当前位置: 仪器信息网 > 行业主题 > >

超带宽太赫兹时域系统

仪器信息网超带宽太赫兹时域系统专题为您提供2024年最新超带宽太赫兹时域系统价格报价、厂家品牌的相关信息, 包括超带宽太赫兹时域系统参数、型号等,不管是国产,还是进口品牌的超带宽太赫兹时域系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超带宽太赫兹时域系统相关的耗材配件、试剂标物,还有超带宽太赫兹时域系统相关的最新资讯、资料,以及超带宽太赫兹时域系统相关的解决方案。

超带宽太赫兹时域系统相关的论坛

  • 太赫兹时域光谱

    [color=#444444]求助!我最近测试了太赫兹时域光谱,只得到了时间和电场强度的数据,请问如何处理成折射光谱和吸收光谱的数据?[/color]

  • 2000万美元的太赫兹光谱市场到底在哪里?

    2000万美元的太赫兹光谱市场到底在哪里?

    太赫兹波介于微波与红外之间,波长大概在0.1mm(100um)到1mm范围。太赫兹光谱和其他光谱技术形成互补,许多化合物(毒品、炸药和各种形态的原料药)在太赫兹波段具有独特的指纹特征谱。太赫兹波不会引起生物组织的光致电离,人类可以安全接触。各种各样的商业太赫兹光谱仪已经在市场上销售,包括传统的频域系统、时域系统、成像系统和便携式仪器。2012年的全球实验室太赫兹光谱的需求约为2000万美元,并且至少有六个主要的竞争对手能够提供商业化太赫兹光谱仪器。尽管2013年太赫兹光谱市场面临一个具有挑战性的环境,但是仍然会获得中等个位数的增长。而且到2014年这一市场预期会达到两位数的强劲增长。http://ng1.17img.cn/bbsfiles/images/2013/10/201310142026_470848_2063536_3.png

  • 集成太赫兹收发器问世

    美国科研人员开发出了首个集成太赫兹(THz)固态收发器,新设备比目前使用的太赫兹波设备更小,功能更强大。相关研究成果发表在最新一期的《自然·光子学》杂志上。  太赫兹技术是近年来十分热门的一个研究领域,2004年被评为影响世界未来的十大科技之一。美国能源部桑迪亚国家实验室的研究人员将同一块芯片上的探测器和激光器结合在一起,制造出了该接收设备。在实验中,研究人员将一个小的肖特基二极管嵌入一个量子级联激光器(QCL)的脊峰波导空腔中,让能量能够从量子级联激光器内部的磁场直接到达二极管的阴极,而不需要光耦合通路。这样,研究人员就不需要再为制造这些收发器等设备所需要的光学“零件”如何定位而“抓耳挠腮”了。  新的固态系统利用了太赫兹波发出的频率。太赫兹波是指频率在0.1THz—10THz范围的电磁波,介于微波与红外之间,它能够穿透非金属材料,从而为安检、医学成像提供新的手段,在物体成像、医疗诊断、环境检测、通讯等方面具有广阔的应用前景。  量子级联激光器是产生太赫兹辐射的重要器件之一,科学家于2002年演示了半导体太赫兹量子级联激光器。太赫兹量子级联激光器的一个优势在于其能够同其他组件一起被整合在同一个芯片上。然而,此前要想装配出灵敏的相干收发器系统,研究人员需要将零散的、并且常常是巨大的组件组合到一起。而现在,研究人员只是将太赫兹量子级联激光器和二极管混频器整合在一个芯片上,就可以组成一个简单实用的微电子太赫兹收发器。  研究人员也证明,新的太赫兹集成设备能够执行以前组件零散的太赫兹系统的所有基本功能,例如传输相干载波、接受外部信号、锁频等。

  • 【原创大赛】超快太赫兹-扫描隧道显微镜(THz-STM)—调控单原子隧道电流

    【原创大赛】超快太赫兹-扫描隧道显微镜(THz-STM)—调控单原子隧道电流

    原子级上电流的超快控制对纳米电子未来的创新至关重要。之前相关研究表明,将皮秒级太赫兹脉冲耦合到金属纳米结构可以实现纳米尺度上极度局部的瞬态电场。 近期,加拿大阿尔伯塔大学(University of Alberta)Frank A. Hegmann教授研究组在美国RHK Technology公司生产的商用超高真空扫描隧道显微镜(RHK-UHV-SPM 3000)系统上自主研发了太赫兹-扫描隧道显微镜(THz-STM),首次在超高真空中对Si(111)-(7×7)样品表面执行原子分辨率THz-STM测量,展示了超高真空中的THz-STM探索原子精度的超快非平衡隧道动力学的超强能力。[align=center][img=,500,264]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311403502131_145_981_3.jpg!w500x264.jpg[/img][/align][align=center]图1:利用THz-STM在超高真空中控制极端隧道电流[/align] 在图1(a)中可以看到,超快太赫兹(THz)脉冲通过反向视窗上的透镜(左侧)聚焦到超高真空(中间)的STM探针上,在隧道结(插图)处产生隧道电流。图1(c)中展示了耦合到STM针尖的太赫兹脉冲引发随时间变化的偏压(VTHz(t),红色实线),驱动超快太赫兹感应电流(ITHz(t),蓝色实线),从而产生整流的平均隧道电流。太赫兹脉冲极性(0°, 90°, 180°)可用于控制太赫兹脉冲引起的整流隧道电流,如图1(e)所示。电子从样品向尖端流动,产生负的太赫兹极性,从尖端到样品具有正的太赫兹极性。[align=center][img=,500,358]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311405019168_3214_981_3.jpg!w500x358.jpg[/img][/align][align=center]图2:Si(111)- (7×7)上的单个原子非平衡隧穿的超快控制[/align] 极限太赫兹脉冲驱动的隧道电流高达常规STM中稳态电流的107倍,实现了以0.3nm的空间分辨率对硅表面上的单个原子成像,由此确定在高电流水平下的超快太赫兹脉冲驱动隧道确实可以局域化为单一原子。此外,测试结果表明解释Si(111)-(7×7)上的太赫兹驱动的STM(TD-STM)图像的原子波纹(其中数百个电子在亚皮秒时间尺度内隧穿),需要理解非平衡充电动力学由硅表面的太赫兹脉冲引起。同时,单个原子的太赫兹驱动隧道电流的方向可以通过太赫兹脉冲电场的极性来控制。在太赫兹频率下,类金属Si(111)-(7×7)表面不能从体电子屏蔽电场,导致太赫兹隧道电导与稳态隧道电导基本机制的不同。很显然,这样一个极端的瞬态电流密度并不会影响所研究的单原子STM针尖或样品表面原子,如同在传统STM测试中具有如此大小隧道电流的Si(111)-(7×7)一样。[align=center][img=,500,214]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311405376531_6859_981_3.jpg!w500x214.jpg[/img][/align][align=center]图3:太赫兹感应电流中的热电子[/align] 在高太赫兹场中观察到了来自热电子的隧道电流的额外贡献。超快太赫兹诱导的带状弯曲和表面状态的非平衡充电打开了新的传导通路,使极端瞬态隧道电流在尖端和样品之间流动。半导体表面的THz-STM为原子尺度上的超快隧穿动力学提供了新的见解,这对于开发新型硅纳米电子学和以太赫兹频率工作的原子级器件至关重要。[b]参考文献:[/b]1. Tyler L. Cocker, Frank A. Hegmann et al. An ultrafast terahertz scanning tunneling microscope. Nature Photonics, 151(2013).2. Vedran Jelic, Frank A. Hegmann et al. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface. Nature Physics, 4047(2017).

  • 太赫兹技术——“改变未来世界的十大技术”之一

    太赫兹技术——“改变未来世界的十大技术”之一

    太赫兹(Terahertz,1THz=1,000,000,000,000Hz)泛指频率在0.1~10THz波段内的电磁波,位于红外和微波之间,处于宏观电子学向微观光子学的过渡阶段。早期太赫兹在不同的领域有不同的名称,在光学领域被称为远红外,而在电子学领域,则称其为亚毫米波、超微波等。在20世纪80年代中期之前,太赫兹波段两侧的红外和微波技术发展相对比较成熟,但是人们对太赫兹波段的认识仍然非常有限,形成了所谓的“THz Gap”。http://ng1.17img.cn/bbsfiles/images/2012/02/201202141622_349255_1798788_3.jpg  2004年,美国政府将THz科技评为“改变未来世界的十大技术”之一,而日本于2005年1月8日更是将THz技术列为“国家支柱十大重点战略目标”之首,举全国之力进行研发。我国政府在2005年11月专门召开了“香山科技会议”,邀请国内多位在THz研究领域有影响的院士专门讨论我国THz事业的发展方向,并制定了我国THz技术的发展规划。另外,美国、欧洲、亚洲、澳大利亚等许多国家和地区政府、机构、企业、大学和研究机构纷纷投入到THz的研发热潮之中。    关注太赫兹技术的最新仪器研究成果、应用进展及相关科研成果,太赫兹技术领域的实验室动态及会展新闻,请关注仪器信息网技术专题:太赫兹技术——“改变未来世界的十大技术”之一。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_646122_1798788_3.jpg  专题链接:http://www.instrument.com.cn/news/subject/201003/?SubjectID=161  该专题对于您了解太赫兹技术有哪些帮助?您认为该专题中还应该包含哪些内容,以便对太赫兹技术有更好的了解?欢迎广大网友讨论,我们会根据您的建议不断改进,希望今后能够推出内容更丰富的技术专题,对广大网友的学习工作带来更多的帮助。

  • 科学家开发出石墨烯太赫兹设备样机

    为研制太赫兹设备与操控系统开辟了广阔舞台 中国科技网讯 在电磁波谱中,太赫兹波段是当前最热的研究范围之一。据美国物理学家组织网5月2日报道,美国圣母大学通过实验证明了利用石墨烯原子层可以有效操控太赫兹电磁波,并制作了一台基于石墨烯材料的太赫兹调制器样机,为开发紧密高效且经济的太赫兹设备与操作系统开辟了广阔舞台。相关论文近日发表在《自然·通讯》杂志上。 人们每天都在用着电磁能量,看电视、听广播、用微波炉做爆米花、用手机通话、拍X光片等,电子产品和无线电设备中的能量大部分是以电磁波形式传输的。太赫兹波处于微波和可见光频率之间,在日常生活中有着重要应用。比如在通讯设备中,用太赫兹波能携带比无线电波或微波更多的信息;在拍X光片的时候造成的潜在伤害更小,所提供的医学和生物图像分辨率也比微波更高。 “太赫兹技术前景光明,但一个最大的瓶颈问题是缺乏有效的材料和设备来操控这些能量波。如果有一种天然二维材料能对太赫兹波产生明显反应,而且可以调节,就给我们设计高性能太赫兹设备带来了希望。而石墨烯正是理想的材料。”圣母大学电学工程系研究生贝拉迪·森赛尔-罗德里格斯说,石墨烯是仅有一个原子厚度的半导体材料,具有独特的电学、机械力学和热学性质,在诸多领域都有着潜在的应用价值,如最近开发的快速晶体管、柔性透明电子产品、光学设备,以及目前正在开发的太赫兹主动元件。 研究小组演示了他们用于概念论证而制作的第一台样机,这台基于石墨烯材料的调制器,可在石墨烯内部实现带内跃迁,是目前唯一能做到这一点的太赫兹设备。 该校电学工程系副教授邢慧丽(音译)指出,石墨烯自发现以来,一直被当作新研究的理想平台,但至今它在现实中还很少应用,操控太赫兹波就是其应用之一。在2006年时,他们曾想用二维电子气体来操控太赫兹波,去年他们论证了基于石墨烯的高性能设备,今年是首次通过实验证明了这种设备,并将进一步开展研究。(记者 常丽君) 《科技日报》(2012-05-04 二版)

  • 近红外光谱与太赫兹光谱相比,各有哪些技术优势?

    [font=宋体][font=宋体]太赫兹泛指频率在[/font][font=Times New Roman]0.1THz[/font][font=宋体]到[/font][font=Times New Roman]10THz[/font][font=宋体]波段内的电磁波,位于红外和微波之间。[/font][/font][font='Times New Roman'][font=宋体]太赫兹光谱具有很宽的带宽[/font][/font][font=宋体]([/font][font='Times New Roman']0.1 ~10TH[/font][font=宋体][font=Times New Roman]z[/font][font=宋体]),动态范围大,具有大于[/font][font=Times New Roman]10[/font][/font][sup][font=宋体][font=Times New Roman]5[/font][/font][/sup][font=宋体]的高信噪比;具有瞬态性,可以进行时间分辨光谱的研究;[/font][font='Times New Roman'][font=宋体]太赫兹光谱[/font][/font][font=宋体]光子能量低,穿透性强,适合于生物组织的活体检查。但存在仪器价格非常昂贵,分析检测环境要求高等缺点。而[/font][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]则对分析环境要求较低,受环境因素影响小;此外,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器价格便宜,尤其是[/font][font=Times New Roman]CCD[/font][font=宋体]型微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url],且仪器性能稳定,具有较好的环境抗干扰能力,适用于工业生产场景的检测应用。[/font][/font]

  • 中国科学院精密测量院关于液体中激光诱导太赫兹辐射的实验研究方面获进展

    [align=center][img=,500,109]https://img1.17img.cn/17img/images/202403/uepic/1bf362c7-d04f-4598-abef-b156b7517a65.jpg[/img][/align]太赫兹波在通讯和成像等方面颇具应用价值。强场超快激光与物质非线性相互作用是产生太赫兹波的重要方式之一。等离子体、气体、晶体等太赫兹产生介质相关的实验与理论研究较为充分。然而,液体水是很强的太赫兹波吸收介质,尚未有其产生太赫兹波的报道。2017年,实验发现,液体薄膜厚度或液体束直径降到微米量级时,太赫兹波的辐射大于吸收。这开启了液体太赫兹波研究的新方向。近年来,液体太赫兹波领域有实验报道,但实验观测到的较多现象均与其他介质的结果不同。例如:单色激光场可以有效地产生液体太赫兹波,而气体介质需要特定相位差的双色激光;液体太赫兹波的产率与驱动激光的能量是正比关系,而气体介质中是平方关系;在一定范围内液体太赫兹波的产率随激光的脉冲宽度的增加而增加,而气体介质相反;在双色激光的驱动下,液体太赫兹波出现非调制信号,在气体介质中却未见类似信号。复杂无序的[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]体系的理论研究一直是难题,以上现象难以用已有理论来解释。科研人员只能基于之前的等离子体模型和界面效应等,来解释一些高光强下的宏观实验结果。近日,中国科学院精密测量科学与技术创新研究院研究员卞学滨和博士研究生李正亮,提出了产生液体太赫兹波的位移电流模型,可以系统解释上述实验观测到的系列反常现象。该微观机制模型的物理图像如图所示:液体的无序结构使得电子波包局域化,同时不同分子的外层电子的能量受到环境的影响而发生移动,在强场激光的作用下不同分子的外层电子发生跃迁,产生非对称体系的位移电流。这些跃迁的能量差在太赫兹能量区域,进而辐射出太赫兹波。同时,该工作表明原子核的量子效应起到关键作用,并预言太赫兹辐射可以研究液体的同位素效应。[align=center][img=,500,140]https://img1.17img.cn/17img/images/202403/uepic/ab7bd8de-a34e-46d4-8c18-af8e57f38952.jpg[/img][/align]关于液体中激光诱导太赫兹(THz)辐射的实验研究取得了长足进展。液体太赫兹显示出许多不同于气体和等离子体太赫兹的独特特征。例如,液体太赫兹可以通过单色激光有效产生。驱动脉冲持续时间越长,产生率越高。它还与激发脉冲能量成线性关系。在双色激光场中,测量到了意想不到的未调制太赫兹场,其对驱动激光能量的依赖性与调制太赫兹波完全不同。然而,由于难以描述复杂无序液体中的超快动力学,其潜在的微观机制仍不清楚。在此,提出了一个位移电流模型并且理论成功地再现了实验观测结果。此外,理论上还可进一步用于研究太赫兹辐射在 H[font=等线][sub][size=13px]2[/size][/sub][/font]O 和 D[font=等线][sub][size=13px]2[/size][/sub][/font]O 中的核量子效应。这项工作为研究块状液体中太赫兹辐射的起源提供了基本见解。上述成果是卞学滨团队在[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]强场超快动力学研究领域继高次谐波统计涨落模型之后的又一理论进展。相关研究成果以Terahertz radiation induced by shift currents in liquids为题,发表在《美国国家科学院院刊》(PNAS)上。研究工作得到国家重点研发计划、国家自然科学基金、中国科学院稳定支持基础研究领域青年团队计划等的支持。[align=center][img=,500,407]https://img1.17img.cn/17img/images/202403/uepic/abaa2b75-02df-446e-b97d-f1ac0f39ce5b.jpg[/img][/align][align=center]液体太赫兹波产生的原理图[/align][来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 【讨论】试验机测控系统的核心部分之一 带宽 对数据真实性的影响

    目前试验机上所采用的力值检测元件基本上为载荷传感器或压力传感器,和模拟信号输出引伸计,而这两类传感器和引伸计都为模拟小信号输出类型,在使用中必须进行信号放大。众所周知,在我们的环境中,存在着各种各样的电磁干扰信号,这种干扰信号会通过许多不同的渠道偶合到测量信号中一起被放大,结果使得有用信号被干扰信号淹没。为了从干扰信号中提取出有用信号,针对材料试验机的特点,一般在放大器中设置有低通滤波器。合理的设置低通滤波器的截止频率,将放大器的频带限制在一个适当的范围,就能使试验机的测量控制性能得到极大的提高。然而在现实中,人们往往将数据的稳定显示看的非常重要,而忽略了数据的真实性,将滤波器的截止频率设置的非常低。当然益处是速度加快了,非常稳定.这样在充分滤掉干扰信号的同时,往往把有用信号也一起滤掉了。在日常生活中,我们常见的电子秤,数据很稳定,其原因之一就是它的频带很窄,干扰信号基本不能通过。这样设计的原因是电子秤称量的是稳态信号,对称量的过渡过程是不关心的,而材料试验机测量的是动态信号,它的频谱是非常宽的,若频带太窄,较高频率的信号就会被衰减或滤除,当然我很赞同这种观点,从经济实用的角度出发,个人认为表盘式的试验机其实也很不错.以下是带宽的概念,仅供参考!带宽在许多应用中都是一个关键的概念。例如在无线电通信中,带宽是调制载波占据的频率范围,然而在光学中带宽是单个谱线宽度或者整个频谱范围。对于不同的应用领域有不同的精确定义。例如,其中一个带宽定义就是超出范围的频率函数为零的频率范围。这就对应于数学概念中的函数,例如函数不是零的所有值的“长度”。另外一些定义可能没有那么严格,它们丢弃了频率函数“很小”的信号频率。很小可能是意味着它的值在最大值 3 dB 以下,也就是最大值的一半以下;也可能是小于某一个绝对值。由于函数的宽度有各种各样的定义,带宽的定义也就多种多样,分别用于不同的系统。根据Shannon-Hartley 定理(en:Shannon-Hartley theorem),可靠通信的数据速率直接与通信所用信号频率范围成比例。在这篇文章中,带宽一词有时用来表示数据速率,有时也表示通信系统的频率范围,有时同时表示两个概念。[编辑] 模拟系统 对于在数学上可以看作时间函数的模拟信号来说,带宽是以赫兹为单位、信号的傅里叶变换不为0的频率范围。这个定义也可以不严格地定义为在频域内信号的傅里叶变换功率在一个特定门限之上、例如与最大值差在 3dB 的范围之内的频率范围。信号带宽是信号随着时间波动速度的一个度量,这样,带宽越大,信号的变化越快。上面是信号带宽的描述,带宽也可以用于系统。在表示系统带宽的时候,系统带宽是系统传递函数带宽的简称。例如,函数的 3dB 带宽在图上表示是 f2 − f1,但是其它的带宽定义就会得到另外不同的结果。一个常用的数量是分数带宽,它是除以设备中心频率得到的带宽。例如,一个带宽 2MHz、中心频率 10MHz 的设备的分数带宽是 2/10 或者表示为 20%。实数基带系统既有负频率又有正频率这样一种现实可能使带宽变得易于混淆,因为有时带宽仅仅用来表示正的一半,例如我们偶尔可以看到这样的表示 B = 2W,其中 B 是总的带宽,W 是正的带宽,如果需要为这个信号设计一个低通滤波器,那么截止频率至少要保证 W 不受影响。电子滤波器带宽是频率响应在峰值中心频率响应差在 3dB 范围内的频率部分。在信号处理和控制理论中,带宽是闭环系统增益衰减到− 3 dB的频率。在基础电路理论中带通和带阻滤波器的带宽表示频域中信号强度是最大信号强度 的两个频率之间的距离。在光子学中,带宽有不同的含义:• 某些光源输出的带宽,例如 ASE 光源或者激光;超短光脉冲的带宽可能非常宽广 • 例如光纤等一些元件能够传输的频率范围宽度 • 光学放大器的增益带宽 • 其它现象的范围(例如,反射、非线性过程的相位匹配、或者谐振) • 光学调制器的最大调制频率或者调制频率范围 • 一些测量仪器(例如功率计)能够工作的频率范围 • 光学通信系统能够达到的数据速率(例如 Gbit/s)

  • 【Sunny看新闻】-2012.2.7:新安检技术,太赫兹

    昨晚的北京经历了过年最后的疯狂,烟花爆竹不断,仿佛回到了年三十。今天的天气依然不错,进入新闻短评,欢迎大家讨论!  从太赫兹安检技术延伸看安检技术  新闻链接:http://www.instrument.com.cn/news/20120206/073687.shtml  今天看到一条新闻“我国太赫兹安检技术研究取得进展”,新闻中提到“说该项技术样机将于年内面世,快速准确地检测出是否有人携带武器、毒品、爆炸物等违禁品,并且该技术对人体更加安全。”  对于太赫兹技术,我不是专家,没有发言权。但作为一名每天都要接受安检检测的普通人,我希望安检技术能够更简便,同时更快速,当然对人体安全是首要的。不知道这种太赫兹安检技术能否能满足我这样的需求。  目前,我们接触到最多的安检技术就是基于X射线技术的安检机,这种技术通过对包内物成像后,再由工作人员来进行判断。对我而言,我觉得他最大的缺点就是太慢了,太繁琐,特别在地铁口,导致很多人不愿意按规则接受安检。  其次是金属探测器,在飞机场安检时,手持的,在人体上移动的仪器就是金属探测器。这类仪器故名思议只能对金属危险品可以检测。对我而言,这个速度还是比较快的。  第三是Smiths Detection的基于离子迁移谱技术的毒品痕量检测仪,我在成都机场曾经接受过此检测。这项技术进行检测,是通过一个与仪器匹配的试纸现在行李上进行触碰,而后将试纸放入仪器中进行检测。我对这项安检技术体验较好,第一速度很快,第二受检者基本不需要有任何的配合。  第四是基于拉曼光谱的安检技术。前三种技术,我在生活中都切身体验过,而唯独这项技术我只在仪器展会上看到过演示。测量是通过探头对可疑的物品(如粉末或瓶装液体)的触碰,然后通过与数据库中的毒品物谱图相对比而进行判断,速度也比较快。  以上四种技术都有各自所专注的一方面,新的太赫兹技术据报道看可以满足现有技术的所有能满足的各种需求,不知道是否如此,欢迎大家讨论?另大家有没有亲身经历过别的或了解到别的技术?也欢迎提供。

  • 科学家研发出太赫兹地沟油检测仪

    科学家研发出太赫兹地沟油检测仪

    http://ng1.17img.cn/bbsfiles/images/2012/08/201208022150_381350_1641058_3.jpg该项技术通过先进的太赫兹电磁波技术来辨别地沟油。http://ng1.17img.cn/bbsfiles/images/2012/08/201208022150_381352_1641058_3.jpg简单版检测仪长宽约为1米,适合固定在车辆后备箱内。  上海科学家研发地沟油检测仪:电磁波一秒"振"出地沟油  利用电磁波,一秒钟“振”出地沟油,这就是上海理工大学上海市现代光学系统重点实验室地沟油检测仪的“本领”。

  • 【分享】H德国物理学家 赫兹

    中文名称: 赫兹   外文名: H.R.——Heinrich Rudolf Hertz   生卒年: 公元1857-1894   洲: 欧洲   国别: 德国   省: 汉堡   赫兹,德国物理学家。1857年2月22日生于汉堡。父亲为律师,后任参议员,家庭富有。赫兹在少年时期就表现出对实验的兴趣,12岁时便有了木工工具和工作台,以后又有了车床,常常用以制作简单的实验仪器。1876年赫兹入德累斯顿工学院学习工程,由于对自然科学的爱好,转入慕尼黑大学学习数学和物理,第二年又转入柏林大学,在H.von亥姆霍兹指导下学习并进行研究工作。在随赫尔姆霍兹学习物理时,受赫尔姆霍兹的鼓励研究麦克斯韦电磁理论。赫兹决定以实验来证实韦伯与麦克斯韦理论谁的正确。依照麦克斯韦理论,电扰动能辐射电磁波。赫兹根据电容器经由电火花隙会产生振荡原理,设计了一套电磁波发生器,赫兹将一感应线圈的两端接于产生器二铜棒上。当感应线圈的电流突然中断时,其感应高电压使电火花隙之间产生火花。瞬间后,电荷便经由电火花隙在锌板间振荡,频率高达数百万周。由麦克斯韦理论,此火花应产生电磁波,于是赫兹设计了一简单的检波器来探测此电磁波。他将一小段导线弯成圆形,线的两端点间留有小电火花隙。因电磁波应在此小线圈上产生感应电压,而使电火花隙产生火花。所以他坐在一暗室内,检波器距振荡器10米远,结果他发现检波器的电火花隙间确有小火花产生。赫兹在暗室远端的墙壁上覆有可反射电波的锌板,入射波与反射波重迭应产生驻波,他也以检波器在距振荡器不同距离处侦测加以证实。赫兹先求出振荡器的频率,又以检波器量得驻波的波长,二者乘积即电磁波的传播速度。正如麦克斯韦预测的一样。电磁波传播的速度等于光速。1887年11月5日,赫兹在寄给亥姆霍兹一篇题为《论在绝缘体中电过程引起的感应现象》的论文中,总结了这个重要发现。1888年,赫兹的实验成功了,麦克斯韦理论也因此获得了无上的光彩。在发现电磁波不到6年,意大利的马可尼、俄国的波波夫分别实现厂无线电传播,并很快投人实际使用。其他利用电磁波的技术,也像雨后春笋般相继问世。无线电报(1894年)、无线电广播(1906年)、无线电导航(1911年)、无线电话(1916年)、短波通讯(1921年)、无线电传真(1923年)、电视(1929年)、微波通讯(1933年)、雷达(1935年),以及遥控、遥感、卫星通讯、射电天文学……它们使整个世界面貌发生了深刻的变化。1880年他以纯理论性工作的《旋转导体电磁感应》论文获得博士学位,成为亥姆霍兹的助手。1883年到基尔大学任教。1885~1889年任卡尔斯鲁厄大学物理学教授。赫兹还通过实验确认了电磁波是横波,具有与光类似的特性,如反射、折射、衍射等,并且实验了两列电磁波的干涉,同时证实了在直线传播时,电磁波的传播速度与光速相同,从而全面验证了麦克斯韦的电磁理论的正确性。并且进一步完善了麦克斯韦方程组,使它更加优美、对称,得出了麦克斯韦方程组的现代形式。此外,赫兹又做了一系列实验。他研究了紫外光对火花放电的影响,发现了光电效应,即在光的照射下物体会释放出电子的现象。这一发现,后来成了爱因斯坦建立光量子理论的基础。1889~1894年接替R.克劳修斯的席位任波恩大学物理学教授。1894年1月1日因血液中毒在波恩逝世,年仅36岁。为了纪念他在电磁波发现中的卓越贡献,后人将频率的单位命名为赫兹。相关研究领域:数学、物理学,特别是在电磁学方面。在赫兹以前,由法拉第发现、麦克斯韦完成的电磁理论,因为未经系统的科学实验证明,始终处于“预想”阶段。把天才的预想变成世人公认的真理,是赫兹的功劳。同时,赫兹在人类历史上首先捕捉到电磁波,使假说变成现实。相关作品:1、《论在绝缘体中电过程引起的感应现象》2、《论动电效应的传播速度》3、《论电力射线》

  • NQI专项“超大带宽信息传输计量基标准和关键技术研究”项目实施方案通过论证

    8月13日,“十三五”国家重点研发计划“国家质量基础的共性技术研究与应用”重点专项( NQI专项)“超大带宽信息传输计量基标准和关键技术研究”项目实施方案论证会在中国计量科学研究院(以下称“中国计量院”)召开。来自清华大学、中国科学院计算所、北京师范大学、中国泰尔实验室、中国设备监理协会等单位的专家以及21世纪议程管理中心相关负责人参加论证。中国计量院副院长宋淑英作为项目承担单位领导出席论证会,并对项目管理提出了要求。[align=center][img]http://www.nim.ac.cn/sites/www.nim.ac.cn/files/news2018/07-09/image001_4.jpg[/img][/align][align=center]图1 论证会出席人员合影[/align] 项目负责人、中国计量院信电所崔孝海研究员介绍了项目总体情况和实施方案,各课题负责人分别汇报了课题实施方案。 咨询专家组认真听取了汇报,重点针对项目自主研发的多套基(标)准装置、关键仪器设备的研发与课题的市场应用等提出了质询。经讨论,与会专家一致认为项目实施方案目标明确、技术路线切实可行、创新性强,保障措施有力,同意通过论证。[align=center][img]http://www.nim.ac.cn/sites/www.nim.ac.cn/files/news2018/07-09/image003_4.jpg[/img][/align][align=center]图2 论证会现场[/align] 中国计量院科技管理部和财务部负责人,参与项目论证的财务专家,分别就项目实施中各项任务的实施管理和财务进行了宣贯。 据介绍,高速、大带宽信息传输技术是“互联网+”时代信息网络“中枢神经”的关键。5G通信、毫米波和太赫兹通信、光通信等数据传输技术都在向着更高的传输速率和更高的载波频率发展。以光通信为例,其传输速率将达到4G通信峰值速率的400到1000倍。然而,这些技术还存在功率、噪声等关键参数量值无法溯源,天线及微波芯片性能评价难以保障,宽带速率测量一致性较差等瓶颈问题。为此,中国计量院牵头中国信息通信研究院、清华大学、北京理工大学,北京邮电大学等14家单位,联合开展了“超大带宽信息传输计量基标准和关键技术研究”。 项目拟重点解决毫米波太赫兹通信、高速互联、数字调制、5G通信、高速光通信、动态显示、超高清视频、高宽带速率、云计算能效等计量瓶颈科学技术问题,研制一批现代信息与电子计量领域核心器件;研究一系列超大带宽信息传输性能参数的测量及溯源方法;建立一批计量基准标准,提升我国信息电子产业计量测试能力。

  • 新疆理化所潘世烈团队利用高分辨率太赫兹光谱方法为氟化学晶体结构研究提供新途径

    氟在化学世界中具有重要地位。氟在所有原子中电负性最高、极化率最低。同时,氟是所有非惰性气体和非氢元素中半径最小的元素。通常,氟的引入使得有机化合物和无机化合物产生独特的物理性能、化学性能和生物性能。地壳中氟元素的丰度排在第13位,是自然界中含量最丰富的卤素。当前,氟已应用于制药、催化、生物、农业和材料等领域。在无机氧化物体系中,氟和氧的离子半径相似,具有较好的可替代性。因此,利用氟替代氧/羟基成为增强氧化物/羟基氧化物物化性质的有效途径之一。尽管氟化策略已在无机氧化物/羟基氧化物结构和性能改性中受到重视,但反应产物的结构分析仍是化学表征的难题。由于氟和氧对X射线和电子束的散射能力相近,致使准确区分和鉴别这两类元素变得困难。更复杂的是,X射线和电子束几乎不和氢原子相互作用,故X射线和电子束方法难以区分氟和羟基。因此,氟化产物中氟和氧/羟基的准确区分是确定取代位点、研究氟化反应规律以及明晰反应路径等课题的研究基础。[color=#ff0000]近日,中国科学院新疆理化技术研究所潘世烈团队与内蒙古医科大学教授额尔[/color][color=#ff0000]敦[/color][color=#ff0000]、台湾大学教授Hayashi [/color][color=#ff0000]Michitoshi[/color][color=#ff0000]、日本静冈大学教授Tetsuo Sasaki、日本神户大学教授Keisuke Tominaga,以水溶液中硼酸的氟化反应为研究对象,发展了基于高分辨率太赫兹光谱的结构解析方法。[/color]在本研究中,我们展示了太赫兹(THz)光谱为应对这一挑战提供的强大工具。该团队利用这一方法测定了反应产物中功能基元上氟和羟基的位点。结果表明,该反应体系中氟原子只出现在BO[font=等线][sub][size=13px]2[/size][/sub][/font]F[font=等线][sub][size=13px]2[/size][/sub][/font]阴离子功能基元上。在结构测定的基础上,该研究推导了水溶液中硼酸的氟化机理,提出了两步氟化历程。第一步是氟离子和硼酸分子B(OH)[font=等线][sub][size=13px]3[/size][/sub][/font]形成配位共价键,促使硼的电子轨道经历从sp[font=等线][sup][size=13px]2[/size][/sup][/font]到sp[font=等线][sup][size=13px]3[/size][/sup][/font]的转变,形成B(OH)[font=等线][sub][size=13px]3[/size][/sub][/font]F中间体。第二步是氟化剂产生的酸性环境使该中间体上的一个OH质子化,形成OH[font=等线][sub][size=13px]2[/size][/sub][/font][font=等线][sup][size=13px]+[/size][/sup][/font]优势离去基团。进而,氟离子通过亲核取代路径取代OH[font=等线][sub][size=13px]2[/size][/sub][/font][font=等线][sup][size=13px]+[/size][/sup][/font]基团,完成第二步氟化。基于高分辨率太赫兹光谱的结构分析方法,适应于含氟/氧、铍/硼、碳/氮等X射线难以识别元素对的结构体系以及用于研究其他羟基氧化物/氧化物氟化反应机理。[align=center][img=,500,256]https://img1.17img.cn/17img/images/202403/uepic/9cc47a87-9e7a-44a3-a144-71e69f2e9a0d.jpg[/img][/align][align=center]水溶液中硼酸的氟化路径示意图[/align]该方法为无机氟化学晶体结构基元精确解析和反应理论研究提供了新途径,而这一过程以前由于结构不明确而受到阻碍。在太赫兹光谱学的启发下,这项工作标志着我们在深入了解氧化物/氢氧化物氟化过程中的精确结构和反应机制方面又向前迈进了一步。。相关研究成果发表在《德国应用化学》上。新疆理化所为第一完成单位。研究工作得到科学技术部、国家自然科学基金委员会、中国科学院和新疆维吾尔自治区等的支持。[align=center][img=,500,205]https://img1.17img.cn/17img/images/202403/uepic/6715a417-4887-42ca-a47c-044234041f99.jpg[/img][/align][来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 二维付立叶变换光学系统的空间带宽积与颗粒大小分析

    二维付立叶变换光学系统的空间带宽积与颗粒大小分析

    二维付立叶变换光学系统的空间带宽积与颗粒大小分析任中京(山东建材学院 250022)提要用付立叶光学原理,从理论与实践讨论了二维付立叶变换光学系统的空间带宽积的物理意义。首次提出了具有重要实用价值的敏感空间带宽积概念并介绍了它的主要应用。关健词光学付立叶变换,空间带宽积,粒度分析二维付立叶变换光学系统最成功的应用领域之一就是颗粒粒度分析。依据付立叶光学原理,通过检测群的付立叶谱,无需颗粒按大小在空间分离,便可实现粒度实时与动态测试与分析,从而开辟了粒度在线分析的广阔前景现在已被广泛应用于建材、冶金、能源、化工等许多领域。此类粒度分析仪与经典的成象光学仪器不同,不能用放大率、景深、清晰度等参数来描述,概括仪器本质特征的参数是空间带宽积,空间带宽积制约着激光粒度仪的测量范围、分辩率、粒度的分级。正确理解空间带宽积,是改进与提高激光粒度分析仪的基础。本文着重探讨空间带宽积的物理意义,及其与颗粒大小分析之间的密切关系。空间带宽积在二维付立叶变换光路中,直径为d的圆孔屏置于前焦面,在平行激光照射下,在后焦面可得到此孔的衍射图样,中心O级衍射谱称为爱里斑,爱里斑半径由下式表示:http://ng1.17img.cn/bbsfiles/images/2013/05/201305281052_441887_388_3.jpg从(2)式可见,衍射物的空间尺度d与衍射空间频谱宽度ρ/λf的乘积为一常数,我们称d*ρ/λf为空间带宽积。为了不失一般性,我们讨论二维付立叶变换系统对任一空域函数的抽样,在空域频域均采用直角座标系。由抽样定理可知,在空域对于带限函数g(x,y)使用间隔为△x△y的寻距抽样,得样本函数:http://ng1.17img.cn/bbsfiles/images/2013/05/201305281052_441888_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281052_441889_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281052_441890_388_3.jpg我们称满足(5)式的抽样间隔为尼奎斯特间隔。(5)式表明尼奎斯特间隔与原函数的带宽之积等于1。此乘积即为直角座标系中的空间带宽积。以上分析表明:小的空间尺寸必然对应着一个宽的频带,换句话说,要测量小颗粒必须要用较宽的频带。如果尼奎斯特间隔大子所测的颗粒,则此颗粒在抽样中将被漏掉,频率将失真。尼奎斯特间隔对激光粒度仪来讲就是该仪器最小可分辩尺寸。激光粒度仪的空间带宽积在激光粒度仪中,由于颗粒群的空间频谱具有中心对称性,因此通常采用同心环状的阵列探测器对功率谱进行抽样。现考察一个半径为r0的颗粒,其透过率函数为http://ng1.17img.cn/bbsfiles/images/2013/05/201305281052_441891_388_3.jpg(11)式给出了颗粒与其付立叶径向功率谱的敏感空间带宽积。其物理意义是颗粒直径d发生变化时,满足上式的ρm处的功率谱变化最大。敏感空间带宽积在激光粒度分析仪的设计中具有重要作用。敏感空间带宽积的应用敏感空间带宽积在激光粒度分析仪的设计中可用来确定测量的上下限粒径,与颗粒的分级。http://ng1.17img.cn/bbsfiles/images/2013/05/201305281052_441892_388_3.jpg从(11)式还可看出,使用长波长的激光光源或者增大付立叶透镜的焦距有利于扩大测量范围;反之,则有利于提高仪器的分辩率。[s

  • 科学家首次用光改变人造超分子手性

    中国科技网讯 据物理学家组织网7月11日(北京时间)报道,美国科学家首次研制出一种人造分子,可用一束光改变其手性,这种分子可应用于包括生物医学研究、国土安全和超高速通讯在内的太赫兹技术领域,相关研究发表在《自然·通讯》杂志上。 手性分子是化学中结构上镜像对称而又不能完全重合的分子。该类分子具有迥然不同的左手或右手倾向,能用太赫兹电磁射线观察、甚至改变分子的手性是科学家们孜孜以求的目标。 该研究的领导者、劳伦斯伯克利国家实验室材料科学分部的张翔(音译)表示:“我们能改变天然材料的手性,但改变过程缓慢同时也会改变材料的结构,而我们新制造出的人造分子的手性却能以光速进行切换。” 张翔团队用由纳米大小的金条经过加工制成的太赫兹“超材料”,制造出了一种精巧的人造手性分子,接着将其同具有光活性的硅媒介结合,再使用一束外部光对该“超分子”进行光致激发,结果观察到了以圆偏振发射太赫兹光的形式表现出来的手性变化。而且,这种光致激发也使科学家们能对这种手性切换和太赫兹光的圆偏振进行动态控制。张翔表示:“以前使用光电刺激只能打开或关闭‘超材料’的手性,但现在,我们能用光开关改变这种太赫兹‘超分子’的手性。” 张翔解释道,新的“超分子”包含有一对手性相反的三维超原子。他们在每个超原子内的不同地方放置了一块硅板。最终,硅板破坏了镜像对称并让超分子具有了手性。硅板也承担了能在光致激发下改变超分子手性的光电开关的功能。他表示:“我们的系统依赖于两个手性不同的超原子的‘联姻’,在特定频率范围内,其中一个超原子起作用,而另外一个不具有活性。如果设计合理,这两个超原子会对同样的外部刺激做出相反的反应,不活跃的超原子会开始起作用,而起作用的超原子则会失去活性,这就使超分子的手性发生了变化。” 太赫兹电磁射线也称为T射线,位于分子振动的频率范围内,这使其成为理想的非侵入式工具,可用来分析有机物和无机物的化学组成,改变超分子的手性并控制太赫兹光的圆偏振可被用于探测有毒易爆的化学品,或用于无线通讯以及高速数据处理系统中。因为包括DNA、RNA和蛋白质在内的大多数生物分子都具有手性,新研究也能让医学研究者和制药人士受益。 另一名研究人员安托瓦妮特·泰勒表示,他们的光切换手性太赫兹超分子的设计原理并不局限于改变手性,也可用来动态地改变其他电磁属性。(记者 刘霞) 总编辑圈点 手性真是一种奇妙的东西!人们使用的药物绝大多数具有手性,被称为手性药物。手性药物的“镜像”称为它的对映体,两者之间在药力、毒性等方面往往存在差别,有的甚至作用相反。在自然界的各个方面,都广泛地存在着许多对称的概念:带负电的电子与带正电的反电子,磁场的南极和北极,以及化学中的分解和合成反应。对手性的研究,在造就工业奇迹的同时,也启发了我们对地球生命,甚至宇宙起源的重新认识。 《科技日报》(2012-07-12 一版)

  • 【求助】关于紫外的带宽问题

    关于紫外的带宽问题:一些紫外就一个固定带宽,某些带宽很多,可根据测定需求选择。哪位大侠可以告诉 测定时到底该如何确定带宽??

  • 功率分析仪有效带宽小结

    一、什么是功率分析仪有效带宽?  功率分析仪有效带宽是指功率分析仪能够测量和分析的信号的最高频率。  周期信号的频谱由幅度谱和相位谱组成。频谱的包络线每隔一个角频率时,通过零点。在某一个零点之后,谐波的幅值将会逐渐减小。通常将包含主要谐波分量的这段频率范围称为被测信号的有效带宽。  被测信号的有效带宽必须小于功率分析仪的有效带宽,换言之,功率分析仪的有效带宽必须大于被测信号的有效带宽,才不会对被测信号造成明显的衰减或失真。  功率分析仪测量信号的有效带宽与阶跃响应的上升时间成反比。  功率分析仪有效带宽是仪器频率特性中的重要指标,具有实际应用意义。在功率分析仪有效带宽内,必须集中了所测信号的绝大部分谐波分量。换句话说,若信号丢失有效带宽以外的谐波成分,不会对信号产生明显影响,这样的测量才会有意义。同样,任何系统也有其有效带宽。当信号通过系统时,信号与系统的有效带宽必须“匹配”。若信号的有效带宽大于系统的有效带宽,则信号通过此系统时,就会损失许多重要成分而产生较大失真;若信号的有效带宽远小于系统的有效带宽,信号可以顺利通过,但对系统资源是巨大浪费。二、什么情况下功率分析仪有效带宽会出现混叠现象?  当功率分析仪对连续信号进行等间隔采样时,如果不能满足采样定理,即采样频率低于功率分析仪有效带宽的两倍,采样后信号的进行频谱分析时,会出现率就会重叠,即高于采样频率一半的频率成分将被重建成低于采样频率一半的信号。这种频谱的重叠导致的失真称为混叠。这种情况下是功率分析仪有效带宽过宽或采样频率过低导致。只有提高采样频率,使之达到最高信号频率的两倍以上,或降低功率分析仪有效带宽,使其低于采样频率的二分之一,才能用采样样本正确还原信号;  抗混叠滤波器:是一个低通滤波器,用以在输出电平中把混叠频率分量降低到微不足道的程度。这种滤波器是将信号的高频信号滤去,是对原始信号的一种预处理,使信号达到跟功率分析仪有效带宽“匹配”的要求。三、什么情况下功率分析仪有效带宽可以欠采样?  有些功率分析仪采用欠采样技术,欠采样是指采样频率低于两倍的功率分析仪有效带宽,违反采样定理。但是,当信号属于较严格周期信号时,对连续多个周期尽心欠采样,而每个周期的采样序列有一个固定的延时。比如说,采样频率为100kHz,采样周期为10nS,第一个周期从0时刻开始采样,而第二个周期5nS(从二分之一采样周期)处开始采样,然后,将两个周期的采样数据合并,就得到了一个周期的200kHz采样频率的采样样本序列。欠采样技术在信号并非严格周期信号时,会有较大的误差。 信号上升时间与宽带有什么关系呢?请看:http://www.vfe.cc/NewsDetail-1819.aspx

  • 【求助】关于HPLC的紫外检测器的波带宽

    公司准备购买岛津LC-20A的液相色谱仪,配备的紫外检测器的波带宽为8nm,设备部的老同志说药典规定为2nm,所以配置太差,不予购买。但我查了很多牌子的HPLC,波带宽4-8nm的都有,不知药典规定的是否紫外分光光度计的波带宽呢?为什么HPLC的紫外检测器的波带宽大概都在4-8nm范围?8nm的波带宽是否很差,不适合购买?本人是新手,这个弱弱的问题希望大家能够给予解答,先谢啦![em0808]

  • 【求助】英斯特朗大带宽放大器,请给予点评

    试验机的最核心部分,测控系统,一直是中国试验机的软肋,最近Sans,天源,长春试验机厂在这方面都有了大幅度的提升.英斯特朗的测控系统采用先进的32位浮点数字信号处理器DSP系统,提供快速响应,高精度和高可靠性.首先对于载荷传感器或引伸计的模拟信号进行放大,英斯特朗采用20000HZ大带宽放大器.请问各位专家,带宽放大器的优点是,,,,

  • 5.28《太赫兹波谱与成像技术在脑胶质瘤原位识别中的研究》王与烨(天津大学)

    [font=Calibri][font=宋体]仪器信息网于[/font]5[/font][font=Calibri][size=10.5pt][font=宋体]月[/font]26-29[font=宋体]日组织召开[/font][b] [size=18px][b]第九届光谱网络会议[/b][/size][/b][/size][/font][font=Calibri][size=10.5pt][font=宋体],特邀嘉宾[url=https://www.instrument.com.cn/webinar/meetings/News/expert?id=6560]王与烨(天津大学)[/url][/font][font=宋体],带来报告《[b][url=https://www.instrument.com.cn/webinar/meetings/News/expert?id=6497]太赫兹波谱与成像技术在脑胶质瘤原位识别中的研究[/url]》[/b];[/font][/size][/font][font=宋体]欢迎感兴趣的你,报名参会![/font][b][font='Times New Roman'][color=#0563c1][url=https://www.instrument.com.cn/webinar/meetings/SCIEX522/]https://www.instrument.com.cn/webinar/meetings/iCS2020/[/url][/color][/font][/b]

  • 转发一封专业人员写给我的关于狭缝与光谱带宽的信函

    分光光度计的光谱带宽【Spectal Bandpass】是以“纳米”为单位。带宽实际上就是仪器光谱(波长)的分辨率,表示单色光的纯度。仪器内的狭缝【Slit】宽度和带宽有一定的关系,但不是决定因素,决定仪器带宽的是光栅的色散率(单位长度光栅的刻划条数)和单色器的尺寸(光栅到狭缝的距离)。当光栅的色散率和单色器的尺寸固定时,狭缝越小,仪器的带宽越小。当然这种小不是无限的,有一个极限值。这个极限值受到光栅的色散率和单色器的尺寸限制。所以说狭缝宽度和带宽是两个不同的概念。仪器的狭缝宽度范围一般是零点零几个毫米到几个毫米。而仪器的光谱带宽都是以nm为单位。至于狭缝的宽度,则是制造商的事,和使用者无关。使用者只需关心带宽指标即可,因为这项指标将关系到此仪器能否适用于某些样品的测试。在狭缝档位可调整的光谱仪器里许多仪器厂商将【Spectal Bandpass】光谱带宽这一项功能标称为【Slit】,即狭缝,而且单位也是nm,这从严格的意义上讲是不准确的。但按照通俗的讲法此种称谓也可以,【Slit】称谓实质上是省略了“不同的狭缝档位所对应的光谱带宽是多少nm”这样一个概念。因此、【Slit】的称谓的目的是告诉使用者某某挡位狭缝对应什么样的光谱带宽,而不是要告诉用户狭缝本身的宽度是多少(这对用户来说是没有意义的)。有人问、仪器的带宽与单色器的带宽是一个概念吗?其实仪器的带宽就是由单色器的设计水平来决定的,因此一般没有单色器带宽这一说法。仪器的带宽是由光栅的色散率和单色器的尺寸来决定的,这决定了这种仪器的最高分辨率(我们撇开能量是否满足等等其他问题)。当高分辨率决定(达到)以后,我们也可以不需要一直使用最高分辨率。对于可变狭缝档位的仪器而言,对应于最小狭缝挡位的带宽一般接近于(考虑到加工及装配误差)单色器的设计分辨率。使用什么样的带宽,由使用者的样品性质决定。使用小带宽时,优点是读数准确,分辨率高。缺点是噪声大,动态范围测量小。打个比方500W象素的照相机拍摄,最大可以产生几兆大小的文件。也可以产生几十K的文件。当我只需拍个方盒子,我更本没有必要使用500W象素,那么大的文件传输有麻烦,但是我要看清盒子的边角上的细节时,就必须要最求清晰了。简单的说也就是:单色器设计所决定了最小带宽,狭缝宽度的改变只能将带宽在最小基础上放宽。从仪器的角度说带宽越小的仪器档次越高,价格越贵,制造商的仪器附加值越高。但在绝大多数用户的应用中并不是特别追求小带宽。带宽过小的仪器反而会造成噪声大,养护费用高的缺陷。

  • [转帖]用户私自增加带宽的秘密!(研究了两年才发现的

    我常为网速慢发愁,可要到电信增加带宽费用也增加了!怎么才能增加往速又不加钱呢?我经过两年的呕心沥血、坚持不歇的研究,皇天不付苦心人,终于被我发现了一个秘密!与大家分享。先别谢我,别去告发我就是对我最大的支持了。大家都知道,网络信息都是依靠线路传输的(无线上网除外),而带宽,顾名思意就是传输线路的宽度了,好比一条小路只能过一个人,而大路可以过车。这样一说,大家都明白了吧,方法就是把家里的线路换成粗线,线越粗,带越宽。最好用一根10厘米宽的扁铁来换掉家里的线路,根据我的计算,这样带宽可以达到10000M。大家可以试试,不过我还没有试过,有谁试过后效果如何一定要告诉我哦!回复 第 2 楼楼主言之有理,我昨天试过了,NND,还真的很管用呢.多谢.回复 第 3 楼那俺把扁铁从俺家防盗网接进来可不可以防 黑 客 ?回复 第 4 楼太实用了!!俺改进了硬件,用一根直径2米的粗铁管代替扁铁!!结果带宽硬是达到10000000M!!NND,连驴都能顺着管子直接爬俺家屋子里来!!回复 第 5 楼最好用一根10厘米宽的扁铁来换掉家里的线路我灌水我灌水我灌水我灌水我灌水我灌水我灌水我灌水我灌水我灌水我灌水楼主真不地道,讲话这么不专业.我告诉大家,千万别用扁铁,要用铜线才好回复 第 6 楼偶接了水管子,效果超好!不过下的东西都超大,一压缩,显示器的下面一半就都淹了:(回复 第 7 楼偶把偶的电脑接在下水道上(铸铁的),结果带宽硬是达到1000000000000000000000000000000000000M,而且收费按照水费收,特便宜。不妨一试。回复 第 8 楼偶发现家旁边有根路灯管子人家扔在那不要就扛了回来接上去,靠,晕死了,带宽都没法统计了,最实惠地是居然不收费,感情还和以前的路灯有联系啊,把钱都算在那边去了估计。建议大家试试,不过最好是拣人家不要的,否则把正在上班的路灯管卸下来那是犯罪。回复 第 9 楼不用的,只要住宅附近有电线杆就可以完成了回复 第 10 楼建议让比尔盖茨根据你的设想再创造出新的网络平台,你发定了兄弟!可别忘了我的提议哦,呵呵!!回复 第 12 楼昨天我把门口马路刨开,把宽带接煤气管道上,上网速度比光速还快,而且还可以顺便用天然气烤土豆吃!回复 第 26 楼一群笨蛋,世界上体积最大的,横截面最宽的不是马路,也不是下水道.所以我的电脑直接连着空气download回复 第 27 楼我把线接到高速公路的防撞护栏上,结果速度达到光速,哈哈回复 第 28 楼我看门前的高压线够宽够粗,接上一试,NND居然速度由99,999,999,999,999,999,999G多.一个字"爽"!不信你试试.回复 第 29 楼俺知道电信的设备都有接地装置,俺住的楼房也有接地装置,所以俺试着直接把宽带接在楼房接地体上,速度都无法检测了。只是打雷的时候怎么防护还没找到办法,各位赐教。回复 第 30 楼昨天我把电脑接到楼顶的避雷针上,靠,无线上网,速度狂快,立马把电信的宽带停了

  • 谱带宽度和光谱带宽

    请教:紫外可见分光光度计的一个性能指标谱带宽度,和光谱带宽是同一个概念么?具体定义是什么?选购是选多少nm的?

  • 紫外光谱带宽与分辨率的关系

    请问各位紫外光谱仪带宽与分辨率的关系?看了很多资料,还是有点混淆。分辨率就是带宽么?欧洲药典的分辨率是通过0.02%甲苯的己烷溶液在269,266nm处吸光度比值求得,光谱仪的带宽是仪器本身自带的,或者通过可调档来调节这两个值往往不相同?请问两者的关系?谢谢。

  • 国产再突破!玖锦科技发布18GHz带宽示波器

    2023年12月28日 - 成都玖锦科技有限公司(以下简称“玖锦科技”)举行了以“信号的复现艺术”为主题的新品发布会,以深入且深刻的洞见信号的本质特征为着力点,将工程技术与艺术完美结合,正式推出“守仁”系列PDS6184A国内首台18GHz带宽、80GSa/s采样率的高速数字实时示波器产品,该产品的发布不仅代表着中国在高端实时示波器领域取得的重要进展,也意味着国产电子测量迈入全新纪元。[b]亮点一:突破关键技术指标限制[/b]PDS6184A高速数字实时示波器产品具备 4个模拟通道,最大带宽 18GHz,最高采样率 80GSa/s,最大存储深度 2Gpts/ch,最高波形捕获率 500,000wfms/s,具备快速的波形捕获、波形存储、波形三维荧光显示、参数测量、数学运算,以及多种触发、串行解码分析、实时眼图与抖动分析等高级功能。可应用于光通信、卫星导航以及自动驾驶等领域。这些突破性的参数得益于玖锦科技自研的核心芯片组,包括高速ADC芯片和三款调理芯片,满足了超高带宽高速信号的采集、处理和分析需求。PDS6184A高速数字实时示波器产品突破传统的采样处理及分析架构,依托玖锦科技自研的640Gbps超高速数据实时处理和快速校准平台,突破信号接收预处理、信号实时处理分析及自动快速校准等关键核心技术,克服不间断高速采集与有限存储容量间的矛盾,大幅提升波形捕获率,为实时分析信号瞬态特征和捕获偶发故障提供保证。[b]亮点二:革新接口测试领域[/b]除了在常规信号测试领域的应用,高速数字实时示波器特别适用于新兴的Type-C接口测试。随着Type-C接口在各种电子设备中的广泛应用,市场对高速、高精度的接口测试设备提出了更高的要求。Type-C接口传输协议USB3.0/3.1/3.2进行协议一致性分析需测5次谐波,实时示波器的带宽需超过12.5GHz,PDS6184A高速数字实时示波器产品凭借其超高带宽高速性能和精确测量能力,能够准确地捕捉和分析Type-C接口的信号特征进行物理层信号分析及链路层信号与协议分析。PDS6184A高速数字实时示波器产品的实时采样和强大的数据处理能力使其能够应对各种复杂的Type-C接口测试场景,无论是在信号完整性测试、高速数据传输稳定性评估还是接口兼容性测试中,PDS6184A示波器产品都能提供卓越的性能和精确的结果。[b]亮点三:重塑窄脉冲测试的精度标杆[/b]在高速信号处理和通信系统领域,窄脉冲测试的精度与准确性直接关系到整个系统的性能与稳定性,因此,能够进行高精度窄脉冲测试的设备显得尤为重要。PDS6184A示波器产品以其18GHz的带宽和80GSa/s的采样率,能准确地测量脉宽54ps以上的窄脉冲信号,获取脉冲宽度、上升时间、占空比、重复频率等关键参数;另外,PDS6184A示波器产品支持分段存储模式,能够捕获足够多的连续脉冲进行统计分析,重塑了窄脉冲测试的精度标杆。长期以来,示波器领域一直由国外品牌主导。然而,玖锦科技此次最新突破不仅使其成功追赶上了国际先进水平,更为国产电子测量技术开辟了一条富有前瞻性的发展道路。这一重大成就不仅突显了中国智造的巨大潜力和吸引力,同时也激励了国内企业大胆迈向自主创新之路,向世界展示中国智慧和创造力的无限可能。在这个技术日新月异的时代,18GHz带宽、80GSa/s采样率的高速数字实时示波器产品的推出为电子测量领域注入了新的动力和前景,彰显了中国在高科技领域持续取得的进步,并提升了国产科研仪器的领先地位。这一创新成果不仅代表了玖锦科技的技术实力,更是中国仪器仪表行业在全球竞争中取得的重要进展。[来源:玖锦科技][align=right][/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制