当前位置: 仪器信息网 > 行业主题 > >

比较显微镜

仪器信息网比较显微镜专题为您提供2024年最新比较显微镜价格报价、厂家品牌的相关信息, 包括比较显微镜参数、型号等,不管是国产,还是进口品牌的比较显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合比较显微镜相关的耗材配件、试剂标物,还有比较显微镜相关的最新资讯、资料,以及比较显微镜相关的解决方案。

比较显微镜相关的资讯

  • 重磅新品推出LCT痕量证据比较显微镜
    Leeds痕量证据比较显微镜(LCT)是为法医学和其他科学学科专门设计,用来对头发、纤维、油漆、植物和土壤等标本的关键性区域进行比较分析。LCT的高质量光学系统提供了优越的颜色和强度平衡,无需操作人员另行调整。LCT提供一个的22毫米的大视野,和一个正置的,不反向的图像,允许操作者快速和容易地操作标本进行检查。使用Leeds痕迹证据比较显微镜,两个标本可以通过分裂、叠加或单独的形式进行观察。独立或桥接标记的滑动控制允许从100%的左侧图像到100%的右侧图像进行连续调节,或调节至两者之间的任何位置。
  • 显微镜连接电脑 摄像头连接到显微镜的安装操作
    显微镜连接电脑 摄像头连接到显微镜的安装操作显微镜可通过USB接口连接电脑和摄像头,用户可以在电脑进行拍照和录像等操作。显微镜摄像头通过高分辨率的CMOS/CCD传感器捕捉显微镜下的图像,然后通过控制器将图像传输到电脑或其他存储设备中。显微镜摄像系统可以用于观察、记录和分析细胞、组织、微生物等样本的结构和特征。它也可以用于医学、生物学、农业等领域的研究和实验中。MHS900显微镜摄像头显微镜摄像头连接到电脑的安装操作如下:1. 准备显微镜、摄像头和电脑,确保它们都是关闭状态。2. 使用相应的接口将数码显微镜与电脑连接起来,通常情况下会使用USB线或HDMI线,显微镜的USB2.0/3.0接口直接插入电脑对应的USB2.0/3.0接口即可,操作比较简单,插好后打开视频软件就可以使用了。3. 打开显微镜的电源,调整显微镜的焦距,使其清晰。(可以先放一张白色的纸张,调节好距焦。)4. 打开电脑,找到对应的驱动程序并安装,通常可以在显微镜摄像头的说明书上找到。5. 安装完成后,打开显微镜摄像头的软件,通常会在电脑的右下角或任务栏中显示。6. 在软件中选择“连接”或“导入”选项,然后选择要连接的数码显微镜品牌/型号。7. 等待软件与显微镜建立连接,连接成功后,可以在软件中看到显微镜中的图像。8. 可以使用软件进行拍照、录像、测量等操作,同时也可以将图像导出到电脑中进行进一步处理和分析。显微镜摄像系统界面显微镜摄像系统:https://www.instrument.com.cn/netshow/SH105067/product-C7803-0-0-1.htm显微镜摄像头:https://www.instrument.com.cn/netshow/SH105067/product-C7803-0-0-1.htm如果您的显微镜需要升级拍照功能和安装,请与我们联系。
  • 世界及国内著名显微镜品牌盘点
    p  在世界范围内显微镜的主要著名品牌有4个:奥林巴斯(OLYMPUS)、尼康、蔡司 、徕卡(排名不分先后)。这4家制造商引导了显微镜的发展,下面分别介绍一下这4家公司。(注:以下排名不分先后。)/ppstrong  1、奥林巴斯/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201512/noimg/e2f4145f-90e0-4c3f-9596-d05e55a0ca9c.jpg" title="图1.webp.jpg"//pp  在中国奥林巴斯品牌享有广泛的知名度,这不仅仅来源于它在影像(相机)产品和医疗产品(医用内窥镜)的影响力,奥林巴斯显微镜在中国市场也占有重要地位,/pp  而且奥林巴斯在初期也主要依靠显微镜业务才取得以后的迅速发展./pp  1919年10月12日 “株式会社高千穗制作所”设立 创始人:山下长(Yamashita Takeshi)/pp  1942年5月28日 改名为“高千穗光学工业株式会社”/pp  1949年1月1日改名为“奥林巴斯光学工业株式会社” 英文名称为“OLYMPUS OPTICAL CO., LTD.”/pp  2003年10月1日改名为“奥林巴斯株式会社” 英文名称为“OLYMPUS CORPORATION”/pp  在希腊神话中有一座神仙居住的山,名为奥林巴斯山“Mt.Olympus”。/pp  “奥林巴斯”这个公司名称就是由来于此山岳。它体现着奥林巴斯力求“制作出全世界通用的产品”这一热切地愿望。/pp  早在创业当时——“株式会社高千穗制作所”的时代,“奥林巴斯”这一商标就开始作为商标被使用。/pp  在日本神话中传说在高千穗的山中有居住着为数八百万名神仙的天界“高天原”,将其与同样住有神仙的山——希腊神话中传说的住有十二名神仙的“Olympus山”相联系,推出了此商标。此商标中包含着希望能象“高天原”的光普照世界一样将以光为本的奥林巴斯光学器械产品推广到世界的美好愿望。/pp  在光学关联产品成为了公司主力产品的1942年,公司名称变更为“高千穗光学工业株式会社”。1949年,为了提高企业形象,将公司名称变更为“奥林巴斯光学工业株式会社”。/pp  之后,为了使企业品牌更加充满活力,2003年,奥林巴斯将已在世界上广为人知的品牌名称“奥林巴斯”与公司名称统一,将公司名称变更为“奥林巴斯株式会社”。/pp  近年,奥林巴斯将融合了光学和最新的数字技术的“Opto-Digital Technology(光学数字技术)”作为Core Competence(其他公司所不能模仿的核心技术),正在为成为世界一流企业,为最大限度地创造企业价值而不断地进行着努力。/pp  1921年2月,“奥林巴斯”作为品牌名称开始被使用。此标识原本是使用在显微镜等产品上的标识。之后,在照相机的商品目录和广告中也使用了此标识。直到现在,“OLYMPUS TOKYO”这个商标仍然被继续使用着。/pp  公司所生产的最早的显微镜是“旭号”显微镜。/pp  “旭号”显微镜于1920年3月开始销售。它是由奥林巴斯的前身——株式会社高千穗制作所制作的。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201512/noimg/7ef631e8-9edb-4440-aff8-4efb01ecdf16.jpg" title="图2.webp.jpg"//pp  开始销售时,该显微镜的价格为125日元,大约相当于现在的125万日元。可以说该显微镜在当时有着工业产品所应有的名副其实的价值。另外,“旭号”显微镜还是奥林巴斯产品中唯一使用了用于制作大炮炮身的金属——“炮金”(铜和锡的合金,为青铜的一种)的产品。/pp  1927年开始销售的“生物显微镜昭和号GK”和1946年开始销售的“生物显微镜GK”。/pp  20年代,奥林巴斯生产了具有1000倍以上倍率的油浸液式(是指通过在标本与物镜之间装满油液,来对标本进行观察的透镜种类)生物显微镜,名为“平和号”。但遗憾的是,该生物显微镜与德国等日本国外的产品相比,并不可称之为高质量产品。而当时,外国产品虽然质量好,但价格昂贵,对一般的研究者或医师来说购买这些外国产品并不是一件容易的事。/pp  “希望奥林巴斯能制造出不但实用,而且价格便宜的高质量油浸液式显微镜”——提出这项要求的正是从事显微镜销售的岩崎显微镜公司(现在的Iwaken Co.,Ltd)首任社长岩崎清吉。为满足这项要求,奥林巴斯在岩崎显微镜的协助下开发出了“昭和号”显微镜。/pp  昭和号GK不仅达到了当时日本国产显微镜的最高峰,还成为了支撑奥林巴斯的显微镜事业的代表机种之一。/pp  由于第二次世界大战的爆发,昭和号显微镜的生产曾一时停止,1946年7月又以“生物显微镜GK”这一新的商品名称重新开始了生产。自此,GK系列直到1972年为止持续畅销46年,成为了“超长期畅销产品”/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201512/noimg/c4334e95-a5e6-448b-ade3-80994a52dec7.jpg" title="图3.webp.jpg"//pp  “精华号GE”的生产是从1928年开始的。生产开始后的第二年,“精华号GE”在“大礼纪念国产振兴东京博览会”上展出,荣获“优良国产奖”,并且,被敬献给昭和天皇。/pp  被誉为技术结晶的“精华号GE”,是当时最高级的研究用显微镜,它在100倍物镜上使用了油浸液系统。/pp  照片上所展示的显微镜是曾经受到昭和天皇爱用的“精华号GE”。它是在1951年,天皇购买了新的显微镜后,由天皇赠还给奥林巴斯的。/ppstrong  2、尼康公司(NIKON)/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201512/noimg/38c7eecf-bf95-4d72-b84f-35eb74716431.jpg" title="图4.webp.jpg"//pp  1988年4月正式定名为Nikon尼康公司,尼康公司在影像领域非常著名/pp  尼康公司作为近代日本第一家光学器材厂家于 1917 年成立,原名为日本光学工业股份有限公司,主要为日本国防部生产军用光学仪器,同时也生产照相机和摄影镜头。/pp  出资方是三菱造船。日本当时组备海军,希望光学照准装置制品实现国产化。所以让三菱召集了日本顶尖的光学关联企业,合并重组后就形成了全名为日本光学工业株式会社的尼康。其主要制品为军用侧距仪、望远镜、高射跑瞄准系统等。一战结束后,由于军需品需要的锐减,尼康为了生存,于是转向民用望远镜,显微镜,天体望远镜等民用品的生产制造。/pp  1921 年尼康曾打算和德国的卡尔蔡斯联营& #823& #823未果。遂从卡尔蔡斯招聘了八名技术人,开始真正导入光学技术的研究。在德国技术人员的帮助下,尼康完成了用于航拍的大型镜头,又以此镜头为原型加以改良,制造出各种普通摄影镜头。/pp  后来尼康不断推出照相机,在世界影响领域创造了持久的辉煌,除了在照相机领域外,尼康在显微镜领域也占有重要地位,更值得尼康引以自豪的是其在光刻机领域./pp  1976 年,尼康开始进行半导体刻制机的开发。1978 年尼康的第一台半导体刻写系统 SR-1 开发完成。2003 年其半导体刻写机的市场占有率是世界第一。摄影圈里戏称有钱可以买哈博,哈博在天上,而且只有一台。除去这种天文级别的东西,地面上最精密昂贵的透镜系统,就是刻写机里的透镜系统了,其价格以数亿日元计数。尼康公司的另一段历史由此开始,在研究尼康股票的时候会发现,半导体产业的景气与否,往往影响其股票走势。这是因为在这方面的产值占尼康整体产值的近百分之三十。而其投入精机开发的费用更达到全体投入费用的百分之四十多,而相机生产方面只占百分之三十左右。——2002年数据./pp  在显微镜制造方面尼康公司也取得骄人的成绩,特别是今年推出的新系列正立显微镜50I/55I,80I,90I,活细胞工作站TE2000-PFS,以及共聚焦显微镜C1si,都取得相当不俗的销售业绩.我们期待尼康有更好的产品推出./pp strong 3、蔡司公司/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201512/noimg/eb87f0e2-7f7e-4f69-b1cf-f251eabe1a43.jpg" title="图5.webp.jpg"//pp  公司由卡尔.蔡司先生于1846年创建于德国耶拿。公司一开始是一间精密机械和光学仪器车间。即使在 早期本公司生意兴隆,而且持续了很久。随着Ernst Abbe(阿贝)的杰出科学成果的应用,本公司逐渐成为全球光学设备仪器领域的领导人。这段成功的经历历时了整整一个世纪。随着第二次世界大战的结束,随着 德国被强制性分离,蔡斯公司也被一分为二:一半在西德,一半在东德。随着1989/1990年东德政治形势的转变,二家竞争对手于1990年合并成一家公司。/pp  strong初期/strong/pp  1846 Carl Zeiss在德国耶拿建立一个精密机械及光学仪器车间。/pp  1847 开始生产显微镜 1866 Ernst Abbe与 Carl Zeiss 开始合/pp  1872 Abbe(阿贝)公司的显微镜成像理论导致显微镜革命性完善。/pp  1884 Otto Schott(肖特), Ernst Abbe, Carl Zeiss 和 Roderich Zeiss 共同创立了“耶拿玻璃作业合作公司”/pp  1889 Ernst Abbe 创立Carl Zeiss 基金会 (Carl Zeiss 基金会)/pp  1891 Ernst Abbe 授权 Carl Zeiss 基金会为Zeiss工厂的唯一所有人。/pp strong 德国分离时期/strong/pp  1945 耶拿 (Jena) 工厂一部分在战争中被毁 美国军队带走126名管理人员及科学家并把他们送到美国军事占领区。/pp  1946 光学工程公司,即而又改名为卡尔.蔡司 (Carl Zeiss),继续经营西部的主要企业/pp  1948 属于耶拿 Carl Zeiss 基金会的 Zeiss 和 Schott 工厂被没收 Zeiss 工厂成了国营企业,名为:耶拿 VEB Carl Zeiss/pp  1949 巴登.符腾堡 (Baden-Wuerttemberg) 州政府将海登海姆 (Heidenheim) 作为 Carl Zeiss 基金会的法定地址。由于德国的政治性分割,使耶拿与奥伯科亨的工厂以各自的方法经营。/pp  1965 耶拿 VEB Carl Zeiss 成了民主德国精密机械及光学工业的主导企业 耶拿 VEB Carl Zeiss开始成为企业集团。/pp  1971 伦敦协议的签署。该协议规定了Zeiss作为名称和商标的使用权问题。/pp strong 德国统一时期/strong/pp  1990 民主德国的政治转变,导致 Zeiss东西部企业的关系发生了变化。Biebelried 的企业声称他们准备并入Carl Zeiss 基金会。/pp  1991 负责东德工业企业私有化的信托集团(Treuhandanstalt)Baden-Wuerttemberg 和 Thuringia、Jenoptik 有限公司、Carl Zeiss、 Jenaer 玻璃有限公司和 Schott 玻璃厂签署了一份基本协议,协议规定Carl Zeiss 基金会地址将确定在耶拿 (Jena) 和海登海姆 (Heidenheim)。/pp  1995 Carl Zeiss 奥伯科亨公司收购 Jenoptik 有限公司(图林根州公司)所持的耶拿Carl Zeiss有限公司的股份。/pp  1996 Carl Zeiss 公司150周年/pp  1998 卡尔。蔡司是一家世界领先的光学仪器制造企业,它在显微技术和工业测量技术、用于微蕊片制造的高性能透镜、外科显微技术以及眼科诊断和治疗系统等方面处于领先地位。/pp  2000 卡尔.蔡司集团突破了 26 个领域,将其业务重点集中在四个增长市场:半导体工艺和微电子、生命科学、眼睛保护和工业测量技术。/ppstrong  4、徕卡公司/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201512/noimg/83993c9e-5fd8-462b-b84c-d9e263b9cd1a.jpg" title="图6.webp.jpg"//pp  1849年,23岁的德国数学家卡尔?开尔纳(Carl Kellner)在威兹拉(Wetzlar)成立了光学公司,从此开始了镜头与显微镜的研究。/pp  1865年,厄恩斯特?徕兹(Ernst Leitz),一位严谨的机械工匠,加入了公司并成为公司的合伙人/pp  1869年,厄恩斯特?徕兹接管了公司开始独立经营,并以他的名字“Leitz”命名公司。1925年,徕兹公司推出世界上第一部35毫米相机----Leica A。/pp  现在的LEICA 集团公司是由徕兹(LEITZ)、威特(WILD)、卫永(REICHER-JUNG)、博士伦(BAUSH & LOMB)、剑桥(CAMBRIDGE)及柯思(KERN)先后合并而成,下属徕卡相机公司、徕卡显微镜系统公司和徕卡测量系统公司,总部设在瑞士。/pp  以上四家公司几乎垄断了世界高端光学显微镜市场,其产品各自拥有自己的独特技术。如果想给这四个公司做一个排名,当然是仁者见仁,智者见智,不会有统一的意见,但小编认为排名并不重要,重要的是这四家公司为世界显微镜的发展作出了巨大贡献。希望他们能在将来能作出更好的成绩,也更希望有中国的显微镜制造商能加入这个显微镜强者行列。/ppstrong  5 国产显微镜/strong/pp  strong麦克奥迪(MOTIC)/strong是目前国内显微镜的第一品牌,它是90年代香港资本收购了原厦门光学仪器厂,投资建设的,目前它在国内建立了几个加工基地,在国外多个国家注册了商标,设立的公司或办事处。MOTIC在国外也开始有了一定的知名度,成为中国显微镜的代表,麦克奥迪(MOTIC)想成为世界第五大品牌显微镜,他们也一直在努力,但要达到目标还是任重道远,显微镜特别是物镜的设计与加工是非常有挑战性的,需要多年的积累与持续的投入。当前MOTIC 在数码显微镜及显微数码互动方面具有较强的实力,最近也推出了电动显微镜,因为体制及资金投入有保证,MOTIC在研发方面投入比国内其他厂家要大,金相显微镜,倒置显微镜等有些型号也都不错,走在了国内其他厂家的前面,另外MOTIC在国内设立了几十家分公司与办事处,直接销售,营销能力强也是MOTIC的一大优势,近年显微镜的销售已经过亿。/pp strong 永新光学/strong差不多是国内显微镜的第二品牌,包括宁波永新与江南永新。永新光学也是香港投资的,90年代收购宁波光学厂成立了宁波永新,生产各类光学显微镜,出口也比较多。2000年后,永新光学又收购了国内知名的江南光电,更名江南永新,江南永新继承江南光电的班底,江南光电是具有六十多年历史显微镜生产制造经验的大型专业化显微镜及光电仪器制造商,80年代又先后给LEICA、NIKON等国外知名显微镜大厂代工物镜及低端的显微镜整机,在工艺及技术也积累了不少经验,其生产的生物显微镜、金相显微镜、偏光显微镜在国内比较领先,体视显微镜有些机型也不错。但整体给人印象还象以前的国营企业,研发投入也不大,有些在吃老本。/pp  strong重庆光电/strong是国内真正的老牌光学厂,成立于1958年,生产从生物、倒置、荧光、体视、金相等一系列显微镜,其中倒置生物显微镜,金相显微镜在国内都比较有实力。重光发展到今天,也还是体制等原因,进步比较慢,人员流失比较严重,感觉在走下坡路,只是瘦死的骆驼比马大,现在他们在国内很多地方还设立有分公司与办事处,直接销售。/pp strong 江西凤凰光学/strong是军工转制的老厂,光学加工也较强的实力。凤凰相机是国内的知名品牌,随着数码相机的发展,国内的相机行业几乎是全军覆没,凤凰光学差不多是硕果仅存的一两家,可惜当前数码单反开始流行,凤凰光学迟迟未见这方面的动作,疼失一个大好机会。凤凰显微镜在凤凰光学中应该只是一小部分,近年推出了几款生物显微镜,有一两个机型还有些亮点,其他整体质量一般。/pp  strong桂林光学厂/strong现在更名桂林威达光学仪器有限公司,它们几乎专业生产体视显微镜,因此桂光的体视显微镜是国内最好的,成像比较清晰,有些方面已经比较接近国外知名厂家的低端产品。近年来桂光推出了平行光路的高端体视显微镜,变焦比达1:9,同时同轴照明也有生产。/pp  strong广州光学厂/strong现在改名为广州粤显光学仪器有限公司,是50年代重庆光学厂派人过来建立的,生产生物、体视、金相等系列显微镜,整体产品质量在国内中规中矩,不是特别好,但质量还比较稳定,相对于重光、江光上千人的大厂,广光比较小,才三四百人,所以负担比较少,加上改制比较早,今天还在良性发展,最近广光也不断推出无限远光学系统,偏光显微镜,金相明暗场显微镜,只是研发能力还比较弱,整体水平提升不大。目前它们的显微镜80%以上是出口,在国内做得不多,所以虽然是老厂,在国内知名度却不高。/pp  strong浙江舜宇(SUNNY)/strong是国内最早涉足光学冷加工的民营企业,主要在光学镜头的加工方面具有较强的实力,每年镜片出口量也很大。生产光学镜头到一定时候很自然就转到显微镜的生产,舜宇显微镜有生物、倒置,体视、金相等一系列,很多外型是明显模仿进口的显微镜,中间也出了一点纠纷,但一个民营企业经过十几二十年的发展,能做到今天,确实还是不容易,目前舜宇显微镜在国内的销售也有一定的量,工业方面使用还不少。/pp  strong北京泰克/strong也是一家有一定生产实力的显微镜厂家,主要生产体视显微镜,产品以外销为主,国内也有一些销售网络。深圳迈特是原桂林光学的一部分人员与深圳的资本结合成立的,其生产的单筒体视显微镜等质量不错,在工业领域销售比较大。梧洲奥卡显微镜厂在体视显微镜方面也有一定的实力。重庆奥特是原重庆光学厂部分技术与销售人员外出成立的,建立了自己的销售渠道,产品基本与重光相差不大,不过近来他们也推出了几款自己设计的新型号显微镜。芜湖光学仪器厂在比较显微镜生产方面很有经验,在司法鉴定显微镜中占有一席之地。贵阳云天是60年代上海光学厂内迁建立的,在工具显微镜研发与生产方面国内首出一指,不过由于地理位置、体制及市场的变化,已是今不如昔。/pp  宁波及周边地区是目前中国显微镜生产最集中的地方,有十几家公司在生产各类显微镜,其中比较有名的除了宁波永新、宁波舜宇外,还有宁教,宇捷、盛恒等,由于大都是合资或民营企业,他们都很注重产品研发与创新,从外观设计到光学质量,都在不断提升,在08年深圳光博会上,宁波教学仪器厂展出的一款金相明暗场显微镜,成像质量明显比很多国内知名大厂都要高出一筹。/p
  • 2023年显微镜软件市场将达7.8亿美元 拉曼显微镜软件增长最快
    p  MARKETS AND MARKETS的最新研究报告显示,预计2018年全球显微镜软件市场4.14亿美元,2023该市场将达7.8亿美元,复合年增长率为13.5%。对成像解决方案越来越多的采用、新显微镜方法的开发与发展和不断增加的生物成像数据等推动了这一市场的增长。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/38036818-b8d9-4f57-b91a-52b94c7e11ca.jpg" title="microscope-software-market.jpg" alt="microscope-software-market.jpg" width="500" height="248" border="0" vspace="0" style="width: 500px height: 248px "//ppbr//pp  从显微镜的类型来看,预测期间,拉曼显微镜将成为显微镜软件市场增长最快的部分,其复合年增长率也最高。该部分的增长主要是由于终端用户越来越多地采用拉曼显微镜。拉曼显微镜在经济上比较划算,而且具有非破坏性,在几秒钟内就可以获取光谱信息,优势明显。/pp  从应用领域上来说,预计2018年,生命科学领域将占据最大的市场份额。而且在预测期间,这一趋势还将继续。由于可获得更多的经费,生命科学领域也更多的采用成像解决方案。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/167151b8-ebfe-4682-a85e-a16f7143d664.jpg" title="microscope-software-market1.jpg" alt="microscope-software-market1.jpg" width="500" height="223" border="0" vspace="0" style="width: 500px height: 223px "//pp  从地域上来说,北美是全球显微镜软件市场的主要创收地区。美国强大的生命科学产业和庞大的学术和研究机构群体/基地,正在推动该地区的增长。同样,由于政府的大力支持和纳米技术研发项目优秀的表现,加拿大也是一个显微镜软件潜在的市场。/pp  主要的显微镜软件供应商包括Danaher(美国)、Oxford Instruments(美国)、Carl Zeiss(德国)、Olympus(日本)、Nikon(日本)和Thermo Fisher(美国)。/p
  • 高端显微镜的国产路
    p style="text-align: center "  img src="https://img1.17img.cn/17img/images/201812/uepic/ac8312f3-7576-4030-9e53-535bb0a1b2a7.jpg" title="1.jpg" alt="1.jpg" style="text-align: center "//pp style="text-align: center "span style="color: rgb(127, 127, 127) "科研人员正利用双光子-STED显微镜观察样品/spanbr//pp  “现在做生物的,都盯着《科学》《自然》,仪器只要求用最好的,眼里没有国产进口之分 做医生的,更是绝对不希望因为仪器而延误病人的诊治。可大家传统观念里都觉得,国产仪器不好用。国产要真正替代进口,面临着很大压力,这怎么破?”/pp  浙江大学教授王平抛出的这个问题,中国科学院苏州生物医学工程技术研究所(以下简称苏州医工所)想要给出答案。12月26日,苏州医工所承担的国家重大科研装备研制项目“超分辨显微光学核心部件及系统研制”通过验收,strong标志着我国具备了高端超分辨光学显微镜的研制能力。/strong/pp style="text-indent: 2em "strongspan style="color: rgb(0, 112, 192) "白天不懂夜的黑/span/strong/pp  在当今生物学和基础医学研究中,高/超分辨光学显微镜的作用是至关重要的,尤其是10~100纳米尺度的超分辨显微光学成像,更是取得原创性研究成果的重要手段。/pp  例如,在微生物学研究中,科学家通过对微生物活体动态进行超微观测,能够揭示许多重要的生命现象 在神经生物学领域,科学家需要动态观察神经突触的形成和变化,以揭示高级神经活动及神经病变的亚细胞结构功能 而在医学领域,更需要依赖超分辨光学显微镜去观察病毒入侵细胞的机制等。/pp  然而,光学专家和生物学家之间,却似乎一直有一条看不见的鸿沟。/pp  这种割裂,苏州医工所所长唐玉国有着切身体会。在来苏州之前,他在中科院长春光学精密机械与物理研究所工作多年。他坦言,“strong以前我们做光学的就是埋头做自己的,并不懂生物学家对高端显微镜有多么渴求/strong。”/pp  苏州医工所是中科院唯一一家以生物医学仪器、试剂和生物材料为主要研发方向的研究所,在与大量生物领域专家接触后,唐玉国意识到,我国对光学显微镜特别是高端光学显微镜的需求极其旺盛。/pp  但现状是,strong我国虽然是显微镜消费大国,但自己只能生产中低端产品,高端仪器基本依赖于进口,这已经严重制约了我国生物学和基础医学等相关前沿领域的创新研究/strong。/pp  strongspan style="color: rgb(0, 112, 192) "鱼与熊掌如何兼得?/span/strong/pp  历时5年攻关,苏州医工所科研人员全面突破大数值孔径物镜、特种光源、新型纳米荧光增强试剂、系统集成与检测等关键技术,已经申请90余项国家发明专利,其中获得授权30余项,并strong研制出了激光扫描共聚焦显微镜、双光子显微镜、受激发射损耗(STED)超分辨显微镜、双光子-STED显微镜等高端光学显微镜整机/strong。/pp  以双光子-STED显微镜为例,它将双光子显微技术和STED显微技术有机融合在一起,不仅能对较厚的样品进行深层成像,还能对感兴趣的区域进行超高分辨成像。/pp  “双光子和STED两种显微镜市场上都已经有仪器销售了,但它们都有着自己的优缺点,双光子显微镜能看到样本中深层结构,但看不了尺度100纳米以内的细节结构 而STED显微镜成像分辨率能达到50纳米,但成像深度很浅。”苏州医工所研究员张运海说。/pp  张运海告诉《中国科学报》,在一些脑科学研究中,经常需要看一些比较厚的脑切片结构,如果用两台显微镜分别观察深层结构和100纳米以内的细节结构,需把样品从一台显微镜挪动到另一台显微镜,就找不到原来观察的位置了。“通过这台双光子-STED显微镜,科学家就可以方便地观察深层结构和表层感兴趣区域的精细结构。”/pp  此外,研究所还通过该项目,建成了高端显微光学加工、装调、检测以及显微镜整机技术集成工程化平台,有望为用户提供定制化的显微镜设备,为我国高端光学显微镜的发展提供了系统解决方案。/pp  strongspan style="color: rgb(0, 112, 192) "从进口到出口/span/strong/pp  中科院院士柴之芳对这几台高端显微镜的诞生感到很欣慰,他希望这些仪器能够尽快实现产业化,不仅助力科学研究,最终还能在临床上得到应用,在一定程度上替代国外的产品。/pp  实际上,项目所研制的超分辨显微镜或核心部件已在国内外多家研究机构使用,并已取得了部分成果。/pp  比如,中科院动物研究所利用高端光学显微镜观察发育生物学中的基本现象,研究潜在调控机制。中科院上海药物研究所应用高端光学显微镜观察药物胞内靶向定位和输送,加速创新性新药研发。美国斯坦福大学、日本东京大学、我国陆军军医大学等专业实验室利用双光子显微成像技术进行了信息识别、行为控制等脑科学核心问题的研究以及动物在体成像实验,获得了高分辨实时神经元活动成像数据。/pp  此外,显微镜和关键部件已有部分成果实现了出口销售。如双光子显微镜已销往德国、以色列、美国等多家国外研究机构。/pp  验收专家组认为,项目组完成的四类高端光学显微镜,以及大数值孔径显微物镜、特种光源等核心部件,所有技术指标均达到实施方案规定的考核指标要求,四类超分辨显微成像系统均已达到实用化水平、完成了总体目标,同意通过验收。/pp  但唐玉国直言,strong高端显微镜的国产化道路并不是一蹴而就的/strong。他透露,strong研究所下一步还将结合工程化及成果转化创新模式,实现科技成果在研发平台、工程化平台、产业化平台、市场平台的高效对接/strong,通过系列化、组合化的产品布局,实现显微镜系统和核心部件的工程化、产业化。“接下来我们要把显微镜的性能再提高几个百分点,一点点地把失去的阵地拿回来。”/p
  • 光学显微镜的注意事项
    一、正确安装的问题使用显微镜前,首先要把显微镜的目镜和物镜安装上去。目镜的安装极为简单,主要的问题在于物镜的安装,由于物镜镜头较贵重,万一学生安装时螺纹没合好,易摔到地上,造成镜头损坏,所以为了保险起见,强调学生安装物镜时用左手食指合中指托住物镜,然后用右手将物镜装上去,这样即使没安装好,也不会摔到地上。二、正确对光的问题对光是使用显微镜时很重要的一步,有些学生在对光时,随便转一个物镜对着通光孔,而不是按要求一定用低倍镜对光。转动反光镜时喜欢用一只手,往往将反光镜扳了下来。所以教师在指导学生时,一定要强调用低倍镜对光,当光线较强时用小光圈,平面镜,而光线较弱时则用大光圈,凹面镜,反光镜要用双手转动,当看到均匀光亮的圆形视野为止。光对好后不要随便的移动显微镜,以免光线不能准确的通过反光镜进入通光孔。三、正确使用准焦螺旋的问题使用准焦螺旋调节焦距,找到物象可以说是显微镜使用中最重要的一步,也是学生感觉最为困难的一步。学生在操作中极易出现以下错误:一是在高倍镜下直接调焦 二是不管镜筒上升或下降,眼睛始终在目镜中看视野;三是不了解物距的临界值,物距调到2~3厘米时还在往上调,而且转动准焦螺旋的速度很快。前两种错误结果往往造成物镜镜头抵触到装片,损伤装片或镜头,而第三种错误则是学生使用显微镜时最常见的一种现象。针对以上错误,教师一定要向学生强调,调节焦距一定要在低倍镜下调,先转动粗准焦螺旋,使镜筒慢慢下降,物镜靠近载玻片,但注意不要让物镜碰到载玻片,在这个过程中眼睛要从侧面看物镜,然后用左眼朝目镜内注视,并慢慢反向调节粗准焦螺旋,使镜筒缓缓上升,直到看到物像为止,同时向学生说明一般显微镜的物距在1厘米左右,所以如果物距已远远超过1厘米,但仍未看到物象,那可能是标本未在视野内或转动粗准焦螺旋过快,此时应调整装片位置,然后再重复上述步骤,当视野中出现模糊的物象时,就要换用细准焦螺旋调节,只有这样,才能缩小寻找范围,提高找到物象的速度。四、物镜转换的问题使用低倍镜后换用高倍镜,学生往往喜欢用手指直接推转物镜,认为这样比较省力,但这样容易使物镜的光轴发生偏斜,原因是转换器的材料质地较软,精度较高,螺纹受力不均匀很容易松脱。一旦螺纹破坏,整个转换器就会报废。教师应指导学生手握转换器的下层转动扳转换物镜。五、光学玻璃清洗的问题光学玻璃用于仪器的镜头、棱镜、镜片等。在制造和使用中容易沾上油污、水湿性污物、指纹等,影响成像及透光率。清洗光学玻璃,应根据污垢的特点、不同结构,选用不同的清洗剂,使用不同的清洗工具,选用不同的清洗方法。清洗镀有增透膜的镜头,如照相机、幻灯机、显微镜的镜头,可用20%左右的酒精和80%左右的一种有机物,结构式为C2H5OC2H5的配置清洗剂进行清洗。清洗时应用软毛刷或棉球沾有少量清洗剂,从镜头中心向外做圆运动。切忌把这类镜头浸泡在清洗剂中清洗,清洗镜头时不要用力擦拭,否则会损伤增透膜,损坏镜头。清洗棱镜、平面镜的方法,可依照清洗镜头的方法进行。
  • 光学显微镜技术和应用简介
    自然界中一些最基本的过程发生在微观尺度上,远远超出了我们肉眼所能看到的极限,这推动了技术的发展,使我们能够超越这个极限。早在公元4世纪,人们发现了光学透镜的基本概念,并在13世纪,人们已经在使用玻璃镜片,以提高他们的视力和放大植物和昆虫等对象以便更好地了解他们。随着时间的推移,这些简单的放大镜发展成为先进的光学系统,被称为光学显微镜,使我们能够看到和理解超越我们感知极限的微观世界。今天,光学显微镜是许多科学和技术领域的核心技术,包括生命科学、生物学、材料科学、纳米技术、工业检测、法医学等等。在这篇文章中,我们将首先探讨光学显微镜的基本工作原理。在此基础上,我们将讨论当今常用的一些更高级的光学显微镜形式,并比较它们在不同应用中的优缺点。    什么是光学显微镜?  光学显微镜用于通过提供它们如何与可见光相互作用(例如,它们的吸收、反射和散射)的放大图像来使小结构样品可见。这有助于了解样品的外观和组成,但也使我们能够看到微观世界的过程,例如物质如何跨细胞膜扩散。  显微镜的部件以及光学显微镜的工作原理  从根本上说,显微镜包括两个子系统:一个用于照亮样品的照明系统和一个成像系统,该系统产生与样品相互作用的光的放大图像,然后可以通过眼睛或使用相机系统进行观察。  早期的显微镜使用包含阳光的照明系统,阳光通过镜子收集并反射到样品上。今天,大多数显微镜使用人造光源,如灯泡、发光二极管(LED)或激光器来制造更可靠和可控的照明系统,可以根据给定的应用进行定制。在这些系统中,通常使用聚光透镜收集来自光源的光,然后在聚焦到样品上之前对其进行整形和光学过滤。塑造光线对于实现高分辨率和对比度至关重要,通常包括控制被照亮的样品区域和光线照射到它的角度。照明光的光学过滤,使用修改其光谱和偏振的光学过滤器,可用于突出样品的某些特征。图1:复合显微镜的基本构造:来自光源的光使用镜子和聚光镜聚焦到样品(物体)上。来自样品的光被物镜收集,形成中间图像,该图像由目镜再次成像并传递到眼睛,眼睛看到样品的放大图像。  成像系统收集与样品相互作用的照明光,并产生可以查看的放大图像(如上图1)。这是使用两组主要的光学元件来实现的:首先,物镜从样品中收集尽可能多的光,其次,目镜将收集的光中传递到观察者的眼睛或相机系统。成像系统还可包括诸如选择来自样品的光的某些部分的孔和滤光器之类的元件,例如仅看到已从样品散射的光,或仅看到特定颜色或波长的光。与照明系统的情况一样,这种类型的过滤对于挑出某些感兴趣的特征非常有用,这些特征在对来自样本的所有光进行成像时会保持隐藏。  总的来说,照明和成像系统在光学显微镜的性能方面起着关键作用。为了在您的应用中充分利用光学显微镜,必须充分了解基本光学显微镜的工作原理以及当今存在的变化。  简单复合显微镜  单个镜头可以用作放大镜,当它靠近镜头时,它会增加物体的外观尺寸。透过放大镜看物体,我们看到物体的放大和虚像。这种效果用于简单的显微镜,它由单个镜头组成,该镜头对夹在框架中并从下方照明的样品进行成像,如下图2所示。这种类型的显微镜通常可以实现2-6倍的放大倍率,这足以研究相对较大的样本。然而,实现更高的放大倍率和更好的图像质量需要使用更多的光学元件,这导致了复合显微镜的发展(如下图3)。图2:通过创建靠近它的物体的放大虚拟图像,将单个镜头用作放大镜。图3:左:简单显微镜。右:复合显微镜。  在复合显微镜中,从底部照射样品以观察透射光,或从顶部照射样品以观察反射光。来自样品的光由一个由两个主要透镜组组成的光学系统收集:物镜和目镜,它们各自的功率倍增,以实现比简单显微镜更高的放大倍率。物镜收集来自样品的光,通常放大倍数为40-100倍。一些复合显微镜在称为“换镜转盘(nose piece)”的旋转转台上配备多个物镜,允许用户在不同的放大倍数之间进行选择。来自物镜的图像被目镜拾取,它再次放大图像并将其传递给用户的眼睛,典型的目镜放大率为10倍。  可以用标准光学显微镜观察到的最小特征尺寸由所使用的光学波长(λ)和显微镜物镜的分辨率决定,由其孔径数值(NA)定义,最大值为NA =1空中目标。定义可区分的最小特征尺寸(r)的分辨率极限由瑞利准则给出:  r=0.61×(λ/NA)  例如,使用波长为550nm的绿光和典型NA为0.7的物镜,标准光学显微镜可以分辨低至0.61×(550nm)/0.7≈480nm的特征,这足以观察细胞(通常为10µm大小),但不足以观察较小生物的细节,例如病毒(通常为250-400nm)。要对更小的特征成像,可以使用具有更高NA和更短波长的更先进和更昂贵的物镜,但这可能不适用于所有应用。  在标准复合显微镜(如下图4a)中,样品(通常在载玻片上)被固定在一个可以手动或电子移动以获得更高精度的载物台上,照明系统位于显微镜的下部,而成像系统高于样本。然而,显微镜主体通常也可以适应特定用途。例如,立体显微镜(如下图4b)的特点是两个目镜相互成一个小角度,让用户可以看到一个略有立体感的图像。在许多生物学应用中,使用倒置显微镜设计(如下图4c),其中照明系统和成像光学器件都在样品台下方,以便于将细胞培养容器等放置在样品台上。最后,比较显微镜(如下图4d)常用于法医。图4:复合显微镜。a)标准直立显微镜指示(1)目镜,(2)物镜转台、左轮手枪或旋转鼻镜(用于固定多个物镜),(3)物镜、调焦旋钮(用于移动载物台)(4)粗调,(5)微调,(6)载物台(固定样品),(7)光源(灯或镜子),(8)光阑和聚光镜,(9)机械载物台。b)立体显微镜。c)倒置显微镜。  光学显微镜的类型  下面,我们将介绍一些当今可用的不同类型的光学显微镜技术,讨论它们的主要操作原理以及每种技术的优缺点。  亮视野显微镜  亮视野显微镜(Brightfield microscopy,BFM)是最简单的光学显微镜形式,从上方或下方照射样品,收集透射或反射的光以形成可以查看的图像。图像中的对比度和颜色是因为吸收和反射在样品区域内变化而形成的。BFM是第一种开发的光学显微镜,它使用相对简单的光学装置,使早期科学家能够研究传输中的微生物和细胞。今天,它对于相同的目的仍然非常有用,并且还广泛用于研究其他部分透明的样品,例如透射模式下的薄材料(如下图5),或反射模式下的微电子和其他小结构。图5:亮视野显微镜。左图:透射模式-在显微镜下看到的石墨(深灰色)和石墨烯(最浅灰色)薄片。在这里,图像上看到的亮度差异与石墨层的厚度成正比。右图:反射模式-SiO2表面上的石墨烯和石墨薄片,小的表面污染物也是可见的。  暗视野显微镜  暗视野显微镜是一种仅收集被样品散射的光的技术。这是通过添加阻挡照明光直接成像的孔来实现的,这样只能看到被样品散射的照明光。通过这种方式,暗场显微镜突出显示散射光的小结构(如下图6),并且对于揭示BFM中不可见的特征非常有用,而无需以任何方式修改样品。然而,由于在最终图像中看到的唯一光是被散射的光,因此暗场图像可能非常暗并且需要高照明功率,这可能会损坏样品。  图6:亮视野和暗视野成像。a)亮视野照明下的聚合物微结构。b)与a)中结构相同的暗视野图像,突出显示边缘散射和表面污染。c)与a)和b)相似的结构,被直径为100-300nm的纳米晶体覆盖。仅观察到纳米晶体散射的光,而背景光被强烈抑制。  相差显微镜  相差显微技术(Brightfield microscopy,PCM)是一种可视化由样品光路长度变化引起的光学相位变化的技术.这可以对在BFM中产生很少或没有对比度的透明样品进行成像,例如细胞(如下图7)。由于肉眼不易观察到光学相移,因此相差显微镜需要额外的光学组件,将样品引起的相移转换为最终图像中可见的亮度变化。这需要使用孔径和滤光片来操纵照明系统和成像系统。这些形状和选择性地相移来自样品的光(携带感兴趣的相位信息)和照明光,以便它们建设性地干涉眼睛或检测器以创建可见图像。图7:人类胚胎干细胞群落的相差显微图像。  微分干涉显微镜  与PCM类似,微分干涉显微镜(differential interference contrast microscopy,DICM)通过将由于样品光路长度变化引起的光学相位转换为可见对比度,从而使透明样品(例如活的未染色细胞)可视化。然而,与PCM相比,DICM可以实现更高分辨率的图像,并且减少了由PCM所需的光学器件引入的清晰度和图像伪影。在DICM ,照明光束被线性偏振器偏振,其偏振旋转,使其分裂成两个偏振光束,它们具有垂直偏振和小(通常低于1µm)间隔。穿过样品后,两束光束重新组合,从而相互干扰。这将创建一个对比度与图像成正比的图像差在两个偏振光束之间的光相位,因此命名为“差”干涉显微镜。DICM产生的图像出现与采样光束之间的位移方向相关的三维图像,这导致样品边缘具有亮区或暗区,具体取决于两者之间的光学相位差的符号(如下图8)。图8:微分干涉对比显微镜。左:DICM的原理图。右图:通过DICM成像的活体成年秀丽隐杆线虫(C.elegans)。  偏光显微镜  在偏振光显微镜中,样品用偏振光照射,光的检测也对偏振敏感。为了实现这一点,偏振器用于控制照明光偏振并将成像系统检测到的偏振限制为仅一种特定的偏振。通常,照明和检测偏振设置为垂直,以便强烈抑制不与样品相互作用的不需要的背景照明光。这种配置需要一个双折射样品,它引入了照明光偏振角的旋转,以便它可以被成像系统检测到,例如,观察晶体的双折射以及它们的厚度和折射率的变化(如下图9)。图9:偏光显微镜。橄榄石堆积物的显微照片,由具有不同双折射的晶体堆积而成。整个样品的厚度和折射率的变化会导致不同的颜色。  荧光显微镜  荧光显微镜用于对发出荧光的样品进行成像,也就是说,当用较短波长的光照射时,它们会发出长波长的光。示例包括固有荧光或已用荧光标记物标记的生物样品,以及单分子和其他纳米级荧光团。该技术采用了滤光片的组合,可阻挡短波长照明光,但让较长波长的样品荧光通过,因此最终图像仅显示样品的荧光部分(如下图10)。这允许从由许多其他非荧光颗粒组成的样品中挑出和可视化荧光颗粒或已被染料染色的感兴趣细胞的分布。同时,荧光显微镜还可以通过标记小于此限制的粒子来克服传统光学显微镜的分辨率限制。例如,可以用荧光标记标记病毒以显示其位置在生物样品的情况下,可以表达荧光蛋白,例如绿色荧光蛋白。结合各种新颖形式的样品照明,荧光显微镜的这一优势实现了“超分辨率”显微镜技术,打破了传统光学显微镜的分辨率限制。荧光显微镜的主要限制之一是光漂白,其中标记物或颗粒停止发出荧光,因为吸收照明光的过程最终会改变它们的结构,使它们不再发光。图10:荧光显微镜。左:工作原理-照明光由短通激发滤光片过滤,并由二向色镜反射到样品。来自样品的荧光通过二向色镜,并被发射滤光片额外过滤以去除图像中残留的激发光。右图:有机晶体中分子的荧光图像(晶体轮廓显示为黄色虚线)。由于来自其他分子和晶体材料的荧光,背景并不完全黑暗。  免疫荧光显微镜  免疫荧光显微镜是主要用于在微生物的细胞内的生物分子可视化的位置荧光显微镜的具体变化。在这里,用荧光标记物标记或固有荧光的抗体与感兴趣的生物分子结合,揭示它们的位置。(如下图11)图11:免疫荧光显微镜。肌动蛋白丝(紫色)、微管(黄色)和细胞核(绿色)的免疫荧光标记的两个间期细胞。  共聚焦显微镜  共聚焦显微镜是一种显微镜技术,它可以逐点成像来自样品的散射或荧光。不是一次对整个样品进行照明和成像,而是在样品区域上扫描源自点状光源的照明点,敏感检测器仅检测来自该点的光,从而产生2D图像。这种方法允许以高分辨率对弱信号样本进行成像,因为来自采样点之外的不需要的背景信号被有效抑制。在这里,所使用的波长和物镜在所有三个维度上都限制了成像光斑的大小。这允许通过将物镜移动到距样品不同的距离,在样品内的不同深度处制作2D图像。然后可以组合这些2D图像“切片”以创建样本的3D图像,这是所讨论的其他宽视场显微镜技术无法实现的,并且还允许以3D方式测量样品尺寸。这些优势的代价是无法一次性拍摄图像,而是必须逐点构建图像,这可能非常耗时并阻碍样本的实时成像(如下图12)。图12:单分子荧光的共聚焦荧光图像。小点对应于单个分子的荧光,而较大的点对应于分子簇。此处的荧光背景比简单的荧光显微镜图像弱得多,如亮点之间的暗区所见。  双光子显微镜  双光子显微镜(Two-photonmicroscopy,TPM)是荧光显微镜的一种变体,它使用双光子吸收来激发荧光,而不是单光子激发。在这里,通过吸收两个光子的组合来激发荧光,其能量大约是单个光子激发所需能量的一半。例如,在该方案中,通常由单个蓝色光子激发的荧光团可以被两个近红外光子激发。在TPM中,图像是逐点建立的,就像在共聚焦显微镜中一样,也就是说,双光子激发点在样品上扫描,样品荧光由灵敏的检测器检测。与传统荧光显微镜相比,激发和荧光能量的巨大差异导致了多重优势:首先,它允许使用更长的激发波长,在样品内散射较少,因此穿透更深,以允许在其表面下方对样品进行成像并创建3D样品图像。同时,由于激发能量低得多,光漂白大大减少,这对易碎样品很有用。激发点周围的荧光背景也大大减少,因为有效的双光子吸收仅发生在激发光束的焦点处,因此可以观察到来自样品小部分的荧光(如下图13)。  TPM的一个缺点是双光子吸收的概率远低于单光子吸收,因此需要高强度照明,如脉冲激光,才能达到实用的荧光信号强度。图13:双光子显微镜。花粉的薄光学切片,显示荧光主要来自外层。  光片显微镜  光片显微技术是荧光显微术的一种形式,其中样品被垂直于观察方向的薄“片”光照射,从而仅对样品的薄切片(通常为几微米)进行成像。通过在样品在光片中旋转的同时拍摄一系列图像,可以形成3D图像。这要求样品大部分是透明的,这就是为什么这种技术通常用于形成小型透明生物结构的3D图像,例如细胞、胚胎和生物体。(如下图14)图14:光片显微镜。左:工作原理。右:通过荧光成像用光片显微镜拍摄的小鼠大脑的荧光图像。  全内反射荧光显微镜  全内反射荧光(Totalinternal reflection fluorescence microscopy ,TIRF)是一种荧光显微技术,可通过极薄(约100nm厚)的样品切片制作2D荧光图像。这是通过照明光的渐逝场激发样品的荧光来实现的,当它在两种不同折射率(n)的材料之间的边界处经历全内反射时就会发生这种情况。消逝场具有与照明光相同的波长,但与界面紧密结合。在TIRF显微镜中,激发光通常在载玻片(n=1.52)和样品分散的水介质(n=1.35)之间的界面处发生全内反射。渐逝场的强度随距离呈指数下降来自界面,这样在最终图像中只能观察到靠近界面的荧光团。这也导致来自切片外区域的荧光背景的强烈抑制,这允许拾取微弱的荧光信号,例如在定位单个分子时。这使得TIRF非常适用于观察参与细胞间相互作用的荧光蛋白(如下图15)的微弱信号,但也需要将样品分散在水性介质中,这可能会限制可以测量的样品类型。图15:TIRF图像显示培养的视网膜色素上皮细胞中的蛋白质荧光。每个像素对应67nm。  膨胀显微镜  膨胀显微镜背后的基本概念是增加通常需要高分辨率显微镜的样品尺寸,以便可以使用标准显微镜技术(尤其是荧光显微镜)对其进行成像。这适用于保存的标本,例如生物分子、细胞、细菌和组织切片,可以使用下图16中所示的化学过程在所有维度(各向同性)均匀扩展多达50倍。扩展样本可以隔离感兴趣的个别特征通常是隐藏的,可以使它们透明,从而可以对它们的内部进行成像。图16:膨胀显微镜的样品制备。细胞首先被染色,然后连接到聚合物凝胶基质上。然后细胞结构本身被溶解(消化),使染色的部分随着凝胶各向同性地膨胀,从而使染色的结构更详细地成像。  光学显微镜中的卷积  除了使光学系统适应特定用例之外,现代光学显微镜还利用了数字图像处理,例如图像去卷积。该技术通过补偿光学系统本身固有的模糊,可以提高空间分辨率以及光学显微镜拍摄图像的定位精度。这种模糊可以在校准步骤中测量,然后可以用于对图像进行去卷积,从而减少模糊。通过将高性能光学元件与先进的图像处理相结合,数字显微镜可以突破分辨率的极限,以更深入地观察微观世界。(如下图17)图17:图像解卷积。左:原始荧光图像。右:解卷积后的图像,显示细节增加。  光学显微镜与电子显微镜  光学显微术通常使用可见光谱中的光波长,由于瑞利准则,其空间分辨率固有地限制为所用波长的大约一半(最多约为200nm)。然而,即使使用具有高NA和高级图像处理的物镜,也无法克服这一基本限制。相反,观察较小的结构需要使用较短波长的电磁辐射。这是电子显微镜的基本原理,其中使用电子而不是可见光照亮样品。电子具有比可见光短得多的相关波长,因此可以实现高达10000000倍的放大倍数,甚至可以分辨单个原子。(如下图18)  图18:同心聚合物结构中纳米晶体放大15000倍的扫描电子显微镜图像,即使是细微的细节,例如基材的孔隙,也能分辨出来。  总结与结论  光学显微镜是一种强大的工具,可用于检查各种应用中的小样本。通过调整用于特定用例的照明和成像技术,可以获得高分辨率图像,从而深入了解样品中的微观结构和过程。文中,我们讨论了各种光学显微镜技术的特点、优势和劣势,这些技术在光线照射和收集方式上有所不同。显微镜种类优点技术限制典型应用亮视野显微镜结构相对简单,光学元件很少低对比度、完全透明的物体不能直接成像,可能需要染色对彩色或染色样品和部分透明材料进行成像暗视野显微镜显示小结构和表面粗糙度,允许对未染色样品进行成像所需的高照明功率会损坏样品,只能看到散射图像特征细胞内颗粒成像,表面检测相差显微镜实现透明样品的成像复杂的光学设置,需要的高照明功率会损坏样品,通常图像较暗跟踪细胞运动,成像幼虫微分干涉对比显微镜比PCM更高的分辨率复杂的光学设置,需要的高照明功率会损坏样品,通常图像较暗活的、未染色的细胞和纳米颗粒的高分辨率成像偏光显微镜来自样品非双折射区域的强背景抑制,允许测量样品厚度和双折射需要双折射样品成像胶原蛋白,揭示晶体中的晶界荧光显微镜允许挑出样品中的单个荧光团和特定的感兴趣区域,可以克服分辨率限制需要荧光样品和灵敏的检测器,光漂白会减弱信号成像细胞成分、单分子、蛋白质免疫荧光显微镜使用抗体靶向可视化特定的生物分子大量样品制备,需要荧光样品,光漂白识别和跟踪细胞和蛋白质共聚焦显微镜低背景信号,可以创建3D图像成像速度慢,需要复杂的光学系统3D细胞成像,荧光信号较弱的成像样品,表面分析双光子显微镜样品穿透深度、背景信号低、光漂白少成像速度慢,需要复杂的光学系统和大功率照明神经科学,深层组织成像光片显微镜图像仅样品的极薄切片,可通过旋转样品创建3D图像成像速度慢,需要复杂的光学系统细胞和生物体的3D成像全内反射荧光显微镜强大的背景抑制,极精细的垂直切片成像仅限于样品的薄区域,需要复杂的光学系统,样品需要在水介质中单分子成像,成像分子运输膨胀显微镜提高标准荧光显微镜的有效分辨率需要对样品进行化学处理,不适用于活体样品生物样品的高分辨率成像  参考:  1. Rochow TG, Tucker PA. A Brief History of Microscopy. In: Introduction to Microscopy by Means of Light, Electrons, X Rays, or Acoustics. Springer US 1994:1-21. doi:10.1007/978-1-4899-1513-9_1  2. Smith WJ. Modern Optical Engineering: The Design of Optical Systems. McGraw-Hill 1990. ISBN: 0070591741  3. Shribak M, Inoué S. Orientation-independent differential interference contrast microscopy. Collected Works of Shinya Inoue: Microscopes, Living Cells, and Dynamic Molecules. 2008 (Dic):953-962. doi:10.1142/9789812790866_0074  4. Gao G, Jiang YW, Sun W, Wu FG. Fluorescent quantum dots for microbial imaging. Chinese Chem Lett. 2018 29(10):1475-1485. doi:10.1016/j.cclet.2018.07.004  5. Chalfie M, Tu Y, Euskirchen G, Ward W, Prasher D. Green fluorescent protein as a marker for gene expression. Science. 1994 263(5148):802-805. doi:10.1126/science.8303295  6. Baranov M V., Olea RA, van den Bogaart G. Chasing Uptake: Super-Resolution Microscopy in Endocytosis and Phagocytosis. Trends Cell Biol. 2019 29(9):727-739. doi:10.1016/j.tcb.2019.05.006  7. Miller DM, Shakes DC. Chapter 16 Immunofluorescence Microscopy. In: Current Protocols Essential Laboratory Techniques. Vol 10. 1995:365-394. doi:10.1016/S0091-679X(08)61396-5
  • Biotechniques:2014最受欢迎的显微镜论文
    还有什么比显微镜工作者从细胞世界获得的图像更惊人呢?除了美之外,这样的照片还揭示了关于&ldquo 细胞和生物分子运行及互动的方式&rdquo 的新见解。在2014年显微镜技术有哪些研究进展使我们赞叹不已呢?  单凭想象,我们不能看到行动的细胞,不能定位蛋白质或其他生物分子。细胞成像的力量是公认的,在今年秋季早些时候,三位显微镜先驱者,因研制出超分辨率荧光显微镜,获得了今年的诺贝尔化学奖。就像超分辨率显微镜的进展,可以从根本上改变我们看细胞世界的方式。但是,无论它是一个主要的里程碑还是日常进展,都能使我们节约花在板凳上的时间和资源,新的成像技术总是备受研究界的需要和欢迎。为此,BioTechniques的编辑回顾了这一年来的显微镜技术进展,选择了2014年发表的我们最喜爱的论文。我们的选择清楚地显示,成像方法的日益多样性,正被应用于当今的生命科学研究。  1.&ldquo Two-color fluorescent in situ hybridization using chromogenic substrates in zebrafish,&rdquo by Schumacher et al. (November 2014)  当谈到显微镜时,我们被宠坏了。我们看到的大多数共聚焦图像有多种颜色,可提供一系列的数据。然而对一些技术来说,这些颜色付出了代价。对于双色荧光原位杂交(FISH)来说,检测弱表达的转录本和监测实验过程中的信号强度及背景值,成本一直很高。辛辛那提儿童医院Saulius Sumanas的研究小组,深入研究了将显色底物而不是传统标记探针应用于FISH的可能性。结合NBT/BCIP和Vector Red&mdash &mdash 它们具有非重叠的反射波长,作者创建了一种程序,利用碱性磷酸酶的长反应性、显影反应的显色监测和高分辨率的荧光成像,来比较斑马鱼的基因表达模式。[文献]  2. &ldquo Robust and artifact-free mounting of tissue samples for atomic force microscopy,&rdquo by Morgan et al. (September 2014)  原子力显微技术(AFM)是一种用于研究细胞和组织物理特性的技术。AFM的一个缺点是,在成像之前需要固定组织样品。一般通过胶水或干燥样品来完成固定,这两者都可能产生人工误差。为了消除这种可能的错误来源,加州大学戴维斯分校的Paul Russell及其同事,构建了一种设备,他们称之为组织软夹紧固定保持器(SCIRT),用其来固定AFM样品。利用SCIRT,Russell的研究小组能够处理小样本,提供样本的不断水化,消除胶水及其相关的人工误差,甚至在AFM测量之后还能恢复样品。[文献]  3. &ldquo Multi-modality imaging of a murine mammary window chamber for breast cancer research,&rdquo by Schafer et al. (July 2014)  有时候,用一种以上的技术来影像样品或标本比较划算。光学显微镜可以提供细胞水平细节的信息,像磁共振成像(MRI)这样的技术,可以提供更大结构的高分辨率形态学信息,例如肿瘤的尺寸和形状。在今年7月,美国亚利桑那大学的Arthur Gmitro及其同事,详细介绍了他们的新方法,用于小动物肿瘤微环境成像。研究人员利用一种植入的乳房视窗,用光学显微镜以及MRI和核成像,来影像肿瘤环境。通过相同的乳腺视窗,用多种成像技术专注于一个单一解剖区域的能力,可提供乳腺癌细胞和肿瘤生长之间关系的新见解。[文献]  4. &ldquo Investigation of membrane protein&ndash protein interactions using correlative FRET-PLA,&rdquo by Ivanusic et al. (October 2014)  并不是所有的新成像技术都将会产生明亮、高对比度的彩色图片,赢得显微镜图像竞赛,但是即使外形不美观的方法,仍然能够产生美好的信息。德国柏林的Daniel Ivanusic及其同事,在今年10月份发表了一个这样的例子。荧光能量共振转移(FRET)和邻近连接技术(PLA)这样的技术,可以用来监测蛋白质是否和何时相互作用。Ivanusic的研究小组意识到,将相关的FRET和PLA技术组合起来,或许能够检测膜蛋白相互作用,要优于单独使用每项技术。他们发现,在蛋白相互作用研究中,这一系列实验可验证相关FRET-PLA的稳健性和可靠性。[文献]  5. &ldquo Nuclear LC3-positive puncta in stressed cells do not represent autophagosomes,&rdquo by Buckingham et al. (November 2014)  最后,有些时候需要提醒你的是,看得到不一定意味着相信。在11月份,爱荷华大学的Charles Grose及其研究小组,深入研究了两个研究小组的最近观察结果,这两个小组研究细胞中的细胞核LC3-阳性斑点。LC3抗体与自噬体有关,这应该意味着自噬体的核定位&mdash &mdash 以前认为并不存在的东西。Grose及其研究小组发现,观察到的染色并不是LC3特定的,而是由某一通透性和杂交条件引起的非特异性染色。  推荐原文  Microscopy: 2014 Year in Review&mdash Imaging ourNatural World
  • 电镜博物馆|1959年刊:“神奇的电子显微镜”
    温故知新,从历史刊物文章中学习早期电镜产品技术历程,以下内容摘自《Popular Electronics》1959年11月刊(Vol. 11, No. 5),文章题目“The Amazing Electron Microscope”,作者Morris M. Rubin。(由“RF Cafe”网收录)光学显微镜的分辨率受到光波长的限制。天文学家William Dawes首先提出了一种量化的方法,这种方法基于视觉上分辨距离较近的恒星的能力。被称为道斯极限,4.56/D弧秒的值是由经验确定的(D是仪器的孔径,单位是英寸)。任何具有完美光学系统的光学系统的放大倍数的理论上限在2000左右。正如这篇1959年《Popular Electronics》上这篇文章所描述,电子显微镜通过发射一束半径远小于可见光波长的电子,并测量其反射,从而消除了这种分辨极限。图像必然是“假色”,因为我们无法感知到电子束所显示的表面的真实波长/颜色。《Popular Electronics》1959年11月刊封面与目录整理译文如下,以飨读者。“惊人的电子显微镜作者:Morris M. Rubin在光学显微镜分辨率达到极限后很久,电子显微镜的分辨率还在继续提高……高达 20万倍。从第一位伟大的显微镜设计师安东列文虎克(Antony van leeuwenhoek)时代起,科学家们就将显微镜作为他们的主要工具之一。年复一年,随着光学玻璃制造技术的改进,新的更好的显微镜使科学家能够看到越来越微小的物体。随后,大约在1890年,光学显微镜分辨率的提升似乎已经走到了尽头。超过大约 2000 倍的放大倍数,即使是最精细、设计最完美的显微镜也只能看到一个模糊的斑点。光本身的基本特征阻碍了更强大显微镜的发展。与声音类似,光以可测量长度的波传播。例如,在可见光谱的中,波的长度约为 6/250000 英寸。为了让光波区分物体上的两个点,两点之间的距离必须是光波长度的三分之一,即6/ 250000英寸以上,小于约半波长的物体无法被光学显微镜清晰放大,无论其透镜多么完美。科学家们推断,既然根本的瓶颈是“普通”光的波长相对较长造成,那么如果有可能使用某种波长较短的光,就可以实现更有效的放大。于是,人们探索了这种可能性,并利用紫外光(其波长约为可见光的三分之一),设计出可以放大到5000倍的显微镜,放大倍数达到可见光显微镜极限的两倍多。此时,光学显微镜达到了其设计能力的天花板。如果科学家想要更大的放大倍数,他们必须找到一种新的方法。电子的“营救”电子显微镜的理论在20世纪20 年代提出。实验表明,当电子受到高压场加速时,它们会获得可测量的特征波长。电压越高,电子速度越大,表观波长越短。此外,已经证明电子可以被磁场弯曲或折射,类似光可以被光学透镜弯曲和折射。因此,光学显微镜的分辨率极限,就可以通过使用更短波长电子流替代光,从而获得更高放大倍数,这似乎是合乎逻辑的。有了这样的重要概念,科学家们开始着手设计电子显微镜。到20世纪30年代后期,实验型的电镜已经在欧洲、加拿大和美国投入使用。随后,在1940年,RCA公司推出美国第一台商用电子显微镜。虽然按照目前的标准,这些最初的电镜产品设计还比较落后,但相比有史以来最好的光学显微镜则要优越的多。甚至紫外线显微镜的放大倍数也仅限于 5000 倍,而这些早期的电子显微镜却能够放大 10万 倍。今天的模型放大倍数超过 20万倍——足以看到人类头发直径百万分之一的物体——并且通过照相技术进一步放大图像,可以将直径放大至100万倍以上。电子取代光。与光学显微镜的原理类似,电子显微镜使用一系列镜头逐步放大样品。但是,虽然光学显微镜使用玻璃透镜来弯曲光线,而电子显微镜的“透镜”是线圈——类似于电视机的偏转线圈——可以弯曲和偏转电子流。电子显微镜与普通光学显微镜的比较。基本原理是一样的,但是电子显微镜使用线圈来磁偏转和聚焦电子束,而不是用玻璃透镜来弯曲和折射光线。电子枪发射的电子通过聚光透镜,聚光透镜将电子束集中在样品上。由于样本被制样切成部分透明的薄片,在任何一点上,电子通过它的数量都随标本的密度而变化。这样就产生了一种不同电子密度变化的图案。虽然这种图案肉眼是看不见的,但可以通过在标本下方放置荧光屏来显示。然而,在实际操作中,电子通过物镜,这是进行放大的第一步。就在它们到达投影镜头之前,一个“展开”的密度图案就形成了,中心区域随后被投影镜头进一步放大。放大的标本可以直接在荧光屏(其外观和工作方式类似于电视屏幕)上查看,或者可以通过特殊相机拍摄图像(通常内置于电子显微镜中)。放大所得照片可以进一步放大样品。关于价格。除了光学系统,电子显微镜还必须有超稳定的高压电源和高效率的真空系统。这种复杂性导致了当今电子显微镜的高昂价格——从 12000 美元到40000 美元不等,具体取决于所需的放大倍率、品牌等。以上展示了两种最广泛使用的电子显微镜。左边是RCA EMU-3,可以放大20万倍。右边是Norelco EM100B,放大到90000倍。Norelco(荷兰飞利浦)和 RCA(美国无线电公司)是这些装置的最大生产商。德国和日本的制造商也活跃在该领域。俄罗斯人也参与其中,生产了一种电子显微镜,该显微镜似乎是 1940 年 RCA 模型的改编版。首台RCA电子显微镜的共同发明者,James Hillier博士,左边显示的是RCA的EMB模型,在1940年上市。局限性。尽管电子显微镜可能有用,但它仍然有其局限性。由于高压电子对生物体是致命的,电子显微镜不能用于观察活的细菌、病毒等。另外,电子束不能穿透超过 1/25000 英寸,所以电子显微镜不能用于观察更厚的物体——例如苍蝇的翅膀。后一个问题的解决方案是开发特殊设备,这些设备可以切割出足够薄以允许电子通过的待观察物体的切片。这种“切片机”如何处理较软的材料我们很容易想到,但我们如何切下一层 1/25000 英寸厚的钢?这个问题的答案非常简单。钢材表面的“复制品”是在柔软的材料上制成的,例如蜡。复制品很容易切片,当它安装在非常薄的透明膜上时,它会取代显微镜中的原始物体。重要性。现在全国各地的实验室都在使用大约一千台电子显微镜。它们是寻找疾病(尤其是癌症)原因的研究中的宝贵工具,同时,它们在解决各种工业问题方面也很有用。例如,可以通过仔细检查电子显微镜照片来判断橡胶轮胎的磨损质量,从而无需进行漫长而繁琐的路试。最近在纽约举行的苏联展览上展出的一个1959年的俄罗斯电镜但是,电子显微镜最令人兴奋的应用是在细胞研究中。细胞通过蛋白质合成过程生长、滋养和再生。在电子显微镜的帮助下,科学家们第一次能够看到这些过程——这才是真正的“生命的秘密”。人类是一种永不满足的好奇生物。电子显微镜是满足人类求知欲和理解力的最有效手段之一。你能认出这些图片吗?所有这些都是在电子显微镜的帮助下拍摄的(答案在页面底部)。答案1. (a) 总放大倍数 160,000X;飞利浦电子公司提供2. (c) 总放大倍数 425,000X;由法兰西学院和 RCA 提供3. (c) 总放大倍数 112,000X;由麻省理工学院 CE Hall 博士提供4. (d);总放大倍数 68,000X;由 Esso Research & Engrg 公司提供5. (c) 总放大倍数 14,680X;由陶氏化学公司和 RCA 提供”
  • 层状材料的原子力显微镜
    • James Keerfot• Vladimir V Korolkov原子力显微镜(AFM)是一种测量探针和样品之间作用力的技术,它不仅可用于测量纳米级分辨率的表面形貌,还可用于绘制和操作可使用纳米级探针处理的一系列性能。在这里,我们只谈到了最先进的AFM在层状材料研究中的一些能力。我们希望探索的第一个例子是如何使用AFM来研究垂直异质结构中的层的注册表,这会产生许多有趣的现象[1,2]。根据层间和层内的结合、晶格周期和两个重叠薄片角度的对称性和失配,可以观察到单层石墨烯(SLG)和六方氮化硼(hBN)[3]之间的莫尔图案或扭曲控制的双层二硫化钼(2L-MoS2(0°))[4]中的原子重建等特征。在图1中,我们展示了我们的FX40自动AFM如何使用导电AFM(C-AFM)和侧向力显微镜(LFM)来测量这些特征。这两种技术都源于接触模式AFM,其中悬臂由于排斥力而产生的偏转用于通过反馈回路跟踪表面形貌。LFM测量探针在垂直于悬臂梁的方向上扫描时的横向偏转,而C-AFM绘制尖端样品结处恒定电压和力下的电流图。除了传统的形貌通道外,AFM还使用这些模式,为研究垂直异质结构中层间扭曲和应变影响的研究人员提供了“莫尔测量”。图1:Park Systems的FX40自动AFM(a)用于使用LFM(c)和c-AFM(d)测量hBN和单层石墨烯(b)之间的莫尔图案。对于具有边缘扭曲角和有利的层间结合的样品,可以测量原子重建,这是石墨上平行堆叠的双层MoS2的情况(e)。与莫尔图案一样,在这种情况下,由于重建,可以使用LFM(f)和C-AFM(g)测量不同配准的区域。除了探索层状材料的形态和注册,原子力显微镜还具有一系列功能模式,可以用纳米尺度的分辨率测量诸如功函数、压电性、铁电性和纳米机械性能等性能。在图2中,我们展示了如何使用单程边带开尔文探针力显微镜(SB-KPFM)[5]来同时绘制尖端和具有不同层厚度的MoS2薄片之间的形态和接触电势差(CPD)。MoS2薄片从聚二甲基硅氧烷(PDMS)转移到Si上,在MoS2和Si之间留下截留的界面污染气泡。通过比较形貌(见图2b)和CPD(见图2c),我们看到由于MoS2层厚度和截留的界面污染物气泡的大小,CPD发生了变化。通过从地形数据中提取相对应变的估计值,该估计值基于尖端水泡相对于平坦基底的行进距离,可以直接将CPD和一系列层厚度的应变关联起来[6]。图2:KPFM是用Multi75E探针和5V的电驱动(VAC)和5kHz的频率(fAC)在硅(天然氧化物)上的MoS2上进行的(a)。对于多层MoS2薄片,同时绘制了形貌图(b)和CPD(c),揭示了由于层厚度和捕获污染物的气泡的存在而导致的CPD对比度。通过从地形图像中提取相对应变的估计值,我们绘制了各种泡罩尺寸和MoS2厚度的相关应变和CPD(d),如图图例所示。在我们的最后一个例子中,我们将研究如何使用原子力显微镜来决定性地操纵层状材料。在图3 a-c中,我们比较了90 nm SiO2/Si中2-3层(L)石墨烯薄片在使用阳极氧化切割之前(见图3b)和之后(见图3c)的横向力显微镜图像,其中尖端使用接触模式保持接触,同时施加40 kHz的10 V AC偏压[7]。除了阳极氧化,原子力显微镜还能够对层状材料进行机械改性。图3d-f中给出了一个这样的例子,其中使用Olympus AC160探针(刚度~26N/m)将聚苯乙烯上的3L-MoS2薄片缩进不同的深度。如图3f的插图所示,压痕深度(使用非接触模式监测)与压痕力密切相关。以这种方式修改局部应变已被证明可以决定性地产生表现出单光子发射的位点[8]。图3:在接触模式(a)下,通过向探针施加AC偏压,对少层石墨烯进行阳极氧化。通过比较(b)之前和(c)之后的LFM图像来证明薄片的确定性切割。也可以在聚苯乙烯上进行几层MoS2的压痕,证明了机械操作(d)。通过非接触模式AFM监测的压痕深度显示,压痕力范围高达~7.2µN。总之,我们已经展示了AFM如何能够提供比表面形貌多得多的信息,并且可以执行的一套功能测量和样品操作过程为关联测量提供了新的机会。易于使用的功能以及使用最佳探针自动重新配置硬件进行功能测量的能力,使Park的FX40特别适合此类调查。References[1] R. Ribeiro-Palau et al. Science 361, 6403, 690 (2018).[2]Y. Cao et al. Nature 556, 80 (2018).[3] C. Woods et al. Nature Phys. 10, 451 (2014).[4]A. Weston et al. Nat. Nanotechnol. 15, 592 (2020).[5] A. Axt et al. Beilstein J. Nanotechnol. 9, 1809–1819 (2018)[6] E. Alexeev et al. ACS Nano 14, 9, 11110 (2020)[7] H. Li et al. Nano Lett., 18, 12, 8011 (2018)[8] M. R. Rosenberger et al. ACS Nano, 13, 1, 904–912 (2019)原文:Atomic force microscopy for layered materials,Wiley Analytical Science作者简介• 詹姆斯基尔福(James Keerfot)Park Systems UK Ltd, MediCity Nottingham, Nottingham, UK.弗拉基米尔科罗尔科夫(Vladimir V. Korolkov)Park Systems UK Ltd., MediCity Nottingham, UK.弗拉基米尔于2008年获得莫斯科大学化学博士学位。随后,他进入海德堡大学,专攻薄膜的X射线光电子能谱学,随后在诺丁汉大学任职,在那里他发现了自己对扫描探针显微镜(SPM)的热情,并成为SPM技术的坚定拥护者,以揭示纳米级的结构和性能。他率先使用标准悬臂的更高本征模来常规实现分辨率,而以前人们认为分辨率仅限于STM和UHV-STM。弗拉基米尔目前发表了40多篇科学论文,其中包括几篇在《自然》杂志上发表的论文。尽管截至2018年,他的专业知识为SPM技术的产业发展做出了贡献,但他的工作仍在激励和影响该领域的学术冒险。
  • 新光学显微镜技术揭示活细胞生物过程
    来自美国霍华德休斯医学研究所,Janelia研究园的科学家们,借助其发展的新光学超分辨率成像技术,在前所未有的高分辨率条件下研究了活体细胞内的动态生物过程。他们的新方法显著的提高了结构光照明显微镜(structuredilluminationmicroscopy,SIM)的分辨率,一种最适合活体超分辨成像的技术。     新技术所拍摄的视频生动地展现了细胞内蛋白质的运动和相互作用。它们帮助生物学家理解细胞是怎样改变它们之间的依存结构,以及重整细胞膜结构使得细胞外的分子可以被吸收到细胞内。来自Janelia研究园的研究员EricBetzig博士,李栋博士后*和他们的同事们基于原有的SIM显微镜原理新发展了两种新的超分辨率成像技术。超分辨率光学显微成像技术能够跨越理论的分辨率极限,在极高的分辨率下展现细胞内的精细结构。但是,到目前为止,超分辨率显微镜技术却依然不能进行有效的活体细胞成像。  “这些方法设立了超分辨率光学显微镜的成像速度和非侵入特性的新标准,它们使得超分辨率活体细胞成像成为现实。”Betzig博士说道。在传统的SIM显微镜中,物镜下的物体被非均匀的结构光(类似于条纹码)所照明。在实验中,几束不同的结构光用来照明物体,它们和物体在不同角度混频所产生的摩尔条纹被相机依次采集。然后计算机提取摩尔条纹编码的信息并将其解码生成三维的高分辨率图像。最终重建的SIM图像具有高于传统显微镜图像2倍的空间分辨率。  Betzig博士和其他两位科学家因为发展超分辨率荧光显微镜而被授予2014年诺贝尔化学奖。他说道,SIM显微镜技术之所以没有得到像其它方法那样多的关注,是因为其它技术能够提供比两倍更高的分辨率改进效果。但是,他强调SIM拥有两大其它的超分辨率方法所没有的优势。这些其它方法包括了两种去年获得诺贝尔奖表彰的技术:他和同事HaraldHess博士于2006年开发的光激活定位显微镜(photoactivatedlocalizationmicroscopy,PALM),和受激辐射耗尽(stimulatedemissiondepletion,STED)显微镜。但是,这两种技术都需要过多或过强的光来照明样品,以至于荧光蛋白很快被漂白,细胞样品很快被损害,从而不可能长时间进行成像。然而,SIM在这些方面不一样,“我爱上了SIM,因为它的速度很快,而且它所需的照明光强度远远小于其它方法。”Betzig博士说道。  Betzig博士在2011年MatsGustafsson博士去世后不久开始与SIM相关的研究。Gustafsson博士是SIM技术的先驱之一,生前也是Janelia的研究员。Betzig博士那时已经深信SIM有潜力为解析细胞内部的工作机理提供重要的见解,如果SIM的空间分辨率可以被提高,它对于生物研究的可用性将被大大增强。  在生前,Gustafsson博士和博士生HesperRego发展了一种利用饱和耗尽(saturateddepletion)的非线性SIM技术,但这种技术在改进分辨率的同时需要使用很多的光照并且散失了SIM成像速度快的优势。Betzig博士想到了一种可以避免这些缺陷的方法。  饱和耗尽非线性SIM利用光可反复开关的荧光蛋白和其在开关过程中的饱和耗尽效应来提高分辨率。它产生图像的过程是,首先把所有的荧光蛋白分子激活到可发光的状态(亮态),然后用一束结构光把大部份的亮态分子反激活到暗态。通过结构光反激活之后,仅有少数处于结构光最弱区域的分子仍然保持在亮态。这些光调控过程提供了物体的高空间频率信息,从而让图像更加清晰。这一过程需要重复25或更多次才能产生最终的高分辨率图像。Betzig博士说道,这一原理非常类似于STED或另一种与其相关的叫做RESOLFT的超分辨率技术的原理。  这一技术并不适合于活体成像,因为激活和反激活荧光蛋白需要很长的时间。另外,反复的光照明会对细胞和荧光蛋白本身造成损伤。Betzig博士说道,“这一技术的问题在于你首先用光激活了所有的荧光蛋白分子,然后你马上又用另一束光反激活了大部份分子。这些被反激活的分子对最终的图像没有任何贡献,但却被你用光“油炸”了两次。你让分子承受了很大“压力”,并且花了很多你并没有的时间,因为这段时间内细胞在运动。”  解决方法其实很简单,Betzig博士说道:“没有必要激活所有的分子。”在Betzig研究小组新发展的结构光激活非线性SIM的技术中,一开始用结构光只激活样品里的一部分荧光蛋白分子。“这一结构光激活过程已经给你一些高分辨率的信息了。”Betzig博士解释道。另外一束结构光用于反激活分子,额外的信息可以在反激活的过程中同时被读出。两个结构光叠加的效应给与最终图像62纳米的分辨率,这一结果好于原始的SIM,并且把由光波长决定的传统分辨率极限改进了三倍。  “我们能够做到快速地超高分辨率成像。”Betzig博士说道。这很重要,他补充道,因为对于动态过程,单纯提高空间分辨率而没有相应地提高成像速度是没有意义的。“如果细胞内部有的结构以1微米每秒的速度运动,并且我有1微米的分辨率,那么我需要在一秒内采集图像。但如果我有1/10微米的分辨率,那么我就必需在1/10秒内采集图像,不然图像将变得模糊。”Betzig博士解释道。  结构光激活非线性SIM可在1/3秒内采集25幅原始图像,并从中重建出一幅高分辨率图像。它的图像采集很高效,只需用较低的照明光强,并且收集每一个亮态荧光蛋白分子所携带的信息。从而有效地保护了荧光分子,使得显微镜能够进行更长时间的成像,让科学家们可以观测到更多的动态活动。  Betzig博士的团队利用结构光激活非线性SIM获得了在细胞运动和改变形状的过程中骨架蛋白的解体和自身再组装过程,以及在细胞膜表面的叫做caveolae的微小内吞体动态过程的影像。  在Science论文里,Betzig博士的团队也利用了已经商业化的高数值孔径物镜将传统SIM的空间分辨率提高到84纳米。高数值孔径限制了被光照明的样品范围,从而降低了光对细胞以及荧光蛋白分子的损伤。这一方法可以同时对多个颜色通道进行成像,使得科学家们可以同时跟踪几种不同蛋白质的活动。  通过高数值孔径的方法,Betzig博士的团队观测了多个骨架蛋白质在形成粘着斑(链接细胞内外的物理链)过程中的运动和相互作用。他们也追踪了clathrin修饰的内吞体的成长和内吞过程(内吞体将细胞外的分子转移到细胞内)。他们的定量分析回答了几个不能被以往的成像技术所解决的问题,例如,内吞体的分布,以及内吞体尺寸和寿命之间的关系。最后,通过结合高数值孔径方法和结构光激活非线性SIM,Betzig博士和他的同事可以在超高分辨率条件同时追踪两种蛋白质的活动。  Betzig博士的团队在进一步提高他们的SIM技术。他们也急切地盼望和生物学家一起探索潜在的应用并进一步改进这一技术的可用性。  现在,科学家们可以通过现在,科学家们可以通过JaneliaJanelia的高级成像中心利用这些新的的高级成像中心利用这些新的SIMSIM技术,这个中心提供免费使用前沿的显微镜技术的机会。最后,技术,这个中心提供免费使用前沿的显微镜技术的机会。最后,BetzigBetzig博士说道,使得博士说道,使得SIMSIM成为能够被其他实验室获得并能够承担的技术应该是比较直接的事。“大部份的‘魔术’在于软件而不是硬件。”成为能够被其他实验室获得并能够承担的技术应该是比较直接的事。“大部份的‘魔术’在于软件而不是硬件。”
  • 日立应用|饲料显微镜检查方法
    看看家禽/家畜在吃什么?饲料,是所有人饲养的动物的食物的总称,比较狭义地一般饲料主要指的是农业或牧业饲养的动物的食物。饲料(Feed)包括大豆、豆粕、玉米、鱼粉、氨基酸、杂粕、添加剂、乳清粉、油脂、肉骨粉、谷物、甜高粱等十余个品种的饲料原料。近年来,饲料显微镜检查技术在我国逐步推广应用,取得了较大的经济效益和社会效益。饲料显微镜检查技术的重要性已经被大多数饲料生产企业认识。国家标准“饲料显微镜检查方法”(GB/T14698-93)及行业标准“饲料显微镜检查图谱”(SB/T10274-1996)已经发布实施。本文列举一些饲料原料电子显微镜照片(仪器:日立钨灯丝电镜TM3000)。 玉米淀粉:像“小馒头”一样的淀粉颗粒玉米是重要的粮食作物和重要的饲料来源,玉米是鸡最重要的饲料原料,其能值高,最适于肉用仔鸡的肥育用,而且黄玉米对蛋黄、爪、皮肤等有良好的着色效果。在鸡的配合饲料中,玉米的用量高达50%~70%。玉米养猪的效果也很好,但要避免过量使用,以防热能太高而使背膘厚度增加。由于玉米中缺少赖氨酸,所以任何体重的猪日粮中均应添加赖氨酸。电镜图显示了玉米淀粉在高倍下的形貌,呈现了不规则的颗粒特征,但是边缘相对圆润,这可能与玉米粉加工过程中的过筛过程有密切关系,粉碎之后,在相互的撞击中锋利的棱角被磨圆了。对饲料厂,养殖场及饲料监测部门来说,如何对饲料原料,特别是动物性饲料品质和掺杂物进行快速鉴别和评价,是我们关心的重要环节。而饲料显微镜检是较理想的方法,它的主要特点是简便、快速、准确。特别是对原料成份的准确分析,弥补了化学常规分析的不足。公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 岛津原子力显微镜——iPS细胞与癌细胞的对比与区分
    干细胞的研究一直受制于供体细胞很难获得,而且相关实验的伦理风险也不容忽视。因此2007年发明的诱导式多能性干细胞(iPS)技术成为最佳的胚胎干细胞替代。iPS细胞在形态、基因和蛋白表达、表观遗传修饰状态、细胞倍增能力、类胚体和畸形瘤生成能力、分化能力等方面都与胚胎干细胞相似。但是iPS转化过程中,会有一定的几率发展为癌细胞。不同体细胞来源的iPS细胞成瘤性有差异。因此,如何筛选安全型iPS细胞是该技术能够进入临床实验的关键。原子力显微镜作为一种三维形貌观察工具,不仅具备超高分辨率,而且支持在液体环境下工作,是一种理想的细胞观测设备。除了形貌观察外,原子力显微镜还可以多种表面属性进行定量观测。例如,基于力学测试的表面机械性能测试。这些特征为原子力显微镜应用于iPS细胞观测与筛选提供了技术基础。为此设计一个实验,分别用原子力显微镜观察未分化的iPS细胞和HeLa细胞。HeLa细胞是一种被广泛使用的癌变细胞,因此可以和iPS细胞进行对比观察。上图显示了SPM形状图像(a)HeLa细胞和(b)iPS细胞。用光学显微镜观察到的相应相位差图像分别显示在(c)和(d)中。图中箭头所示位置处的截面形状轮廓如(e)和(f)所示。从细胞形态上来看,HeLa细胞呈圆顶形,表面隆起比较高,约7um;而iPS细胞呈扁平状且细胞间粘附呈网状结构,细胞高约1.7um。仔细观察细胞之间的边界,可以看出HeLa细胞之间的边界呈凹陷状,而iPS细胞之间的边界是凸起的,而且呈网络状。据此可分析得知这两种细胞各自的间粘附具有差异,且HeLa细胞之间的粘附较弱,而iPS细胞之间的粘附较强。除了形貌观察外,原子力显微镜还可以通过力学测量获得细胞表面的机械性能。如下图所示,用探针针尖压触细胞表面,通过对探针获得的力反馈分析样品各类机械性能。对于本实验,在对64×64点的测量区域进行测量后,从获取的体数据中形成形状图像。该观察中使用的探针是由OlympusCorporation制造的OMCL-TR800PSA并且具有0.15N/m的弹簧常数。测量是在培养液中的活细胞条件下进行的。对细胞的最终压力(排斥力)为2.5nN。通过比较从探针与样品接触的位置到达到2.5nN的力的变化,确定样品的硬度。(a)和(b)显示了SPM观察到的HeLa和iPS细胞的细胞形状图像,(c)和(d)显示了相应的ZX断面图像,是从样品竖截面方向看时在(a)和(b)中箭头所示的X线位置处施加到探针的力的图像。图中上方为测量起点,下方白色虚线为压触终点,显示了样品截面形状轮廓。在ZX图像中,探针与样品接触后检测到力的位置以黄色到红色的颜色显示。因为这表明探针对细胞的变形,所以可以理解较大量的细胞变形显示细胞的较软部分。可以从细胞变形量了解硬度。(c)中的HeLa细胞显示出均匀的变形,但相比之下,在(d)中的iPS细胞中,细胞体较软,细胞间粘附区较硬。分析结果表明,HeLa细胞表面硬度比较均匀,软硬部分差别不大,而iPS细胞主体较软,细胞间粘附区较硬。由以上测试可知,利用原子力显微镜对iPS细胞进行表征,有潜力发展为正常细胞筛选以及剔除癌变细胞的合适工具。本文内容非商业广告,仅供专业人士参考。
  • 教科书两次大改写,显微镜到底对地衣做了啥?
    南方地区连日暴雨已经接近尾声,很多土坡上都出现了这种橙黄色一根根的东西,虽然很常见,但大家知道这是什么吗?其实这是地衣的一种。科学家对于地衣的认知,经历过两次教科书改写级的大改写,都与显微镜有关,即使是生物达人的你可能也不知道,一起来了解下吧!洁地衣棒瑚菌1. 1868年前:地衣是植物看起来比较像植物的地衣在19世纪60年代,生物学家致力于把生物分类成一个个界限分明的独立物种,地衣被认定为一种植物。因为地衣形态上跟苔藓有相似之处,而且也能光合作用,因此被归类为植物,逻辑来说似乎也没毛病。2. 第1次改写:1868年现代光学显微镜证明,地衣是共生体地衣的三种型态:壳状a,叶状b,枝状c1868年,瑞士科学家西蒙施文德纳(Simon Schwendener)提出地衣是真菌和微型藻的共生体,挑战了“单一物种”的分类理论,引起了很大争议。明场观察下的地衣切片现代光学显微镜的出现,平息了这个争议。1866年,现代光学奠基人恩斯特卡尔阿贝,加入了显微镜行业,开始带领光学显微镜进入新时代,他为施文德纳提供了当时*尖的生物显微镜,结合施文德高超的切片制样能力,世界得以看清地衣的真面目:由真菌和藻类构成的共生体。念珠藻是地衣中常见藻类之一(明美显微镜MF52-N拍摄,40X相衬)地衣是由真菌与藻类或蓝细菌组成的共生体,真菌提供上下皮层和伪根,包裹藻类并吸收水分和无机盐等养分,保证藻类生存环境;念珠藻等藻类则进行光合作用,为真菌提供营养,两者是互惠互利的关系,“共生”关系自此进入了字典。3. 第2次改写:2016年荧光显微镜证明地衣是两菌一藻明美荧光显微镜MF52-N下的念珠藻自施文德纳以来一百多年,地衣学家都认为地衣里的真菌是单一的,大部分地衣真菌都来自子囊菌类群(常见霉菌就属于子囊菌),地衣学也以真菌名来分类和命名地衣,直到2011年斯普利比尔(Toby Spribille)和其他研究人员发现,同样子囊菌的地衣,出现了明显不一样的颜色和毒理性。电镜下的地衣,标尺=10μm研究人员用光学显微镜和电子扫描显微镜观察,但什么都没发现,因为形态学来看,就只是看到菌丝和被包裹的藻类。斯普利比尔用PCR检测检测子囊菌种类,只有一种明显反应,说明只有一种子囊菌,研究一度陷入停滞,灵机一动下,他把检测范围扩大到各种真菌,结果发现,两个地衣样本都有担子菌反应(常见蘑菇属于担子菌),反应明显的样本有更鲜艳的颜色和明显的毒性。荧光原位杂交染色的枝状地衣(图自Toby Spribille,et al. / Science(2016))于是他使用荧光原位杂交染色,把担子菌、子囊菌分别染色成了绿色和蓝色,加上藻类叶绿素自发红色荧光,结果发现,是担子菌、子囊菌共同了组成地衣的皮层,担子菌含量不同是同种子囊菌地衣出现不同外观的原因,改写了课本“地衣=1种真菌+1种藻类”的认知,也动摇了地衣学以子囊菌分类和命名地衣的区分逻辑。明美科研级荧光显微镜MF43-N 适用于明场、荧光、相差等观察方式由于地衣对空气质量非常敏感,因此有“空气质量监测器”的称号,石蕊、松萝等品种的地衣还是传统中药和重要药物活性成分来源,目前国内很多资料对地衣的描述还停留在“地衣=1种真菌+1种藻类”的阶段,相关研究还有待中国学者继续深入。
  • 我国学者在超分辨光学显微镜领域取得重要进展
    p  在国家自然科学基金项目等资助下,中国科学院生物物理研究所徐涛院士和纪伟教授级高级工程师在提高光学显微镜分辨率技术领域取得重要进展。相关成果以“Molecular Resolution Imaging by Repetitive Optical Selective Exposure”( 基于重复光学选择曝光的分子分辨率成像技术)为题,于2019年9月9日在Nature Methods(《自然方法学》)杂志在线发表。论文链接:https://www.nature.com/articles/s41592-019-0544-2。/pp  该工作提出了一种基于激光干涉条纹定位成像的新技术,并据此研制出新型单分子干涉定位显微镜(Repetitive Optical Selective Exposure, ROSE),将荧光显微镜分辨率提升至3 nm以内的分子尺度,单分子定位精度接近1 nm,可以分辨点距为5 nm的DNA origami(DNA 折纸)结构。为降低单分子发光时的闪烁和漂白对亮度和定位精度产生的不良影响,研发团队对显微镜光路进行了创造性地设计,分别为:基于电光调制器的干涉条纹快速切换激发光路,基于谐振振镜扫描的6组共轭成像光路,两种光路的同步实现了高达8 kHz的分时成像,确保在相机的单次曝光时间里把每个单分子发光状态均匀分配给6个干涉条纹,有效避免了荧光分子发光能力波动对定位精度的干扰。/pp  研发团队利用该技术对不同荧光位点间距的DNA origami阵列进行验证测试,证明干涉成像分辨率达到了3 nm的分子水平。后续的细胞实验结果显示,该技术在免疫标记的微管、CCP(clathrin coated pits,网格蛋白有被小窝)以及较致密的细胞骨架成像时展现出良好性能,该工作使得超高分辨光学显微镜家族再添新成员,光学显微镜分辨率被进一步突破,将为进一步解析精细亚细胞的组分和生物大分子的纳米结构提供有力工具。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/a05a7f71-279c-47d6-855f-34acf83f1e5f.jpg" title="tpxw2019-09-19-01.jpg" alt="tpxw2019-09-19-01.jpg"//pp style="text-align: center "strong图. ROSE干涉定位与传统质心定位的原理示意,以及用于DNA origami和细胞微丝成像效果比较/strong/p
  • 倒置扫描微波显微镜——生物样品的应用与展望
    Siti Nur Afifa Azman , Eleonora Pavoni , Marco Farina扫描微波显微镜(SMM)在提供亚表面结构的成像和允许样品的局部定量表征方面是突出的。一种被称为反向扫描微波显微镜(iSMM)的新技术是最近开发的,旨在扩大该应用,超出当前对表面物理和半导体技术的关注。通过一个简单的金属探针,iSMM可以从现有的原子力显微镜(AFM)或扫描隧道显微镜(STM)转换而成,从而在带宽、灵敏度和动态范围方面形成传统的SMM。iSMM主要用于分析生物样品,因为它可以在液体中工作。扫描微波显微镜(SMM)[1]是扫描探针显微镜(SPM)[2]家族中的一种仪器,该家族包括众所周知的原子力显微镜(AFM)和扫描隧道显微镜(STM)。在SMM中,用作天线的探头在表面附近进行光栅扫描,在扫描过程中,记录微波信号的局部反射系数,提供关于表面和亚表面阻抗的信息。SMM的一个基本优点是它能够通过利用纳米探针和样品本身之间的近场电磁相互作用来定量表征样品的电磁特性。在一些实施方式中,矢量网络分析仪(VNA)被用作微波信号的源和检测器,通过导电探针辐射和感测微波信号。通常,SMM与一些其他SPM技术(例如AFM或STM)协同工作,提供了一种控制和保持探针和样品之间距离恒定的机制。基于SPM的SMM显微镜的使用最近在生物和生物医学领域获得了更多的关注,这是由于该技术能够测量与生理病理条件密切相关的电磁参数。然而,在极端环境(如用于保持细胞健康的生理缓冲液)中喂养SPM探针已被证明极具挑战性。作者于2019年引入的一种称为倒置SMM(iSMM)的新设置[3]克服了原始SMM与生理环境相关的大多数限制:倒置SMM的结构成本低、易于获得,并且与生理环境兼容,这也使得SMM能够应用于生物生活系统。其想法是将进料从探头移动到样品架;在iSMM中,样品保持器是一条传输线,通过该传输线测量反射和透射,而SPM探头(交流接地)仅干扰通过样品的传输线。因此,任何现有的SPM都可以创建iSMM,只需提供适当的样本保持器,当然,还可以使用软件同步传输线上的测量和SPM扫描。需要强调的是,所提出的系统是宽带的,能够实现频谱分析、时域分析和微波层析成像。到目前为止,SMM已被用于表征活的生物细胞,尽管在生理缓冲液中操作存在挑战[4,5]。除此之外,它还被用于负责细胞呼吸和能量生产的亚细胞细胞器,如线粒体[6]。iSMM已证明能够克服液体操作的局限性,这是首次在生理缓冲液中成功地对活细胞进行微波成像[3]。仪器开发几年来,研究活动一直基于一种自制的STM辅助SMM,该SMM是通过将Imtiaz[7]的系统的一些特性与Keysight[8]开发的系统混合而构建的。在这里,特别是结合了标准隧道显微镜,其反馈电路用于将探针与样品保持在给定距离,并在反射计设置中使用微波信号。然而,与Keysight仪器和其他可用设备不同,该仪器没有谐振器;因此,显微镜可以在VNA允许的整个频率范围内记录数据。具体而言,该系统利用并控制一台商用STM显微镜、NT-MDT的Solver P47和一台Agilent矢量网络分析仪PNA E8361,其带宽为67 GHz,动态范围为120 dB。例如,该技术被应用于线粒体成像[9],以评估干燥的癌细胞,并被特意处理以确定掺入的富勒烯的存在[10]。通过利用在多个相近频率下获得的图像的相关性,并使用一种权宜之计,即时域反射法[11-13],提高了系统灵敏度,这可以通过使用尖端/样本相互作用对微波信号进行“扩频”调制来理解;在频谱上传播的信息通过傅里叶逆变换在单个时间瞬间折叠来恢复。STM辅助的SMM提供了非常高质量的图像,减少了由于地形“串扰”而产生的伪影,即由于扫描期间探针电容的变化而产生的地形副本。然而,STM在处理导电性较差的样品(如生物样品)时极具挑战性,在液体中使用时更为困难。图1A)中所示的传统SMM通常是从AFM(或STM)获得的,其中微波信号被注入并由反射测量系统感测:反射信号和注入信号之间的比率,即所谓的反射系数(S11),可用于确定样品的扩展阻抗或介电常数,经过适当的校准和分析。这种单端口反射测量通常具有40-60dB的动态范围,这受到定向耦合器的限制。在图1(B)所示的iSMM配置中,导电扫描探针(AFM或STM)始终接地,微波信号通过传输线(例如共面波导、槽线)注入,以这种方式,传输线成为样品保持器。传输线的输入和输出连接到VNA,从而可以测量反射和传输信号(分别为S11和S21)[3,14,15]。这种双端口测量通常具有120−140 dB,这使得当接地探头扫描样品时更容易感测到接地探头引起的微小扰动。图1:(A)基于AFM的传统SMM和(B)倒置SMM的示意图。图2:干燥Jurkat细胞的同时(A)AFM和(B)iSMM|S11|图像。Jurkat细胞和L6细胞的iSMM表征最初,在干燥的Jurkat细胞以及干燥的和活的L6细胞上证明了iSMM[3]。图2显示了干燥Jurkat细胞的AFM和iSMM S 11图像的比较。同时,图3比较了盐水溶液中活L6细胞的AFM和iSMM S 21图像。iSMM S 11和S 21信号分别在4 GHz和3.4 GHz下滤波。干燥Jurkat细胞的iSMM S 11图像显示出与AFM相同的质量,而活L6细胞的iSMMS 21显示出由双端口SMM在液体条件下测量的透射系数形成的最佳质量。在这项工作中,透射模式测量的校准程序[16]应用于干燥L6电池的iSMM S21。图4说明了校准的效果,显示了AFM形貌图像、被样品形貌破坏的iSMM S21电容图像以及在6.2 GHz下去除了干燥L6电池的形貌效应的iSMM S 21介电常数图像。正如预期的那样,在干燥电池的外围附近出现了脊,但整个电池的介电常数为2.8±0.7。本质上,该值与电解质溶液中脂质双层的值相当[17],但低于干燥大肠杆菌的值[18]。随后,对干燥的Jurkat细胞进行了iSMM反射模式测量的定量表征[19]。图3:盐水溶液中活L6细胞的同时(A)AFM和(B)iSMM|S21|图像。图4:干燥的L6电池的(A)AFM形貌、(B)iSMM|S21|电容和(V)iSMM| S21|介电常数图像。图5:(A)AFM形貌,(B)iSMM|S11|,(C)iSMMφ11,和(D)干燥Jurkat电池的介电常数图像。图6:(A)AFM形貌,(B)iSMM|S11|,(C)iSMM| S21|,(D)时间门控iSMM|S 11|,和(E) 葡萄糖等渗溶液中相同线粒体的时间门控iSMM|S21|图像。图5显示了AFM形貌、原始iSMM S11的大小以及在4GHz下同时获得的相位。该图显示了带样品和不带样品的区域之间的良好对比,揭示了与表面和亚表面区域中不同的电特性相关的其他特性。按照已经描述的算法校准原始iSMM S11图像[20]。图5(D)显示了干燥的Jurkat电池的提取介电常数图像,其约为2.6±0.3,并且在电池上均匀。该值与传统SMM在干燥的L6细胞上获得的先前数据一致[21]。生活环境中线粒体的iSMM表征iSMM的最新工作是在完全浸入液体中的线粒体上进行的,以非接触模式操作,最大限度地减少了对样品的损伤[22]。图6(A)、图6(B)和图6(C)显示了AFM形貌图像,其中iSMM图像S11和S21在直径约为1µm的同一线粒体上同时采集。在1.6-1.8GHz的频带上对iSMM信号进行滤波和平均。显然,|S11|和|S21|图像质量相当,并且都揭示了AFM图像中不存在的细节。由于线粒体是不导电的,所以从周围的CPW电极可以很容易地看到对比。与大多数SMM不同,iSMM能够进行宽带测量。因此,它使iSMM从1.6GHz到1.8GHz测量的S11和S21信号能够通过傅里叶逆变换变换到时域。随后,可以门控掉不需要的信号,以进一步提高SNR[13,20]。最后,图6(D)和图6(E)显示了时间门控iSMM S11和S21图像,显示了更精细的细节。iSMM探针和线粒体之间的相互作用阻抗可以从S11和S21测量中获得。反过来,可以提取线粒体介电性质的局部变化,正如SMM对活细胞所做的那样[3]。总结iSMM能够对生物样本的细胞内结构进行无创和无标记成像。iSMM可以通过任何现有的扫描探针技术轻松获得,只需使用合适的样品夹,为大多数实验室提供了利用该技术的机会。Jurkat细胞、L6细胞和线粒体的iSMM图像显示出良好的灵敏度和质量,显示了AFM形貌中无法看到的细节。通过实施为传统SMM开发的校准算法,分别对干燥的Jurkat细胞和L6细胞进行透射和反射模式测量的定量表征。Jurkat细胞的介电常数被确定为约2.6±0.3,而L6细胞显示为约2.8±0.7。时域分析定性地改进了iSMM,并提供了对样品(如线粒体)的更多了解。致谢我们要感谢我们的研究小组和所有为本报告的科学结果做出贡献的人。这项工作的一部分获得了欧洲项目“纳米材料实现下一代物联网智能能源收集”(NANO-EH)(第951761号赠款协议)(FETPROACT-EIC-05-2019)的资助。我们还要感谢来自意大利SOMACIS的Francesco Bigelli博士和Paolo Scalmati博士在实现样品架原型方面的帮助。附属机构:1 Department of Information Engineering, Marche Polytechnic University, Ancona, Italy联系;Prof. Dr. Marco Farina Department of Information Engineering Marche Polytechnic University Ancona, Italy m.farina@staff.univpm.it 参考文献:https://bit.ly/IM-Farina 原载:Imaging & Microscopy 4/2022. Inverted Scanning Microwave Microscopy—— Application and Perspective on Biological Samples供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 为什么中药材鉴定需要显微镜,有这一篇就够了。
    中药显微鉴定是利用显微镜观察植(动)物药材内部的细胞、组织构造及细胞内含物,明确其显微特征,从而达到鉴别目的的一种鉴定方法,是中药四大传统鉴定方法之一具有简便、经济的特点。1977年版《中国药典》规定了药材显微鉴定,之后显微鉴定被广泛应用于药材和中成药的鉴定,2020年版《中国药典》收载的显微鉴别更是达到2140项。一、中药显微镜鉴定遇到的问题及需求1、使用操作问题:随着显微鉴定被广泛列入中药材、中成药的鉴别项下,显微鉴定又需要操作者具备丰富的理论知识和实践经验,使得显微鉴定成为检验人员的负担。需求:操作要足够简单,减少操作人员的学习时间成本。2、制片带来的观察问题:太软,太硬的材料难以切片,切片厚度太厚或不均一。需求:为满足整体观察需要,对显微镜的景深有很高要求。3、粉末状药品及特殊质地药品难以制片需要整体观察的问题。需求:为满足大面积样品整体观察需求,要求成像面积比较大。4、为了分辨不同药品之间的区别问题:既需要高分辨的局部高清成像用以分辨细胞器等细微结构,又需要在整体上对整个药品进行完整的全视野成像。需求:为满足细胞器等细微结构的荧光检测,要求显微镜的放大倍数和分辨率比较高。5、除明场观察外,部分药材鉴定需要荧光标记观察药材细微结构的问题。需求:既需要彩色明场观察又需要高灵敏度荧光观察。▲ 虫草明场切片二、传统显微镜在中药材显微鉴定中的使用1.手动光学显微镜,操作步骤多,效率低,无法快速精准的进行大视野成像,无法进行自动的景深扩展不能满足较厚样品的观察需求。▲ 图源:网络2.体视镜虽满足厚样品的观察需求但物镜分辨率不够,导致图像细节不清晰,不同层面的荧光串扰也严重影响了荧光成像效果。▲ 图源:网络3. 虽然配有自动载物台的电动显微镜可以解决较大面积样品大视野成像的问题,但是由于积木式设计所带来的操作及调试的繁琐使得显微鉴定成为检验人员的负担。▲ 图源:网络4. 针对性的玻片扫描系统,针对扫片的大视野成像的需求进行了部分优化但还是难以解决操作繁琐问题。同时因为高度的特化性不能满足特殊样品(不能进行制片的样品,粉末状样品,微生物样品)的观察需求。▲ 图源:网络由此可以看出,传统显微镜在中药鉴定领域存在诸多问题,有没有一款显微镜既可以满足中药鉴定的所有需求,又操作简便,减少操作人员的学习时间成本?答案是肯定的REVOLUTION为您在中药鉴定领域带来前所未有的使用体验。三、REVOLUTION在中药鉴别中的优势1.突破性的设计REVOLUTION采用正倒置一体的设计,兼具五种观察方式为一体同时配备智能化的软件系统,满足中药显微鉴定领域的切实需求。2.强大的软件功能3.独有的高速全视野明场/荧光扫描将20倍镜下多色荧光全视野扫描速度提升到了1分钟,是传统显微镜速度的10倍,极大提高了用户的工作效率。4.全自动Z轴全景深观察在高倍镜(等于及高于40倍物镜)下,在保持高分辨观察的同时,可以对厚度较大的样本进行全景深扫描,合成,实现全景深观察。5.Digital Haze Reduction(DHR)功能该技术可以在镜下实时显示高分辨图像,分辨率比传统成像提高了一倍,成像速度与普通荧光成像速度相同。通过该功能,用户可以观察到更加细微的结构。▲ DHR前▲DHR后6.一体化的硬件设计与智能化的软件搭配突破了人机交流的鸿沟,触屏式极简化操作,极大降低了学习难度,用户经过简单培训,2小时即完全掌握操作方法极大的提高了实验效率,减轻了实验人员的操作负担。四、总结:REVOLUTION全电动荧光显微镜从用户的实际需求出发,通过颠覆性的设计与智能化的软件,在满足中药鉴定所有需求的同时,降低了用户的学习成本使用户轻松简便的进行中药显微鉴定,减轻了实验操作人员的负担,极大的提高了实验效率。|申请试用|我们的仪器可以申请试用哦!扫描下方二维码关注“深蓝云生物科技”公众号,点击“云活动”→“试用中心”即可。
  • Echo Rebel显微镜——让不可能成为可能
    我们实验室用的正置明场显微镜主要用于组织切片,油镜的观察;倒置显微镜常用于观察培养皿、培养瓶和孔板。两台显微镜不仅占地而且用起来还比较麻烦,目镜筒的高度不可调,几张片子看下来感觉脖子都要断了,通过目镜筒来观看,一会卡眼镜一会看不见,要么就是单眼看而且还不清晰。▲ 图源:网络,侵删哇咔咔,Rebel正倒置一体显微镜来啦,解决以上烦恼,与众不同——此显微镜方便小巧,一机多能,可以非常便利地通过旋转实现正倒置的切换,听起来有点玄幻,有视频为证:▲Rebel正倒置一体显微镜 功能详解:景深扩展:电动Z轴,搭配Affinity软件,适用于观察厚样品,突破景深限制。大图拼接:适用于低倍镜观察大样品时,仍然无法观察全貌的情况,将同一焦平面下(XY轴)的局部观察图进行拼接,得到一张完美全景图,了解样品更多的信息。 网络化分享:无限投屏:可以把显微镜上看到的图像同步投屏在大屏幕上,适用于课题分享和线下教学。网络可视化:即使相隔万里也可以随时随地、多人多点实时查看高品质的图像和图片的传输。移动显微工作站:自动细胞计数:只需轻轻一点即可在几秒内快速进行细胞计数,存活率计算,可信度高,不挑耗材,啥都行。小小的机身,大大的能量,Rebel你值得拥有!
  • 浅谈显微镜未来发展的方向
    自从1673年列文胡克发明显微镜,至今已经历了大约三百多年的历史,显微镜也从过去的单目变为双目乃至三目,由简单的观察变为可拍照,由初始的放大300倍左右到现在放大1000倍左右。 最近10年,随着数码摄影技术、信息技术和自动化技术的革新,显微镜的外观、舒适性、自动化程度以及方便性都出现了很大的发展。显微镜的外观上出现了一些革命性的变化,性能上有了进一步的提高。全球显微镜生产商都为此做出了不懈的努力。通过对一些特色产品的比较分析,不难发现显微镜设计上的一些特点,从中可以判断出未来显微镜的发展方向。 一、 拍得更清晰 显微镜目的就是为了更好地观察微生物,要求看得更清楚。显微镜厂商为此开发出各种各样的显微镜镜头来消除各种色差和场曲。最近,在显微镜上普遍采用了UIS2光学系统,它充分体现了无限远校正方式的优越性。光线通过物镜后成为平行光束通过镜筒,并在结象透镜处折射或完成无相差的中间象。UIS2无限远光学系统的物镜具有在宽波长范围内(由紫外至近红外区)具有一致的高透过率。同时具有更高的信噪比,不需要额外补偿就可以得到更为清晰的图像。例如美国AMG公司的EVOS fl大屏幕数码荧光显微镜所拍出的图像已经接近于激光共聚焦的水平。 二、 放大倍数更高 对于大多数显微镜来说,对样本的物理放大倍数是物镜放大倍数与目镜的放大倍数乘积。通常情况下,目镜的放大倍数为10倍或者16倍。以40倍物镜为例,也不过是放大400倍或者是640倍,如今却能够将放大倍数提高到840倍。例如美国AMG公司开发的倒置显微镜,在物镜下采用了21倍的光学放大,使得我们能够通过40倍的物镜就可以观察到放大倍数更高的图像了。如果换成100倍的油镜,就可以通过显示器观察到放大到惊人的2100倍甚至更高的图像,无不让人赞叹技术的发展之快。 三、 更为人性化的设计 一提到显微镜,我们的第一印象就是:弯着腰,低着头,抬着手臂,眼睛盯着目镜来观察。对于长期从事显微镜观察的科研人员来说,这一&ldquo 固定姿势&rdquo 往往会引起身体上的疲劳,肌肉损伤。曾经有一位科研人员因为长期观察显微镜而落下了颈椎病。因此改变传统的显微镜观察模式成为一项非常有必要而且紧迫的任务。 不过最近,各大显微镜厂商相继推出了一些更为人性化的显微镜,如美国AMG公司推出了大屏幕倒置显微镜系列,Nikon推出的Coolscope 显微镜,Olympus推出的智能生物导航仪FSX100,leica推出的DMD108等,均是无目镜的显微镜,直接通过液晶显示器来观察,实现了观察细胞就像玩电脑,就像看电影,大大减轻了显微镜观察时的疲劳。 四、 一体化的显微镜 也许现在我们接触到的显微镜大多是机械式的,需要手动来调焦距、调光源、调样品的位置,特别是针对细胞培养,出现了大量连续培养过程中显微观察的要求。为此,各个显微镜厂商设计了能够用于连续培养显微观察的显微镜或配件,如Nikon公司的显微活细胞工作站Biostation IM和Biostation CT,其中Biostation IM是专门针对35mm细胞培养皿设计的,系统中包含了温控系统,CO2气体系统和显微成像系统,可以实现自动化控制,连续培养显微成像。Biostation CT则是更为大型的系统。AMG公司整合了美国Ibidi公司开发的连续细胞培养配件,在其倒置显微镜上也可以实现温控和CO2的供气,从而实现细胞连续培养显微观察,它可以连续观察达60个小时,所采集的图像可进行视频连续播放,从而观察细胞生长过程中形态的动态变化。德国显微镜厂商Leica和Zeiss也开发了自己的连续培养显微观察配件。 五、 专门的网络化显微镜 在临床医学上,专家远程会诊,病理资源共享将会为疑难杂症的诊断和对症治疗提供更大的可能性,这就需要能够实现自动化远程操作的显微镜来观察病理切片。Nikon公司的Coolscope和Leica公司的DMD108为临床远程病理会诊提供了方便,它们专门为载玻片显微观察设计,自动转换物镜,自动对焦,得到的图像可直接通过网络发送到异地进行专家会诊。 六、 光源的革新 对于荧光显微镜,其稳定的激发光源对样本数码成像起着关键性的作用,到现在为止绝大多数显微镜还在使用卤钨灯或者是高压汞灯,一方面这类光源使用寿命短,需要3到4各月更换一次,每次更换后都需要专业工程师进行位置校准;另外一方面,这类光源的强度会随着使用寿命而衰减;还有一方面,这类光源对于显微镜操作来说需要预热来等待光源强度稳定,而且光源关闭后需要等待30分钟左右才能重启,这就造成了使用上的极大不便。 现在LED灯成为大家公认的新一代照明产品,它具有能耗低、光强稳定、寿命长等优点。AMG公司的倒置显微镜系列全部采用了LED光源系统,完全消除了前面所提到的卤钨灯和高压汞灯的使用不便,而且AMG针对荧光倒置显微镜开发了专利的Light cube&ldquo 光立方&rdquo 单色激发光源系统,光源强度可调,不同的单色激发光源可自由更换,在显微镜光源方面可以说是一场前所未有的革命。Leica的DMD108和Nikon的Coolscope也采用了LED光源,因此可以预见未来将会有更多的显微镜厂商采用LED光源。 结束语:综上所述,可以看出最近几年是显微镜出现革命性发展的阶段,越来越多的更为人性化、自动化的理念应用到显微镜设计上,显微镜的性能也大大提高,不仅仅是看到图像,还可以看得更大、更清晰,操作上可以自动化,可以远程控制。还有一些很鲜明的显微镜特点如Olympus 的FXS100的智能化设计,AMG 的EVOS fl荧光成像时无需暗室的独特暗盒设计等由于篇幅有限,无法详细介绍。 以前,在显微镜领域全球一直是Nikon、Olympus、Leica和Zeiss这四家占据着绝大多数的市场,如今美国AMG公司凭借其在倒置显微镜方面的独特设计,开始在显微镜市场上暂露头角。中国内地也出现了很多显微镜生产商,也许在不远的将来,中国制造的显微镜也可以让显微镜领域耳目一新,精神一振,我们期待着这一天早日到来。 参考资料网络来源: 1.http://www.amgmicro.com 2.http://www.leica-microsystems.com/ 3.http://www.nikoninstruments.com/content/download/5113/47632/version/2/file/BioStation-IM.pdf 4.http://www.olympusamerica.com/files/FSX100_brochure.pdf 5.http://www.szsn.cn/szsn_Article_11468.html 欢迎选购,详情请联系东胜创新各地办事处咨询。   东胜创新公司www.eastwin.com.cn   北京:010-51663168,上海:021-64814661,广州:020-38331360
  • 【清洁度显微镜微百科】产品和检测设备与时俱进
    # 始于航天,行于汽车清洁度最早的历史应用于航空航天工业,也可以用符号Sa表示。60年代初美国汽车工程师( SAE )和美国宇航工业协会( SAE )开始使用统一的清洁度标准,从而全面地应用于航空和汽车行业。机电仪表产品的清洁度是一项非常重要的质量指标。清洁度表示零件或产品在清洗后在其表面上残留的污物的量。一般来说,污物的量包括种类、形状、尺寸、数量、重量等衡量指标;具体用何种指标取决于不同污物对产品质量的影响程度和清洁度控制精度的要求。(摘自:百度百科)而汽车行业中关于清洁部件的要求,最早则由罗伯特博世公司(Robert Bosch)在1996年为了提高柴油汽车发动机共轨喷射系统的生产质量而提出的,他们在生产流程中发现小喷嘴很容易被系统中残留的污染颗粒堵塞,因此提出了生产中清洁部件的质量规范,由此诞生了零部件清洁度测试标准。此后,在汽车系统中很多可靠性问题都被归因于微粒子污染,即零部件清洁度不足。(摘自网络)产品与要求一同进化随着汽车工业的的大规模发展,汽车类产品的制造技术日益复杂,为了保障汽车的行驶安全,因此需要更高水平的污染控制能力。(当然,不仅是汽车、航空航天、重型机械和电气工程行业,技术产品日益复杂,因此对生产条件和生产部件的清洁要求也日益提高。)技术设备和部件表面上残留的污物可能会导致设备性能不可靠和/或很差;在制造过程中,设备上残留的颗粒会造成停工、延误交货时间、浪费材料和能源以及退货等问题。技术清洁度检测应用包括对ABS系统、柴油喷射器、制动卡钳、液压系统、管道、PCB、互连系统和较大重型机械部件的清洁情况进行检测。清洁度检测过程技术清洁度检测是一个包含了一系列准备步骤和检测步骤的较为复杂的过程,此文将对技术清洁度的检测过程进行概括介绍。检测之前对部件的准备工作分为如下步骤:部件清洗准备阶段始于从生产线上取下一个部件样本并进行清洗(在提取步骤之前)。提取在放置于无尘室的提取柜中去除被测部件上的颗粒。可以通过冲洗、喷洗、晃动冲洗或超声波清洗的方法去除颗粒。过滤对提取液进行过滤,并在滤膜上收集提取的颗粒(过滤材料包括纤维素、聚酯、玻璃纤维和尼龙网布)。烘干并称重滤膜被烘干,并准备接受进一步分析。滤膜烘干后,会留下所有杂质,然后,使用分析天平对其称重检测过程包括以下步骤:图像采集和载物台的移动烘干的滤膜被放置在电动显微镜的载物台上,以采集检测所需的图像。颗粒的探测观察滤膜的图像,以找到表现为明亮背景中黑色区域的颗粒。粒径的测量根据不同参数对所探测到的颗粒进行测量,这些参数包括:最大卡尺直径(与颗粒投影相切的两条平行线之间的距离)和等效圆直径。粒径的分类对颗粒进行了测量之后,将颗粒分成不同的粒径级别组。两个主要粒径等级为差值(由最小和最大粒径定义)和累积(仅由最小粒径定义)。颗粒计数外推法在滤膜中定义一个区域进行扫查,并探测其中的颗粒。这些区域可以是滤膜尺寸(整个滤膜区域)、流经区域(颗粒所覆盖的滤膜区域)、最大扫查区域(检测所能扫查的最大区域),以及检查区域(由用户定义的实际扫查区域)。颗粒计数归一化由外推法获得的颗粒计数被归一为某种比较值,从而可以对多次测量获得的结果进行比较。归一化方法包括清洗区域(归一为1000平方厘米区域的颗粒计数)、清洗体积(归一为100立方厘米区域的颗粒计数)、清洗样件(归一为单一样件的颗粒计数),以及过滤流体(归一为1毫升或100毫升过滤流体的颗粒计数)。污染水平的计算这种分类水平不是由粒径决定的,而是由(大多数国际标准)所定义污染级别中的颗粒总体数量决定的。清洁度代码的定义某些标准将测量数据的表现方式简化为简要的说明。这种清洁度代码根据标准而定义,并由粒径的级别和污染水平构成。最大审核值进行核查以获得最大审核值是一个可选步骤。如果需要获得一个最大审核值,则会在检测配置中确定,也可能会确定一个颗粒绝对数量值或者一个最大清洁度代码。反光颗粒和非反光颗粒的区分金属颗粒和非金属颗粒之间的区别是通过确定颗粒是否反光而完成的(这种区分极其重要,因为金属颗粒会造成比非金属颗粒大得多的伤害)。纤维鉴别在滤膜上探测到的纤维通常与滤膜上发现的其他颗粒来自于不同的地方(例如:纤维可能来自工作服或者抹布)。因此需要根据评估清洁度所使用的标准,识别、分析或忽略纤维。结果的复核在复核结果的过程中可能会执行以下操作:删除被错认为颗粒的项目;将靠得很近并被错认为是单个大颗粒的多个颗粒分开;将靠得很近并被错认为是不同颗粒的一个颗粒的组成部分融合在一起;修正错误的颗粒标签(例如:金属或非金属)。报告的创建技术清洁度检测报告可以包括某些颗粒采集参数的说明、颗粒分类表、颗粒区域覆盖的详细信息,以及最大颗粒的图像。CIX清洁度显微镜:为技术清洁度检测而设计技术清洁度检测向检测人员提出了一系列挑战,其中包括在检测过程中核查检测结果,同时观察反光和非反光颗粒,每天检测多个样本,基于不同的标准修正并重新计算结果,以及制作合规性报告分享结果。OLYMPUS CIX系列清洁度显微镜,特别为技术清洁度检测而设计,不仅可以迎接上述挑战,而且使用方便,可以使用户在非常舒适的条件下完成检测。OLYMPUS CIX系列清洁度显微镜的高端光学部件,硬件和软件的无缝整合,以及无需维护的可靠设计,确保了图像条件的再现性,并使清洁度检测成为一项可以轻松完成的日常任务。
  • 浅谈 | 激光共聚焦显微镜特点及应用
    激光扫描共聚焦显微镜(LSCM)是基于共轭焦点技术设计的显微镜类型,即为使激光光源、被测样品和探测器都处于彼此的共轭位置上。基本原理在一般的显微镜中通过将物镜的焦平面与探测器重合使得观测的像平面与相邻的轴平面隔离开来,而在共聚焦显微镜中通过使用衍射受限的光点照亮样品,并在该光点共轭焦点处的收集光路径中使用针孔来过滤杂散光达到产生这种隔离效果从而提高分辨率。激光共聚焦显微镜原理图成像特点—不同的焦平面上生成“z叠层”图像—上图所示结构中,只有在共轭的样品层反射回的光可以通过收集光路径中的小孔,其余无关的样品层反射被小孔阻隔。这可以得到显著的分辨率的提升。如下图所示的是同一厚样品的多维荧光显微镜和共聚焦显微镜的并排比较。当在不同的焦平面上拍摄一系列图像时,可以生成通常被称为“z叠层”的图像,这一图像显示了共聚焦显微镜提供的分辨率和对比度增益以及这些增益的根本原因。可以看到在成像平面位于组织上方的堆栈顶部检查图像可以发现荧光图像中带有大量的散射光,而共聚焦显微镜的图像则显示为黑色。这种轴向上的PSF的减少直接导致了z叠层中间光学界面上观察到的分辨率差异。同一厚样品多维荧光显微镜和共聚焦显微镜成像比较成像特点—光学切片扫描成像—激光扫描共聚焦显微镜的另一个特点是它是一种扫描成像技术,传统的宽场照明技术是将整个样品都照亮,因此可以图像可以直接被肉眼或探测器捕捉,但是LSCM采用一束或多束聚焦光束穿过样品扫描成像,这样得到的图像被称为光学切片,下所示即为传统的宽场照明方式与激光扫描共聚焦照明方式的区别。传统宽场显微镜和激光扫描共聚焦显微镜照明方式区别因此现代共聚焦显微镜的一种实际的工作方式如下图所示,激光发出的激发光通过二向色镜,通过一对振镜在样品x方向和y方向进行扫描,样品激发(或反射)的光通过针孔进入PMT检测器被记录,记录下的扫描图像通过计算机重构出实际的样品图像。一种实际的激光扫描共聚焦显微镜示意图成像特点—分辨率对比宽场照明大幅提升—在荧光显微镜中,单点发射的光强度由点扩散函数(PSF)描述,其图案就是一个艾里斑,荧光系统的分辨率可以由艾里斑的半径来描述,艾里斑的半径可以由物镜的数值孔径和激发光的波长决定:另一种荧光系统分辨率测量方式是半高宽最大值,即强度下降到峰值50%的值,此时宽场荧光照明的横向分辨率为:激光扫描共聚焦显微镜的分辨率为:这表明,共聚焦显微镜的理论最大分辨率比宽场照明提高了倍。下图表示了宽场显微镜与共聚焦显微镜的对比,左图为宽场显微镜得到的图像,右图为共聚焦显微镜得到的图像。宽场显微镜与共聚焦显微镜成像对比主要应用领域—医疗领域—Li 等人通过LSCM技术对31位虹膜粘连但角膜透明的病人进行了检查,观察到类树干状结构、树枝/灌木状结构、果实特征结构、上皮状结构等一些可能的结构变异,同时发现颜料粒子的减少可能会导致廷德尔积极现象[1]。主要应用领域—生物学领域—L. Cortes等人通过将抗钙结合蛋白(Alexa-568)和抗胶质纤维酸性蛋白(Alexa-488)对小鼠的小脑进行标记得到的图像。并且通过快速获取小鼠大脑的室管膜组织块上荧光标记的运动纤毛的概览,记录下了运动纤毛的确切位置,揭示了运动纤毛的作用机制。小鼠大脑图像小鼠大脑运动纤毛图像德国马克斯普朗克生物物理化学研究所的A. Politi、J. Jakobi以及P. Lenart等人通过Hoechst 44432对海拉细胞的DNA染色,使用微管蛋白抗体Alexa 488对微管染色以及鬼笔环肽Abberior STAR Red对F-肌动蛋白染色,使用LSCM得到了高效、超高分辨率的大视察视野的海拉细胞图像,帮助更好的了解了海拉细胞的结构以及发展变化。Dr. Gerry Apodaca等人通过用iDISCO对透明化的小鼠膀胱进行成像,获得了清晰且完整的小鼠膀胱图,有助于揭示小鼠膀胱内部运动的机理。小鼠膀胱主要应用领域—高分子化学领域—Deng等通过两种 N-硫代羧基内酸酐(MeSPG-NTA和Sar-NTA)的顺序分段投料聚合合成两亲性嵌段共聚物。通过纳米沉淀法、双乳液法等自组装方法,PMeSPG-b-PSar能分别形成纳米和微米尺度的聚类肽囊泡。在LSCM的表征下,由双乳液法获得的微米囊泡在 H2O2刺激下随时间逐渐崩解的过程被完整记录下来。将一种疏水的光敏剂四苯基卟啉(TPP)引入到 PMeSPG-b-PSar囊泡体系中,TPP可通过疏水相互作用附着在囊泡膜上,在光刺激下会引起囊泡崩解[2]。主要应用领域—表面粗糙度领域—Ibáñez等人通过LSCM对收割不同谷物在镰刀上产生的光泽进行测量,并测试了八种不同的加工材料(骨头、鹿角、木材、新鲜皮、干皮、野生谷物、驯化谷物和芦苇)产生的光泽,并通过分析软件建立预测模型数据库,首次证明了基于LSCM对使用磨损光泽的定量分析可以有效地识别用于加工不同接触材料的工具[3]。NCF950激光共聚焦显微镜配置更加灵活,售后通道更加方便,不输于进口成像的国产激光共聚焦显微系统。无级变速小孔控制单层图像景深,获取更佳图像质量。四荧光通道同时或分时成像,提高效率&消除串色。Z序列层扫,定量分析更轻松准确。20nm步进精度,还原厚样本空间结构。4096×4096图像一键生成,支持大图拼接,软件操作便捷。光强度只有汞灯1/1000,长时间实验观察不损伤样本。Nexcope 激光共聚焦成像图展示更多 Nexcope NCF950 成像图请访问:47.114.153.52:8080/novel.html
  • 2021年高校成为扫描电子显微镜主要采购主体
    扫描电子显微镜行业主要公司:目前国内扫描电子显微镜行业的公司主要有中科科仪、聚束科技、国仪量子、泽攸科技和善时仪器等。  本文核心数据:扫描电子显微镜市场规模、扫描电子显微镜消费量、扫描电子显微镜细分市场需求规模(按采购主体)  1、需求规模增长较快,2020年增速接近10%  我国扫描电子显微镜行业起步较晚,于1975年方才由中国科学仪器厂(中科科仪股份有限公司前身)研制出首台扫描电子显微镜。但我国对于科研创新重视程度较高,由于扫描电子显微镜在各科研领域的物质微观形貌表征观察方面应用较为广泛,故其市场需求仍在稳步增长。  结合全球扫描电子显微镜典型厂商日本电子于其决策说明会披露的全球电子显微镜、扫描电子显微镜市场规模和Grand View Research披露的中国电子显微镜市场规模,基于图表1中的基础假设和测算逻辑测算,2017-2020年中国扫描电子显微镜市场规模如下所示。 由此可知,近年来,中国扫描电子显微镜市场规模呈现逐年增长的态势,且增长速度较快,均在10%左右。2020年,中国扫描电子显微镜市场规模实现16.72亿元,受新冠疫情影响,2020年各单位对于扫描电子显微镜等科学仪器的采购预算增幅有所下调,故其同比增长率较2018年与2019年略有下滑,仅为9.21%。2、产品单价高昂,年需求量尚以百计   扫描电子显微镜属于高精密仪器,其产品单价相对高昂。根据对2018-2021年3月中国政府采购网上扫描电子显微镜中标/成交项目的统计,共有361台/套扫描电子显微镜列明了中标/成交金额。这361台/套扫描电子显微镜的中标/成交金额合计为10.67亿元,按该金额计算得到,2018-2021年3月期间中国政府采购网记录的中标/成交扫描电子显微镜平均每台/套的单价约为296.51万元。   我国政府采购的扫描电子显微镜种类宽泛,价格公允,故将2018-2021年3月期间中国政府采购网记录的中标/成交扫描电子显微镜平均价格作为中国扫描电子显微镜市场的平均价格,并根据“需求数量=市场规模/产品价格”的逻辑计算,得到中国扫描电子显微镜产品需求数量如下图所示。   由此可知,2017-2020年,中国扫描电子显微镜产品需求数量不断增长。2020年,中国扫描电子显微镜产品需求数量在564台左右。3、采购主体主要为高校、企业与科研机构   中国扫描电子显微镜的采购主体主要为高校、企业与科研机构。根据赛默飞旗下的飞纳品牌对其在中国销售的1000+台扫描电子显微镜采购主体的统计,以及2018-2021年第一季度3月中国政府采购网上扫描电子显微镜中标/成交项目的统计数据及科研设施与仪器国家网络管理平台披露的扫描电子显微镜保有情况的印证,中国扫描电子显微镜市场45%的采购主体为高校,企业和科研机构各占39%。即2020年,16.72亿元的中国扫描电子显微镜市场中,高校、企业和科研机构分别采购了约7.52亿元、6.52亿元和2.68亿元。 综合来看,我国扫描电子显微镜需求规模逐年增长,但由于价格高昂,年需求量不足千台。从其下游采购主体来看,对扫描电子显微镜存在需求的主要为高校、企业和科研机构,其中高校的需求占比较高,在45%左右。
  • 电子显微镜下的Intel酷睿M
    日前,英特尔在北京正式发布了酷睿M处理器。集低功耗与高性能于一身的酷睿M处理器主要被用于2合1设备、超极本与高性能平板电脑之上。除了在功耗与性能方面大幅改善之外,酷睿M处理器在功能方面也有很多改进之处,它可以支持英特尔智能音频技术,无线显示技术5.0,可以轻松实现高清多屏联动。这么强大的性能背后酷睿M有着如何的全新的架构呢?ChipWorks在拿到几台Core M笔记本后也迫不及待地拆开,将处理器放到了显微镜下进行观察分析!   经过处理后得到的侧视图,因为放大率比较高所以有些模糊,但依然能够数出10个接触栅极,总间距699nm,每两个之间约为70nm。   晶体管鳍片。20个之间的间距是843nm,每两个之间42nm。   都完美符合Intel的宣传。   横切面照片。65nm节点引入的厚金属顶层依然在,而且现在其下已经堆到了13层!以及一个金属绝缘层。   边封没有金属层和绝缘层,可以很轻松地数出12层。上一代22nm还只有9层,Bay Trail则是11层,但最多的来自IBM 22nm Power8,15层。   Intel说互连间距是52nm,但实际量了一下是54nm,在误差范围内,但也可能观察的不是最紧密的部位。   更深入的透射电子显微镜观察正在进行中,届时将看到晶体管和鳍片。这是Intel官方给出的图像。就目前看到的而言,Intel 14nm很大程度上就是22nm的缩小增强版,结构设计并未做太大变动。 关于ChipWorks  Chipworks公司是一家专门从事反向工程(reverse engineering)及系统分析的半导体业界厂商。
  • 岛津原子力显微镜——软硬通吃
    1981年,量子理论打破了书本的次元壁,STM的出现使其从纯数理理论变成了真实可表征的存在。4年后,AFM在STM的基础上诞生,几乎各种固体表面的微观表征似乎一下子触手可得。然而,现实的尝试总是坎坷的。AFM诞生伊始,工作模式是以库伦斥力为主的接触模式。在这种模式下,探针针尖需要在样品表面上施加一定的压力,数值一般是在几个纳牛到几个微牛级别。这么大小的力,对于大多是固体而言,可以说是不痛不痒的,因此也可以比较顺利地获得表面形貌。 但是,如果样品比较柔软,尤其是杨氏模量硬度在几十个兆帕以内的样品,面对尖锐的针尖,即使很微弱的力,仍然会被刺穿,无法正常扫描图像。 因此,当时遇到无法正常扫描的样品,实验者首先想到的就是利用“力-距离曲线”测试样品的杨氏模量,由此判断得不到图像是样品的原因还是其他原因。 这就是AFM的另一个经常用到的测试模式,“力-距离曲线”测试。这时AFM可以看做一个微型的“纳米压痕仪”,通过尖锐的针尖压入-提起过程中的力变化曲线获得样品表面的机械性能数据。 在这个测试过程中,AFM检测系统对力的分辨率是最重要的参数,岛津通过不断优化整个检测系统,可以达到皮牛级的精确检测。 尤其是对于一些生物样品,例如脂质膜,因为其是由磷脂分子构成的单层或双层结构,极其柔软,从测试曲线上可以看出,脂质膜对探针的力只有约1pN,而且曲线很清晰。 当然,仅限于单点的测试时不能满足实验者的,最终还是要能对柔软样品进行成像。动态力模式的推出完美解决了柔软样品形貌表征的问题。 在该模式下,利用振动探针的振幅受与样品作用力的影响,可以有效检测极微小的作用力。同时,因为探针与样品接触式间断产生的,可以通过振幅反馈有效调整接触时力的大小。利用该模式,甚至表面杨氏模量在1MPa以下的样品也可以进行表面形貌表征。 例如近些年医学和保健领域的前沿研究热点外泌体和微泡。它的尺寸一般为几十个纳米,很难用光学显微镜观察;而且单层膜结构使其极为柔软,传统原子力显微镜无能为力。我们用岛津SPM对溶液(盐溶液)中的两类外泌体进行观察,因为可以精确控制接触的力,保持在一个极为微小的范围内,最终获得了真实的图像。 更进一步,将形貌表征和“力-距离曲线”测试结合起来,对每一个测试点都同时获取高度信息和机械性能信息,就可以在一次扫描中,获得表面形貌、表面杨氏模量分布、表面粘弹性分布等多幅图像。 虽然功能很强大,但是这种工作模式传统上受制于“力-距离曲线”的获取速度,一般时间都很长,往往需要几个小时才能完成一个区域扫描。一味地提高速度,会导致每个点的“力-距离曲线”抖动失真,无法保证定量测试。 为此,岛津在全产品线上标配了高速扫描器,同时优化表面物性分析软件,在表征数据真实可靠的基础上将耗时压缩到二十分钟左右,提高了工作效率。如上图所示,对高密度PE和低密度PE进行表面物性分析,扫描点阵为256*256,在21分钟内完成了测试,同时得到了表面形貌图、表面杨氏模量分布图、表面粘弹性分布图。而且每一个点的力-距离曲线均没有发生抖动变形。 经过三十年的发展,岛津SPM不断进行技术迭代,实现了对各类样品的兼容。形象一点来说,三十年练就了一副铁齿铜牙,软硬通吃,来者不拒! 本文内容非商业广告,仅供专业人士参考。
  • 电子显微镜在制药行业的应用
    电子显微镜助力药品检测制剂的表面和内部形貌观察药物制剂的种类非常多,按照物态分为固体剂型、半固体剂型、液体剂型、气体剂型。固体剂型(包括片剂、丸剂等)、半固体剂型和少数气雾剂的观察一般适合用SEM,液体剂型和纳米固态剂型的观察一般用TEM。固态药粉的放大形貌图药粉的导电性一般都比较差,因此在SEM的拍摄中一般采取喷镀金属膜层的方法提升导电性。但是由于镀膜过程带来的热效应可能会对脆弱的药物样品造成一定损伤,造成形貌失真,所以优先采用不喷金直接观察,这时,对SEM的性能就提出了更高的要求。上图中的两种不同的药物采用了不同的拍摄条件,左图采用无镀膜的方式直接UVD探头拍摄低真空下的SE图像,有效避免了荷电和热损伤;右图的药粉耐热性较好,不容易出现损伤,采用了喷镀金属膜的前处理方式,使用高真空SE探头低加速电压拍摄高分辨率形貌。片剂、冲剂、针剂、丸剂、气雾剂等常规剂型,需要每日用药多次,不仅使用不便,而且血液中的药物浓度起伏很大,会出现“峰谷”现象:当血药浓度处于高峰时,超过了最合适的治疗浓度,容易引起副作用;反之,药物浓度降到低谷时,又远在所需浓度之下,难以发挥治疗作用。于是,人们迫不及待地需要新型制剂来解决这个问题。在这个背景下,新的药物剂型———缓释制剂与控释制剂就应运而生了。a.丸剂和片剂的表面和截面形貌图(含局部放大图)缓释和控释技术在药物中应用后,能在较长时间内持续释放药物。与普通制剂相比,这种给药方式有三大优势:延长药效、减少服药次数,尤其适用于需要长期服药的慢性病患者;提供平稳、持久的有效血药浓度,避免或减小峰谷现象,有利于提高药物使用的安全性,减少不良反应,对胃肠道具有保护作用;药物作用时间较长、化学稳定性较好,减少了在贮存时易变质失效或口服后经胃酸作用被破坏的几率。已压制成型的缓释丸剂和片剂肉眼或外表面看起来差别并不大,但心部可能存在较大差别。上图显示了部分丸剂和片剂的表面和截面形貌。可以看出,对于某些片剂或丸剂,刀片切割已经能够几乎完全反映内部的形貌特征,分层情况和多孔的分布情况可以清楚地被看到。正是由于这些像“3D滤网”一样的分层或多孔的镂空结构,研究人员通过模拟人体内的肠胃微环境,控制这些细微结构在人体内对药物有效成分的透过率,缓释药才能真正发挥疗效。然而,如果想要分析每一层截面上局部的成分和含量,可能还要借助其他样品前处理设备完成。b.丸剂的截面(Hitachi IM4000plus离子研磨仪处理)图b所示,相对于图a,丸剂的剖面被更清晰地观察到。从低倍到高倍、从全貌到局部充分展现了丸心、内层、中层、外层的形貌特征。背散射电子的成分衬度,使图像衬度更加明显,甚至单一分层内部的片状微粒组合方式也得到完美呈现。从外观上说,很明显,图b比图a中的样品截面看起来更加平整、杂质附着也更少。这主要是由于使用Hitachi IM4000plus离子研磨仪进行了样品前处理,样品更为干净,完美避免了手动切开或者机械抛磨带来的刮擦、变形、外来污染物引入等问题,使得此样品更适合做EDS成分分析。药品的研发过程中,日立扫描电镜助力研究人员解决研究过程中出现的难题,找到新的研究方向。公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 光学显微镜、电镜用于地震灾区石棉粉尘检测
    2013年4月20日上午八时零二分,四川省雅安市芦山县地区发生7.0级地震,地震造成重大人员伤亡和财产损失。地震发生后,科技部紧急研究部署四川雅安地震抗震救灾科技工作,并在科技部门户网站发布抗震救灾实用技术手册,供地震灾区选用。在抗震救灾实用技术手册中,发布了地震灾区石棉粉尘检测技术。具体信息如下:  灾后各灾区的损坏建筑的清理、拆除、重建工作非常繁重,在这个过程中,粉尘的污染是个十分重要的问题,特别是很多建筑使用了或多或少的石棉材料,由此产生的石棉粉尘会对人体健康造成危害。本手册内容为针对石棉粉尘的分析监测技术和使用了石棉材料的建筑物的拆解及石棉废弃物的安全处理处置操作技术,以备地震灾区在工作中参照采用。  地震灾区使用了石棉材料的建筑物的安全拆解及石棉废弃物的处理处置应遵循专人按章操作,严密防护,安全、妥善贮存运送,指定地点集中处置,在整个过程中均设立明显示警标志,确保在拆解、处理处置过程及处置后的环境安全的原则。在工作过程中,要针对工作现场及周边进行石棉纤维污染的监测,防止造成污染,确保人体健康。  石棉纤维的检测方法有多种,主要有光学显微镜法、电镜法、X-射线衍射法等。其中光学显微镜法原理简单、所使用光学显微镜较为常见。而电镜法则准确度比较高,可以检测出较为细小的石棉纤维颗粒。  一.固体样品的检测  可参照HJ/T 206-2005《环境标志产品技术要求 无石棉建筑制品》的分析方法。主要方法如下:  1.样品的采集  固体材料中石棉检测工作的样品采集方法如下。  在材料的不同部位取下样品若干块,取样量约50-200克左右。  2.样品的预处理  1)被测样品中有机物质的去除。采用高温烘烤方法,在马弗炉中在400-500℃的温度下加热2小时左右,除去被测样品中的有机物质。  2)块状样品的粉碎。采用机械手段进行破碎和研墨至粉末状。(若使用破碎机,粉碎时间不要太长。不然会造成石棉纤维成为细小颗粒,无法辨别)  3)纤维束状和絮状样品。用剪子剪碎后,可用研钵稍做研磨,以使缠绕成团的纤维和过粗的纤维束可以分离舒展。或用镊子等工具从边缘剥离少许。  4)将粉碎或研磨好的样品进行充分的混匀待用。  3.样品的分析  采用光学显微镜法分析参照HJ/T 206-2005《环境标志产品技术要求 无石棉建筑制品》。  采用扫描电镜检测参照ISO 14966-2002《环境空气—无机纤维颗粒计数浓度的测定—扫描电子显微镜法》。  二.空气样品中石棉纤维的检测  1.光学显微镜法  样品采集就是将含石棉尘的空气抽取通过采样滤膜,石棉尘于滤膜上透明固定后,在相衬显微镜下计数,根据所采气体体积计算出每立方厘米气体中的石棉尘的根数。  采样及测定方法参照HJ/T41-1999《固定污染源排气中石棉尘的测定-镜检法》。  2.扫描电镜法  样品采集及测定可参照ISO 14966-2002《环境空气—无机纤维颗粒计数浓度的测定—扫描电子显微镜法》。  样品采集时可使用适用于扫描电镜观测的0.2微米或者0.4微米孔径的核孔膜。采样流量5-10L/min.。采样时间根据粉尘污染情况确定,以不造成颗粒物重叠为宜。  参照ISO 14966-2002 标准,在2000倍下进行观察和计数,计数规则参照上述标准。  技术来源  单位名称: 国家环境分析测试中心  联系地址: 北京朝阳区育慧南路1号 邮编:100029  联系人: 董树屏  联系电话:13601358418  e-mail: yrhuang@cneac.com  石棉的定义及可能含有石棉材料的建筑材料  石棉定义:石棉主要有两类,一类指属于蛇纹岩类的纤维状矿物硅酸盐,即温石棉(白石棉) 另一类是指闪石类纤维状矿物硅酸盐,即阳起石、铁石棉(棕石棉、镁铁闪石-铁闪石)、直闪石、青石棉(蓝石棉)、和透闪石。  石棉粉尘是指环境中悬浮在空中的石棉微粒。直径小于3微米,长度与直径之比大于3,纤维测量长度大于5微米的石棉纤维对人体的危害最大。  我国建筑材料中使用的主要是温石棉。可能含有石棉材料的建筑材料包括:石棉水泥瓦,钢丝网石棉水泥波瓦,石棉水泥平板,TR建筑平板,石棉硅酸钙板,石棉水泥管,石棉纱、线,石棉绳,石棉布,石棉带,热绝缘石棉纸,衬垫石棉纸、板,保温石棉板,泡沫石棉,石棉衣著,石棉被等。在这些材料中水泥制品比较坚固稳定,而保温石棉板、绝缘材料、泡沫石棉的材料较为松散易碎,更易于进入空气中造成污染。
  • 超高分辨率荧光显微镜的应用
    超高分辨率荧光显微镜正在不断改变我们对细胞内部结构及运作的认识。不过在现阶段,显微镜技术还是存在着种种不足,如果人们希望显微镜能在生物研究领域发挥重要作用,就必须对其加以改进和提高。  光学显微镜的出现及其影响  自荷兰博物学家、显微镜创制者Antonie van Leeuwenhoek(1632-1723)在17世纪第一次将光线通过透镜聚焦制成光学显微镜并用它观察微生物(microorganisms or animalcule)以来,显微镜就一直是生物学家从事研究工作、探寻生命奥秘必不可少的利器。正是因为有了Leeuwenhoek的这项伟大发明及其后继者对显微镜技术的不断改进和发展,人们才能够对细胞内部错综复杂的亚细胞器等结构的形态有了初步的了解。  此后,研究人员对显微镜技术的追求从未停歇过,他们总是希望能得到分辨率更高的显微镜,从而更好地观察细胞内部更细微的结构。最近,《自然-方法》(Nature Methods)杂志上报道的超高分辨率成像技术(super-resolution imaging, SR imaging)终于使得人们可以在单分子水平上进行观察研究。  SR技术的发展过程  在达到今天SR技术水平的过程中,承载了许许多多研究人员辛勤劳动的汗水,也面临着诸多亟待解决的难题。  在以上这些光学SR成像技术中有两种技术&mdash &mdash 受激发射减损显微镜(stimulated emission depletion microscopy, STED)和饱和结构光学显微镜(saturated structured illumination microscopy,SSIM)最受关注。  最近,基于探针SR成像技术的光敏定位显微镜(PALM)和随机光学重建显微镜(STORM),以及借助荧光基团随机激活特性的荧光光敏定位显微镜(FPALM)都已经取得了成功。  通过基于探针的SR成像技术,可以获得多张原始图像。在每一张原始图像中,细胞内只有一部分被荧光标记的分子能发出荧光,即这些荧光分子都处于不断激活和灭活的交替状态,每一次都只有部分分子能被观察并成像。而且由于每次发出荧光的分子都分散得较为稀疏,因此相互之间不会受到影响,也就避免了因相邻分子发出荧光而无法分辨的问题。最后将这些原始图片叠加、重合在一起就得到了最终的高分辨率图像。这样,就能使得那些以前由于荧光点太密以至于无法成像的结构的分辨率达到纳米级水平,而且成像的分子密度也相当高,可以达到105个分子/&mu m2。  这种分辨率对于生物学家来说,意味着现在可以在分子水平上观察细胞内的结构及其动态过程了。  虽然显微镜技术已经发展到了如此高度,但它仍然只是生物学家研究中使用的一种工具。因此还需要将显微镜获得的图像与其它的试验结果互相参照,才能获得准确的结果。人们需要认清SR显微镜的优势与劣势,为操作以及判断SR图像制定出标准化的操作规范,只有这样才能最大限度地发挥SR显微镜的作用。  现在,由于人们对细胞内各组份的组织结构以及它们的动态变化过程都只有一个概念上的认识,因此,借助显微镜从纳米水平上对这些结构及过程进行真实的观察能让人们发现许多以往所不了解的东西。例如,以前人们通过电镜发现细胞骨架是由大量丝状网格样组织构成时,就有人对此现象持怀疑态度。那些认为细胞骨架是一种用来稀释细胞内生化物质浓汤这样一种结构的细胞生物学家把这种观测结果称作僵化的人为试验结果。  除非最新的SR显微镜图像或者其它的试验结果都能证明细胞骨架是由大量的丝状网格样组织构成的,否则还会有人持上述的怀疑观点。不过已经有其它的生化试验结果证实了早期的电镜观察结果是正确的。当然新兴的SR技术也需要其它传统的生化试验结果予以佐证才有价值,同时还需要电镜的辅助。因为电镜能提供纳米级的观察结果,这对于佐证具有同样分辨率的SR显微镜观测结果来说是最有价值的。  今后,大家在逐步了解、接受和广泛使用SR显微镜的同时,需要注意将会出现的各种问题,以下的表格列出了部分与SR显微镜使用相关的缺点及其目前的解决方法。  最近几年,就如何处理图像已经有了非常严格的操作规范。不过迄今为止,对于怎么处理SR图像还没有一个标准的操作规范。尤其需要指出的是,PALM和STORM数据在某些重要因素上,graph方面的共性要多于image方面。在一张SR图像上,分子的不确定性和密度都能用颜色表示出来,这种图像把细胞内该分子有可能出现的任何地点都标示出来了。而且只有被标记的分子按照一定的标准(发出的光子数)判断它的确是一个单分子并且定位准确之后才显示出来。必须对获得的图像进行这样的标准化处理之后才能分析结果。同样,对于试验数据也需要如此进行标准化处理。要提高分辨率不仅需要分子定位、分布得比较好,还需要分子数目够多,以致能达到尼奎斯特判断法(Nyquist criterion)的要求,即分子间的平均距离要小于显微镜分辨率的一半。虽然上述问题都不会影响SR显微镜的应用,但由于存在这些问题,所以我们应该时刻提醒自己,一定要仔细判读、分析SR显微镜的图像结果,只有这样才能得到有价值的生物学结论。  SR荧光显微镜在生物学研究中的应用  到目前为止,人们还很难得知,SR荧光显微镜会对生物学界的哪一个领域带来重大变革,但已经有几个领域出现了明显的改变。这些研究领域是动态及静态的细胞组织结构研究领域、非均质分子组织研究领域、蛋白动态组装研究领域等。这几个领域都有一个共同的特点,那就是它们研究的重点都是分子间如何相互作用、组装形成复合物。因此,能在纳米水平观察这些分子对它们来说具有重大的意义。  通过观察蛋白质之间的组合关系来了解它们的作用,并能为后续的细胞功能试验打下基础  结构生物学研究在这方面已经取得了很大的进展,目前已经发现了4-8纳米大小的分子间相互作用组装成细胞微管、肌丝、中间丝这些超过10微米大小聚合物的机制。不过对于核孔复合体、中心体、着丝点、中间体、粘着斑这些由许多不同蛋白经过复杂的三维组装方式组合起来的复合体,还需要更好的办法来进行研究。目标就是要达到分子水平的分辨率,这样就可以观察大复合体形成过程中的单个分子,也就能对这些分子的化学计量学有所了解了。要得到更多的生物学信息就需要SR显微镜这样的三维成像技术,例如可以使用活体细胞SR成像捕捉细胞骨架的动态重构过程等等。  SR成像有助于人们更好地了解分子间的差异  细胞膜蛋白组织方式的经典模型已经从随机分布的液态镶嵌模型转变成了脂筏模型、穴样内陷模型或特殊蛋白模型。这种差异与细胞不同功能相关,例如在高尔基体、cargo蛋白和高尔基体酶蛋白之间必须发生相互作用,但最终它们会按照各自的功能分开,发挥各自的作用。有很多试验手段,例如免疫电镜技术、荧光共振能量转移技术(FRET)等都已经被用来研究这种膜不均一性问题了。多色PALM技术(Multicolor PALM)为人们提供了一种新的手段用来观察膜蛋白集合、组织的过程,并且还能定量分析不同蛋白间的空间距离关系。因为有了PALM提供的单分子信息,人们就可以清楚地了解蛋白分子间的空间关系,甚至有可能计算出相隔某一距离的分子之间发生相互作用的可能性。这种方法除了用于研究膜蛋白之外,还能用于许多非随机分布的生物系统研究,例如研究微管上的马达蛋白。  SR成像技术还能用于在单分子水平研究蛋白动态组装过程  细胞对外界刺激信号的反应起始于胞膜,在胞膜上受体蛋白之间发生动态的集合,用来调节细胞的反应活性。像HIV这种有被膜病毒也是在细胞膜上完成病毒颗粒组装过程的病毒,也是利用了细胞的物质转运机制。尽管现在蛋白组装的物理模型还远远没有完成,但研究人员知道膜蛋白的动态组装过程是不均一的,所以通常使用荧光试验手段很难获得分子水平上的信息。同样,单分子测量技术(Single molecule measurements)也存在着类似的局限,因为单分子测量技术只能观察细胞内的几个分子,所以缺乏整体的信息。因此由于缺乏空间分辨率,很难动态地研究蛋白质组装过程。SR荧光成像技术与活细胞成像技术和单分子示踪技术(sptPALM)结合就能解决这一问题。我们可以借助分子密度准确地看出PALM图像中的蛋白质簇,蛋白质簇动态的统计数据和形态学数据能帮助我们了解蛋白质动态组装的机制。  上面只是选了生物学研究中的3个方面来说明SR技术的用途,但这已经很好的展示了我们是如何从Leeuwenhoek最初对于生命组成的假设一步一步走到了今天,使用SR显微镜来证实构成生命体的最基本材料&mdash &mdash 分子的组合过程。STED和PALM的商业化产品已经上市了,这标志着SR显微镜的时代来临了。我们相信SR显微镜在充满创造力的生物学家们手中,一定会充分发挥它的作用,帮助我们发现更多生命的奥秘。  原文检索:  Jennifer Lippincott-Schwartz & Suliana Manley. Putting super-resolution fluorescence microscopy to work. Nature Methods, 17 December 2008 doi:10.1038/nmeth.f.233
  • 中科院研发太赫兹扫描隧道显微镜
    ▲图 | 太赫兹扫描隧道显微镜系统(来源:资料图)太赫兹,是介于远红外和微波之间的电磁波,具有光子能量低、穿透性好等特点,在高速无线通信、光谱学、无损伤成像检测和学科交叉等领域具备广泛应用前景,被誉为“改变未来世界的十大技术”之一。简单来看,太赫兹扫描隧道显微镜系统就是一个超快摄影机,只不过它要观察和拍摄的对象是分子和原子世界,并且拍摄的帧率在亚皮秒量级。对于非线性太赫兹科学来说,控制太赫兹脉冲的“载波包络相位”,即激光脉冲的载波与包络之间的关系至关重要,特别是用于超快太赫兹扫描隧道显微镜时。太赫兹载波包络相位移相器的设计和实现,在利用太赫兹脉冲控制分子定向、高次谐波生成、阈上电离、太赫兹波前整形等领域,均具备潜在应用价值。(来源:Advanced Optical Materials)1. 为调控太赫兹的载波包络相位提供新方案据介绍,王天武在中科院空天信息研究院(广州园区)-广东大湾区空天信息研究院担任主任和研究员等职务,研究方向为太赫兹技术。目前,其主要负责大湾区研究院的太赫兹科研队伍建设。该研究要解决的问题在于,常规探测手段只能得到静态的原子形貌图像,无法观察物质受到激发,例如经过激光辐照后的动态弛豫过程图像,即无法观察到激子的形成、俄歇复合、载流子谷间散射等过程,而这些机理的研究,对于凝聚态物理学包括产业化应用都非常重要。原因在于,这些动力学过程发生的时间尺度,往往都在皮秒量级,即万亿分之一秒的时间,任何普通调控手段均无法达到这一时间量级。利用飞秒脉冲激光技术,能显著提高扫描隧道显微镜(Scanning Tunneling Microscope,STM)这一扫描探针显微术工具的时间分辨率。但是,目前仍受到多种因素的限制,比如样品和针尖制备困难、针尖的电容耦合效应、脉冲光引起的热膨胀效应等。太赫兹的脉冲宽度位于亚皮秒尺度,其电场分量可被看作一个在很宽范围内、连续可调的交流电流源。因此,将太赫兹电场脉冲与 STM 结合,利用其瞬态电场,即可作用于扫描针尖和样品之间的空隙,从而产生隧穿电流进行扫描成像,能同时实现原子级空间分辨率和亚皮秒时间分辨率。如前所述,太赫兹扫描隧道显微镜系统好比一个超快摄影机。但是,太赫兹电场脉冲和 STM 的实际结合过程,却并非那么简单,中间要攻克诸多难题。其中一个最基础的重要难题,在于太赫兹源的相位调控技术。太赫兹扫描隧道显微镜系统是利用太赫兹激发针尖尖端和样品之间的空隙,来产生隧穿电流并进行采样。不同相位太赫兹源的电场方向不一样,这样一来所激发的隧穿电流的方向亦不相同。根据不同样品施加不同相位的太赫兹源,可以更好地匹配样品,进而发挥系统性能优势,借此得到高质量光谱。因此,通过简单高效的途径,就能控制太赫兹脉冲的载波包络相位,借此实现对于隧道结中近场太赫兹时间波形的主动控制,同时这也是发展超快原子级分辨技术的必备阶段。通常,超短脉冲的载波包络相位,必须通过反馈技术来稳定。除少数例子外,比如用双色场激光等离子体产生的太赫兹辐射源,大多数商业化设备产生的太赫兹脉冲的载波包络相位都是锁定的,例如人们常用的光整流技术生成的太赫兹脉冲。多个太赫兹偏振元件组成的复杂装置,可用于控制太赫兹脉冲的载波包络相位。然而,鉴于菲涅耳反射带来的损耗,致使其插入损耗很大,故无法被广泛应用。另外,在太赫兹波段,大部分天然材料的色散响应较弱、双折射系数较小,很难被设计成相应的载波包络相位控制器件,因此无法用于具有宽频率成分的太赫兹脉冲。与天然材料相比,超材料是一种由亚波长结构衍生而来的、具有特殊光学特性的人工材料,其对电磁波的色散响应和双折射系数,均可进行人为定制。虽然超材料技术发展迅猛。但是,由于近单周期太赫兹脉冲的宽带特性,利用超材料对太赫兹脉冲的载波包络相位进行控制,仍是一件难事。为解决这一难题,王天武用超材料制备出一款芯片——即柔性太赫兹载波包络移相器,专门用于控制太赫兹脉冲的载波包络相位。该芯片由不同结构的超材料阵列组成,可在亚波长厚度和不改变太赫兹电场极化的情况下,实现对太赫兹载波包络相位的消色差可控相移,其对太赫兹脉冲的载波包络相位的相移调制深度高达 2π。相比传统的太赫兹载波包络相位移相器,该移相器具有超薄、柔性、低插损、易于安装和操作等优点,有望成为太赫兹扫描隧道显微镜系统的核心部件。近日,相关论文以《基于超材料的柔性太赫兹载波环移相器》(Flexible THz Carrier-Envelope Phase Shifter Based on Metamaterials)为题发表在 Advanced Optical Materials 上,李彤和全保刚分别担任第一和第二作者,王天武和空天信息创新研究院方广有研究员担任共同通讯作者。▲图 | 相关论文(来源:Advanced Optical Materials)审稿人认为:“此研究非常有趣、简明扼要,研究团队完成了一套完备的工作体系。该芯片的设计和实现,为调控太赫兹的载波包络相位提供了新的解决方案。”2. 建立国际领先的太赫兹科学实验平台据介绍,王天武所在的研究院,围绕制约人类利用太赫兹频谱资源的主要科学问题和技术瓶颈,致力于形成一批引领国际的原创性理论方法和太赫兹核心器件技术,以建立国际领先的太赫兹科学实验平台。他说:“太赫兹扫描隧道显微镜是我们院的一大特色,该设备摒弃了此前施加电压的方式,以太赫兹为激发源,去激发探针尖端和样品之间的间隙,从而产生隧穿电流并进行成像。相关技术在国内属于首创,在国际上也处于领先水平。”在诸多要克服的困难中,太赫兹载波包络相位的调制便是其中之一。入射太赫兹的相位大小对激发的隧穿电流的幅值、相位等信息影响甚大,是提高设备时间和空间分辨率必须要解决的重要问题之一。由于设备腔体比较长,并且腔体内部为高真空环境,与外界空气是隔绝的。传统的太赫兹相位改变方式比较难以实现,因此需要研发新型的相位调制器件。而该课题立项的初衷,正是希望找到一种结构简单、但是对太赫兹载波包络相位调制效率高的方法和装置,以便更好地服务于太赫兹扫描隧道显微镜系统。在文献调研的初始阶段,该团队商定使用超材料来制作太赫兹相位调制器。具体来说,其利用特定的金属分裂环谐振器的几何相位、以及共振相位,来控制太赫兹脉冲的载波包络相位值。之所以选择金属分裂环谐振器作为基本相控单元,是因为在一定条件下,它对太赫兹具有宽谱响应。当任意方向的线偏振波与谐振器耦合时,入射电场分量可映射到平行于谐振器对称轴和垂直于谐振器对称轴,借此可以激发谐振器的对称本征模和反对称本征模。此时,通过改变金属分裂环谐振器的几何相位和共振相位,散射场的某一偏振分量的电场相位会相应延迟,大小可以轻松覆盖 0-2π。但是,由于存在电偶极子的双向辐射,导致金属分裂环谐振器存在明显的反射和偏振损耗。为此,课题组引入了一对正交的定向光栅,利用多光束干涉的方式解决了谐振器插入损耗大的问题。随之而来的另一难题是,由于正交光栅的存在,导致入射波和透射波之间的电场偏振始终是垂直的,在太赫兹扫描隧道显微镜系统的工作中,这是不被允许的。好在样品均是由互易材料制成的,于是这一问题很快迎刃而解。随后,该团队采用常规紫外光刻、电子束沉积以及聚酰亚胺薄膜上的剥离技术,制备出相关样品,并利用太赫兹时域光谱系统,对所制备的样品性能进行表征。当入射的太赫兹脉冲,依次被样品中不同的微结构阵列调制时,研究人员通过太赫兹时域光谱测量,清晰观察到了太赫兹脉冲的时间波形的变化,且与仿真结果十分吻合。此外,课题组还在广角入射和大样品形变时,验证了该样品的鲁棒性。总而言之,该成果为宽带太赫兹载波包络相位的控制,提供了一种新型解决方案,并在不改变太赫兹电场极化的情况下,利用“超材料”在亚波长厚度的尺度上,实现了针对宽带太赫兹载波包络相位的消色差可控相移。关于这一部分成果的相关论文,也已发表在《先进光学材料》期刊。(来源:Advanced Optical Materials)据介绍,此次芯片能把太赫兹的相位最高移动至 2π 大小,并且具有大的光入射角度和良好的柔韧性等优点,在太赫兹扫描隧道显微镜系统,以及其他相关领域有较高的应用价值。但是,该芯片目前仍存在一个缺点,即无法做到太赫兹载波包络相位的连续调制。这是由于,采用的金属分裂环谐振器是单次加工制成的,所能调制的几何相位和共振相位已经确定,无法再被人为改变。因此,使用过程中只能通过加工特定结构的芯片,来实现所需相位的调制。未来,该团队打算将当下比较热门的二维材料、相变材料、液晶材料等材料集成到芯片中,这些材料的优势在于光学性能可被人为改变。同时,其还将综合电、光、热等手段,实现金属分裂环谐振器几何和共振相位的主动控制,从而实现对太赫兹脉冲的连续载波包络相位调制。此外,课题组也会继续优化微加工工艺和原料制备流程,进一步提升芯片的综合性能指标,比如器件的低插入损耗、高工作带宽等,同时也将降低制造成本,以便后续的产业化推广。
  • 利用原子力显微镜对半导体制造中的缺陷进行检测与分类
    利用原子力显微镜进行的自动缺陷复检可以以纳米级的分辨率在三维空间中可视化缺陷,因此纳米级成像设备是制造过程的一个重要组成部分,它被视为半导体行业中的理想技术。结合原子力显微镜的三维无创成像,使用自动缺陷复查对缺陷进行检测和分类。伴随光刻工艺的不断进步,使生产更小的半导体器件成为可能。 随着器件尺寸的减小,晶圆衬底上的纳米级缺陷已经对器件的性能产生了限制。 因此对于这些缺陷的检测和分类需要具有纳米级分辨率的表征方法。 由于可见光的衍射极限,传统的自动光学检测(AOI)无法在该范围内达到足够的分辨率,这会损害定量成像和随后的缺陷分类。 另一方面,使用原子力显微镜 (AFM) 的自动缺陷复检 (ADR)技术以 AFM 常用的纳米分辨率能够在三维空间中可视化缺陷。 因此,ADR-AFM 减少了缺陷分类的不确定性,是半导体行业缺陷复检的理想技术。 缺陷检查和复检 随着半导体器件依靠摩尔定律变得越来越小,感兴趣的缺陷(DOI)的大小也在减小。DOI是可能降低半导体器件性能的缺陷,因此对工艺良率管理非常重要。DOI尺寸的减小对缺陷分析来说是一个挑战:合适的表征方法必须能够在两位数或一位数纳米范围内以高横向和垂直分辨率对缺陷进行无创成像。 传统上,半导体行业的缺陷分析包括两个步骤。第一步称为缺陷检测,利用高吞吐量但低分辨率的快速成像方法,如扫描表面检测系统(SSIS)或AOI。这些方法可以提供晶圆表面缺陷位置的坐标图。然而,由于分辨率较低,AOI和SSIS在表征纳米尺寸的DOI时提供的信息不足,因此,在第二步中依赖高分辨率技术进行缺陷复检。对于第二步,高分辨率显微镜方法,如透射或扫描电子显微镜(TEM和SEM)或原子力显微镜(AFM),通过使用缺陷检测的缺陷坐标图,对晶圆表面的较小区域进行成像,以解析DOI。利用AOI或SSIS的坐标图可以最大限度地减少感兴趣的扫描区域,从而缩短缺陷复检的测量时间。 众所周知,SEM和TEM的电子束可能会对晶圆造成损伤,所以更佳的技术选择应不能对晶圆产生影响。那么选择采用非接触测量模式的AFM可以无创地扫描表面。不仅有高横向分辨率,AFM还能够以高垂直分辨率对缺陷进行成像。因此,原子力显微镜提供了可靠的缺陷定量所需的三维信息。 原子力显微镜 通过在悬臂末端使用纳米尺寸的针尖对表面进行机械扫描,AFM在传统成像方法中实现了最高的垂直分辨率。除了接触模式外,AFM还可以在动态测量模式下工作,即悬臂在样品表面上方振荡。在这里,振幅或频率的变化提供了有关样品形貌的信息。这种非接触AFM模式确保了以高横向和垂直分辨率对晶圆表面进行无创成像。由于自动化原子力显微镜的最新发展,原子力显微镜的应用从学术研究扩展到了如硬盘制造和半导体技术等工业领域。该行业开始关注AFM的多功能性及其在三维无创表征纳米结构的能力。因此,AFM正在发展成为用于缺陷分析的下一代在线测量解决方案。 使用原子力显微镜自动缺陷复检 基于 AFM 的缺陷复检技术的最大挑战之一是将缺陷坐标从 AOI 转移到 AFM。最初,用户在 AOI 和 AFM 之间的附加步骤中在光学显微镜上手动标记缺陷位置,然后在 AFM 中搜索这些位置。然而,这个额外的步骤非常耗时并且显着降低了吞吐量。另一方面,使用 AFM 的自动缺陷复检从 AOI 数据中导入缺陷坐标。缺陷坐标的导入需要准确对准晶圆以及补偿 AOI 和 AFM 之间的载物台误差。具有比 AOI 更高位置精度的光学分析工具(例如Candela),可以减少快速中间校准步骤中的载物台误差。以下 ADR-AFM 测量包括在给定缺陷坐标处的大范围调查扫描、缺陷的高分辨率成像和缺陷分类。由于自动化,测量过程中用户不必在场,吞吐量增加了一个数量级。为了保持纳米级的针尖半径,使多次后续扫描依旧保持高分辨率,ADR-AFM 采用非接触式动态成像模式。因此,ADR-AFM 可防止探针针尖磨损并确保对缺陷进行精确地定量复检。图1:用AOI和ADR-AFM测定的缺陷尺寸的直接比较,见左侧表格。右侧显示了所有六种缺陷的相应AFM形貌扫描。突出的缺陷称为Bump,凹陷的缺陷称为Pit。 AOI和ADR-AFM的比较 图1比较了 AOI 和 ADR-AFM 对相同纳米级缺陷的缺陷复检结果。AOI 根据散射光的强度估计缺陷的大小,而 ADR-AFM 通过机械扫描直接缺陷表面进行成像:除了横向尺寸外,ADR-AFM 还测量缺陷的高度或深度,从而可以区分凸出的“bump”和凹陷的“pit”缺陷。 缺陷三维形状的可视化确保了可靠的缺陷分类,这是通过 AOI 无法实现的。当比较利用 AOI 和 ADR-AFM 确定缺陷的大小时,发现通过 AOI 估计的值与通过 ADR-AFM 测量的缺陷大小存在很大差异。对于凸出的缺陷,AOI 始终将缺陷大小低估了一半以上。 这种低估对于缺陷 4 尤其明显。在这里,AOI 给出的尺寸为 28 nm ,大约是 ADR-AFM 确定的尺寸为 91 nm 的三分之一。 然而,在测量“pit”缺陷 5 和 6 时,观察到了 AOI 和 ADR-AFM 之间的最大偏差。 AOI将尺寸在微米范围内的缺陷低估了两个数量级以上。 用 AOI 和 ADR-AFM 确定的缺陷大小的比较清楚地表明,仅 AOI不足以进行缺陷的成像和分类。图 2:ADR-AFM 和 ADR-SEM 之间的比较,a) ADR-SEM 之前遗漏的凸出缺陷的 AFM 图像。 ADR-SEM 扫描区域在 AFM 形貌扫描中显示为矩形。 b) 低高度 (0.5 nm) 缺陷的成像,ADR-SEM 无法解析该缺陷。 c) ADR-SEM 测量后晶圆表面上的电子束损伤示例,可见为缺陷周围的矩形区域。 ADR-SEM和ADR-AFM的比较 除了ADR-AFM,还可以使用 ADR-SEM 进行高分辨率缺陷复查。ADR-SEM根据AOI数据中的DOI坐标,通过SEM测量进行自动缺陷复检,在此期间,高能电子束扫描晶圆表面。虽然SEM提供了很高的横向分辨率,但它通常无法提供有关缺陷的定量高度信息。为了比较ADR-SEM和ADR-AFM的性能,首先通过ADR-SEM对晶圆的相同区域进行成像,然后进行ADR-AFM测量(图2)。AFM图像显示,ADR-SEM扫描位置的晶圆表面发生了变化,在图2a中,AFM形貌显示为矩形。由于ADR-AFM中ADR-SEM扫描区域的可见性,图2a说明ADR-SEM遗漏了一个突出的缺陷,该缺陷位于SEM扫描区域正上方。此外,ADR-AFM具有较高的垂直分辨率,其灵敏度足以检测高度低至0.5nm的表面缺陷。由于缺乏垂直分辨率,这些缺陷无法通过ADR-SEM成像(图2b)。此外,图2c通过总结高能电子束对样品表面造成的变化示例,突出了电子束对晶片造成损坏的风险。ADR-SEM扫描区域可以在ADR-AFM图像中识别为缺陷周围的矩形。相比之下,无创成像和高垂直分辨率使ADR-AFM非常适合作为缺陷复检的表征技术。
  • 岛津原子力显微镜——表面之上(一)
    原子力显微镜是一种典型的表面分析工具。利用探针和表面的作用力,获取表面形貌、机械性能、电磁学性能等信息。但是,表面的状态往往是反应过程的最终表现,想要了解反应的动力学过程,只是着眼于“表面”明显就不够了。此外,对表面状态的诱发因素,也很难从表面的信息中获得。所以,表面的是最容易观察到的,但要究其根本,知其所以然,我们的视线要向“上”看,研究“界面”处的信息。表面之上,让表面不再肤浅。以原子力显微镜最基本的“力-距离”曲线为例。如下图所示,探针逐渐靠近样品表面直至接触,施加一定的作用力后再缓慢提起。在这个过程中,探针感受到的力和探针与样品表面间的距离标化曲线如下图。在逐步接近样品时,探针会受到一个吸引力,表现为曲线向负值方向有一个凹陷;然后逐步施加力至正值,停止;然后后撤探针,在脱离表面前会受到一个粘附力,形成第二个负值方向的凹陷。比较探针压入和提出的过程,探针的受力有一个明显的变化就是在提出过程中增加了探针表面与样品表面的粘附力作用。同时还要考虑样品表面的应力形变恢复带来的应力与吸附力作用距离延长。因此,从“力-距离”曲线中,我们可以获得压入-提出过程中,探针与样品保持接触阶段作用力的变化,由此分析得到杨氏模量;除此之外,在探针与样品表面脱离接触后,其范德华引力与粘弹性力在“界面层”仍然处于变化之中。分析这个阶段的粘附力力值和作用距离等数据,可以获得弹性形变恢复、粘性样品拉伸长度等信息。以上是针对一个点的分析,如果对一个面的每一个测试点都作如此分析,也就是通常所做的面力谱分析。如下图所示。一般而言,面力谱分析获得的是各类机械性能的面分布情况。如下图所示。但是,如果每一个测量点,我们都做如上的分析,还可以得到在垂直方向上,在探针针尖已经脱离了和样品表面的接触后的受力状态。从而获得了从表面向上一段距离内的力变化曲线。这样的数据用一个三维的图像表现出来呢,会给人更直观的认识。如下图所示。通过颜色变化表征垂直分布的力值变化,可以直观看到样品表面在受到压力后压缩和恢复程度,以及粘弹力的持续距离。前者可以反映样品的力学特征,后者可以反映表面化学成分,这个特征尤其在电化学和胶体科学领域非常重要。本文内容非商业广告,仅供专业人士参考。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制