当前位置: 仪器信息网 > 行业主题 > >

红外线电磁波谱治疗器

仪器信息网红外线电磁波谱治疗器专题为您提供2024年最新红外线电磁波谱治疗器价格报价、厂家品牌的相关信息, 包括红外线电磁波谱治疗器参数、型号等,不管是国产,还是进口品牌的红外线电磁波谱治疗器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外线电磁波谱治疗器相关的耗材配件、试剂标物,还有红外线电磁波谱治疗器相关的最新资讯、资料,以及红外线电磁波谱治疗器相关的解决方案。

红外线电磁波谱治疗器相关的资讯

  • 这种电磁波强过X光、超声波 有望病前检出癌细胞
    今年重庆市高交会展示现场的太赫兹时域光谱成像仪  患癌之前就能检查处癌细胞,这还是真的。近日,记者从中国科学院重庆绿色智能技术研究院太赫兹技术研究中心(下称太赫兹技术研究中心)获悉,该研究中心历时3年研究的太赫兹生物医疗研究项目即将结题。该研究项目发现,电磁波太赫兹波能直接“看到”DNA、蛋白质等生物大分子。如果用于生物医疗领域,有望在患癌之前检测到癌细胞,目前,中科院已与第三军医大学展开合作,太赫兹技术或将攻破癌症难治的大门。  太赫兹近场成像光谱仪局部   中科院海归教授领队3年出成果  太赫兹波是指频率在 0.1~10THz 之间的电磁波,在电磁波谱上位于微波和红外线之间。  据了解,太赫兹波段的光谱对于物质结构的探索具有重要意义,太赫兹脉冲光源与传统光源相比也具有很多独特的性质。因此,太赫兹生物探测技术已经成为当下一个非常重要的交叉前沿领域。  太赫兹技术研究中心是中国科学院重庆绿色智能技术研究院的下属研究机构。2013年,研究中心成立后不久,就在重庆市科委的支持下开展太赫兹生物医疗的项目研究。目前,太赫兹技术研究团队有科研人员14人,具备海外留学背景的人员比例超过55%。  研究中心主任崔洪亮是国家“千人计划”特聘教授,他在太赫兹生物探测等领域有着丰富的经验积累。早在10年前,在美国教学的崔洪亮率先倡导太赫兹光谱检测和识别化学和生物战剂的研究,首次取得在溶液环境下成功测得三文鱼DNA的太赫兹波吸收图谱,这一突破性的成果领先国际同行近十年。  崔洪亮带领的团队花费了3年的时间研究太赫兹生物医疗项目,该项目将于今年10月底结题。这意味着太赫兹技术研究中心在太赫兹生物医疗研究方面取得突破性成果。太赫兹时域光谱成像仪局部  检测癌细胞能力超过X光、超声波  据了解,X光穿透性很强,无法细致地区分正常细胞与癌细胞 超声波穿透性又稍弱,照射不到细胞内部,只能“看到”直径大于1毫米的癌症肿瘤。而太赫兹波却恰好能够检测到细胞内部生化信号变化,分辨出正常细胞和癌细胞的不同。  崔洪亮认为,生物医疗是太赫兹应用的一个独特的领域,“在生物医疗领域,X光、超声波等传统医学检测手段无法检测到DNA等生物大分子,太赫兹技术能起到很好的补充作用。”  该项目立项之初,太赫兹技术研究中心就与第三军医大合作。研究中心利用第三军医大提供的信息建立数据库,以此作为太赫兹检测癌细胞研究的基础。第三军医大则把研究的成果逐步运用于临床医学。  崔洪亮表示,如果太赫兹波技术能够发展成熟,癌细胞有望能在其未扩散之前被检测出来。目前,通过太赫兹技术,中心在实验室里已经能检测出肺癌早期在支气管中癌变的细胞。而在太赫兹技术更为成熟的美国、日本等国家,研究人员已经通过该技术检测出皮肤癌、乳腺癌、结肠癌和胃癌等多种癌细胞。  太赫兹波技术在未来的医疗卫生领域或将有更进一步的应用。  据崔洪亮介绍,当太赫兹波在生物医疗方面的研究彻底取得成功时,医生有望利用太赫兹技术治疗癌症。相比于治疗过程中同时杀死癌细胞和正常细胞的化疗、放疗等传统手段,一定频段内的太赫兹波可以实现只针对癌细胞而无损正常细胞的良好治疗效果。  目前,研究中心已经研发出用于细胞检测的太赫兹光谱仪。但由于设备体积较大,一直仅限于实验室使用。研究中心下一步打算把设备做得更小,以便于日后投入生产线,真正把该设备送进医疗卫生行业。
  • 技术前景好 四类近红外线光谱用途分析
    p  尽管近红外线光谱仪(near-infrared spectrometer)的存在已有六十年之久,却鲜少有人知道它对于测量不同物质能量反射的重要性。德州仪器(TI)的AvatarNIR光谱仪,便能帮助各种产业找出物质的分子“指纹”— 范围包括农业、法医鉴识、制药、石油、医疗照护等。/pp  过去六十年来,近红外线光谱仪技术已有极大的进展。早期这类装置既笨重且只限于实验室使用,但现在的红外线光谱仪已能利用微处理器控制、精确的A/D采样及电脑化光谱计算技术,并透过统计分析,在不同地点快速的取得结果。/pp style="text-align: center "img title="QQ截图20151202173932.jpg" src="http://img1.17img.cn/17img/images/201512/noimg/46ad611c-cb8d-45aa-a4a6-bc3ff7e82b29.jpg"//pp style="text-align: center "图1 : 近红外线光谱仪技术应用范围广泛/pp  目前近红外线光谱仪可依使用场合区分为四大用途:/pp  strong—实验室—/strong/pp  仪器通常体积较大、精确度高且属于一般用途。用来处理光谱资料的电脑可能位于实验室内部,有些则是位在远端并透过乙太网路或USB连网。它们能处理大量的资料,几秒内就能和分散式参考标的进行比对。/pp  strong—野外—/strong/pp  可携式近红外线光谱仪的外型类似小型实验室仪器,可随意移动,通常只需交流电110伏特,或12伏特加上变流器即可供电。可携式近红外线光谱仪的尺寸通常只比便当盒大一点,可放置在货卡尾门上,适用于农田或矿场等产业型场景。/pp  strong—工厂—/strong/pp  这类专用设备可监测工厂环境,通常有特定的用途。在工厂的建置中,一条生产线上可能包含多种的光谱仪,透过乙太网路或以无线连网连结主要的控制设施。/pp  strong—掌上型—/strong/pp  机动且使用便利的手持式光谱仪,是目前业内一大焦点。现有产品只要装上电池即可运转,尺寸与大型手摇钻相近。优点是携带方便,且内建电源供应装置可遥控使用。/pp style="text-align: center "img title="QQ截图20151202173921.jpg" src="http://img1.17img.cn/17img/images/201512/noimg/5374cfb0-6606-4bb9-bd08-d29cdd1dbc67.jpg"//pp style="text-align: center "图2 : 透过行动装置来检测食物比较便利/pp  相关领域持续出现进展,体积更小、成本效率高的装置也应运而生,未来这项技术终将进入消费性市场。试想智慧手机若能内建近红外线光谱仪,就可以评估食物是否完全成熟、侦测食物的过敏原、确认高价橄榄油的纯度、协助医疗侦测或检查汽车机油。在台湾等地的市场里,消费者的健康意识抬头,越来越关心像是牛奶、食用油等食材是否带有不良化学添加物,因此搭载近红外线光谱仪技术的装置,将有机会发挥极大的用处。(作者Joe Siddal任职于德州仪器)/p
  • 红外线检测酒驾一查一个准
    关某在民警指导下进行“红外测”。 红外线测试仪 8月3日晚,红外线酒精检测仪显示测试人的血液酒精含量为85mg/100ml,达到醉酒驾驶的标准。据此,司机关某也成为了深圳市乃至全国首例通过红外线酒精检测技术(以下简称“红外测”)确定醉酒驾驶违法行为的当事人。  记者8月3日晚从交警部门获悉,该部“红外线呼出气体酒精含量检测仪”系8月1日新《条例》实施后第一次使用。  据介绍,深圳市交警以往查处酒驾、醉驾,主要依靠电化学原理的呼气式酒精检测仪进行现场呼气测试(简称“吹测”),以及抽血后依靠光谱分析进行血液酒精含量检测(简称“血检”)两种方式。其中,“吹测”方便快捷,但按照执法程序规定,如当事人对吹测结果有异议的需要进行“血检”,而该检测需要抽血,容易引起当事人心理上的对抗,耗时相对较长。  为提高执法效率,新《条例》第50条特别规定了使用红外线酒精检测(简称“红外测”)的方式。即采用国家计量认证的红外线酒精测试仪再次进行检测,并以该次检测结果作为确定违法行为性质的依据。据悉,这一方式在国外早已得到成功运用,其准确程度和检验体内酒精的结果几乎没有误差,方便、快捷、准确。由此,《条例》规定,驾驶人酒后驾车被查处时对吹测结果有异议的,可申请进行红外线复查。
  • 德国发明可装入手机的近红外线质谱仪
    据台湾&ldquo 中广新闻网&rdquo 31日报道,德国的科学家设计出一种可以装置在手机内的近红外线质谱仪,它可以分辨水果是否已经过熟。  据报道,这种质谱仪可以测知气体或是液体中的成份 过熟或是核心已经腐坏的水果,散发的气体会在质谱仪下现形。  报道称,德国科学家发明这种可以装入手机的质谱仪,搭配应运软件,只要把手机靠近要检测的水果,手机就会显示出读数。  除了辨识水果是不是过熟之外,这个装置还可以运用到别的方面,包括检测血糖或是侦测爆裂物等。但目前并不清楚这款质谱仪软件何时能够上市。  仪器信息网注:文中提到的近红外线质谱仪疑为近红外光谱仪。  相关新闻:国内首台基于手机的近红外光谱系统研制成功
  • 美国开发“平面阵列红外线光谱仪”
    研究发现,高精度声谱仪能够早期检测疾病、化学武器和环境污染物。  美国PAIR技术公司开发一种新型传感器“平面阵列红外线光谱仪”,它可以在较低浓度下在液体和气体中识别生物和化学因子,检测时间低于1秒。新的光谱谱仪没有移动部件,依靠焦平面阵列(FPA)探测器。  “这是现有的技术的一个良好的替代技术,”该技术的创始人之一大通布鲁斯博士说,“该仪器没有移动部件,轻巧耐用,体积小,便于携带,可以随身携带它到牙医办公室。“  目前的检测技术是基于傅立叶变换红外(FT - IR光谱)光谱法,需要数十分钟的化学分子指纹识别。一傅立叶变换红外光谱法(FTIR)是一种重要的分析测试手段。近年来,仪器联用等新技术的不断发展,使FTIR的应用范围日益广泛,成为鉴别未知污染物和环境监测的重要工具。
  • 日本开发出红外线夜视彩色成像新技术
    图上为使用新技术拍摄的红外线夜视图像,下为普通红外线成像图。 日本产业技术综合研究所提供。(来源:日本共同社)  据日本共同社报道,日本产业技术综合研究所的主任研究员永宗靖2月8日宣布,开发出了红外线夜视彩色成像的新技术。此前的红外线夜视技术以黑白和单色为主,新技术有望提高监视摄像头的性能。  红外线夜视通过被拍摄物体物体反射出的红外线显示图像,通常只能显示白色和绿色。  永宗等研究人员发现,除了被拍摄物体的距离和形状外,物体自身的颜色也会对反射的红外线强度产生影响。通过图像处理,研究人员成功捕捉了被拍摄物体的颜色差异,基本再现了原色。目前只能识别距离约30厘米的物体的颜色。  永宗说:“如果能够判定在黑暗中拍摄的作案者的衣服等颜色,就可以提高破案率。”
  • 便携红外线二氧化碳分析仪
    便携红外线二氧化碳分析仪简介 CEA-800型 促销价:5800元一:用途和使用范围 本仪器主要用于环保,卫生防疫系统监测公共场空气中的CO2浓度,也可用于环保,人防。快速准确地对宾馆,商场,医院,影剧院等公共场所中的CO2浓度进行测定. 本仪器为国内先进的交直流供电便携式红外线CO2分析器,直流用镍镉电池供电,机内设有充电线路。仪器光学部分结构先进,电路部分全部采用进口大规模集成电路。体积小,可靠性高,预热时间短,可使用户工作效率大大提高。 二:主要特点: (1) 线性化输出,数字显示直读浓度。 (2) 内置泵、主动式采样,连续测量。 (3) 交直流两用、操作简便。 (4) 符合国家 GB/T18204.24-2000标准 (5) 铝合金仪器箱,美观坚固。 (6) 内藏式过滤器并可在外部更换。 三:工作原理 本仪器是根据比尔定律和气体对红外线的选择性吸收原理设计而成。采用气体滤波相关(G,F,C)技术和红外探测器。 四:主要技术数据 1:测量范围:0-5000PPmCO2 2:重复性:≤1%F.S 3:预热时间:2分钟 4:响应时间:≤10秒 5:环境温度:0℃-35℃ 6:环境湿度:85%R.H 7:重 量:2 公斤 8:外形尺寸:85 ×165×210mm3 9::耗电:≤500mA 10:供电:220VAC+10%;9VDC+10% 五:联系方式: 江苏金坛市亿通电子有限公司 邮编:213200 地址:金坛市华城开发区华兴路180号 电话:0519-82616366 82616576 传真:0519-82613699 Http://www.eltong.com E-mail:crh3090@pub.cz.jsinfo.net
  • 额头、手腕、耳道...哪种测量更准确? 了解红外线体温计的“一二三”
    p style="text-indent: 2em "span style="text-indent: 2em "2月18日电 近期,由于新型冠状病毒肺炎肆虐,筛查体温已经成为各有关单位、学校、家庭等做好防控工作的必要手段。常规的水银体温计测量更加稳定,但由于检测时间过长(3~5min),必然是不能满足日常快速筛查的要求的。因此,在人流量较多场所采用非接触式的温度计,既安全,又方便快捷。/spanbr//pp style="text-indent: 2em "但是,由于很多使用者并没有正确掌握使用方法,导致筛查体温成为一种形式,没有真正发挥防控疫情的作用。今天,人民网邀请到首都医科大学附属北京天坛医院药学部和中国科学技术大学附属第一医院药学部的三位专家,带您更加深入的了解红外线体温计的各项特点。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/4062eb18-2bbe-4f6e-ad03-4bd6e2717fda.jpg" title="1.jpg" alt="1.jpg"//pp style="text-indent: 2em "strongspan style="text-indent: 2em "红外线体温计的工作原理是什么?/span/strong/pp style="text-indent: 2em "先介绍一个物理常识:自然界中的绝大多数物质(高于绝对零度-273.15℃),都在向外界不断的发出红外能量。通过对这种能量的测量就可以实现读取物质表面的温度。这就是红外线体温计的工作原理。/pp style="text-indent: 2em "目前的工业技术水平,早已能够实现高精度的测温。由于多数情况下,物质无法向外界辐射其全部的红外能量,因此仪器会根据物体的红外辐射率(95%)进行读数修正。同时,不同测量部位的红外体温计,还会根据部位的差异,进行相应的修正。让我们最终看到的度数,能够大致表现出我们人体的真正体温。/pp style="text-indent: 2em "当然,再精准的测量元件,也会受到多种因素的影响。比如外界温度、污染、尘土、烟雾、其他物体的红外辐射、测量距离等等。span style="color: rgb(192, 0, 0) "strong因此,红外体温计在测量时,会出现明显的数值波动。有时,会需要我们“一测再测”。/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/94f39a75-c688-4149-ab74-5166d69391bd.jpg" title="2.jpg" alt="2.jpg"//ppbr//pp style="text-indent: 2em "strong不同的测量位置有哪些区别?/strong/pp style="text-indent: 2em "红外线测温计如今使用的极为广泛,但是测量者使用时的测量位置却不尽相同,额头、脖颈、手腕,不同的位置的数值差异也很明显。那么到底应该测量什么位置,才更能满足检测需求的呢?/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/51f128da-4cee-46d5-bf5e-89b248bd2edc.jpg" title="3.jpg" alt="3.jpg"//pp style="text-indent: 2em "span style="text-indent: 2em "在医学上,评估人体是否发热,可以观察的是:腋下、口腔、肛门以及耳温。由于耳部深处更接近脑的内部,因此耳温对发热表现的更加敏感。肛门更贴近体内,因此升温的程度也更高一些。相对来说,腋下温度与体内温度相差的幅度会更大一点。由此,检测不同部位得出的发热温度是不一样的。/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/7b16474a-c792-48ed-b9e6-3eeaa8abdf34.jpg" title="4.jpg" alt="4.jpg"//ppbr//pp style="text-indent: 2em "span style="color: rgb(192, 0, 0) "strong在以上的常规检测部位中,除了耳温外,均不适宜用于大人群的防疫检测情况。/strong/span而耳温作为检测标准是由于近似认为它更接近动脉,且能够体现脑部温度,因此同样能够体现脑部温度的额温,就更具有判断发热的临床意义。/pp style="text-indent: 2em "span style="color: rgb(192, 0, 0) "strong相对来说,手腕由于处于人体的末端位置,对于人体真正温度的体现能力更差。/strong/span另外,额温枪在设计最初,会根据额头表面皮肤温度与人体体内温度差异进行校正,并不适宜用于手腕测温。span style="color: rgb(192, 0, 0) "strong因此更加推荐“额温枪”就应用于额头测温,而不是手腕。/strong/span/pp style="text-indent: 2em "顺便提一句:耳内腔道狭窄,耳温计在使用过程中难免出现接触现象,有交叉感染的风险。如果加用一次性耳套,则会增加测量成本。/pp style="text-indent: 2em "strong不同体温计有哪些测量要点?/strong/pp style="text-indent: 2em "红外额温计:测量体温时,将额温计对准额头正中心(眉心上方并保持垂直),测量部位无遮挡物(如毛发、帽子等)且保持干净,最好在测量前用干纸巾擦拭额头,去除汗渍等。测量距离一般为(1~3)cm或说明书要求的距离span style="color: rgb(192, 0, 0) "strong。测量时需1分钟内重复测量两次,两次测量数据之差在0.3℃以内,数据方可采信。/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/af7a70fe-ab25-435f-924b-a1623d77dc17.jpg" title="5.jpg" alt="5.jpg"//ppbr//pp style="text-indent: 2em "红外耳温计:测量体温时,请将耳温计探头插入耳道,测量前应检查耳道是否清洁,使用时须配备卫生耳套,使用后需用75%的酒精消毒,以防止多人使用交叉感染,strongspan style="color: rgb(192, 0, 0) "最好测双耳取其平均值。/span/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/323eaf04-22d6-4bb8-b656-5905670aaabf.jpg" title="6.jpg" alt="6.jpg"//ppbr//pp style="text-indent: 2em "strong此外,几个注意事项需要测量人员注意:/strong/pp style="text-indent: 2em "1、根据测量环境的不同,做好养护措施。尽量保持体温计处在16℃~35℃的工作环境下。测量前将体温计按说明书要求设置成“体温”模式。/pp style="text-indent: 2em "在冬季,环境温度可能达不到要求,建议可以采取保温措施,如备用红外额温计放保温箱交替使用或不测量时放入怀中等保温措施。/pp style="text-indent: 2em "2、红外耳温计不易受环境的影响,其测量精度较高,稳定性较好,可用于体温异常者的复测,但是不能测量有耳疾和正在接受治疗的耳朵。/pp style="text-indent: 2em "3、只能抓碰手柄部位,不要触碰探测头。/pp style="text-indent: 2em "4、定期使用医用体温计校正红外体温计,以保证数值准确性。/pp style="text-indent: 2em "(受访专家:首都医科大学附属北京天坛医院药学部刘腾;中国科学技术大学附属第一医院药学部殷桐、张圣雨) /pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal text-indent: 2em text-align: center "-------------------------------------------br style="margin: 0px padding: 0px "//pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal text-indent: 2em "strong style="margin: 0px padding: 0px "征稿活动:/strong“红外体温检测仪技术及相关应用”主题征稿活动进行中,一经入选,将在资讯栏目发布并支付一定稿酬,并择优邀请做线上专家报告span style="margin: 0px padding: 0px color: rgb(127, 127, 127) "(新冠病毒主题研讨会---红外体温检测仪检测技术与应用现状)/span。让我们共同努力,携手抗“疫”!span style="margin: 0px padding: 0px color: rgb(0, 176, 240) "(投稿或自荐邮箱:yanglz@instrument.com.cn)/span/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal text-indent: 2em "span style="margin: 0px padding: 0px color: rgb(0, 0, 0) "更多红外体温检测仪技术与应用相关资讯点击关注以下专题:/span/pp style="white-space: normal text-align: center "a href="https://www.instrument.com.cn/zt/hwcwy" target="_blank"img src="https://img1.17img.cn/17img/images/202002/uepic/bde094f1-56cd-4cf3-9247-45585be2bf41.jpg" title="1920_420_1(1).jpg" alt="1920_420_1(1).jpg" width="600" height="131" border="0" vspace="0" style="max-width: 100% max-height: 100% width: 600px height: 131px "//a/ppbr//p
  • 2005年香山科学会议探讨“太赫兹科学技术的新发展”
    太赫兹(Terahertz)波在电磁波谱中占有一个很特殊的位置,并具有一系列特殊性质和重要的学术应用价值。在2005年12月举行的以“太赫兹科学技术的新发展”为主题的第270次香山科学会议上,与会专家就发展我国太赫兹科学技术进行了交流和研讨。  “空白”渐成热点  太赫兹波是指频率在0.1~10THz(波长为3000~30微米)范围内的电磁波。它在长波段与毫米波、亚毫米波相重合,而在短波段与红外线相重合,在电磁波谱中占有一个很特殊的位置。太赫兹这一位置正好处于科学技术发展相对较好的微波毫米波与红外线光学之间,但由于太赫兹波源问题一直未能得到很好的解决,因此形成了一个在研究上相对落后的“空白”。太赫兹在长波方向主要依靠电子学技术,而在短波方向则主要依靠光子学技术,在电子学与光子学之间的这一“空白”蕴含着深刻的物理含义。  经过近十几年的研究,国际科技界认为,由于太赫兹的频率很高,所以其空间分辨率也很高 又由于脉冲很短(飞秒),具有了很高的时间分辨率,太赫兹成像技术及太赫兹波谱技术由此构成了太赫兹应用的两个主要关键技术。同时,太赫兹的能量很小,不会对物质产生破坏作用,所以与X射线相比更具优势。  国际上对太赫兹辐射已经达成了如下共识,即太赫兹是一种新的、有很多独特优点的辐射源 太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。  目前,包括长青藤大学在内的数十所美国大学都在从事太赫兹研究,美国国家基金会、国家航天局等都对太赫兹研究给予了大规模的投入 英国、德国、俄罗斯的多所大学也都设立了专门进行太赫兹研究的项目。在亚洲,韩国、新加坡等也都积极开展了这方面的研究工作。目前已经在全世界范围内形成了一个太赫兹技术的研究高潮。  诱人的机遇  会议执行主席、电子科技大学刘盛纲院士介绍说,太赫兹的独特性质使它具有非常重要的多方面应用。  在科学研究方面,太赫兹成像和太赫兹波谱学在物理学、化学、生物医学、天文学、材料学和环境科学方面有着极其重要的应用。太赫兹波除了可以成像外,还可作为一种特殊的探针用来对物质内部进行深入研究,利用太赫兹辐射还可以探测出高温、高密度等离子体中密度的分布空间。  太赫兹在生物医学应用上被一致看好,如皮肤癌的诊断和治疗、药物的分析和检测、大分子生物学研究的发展等。由于生物大分子的振动和转动频率均在太赫兹波段,因此太赫兹在粮食选种、优良菌种的选择等农业和食品加工行业有着良好的应用前景。  太赫兹辐射可以穿透烟雾这一特点,还可用于检测有毒、有害分子,在环境监测和保护方面有着重要的作用。利用太赫兹的穿透特性,美国已经开始用太赫兹技术检查邮件和识别毒品,并用于对航天飞机的无损探伤。  太赫兹在雷达和通信方面,特别是在太空通信方面的巨大优势是没有疑问的。太赫兹卫星太空成像和通信技术将成为一个重要的研究领域。而且太赫兹技术是新一代IT产业的基础。在日本,以太赫兹技术为基础的新一代IT产业已开始逐步形成。  突破关键技术“瓶颈”  刘盛纲说,在太赫兹技术及应用中,辐射源和检测技术是两个主要问题。大功率太赫兹辐射源研究是太赫兹技术发展的重要环节,在研究中既要重视半导体太赫兹源和基于光子学的太赫兹源,又要重视真空电子学在太赫兹领域可能有的重要贡献。太赫兹探测技术是研究的另外一个重要环节,既要重视发展温室的太赫兹检测技术,也要重视灵敏度高的、低温检测系统。此外,太赫兹功能部件如传输线等的研究也很重要。  与会专家建议,加强太赫兹在国防及国家安全方面的应用研究,如太赫兹穿透物质成像技术可用于太赫兹雷达、精确制导等 尽快建立实用的、可调谐的、高功率的太赫兹研究平台,这将有助于推动我国太赫兹技术的研究与应用。通过国家投入、鼓励企业参与、加强国内外交流等,力争用两个五年计划的时间,即到2015年,使我国在太赫兹源、太赫兹检测、成像及波谱技术等关键领域都有所突破,在理论和实验研究方面与国际同行站在同一个起跑线上,并取得一批拥有自主知识产权的实用技术和产品。
  • 国仪量子即将亮相北京波谱年会,共商顺磁共振波谱仪最新进展
    “2021年度北京波谱年会”将于2021年5月14日-16日在京召开。国仪量子将携电子顺磁共振波谱仪、量子钻石单自旋谱仪等产品设备及相关解决方案亮相本届年会,与此同时,国仪量子磁共振事业部总经理许克标博士将带来主题为《国仪量子顺磁共振波谱仪最新进展》的报告,干货满满,不容错过!为了进一步促进波谱学的健康发展,加强学术交流与合作,了解波谱新技术和交叉学科的最新进展,由北京理化分析测试技术学会波谱专业委员会主办,中国科学院大学协办的“2021年度北京波谱年会”将于2021年5月14日-16日在京召开。本次会议以“不断进步的磁共振波谱”为主题,在液体、固体、低场和成像核磁共振波谱、连续波和脉冲电子顺磁共振波谱以及国产化仪器研发等方面进行经验交流报告。会议交流形式包括大会报告、分会报告和墙报等,旨在提高波谱学开发和应用水平,推动波谱技术交流与推广。电子顺磁共振(EPR)波谱技术是现代高新技术材料的性能测试手段之一,是一项检测具有未成对电子样品的波谱方法。即使是正在进行的化学和物理反应,电子顺磁共振也能获得有意义的物质结构信息和动态信息。目前电子顺磁共振已在物理学、化学、生物学、生物化学、医学、环境科学、地质探矿等许多领域得到广泛应用。光探测磁共振技术(ODMR)以 NV 色心自旋磁共振为原理,通过控制光、电、磁等基本物理量, 实现对钻石中氮—空位(NV 色心)发光缺陷的自旋进行量子操控与读出,与传统顺磁共振、核磁共振相比,具有初态是 量子纯态、自旋量子相干时间长、量子操控能力强大、量子塌缩测量实验结果直观等独特优势。报告精彩看点报告主题:国仪量子顺磁共振波谱仪最新进展报告时间:2021年5月16日 11:35-11:45报告地点:北京世纪金源香山商旅酒店金都厅讲师简介:许克标中国科学技术大学博士国仪量子磁共振事业部总经理内容概要:电子顺磁共振波谱技术是一种研究含有未成对电子物质的结构、动力学以及空间分布的谱学方法,能够提供原位和无损的电子自旋、轨道和原子核等微观尺度的信息。本报告以顺磁共振的仪器开发和应用为主线,介绍国仪量子(合肥)技术有限公司的顺磁共振波谱仪和基于金刚石NV色心的单自旋磁共振谱仪的最新进展。电子顺磁共振波谱仪电子顺磁共振(Electron Paramagnetic Resonance, EPR) 波谱技术是一种研究含有未成对电子物质的组成、结构以及动力学等信息的谱学方法,能够提供原位和无损的电子自旋、轨道和原子核等微观尺度的信息。X波段脉冲式电子顺磁共振波谱仪EPR100当含有未成对电子的物质置于静磁场中时,如果对样品施加一定频率的电磁波信号,会观测到物质对电磁波能量的发射或者吸收。X波段连续波电子顺磁共振波谱仪EPR200-Plus通过对电磁波信号的变化规律进行分析,可以简析出电子以及其周围环境的特性,从而可以进行物质结构的分析以及其他应用。含有未成对电子的物质分布广泛,如孤立单原子、导体、磁性分子、过渡金属离子、稀土离子、离子团簇、掺杂材料、缺陷材料、生物自由基、金属蛋白等;许多物质本身不含有未成对电子,在受到光激发后会产生未成对电子。因此电子顺磁共振技术广泛应用于物理、化学、生物、材料、工业等领域。 台式电子顺磁共振波谱仪EPR200M量子钻石单自旋谱仪量子钻石单自旋谱仪是一台以NV 色心自旋磁共振为原理的量子实验平台。该谱仪通过控制光、电、磁等基本物理量,实现对钻石中氮—空位(NV 色心)发光缺陷的自旋进行量子操控与读出,与传统顺磁共振、核磁共振相比,具有初态是 量子纯态、自旋量子相干时间长、量子操控能力强大、量子塌缩测量实验结果直观等独特优势。 量子钻石单自旋谱仪量子钻石单自旋谱仪具有超高灵敏度与纳米级超高分辨率,可以完成单分子、单细胞的微观磁共振谱学和成像,同时可以运行在室温大气条件下,对于生物样品有良好的兼容性。该谱仪具备高保真度量子自旋态调控技术,通过自主研发的50 ps 时间精度脉冲发生器以及宽带高功率微波调制器件,能够实现对自旋低噪声、高效、快速的量子相干操控。与谱仪配套的高智能化控制与信号采集软件,能够实现自动光路调节、自动磁场调节以及长时间的无人值守自动测样实验,是科研实验的最好搭档。
  • 北京北分麦哈克展出QGS-08C Ex红外线气体分析器——CIOAE 2011视频报道系列
    仪器信息网讯 2011年11月9日至10日,“第四届中国在线分析仪器应用及发展国际论坛暨展览会(CIOAE 2011)”在北京国际会议中心成功召开。在本届论坛的报道中,仪器信息网特别开设了视频报道形式,让广大网友跟随我们的镜头,近距离地了解本次论坛上各大仪器厂商展出的在线分析仪器新产品与新技术。以下是北京北分麦哈克分析仪器有限公司的产品专员刘维康先生介绍公司QGS-08C Ex红外线气体分析器等仪器的视频。  刘维康先生为大家介绍了北京北分麦哈克分析仪器有限公司的四种主要产品。QGS-08C Ex隔爆型红外线气体分析仪属于不分光式红外线气体分析器,用于连续分析CO、CO2、SO2、CH4、NH3等一种气体在多种气体混合物中的含量,其中CO2监测气体分析仪的最小量程为0-20ppm。另外QRD-1102C热导式氢分析器采用全数字化处理技术,用于在线连续分析混合物气体中H2的含量,广泛用于化肥厂合成氨流程中氢含量的分析等。此外,刘维康先生还给大家介绍了QZS-5101C热磁式氧分析器及在线分析系统装置等仪器。  北京北分麦哈克分析仪器有限公司  北京北分麦哈克分析仪器有限公司是北京北分瑞利分析仪器(集团)有限责任公司(前身北京分析仪器厂)与德国CATIC开发公司、德国SICK公司共同建立的中外合资高新技术企业。成立于1993年,主要从事开发、生产、销售用于过程在线、污染源分析的全系列产品——红外气体分析仪器系列、氢气体分析仪器系列、氧分析仪器系列及分析仪器系统集成,产品广泛应用于化工、化肥、水泥、石油、冶金、电力、环保等各领域。  公司始终专注于在线分析仪器领域,现有员工100余人,其中工程技术占40%以上。公司连续数年被北京市评为北京市高新技术公司,拥有自主知识产权20项,其中发明专利3项,实用新型13项,软件著作权4项,同时拥有一批高素质的在线分析仪器研发和生产团队。公司在在线分析行业率先取得了ISO- 9000、ISO-14000、GB/T-28001质量、环境、职业健康安全管理体系认证资格。
  • 英国科学家发现控制太赫兹波新方法
    英国研究人员2006年112日宣布发现了一种控制太赫兹波的新方法,可大大提高利用太赫兹波探测物质内部结构的能力,在疾病诊断、药物分析、材料探伤和爆炸物检测等诸多方面有很大应用潜力。  太赫兹波是指频率在0.1至10太赫兹(波长为3000至30微米)范围内的电磁波,在电磁波谱上位于微波和红外线之间。这一波段的电磁辐射具有很强的透视能力,可以作为一种特殊的“探针”用来对物质内部进行深入研究。  由于此前人们没有掌握使太赫兹波很好聚焦的技术,太赫兹波的应用受到很大限制。利用传统的透镜和反射镜,仅能使太赫兹波聚焦到波束直径不足1毫米的程度,导致分辨率不足。这样的波束远远不能用于研究生物细胞等微小物体,就像最小刻度为1毫米的尺子,不能用来测量长度仅几微米的东西。  英国巴斯大学2日发表的新闻公报说,该校研究人员发现,普通金属线不能很好地引导太赫兹波进行聚焦,但如果在普通金属线的表面切开一些小槽,其聚焦能力就会大大增强。将这样的金属线制作成逐渐变细的形状,使其一端成为一个非常微小的点,金属线就能引导太赫兹波聚焦到这个点上,形成直径只有几微米的波束。  理论上,由于频率与生物大分子的振动频率吻合,太赫兹波在生物医学方面有特殊优势,可用于详细探测机体组织结构,方便研究伤口愈合、肿瘤生长等情况。它还能用来探测大气层、研究分子运动、探测毒品与爆炸物和对材料进行无损探伤等。  要实现这些功能,必须研制出性能良好的波源,提供稳定、分辨率高的太赫兹波波束。新成果使得科学家离实现这一目标又近了一步。
  • 英研究人员发现一种控制太赫兹波的新方法
    2006年11月,英国研究人员近日宣布发现了一种控制太赫兹波的新方法,可大大提高利用太赫兹波探测物质内部结构的能力,在疾病诊断、药物分析、材料探伤和爆炸物检测等诸多方面有很大应用潜力。  太赫兹波是指频率在0.1至10太赫兹(波长为3000至30微米)范围内的电磁波,在电磁波谱上位于微波和红外线之间。这一波段的电磁辐射具有很强的透视能力,可以作为一种特殊的“探针”用来对物质内部进行深入研究。  由于此前人们没有掌握使太赫兹波很好聚焦的技术,太赫兹波的应用受到很大限制。利用传统的透镜和反射镜,仅能使太赫兹波聚焦到波束直径不足1毫米的程度,导致分辨率不足。这样的波束远远不能用于研究生物细胞等微小物体,就像最小刻度为1毫米的尺子,不能用来测量长度仅几微米的东西。  英国巴斯大学2日发表的新闻公报说,该校研究人员发现,普通金属线不能很好地引导太赫兹波进行聚焦,但如果在普通金属线的表面切开一些小槽,其聚焦能力就会大大增强。将这样的金属线制作成逐渐变细的形状,使其一端成为一个非常微小的点,金属线就能引导太赫兹波聚焦到这个点上,形成直径只有几微米的波束。  理论上,由于频率与生物大分子的振动频率吻合,太赫兹波在生物医学方面有特殊优势,可用于详细探测机体组织结构,方便研究伤口愈合、肿瘤生长等情况。它还能用来探测大气层、研究分子运动、探测毒品与爆炸物和对材料进行无损探伤等。  要实现这些功能,必须研制出性能良好的波源,提供稳定、分辨率高的太赫兹波波束。新成果使得科学家离实现这一目标又近了一步。
  • 一种分子装置可将红外线变成可见光
    一个国际研究团队开发出一种检测红外光的新方法,通过将红外光的频率变为可见光的频率,可将常见的高灵敏度可见光探测器的“视野”扩展到远红外线。这一突破性研究发表在最近的《科学》杂志上。  人类眼睛可看到400—750太赫兹之间的频率,这些频率定义了可见光谱。手机摄像头中的光传感器可检测低至300太赫兹的频率,而通过光纤连接互联网的检测器可检测到大约200太赫兹的频率。  在较低频率下,光传输的能量不足以触发人类眼睛和许多其他传感器中的光感受器,而100太赫兹以下的频率(中红外和远红外光谱)有着丰富的可用信息。例如,表面温度为20℃的物体会发出高达10太赫兹的红外光,这可以通过热成像“看到”。此外,化学和生物物质在中红外区域具有不同的吸收带,这意味着可通过红外光谱远程无损地识别它们。  但变频并不是一件容易的事。由于能量守恒定律,光的频率无法通过反射或透射等方法轻易改变。  在新研究中,来自瑞士洛桑联邦理工学院(EPFL)、中国武汉理工大学、西班牙瓦伦西亚理工大学和荷兰原子和分子物理学研究所的科学家们通过使用介质(微小振动分子)向红外光添加能量来解决这个问题。红外光被引导到分子,在那里被转换成振动能量。同时,更高频率的激光束撞击相同的分子以提供额外的能量,并将振动转化为可见光。为了促进转换过程,分子夹在金属纳米结构之间,通过将红外光和激光能量集中在分子上,充当光学天线。  领导这项研究的EPFL基础科学学院克里斯多夫加兰德教授说:“新设备具有许多吸引人的功能。首先,转换过程是连贯的,这意味着原始红外光中存在的所有信息都忠实地映射到新产生的可见光上。它允许使用标准探测器(如手机摄像头中的探测器)进行高分辨率红外光谱分析。其次,每个设备的长度和宽度约为几微米,这意味着它可以合并到大型像素阵列中。最后,该方法具有高度通用性,只需选择具有不同振动模式的分子,即可适应不同的频率。”
  • 川投信产:免费提供8000支红外线测温仪元器件
    p style="text-indent: 2em "日前,川投信产旗下宏科电子接到了某电子研究所打来的紧急求助电话,需要提供一批电容器,主要用于抗疫一线重要保障物资生产。经过为期5天的紧张生产,第一批8000多只元器件已经打包完成,免费投入抗疫一线。br//pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 253px " src="https://img1.17img.cn/17img/images/202002/uepic/17874daa-4bac-406a-a00a-1709c6f09254.jpg" title="1.jpg" alt="1.jpg" width="450" height="253" border="0" vspace="0"//pp style="text-align: left text-indent: 2em "川投信产宏科电子工人正在加班加点生产元器件。/pp  据了解,此次宏科电子交付的元器件是为应对此次新冠肺炎新研发出来的红外线测温仪的核心元件,该红外线测温仪主要用于医院、地铁站、机场等人群密集的地方。有了这个元器件,测温仪就能实时抓取检测范围内的高温人群,并形成数据记录下来。/pp  “这个产品本身具有体积小、容量大、可靠性高的特点,按我们正常的生产程序,大概需要一个多月。”成都宏科电子科技有限公司总经理张明介绍,“我们采用公司已有的,为宇航配套的高端电容器半成品进行加工,在川投集团、川投信产的领导下,我们组成党员先锋队,三班倒,最后用了五天时间生产出了满足用户需求的产品。”/pp  第一批8000多只货品已经完成生产,张明说,“后续还将提供多批次不同品种的价值几十万元的产品,我们是免费送给客户,最快时间用在防疫一线。”/pp  在产品生产现场,可以看到坚守岗位的员工手臂上都戴有一条写着“党员先锋队字样”的袖章。据了解,该企业148个党员主动报名,赶制这份货品。公司工程技术员徐琴就是其中一位,她说,“这个时候共产党员就要冲上去,尽管我们生产的只是一颗小小的电容器,但是我们想用我们的实际行动来告诉武汉人民,武汉加油,我们在一起!”/ppbr//p
  • 阿泰可发布阿泰可红外线整车试验舱UC230新品
    阿泰可UC230红外线整车试验舱本红外线整车试验舱用于电机功率≤150kW电动车的性能试验,提供温度-20℃~+60℃的环境模拟条件,满足下述试验标准的相关要求。 UC230红外线整车试验舱主要技术指标1. 温度控制范围:-20℃~+60℃, 2. 湿度范围:相对湿度: 30~95% ,低温试验时舱内无凝露现象其中无光照时,湿度范围为30~95%;有光照时,湿度范围为30~80%3. 条件控制:l 降温时间:25℃→-20℃≤85min(空载)60℃→25℃≤40min(空载)l 升温时间:- 20℃→25℃≤50min(空载)25℃→60℃≤50min(空载)l 温度波动度:≤±0.5℃(空载),l 温度均匀性:≤±1.5℃(空载),温度偏差≤±2.0℃(带负载,车前迎风口,车顶、左、右) 4. 光照系统:l 红外光辐射灯,工作环境温度-20℃~60℃最大1200±25 W/m2,均匀度±10%;调节范围: 30%~100%。(无光照时时,湿度控制30%~95%;有光照湿度控制30%-80%);l 使用两端接线式中波红外模拟灯,使用寿命≥5000h,且在此期间其辐射强度不发生变化;l 日照强度可通过对车辆表面的温度控制自动和手动调节;l 投射区域(长×宽)5000mm×2500mm;垂直移动距离:辐射灯下表面距离仓底最小2200mm,最大3000mm。 创新点:4.光照系统:?红外光辐射灯,工作环境温度-20℃~60℃最大1200± 25 W/m2,均匀度± 10%;调节范围: 30%~100%。(无光照时时,湿度控制30%~95%;有光照湿度控制30%-80%);?使用两端接线式中波红外模拟灯,使用寿命≥ 5000h,且在此期间其辐射强度不发生变化;?日照强度可通过对车辆表面的温度控制自动和手动调节;?投射区域(长× 宽)5000mm× 2500mm;垂直移动距离:辐射灯下表面距离仓底最小2200mm,最大3000mm。
  • 英国尝试用太赫兹射线“剿灭”癌症
    2006年11月,英国物理学家如今正在研制一种杀伤力最强的太赫兹射线,并尝试用它破坏生长在培养器中的皮肤癌细胞。利物浦大学的这一试验将帮助科学家进一步了解太赫兹技术在治疗人类疾病上的运用。据英国广播公司报道,这是科学家首次进行利用太赫兹技术杀伤癌细胞的试验,这一技术还将运用于遗传物质的识别。  太赫兹波是指频率在0.1至10太赫兹(波长为3000至30微米)范围内的电磁波,在电磁波谱上位于微波和红外线之间。这一波段的电磁辐射具有很强的透视能力,可以作为一种特殊的“探针”用来对物质内部进行深入研究。  太赫兹射线不仅可以检测出脱氧核糖核酸(DNA)物质的转变,而且能够帮助医生根据个体患者的遗传信息实施相应的药物治疗。此外,由于太赫兹波具备穿透衣服、纸张、木头、墙体、塑胶和陶瓷等物体的能力,因而还被运用于探测隐秘武器、识别爆炸物和毒品。太赫兹波还能“感受”到分子的振动和旋转,因而可以用来对物质的内部进行深入研究。利物浦大学的研究人员如今正在开发这一“杀伤力”最为强大的技术,使其广泛运用于各个领域。  研究人员指出,细胞死亡的形式分成两大类:一是凋亡——细胞招致损伤而导致胀大和破裂 二是细胞的计划性死亡——细胞的自然老化。前者是在液体环境下迅速变化完成的,而后者则不是。这两种形式的不同之处在于细胞保持水分程度的差异。  利用太赫兹射线治疗皮肤癌正是建立在这样的理论基础之上——癌细胞与其他组织水分中的细胞差别甚微,通常癌细胞相对来说更大、更活跃。因而,含水量较多的癌细胞才能被组织水分中大量吸收的太赫兹射线杀死。  研究人员认为,现在迫切需要的就是从第四代光源中制造高能量太赫兹射线。太赫兹成像和太赫兹光谱能够破译出在低能量太赫兹射线下所得到的肿瘤影像的结构和成分 能量高的太赫兹射线有利于近场成像。而高清晰度的太赫兹成像和太赫兹光谱对识别癌细胞非常重要。  据介绍,基底细胞癌(BCC)是最常见的皮肤恶性肿瘤。这种皮肤癌细胞会对皮肤、组织甚至骨头造成损害,并且能导致死亡。40%的患者会转化为多发性病变。脸和脖子是最为常见的局部病变部位,常常需要实施大规模的整形外科手术。英国每年有3万多起BCC案例,65岁以上的人中有1/5的人可能罹患该病。  参与此项研究的利物浦大学物理学教授Peter Weightman说:“第四代光源的产生与直线加速器原型密不可分。而破坏组织培养器中癌细胞的太赫兹射线的部分能量来源就是加速器周围高速运转的电子。”“培养器是用来繁殖皮肤癌细胞的,而太赫兹射线是用来轰击这些癌细胞的。当太赫兹射线照射到培养器的时候,射线波被浸泡癌细胞的液体吸收,吸收放射性物质后的液体进入到癌细胞内部,从而将癌细胞彻底杀灭。”他补充道。  据悉,开发太赫兹射线项目是由英国西北地区发展署资助的,该项目的开发将用到由达斯伯里实验室开发的第四代光源的原型。
  • 高端近红外线水分检测仪 深芬仪器研制成功
    高端近红外线水分检测仪深芬仪器研制成功,CSY-JH近红外水分检测仪是深圳市芬析仪器制造有限公司研制的高端近红外水分检测仪,采用非接触式红外慢反射方式对样品水份进行测定,CSY-JH近红外水分检测仪采用无损检测,不破坏样品理化指标3-5S内对样品进行快速检测水分含量。CSY-JH近红外水分检测仪可广泛应用于一切需要快速测定水分的行业,如医药、粮食、饲料、种子、菜籽、脱水蔬菜、烟草、化工、茶叶、食品、肉类以及纺织,农林、造纸、橡胶、塑胶、纺织等行业中的实验室与生产过程中对水分测定的要求;同时满足固体、颗粒、粉末、胶状体及液体含水率的测定。近红外水分检测仪仪器优点:1、采用非接触式红外慢反射方式对样品水份无损检测。2、测量速度快速3-5S内对样品进行快速检测水分含量。3、自定义多种测量模式,可以预设1-10不同测量模式4、具有温度自动补偿基本不受外界温度变化的影响长期稳定性好5、测量精度精确,近红外水分检测仪采用光栅式红外技术,其稳定性比六光束、八光速大大提高,满足生产工艺要求。近红外水分检测仪技术参数:测量范围:0.01-100%测量精度:0.01%测量时间:3-5S探头:光栅式红外技术
  • 国网靖州县供电公司红外线测温“把脉”电网安全
    “主变温度正常,未出现发热现象。”8月21日,在35千伏新厂变电站,国网靖州县供电公司员工对该站主变进行红外测温,这是该公司“把脉”电网安全,全力应对高温“烤”验的一个缩影。  随着“秋老虎”的来临,辖区内温度持续走高,为及时掌握变电设备在高温、高负荷情况下的健康状况,连日来,该公司结合线路设备运行具体情况,加大变电设备巡查力度,及时组织人员对变电设备进行“把脉”,全面开展红外测温工作,保障高温期间安全稳定供电。  为保证红外测温的准确性,该公司结合往年“迎战”经验,组织员工对辖区内变电站开展红外线测温工作,认真记录测温数据,分析诊断设备健康状况,细致梳理“过载、发热”设备,针对发现的发热点和异常发热现象“对症下药”,做到早发现、早处理,将隐患消除在萌芽状态。  目前,该公司已组织完成测温53次,消除安全隐患5处。下一步,还将持续开展变电设备巡视测温工作,严格落实迎峰度夏值班制度,做好应急抢修准备工作,提升优质服务水平,确保变电设备安全稳定运行,护航电网、保证居民用电安全。
  • 在校大学生发明“红外线”能见度探测仪
    越来越多的雾霾天,真让南京的天空越来越暗,城市视野也越来越模糊。  雾霾对出行及公众的身体健康都是极大的损害,雾霾来临时,我们如何监测?雾霾来临前,能不能提前预警?  南京信息工程大学大气物理学院的本科生王成芳近期研发出了雾霾天气的智能探测仪,它不仅能准确&ldquo 读&rdquo 出雾霾天南京人的&ldquo 视力&rdquo 情况,而且还能够分辨出一场雾霾天来临时,能见度的极速下降,究竟有多少是雾粒子在起作用,有多少是霾粒子在起作用。这为大范围实时监测雾霾天气提供了可行性。  雾霾监测预报有难度  在气象预报领域,雾霾提前预报一直是个难点,气象专家介绍说,雾霾在气象学上区别很大,虽然它们都会造成低能见度的状态,但是实际上除了湿度条件以外,雾霾的构成是非常复杂的,比如,由于气溶胶污染物浓度较高会造成霾,而它的成分是非常复杂的,在我们头顶的天空中,气溶胶的主要化学成分包括有机物、硫酸盐、硝酸盐、铵盐、黑炭、重金属,还有一些其他元素。同时,数值预报需要考虑的条件和因素也很多,包括能见度等的监测、预报难度比较大。  南京信息工程大学的专家告诉记者,其实能见度监测仪的研究也是近些年才开始应用的,以前在中国雾霾的能见度监测,其实靠的都不是仪器,靠的都是气象预报员的双眼和经验,他们一般来说都把气象台远处的一些标志性的建筑或山体作为标的物,靠雾霾天气中能看到远处的什么景象来大致&ldquo 估摸&rdquo 出能见度的情况,因此还是存在一些人工误差的,而且也没有办法大范围、全覆盖地探测一个区域的能见度。  两只红外眼睛测出能见度  经过几年的研制,王成芳自主研发能见度探测仪成功。记者看到,能见度探仪器有一只相对而视的&ldquo 眼睛&rdquo ,王成芳告诉记者,这两只眼睛都安装有&ldquo 红外线&rdquo 装置,它们共同捕捉两个红外线&ldquo 眼睛&rdquo 之间的团空气,然后利用红外装置&ldquo 透视&rdquo 其中的污染物粒子的粒径大小,成分,而对于空气中的污染物粒子的消光系数进行精确测量,从而能够精确推算出我们肉眼能够看到的精确的能见度。  王成芳说,这个能见度探测仪的一个好处是,不仅能够取代人眼直接探测灰暗的天空究竟能看多远,更重要的是,它能够分清南京模模糊糊的天空究竟是由什么样的颗粒物在起决定性作用。  记者了解到,目前研发出来的能见度实时监控装备,在终端可以实时显示能见度信息与能见度-时间曲线,这将为气象专家提供清晰具体的预报信息。
  • FLIR公司推出应用于自动化/过程控制的红外热像仪
    红外热像仪广泛应用于全球各行业的工艺过程连续监控。红外热像仪还能够轻松地收集到有关产品质量及/或生产效率的信息,而利用热电偶或可见光摄像机等传统工具则难以或无法获得这些信息。  若希望获得红外图像而不要求精确测温,那么FLIR A65/A35系列便是最佳选择。FLIR A65/A35系列红外热像仪的特征和功能使其理所当然地成为采用PC软件解决问题的用户的首选。  FLIR A65/A35系列热像仪:紧凑、功能全、实惠  A65/A35系列的所有型号都非常紧凑。可以很容易地集成在机器视觉环境中。  两种型号  FLIR A65可生成像素为640 x 512的清晰红外图像。若不需要这样高的图像质量,用户可以选购FLIR A35,该型号生成的红外图像为320 x 256像素。  FLIR A35能显示–40°C ~ +550°C的温度。 使用FLIR A65/A35系列,从热成像图上可清晰看到低至50mK的温差。由于FLIR A65/A35系列由以太网供电,故通讯和电力供应共用一条电缆。  连接接口  FLIR A65/A35系列符合GigE Vision™ 标准。GigE Vision是一个新的摄像机接口标准,采用了千兆位以太网通信协议。同时也支持GenIcam™ 。GenICam旨在为各种摄像机提供通用编程接口。无论采用的是哪种接口技术(GigE Vision、Camera Link、1394 DCAM等)或功能,应用编程接口(API)始终相同。  可将一台红外热像仪配置为主设备,将其它红外热像仪配置为从设备,进而应用到需要多台红外热像仪来侦测目标的领域或者应用到立体影像领域。  随附软件  FLIR A65/A35系列热像仪能与FLIR Tools软件完美地结合在一起。可观察和分析红外图像,具有各种功能,如可绘制时间-温度曲线等。用户若需要更多功能,并且还希望能够记录图像,可选购FLIR Tools+。  关于热成像  热成像技术是指使用由专用传感器组成的红外热像仪,这些传感器能够感测物体所发出的热能。热能或红外能量是一种人类肉眼所不能看到的光线,其波长很长,肉眼无法看到。它是我们视为热量的电磁波谱的一部分。红外线使我们能够看到肉眼所不能观察到的内容。红外热像仪能够生成肉眼不可见的红外或“热”辐射图像。基于物体间的温差,热成像技术便能够生成清晰的图像。它是预防性维护、建筑物检验、研发和自动化领域中极为有用的工具。其可以在完全无光、夜晚最暗的环境中、烟雾环境中以及遥远的地方进行检测。它还适用于安防监控、海事、汽车、消防及其它许多应用领域。  关于FLIR  FLIR Systems有限公司是红外热像仪设计制造的世界领先企业,其红外热像仪广泛应用于各个领域。公司拥有50多年的行业经验,生产了数千台红外热像仪,目前广泛应用于预防性维护、建筑物检验、研发、安防监控、海事、汽车、消防及其它夜视领域。FLIR Systems有限公司目前拥有8家制造生产厂,分别位于美国(波特兰、波士顿、圣巴巴拉和波兹曼)、瑞典斯德哥尔摩、爱沙尼亚塔尼以及法国巴黎近郊。其在澳大利亚、比利时、巴西、中国、迪拜、法国、德国、香港、印度、意大利、日本、韩国、荷兰、俄罗斯、西班牙、英国和美国均设有子公司。公司拥有4,000多名专业红外专家,通过提供当地销售和支持服务的国际经销网服务于全球市场。  如需了解更多有关本产品、FLIR Systems有限公司以及红外热像仪应用的信息,请联系:  FLIR中国公司总部:  前视红外热像系统贸易(上海)有限公司  全国咨询热线:400-683-1958  邮箱:info@flir.cn
  • 科学家成功成功研制太赫兹摄像机
    2009年7月,据俄罗斯《纽带》网报道,一个国际性研究小组日前成功研制出了一种可用于生产“透视”摄像机的新技术。这项技术的基础是一种纳米级的电子管,借助它,摄像机将能够在一、二十米外看到隐藏在衣服下的武器、装饰品和其他物品。这种“透视”摄像机被称为太赫兹摄像机,其神奇的透视效果是通过接收物体辐射出的频率在0.1至10太赫兹范围内的电磁波而获得的。所谓太赫兹波是指频率在 0.1至10太赫兹范围内的电磁波,在电磁波谱上位于微波和红外线之间。  这种频率的电磁波具有较强的穿透能力,可以非常容易地穿过纸张、塑料、棉布和各种 衣物。所有人和物体都会放射出自然的低水平的电磁辐射,但它们发出的波的信号是不同的。借助物质的这一特性,通过特殊的接收设备便能够绘制出物体的形状。  与 X射线、毫米波、红外光等类似,太赫兹波也可以成像,但它具有穿透力强、清晰度高、辐射量小的特点。太赫兹波的另一大专长就是辨别物体的化学性质,它甚至 能分辨出被检查物是爆炸物还是药品。除在反恐方面的应用之外,太赫兹波在物理学、医学成像、通讯等方面都具有重大的应用前景。  科学家们指出,通过获取太赫兹电磁波来成像的设备不但可用来诊断疾病,还可用于制作监测武器和各种违禁品的安检设备。  虽然研究人员早在上世纪90年代便认识到太赫兹波的存在,并认为可借助纳米级的电子管接收到它们。但这一想法直到不久前才真正地成为现实。在科学家们的不懈努力下,一种基于纳米电子管的透视摄像机终于问世。  至于制作投射摄像机的成本,科学家们指出,在实现大规模生产的情况下,这种太赫兹成像设备的价格将不会很高,而且,其还能够在常温下工作。
  • 2006年太赫兹科学国际研讨会在深举行
    国际前沿学科太赫兹技术未来有何重要发展?太赫兹技术能为深圳的自主创新提供何种机遇?2006年9月23日,来自美国、英国、德国、俄罗斯以及我国的多位知名物理科学家,齐聚深圳大学研讨太赫兹技术未来的科学研究方向,以及在经济社会发展中的应用前景。市委常委、常务副市长刘应力出席了会议开幕仪式。  会议开幕式上,刘应力用流利的英文欢迎参会的各国科学家们,介绍了深圳26年来经济社会的快速发展历程,并用详细的数据说明了深圳高新技术产业、物流产业、金融产业等支柱产业的发展过程。  刘应力说,深圳是座非常年轻的城市,年轻意味着希望和未来。近年来,深圳的高新技术发展很快,不少本土企业已经在国际上享有很高的声誉。未来深圳的高新技术产业亟须得到提升,城市产业机构优化和升级,需要更多的基础性研究支撑。长期以来,深圳与中国科学院等国内知名的研究机构建立了紧密联系,并正在合作进行很多项目,清华大学、北京大学等一流院校也在深圳设立了研究生院。  刘应力表示,深圳市委市政府将为科学技术的研究和发展,尽可能地创造良好的环境。太赫兹是一项非常重要而有待开发的交叉前沿科学技术,很多发达国家都将太赫兹技术研究列入科技战略研究重点,太赫兹很可能成为未来高新技术发展的焦点。深圳热情欢迎与会的知名物理学家们,希望科学家们在深圳能够多走走、多看看,通过切身体会更全面、直观地了解深圳的企业和社会。同时,期待双方能在未来寻找到更多的合作机会,为全人类的科学技术发展做出贡献。  美国能源部核聚变项目研究负责人、物理科学家乔治博士代表与会嘉宾发言。他说,年轻的深圳充满了朝气,深圳人民通过勤劳和快节奏的工作和生活方式,正在描绘着深圳未来美好的发展前景和梦想。深圳市政府在经济社会快速发展的过程中,能够多方面听取专家和学者意见,这种做法令人钦佩。在这次短暂的相聚中,我们将根据所有的专业知识,对深圳未来的发展机遇、发展前景提供力所能及的帮助,为深圳这座城市未来的美好梦想做出贡献。  此次深圳太赫兹科学与技术发展国际研讨会,由中国科学院院士工作局和深圳市政府共同举办,深圳大学和深圳中国科学院院士工作基地承办。  什么是太赫兹?  太赫兹、红外线、毫米波是电磁波谱的一部分,太赫兹是指频率在0.1-10THz范围内的电磁波。它在长波段与毫米波重合,而在短波段与红外线重合。国际上对太赫兹的研究仅仅只有20多年的历史,人们对该波段电磁辐射性质的了解非常有限,以至于该波段被称为电磁波谱中的太赫兹空隙。科学家们普遍认为,太赫兹是一种新的、有很多独特优点的辐射源。虽然目前利用太赫兹开发的产品非常有限,但可以预计的是太赫兹将对航空、航天、天文、核聚变等多个领域带来革命性变化。  深圳大学于2005年10月成立了“深圳大学太赫兹技术研究中心”。
  • 一起了解红外线二氧化碳分析仪的优势和应用
    二氧化碳被称为温室气体,同时也是碳参与物质循环的主要形式。植物光合作用、生物呼吸作用都有CO₂ 的参与,人类活动也会频繁地接触到二氧化碳。总之,二氧化碳在各行各业都有广泛的应用。另外,它作为大气的重要组成部分之一,在环境质量监测方面,CO₂ 浓度也是十分重要的检测指标。二氧化碳浓度分析要用到气体分析仪,我公司生产的THA100S二氧化碳气体分析仪属于NDIR(不分光)红外线气体分析仪,可用于连续分析混合气体中某种或某几种待测气体组份的浓度。下面来看一下二氧化碳分析仪的技术优势:l MEMS红外光源是电调制的脉冲光源,具有较高的调制频率,满足热释电检测器的特性要求。l 双通道检测器设计,有效提高了仪器稳定性。l 高精度恒温控制,降低了环境温度对仪器测量的影响。l 大气压力补偿,降低了环境大气压力变化对仪器测量的影响。l 隔离的电流环输出和开关量输出,降低外界各种干扰对仪器测量的影响。比较典型的一些工程应用领域:l 化肥化工等工业流程气体分析 l 水泥和冶金行业气体分析l 烟气成分分析(如CEMS)l 科学实验室气体分析l 空分系统过程分析
  • 美机构称研制出可在20米外探测爆炸物的设备
    美国纽约州伦斯勒理工学院11日发布新闻公报称,该机构研究人员日前在美国国防部大力资助下研制出一种太赫兹遥感设备,可在20米外探测目标物体是否装有爆炸物。  公报说,这一设备借助激光诱导荧光生成可以与太赫兹波相互作用的等离子体,后者可在20米外获得目标物体的太赫兹波“指纹”(波谱)。由于每种物质都有独特的太赫兹“指纹”,将目标物质的“指纹”与探测器中事先已存储的大量太赫兹波谱对比,可以判定目标物体性质及其内部情况。  太赫兹波是指频率在0.1太赫兹至10太赫兹(波长为3000微米至30微米)范围内的电磁波,在电磁波谱上位于微波和红外线之间。这一波段的电磁辐射具有很强的穿透能力,可以作为一种特殊的“探针”用来对物质内部进行深入研究。  研究人员研制的新设备可以“看透”衣服和包装物,迅速确定除金属和液体外的几乎所有其他物质的太赫兹“指纹”,而且与X射线检测设备不同,它基本不威胁人体健康。  研究人员表示,这一设备携带方便,可用于遥感探测机场丢弃的背包、行李中是否有爆炸物、非法药品或其他危险物质 在军事上,它可以用于搜寻炸弹藏匿处。  研究人员预测,几年以后,太赫兹科技将更广泛地应用于工业和防务相关领域。  这项研究成果11日发表在英国《自然光子学》杂志上。
  • 美研制出太赫兹设备可在20米外探测爆炸物
    华盛顿2010年7月11日电(记者任海军)美国纽约州伦斯勒理工学院11日发布新闻公报称,该机构研究人员日前在美国国防部大力资助下研制出一种太赫兹遥感设备,可在20米外探测目标物体是否装有爆炸物。  公报说,这一设备借助激光诱导荧光生成可以与太赫兹波相互作用的等离子体,后者可在20米外获得目标物体的太赫兹波“指纹”(波谱)。由于每种物质都有独特的太赫兹“指纹”,将目标物质的“指纹”与探测器中事先已存储的大量太赫兹波谱对比,可以判定目标物体性质及其内部情况。  太赫兹波是指频率在0.1太赫兹至10太赫兹(波长为3000微米至30微米)范围内的电磁波,在电磁波谱上位于微波和红外线之间。这一波段的电磁辐射具有很强的穿透能力,可以作为一种特殊的“探针”用来对物质内部进行深入研究。  研究人员研制的新设备可以“看透”衣服和包装物,迅速确定除金属和液体外的几乎所有其他物质的太赫兹“指纹”,而且与X射线检测设备不同,它基本不威胁人体健康。  研究人员表示,这一设备携带方便,可用于遥感探测机场丢弃的背包、行李中是否有爆炸物、非法药品或其他危险物质 在军事上,它可以用于搜寻炸弹藏匿处。  研究人员预测,几年以后,太赫兹科技将更广泛地应用于工业和防务相关领域。  这项研究成果11日发表在英国《自然光子学》杂志上。
  • 测温仪背后的故事——红外探测器
    一场突如其来的新冠肺炎疫情,成为了2020开年的头等大事。全民防疫的举措让这场没有硝烟的战争不再猝不及防。飞机场、火车站、公司、小区、超市等入口处都能见到防疫工作者的身影。他们是防疫先锋,是公共健康的卫士,是居民区的守护者。而他们的必备神器之一——手持测温仪,也进入了公众的视野,广为人知。今天,我们就来聊一聊测温仪的那些事。受疫情影响,很多人在家办公,出门不是去超市买菜,就是门口取快递。当然,还有不少人在硬核上班。无论出入小区,还是车站进站,现阶段都要经过体温检测。相信大家都有经历过,防疫工作者手持测温仪,对着额头一扫,立刻就显示你的体温数据,非常方便。有很多人对这测温仪都深感好奇,想知道它是怎么工作的。也有人担心它的准确性,担心把自己体温测高了。那么,我们就从测温仪的原理和精确度控制这两点说起。首先,大家都熟悉传统体温计测温的方法,而这种方法显然不适合用于传染性强的新型冠状病毒的防护工作。在这次防疫战中,小巧便携,无需身体接触的手持测温仪就成了急先锋。扫一扫,一秒之内测出体温的测温神器让人们眼前一亮;更令人印象深刻的,还有车站、机场等带有视频的成像测温仪,后者能在快速行进的人流中,辨别每个人的体温,并用保存视频成像。相信你肯定好奇过它们究竟是怎么做到的。接着,我们来一探究竟其中的科学原理。[1] 地铁站检票口的体温监测站(图片摘自人民网)温度和光我们都知道,水银体温计能够测人体的温度,是水银玻璃泡和人体接触后,经过一段时间的热量传递,最终与人体温度达到一致的原理(热平衡)。而测温仪并没有和人体接触,为何能如此快速采集温度信息呢?[2] 水银温度计(图片摘自百度网)答案其实大家也是耳熟能详,那就是---光!没错,就是我们所熟知的那个光!但是这个光,并不是人眼能看到的可见光,而是与可见光相邻的红外光,这里需要科普一下,我们平时所说的可见光实际上是电磁波的一种,电磁波有连续的波谱分布,红外光的波段在红色光之外,因此得名红外光。再简单提一下,除了可见光和红外光,很多电磁波都与大家的生活息息相关,按波长由短到长,有医院CT的X射线,防晒霜防的紫外线,太阳光,灯光,微波炉的微波,电台的射频信号等等,都属于电磁波。[3] 生活中的电磁波(图片摘自NASA Science)说到这里,肯定有人表示,道理我都懂,但是红外光跟人体温度有什么关联呢?关联是必然的,因为人体发射的光,就是红外光!没说错,人体是发光的,而且是无时无刻的在发光。复杂的原理就不赘述了,大家只要记住,任何温度高于绝对零度(零下273.15摄氏度)的物体都会以电磁波的形式向外辐射能量,至于绝对零度(-273.15℃)的物体嘛,大家放心,那是不存在的!红外光和人体温度的关系那么问题来了,既然每人每时每刻都在发射红外光,仪器凭什么就能辨别出正常温度和高烧呢?还能准确读出每个人的温度?这里,我们请一位大佬帮忙解答,他就是与爱因斯坦并称20世纪最重要的两大物理学家,量子力学奠基人之一的马克斯普朗克,他于1900年提出的普朗克黑体辐射定律,完美诠释了温度与辐射的关系。马克斯普朗克简单来讲就是,不同温度的物体发射的光是不一样的,如下示意图, 四条不同的曲线,代表不同温度下黑体辐射的光谱分布,这里的K是热力学温度,数值等于摄氏度+273.15。大家可以看到,温度越高,黑体辐射光的强度就越大,峰值的位置就越靠近紫外区域。那么,答案就呼之欲出了,如果探测到了人体的辐射强度和波谱分布,就完全可以反推出温度T!这就是测温仪测体温的原理。(人体虽不是黑体,却也遵循普朗克定律)。利用红外光探测人体温度究竟准不准?说完测温仪原理的故事,我们再来说说怎么确保每个测温仪都能测得准。上文中,细心的小伙伴发现,普朗克定律图示并没有想象中那么简单,图中展示差异性的谱图都相差了1000℃,人体怎么可能差上1000℃呢?没错,我们人体的温度平均值也就在36℃到37℃之间了,高过37℃的,抗疫期间怕是要去隔离观察了。那么关键点来了,相差几摄氏度的人体辐射谱图中,辐射强度和波谱的差异是非常小的,如何确保测温仪能把握这细小的差异呢?要知道,人体测温的准确性要求是比较高的,特别是在抗疫期间,正常的体温就是大家的通行证。这点上,咱们国家更是不含糊,对于此类测温装置也出台了相应的国家标准来规定精准度。那么,生产厂家是如何确保每台测温仪的准确性呢?下面就让我们来剖析测温仪,探究这里的科学原理。测温仪的"CPU"是什么?我们先从测温仪的构成说起,可以看到下图中,真正与红外光直接相关的,便是红外探测器,顾名思义,这正是测温仪利用红外测温的核心元件,就好比CPU芯片是手机电脑的核心。而它的质量直接决定了测温的准确性。那么,如何判定红外探测器的质量呢?[4] 额温枪(图片摘自网络)这就需要了解红外探测器测红外的细节。简单来说,红外探测器也是由材料构成,红外探测器上的特殊光感材料可以接收外界的红外辐射,并将其转换为电信号,再进行分析计算,最终给出温度值。因此评价红外探测器的好坏,就是评判其将光转换为电信号的能力。在讲红外探测器的评价之前,我们插一句,火车站,机场中带成像系统的测温仪,采用的是更高端的焦平面阵列红外探测器(FPA技术)。[5] 设置在火车站的带成像系统的测温仪(图片摘自包头新闻网)这类成像测温仪就如同照相机或摄像仪,内部感光平面内,分布了很多像素点,焦平面上每一个像素点就是一个红外探测器,这种技术具有二维空间分辨的能力,具备红外成像功能,可以将发高烧的人从人群中辨别出来。如何评价红外探测器,确保其准确性?一般来说,无论是采用单点红外检测器的耳温枪还是FPA焦平面检测器的红外成像测温仪都不需要极快的反应时间或极高的空间分辨率,甚至无需光谱分辨率。所以这类红外检测器的精确度通常是采用激光功率计或热敏电阻等方法来评定的。但是,类似原理的红外探测器还有很多其他的应用领域,尤其是需要FPA焦平面检测器的红外成像仪已经被广泛的应用于军需夜视或热追踪系统、高速热成像、质检或产品研发(针对散热或热工特性)、医疗热成像及红外显微镜等诸多方面。这些应用领域对红外检测器件本身以及对由这些器件组成的测量仪器的性能都有更严苛的要求,比如,需要微秒甚至纳秒级的超短反应时间,需要光谱信息用于化学成像,需要较高的空间分辨率以表征微小物品,需要较高的光谱分辨率,最佳的灵敏度和信噪比,甚至对FPA检测器中每个像素点的均匀一致性都有要求。为了研制和开发这些高端的红外检测器件,科学家们需要用到一种重要的表征方法---傅立叶红外光谱法。实现该法的核心设备就是在科学研究、监测分析领域常见的傅立叶红外光谱仪(简称FTIR红外光谱仪)。FTIR红外光谱仪——表征红外探测器FTIR红外光谱仪是专门应用于红外光谱研究相关的科学仪器,配有标准的红外光源,所发射的红外光经过干涉仪后,经过照射样品,最终到达红外探测器,解析探测器的电信号,并进行FT转换计算,即可得到包含能量强度和波谱分布的红外谱图。科学家们就是把这种检测技术应用到了评价红外探测器材料好坏的研究中,在对光敏度、稳定性等等复杂的研究分析之后,才研发出适合于各种不同应用领域的红外探测器材料,进而工厂将其研究的材料转化为探测器并且大量生产而成为真正实用的商品(包括红外测温仪及其他更为复杂的尖端仪器),发挥了科学家研究的作用。换言之,红外光谱仪对于探测器的表征研究,就好比是一把精准的卡尺,用它来检验每一根直尺的长度是否达到科学家们想要实现的标准。傅立叶变换红外光谱仪以上就是测温仪背后故事的小科普,相信大家对于最近很亮眼的测温仪会有更进一步的了解,对红外探测器精确度的控制以及红外探测器的诸多应用领域也有了更深层次的认知。通过科学家们的努力,和我们生活息息相关的大型红外成像测温仪的准确度、检测能力、检测距离、检出速度和检测区域内的均匀性(即精准度)都会越来越好。所谓工欲善其事必先利其器,实际上并不是所有的红外光谱仪都能做红外探测器的研究与表征,能作为标尺的设备,当然只有技术过硬,具备特殊技能红外光谱仪才能实现!如果您对检测器表征科研课题感兴趣,可以阅读布鲁克的相关应用信息。如果您对红外整体技术感兴趣,长按下方二维码填写产品需求信息表,与我们取得联系。疫情期间,大家做好防护,注意安全。一起为祖国加油!为武汉加油!点击下载布鲁克应用手册——红外检测器表征如果您对我们的红外技术感兴趣,欢迎与我们取得联系,请拨打400热线电话400-777-2600。
  • 我国太赫兹研究领域的实验室概览(图)
    太赫兹波是指频率在0.1~10THz之间的电磁波,在电磁波谱上位于微波和红外线之间。是电磁波谱中唯一没有获得较全面研究并很好加以利用的最后一个波谱区间,是人类目前尚未完全开发的电磁波谱“空白”区。由于太赫兹波所处的特殊电磁波谱的位置,它有很多优越的特性,在材料分子的特殊光谱信息分析、材料与结构的无损探伤及三维层析、违禁物品反恐检查、生物组织的活体检查、高精度保密雷达、卫星间宽带通信等方面的研究,在天体物理学、等离子体物理学、光谱学、材料学、生物学、医学成像、环境科学、信息科学等领域有着广阔的应用前景。  太赫兹波有非常重要的学术和应用价值(有的已处于实用),使得全世界各国都给予极大的关注,美国、欧州和日本尤为重视。我国近年来对于太赫兹技术的研究也日益关注。在近日陆续公布的“2011年国家重大科学仪器开发专项”与“2011年国家重大科研仪器研制专项”中,其中由中科院紫金山天文台史生才研究员作为负责人主持申报的国家重大科研仪器设备研制专项——“太赫兹超导阵列成像系统”项目成功获批立项,资助总经费6000万元,研究期限5年。此外中国工程物理研究院申报的国家重大科学仪器开发专项——“相干强太赫兹源科学仪器设备开发项目”也成功获批立项。  仪器信息网编辑整理了目前国内从事太赫兹技术研究的实验室和研究中心,供读者对我国太赫兹技术的研究情况做一基本了解。  太赫兹光电子学省部共建教育部重点实验室  首都师范大学物理系太赫兹实验室于2001年正式成立。2006年正式批准为北京市“太赫兹波谱与成像”重点实验室。2007年获批太赫兹光电子学省部共建教育部重点实验室。该实验室是目前国内最好的太赫兹研究基地之一。2009年起始,太赫兹实验室正式获批中关村开放实验室,依托实验室现有条件和中关村地区科技资源的优势和作用,深化产学研之间的合作,正式为中关村2万多家注册企业提供相应的技术服务,联合进行关键技术攻关。  目前,实验室具有科研用房1500平方米,其中千级超净实验室2间,面积170平方米。科研仪器设备总值超过千万元。在过去的三年中,实验室共承担包括国家973计划、国家863、国家自然科学基金重大项目等各类项目23项,总科研经费1328余万元。  本实验室主要研究方向:1.太赫兹波谱研究 2.太赫兹成像研究 3.太赫兹与红外无损检测研究 4.太赫兹与物质相互作用。  山东科技大学太赫兹技术研究中心  山东科技大学太赫兹技术研究中心成立于2003年,由我国著名太赫兹专家刘盛纲院士担任中心主任,是山东省唯一的太赫兹科学与技术研究机构。  目前实验室拥有太赫兹源研究室、太赫兹时域光谱技术应用研究室和太赫兹器件开发研究室共三个研究室,实验室面积约500平方米,设备价值约300万元。拥有60m2的千级超净实验室,奥地利产半导体泵浦飞秒激光器,德国产808nm、30W半导体激光器,相干公司激光光束质量分析仪,Gentec公司激光功率计,泰克公司200MHz示波器,光学平台等研究设备,锁相放大器, Golay探测器,精密电移台等专用研究设备。  主要研究方向包括:基于光子学太赫兹辐射源的研究、太赫兹应用技术研究、太赫兹器件的研究。  超快光电子与太赫兹技术实验室  超快光电子与太赫兹技术实验室是一个集合光学,半导体物理学,微电子学,生物学等多学科交叉的实验室。主要涉及微电子制造、半导体工艺、生物医学检测、太阳能光伏、红外传感、超高频电磁波应用等领域。实验室依托于上海理工大学。主要研究人员有庄松林院士、朱亦鸣、许健等。  实验室目前已有1000级超净室180平方米,美国相干公司飞秒激光器一台,时域太赫兹波谱测试系统一套,AFM原子力显微镜一台, SEM扫描电子显微镜一台,半导体参量测试仪一台,积分球光谱测试系统一套,磁共溅射/离子束溅射镀膜机一台等大型设备。  实验室主要研究方向:1.应用全新的超快光学方法-时域太赫兹波谱法,进行半导体材料和器件内超快电子的检测 同时设计开发新型的半导体超快电子器件。2.利用太赫兹波对物质进行研究 如通过太赫兹波和生物分子的作用,来鉴别区分不同类型的中草药,毒品等 通过太赫兹波和液晶材料、半导体材料的相互作用,来研究材料本身的一些物理特性。3.超高频电磁通信和传输及其器件的开发。4.微纳结构硅基光伏材料(黑硅)的制备、检测 基于黑硅的光伏电池的优化组装 5.微纳结构金属材料的制备、检测 基于此类微纳结构金属材料的应用 6.表面等离子波导中电磁场微小频率变化的探测7.表面等离子波导中电磁场的古斯汉欣位移增强效应的研究。  中国计量学院太赫兹技术与应用研究所  中国计量学院太赫兹技术与应用研究所成立于2006年7月,属于校级研究所,研究所所长:为洪治博士。研究所获得了浙江省“重中之重”学科“仪器科学与技术”的资助。  现有实验室面积1000余平方米。拥有基于BWO(返波振荡器)的连续THz实验平台 锁模钛宝石激光器及相关测试设备 太赫兹波TDS系统等实验设备。  主要研究方向1.太赫兹波器件、传输与系统 2.太赫兹波成像、传感技术及应用 3.太赫兹波与生物分子相互作用机理及应用 4.太赫兹波谱材料特性测试及应用。  中科院太赫兹固态技术重点实验室  2011年3月28日,中科院太赫兹固态技术重点实验室揭牌仪式举行,该重点实验室的成立,加强了中科院太赫兹研究基地建设。实验室依托于中国科学院上海微系统与信息技术研究所。曹俊诚研究员担任实验室主任,田彤研究员担任实验室副主任,封松林研究员担任实验室学术委员会主任。  实验室主要围绕半导体固态太赫兹源、探测器及其在通信与成像等领域的应用,开展基于光子学和电子学的固态太赫兹器件物理与工艺、太赫兹器件与模块、太赫兹检测与成像以及太赫兹信息传输与通信等方面的基础和应用研究工作。  中物院太赫兹科学技术研究中心  2011年12月12日,中物院太赫兹科学技术研究中心正式成立,中心主任由电子工程研究所所长姚军代理。  中心主要围绕太赫兹物理理论、半导体太赫兹技术、电真空太赫兹技术以及太赫兹在通信、雷达、光谱学和成像中的应用开展研究。太赫兹研究中心目前成立了4个研究室,包括太赫兹总体和应用技术研究室、太赫兹理论研究室、太赫兹半导体器件研究室和电真空太赫兹技术研究室,依托各相关研究所开展工作,并计划在中物院成都科技创新基地建设太赫兹实验室。  此外目前国内高校中电子科技大学,天津大学,南京大学,中山大学,国防科大,上海交通大学,西安理工大学,深圳大学,南开大学,清华大学 北京航空航天大学 北京理工大学等都有太赫兹研究计划。  研究所方面:中国科学院物理所,紫金山天文台,西安光机所,中科院上海应用物理所,半导体所也有研究项目。
  • 从原理入手!让我们走进这款WIGGENS红外加热板
    红外线加热板具有操作模式多样化、简单,耐腐蚀,清洁容易等特点,可应用于农业、土壤、环保、食品、科研院所、大专院校等实验、化验室,用于样品加热、烘烤、消化、赶酸等工作。红外线加热的原理:利用物体对光的吸收。红外线的传热形式是辐射传热,由电磁波传递能量。在远红外线照射到被加热的物体时,一部分射线被反射回来,一部分被穿透过去。当发射的远红外线波长和被加热物体的吸收波长一致时,被加热的物体吸收远红外线,这时,物体内部分子和原子发生“共振”——产生强烈的振动、旋转,而振动和旋转使物体温度升高,达到了加热的目的。WIGGENS红外线加热板SLK 1/2/2-T产品介绍* WIGGENS 红外线加热板采用微晶玻璃面板 (Glass Ceramic), 表面光滑 , 无 细孔 , 不易磨损 , 抗化学腐蚀 , 清洁容易, 导热效率高, 均匀度好, 可以承受热震700℃剧烈温度变化, 大幅度满足实验室快速加热与安诠考虑的双重要求* SLK1 / SLK2 红外线加热板具有 24 段温度设定 ,飞梭式设定旋钮 ,大屏幕液晶显示设定温度及实际温度* 旋钮定时功能,设定工作时间及实际工作时间大屏幕液晶显示,工作状态一目了然,可以定时:0-1800s* SLK2-T 可以外接温度传感器,直接控制待加热液体的温度, 控制温度范围: +40~+300℃;温度控制稳定性: ±2℃ ~±5℃ ( 决定于待加热液体物化性质及容器材质形状)* 前面板顶部导流槽设计,确保意外情况下液体不会浸入前面板电源部分茂默科学力求解决行业内客户对科学仪器选型难、维护难的处境。欲了解更多WIGGENS产品,Welcome to consult~
  • “天空地”协同感知系统集体亮相文保装备应用展
    9月27日,由国家文物局主办的全国首届文保装备应用展在重庆开幕。科技与考古、文保深度融合,技术装备日新月异。一颗遥感卫星,苍穹之下跨越山海。在全国文保装备应用展上,“天空地”协同感知系统集体亮相,让监测保护变得得心应手。 “天”的明星装备“立方星”,是我国第一颗服务于文物领域的小卫星,不仅可以采集可见光光谱,还采集覆盖红外线到紫外线的跨电磁波谱信息。  “空”的主角则是无人机,巡航速度每小时可达几十公里,对遗址进行低空近景监测,可以获取更为清晰精细的三维状态、特征等信息。  “天空地”协同感知系统不仅覆盖范围更广,而且看得更精细。通过实时反馈,可以让初露端倪的问题得到及时处置,为旷野无人看管的大遗址保护提供了高效、灵活、迅速的解决方案。  西北工业大学文化遗产研究院院长 董文强:“地”主要是采用高清视觉平台,包括地面气象站等野外遗址监测感知仪器,对遗址和遗存的水文气象等自然环境以及游客流量进行全天候、全天时监测感知。  一套由卫星、无人机和地面监测感知仪器组成的“天空地”协同感知系统,非常形象地展示了如何将数据采集、传输、呈现、分析等功能集成一体,从而为大型野外考古遗址提供全方位、多尺度的智能监测。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制