当前位置: 仪器信息网 > 行业主题 > >

彩色屏激光功率能量计

仪器信息网彩色屏激光功率能量计专题为您提供2024年最新彩色屏激光功率能量计价格报价、厂家品牌的相关信息, 包括彩色屏激光功率能量计参数、型号等,不管是国产,还是进口品牌的彩色屏激光功率能量计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合彩色屏激光功率能量计相关的耗材配件、试剂标物,还有彩色屏激光功率能量计相关的最新资讯、资料,以及彩色屏激光功率能量计相关的解决方案。

彩色屏激光功率能量计相关的论坛

  • 如何选择传感器——激光功率计和能量计

    激光功率和能量计主要用来测量光源的输出。无论光发射是来源于弱光源(如荧光),还是来源于高能量的脉冲激光器,功率和能量计都是实验室、生产部门或是工作现场等多种应用环境中必不可少的工具。 虽然功率计和能量计是分别提供的,但随着能够适用大量不同类型的光学传感器的通用型仪表盘或显示装置的发展,它们也被合起来称作单独的一类仪器——功率和能量计,或PEM。仪器所采用的光学传感器的类型,决定了其能测量光功率还是光能量,通常单位分别瓦特(W)或焦耳(J)。具体来讲,功率计能够测量连续波(CW)或者重复脉冲光源,其所使用的传感器通常是热电堆或光电二极管。能量计则通常用于测量脉冲激光,即单脉冲或者重复脉冲光源,其所使用的传感器包括热释电、热电堆,或者带有专门为测量脉冲光源而设计的电路的光电二极管。

  • 【仪器心得】美国THORLABS光功率和能量计

    【仪器心得】美国THORLABS光功率和能量计

    [align=center]THORLABS[font=宋体]光功率能量计使用心得[/font][/align] [font=宋体]光功率能量计,光从名字上看也差不多能看出一二。不错,这款[/font]THORLABS[font=宋体]光功率能量计就是测光功率或是能量的设备,主要用在一些光学部件,像光源、光路、接收器等的测试,有一些光学类检测也可能会用到这样的设备。[/font][align=center][img=,458,]https://ng1.17img.cn/bbsfiles/images/2023/09/202309011026111618_104_2369266_3.jpg!w690x611.jpg[/img][img=,690,638]https://ng1.17img.cn/bbsfiles/images/2023/09/202309011027110329_6041_2369266_3.jpg!w690x638.jpg[/img][img=,690,552]https://ng1.17img.cn/bbsfiles/images/2023/09/202309011027151571_4563_2369266_3.jpg!w690x552.jpg[/img][/align][font=宋体] 这款仪器带显示屏,可以实时显示测量数据,设置也在屏上,是触摸屏,有一些像频率、积分时间等一些参数在测量前需要设置或确认。可以接充电器充电,带电池,充一次电充满大概能有[/font]10[font=宋体]个小时左右(新设备待机时间会更长),充电时也可以正常测量,不会受到影响;充满电,用起来就更方便了,不受时间和空间等因数的影响,使用非常方便。它测量的数据还可以通过数据线,在电脑专用软件上显示,并保存历史数据。后背还有一个支架,看数的时候可以平放在工作台上也可以用支架支着,立在那看,实用性较强。[/font][font=宋体] 测量时开机后等个一分半分的,仪器就进入工作状态,显示屏上就会出现多少毫瓦或多数微瓦的数字,这是就可以正常测量了。测量也没有多少要求,操作非常简单、方便,只需要把被测的光对正测光器的正中心就可以,尽可能是垂直对着,对偏了或是没对正,测量数据会有影响。一般对偏的测量数据会偏小,没有垂直对正,稍偏离[/font]90[font=宋体]°,测量值是偏大的,角度偏的多后,测量值又会偏小。这个就看测量时需要什么效果了,正常测量一般都是光线垂直打在测光器正中心。[/font][font=宋体] 这款设备虽小,功能还是较强大的,轻便、小巧、皮实、实用,操作方便、简单,准确度相对也还可以,用起来比较放心、舒心。[/font]

  • 【原创大赛】【第八届原创】激光能量计选购时应考虑哪些因素

    激光能量计选购时应考虑哪些因素激光能量计,主要用于测试脉冲激光器激光能量。但是国内外市场上提供的能量计种类繁多,且其性能都可满足实验室使用需求,怎么来确定型号已选择到确实对自己适用的能量计呢?首先,要先从自身出发,明确自己的需求要求,这个时候需要明确所需测量的最大脉冲激光能量、脉宽以及工作频率、工作波长和光斑面积。一旦自己的需求明确了,剩下的工作就可以顺理成章的开展了,这个时候需要考虑激光能量计的参数信息了。第一个要考虑的就是探测器类型,也就是所要选择的激光能量计的损伤阈值,因为不同的探测器可以用来检测不同范围的能量,并且各探测器使用的激光器工作频率不同,选择适合自己需求的探测器这一点至关重要;第二个需要考虑探测器所能探测的波长范围,即所选的能量计要能够覆盖自己的需求波长区间;对于用户而言,第三个需要考虑的就是激光能量计的测试灵敏度,也就是能量计的分辨率,能够对多大能量的变化产生相应信号,并给出变化信息;第四点,作为分析测试人员,需要考虑的就是激光能量计的测试稳定性与重现性,由于误差的传递性,这对于分析测试结果具有十分重要的作用;最后一点,需要考虑的是激光的光斑面积,因为光斑面积的不同会同时带给能量计探头的损伤阈值和峰值能量密度的变化,进而影响到探测器类型的选择,因此在选择时需要将光斑面积和探测器类型匹配,以选择最优化组合。

  • 请问拉曼光谱仪的mapping分辨率是否与所用的激光功率有关?

    前段时间购买仪器时开专家论证会,我们放了两张mapping的对比图,有专家说拉曼的mapping分辨率与所用的激光功率有关。这句话我不是很理解其中的意思。mapping分辨率不就是空间分辨率吗?空间分辨率的影响因素不就是XYZ样品台的步长、光斑大小、共焦状态、物镜倍数这些?为什么还会有激光功率呢?还是这个专家的这种说法不太正确,存在问题?

  • 激光功率对样品的影响

    测试光谱时,随着激光功率的提高发现样品的拉曼光谱有了一定的变化,显微镜下看起来样品并没有发生变化。将激光功率降低,样品的拉曼光谱又回到了原来的状态,这种情况如何解释?这种情况下测量时选择哪种激光功率呢?

  • 美制造迄今最大激光脉冲:500万亿瓦特功率

    2012年07月18日 08:08 新浪科技微博http://i1.sinaimg.cn/IT/2012/0718/U2727P2DT20120718075512.jpg  未来能源?美国国家点火装置负责人摩西表示:“它正全面运作。科学家在清洁聚变能源的探索上迈出重要一步。”http://i0.sinaimg.cn/IT/2012/0718/U2727P2DT20120718075533.jpg  这个脉冲只持续230亿分之一秒。这个激光阵列不是朝着一个目标发射的。但2年内,科学家将朝着一个1毫米氢球发射这192束激光。http://i2.sinaimg.cn/IT/2012/0718/U2727P2DT20120718075553.jpg  一位艺术家的构想图展示了美国国家点火装置“点燃”192束激光阵列时产生的反应。本月制造的这个脉冲并非针对一个目标,但科学家最后会在一个1毫米氢球中用这些激光引发一个聚变反应。http://i0.sinaimg.cn/IT/2012/0718/U2727P2DT20120718080555.jpg  一名工作人员正在检查加利福尼亚州的美国国家点火装置的设备。美国国家点火装置的目标是成为首个用聚变反应实现“得失相当”目标的设施,从而产生比这些激光所消耗的还要多的能量。http://i0.sinaimg.cn/IT/2012/0718/U2727P2DT20120718080614.jpg这个巨大高能设施将在接下来2年内尝试激光聚变。这项技术被看作清洁能源的“圣杯”。http://i1.sinaimg.cn/IT/2012/0718/U2727P2DT20120718080633.jpg美国国家点火装置的设备:3月15日的结果表明,科学家距“聚变点火”的目标又近了一步。http://i0.sinaimg.cn/IT/2012/0718/U2727P2DT20120718080654.jpg这些激光只持续230亿分之一秒,产生的能量却比整个美国在任何特定时间所用的电量多1000多倍。  新浪科技讯 北京时间7月18日消息,据国外媒体报道,位于加利福尼亚州、体育场大小的美国国家点火装置本月制造出人类历史上能量最大的激光脉冲。7月5日,192束激光融合成一个紫外线激光脉冲,产生500万亿瓦特峰值功率,这比美国在任何特定时刻内使用的总电量还要高1000多倍。  对旨在用类似于发生在氢弹中的核聚变反应产生巨大能量的“聚变”设备来说,这个脉冲的产生具有重大历史意义。美国国家点火装置负责人爱德华-摩西表示:“它正全面运作。科学家在清洁聚变能源的探索上迈出了重要一步。”  麻省理工学院高级研究科学家理查德-帕特拉索表示:“这个500万亿瓦功率的激光脉冲是美国国家点火装置研究小组的非凡成就----在实验中创造出迄今为止只出现于恒星内部深处的史无前例的聚变反应。对美国和世界各地像我们一样在极端条件下不懈追求基础科学和实验室聚变点火目标的科学家来说,这是一个非同寻常、令人兴奋的成就。”  加利福尼亚大学伯克利分校天文学、地球与行星学教授雷蒙德-简罗茨表示:“美国国家点火装置成功制造出500万亿瓦功率、具有里程碑意义的激光脉冲,这是世界上经过最严格的控制产生的能量最大的激光。”  这个脉冲只持续了230亿分之一秒。这个激光阵列并未朝着目标物发射,但2年内,科学家将朝着一个1毫米氢球发射这192束激光。美国国家点火装置的科学家希望它将来点燃聚变反应堆的聚变,从而释放出比这些激光所输入的能量还要多的能量。  受控的核聚变可以生成一种从50年代以来科学家一种试图制造出来的清洁能源,但在氢弹中核聚变是不受控制的。由于激光脉冲的持续时间极其短暂,所以所需总能量并不像听起来的那么多,它们被储存在美国国家点火装置电池一样的巨大容器中。 美国国家点火装置负责人摩西表示:“该事件在国家点火计划对聚变点火的探索中是个重要里程碑。国家点火装置用单个激光束进行过许多次类似的能量生成示范,但用192束激光在这个音障上进行操作还是头一次。”点火将成为一种释放出远超过“得失相当点”的巨大能量的自持反应。  美国国家点火装置试用了超重氢和在“重水”中发现的氢同位素重氢的小球,通过激光器把这些小球压缩到起初尺寸的数百分之一大。这个反应把这些原子融合成氮原子,释放出移动迅速、名为中子的亚原子粒子,这可能用于给水加热和为蒸汽轮机提供动力。  但聚变并非没有争议。美国国家点火装置还参与了美国的武器研发计划。这个聚变过程还被用于氢弹中。美国国家点火装置在这个国家的“库存维护与管理计划”中扮演着重要角色,以确保核军火库发挥它应有的作用。绿色和平组织等环境机构认为应把聚变研究的经费转移到研发风力和波浪发电等技术上来。(孝文)

  • 红外测温仪激光安全吗?

    激光安全是选择红外测温仪时必须考量的一项安全指标。目前,我国根据激光产品对人体的伤害程度,划分为从CLASS I(无损害)到CLASS IV 四个安全等级。对于红外测温仪的要求是至少满足二级安全标准,即低能量级激光级别(激光功率不大于1 毫瓦)不同测温仪激光安全性的差异来源:激光发射元器件质量。

  • 多少功率会激光致盲?

    常有人说激光可能导致人失明,激光致盲的最小功率是多少?[url=http://www.huaketiancheng.com/][b]原子发射光谱仪[/b][/url]为您简单介绍。  短时间致盲应该是5微瓦。 不是所有的波长都可以致盲的,不同波段造成不同的伤害。如下:  180-315纳米(紫外线-B,UV-C),角膜炎(角膜发炎,相当于晒伤)  315-400纳米(紫外线A)的光化学白内障(眼球晶状体混浊)  400-780纳米(可见)光化学损伤视网膜,视网膜烧伤  780-1400海里(近红外),白内障,视网膜烧伤  1.4-3.0μm(IR)水耀斑(房水蛋白),白内障,角膜烧伤  3.0微米1毫米的角膜烧伤  激光致盲的最小功率是多少?? 10可以短时间致盲的功率,不可以恢复的致盲功率各是多少  激光的种类对致盲的产生有没有影响?  短时间致盲应该是5微瓦。 不是所有的波长都可以致盲的。如下:180-315纳米(紫外线-B,UV-C),角膜炎(角膜发炎,相当于晒伤)  315-400纳米(紫外线A)的光化学白内障(眼球晶状体混浊)  400-780纳米(可见)光化学损伤视网膜,视网膜烧伤  780-1400海里(近红外),白内障,视网膜烧伤  1.4-3.0μm(IR)水耀斑(房水蛋白),白内障,角膜烧伤  3.0微米1毫米的角膜烧伤

  • 我国聚变激光驱动器世界先进 5纳秒内输出16千焦耳激光能量

    最新发现与创新 中国科技网 四川绵阳7月20日电(记者盛利)记者从中国工程物理研究院激光聚变研究中心获悉,该中心19日进行的大口径高通量激光驱动器实验平台出光试验中,单束出光能量第三次超过16千焦,达到16.523千焦,这标志着我国走独立技术路线、自主设计研制的激光驱动器达到世界先进水平,成为继美国、法国之后第三个迈入“单束万焦耳出光”俱乐部的国家。 在空气洁净度为一万级的中心实验室,记者看到由放大系统、空间滤波器、光束反转器、光传输管道等组成的实验平台,约2米高、近100米长,与神光Ⅲ-原型装置等大型激光装置相比略显紧凑,如同一辆小型货运机车。“别看它麻雀虽小,但五脏俱全,能力很大,单束出光能量是神光Ⅲ原型装置的5倍。”中心三部副主任郑奎兴说,达到世界先进水平的该设备,放大器的小信号增益达到世界领先的每厘米5.28%,瞬间输出功率超出全国发电站发电功率的总和。运行中能量仅为百毫焦耳的“种子”光进入放大器后,将在管道、放大系统、反转器中往返数次,能量放大近8万倍,最终在5纳秒内输出16千焦耳的激光能量。 郑奎兴说,该实验平台研制的一项突出成就在于,通过自主研制的仿真模拟软件设计等,成功实现设备总体构型创新,有效克服了我国单元器件工艺不足的难题,走出了一条以“U型反转器”等系列创新工艺技术为代表的“中国大口径高通量激光驱动器之路”,出光能量、光束质量均达到国际先进水平。 记者了解到,参与该项目的一线科研人员平均年龄在30岁以下。80后科研人员赵普军说,能够投身这项与世界“比肩”的重大项目,感觉“很自豪”“很提气”。 郑奎兴表示,成功实现万焦耳输出,展现了我国高功率固体激光装置建设的设计研制能力,及其关键单元技术发展水平。 《科技日报》(2012-7-21 一版)

  • 分析高温辐射温度计激光能量法

    激光能量法具有几下特点:    a)激光辐射源本身的温度可以很低,避免了现有黑体辐射源因本体材料的耐热性导致的温度上限不能超过3200℃的情况,因此温度上限可以很高。由于采用激光器代替了黑体炉作为辐射源,其输出的能量完全可以满足辐射温度计对高温校准的要求。    b)使用方便。从键盘输入辐射温度计光学系统的通光孔径r,辐射温度计与被测目标的距离R为1000mm时,目标能够辐射到辐射温度计面积S,光学系统光谱范围的上、下限波长λ1,λ2和温度值T0i后,激光辐射源即可直接输出对应于温度T0i的辐射能量φ0λ1,λ2(T0i)。    c)激光能量法属于绝对法校准,不需要标准温度计。同时,也不同于一般的绝对法校准,不需要定义固定点和内插方程。采用标准激光功率计作为标准器,通过激光辐射源的输出能量来获得对应于热力学温度T0的辐射能量φ0λ1,λ2(T0i)。标准激光功率计对激光辐射源的输出能量进行测量,并进行自校准。    d)节省时间。激光辐射源没有升温和恒温过程,所以可实现快速校准、检定。    e)校准时,可不考虑辐射温度计的距离系数。    f)激光能量法主要用于高温范围辐射温度计的校准、检定,所以不必考虑环境辐射的影响。    激光辐射源输出激光的波长应在辐射温度计的有效波长范围之内。由于激光辐射源不是黑体辐射源,所以输出激光的波长必须与辐射温度计相适应。也就是说,一台通常单频率的激光辐射源不能满足校准所有辐射温度计的需要。在校准装置中,工作波长不同的多台激光辐射源可共用一套控制系统。若采用频率可调的激光器可克服此问题。    校准时,应注意辐射温度计与激光束的同轴。因为激光束很窄,若瞄准不好可能使激光束打不到探测器上。    在不确定度的评定过程中,由于条件所限,没有考虑辐射温度计光学系统光谱透过波长的测量误差问题。因波长测量误差会导致辐射能量的计算误差,最终对校准结果产生影响。同时,也没有考虑辐射温度计光学系统的通光孔径r,辐射温度计与被测目标的距离R为1000mm时,目标能够辐射到辐射温度计的面积S的测量误差,这两项误差将对计算辐射能量直接产生影响。对此,将在今后的研究中加以解决。    对激光能量法与黑体辐射源法校准辐射温度计的差异还有待理论及实践的探讨与研究。

  • 激光荧光成像仪特点

    [b][url=http://www.f-lab.cn/vivo-imaging/rp2.html]激光荧光成像仪[/url][/b][url=http://www.f-lab.cn/vivo-imaging/rp2.html]Lab-FLARE[/url]是采用激光发射激发荧光技术的实验室近红外荧光成像系统和多功能光子荧光成像控制器,与各种手持式荧光成像仪一起,提供近红外荧光高清成像,同时提供700 nm近红外荧光图像,800nm近红外荧光成像和彩色视频。[b]激光荧光成像仪特点[/b]控制使用2个4K高清监测器与所有我公司荧光成像头一起工作,获得高清荧光图像满FLARE容量的四个独立的视频流高功率665nm 和760nm激光激发,提供几乎没有近红外光的白光同时700 nm近红外荧光,800纳米近红外荧光成像,彩色视频输出,几何/数学融合。综合GPIO的大功率继电器统一的FLARE软件与脚本笔记本电脑集成锁存器及一套RC系列成像头带关节臂定位RC系列成像头的可选推车可选的VESA安装做它自己的RC系列成像安装头激光荧光成像仪Lab-FLARE:[url]http://www.f-lab.cn/vivo-imaging/rp2.html[/url]

  • 激光功率调节的方式方法及光谱分辨率等光谱仪配置测试标准

    请教各位老师,关于光谱仪的参数配置我有几点疑问。1、我在某厂家拉曼光谱仪激光功率调节的参数描述中看到,仪器采用的是激光多级衰减片,16级,以方便针对不同样品调整激光功率。不同级别的衰减片是否对应的是比如0.1%到100%的激光强度衰减?除了使用衰减片进行调节之外,还有其他的功率调节方法吗?2、光谱分辨率、光谱重复性、灵敏度这几项各自所用的检验标准是否每个厂家都基本一样?

  • 【原创】激光的知识

    实际应用的激光器种类很多,如以组成激光器的工作物质来说可分为气体激光器、液体激光器、固定激光器、半导体激光器、化学激光器等。在同一类型的激光器中又包括有许多不同材料的激光器。如固体激光器中有红宝石激光器、钇铝石榴石(Nd:YAG)激光器。气体型的激光器主要有He-Ne(氦-氖)、CO2及氩离子激光器等。由于工作物质不同,产生不同波长的光波不同,因而应用范围也不相同。最常用而范围广的有CO2laser及Nd:YAG激光。有的激光器可连续工作,如He-Ne laser;有的以脉冲形式发光工作。如红宝石激光。而另一些激光器既可连续工作,又可以脉冲工作的有CO2laser及Nd:YAG laser。   (一)固体激光器  实现激光的核心主要是激光器中可以实现粒子数反转的激光工作物质(即含有亚稳态能级的工作物质)。如工作物质为晶体状的或者玻璃的激光器,分别称为晶体激光器和玻璃激光器,通常把这两类激光器统称为固体激光器。  在激光器中以固体激光器发展最早,这种激光器体积小,输出功率大,应用方便。由于工作物质很复杂,造价高。当今用于固体激光器的物质主要有三种:掺钕铝石榴石(Nd:YAG)工作物质,输出的波长为1.06μm呈白蓝色光;钕玻璃工作物质,输出波长1.06μm呈紫蓝色光;红宝石工作物质,输出波长为694.3nm,为红色光。主要用光泵的作用,产生光放大,发出激光,即光激励工作物质。  固定激光器的结构由三个主要部分组成:工作物质,光学谐振腔、激励源。聚光腔是使光源发出的光都会聚于工作物质上。工作物质吸收足够大的光能,激发大量的粒子,促成粒子数反转。当增益大于谐振腔内的损耗时产生腔内振荡并由部分反射镜一端输出一束激光。工作物质有2条主要作用:一是产生光;二是作为介质传播光束。因此,不管哪一种激光器,对其发光性质及光学性质都有一定要求。  (二)气体激光器  工作物质主要以气体状态进行发射的激光器在常温常压下是气体,有的物质在通常条件下是液体(如非金属粒子的有水、汞),及固体(如金属离子结构的铜,镉等粒子),经过加热使其变为蒸气,利用这类蒸气作为工作物质的激光器,统归气体激光器之中。气体激光器中除了发出激光的工作气体外,为了延长器件的工作寿命及提高输出功率,还加入一定量的辅助气体与发光的工作气体相混合。  气体激光器大多应用电激励发光,即用直流,交流及高频电源进行气体放电,两端放电管的电压增压时可加速电子,带有一定能量,在工作物质中运动的电子与粒子(气体的原子或分子)碰撞时将自身的能量转移给对方,使分子或原子被激发到某一高能级上而形成粒子数反转,产生激光。气体激光器与固体激光器相比较,两者中以气体激光器的结构相对简单得多,造价较低,操作简便,但是输出功率常较小。因气体激光器中的工作物质不同。因此分中性(惰性)原子、离子气体、分子气体三种激光器。  中性原子气体激光器这类激光器中主要充有以惰性气体(氦、氖、氩、氪等)的物质。  氦-氖(He-Ne)激光器 首台氦-氖激光器诞生于1960年,它可以在可见光区及红外区中产生多种波长和激光谱线,主要产生的有632.8nm红光、和1.15μm及3.39μm红外光。632.8nm氦-氖激光器最大连续输出功率可达到一W,寿命也达到一万小时以上。借助调节放大电流大小,使功率稳定性达到30秒内的误差为0.005%,十分钟内的误差为0.015%的功率稳定度;发散角仅为0.5毫弧度。氦氖激光器除了具有一般的气体激光器所固有的方向性好,单色性好,相干性强诸优点外,还具有结构简单、寿命长、价廉、频率稳定等特点。氦氖激光在精确指示,激光测量,医疗卫生方面有很广泛的用途。  氦氖激光器的工作原理:氦氖激光器的激光放电管内的气体在涌有一定高的电压及电流(在电场作用下气体放电),放电管中的电子就会由负极以高速向正极运动。在运动中与工作物质内的氦原子进行碰撞,电子的能量传给原子,促使原子的能量提高,基态原子跃迁到高能级的激发态。这时如有基态氖原子与两能级上的氦原子相碰,氦原子的能量传递给氖原子,并从基态跃迁到激发的能级状态,而氦原子回到了基态上。因为放电管上所加的电压,电流连续不断供给,原子不断地发生碰撞。这就产生了激光必须具备的基本条件。在发生受激辐射时,分别发出波长3.39μm,632.8nm,1.53μm三种激光,而这三种激光中除632.8nm为可见光中的红外,另二种是红外区的辐射光。因反射镜的反射率不同,只输出一种较长的光波632.8nm的激光。  He-Ne激光器结构:此类激光器的结构大体可分为三部分,既放电管、谐振腔和激发的电源。现在临床上最常应用的为内腔式。  He-Ne激光的放电管,最外层是用硬质玻璃制成。放电的内管直径约2~3mm,管长几厘米到十几厘米,放电管越长功率越大,相应的放电电压就高。管内主要按5:1~10:1的比例充入氦氖混合气体达到总气压约2.66~3.99Pa。管的一端装有铝圆筒作阴极(其圆管状结构主要是为了减少放电测射),另一端装有钨针作阳极,放电管两端装有反射镜(即一头为全反射镜,出光一端为半反射镜)。这就构成了激光放电管。  在氦氖激光器中,采用的谐振腔有球面腔或平凹腔。一般腔镜内侧镀有高反射率的介质。在其中一端反射率为100%,另一端反射率由激光器的增益而定。放电毛细管长度约15~20cm,He-Ne激光器的半反射镜的半反射镜的反射率98.5%~99.5%。谐振腔的轴线和放电毛细管轴偏离不超过0.1mm。  He-Ne激光器的外界激励能源与固体激光器不相同,不能使用光泵激励,而采用电激励的方法。把工作物质封入放电管中,供以直流、交流及射频等方式激励气体放电。通过放电过程把能量传给工作物质,促使气体中的离子、原子被激发。医疗中使用的激励方法主要是以直流电激发出光。大体结构主要有高压变压器、整流与滤波回路、限流与稳流回路组成。

  • 激光烧蚀技术简介

    [align=center][b]激光烧蚀技术简介[/b][/align]激光烧蚀技术(LA),也称激光剥蚀,是一种固体进样方式。主要是利用功率很高的激光脉冲,激光打到样品表面,可以实现原位,无损检测。不需要样品消解,无需酸的消耗,绿色环保,避免污染。从脉宽分类:纳秒级别,飞秒级别。从波长分类:213nm,193nm等。1.主要联用技术,联用ICP-OES, [url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url].2.作用范围为微米级别,所以应用领域基本在微区分析。3.样品适用范围及LA特点:Ø 难消解的样品(Pt, Ph等),挥发元素(Hg)。Ø 可进行样品的原位分析,提供更多元素空间分布的特点。Ø 进样不需要稀释,提高测试灵敏度。Ø 可减少水中氧的干扰。Ø 激光对于样品会产生破坏。Ø 测定灵敏度低。Ø 有质量歧视和分馏效应。Ø 目前的标样只是玻璃,需要基体匹配才能更好地进行分析。4.可检测的样品为:金属,合金,矿产,粉末状态,熔融状态,陶瓷,生物组织,土壤沉积物,塑料,电子材料,玻璃。其中目前玻璃标样是最为常见的。5.仪器使用条件:22 ℃左右,湿度为60%以下。6.常用单位介绍:Ø mJ 能量,每个脉冲的能量。Ø J/cm2 能量密度,每个脉冲作用单位面积的能量。Ø nm 波长,激光输出波长。Ø ns 脉宽,激光输出每个脉冲的时间。7.可优化的条件:激光参数:激光能量,激光频率(剥蚀深度),激光光斑尺寸,He,Ar流速。分析需求:分析区域,分析时间,分析元素。8.联用[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]的时候,雾化器流量,炬管位置,三位监控。9. 选取仪器波长和能量成反比。选取需要适合的波长和脉宽。

  • 【原创】UV能量计的测量原理及分析

    UV能量计的测量原理及分析UV能量计测量方案主要有两种不同的方案:1) 单芯片集成测量方案2)智能单片机采集方案对于单芯片集成测量方案,不需要程序设计,直接用传感器加可调电阻,组成了模拟信号的输入。只能显示通过调节可调电阻,单液晶显示最终的能量值。一般采用段码式液晶。这种方案的优点是设计简单,缺点是准确度不够,只能显示能量值,不能显示功率值。智能UV能量计方案的测量原理,首先通过ADC模数转换芯片,将紫外探测器的弱电流信号转换为数字信号,然后单片机采集到数字信号,通过软件调校,首先测量到UV功率,通过对UV功率的对时间的积分,得到UV能量。这个过程,一需要模数转换,得到UV功率大小,二需要积分,得到能量值。如果需要准确度高,采集时间必需足够的快,一般一秒钟至少1000次以上,这样积分的能量值,才比较准确。对于智能单片机采集方案,首先测到功率值,然后计算能量值。这样采用这种方案的UV能量计,都是同时显示实时功率值,最大功率值和能量值。有些智能UV能量计,还会集成温度测量。智能UV能量计采用的高速多点采集,所以能够记录采集过程的各个数据,得出过程中的曲线数据。总结:智能UV能量计,能够测量到UV功率值,可以带温度测量,并可有测量过程的曲线显示。这样就更能分析固化炉中的各个点的UV强度分布和温度分布,便于生产过程中工艺分析和工艺参数制定。

  • 【分享】激光处理后的白炽灯更亮!

    美国罗彻斯特大学的光学研究者们已经开发出了一种激光加工工艺,可以使常规100W白炽灯消耗的电能低于60W白炽灯,而发出的光却具有同样的亮度。这种加工工艺使用超强功率的激光,能够在白炽灯内部常规钨丝的表面制造出一种独特的纳米和微米级结构,从而使钨丝辐射光的效率更高。新的超级钨丝采用超短和超强的被称之为飞秒激光脉冲的光束加工,光束仅持续千万亿分之几秒。罗彻斯特大学的光学副教授郭春雷表示,他的光学小组正在金属表面上用超快速激光脉冲进行试验,而且还要测试激光作用在钨丝上的效果。通过发射激光束透过灯泡的玻璃,实验小组发现,灯泡上的小部分面积的亮度发生了改变,但在发光时它所消耗的能量却没有变化。

  • 如何选择激光粒度仪

    激光粒度仪是专指通过颗粒的衍射或散射光的空间分布来分析颗粒大小的仪器。现在许多用户在市场上挑选激光粒度仪的时候,都感到非常为难,因为一方面对激光粒度仪的了解不太多;另一方面市场上鱼龙混杂,各个厂家都说自己的粒度仪是最好的,不知听谁的好。 首先挑选激光粒度仪首先要十分注重仪器的准确度和重复性。分辨是否只要用亚微米的标准颗粒测试一下就可分辨;粒度范围宽,适合的应用广,最好的途径是全范围直接检测,这样才能保证本底扣除的一致性。不同方法的混合测试,再用计算机拟合成一张图谱,肯定带来误差。激光粒度亿一般选用2mW激光器,功率太小则散射光能量低,造成灵敏度低;另外,气体光源波长短,稳定性优于固体光源。 在挑选激光粒度仪还要要了解其分散方式是怎样的,一个样品要得到一个客观的测试结果,只有分散的好,才能测出正确的结果。最后要检查激光粒度仪的检测器,因为激光衍射光环半径越大,光强越弱,极易造成小粒子信/噪比降低而漏检,所以对小粒子的分布检测能体现仪器的好坏。

  • 强激光高能量密度物理研究新进展——局域超临界场致正负电子对产生过程的磁场控制

    量子场论被认为是描述最本质物理规律的学科之一。利用最基本的关系式,狄拉克方程,所提出的多种预测已经被证实,并得到具有重大意义的结果。到目前为止,关于最具挑战性且有重大价值的一项预测的真实性验证还仍然在探索中:光是否能够直接转化成物质,即强场下真空中是否能够激发出正负粒子对。1951年诺贝尔奖得主Julian Schwinger给出了电子对在均匀稳恒电场中产生率的表达式,这项先驱性的工作引起了人们对这项对物理基础学科发展和应用极富挑战性的重大科学课题的注意,并激发人们开始投入大量精力来挑战这个未解的难题。超快超强激光技术的快速发展正在为开展这项研究提供前所未有的实验条件,使其逐渐成为物理学的一个新的前沿热点。迄今为止,人们在实验上已经得到一些有意义的结果,重离子对撞实验以及美国斯坦福线型加速器上进行的46.6GeV电子束和强激光碰撞实验,已经证实了正负电子对的产生。但是到目前为止,由强光场直接引起的真空击穿和相应的正负电子对产生过程的实验还未能实现,主要原因是目前激光系统的最大强度虽然已经高达2×1022W/cm2,但仍不足以直接“击穿“真空。为了获得更高功率的激光系统,跨国研究中心也正在建设中。我们能够预期,在不久的将来,激光就可接近甚至达到“击穿”真空并自发产生正负电子对的强度,在避免其它效应的情况下对超临界场产生正负粒子对的过程进行直接检验。如果能够实现,将是人类首次证实光可以直接转化成为物质,即爱因斯坦的能质公式E=mc2, 这对于物理学的发展和所带来影响是不可估量的。 对于这一重要问题,理论和数值方面已经得到了非常有意义的结果,但大部分工作都只考虑了电场而并没有考虑磁场效应。最近中科院物理所/北京凝聚态物理国家实验室(筹)光物理实验室强激光高能量密度物理组与美国伊利诺斯州立大学、中国矿业大学和上海交通大学的合作者一起,首次研究了磁场效应对局域超临界电场下正负电子对产生过程的影响。通过运用基于量子场论的非微扰的精确数值模拟,发现在超临界的电场中即使考虑强度非常小的磁场,只要其空间宽度足够宽,仍然可以关闭正负电子对产生通道,使系统变为次临界,并且伴随产生粒子数在时间上的震荡效应(见图1)。一直被公认的Schwinger公式和Hund公式都无法对这种效应做出描述。通过计算系统总哈密顿量的能量本征值得出,磁场变宽的同时正负能态的上下限随之相互远移,当磁场宽度达到粒子在磁场中的回旋半径的时候系统就变为次临界(见图2),并且出现离散的朗道能级引发粒子数在时间上的震荡效应。上述研究结果发表在近期的物理评论快报上:http://prl.aps.org/abstract/PRL/v109/i25/e253202。该工作得到了国家基金委、科技部、科学院和美国国家基金委的资助。http://www.iop.cas.cn/xwzx/kydt/201212/W020121231638765715614.png 图1. 不同磁场宽度下正负电子对的产生数随时间的变化关系。其中WB=1.25/c约为电子在磁场中的回旋半径:磁场宽度小于回旋半径时,粒子数持续产生,系统为超临界;磁场宽度大于回旋半径时,系统变为次临界。http://www.iop.cas.cn/xwzx/kydt/201212/W020121231638765722390.gif 图2. 根据总哈密顿量得到的能级分布随磁场宽度WB变化关系。宽度小于回旋半径时,正负能态交叠,能够持续产生电子对;宽度大于回旋半径时,正负能态分离并出现离散的朗道能级。

  • 【原创】激光对中仪产品特点介绍

    激光对中仪能够有效的为消费者解决很多麻烦,从而也为自己的工作减少了很多忧虑。激光对中仪采用了大量的新技术,比如分辨率以及线性度更高的CCD激光感应技术,都能够在这种情况下进行准确生动的操作,当然还有可选的无线连接,也能够很好的进行一定的运行。激光对中仪在我们的生活中已经变得不可或缺,其有较强的3D彩色动画快速显示测量结果的功效,能够采用一个简单明了的彩色动画来显示整个测量过程。而数字以及箭头标示出的测量结果也将有效的调整机器的方向以及调整量的大小,不同的颜色图标显示着测量的结果是否超出了可容许的误差范围。激光对中仪操作起来方便,能够很大的方便消费者的一些工作,从而创造价值。

  • 【转帖】从激光原理看六脉神剑的产生机制

    作者:swordmean 导师:金庸 专业:光电子 摘要:六脉神剑具有广阔的应用前景,本文从激光原理出发,论证了生物激光的可行性及实现的办法,在人类进化事业中,具有十分重大的意义。 背景:与传统的武功,如降龙十八掌,九阳真经等相比,六脉神剑是一种威力极强的武功,具有操作简单,响应时间快,杀伤力大(功率密度大),效率高, 使用范围远等优点,因此为广大的武学名家所觊觎,但是由于大理段氏将这门武 功列为绝密档案,而且存在修炼困难等问题,六脉神剑的产生原理,始终是武林 中的一个谜,作者从事激光器理论研究多年,终于凭借两条基本假设,解决了生 物激光产生中的若干困难问题。并提出了一种快速修炼六脉神剑的方法,本文的 发表,具有划时代的意义。 从激光原理看六脉神剑的产生机制 公理1:真气是一种类似于等离子体的物质形态 公理2:真气和激光都可以在经脉中传输 六脉神剑其实是一种小功率的生物激光武器,这从六脉神剑的效果上可以看出来,但是,这种生物激光,还存在很多亟待解决的问题,如传输损耗过大,非基模激射等缺点,这大大影响六脉神剑的威力。从激光原理看,激光的激射需要两个条件:粒子数反转和谐振腔的形成。我们先研究六脉神剑产生粒子数反转的原理,因为在丹田中,存在大量的真气,一般来说,这些真气以等离子体的形式存在,但是对于武学名家,可以通过修炼,将这些等离子体,积累并释放出来,一般来说,释放的速度越快,能量越高,则武功的威力也越大,降龙十八掌就是通过长时间的积累,将这些真气积累至顶峰时释放出来,因此产生出巨大的功率密度。而九阳神功,则是指导如何提高这种等离子态的真气的容量和衰减时间的方法。 如果在丹田内产生某种势场,导致大量的等离子的原子结构发生变化,就可能使这些基态的等离子体转化为激发态,再通过跃迁释放出光能,因此,从原理上说,六脉神剑与其他的武功是截然不同的。导致基态原子激发的势场,是由等离子体分布不同而产生的磁场,导致等离子体激发的这种势场,在激光原理中,这被称为泵浦。一般的武功,恰好忽略了这种非均匀势场的作用。通过泵浦,我们就实现了粒子数反转,在大量的粒子数反转的条件下,就可能产生激光。 下面我们再看谐振腔的形成,这与真气的运行路线有密切的关系,鉴于以上讨论的粒子数反转条件只能在丹田内完成,这种生物激光器的谐振腔也在丹田内, 同样可以通过控制周围势场的形状来限制跃迁产生的光在丹田中的分布,而光场 的分布,影响了激光的质量,决定了激光器是单模激射和多模激射,有经验的精 通六脉神剑的天龙寺长老,能够同时控制多个激射波长,但是由于多模激射的势 场太过于复杂,难于控制,大部分人,如枯容大师,段正明等,只能单波长激射,由于传输问题,这种单模激光很容易发散,若以这种发散的激光输出,就只能练成一指。段誉能够练成六脉神剑的主要原因,完全是因为北冥神功这种奇异的武功的出现,首先,通过北冥神功积累了大量的真气,因此,为粒子数反转提供了强大的泵浦,大大提高了粒子反转数密度。其次,北冥神功本来就是吸取别人的内力,因此,它的势场分布,与一般的武功完全不同,恰好符合谐振腔的谐振条件,不需要像其他人那样通过外力来强行控制真气场的形状,因此,段誉可以轻而易举的练成六脉神剑,但是,这种北冥神功的真气场 ,和真正的谐振腔条件,还是具有一定的差别,因此,段誉的这种激光激射,并不是时时都能够产生,需要一定的矫正,可惜的是,能够同时知道北冥神功和六脉神剑的,世间上唯有段誉一人,而段誉是看图学成的,又对二者的关系完全不明白,因此,段誉的六脉神剑具有很大的限制性,这一点,就算是帮助段誉研究过的萧峰,也不明白,因为他不知道六脉神剑真正的输出是激光而不是真气。 从以上分析可以看出,谐振腔的形成和粒子数反转,也是六脉神剑这种生物激光的基本原理,从这个原理来看,除了北冥神功外,吸星大法和明玉神功,也有类似的作用。 下面再讨论激光在人体中的传输和激射过程。从一般的武功来看,真气传输的通道是经脉,六脉神剑的光传输也是这样的,提供真气运行通道的经脉,同时也是激光传输的光波导,否则,以北冥神功这种强大的泵浦产生的激光,早就对人体产生了伤害。在这里,我们假设经络实际上是一个类似于光纤的波导。从后面的论证中可以看出,这个假设是正确的。由于光波导的截至频率为0,因此,也适合于一般真气的传输,而在传输中一般真气没有发生泄漏,是因为外层波导的禁带宽度大,对传输中的真气构成了势垒,因此,除了少量的真气通过隧穿逸出外,大量的真气都可以达到终点。 由于经络既是真气传输的通道,又是光波导,从这个意义上,这一段波导不仅仅是光传输的通道,而且是一段光纤放大器,光在经络中传输的同时。还能获得增益,这就大大提高了输出光功率,我们可以把这一段光波导近似成EDFA,由 理论计算可知,若增益越大,EDFA的长度越长,所获得的增益就越大。 也许会有人怀疑六脉神剑是生物激光的真实性,因为真正的单模激光器的光传输距离是很长的,而六脉神剑就要差一点,这一点前面实际上已经提到过。六脉神剑其实是一种小功率的生物激光武器,这从六脉神剑的效果上可以看出来,但是,这种生物激光,还存在很多亟待解决的问题,如传输损耗过大,非基模激射等缺点,这大大影响六脉神剑的威力。由于一般的泵浦是依靠改变磁场分布来形成的,因此难于获得较大的泵浦,就算是北冥神功,因为势场分布和谐振腔条件的微小差异,也会导致输出功率的大大下降,但是我们有理由相信,通过理论计算,我们可以使北冥神功的真气场完全符合谐振腔条件,这时的六脉神剑, 威力将以数倍的提高。 其次,从大理段氏的六脉神剑来看,都是从手指上发出,他们对激光原理的了解还不是很深入,因此输出的激光,都不是基模激射,从激光原理可知,高阶模的激光光斑面积大,但是功率密度,强度等,都要比基模激光要差,因此,六脉神剑还有改进的余地。 再次:空气对激光的损耗是十分大的,由于散射,吸收等作用,空气对激光的损耗非常大,而且从实验结果来看,六脉神剑的输出激光波长,极有可能在紫外光波段,并不是在空气的损耗系数最小的范围内,再加上非基模激射,因此段誉的六脉神剑,威力远远比理论值要低。 针对以上的分析,我提出的快速修炼六脉神剑的方法有两种: 1.先修北冥神功,吸星大法或明玉功,推荐北冥神功。 2.首先通过理论计算和实验分析,通过ansys模拟出丹田中的真气场分布,在再加以修炼另外,六脉神剑还有许多需要改进的地方,如选择合适的波长,实现纯基模输出,降低输出损耗和阈值真气密度等,有兴趣的读者可以自行分析。 总结:六脉神剑其实是一种人体内的一种生物激光器,随着对真气性能的深入研究,我们相信,我们最终会在广大的中国人民身上普及,将来的战争,将不 再是以科技取胜,决定战争胜负的最重要的因素,将会是参战的人数,我们有理 由相信,中国将会是世界上最强大的国家。最后,希望这种生物激光器,能够最 快的应用到 PLA中去,这将对台湾当局产生强大的威慑力,为和平解决台湾问题 带来新的希望。 参考文献: 天龙八部--三联出版社(盗版) 激光原理--清华大学电子工程系 集成光电子和生物电子学导论--清华大学电子工程系

  • 【分享】光功率测试仪的特征及应用

    光功率测试仪是用于测量绝对光功率或通过一段光纤的光功率相对损耗的仪器,也是一种高智能化、高精度、高灵敏度的光功率测试仪器。光功率测试仪易于使用,只需连接光纤即可读取结果,可进行宽动态范围、高精度的光功率测量、高分辨率的损耗测量和稳定度测试。 光功率测试仪采用最先进的手持式仪表专用集成芯片,实现超低功耗运行,具有滤波测量功能,双端口直通设计,测试期间可保证OLT 到ONT 的全程通讯。光功率测试仪采用高清晰真彩色液晶屏显示测量值,人机界面友好、显示界面美观清晰、显示字体大小适中、便于操作人员读取数据及判断线路信号状态。内部集成带保护装置的高效智能充电电路,有效保证长时间的工作测试能力,同时其便携的设计更方便用户外出携带。光功率测试仪具有功率范围宽、性价比高、可靠性好、操作简单、测试精度高等特点,能够在网络中的任何位置对网络中所有的PON信号进行现场快速同步测量。 光功率测试仪主要用于可线性或非线性显示光功率,既可用于光功率的直接测量,也可用于光纤链路损耗的相对测量。光功率测试仪广泛应用于光纤通信、有线电视系统施工、光光纤CATV工程及维护、光纤传感研究、光通信设备、光纤、光无源器件的测试。

  • 【分享】------激光相关国标

    激光相关国标序号Sequence No. 标准号Standard No. 中文标准名称Standard Title in Chinese 英文标准名称Standard Title in English 状态State 备注Remark1 GB/T 20485.11-2006振动与冲击传感器校准方法 第11部分:激光干涉法振动绝对校准 Methods for the calibration of vibration and shock transducers - Part 11: Primary vibration calibration by laser interferometry 现行 2007-02-01实施,代替GB/T 13823.2-19922 GB 10320-1995激光设备和设施的电气安全 Electrical safety of laser equipment and installations 现行 1996-01-01实施,代替GB 10320-19883 GB 10435-1989作业场所激光辐射卫生标准 Hygienic standard for laser radiation in the work environment 现行 1989-10-01实施4 GB/T 11153-1989激光小功率计性能检测方法 Parameters testing method of laser power meter in low range 现行 1990-04-01实施5 GB/T 11293-1989固体激光材料名词术语 Terms and definitions of solid-state laser materials 现行 1990-01-01实施6 GB/T 11295-1989激光晶体棒型号命名方法 Designation for laser crystal rods 现行 1990-01-01实施7 GB/T 11297.1-2002激光棒波前畸变的测量方法 Test method for wavefront distortion of laserrods 现行 2003-05-01实施,代替GB/T 11297.1-19898 GB/T 11297.2-1989激光棒侧向散射系数的测量方法 Test method for side direction scatteringcoefficient of laser rods 现行 1990-01-01实施9 GB/T 11297.3-2002掺钕钇铝石榴石激光棒消光比的测量方法 Test method for extinction ratio of Nd∶YAG laser rods 现行 2003-05-01实施,代替GB/T 11297.3-198910 GB/T 11297.4-1989掺钕钇铝石榴石激光棒长脉冲激光阈值及斜率效率的测量方法 Test method fornormal pulse lasing threshold and slope efficiency of Nd:YAG laser rods 现行 1990-01-01实施11 GB/T 11297.5-1989掺钕钇铝石榴石激光棒连续激光阈值、斜率效率和输出功率的测量方法 Test method for continuous lasing threshold, slope efficiency and output power of Nd∶YAG laser rods 现行 1990-01-01实施12 GB 11748-2005二氧化碳激光治疗机 Carbon dioxde Laser Treating Intrument 现行 2005-07-01实施,代替GB 11748-199913 GB/T 12082-1989气体激光器文字符号 Letter symbols for gas lasers 现行 1990-07-01实施14 GB/T 12083-1989气体激光器电源系列 Power supply series for gas lasers 现行 1990-07-01实施15 GB 12257-2000氦氖激光治疗机通用技术条件 General specification of He-Ne laser medical equipment 现行 2000-12-01实施,代替GB 12257-199016 GB/T 12377-1990空气中微量铀的分析方法 激光荧光法 Analytical method of microquantity uranium in air by laser-fluoremetry 现行 1990-12-01实施17 GB/T 13739-1992激光辐射横模鉴别方法 Testing method of transverse mode of laser radiation 现行 1993-08-01实施18 GB/T 13740-1992激光辐射发散角测试方法 Testing method of divergence angle of laser radiation 现行 1993-08-01实施19 GB/T 13741-1992激光辐射光束直径测试方法 Testing method of beam diameter of laser radiation 现行 1993-08-01实施20 GB/T 13823.2-1992振动与冲击传感器的校准方法 激光干涉法振动绝对校准 (一次校准) Methods for the calibration of vibration and shock pick-ups--Primary vibration calibration by laser interferometry 现行 1993-10-01实施21 GB/T 13842-1992掺钕钇铝石榴石激光棒 Neodymium-doped yttrium aluminium garnet laser rods 现行 1993-08-01实施22 GB/T 13863-1992激光辐射功率测试方法 Testing method for laser radiant power 现行 1993-05-01实施23 GB/T 13864-1992激光辐射功率稳定度测试方法 Testing method for laser radiant power stability 现行 1993-05-01实施24 GB/T 14078-1993氦氖激光器技术条件 He-Ne laser specification 现行 1993-08-01实施25 GB/T 14128-1993掺铷钇铝石榴石激光棒尺寸系列 Dimension series for neodymium-doped yttrium aluminium garnet laser rods 现行 1993-08-01实施26 GB/T 15175-1994固体激光器主要参数测试方法 Measurement methods for main parameter of solid-state lasers 现行 1995-04-01实施27 GB/T 15301-1994气体激光器总规范 General specification for gas lasers 现行 1995-07-01实施28 GB/T 15313-1994激光术语 Terminology for laser 现行 1995-10-01实施29 GB/T 15490-1995固体激光器总规范 General specification for solid state lasers 现行 1995-09-01实施30 GB/T 15649-1995半导体激光二极管空白详细规范 Blank detail specification for semiconductor laser diodes 现行 1996-04-01实施31 GB/T 15860-1995激光唱机通用技术条件 General specification for compact disc players 现行 1996-08-01实施32 GB/T 16601-1996光学表面激光损伤阈值测试方法 第1部分:1对1测试 Test methods for laser induced damage threshold of optical surfaces--Part 1: 1 on 1 test 现行 1997-04-01实施33 GB/T 17540-1998台式激光打印机通用规范 General specification for desktop laser printer 现行 1999-06-01实施34 GB/T 17736-1999激光防护镜主要参数测试方法 Testing method of main parameters for laserprotective eyewear 现行 1999-12-01实施35 GB 18151-2000激光防护屏 Laser guards 现行 2000-12-01实施36 GB 18217-2000激光安全标志 Laser safety signs 现行 2001-06-01实施37 GB/Z 18461-2001激光产品的安全 生产者关于激光辐射安全的检查清单 Safety of laser products--Manufacturer’s checklist for radiation safety of laser products 现行 2002-05-01实施38 GB/Z 18462-2001激光加工机械 金属切割的性能规范与标准检查程序 Laser processing machines--Performance specifications and benchmarks for cutting of metals 现行 2002-05-01实施39 GB 18490-2001激光加工机械 安全要求 Laser processing machines--Safety requirements 现行 2002-06-01实施40 GB/T 18683-2002钢铁件激光表面淬火 Laser surface hardening of iron and steel parts 现行 2002-08-01实施41 GB/T 18904.2-2002半导体器件 第12-2部分:光电子器件 纤维光学系统或子系统用带尾纤的激光二极管模块空白详细规范 Semiconductor devices--Part 12-2:Optoelectronic devices--Blank detail specification for laser diodes modules with pigtail for fiber optic systems or sub-systems 现行 2003-05-01实施42 GB/T 19077.1-2003粒度分析 激光衍射法 Particle size analysis--Laser diffraction method 现行 2003-09-01实施43 GB/T 4799-2001激光器型号命名方法 The type designation for laseres 现行 2002-05-01实施,代替GB/T 4799-198444 GB/T 6360-1995激光功率能量测试仪器规范 Specification for laser radiation power and energy measuring equipment 现行 1996-01-01实施,代替GB 6360-198645 GB/T 6598-1986小角激光光散射法测定聚苯乙烯标准样品的重均分子量 Determination of weight-average molecular weight of polystyrene standards by low angle laser light scattering method 现行 1987-07-01实施46 GB 7247.1-2001激光产品的安全 第1部分:设备分类、要求和用户指南 Safety of laser products--Part 1:Equipment classification,requirements and user’s guide 现行 2002-05-01实施,代替GB 7247-199547 GB/T 7257-1987氦氖激光器参数测试方法 Measurement methods of parameter for helium neon laser 现行 1987-12-01实施48 GB 9706.20-2000医用电气设备 第2部分:诊断和治疗激光设备安全专用要求 Medical electrical equipment--Part 2articular requirements for the safety of diagnostic andtherapeutic laser equipment 现行 2001-05-01实施

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制