、大恒科、四创电子、百利电气、同方股份都进入太赫兹领域,四创电子控股股东38所曾研制出样机。TCL则是介入下一代手机太赫兹研究。  大恒科技:公司表示的确在研发太赫兹技术,目前已经和国外共同研发出光谱器,激光发射器目前还在实验阶段。目前正在申请国家经费,希望尽快取得突破。市场传言,教育部重点实验室主任张存林教授以《基于飞秒激光的太赫兹时域光谱仪开发》为题讲解了其负责的国家重大科学仪器设备开发专项的项目工作进展。该项目由北京市科学技术委员会组织,大恒科技作为牵头单位,首都师范大学作为第一技术支撑单位。  天瑞仪器:目前公司出产的LC310高效液相色谱仪可以应对地沟油黄曲霉毒素b1的限量检测。  同方股份:控股子公司同方威视技术股份有限公司曾与清华大学共同申请了“一种利用太赫兹时域光谱快速检测植物油纯度的方法及设备”专利权。  四创电子:此前有报道称,四创电子大股东华东电子工程研究所(中国电子科技集团公司第三十八研究所)太赫兹安检技术已取得关键性进展,首台样机即将于年内面世。太赫兹安检技术将主要应用于机场、海关、地铁、文化遗产等重要建筑物以及大型活动现场的安全检查,可以快速准确地检测出是否有人携带武器、毒品、爆炸物等违禁品,有效保障大众的生命财产安全。  TCL:2011年深圳先进科学与技术国际会议第三届会议上,公司称目前工业界已全面进入太赫兹开发及应用领域,太赫兹已在通讯领域崭露头角,TCL通讯期待与各位专家学者一起开发与研究太赫兹科学技术,带动通讯产业的技术发展。  百利电气:传百利旗下公司投资上游实验室研发的集成THz医学成像设备比东芝最高端成像效果清晰100倍。  凤凰光学、聚光科技:上述“基于太赫兹技术的地沟油快速检测仪”由上海现代光学系统重点实验室与上海市分析检测协会合作研发,拥有自主知识产权。其中,上海现代光学系统重点实验室的合作单位包括凤凰光学(上海)有限公司、聚光科技(杭州)有限公司。  概念解析:太赫兹  太赫兹(Terahertz,1THz=1012Hz)泛指频率在0.1~10THz波段内的电磁波,位于红外和微波之间,处于宏观电子学向微观光子学的过渡阶段。早期太赫兹在不同的领域有不同的名称,在光学领域被称为远红外,而在电子学领域,则称其为亚毫米波、超微波等。在20世纪80年代中期之前,太赫兹波段两侧的红外和微波技术发展相对比较成熟,但是人们对太赫兹波段的认识仍然非常有限,形成了所谓的“THz Gap”。  2004年,美国政府将THz科技评为“改变未来世界的十大技术”之一,而日本于2005年1月8日更是将THz技术列为“国家支柱十大重点战略目标”之首,举全国之力进行研发。我国政府在2005年11月专门召开了“香山科技会议”,邀请国内多位在THz研究领域有影响的院士专门讨论我国THz事业的发展方向,并制定了我国THz技术的发展规划。另外,美国、欧洲、亚洲、澳大利亚等许多国家和地区政府、机构、企业、大学和研究机构纷纷投入到THz的研发热潮之中。  太赫兹的独特性能给通信(宽带通信)、雷达、电子对抗、电磁武器、天文学、医学成像(无标记的基因检查、细胞水平的成像)、无损检测、安全检查(生化物的检查)等领域带来了深远的影响。由于太赫兹的频率很高,所以其空间分辨率也很高 又由于它的脉冲很短(皮秒量级)所以具有很高的时间分辨率。太赫兹成像技术和太赫兹波谱技术由此构成了太赫兹应用的两个主要关键技术。同时,由于太赫兹能量很小,不会对物质产生破坏作用,所以与X射线相比更具有优势。另外,由于生物大分子的振动和转动频率的共振频率均在太赫兹波段,因此太赫兹在粮食选种,优良菌种的选择等农业和食品加工行业有着良好的应用前景。太赫兹的应用仍然在不断的开发研究当中,其广袤的科学前景为世界所公认。
  • 先睹为快!国产厂商首发新品:太赫兹三维层析成像系统
    p  strong仪器信息网讯/strong 2020年5月29日上午九点,青源峰达将在抖音平台发布新产品QT-TO1000太赫兹三维层析成像系统。/pp  青岛青源峰达太赫兹科技有限公司是中国工程物理研究院及青岛盛瀚色谱技术有限公司合资成立的公司,致力于太赫兹基础技术、系统技术和应用技术的研发设计,重点领域为医学及工业检测领域。公司成立以来,已发布了QT-TS1000高精度太赫兹时域光谱系统和QT-TS2000快速太赫兹时域光谱系统两款新产品。/pp  5月29日,青源峰达将再次网上发布新产品QT-TO1000太赫兹三维层析成像系统。届时,此产品的研发负责人、技术大咖们将从幕后走向台前,通过现场和线上的不同形式与用户实现面对面交流,从不同维度全面阐述产品的核心亮点,与应用客户和技术爱好者进行深入交流和探讨。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 342px " src="https://img1.17img.cn/17img/images/202005/uepic/c20c958e-7f58-4b8e-b469-28334f8c6085.jpg" title="太赫兹.jpg" alt="太赫兹.jpg" width="450" height="342" border="0" vspace="0"//pp style="text-align: center "strong新品外观先睹为快/strong/pp  三维层析成像技术是目前国内外光学领域一个重要的研究方向,以嵌入到了现代工业与文化创意产业的整个流程 它是获取物体表面形态特征的重要手段,也是真实物体三维数字化的基础。太赫兹三维层析成像技术是较为成熟的三维物体表面成像与测量技术,是一种太赫兹波谱方式的宽场成像技术 经过特定算法的解算和重构可以实现三维光切片成像,并且能够精确解析样品表面的复杂结构。/pp  中国工程物理研究院主要从事国家战略高新技术装备和战略科技领域的研究,主要学科方法包括微波毫米波电路及系统研究,span style="color: rgb(255, 0, 0) "太赫兹电路及系统研究/span,电真空电子电路及系统研究,通信与信息系统研究,超高速数字信号处理研究等。/pp  除了新品面世,发布会当天,青源峰达太赫兹科技有限公司与青岛大学将围绕太赫兹技术应用、海洋观测等领域的科学和技术问题,依托物理科学学院学科平台以及山东省海洋观测与宽带通信技术协同创新中心,结合青岛青源峰达太赫兹科技有限公司在太赫兹与水下观测方面的技术基础和生产研发平台,本着优势互补、互利共赢、促进发展的原则,在专业人才培养、科研合作、成果转化等方面达成合作协议,并签署协议,努力实现“校企合作、产学共赢”,推动学科服务社会能力和科研成果转化。届时,中国工程物理研究院流体物理研究所、中国石化青岛安全工程研究院、山东科技大学等院校专家领导将共同见证!/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/a164fb1b-6874-4a8a-a102-a9b145b66ccd.jpg" title="微信图片_20200528175821.jpg" alt="微信图片_20200528175821.jpg"//pp style="text-align: center "strong欢迎参会!/strong/ppbr//p
  • 太赫兹自旋解耦的高效双功能全介质超构表面
    近日,复旦大学物理系周磊\孙树林课题组利用由高深宽比(20:1)的硅基人工原子构建的超构表面,在太赫兹波段实现了绝对效率高达88%的透射式自旋解耦双功能器件,例如在不同手性太赫兹光照射下实现聚焦\偏折或双全息成像等等不同功能。相关研究成果以“Bifunctional Manipulation of Terahertz Waves with High-Efficiency Transmissive Dielectric Metasurfaces”为题,于2022年12月在线发表在Advanced Science上。太赫兹(Terahertz,THz)波因其在信息通讯、生物医疗和国防安全等领域具有重大应用需求而备受相关科研人员的关注。然而,传统太赫兹器件由于自然材料在该波段的电磁响应很弱,而普遍存在体积庞大、效率低和功能单一等问题。近年来,具有强大电磁波调控能力和超薄结构特性的超构表面的出现为光学器件的小型化和功能多样化方面带来了新的契机。太赫兹超构表面器件研究在成为太赫兹领域研究热点的同时,也面临着诸多困难与挑战:金属欧姆损耗极大限制超构器件的绝对工作效率,现有全介质超构表面器件存在功能相对单一和效率低等问题。针对这些问题,研究团队提出了利用具有高深比的全介质柱人工原子(例如:纯硅)构建透射式太赫兹高效自旋解耦超构表面功能器件的新思路,并实验验证了不同圆偏振太赫兹光激励下的多功能光场调控(见图1)。图1.高效双功能全介质超构表面的示意图复旦大学周磊教授团队在太赫兹波段基于高深宽比(20:1)全介质人工原子构建了多功能超构器件,实验实现了对左右旋圆偏振入射光的高效(绝对效率88%)且完全不同的波前调控(即自旋解耦)。光学器件的效率和多功能操控一直以来都是一个瓶颈问题,对于透射式器件尤为明显。究其本质是构建超构表面的人工原子既要满足全相位覆盖要求,还要具备高的透射效率。团队发现具有高深宽比的全介质人工原子可同时满足上述条件,同时利用散射相消原理在器件反面引入减反结构可进一步提升器件的绝对效率。团队通过将套刻技术与深硅刻蚀Bosch Process工艺相结合,调节刻蚀(etch)和钝化(passivation)工艺平衡,成功制备出了具有100%偏振转化效率的高深宽比双面介质人工原子(如图2所示)。 图2. 器件加工中的Bosch平衡,器件SEM图以及太赫兹光谱图基于上述高效透射型全介质人工原子,团队充分利用与自旋无关的传输相位和与自旋相关的几何相位这两个独立调控自由度,设计和实现了手性完全解锁的高效双功能波前调控器件。图3 展示了高效双功能波前调控器件所对应的透射相位分布及其对应的人工原子的几何参数和旋转角度分布。团队的太赫兹实验远场实验完美验证了该超构器件对左右旋圆偏振光实现的聚焦和偏折效应,其绝对工作效率高达88%。为了进一步验证该设计方法的普适性,团队进一步设计并实验表征了功能更加复杂的高效全息成像双功能器件。在图4中展示了该太赫兹双功能全息超构器件的实验和模拟结果:该器件在不同圆偏振太赫兹光的激励下,可在器件透射端焦平面的左右两侧呈现不同的全息图像(字母“F”和“D”)。 图3.双功能器件的相位分布与SEM图以及实验测试架构和结果 图4. 全息成像器件SEM图、相位分布图以及近场扫描的实验结果与模拟结果周磊教授团队在此项工作中系统地阐述了利用全介质超构表面实现太赫兹高效自旋解耦多功能波前调控的设计方法,并基于成功制备的高深宽比高达20:1的全硅基超构表面样品,实验验证了具有自旋解锁的聚焦/偏折双功能器件和双功能全息超构器件。此项工作可为实现高效、小型化且多功能的透射式太赫兹器件研究提供新思路和新方法,并为未来的片上光子学研究发展提供更多的可能。复旦大学物理学系博士后王卓与博士研究生姚尧为论文的共同第一作者。复旦大学物理学系周磊教授和复旦大学光科学与工程系孙树林研究员为该论文共同通讯作者。该工作还得到上海大学通信学院肖诗逸教授和复旦大学物理学系何琼教授的大力支持与帮助。该研究工作获得了国家重点研发计划、国家自然科学基金和上海市科委的项目的支持。
  • 我国提出新的太赫兹时间频率特性分析方法
    “飞秒激光”———瞬间发出的功率比全世界发电总功率还大的奇特之光 “太赫兹频段”———电磁波谱中有待进行全面研究的最后一个频率窗口。2009年12月23日,在中国计量院昌平实验基地举行的两场课题鉴定会上,与会专家一致认为,我国在飞秒脉冲激光参数测量、太赫兹产生与测量等前沿光学计量领域已经达到了国际一流研究水平。  激光曾被视为神秘之光。近年来,科学家研究发现了一种更为奇特的光———飞秒激光。飞秒激光是一种以脉冲形式运转的激光,具有非常高的瞬时功率,比目前全世界发电总功率还要高出百倍。它还能聚焦到比头发直径还要小的空间区域,使电磁场的强度比原子核对其周围电子的作用力还要高数倍。  在飞秒激光的各项研究中,其参数的准确测量对飞秒脉冲激光产生、传输、控制等各个过程的研究和应用具有重要作用。由中国计量院光学所完成的课题“飞秒脉冲激光参数测量新技术研究”自主研究并建立了准确、可靠、稳定、实用的飞秒脉冲激光参数测量装置,对飞秒脉冲激光参数测量引起误差的各种因素做了系统、深入的研究,实现了对飞秒脉冲激光时域波形、光谱相位、脉冲宽度、峰值功率等参数的准确测量。“我们首次提出并实现了飞秒脉冲光谱相位和光学元件色散特性测量的新方法和新技术,降低了传统方法的光谱相位测量不确定度和误差,将飞秒脉冲激光参数的准确度提高到一个新水平。”课题组主要成员邓玉强介绍,课题组的创造性研究成果已多次被日本北海道大学、法国圣艾蒂安大学、中国工程物理研究院、中科院上海光机所等国内外著名研究机构引用,促进了超短脉冲激光研究和应用技术的发展,提升了我国在超短脉冲激光参数测量领域的国际地位。在课题鉴定会上,专家组也认为,该课题的完成标志着我国在前沿光学计量领域达到了国际一流水平。  飞秒激光参数测量技术等超快技术的发展直接推动了光学计量另一前沿高端技术的进步,那就是太赫兹研究。据介绍,太赫兹频段是指频率从十分之几到十几个太赫兹,介于毫米波与红外光之间相当宽范围的电磁辐射区域。长期以来,由于缺乏有效的太赫兹辐射产生和检测方法,人们对于该波段电磁辐射性质的了解非常有限,该波段也被称为电磁波谱中的“太赫兹空隙”,是电磁波谱中有待进行全面研究的最后一个频率窗口。  谈到太赫兹研究的运用领域,中国计量院光学所所长于靖仿佛一下子打开了话匣子:“太赫兹的作用简直太大了。在食品领域,不同的物质在太赫兹波段存在不同的吸收谱线,因此可以利用这一特性识别物质成分,检验食品中的有害物质。如识别大豆油、花生油、混合油、地沟油等,识别油水混合物中油的含量,检验奶粉中是否含有三聚氰胺等 在纺织品领域,丝绸、尼龙、棉布、麻布、皮革等都有独特的太赫兹吸收谱线,利用这一特性可以将太赫兹作为检验纺织品材料和质量的手段 在医疗领域,生物体内的水分对太赫兹有较强的吸收,而病变细胞由于所含水分减少,从而吸收减少。利用这一特性可以用太赫兹区分健康细胞与病变细胞 在安全检验领域,太赫兹可以区分毒品,如大麻、兴奋剂、摇头丸等。太赫兹也是探测地雷、炸药、爆炸物等危险品非常有效的光源。用太赫兹成像还可以观察到恐怖分子是否带有凶器,太赫兹也能透过建筑物观察到内部的情况,在反恐方面有重大的应用前景。”除此之外,太赫兹在航空航天、天文、生物、药品制造等多个领域都有非常重要的应用。  太赫兹广泛而重要的应用前景使它被认为是改变未来世界的十大技术之一。但是,太赫兹研究中存在很多需要突破的关键问题。“最难的就是太赫兹的产生以及相关参数的测量。”于靖介绍说,刚刚完成鉴定的“太赫兹脉冲产生与时频特性测量方法研究”课题正是将太赫兹的产生和测量作为研究重点,课题组在对太赫兹产生、传输和探测方面进行了大量实验和自主研究,突破了太赫兹辐射与测量一系列关键技术,最终产生了(0.1-3.5)THz的宽带相干太赫兹辐射,并建立了太赫兹时域和频域测量实验装置。  邓玉强介绍:“我们在国际上首次提出了新的太赫兹时间频率特性分析方法,消除了传统方法产生的频谱干涉,降低了时域波形噪声的影响,实现了物质太赫兹吸收谱线的高分辨测量,在太赫兹时间频率特性分析方面属国际领先水平。我们自主研制的太赫兹系统可以产生稳定的宽带太赫兹辐射,为太赫兹光谱的研究提供了有利的工具。”鉴定委员会专家也一致认为,太赫兹辐射测量装置具有测量结果准确、重复性好、稳定性高、结构紧凑、信噪比高等特点,达到国际先进水平。(2010年1月21日)
  • 2004年太赫兹物理及超快过程国际研讨会在上海召开
    2004年5月11日,“太赫兹物理及超快过程”国际研讨会在上海召开,来自国内外专家学者汇聚上海。  在上海召开的“太赫兹物理及超快过程”国际研讨会上,中国科学院上海微系统与信息技术研究所所长封松林正在做大会致辞。    中科院上海微系统与信息技术研究所的曹俊诚研究员正在介绍我国太赫兹技术研究的相关情况。  太赫兹(THz)频段是指频率从十分之几到十几个太赫兹,介于毫米波与红外光之间相当宽范围的电磁辐射区域。长期以来,由于缺乏有效的THz产生和检测方法,人们对于该波段电磁辐射性质的了解非常有限,以致于该波段被称为电磁波谱中的THz空隙。近年来由于自由电子激光器和超快技术的发展,为THz脉冲的产生提供了稳定、可靠的激发光源,使THz辐射的物理机理、检测技术和应用技术研究得到蓬勃发展。THz技术之所以引起人们广泛的关注,是由于物质的THz光谱(包括发射、反射和透射)包含有丰富的物理和化学信息,它在物体成像、环境监测、医疗诊断、射电天文、宽带移动通讯、尤其是在卫星通讯和军用雷达等方面具有重大的科学价值和广阔的应用前景。THz技术被认为是改变未来世界的十大技术之一。  由于THz电磁波的重大应用前景,美国等发达国家投入了大量资金和人力开展研究。目前,世界上约有100多个研究机构,陆续开展了本领域的科学研究工作。如:美国Rensselaer理工学院,美国麻省理工学院,加拿大国家研究院等。许多微波及光学的研究所都把研究重心转到THz领域。  我国国家科技部、自然科学基金委、中科院也对THz研究给予了高度的关注,先后在“973”计划、基础研究重大项目前期研究专项、基金委重大项目做了相关项目的安排。中科院上海微系统与信息技术研究所、中科院物理研究所、中科院紫金山天文台、上海交通大学、首都师大、中国电子科大、中科院应用物理所、西安光机所、西安理工大学以及中山大学等是国内较早开展THz研究的单位。中科院上海微系统与信息技术研究所自2001年已把THz研究列为中科院知识创新工程项目。目前在有关THz物理与器件研究方面,他们已获得多项十分有意义的成果。其中曹俊诚研究员等关于THz辐射在低维半导体中吸收方面的研究工作,被认为是THz非线性动力学这个凝聚态物理界被广泛关注的领域取得的重要进展。研究结果发表在2003年12月的《美国物理评论快报》上。
  • 2012太赫兹科学仪器及前沿技术专题研讨会在京成功召开
    仪器信息网讯 2012年8月8日-9日,由中国仪器仪表学会、“太赫兹光电子学教育部重点实验室”、《现代科学仪器》编辑部主办的2012太赫兹科学仪器及前沿技术专题研讨会在北京紫玉饭店成功召开。本次会议的宗旨是为太赫兹科学仪器研制开发提供技术交流平台,为太赫兹仪器选购提供技术咨询,并为太赫兹仪器使用提供技术支撑。本次研讨会特别邀请到电子科技大学刘盛纲院士、天津大学姚建铨院士等太赫兹研究领域的多名专家学者做精彩报告,吸引了来自各科研院所、仪器公司的近100位代表参会。会议现场  开幕式由太赫兹光电子学教育部重点实验室主任张存林教授主持,中国仪器仪表学会副理事长兼秘书长吴幼华先生,电子科技大学刘盛刚院士分别为大会致辞。中国仪器仪表学会副理事长兼秘书长吴幼华先生电子科技大学刘盛纲院士  首先,吴幼华先生代表主办方对各位代表表示热烈的欢迎。并介绍到,太赫兹科学仪器涉及的领域很广,专业性很强,是非常重要的交叉前沿领域,其技术进步为技术创新、国民经济发展和国家安全提供了一个非常诱人的发展机遇。  电子科技大学刘盛纲院士在致辞中指出,“重要的科学成就必须以实验研究为基础,在国际上重要的仪器设备是一流大学所必备的条件。近几年,中国也越来越多的认识到科学仪器的重要性。在过去的十几年中,日本人拿了6个诺贝尔奖,以色列拿了两个诺贝尔奖,我们相信中国一定会拿诺贝尔奖,但是不知什么时候。我们有很多好的思想,只是做不出实验结果来,我们国家要想成为科技大国,加强对仪器设备的支持是非常必要的。此外,中国的太赫兹技术发展非常快,也得到了国家自然科学基金委的大力支持,不过目前还存在一些问题,如投资不太集中等”。国家自然科学基金委员会信息科学部张兆田主任  在开幕式中,国家自然科学基金委员会信息科学部张兆田主任还做了《信息优先资助领域及其基金资助工作》的相关报告。在报告中,张兆田主任介绍了信息科学的发展规律与特点,发展状况与未来发展趋势、重点优先发展领域等。其中,新型毫米波与太赫兹器件就是其优先发展的领域之一,其研究内容包括太赫兹核心器件及阵列检测器、微结构太赫兹功能器件;新型太赫兹探测技术等。此外,张兆田主任还介绍了信息科学部的部门设置、资助方针、资助格局、资助项目类型、项目受理评审过程等相关内容。首都师范大学物理系张岩主任  此外,首都师范大学物理系张岩主任也介绍了太赫兹科学仪器及前沿技术专题研讨会的会议组织等相关情况。  大会报告 技术发展篇太赫兹光电子学教育部重点实验室主任张存林教授报告题目:基于飞秒激光的太赫兹时域光谱仪开发  张存林教授在报告中详细介绍了国家重大科学仪器设备开发专项“基于飞秒激光的太赫兹时域光谱仪开发”的相关情况。介于微波和红外之间的太赫兹是物理与信息领域重大科学技术问题,太赫兹波谱是反应分子结构和空间阵列的指纹谱。太赫兹时域光谱仪未来将向宽谱、高能量、小型化的方向发展,在科研及食品药品鉴定和检测方面具有很重要的应用价值和前景,对经济社会发展、民生改善具有很重要的支支撑作用。在市场方面,近三年来,已经有上百家应用单位有着明确的应用需求。据2010年度太赫兹市场报告的预期,太赫兹在医学、安全和制造业领域相关产品的经济效益到2020年将可达到数千万到数亿美元,市场总额可达到数十亿美元。张存林教授还介绍说按此推算,“基于飞秒激光的太赫兹时域光谱仪开发”项目完成后,若中国市场可占到10%的全球市场份额,预期经济效益也将达到数亿美元。由此,也将拉动中关村高科技示范区高端仪器制造业及相关产业产值约10亿元人民币/年。上海大学马国宏教授报告题目:太赫兹脉冲的产生及波前控制研究  马国宏教授介绍到目前THz波的研究主要包括THz源、THz检测和THz传输等方面,要使THz波的研究成果得到广泛的应用,尤其是将THz技术应用到远红外光谱学中,有必要研究THz脉冲的波前控制以及各种THz光子学器件的工作原理,从而实现对THz辐射的人工调控。随后,马国宏教授介绍了上海大学超快光子学实验室近年来在THz波的产生、THz的主动和被动控制、THz光子学和THz自旋电子学等方面开展的一系列研究工作。其中,主要探讨了利用THz波与各种微结构相互作用实现THz波前的控制,包括THz偏振控制、抗反射、全吸收设计、THz全禁带光子晶体以及THz磁共振器件等。中科院紫金山天文台副研究员张文先生报告题目:太赫兹高灵敏超导热电子探测器技术  张文先生谈到,太赫兹波段存在丰富的分子转动谱线和原子精细结构谱线,通过对这些分子谱线的高频率分辨率观测,可以研究天文、大气和深空探测等领域的重要科学问题。超导HEB混频器是1HTz以上灵敏度最高的相干探测器,已经成功应用到Herschel空间卫星、SOFIA天文台和地面APEX望远镜开展天文观测研究。张文先生所在系统改进了超导HEB热电子混频器的热点模型,深入理解其机制,率先实现了4K闭环制冷环境下的超导HEB混频实验;并研制国际上最高频率(5.3HTz)天线耦合超导HEB混频器,灵敏度率先突破5倍量子噪声极限。此外,张文先生还介绍了其课题组在太赫兹超导HEB混频器应用方面的研究工作。天津大学姚建铨院士报告题目:太赫兹技术及太赫兹仪器的发展趋势  姚建铨院士在报告中介绍到,随着太赫兹科学技术的飞速发展,对太赫兹科学仪器也不断提出新的需求,不仅推动了太赫兹科学仪器的快速发展,也催发了太赫兹前沿技术的不断涌现。同时,太赫兹科学仪器的前沿技术也表征着太赫兹科学仪器的先进性和尖端性,引领着太赫兹科学仪器的进一步发展。在这一部分内容中姚建铨院士介绍了太赫兹技术国内外研究及应用概况,光学太赫兹辐射源研究及太赫兹功能器件-微结构材料的应用等方面的情况。并且指出,微结构光学材料在激光技术、THz技术等方面可望实现传输、源、开关、放大、滤波、调制、吸收、偏振等功能,有十分重要的科学价值及实际意义。如果将微结构材料施加各种场(电、磁、声、光、热、机械等)作用可望产生新现象、出现新机理、实现新功能、制成新器件。此外,姚建铨院士还介绍了基于法布里-珀罗干涉仪的THz波长测试法及THz傅立叶变换光谱仪的相关研究工作。首都师范大学赵国忠教授报告题目:太赫兹波产生探测及太赫兹时域光谱技术  赵国忠教授谈到,对于太赫兹光谱应用来说,获得宽带太赫兹辐射至关重要,目前,实验室使用的宽带太赫兹辐射源以光整流和电导天线为主。随后详细介绍了基于飞秒激光的宽带光电导天线的设计、研制,光电导天线温控系统和太赫兹辐射测量装置的研制,光电导天线太赫兹辐射特性等方面的研究工作。另外,半导体表面太赫兹辐射可以提供方便的宽带太赫兹源,进一步研究非常必要。其中,富含缺陷的氮化铟有望代替砷化铟成为高效、实用的宽带太赫兹辐射源。此外,赵国忠教授还指出太赫兹发射光学的研究也有助于探索半导体表面和内部的载流子动力学。  此外,北京理工大学胡伟东教授、哈尔滨工业大学(威海)田兆硕教授、中国计量科学研究院孙青博士等也就太赫兹技术现状及研究进展做了精彩的报告。北京理工大学胡伟东教授报告题目:Progress in the Terahertz Pulse 3D Imaging System (220GHz)哈尔滨工业大学(威海)田兆硕教授报告题目:THz激光F-P旋转透过率研究中国计量科学研究院孙青博士报告题目:太赫兹光谱与功率计量技术  大会报告 应用篇首都师范大学沈京玲教授报告题目:太赫兹光谱技术在毒品检测中的应用研究  沈京玲教授介绍到,太赫兹波能够用于毒品检测和识别是基于下列两个事实:多数毒品在太赫兹波段具有特征吸收;多数包装材料如纸张、织物、塑料、木头,对太赫兹波是透明的。将两者结合起来,使太赫兹技术非常适于进行毒品的无损检测应用。随后,沈京玲教授详细的介绍了所在课题组近年来在毒品检测识别方面的相关工作:应用太赫兹光谱和成像技术对毒品进行品种鉴定和含量分析,完成了确定毒品纯度和有效成分含量的理论和实验方法;对隐藏在信封和包裹中的毒品进行探查;建立了含有38种纯度在90%以上的毒品的太赫兹光谱数据库等。上海理工大学副院长朱亦鸣教授报告题目:基于太赫兹技术的药物分析与检测  朱亦鸣教授介绍到,国内外现有药物检测技术手段无法有效的检测出假药,而且无法做到在线式检测。太赫兹波处于微波电子学与红外光子学的交叉、过渡区域,是被公认的有重要科学价值和巨大应用前景的频率窗口。太赫兹技术先后被列为“改变未来世界的10种技术”及“2011年六大类电子类新技术”之一,是分析分子有机功能基团最有效的手段。基于这些优势,朱亦鸣教授所在课题组利用时域太赫兹波谱系统对中西药做了相关检测,结果显示太赫兹光谱技术对各种药物鉴别率可达90%,扫描速度达到1s/片,可以做到无损探测及真正的在线检测和分析,并且结合HIPHOP模型,还可以进行药理基团的解析。中国石油大学(北京)赵卉博士报告题目:太赫兹技术在油气光学中的应用  赵卉博士在报告中介绍说,油气光学是研究油气物质的光学性质、光在油气介质中的传播规律和光学技术在油气领域应用的科学。它是在石油与天然气工程、地球探测与信息技术、材料科学与工程、物理学、光学工程等学科发展与支持的基础上建立起来的一个新兴交叉学科。针对国家重大需求,并且基于太赫兹与油气物质相互作用的认知,赵卉博士所在课题组建设了以油气资源、石油化工为研究对象的太赫兹波谱与探测技术平台,开发了油品光学性能透射式测试装置,岩石光学性能透射式测试装置,基于对岩石有机质、干酪根、基础油、汽油等多种体系的太赫兹频段特征吸收带的认知,建立了石油化工产品太赫兹光谱特性和理化性能之间的关系,为太赫兹技术在油气领域的应用提供了实验基础。  此外,中科院上海微系统所谭智勇博士、中科院工程物理研究院流体物理研究所助研朱礼国先生也就太赫兹技术的应用做了精彩的报告。中科院上海微系统所谭智勇博士报告题目:太赫兹量子器件及其成像应用中科院工程物理研究院流体物理研究所助研朱礼国先生报告题目:超快太赫兹光谱在研究太阳能光伏材料中的应用  除了以上各位专家的报告之外,安捷伦科技(中国)有限公司叶伟斌先生,脉动科技有限公司陆明先生,先锋科技股份有限公司Albert Rsdo-Sanchez先生、Patrick F. Tekavec先生,顶尖科仪(中国)股份有限公司贺雪鹏先生也介绍了公司的产品特点及研发情况。安捷伦科技(中国)有限公司叶伟斌先生报告题目:安捷伦毫米波测试解决方案脉动科技有限公司陆明先生报告题目固体THz源和异步采样THz时域光谱系统先锋科技股份有限公司Albert Redo-Sanchez先生报告题目:Terahertz Instrumentation Status and Market Outlook先锋科技股份有限公司Patrick F. Tekavec先生报告题目:High Power THz sources顶尖科仪(中国)股份有限公司贺雪鹏先生报告题目:飞秒光纤激光器及其在太赫兹光谱学中的应用  报告会之后,与会代表参观了首都师范大学太赫兹光电子学教育部重点实验室,相关工作人员为与会代表详细介绍了实验室整体概况,并就相关仪器及其研究的课题同与会代表进行了深入的沟通。与会代表参观太赫兹光电子学教育部重点实验室太赫兹光电子学教育部重点实验室部分仪器设备与会代表合影
  • 西安光机所在太赫兹消色差超透镜研究方面取得新进展
    近日,瞬态光学与光子技术国家重点实验室在太赫兹频段可变焦消色差超透镜领域取得新进展,相关研究成果发表于Journal of Science: Advanced Materials and Devices(IF = 7.38)。论文第一作者为博士生江晓强,通讯作者为范文慧研究员。   超透镜是一种二维平面透镜结构,具有体积小、重量轻、易于集成等特点,可实现对太赫兹波振幅、相位、偏振等参量的灵活调控,有望解决天然材料在太赫兹频段电磁响应不足而导致的效率低、体积大等问题。近年来,消色差超透镜由于能够有效消除宽频带成像产生的色差问题而受到广泛关注。然而,如何在实现宽频带消色差的同时,赋予超透镜连续变焦的能力,仍然是目前亟待解决的难题。   针对此问题,研究团队首先基于Ⅲ-Ⅴ族半导体材料锑化铟(InSb)设计了性能优异的单元结构。随后,研究团队采用几何相位和传输相位相结合的方式,巧妙设计超透镜单元结构的排布方式与空间取向,采用单层超透镜实现了太赫兹波的宽频带聚焦,有效消除了色差现象。进一步地通过改变器件工作温度,进而调控器件单元结构的相位补偿范围,实现了焦距736.25 μm (NA = 0.62)至 861.02 μm(NA = 0.56)的连续变焦。本研究成果为设计多功能消色差超透镜提供了一种新思路,有望进一步拓展太赫兹频段超透镜在显微成像和内窥镜等领域的实际应用。 图1 连续变焦消色差超透镜工作示意图   西安光机所范文慧研究员带领的太赫兹光子学与表面微纳智造团队已在超宽频谱太赫兹波产生与探测、超快太赫兹波谱成像与应用、太赫兹频段超材料与超表面功能器件等领域开展持续研究并取得一定突破。相关研究成果陆续发表于Angewandte Chemie - International Edition、Carbon、Journal of Science: Advanced Materials and Devices、Optics Letters、Optics Express、Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy、Nanomaterials等国际知名期刊,获得了国内外同行的广泛认同。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制