当前位置: 仪器信息网 > 行业主题 > >

太阳能电池组件测试仪

仪器信息网太阳能电池组件测试仪专题为您提供2024年最新太阳能电池组件测试仪价格报价、厂家品牌的相关信息, 包括太阳能电池组件测试仪参数、型号等,不管是国产,还是进口品牌的太阳能电池组件测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合太阳能电池组件测试仪相关的耗材配件、试剂标物,还有太阳能电池组件测试仪相关的最新资讯、资料,以及太阳能电池组件测试仪相关的解决方案。

太阳能电池组件测试仪相关的资讯

  • 如何祛除太阳能电池组件上的“毒瘤”?
    随着新能源的逐渐普及,太阳能也迅速的走进千家万户,成为了成活中的一部分。太阳能在给生活带来便利和环保的同时,有一个"毒瘤"却一直在残害着太阳能电池或者组件的寿命,令广大用户对它是爱恨交加啊。那么这个"毒瘤"究竟是什么?该如何祛除呢?“毒瘤”的诞生过程这个"毒瘤"叫做太阳能热斑。太阳电池组件由于在制造和实验的过程中,出现隐裂、碎片焊接不良等;或在应用过程中,被其它物体(如鸟粪、树荫等)长时间遮挡时,被遮挡的太阳能电池组件此时将会严重发热,这就是"热斑效应",也就是太阳能上的一颗毒瘤。有光照的电池所产生的部分能量或所有的能量,都可能被"热斑"的电池所消耗。“毒瘤”的破坏力这颗毒瘤会对太阳能电池会造成很严重地破坏作用,会严重的破坏太阳电池组件或系统,所以需要对太阳电池组件进行热斑检测,使相对发热均匀的电池片进行组合或维护,以避免组件所产生的能量被热斑的组件所消耗,同时避免由于热斑可能给太阳能组件或系统的寿命带来的威胁,所以需要用到一款专业的工具来检测这颗"毒瘤",然后将其消灭。如何祛除“毒瘤”红外热像仪拥有超高的灵敏度,能够准确的感应出被测物体表面发生的微笑温度变化,检测出太能能电池片或组件的缺陷,将产品的缺陷位置直观准确的显示在红外热图中,特别是由菲力尔公司生产的FLIR Ex系列红外热像仪,可以实现即瞄即拍,能够快速准确的发现"毒瘤",让其无所遁形,简直可以称之为"毒瘤杀手"。“毒瘤杀手”是如何工作的?想要发现毒瘤,就要让太阳能组件发热,这样热像仪才能发挥效应,所以首先要太阳能电池片或组件在正常的太阳光或辅助光源下工作,或将组件在上述光源的照射下短路,这样热斑才会出现。接下来就是FLIR Ex系列红外热像仪大显身手的时刻,FLIR Ex系列包括FLIR E4、E5、E6和E8共4种热像仪,通过画中画及热叠加技术,检测人员除了可以拍摄红外图像外,还可以同时捕获一幅可见光照片,并将其融合在一起,通过拍摄的红外图像,检测人员可以直观、快捷,方便在同时间和相同的环境下得到同一块组件上不同电池块的温度,第一时间识别和定位故障,找出热斑。不仅如此,在采用FLIR Ex系列红外热像仪检测热斑时,还不需要断电,其采用的非接触测量方式更不会干扰原有的温度场,反应速度更是小于1秒,所以检测人员可以更快更准的检测出热斑,与传统的数据采集器和红外点温仪相比,各方面性能可以说是完胜。所以,在检测太阳能电池片或者组件热斑的时候使用FLIR Ex系列红外热像仪是毋庸置疑的, "毒瘤杀手"可不是白叫的。
  • 太阳能电池组件污染的实际成本
    越来越多的太阳能行业报告表明,太阳能电池组件污染所造成的经济损失和生产损失令人吃惊。什么是太阳能电池组件污染,它会造成哪些影响,可以采取什么措施来预防或减少这种污染?Kipp & Zonen 公司研发的灰尘监测系统DUSTIQ是如果解决这一难题的? 什么是太阳能电池组件污染? 太阳能电池组件污染是由空气中的污染物和颗粒物(如沙子、土壤、盐、鸟粪、花粉、雪、霜)以及不同类型的尘埃颗粒物(如二氧化硅、灰烬、钙和石灰石)沉降在光伏组件表面造成的。地面上小至 25 微米的微尘,通过风吹、农业活动、火山活动、交通运输以及附近人和动物的运动而移动。 中东和北非 (the MENA region) 是粉尘积聚发生率最高的地区,这一问题影响了全球的光伏工业园区,导致维护、维修的成本增加,并可能降低了能源产量。如果不加以控制,最初的光伏污染会导致能量的产能减少;特别是长期积累的污垢,如遇潮湿会导致微粒胶结,鉴于此情况下形成的硬质不透明层几乎不可能去除,最终会致使太阳能电池组件完全丧失产能。在较干燥的环境中(降水量通常需要超过 20 毫升才能影响组件表面的清洁),以及在倾斜角度较小的光伏组件配置中,空气污染和污染物积聚的严重程度会加剧。大部分电力于正午时(太阳在天空中处于最高点时)在光伏站内产生,日出和日落时的生产损失最大,虽然这些时刻仅占当天剩余时间的总产能的一小部分,但准确监测颗粒污染可以为维护计划提供信息,从而降低运行和维护成本 (O&M),并充分发挥太阳能转换高效生产时间的潜能。光伏组件的性能还受到组件温度和辐照度变化的影响,致使最初的颗粒污染进一步恶化为软硬阴影问题。在多支路配置中,单个电池或隔离区内的软阴影可以通过公用逆变器在其他并联支路中引发电流不平衡。在单个支路上,光伏阵列隔离区上的硬阴影将降低支路电压,但与在单个支路上的软阴影一样,逆变器将检测并调节降低电压。然而,并联阵列中不同支路上的电压不匹配(即部分阴影),意味着连接到单个公共逆变器的不同并联支路将传送不同电压,致使调节最佳电压值以达到最大功率这一过程变得复杂且不可预测。 如何降低光伏污染的影响,同时提高产能 减少因光伏组件污染而导致的发电量,降低产量损失造成的不利影响, 重要因素是准确收集有关污染率(SR) 的数据,并与同类“洁净”组件的预期数据进行比较。详细而准确地监控污染率将通过显著减少“停机”时间来确定计划内和计划外维护的时间和成本效益。有效的数据记录和报告可使清洁污染的光伏组件的时间更有效,而非依赖固定的维护计划。这种固定维护计划可能会产生不必要的清洁成本或在纠正不可预测的环境事件的影响方面出现延误。优化电厂组件功能的关键在于正确的预防性、纠正性的维护策略。
  • 科研用户特价 | 钙钛矿/有机太阳能电池组件仿真软件
    ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍Laoss是一款用于设计、构建、仿真、优化钙钛矿/有机太阳能电池组件和OLED面板,对其热学、光学和电学性能进行仿真的软件。对于提高面板和组件效率、优化其性能、缩短研发周期、节省材料成本等有着具大的帮助。目前,针对中国科研单位用户,Fluxim 团队决定给予最大幅度的优惠,详情请与我公司联系。主要特点• 简单易用,快速有限元分析模拟仿真• 直观图像化用户界面以及Workflow• 普通计算机即可快速运行仿真计算• 具备可视化大范围输出数据及结果的功能分析方法• 基于电&热仿真的有限元分析法• 焦耳(电阻)加热的电热耦合• 强大的3D-Ray追踪光学模拟仿真计算,模拟&优化• 分析大面积组件/面板电极电损耗 for PV and OLED• 评估电极中的电流 for PV and OLED• 计算大型器件的 I-V 曲线 for PV and OLED• 优化太阳能电池组件效率 for PV• 计算组件/面板上的温度分布 for PV and OLED• 量化像素串扰效应 for OLED• 优化电极的几何形状 for LED and PV• 模拟缺陷和电分流对组件/面板的影响 for PV and OLED‍‍三大主功能‍‍‍‍‍‍‍‍‍‍‍‍‍‍1.电学模块• 仿真大面积OLED面板和太阳能电池组件的特性(填充因子vs电导率,2D电位分布,电流密度,欧姆损耗,总输出功率等)• 优化OLED面板和光伏组件中的电极设计以减少电功率损失• 研究非理想效应(例如电分流)• 自动化优化电极的几何形状‍‍‍‍‍‍‍‍• 了解RGB OLED像素数组中的电串扰‍‍‍‍‍‍‍‍优化电极设计:电势图电极优化:电势图非理想效应(电分流)研究自动优化电极几何形状:输出功率vs钙钛矿太阳能电池的电极宽度OLED 像素数组中的电势图:层与层之间的漏电流造成OLEDs未正常工作‍‍2.热学模块• 模拟OLED面板或太阳能电池组件中的热学和电流(电热耦合)之间的双向相互作用• 在标准作业程序下计算OLED面板和太阳能电池组件中的温度分布• 分析由于电热耦合导致的OLED面板和太阳能电池组件中的非理想I-V特性曲线• 电热耦合可模拟热产生和电学性能两者之间相互作用‍‍‍‍‍‍‍‍‍‍‍‍(1)具有六角形栅极的组件中的电位分布(2)对应(1)的温度分布(1)双向电热耦合相互作用引起的温度分布(2)模拟I-V特性曲线3.光学模块• 仿真研究具有复杂3D光学组件或表面纹理化的OLED面板和太阳能电池的组件• 通过构建独立的3D光学组件来仿真其对OLED面板和太阳能电池组件的贡献• 仿真OLED面板中的光学串扰• 可与SETFOS结合方便地分析光耦合几何特性‍‍仿真菲涅耳透镜或其他3D光学组件与太阳能电池或OLED耦合以提高效率光学串扰仿真曲面显示仿真更新后的4.1版本增加了以下功能1.交流模拟2.Laoss-Setfos整合集成一体化全面仿真3.金属栅线预定义:栅线数量、角度和base offset等4.预先定义像素形貌:XY方向像素数量5.几何设计导入和预定义几何设计6.可跳过在Laoss光学模块中切割三角形步骤7.固定偏振角 Phi 对于非偏振BSDFs8.关闭Laoss前检查改变参数,运行一个仿真或者加载一个不同的仿真9.Laoss光学:设定每个主要方向的独立边界形式10.Laoss光学模块:光谱图11.在XY结果图表中显示界面几何结构12.项目和模拟结果保存‍‍‍‍‍‍‍‍‍‍‍‍‍‍
  • 大连化物所制备出高效柔性钙钛矿太阳能电池组件
    近日,大连化物所太阳能研究部薄膜太阳能电池研究组(DNL1606组)杨栋研究员和刘生忠研究员团队采用电子传输层中氧空位缺陷填充的策略,制备出目前有文献报道的最高效率的柔性钙钛矿太阳能电池组件。   柔性钙钛矿太阳能电池由于具有质量轻,便携式,高功质比等优点被广泛关注。该团队长期致力于柔性钙钛矿太阳能电池中低温条件下制备高质量钙钛矿吸光层和电子传输层的研究。团队早期开发了可室温磁控溅射的TiO2电子传输层(Energy Environ. Sci.,2015)、可低温制备的固态离子液体电子传输材料(Adv. Mater. ,2016),制备出高效率柔性钙钛矿太阳能电池。随后,团队通过开发二甲基硫醚添加剂延缓钙钛矿的结晶过程,提升钙钛矿吸光层的质量,再次提升了柔性钙钛矿太阳能电池的效率(Adv. Mater.,2018)。本工作中,团队利用紫外光照射产生的氧和羟基自由基处理SnO2电子传输层,降低了SnO2薄膜中的氧空位缺陷。研究发现,由于给电子羟基的引入使得SnO2的能级向上移动,有利于钙钛矿中电子的导出;羟基可以在SnO2和钙钛矿之间形成氢键,改善界面接触,提供电荷传输的通道;处理后SnO2表面的浸润性得到有效改善,更利于制备大面积均匀的钙钛矿薄膜。最终,团队制备出面积为36.50cm2的柔性钙钛矿电池组件,效率达到18.71%,这是目前有文献报道的柔性钙钛矿组件的最高效率。同时,柔性钙钛矿组件表现出良好得机械性能,器件在弯曲1000次后,仍可保持83%的原有效率。该工作提出了一种简单有效的界面处理方式,为促进高性能柔性钙钛矿电池组件的发展提供了有效途径。   上述工作以“Highest-Efficiency Flexible Perovskite Solar Module by Interface Engineering for Efficient Charge-Transfer”为题,于近日发表在《先进材料》(Advanced Materials)上。该工作得到国家自然科学基金等项目的资助。
  • 德国莱茵 TUV 在中国推出太阳能电池检测业务
    助力本地太阳能电池厂商,电池片检测无需远渡重洋   上海2012年5月7日电 /美通社亚洲/ -- 全球领先的第三方检验、检测及认证技术服务提供商德国莱茵 TUV 集团日前宣布在中国推出太阳能电池检测业务,这是迄今唯一在中国本土提供太阳能电池片标定检测的国际第三方检测机构。   德国莱茵 TUV 太阳能电池检测实验室   中国不仅是目前全球最大的太阳能组件生产商,同时也是世界最大的晶硅太阳能电池制造基地,内地及台湾的晶硅太阳能电池产量占据全球的60%。晶硅太阳能电池是太阳能组件的重要组成部分,其性能的优劣和使用寿命将直接影响组件的性能并最终影响太阳能电站的性能。而在太阳能电池的研发、生产过程中,精确测试电池片的各项参数就显得尤为重要,其参数特性也是光伏产品加工工艺调整和技术革新的重要依据。之前所有权威的电池片标定机构都在国外,内地及台湾的电池片生产厂家往往需要诉诸海外权威机构来寻求电池的标定检测,其服务周期长,且在运输过程中极易造成样品的损坏。为满足广大电池厂商的需求,更好地服务本地客户,德国莱茵 TUV 适时推出了面向电池片生产厂家和买家的电池片标定服务。   中国不仅是目前全球最大的太阳能组件生产商,同时也是世界最大的晶硅太阳能电池制造基地,内地及台湾的晶硅太阳能电池产量占据全球的60%。   德国莱茵 TUV 能提供电池片在标准测试条件下的电参数特性、电池片的光谱响应测试等服务。测试能力上配备国际领先的设备及经验丰富的外籍专家,测试精度在全球同类实验室中处于领先地位。实验室可以为客户度身定制测试方案,提供准确详尽的测试报告,为电池厂商在竞争中彰显优势,顺利挺进国际市场。   “让客户享受我们本地化的快捷服务与专业技术支持,节省生产链环节的时间及资金投入,缩短产品交付周期,保证太阳能产品的最终品质,最终使中国的太阳能电池厂商在国际市场立于不败之地,是我们在中国投资此项太阳能电池检测业务的初衷。”德国莱茵 TUV 太阳能及燃料电池技术大中华区总监唐妩丽说道。她继续强调:“莱茵的光伏专家正与当地的光伏行业一起克服技术上的挑战,全力支持光伏技术的进一步发展,我们坚信在不久的将来光伏仍将成为主要能源之一。”   作为世界领先的太阳能产业测试服务提供商,光伏仍是德国莱茵 TUV 集团的重要业务。公司早在1995年开始实验室规模的太阳能电池组件的技术测试。目前德国莱茵 TUV 集团在全球太阳能产业的专家网络有七个实验室、250位专家。作为太阳能电池组件的测试和认证的全球市场领导者,德国莱茵 TUV 集团经营测试实验室,分别位于班加罗尔(印度),庆(韩国),科隆(德国),上海(中国大陆)和台中(台湾),以及在 TUV 莱茵 PTL 的坦佩(美国),横滨(日本)。在世界各地,约500家光伏组件制造商是独立的测试服务供应商德国莱茵 TUV 集团的客户。   关于德国莱茵 TUV 大中华区   德国莱茵 TUV 集团作为国际知名的独立第三方检验、检测和认证机构,拥有140年的经验,在全球五大洲 61 个国家设有 500 家分支机构,全球员工数超过 16,000,能提供全球客户所需的专业服务支持。德国莱茵TUV大中华区员工约 3,000 人,服务范围包含工业及能源服务、电子电气产品测试、通讯测试、消费品测试、人体工学评估、交通服务、轨道系统安全、食品安全、管理体系等检验认证服务。德国莱茵 TUV 向来以严谨高质量的测试认证服务著称,并以公正独立的角度提供各项专业评估,为当地企业提供符合安全、质量以及环保的优质服务和解决方案。www.tuv.com
  • 化学所制备柔性可穿戴太阳能电池
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   柔性可穿戴电子是未来电子元器件发展的热点方向,电源是其重要的组成部分。电源的选择和设计影响未来可穿戴电子的设计与功能。目前,电源对可穿戴电子的户外使用性、大面积贴合性和安全性有较大限制。 /p p   近年来,金属有机杂化钙钛矿太阳能电池以其优越的光电转换性能而受到广泛关注。基于钙钛矿材料平面结构器件的光电转换效率在短短几年时间取得重要突破,最高效率为22.1%。卓越的光电性能为其应用在可穿戴电子设备提供了可能。但柔性钙钛矿太阳能电池尚未能切实应用于可穿戴电子设备中,限制这一发展是因为当前柔性器件仍存在大面积重现性差和弯折性能衰减的问题。 /p p   在国家自然科学基金委、科技部和中国科学院的支持下,中科院化学研究所绿色印刷院重点实验室研究员宋延林课题组,在印刷制备钙钛矿晶体及电池器件方面开展了深入系统的研究。他们在喷墨打印制备钙钛矿电池器件取得突破,实现了相比传统工艺更环保的印刷制备方法。在喷墨打印钙钛矿单晶材料上取得进展,实现了印刷制备三基色钙钛矿发光单晶材料。 /p p   在上述研究的基础上,研究人员发现柔性钙钛矿器件中的界面层对钙钛矿层的生长和稳定性具有较大影响。研究通过纳米组装-印刷方式制备的蜂巢状纳米支架可作为力学缓冲层和光学谐振腔,从而大幅提高柔性钙钛矿太阳能电池的光电转换效率和力学稳定性。研究表明,蜂巢状纳米结构可以有效释放器件弯折时产生的应力,并作为支架诱导钙钛矿薄膜结晶。同时,该结构作为光学谐振腔可对整个器件进行光富集调控,从而提高器件的光吸收效率。引入蜂巢状纳米支架后,所制备的柔性钙钛矿太阳能电池光电转换效率达12.32%。进一步研究发现,该电池具备优异的耐弯折性,可应用于柔性太阳能电池组件。该太阳能电池组件光电转换效率高、性能稳定,可广泛应用于各类可穿戴器件。研究为研发新一代可穿戴电子设备提供了新的思路和方法,研究成果发表在 em Advanced?Materials /em 杂志上。 /p p style=" text-align:center " img alt=" " oldsrc=" W020171214357503192649.png" src=" http://img1.17img.cn/17img/images/201712/uepic/7b617793-0bf5-4670-80bf-a5b2a8056d91.jpg" uploadpic=" W020171214357503192649.png" / /p p style=" text-align: center " 蜂巢纳米支架的制备及可穿戴太阳能电源应用 /p
  • 弗尔德仪器参加第二届全国太阳能材料与太阳能电池学术研讨会
    太阳能电池材料简述目前,人类的主要能源(石油、煤炭、天然气)的储存量是有限的,为了应对能源危机和环境污染,新能源已是全球关注的焦点,太阳能因其清洁环保尤其备受关注。近几年太阳能电池产业以平均年增长率为30%的速度飞速发展。太阳能电池的种类十分多,按材料分类可分为四类:硅太阳能电池;多元化合物薄膜太阳能电池;有机物太阳能电池;纳米晶太阳能电池,综合考虑材料的价格、对环境的影响及转换效率等因素,以硅为原材料的电池是太阳能电池中最重要的成员。研究和应用最广泛的太阳能电池主要是单晶硅、多晶硅和非晶硅电池。而开发太阳能电池的两个关键问题就是:提高效率和降低成本。为了促进我国在太阳能材料与太阳能电池研究领域的交流和发展,“2018第二届全国太阳能材料与太阳能电池学术研讨会”于2018年6月22-24日在广州召开。本次会议由中国化工学会化工新材料委员会及新能源材料技术创新与协同发展中心主办,暨南大学承办。弗尔德(上海)仪器设备有限公司携旗下研磨筛分品牌德国Retsch(莱驰)、多功能粒度粒形分析仪品牌德国Retsch Technology(莱驰科技)、热处理技术品牌CarboliteGero(卡博莱特盖罗)、元素分析仪品牌德国Eltra(埃尔特),参加了第二届全国太阳能材料与太阳能电池学术研讨会,为太阳能电池材料的应用提供全方位的解决方案。大会主要从学术和产业化视角探讨我国太阳能光伏材料与器件,新型钙钛矿和化合物薄膜半导体材料与器件等方面科研成果与产业应用现状,探索太阳能开发与利用的研究新思路和新方法,推进太阳能研究领域人员之间的交流与合作,进一步提高我国太阳能领域科学研究与技术创新能力。 德国Retsch(莱驰)提供的行星式球磨仪PM系列和高能水冷球磨仪Emax能够实现纳米研磨,满足太阳能电池材料用户最为严苛的研磨粒径需求。此外,德国Retsch(莱驰)的筛分仪种类齐全、筛分方式多样、测量范围广泛、配套使用不同规格的分析筛,可以满足太阳能电池材料行业的粒径分级和测量的需求,筛分结果精确且具有重复性,符合DIN/EN/ISO/ASTM等国际国内标准,是全球唯一一家可提供全系列筛分仪的专业生产厂家。Retsch Technology(莱驰科技)专业从事粒度及粒形分析测试仪器的研发和制造,采用双镜头专利的动态图像分析技术,可精确分析可流动性的颗粒、粉体、胶体、悬浊液、磁性材料等样品的粒度及形态。Camsizer X2设计基于广受欢迎的Camsizer并进一步优化精细样品的测量条件(从0.6μm到8mm),不仅提高了光学解析度,更提供多样的的进样方式适用工业陶瓷行业的应用。德国Eltra(埃尔特)专业从事元素分析仪的制造研发和生产,可为陶瓷样品提供碳/氢/氧/氮/硫五种元素分析的整体解决方案。6月24日,第二届全国太阳能材料与太阳能电池学术研讨会圆满落幕,针对太阳能电池材料应用的具体解决方案与参会的专家学者们进行了深入交流。弗尔德仪器衷心地感谢各位客户的关注和支持!基于客户给予的信任和要求,弗尔德仪器定会不负众望、与日俱新,努力为太阳能电池材料客户提供一份满意的解决方案。除了仪器的展示,弗尔德仪器还在展会上介绍2018年抽奖活动,2018年7-12月,每月产生1个大奖10个幸运奖,大奖奖品价值3000元人民币。奖品有金条、进口空气净化器、高级电饭煲、食品料理机、进口道具组合、美颜相机。现在就关注“弗尔德仪器”官方微信,参加抽奖!
  • 加研制出全光谱太阳能电池
    据美国物理学家组织网6月27日(北京时间)报道,加拿大科学家表示,他们研发出了一款新式的全光谱太阳能电池,其不但可以吸收太阳发出的可见光,也可以吸收不可见光,从理论上讲,转化效率可高达42%,超过现有普通太阳能电池31%的理论转化率。研究发表在最新一期的《自然光子学》杂志上。   此款基于胶体量子点(CQD)的高效串接太阳能电池由加拿大首席纳米技术科学家、多伦多大学电子与计算机工程系教授泰德萨金特领导的科研团队研制而成。论文主要作者王希华(音译)表示,该太阳能电池由两个吸光层组成:一层被调制用于捕捉太阳发出的可见光 而另外一层则可以捕捉太阳发出的不可见光。   萨金特介绍说,为了做到这一点,该团队用纳米材料串联成一个名为分级重组层的设备,能往返运输可见光层和不可见光层之间的电子,有效地将捕捉可见光的吸光层和捕捉不可见光的吸光层结合在一起,这样,两个吸光层都不需要妥协。   该研究团队在使用CQD制造太阳能电池方面一马当先,CQD这种纳米材料很容易被调制来对特定波长的可见光和不可见光作出反应。新式串联CQD太阳能电池捕捉光波的波长范围比普通太阳能电池更加宽泛,因此,从理论上讲,其转化率可达42% 相比之下,最好的单结太阳能电池的最大转化率仅为31%,而一般位于屋顶或日常消费产品中的太阳能电池的转化率仅为18%。   研制高效的、成本合理的太阳能电池是全球共同面临的巨大挑战。萨金特说:“全球都需要转化效率超过10%的太阳能电池,并希望能显著降低现有光伏组件的零售价。最新进展提供了一条切实可行的道路,其能最大限度地捕捉太阳发出的各种光线,有望提高转化率并降低成本。”   萨金特希望,在5年内,将这款新的分级重组层太阳能电池整合入建筑材料、手机和汽车零件中。
  • 钙钛矿太阳能电池距离市场还有多远?|前沿应用
    编辑:高明审核:chen钙钛矿太阳能电池作为第三代新概念太阳能电池代表,近年来备受关注,这得益于其具备的种种优势,譬如:它采用溶剂工艺,可以在常温下制备,生产成本大大下降;柔性好、可大面积印刷,在光伏产业的应用有着为可观的前景;清洁廉价无限制,可为能源供应难题提供有效方案等等。不仅如此,钙钛矿太阳能电池之所以成为代表,一个更加备受瞩目的优势就在于——它的原料多为液态,可以用来制备大面积柔性电池及设备,在未来或许可以应用于可穿戴智能设备上,边走路边发电!这种在电影中才出现的镜头将来会成为日常,想想是不是就觉得很炫酷呢?但要想实现这一场景,还需解决三个难题,这也是钙钛矿太阳能电池尚未实现规模化商业生产的原因。哪三个问题呢?本次“前沿应用”栏目将带大家一探究竟~短寿之憾我们知道,对于电池来说,一个重要衡量指标就是使用寿命。钙钛矿电池实际生产和应用所面临的困难中,一个重要问题就是它的寿命只有短短数月,远远低于硅基太阳能电池,这也是其实现商业化面临的个问题。钙钛矿电池不够稳定,主要是因为钙钛矿电池对水、热、氧环境度敏感,使得电池结构不稳定,易产生不可逆降解。要延长钙钛矿电池的寿命就要提高稳定性,目前主要有两种方法,一种是采用复合型钙钛矿材料,提高其本身的稳定性,另一种就是找到合适的添加剂物质,来抑制钙钛矿材料的分解。目前关于这方面的研究已经紧锣密鼓地展开。就在今年1月份,欧洲薄膜太阳能电池研究联盟Solliance,TNO,imec和埃因霍温科技大学,就报道了一种采用工业工艺(溅射镀膜,狭缝涂布镀膜,原子层沉积和基于激光的互连)制造的封装钙钛矿太阳能电池模组,该模组经受既定的寿命测试,即耐光性测试,耐湿热测试和热循环测试,具有出色的稳定性。相信未来能有更多的方法能够应用于钙钛矿电池的分解问题解决。图片来源:pixabay效率之痛电池的效率是评价电池性能的另一个重要指标,在过去十年,钙钛矿太阳能电池的效率有不少提升。根据《科学》(Science)今年4月发表的一篇报道,钙钛矿太阳能电池的转换效率已经上升到26.7%,非常接近传统晶体硅太阳能电池的效率。但事实上,钙钛矿太阳能电池的转换效率依然有很大提升空间,这是因为转化过程中,通电的载流子会因为缺陷问题被卡住,从而降低电池效率。那么,什么是载流子寿命呢?它为何成为影响太阳能电池效率的重要指标呢?据HORIBA资深工程师Ben Yang博士介绍,钙钛矿太阳能电池产生的电能来源于电荷的分离、迁移和重组,其中电荷可以扩散多远、游离多久——即载流子寿命,很大程度上就决定了太阳能电池的效率。载流子寿命越长,电池的效率也越高。图片来源:pixabay既然载流子寿命如此重要,那如何提升载流子寿命呢?精确测量是步,通过不断测量找到效率低下的关键问题,进而改进。“荧光寿命测量是一种常用于表征载流子寿命的技术,通过测量电荷重组率,进而标定电池的效率。HORIBA为测量荧光寿命研发了相应的产品。” Ben Yang博士如是说道。DeltaFlex和DeltaPro荧光光谱仪是专门的测量荧光寿命的分析仪器,它们可以监测光收集过程的效率,通过仪器搭配的TCSPC系统,研究人员可以测量重组率。另外,使用HORIBA QuantaMaster™ 、Fluorolog和FluoroMax® 荧光光谱仪,并联合HORIBA-IBH 荧光寿命组件,还可以完成测试钙钛矿材料对不同光吸收的效率。tips:如果您想了解更多荧光光谱仪的解决方案,点击阅读原文提交需求,我们的工程师会尽快联系您~您也可以进入HORIBA微信公众号的图书馆栏目,查看下载更多解决方案。值得庆幸的是,同样是今年4月,《自然》(Nature)杂志发表了一篇论文,介绍了剑桥大学等机构合作成果——钙钛矿材料中影响载流子寿命的“缺陷”根源。相信通过精准的测量和缺陷根源的追溯,载流子的寿命将会一步步提升,钙钛矿电池的效率也会进一步改善图片来源:pixabay量产之难实现商业化后一个攻关的技术点,便是“量产”。要实现大规模生产,就必须将钙钛矿从实验室搬到工厂,这是其终走向市场的关键。然而目前几乎所有高效率的钙钛矿太阳能电池都是用旋涂法制备的,即将钙钛矿材料一般旋涂于金属氧化物骨架上进行制备。然而旋涂法难以沉积大面积、连续的液膜,在实验室中制备,尺寸只有几厘米大小,因此无法满足工业化的高吞吐量与规模化制备的要求。这就成为钙钛矿太阳能电池量产的一个难题。近年来,也出现了一些其他适用于规模化生产的制备方法,像是:刮刀涂布法、电沉积等等,尤其是刮刀涂布法,它的基底温度可控,因此在规模化制备高质量、大晶粒钙钛矿薄膜方法中脱颖而出。更值得欣慰的是由刮刀涂布法制备的钙钛矿太阳电池,效率也能达到20%,十分接近旋涂法制备的器件。未来通过不断地研究,相信它地效率能更进一步。图片来源:pixabay从上文可以看出,尽管短寿之憾、效率之痛、量产之难,这三点是制约钙钛矿太阳能电池快速走向市场的三个问题,但我们仍然对钙钛矿太阳能电池的发展前景抱有大的期待。目前众多公司投资钙钛矿产业就是证明,相信产学研结合的能够解决大规模制备技术的提升,帮助钙钛矿太阳能电池在商业化道路上大步迈进。没有什么不可能,只要我们勇突破!现在不妨设想一下,钙钛矿太阳能电池就在我们的穿戴设备上,比如涂覆在手机表面上,那是怎样的情形呢?我们再也不用担心手机没电了!开心吧? 免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载。文章版权、数据及所述观点归原作者原出处所有,HORIBA Scientific 发布及转载目的在于传递更多信息及用于网络分享,供读者自行参考及评述。如果您认为本文存在侵权之处,请与我们取得联系,我们会及进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的选择,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。
  • 48所全自动高精度太阳能电池测试分选设备研制成功
    近日,48所成功研制出全自动高精度太阳能电池测试分选设备,并率先在48所晶体硅太阳能电池生产线推广应用!   目前,48所研制的全自动太阳能电池测试分选设备已经突破了技术瓶颈,在多个关键单元技术上掌握了自主知识产权,通过在晶体硅太阳能电池生产线的生产考核,各项技术指标上接近国际同类设备先进水平,碎片率指标优于国外进口同类产品。正是基于测试分选等太阳能关键装备纷纷研制成功并推向市场,48所太阳能产品的技术指标连创新高,整线“交钥匙工程”备受客户青睐,海内外订单纷至沓来,取得了令人振奋的可喜成绩。   这是48所坚持自主科技创新所取得又一次突破,它不但填补了国内空白、替代了国外进口,而且更为重要的是标志着48所向晶体硅太阳能电池片制造装备全面国产化迈出了关键一步,对于提升国内装备技术水平具有深远的战略意义!   如果国内晶体硅太阳能电池的高精度测试和自动分选设备过度依赖进口,不但价格昂贵,而且供货周期长、备件少、维护费用高,将严重制约我国晶体硅太阳能电池的发展。随着光伏产业迅速崛起和光伏产业链的不断发展壮大,48所把可持续发展提到了前所未有的高度,以科技创新推动技术进步和引领市场,充分利用光伏装备制造的技术优势和人才优势,坚定不移的走设备与工艺相结合之路,不断攻克光伏产业发展道路上的种种技术障碍,光伏装备和光伏产品两大产业互相促进提高并发展迅猛,成为支撑我国太阳能光伏产业快速发展的太阳能电池制造装备龙头供应商。
  • 上海太阳能电池研发中心与常州天合签署全面合作协议
    2011年2月24日,上海太阳能电池研究与发展中心(以下简称中心)和常州天合光能有限公司在上海技物所签署全面合作协议。协议确定天合加入中心成为理事成员,享有中心章程规定的其他理事单位同等权益。协议由中心主任褚君浩院士和天合董事长高纪凡签署。技物所党委书记郭英出席了签约仪式。   太阳能中心是由中科院上海分院、中科院上海技术物理研究所、上海张江集团公司联合举办的自收自支的事业法人单位,主要从事太阳能电池材料、器件和组件及其测试和应用的研究和开发,以及相关的光电转换新材料、新技术的研发。天合光能公司是国内和国际名列前茅的太阳能电池生产销售企业。天合光能公司加入中心后,双方将发挥各自优势,全面合作,推动我国的太阳能光伏产业发展。签约仪式前,郭英书记、褚君浩院士与高纪凡董事长、黄强技术总监进行了愉快的会谈。
  • 太阳能电池又成“减碳新宠”?仪器信息网携手安捷伦助力碳达峰!
    据悉,截至目前全国已有21省公布了十四五能源规划,其中的16个省份以已明确的新增装机目标(包括光伏在内的各类新能源)合计超过258GW。反映在A股上,光伏产业链上下游企业频频利好,在能源、环保产业方面的热度更是居高不下。能源和环保是国民经济发展的重要基础,也是“十四五”规划的重要领域之一。“十四五”规划和2035年远景目标纲要中提出,要构建现代能源体系,加快发展非化石能源,大力提升风电、光伏发电规模,建设一批多能互补的清洁能源基地,将非化石能源占能源消费总量比重提高到20%左右。此前,生态环境部应对气候变化司司长李高表示,在“十四五”“十五五”期间,我国将持续优化风电和太阳能发电发展布局;加强新能源发展政策协同,降低新能源非技术成本,充分保障推行风电和光伏发电平价上网等。两会期间,财政部在《关于2020年中央和地方预算执行情况与2021年中央和地方预算草案的报告》中指出,要加强生态环保,以推动实现碳达峰、碳中和为契机,加快调整优化产业结构和能源结构,2020年我国可再生能源发电装机达到了9.34亿千瓦,要进一步扩大可再生能源装机规模,培育壮大规模达数万亿元的节能环保产业。而作为光伏发电的核心元件,太阳能电池的稳定性和光电转化效率一直是扼住产业发展的“喉咙”。基于此,仪器信息网特携手安捷伦科技,于7月29日召开“太阳能电池性能研究与检测”主网络研讨会,围绕太阳能电池性能研究进展及分析方法进行探讨,旨在促进为业内同仁提供技术创新发展、分析检验检测方面的新思路、新方法,助力碳达峰、碳中和。诚邀您的参加!一、 主办方仪器信息网&安捷伦科技(中国)有限公司二、 会议时间2021年7月29日,14:00-16:00三、 支持厂商安捷伦科技(中国)有限公司四、报告日程7月29日 太阳能电池性能研究与检测14:00—14:35混合离子钙钛矿太阳能电池的效率和稳定性提升的方法杨智西安交通大学副教授14:35—15:20太阳能电池研究与应用中各组件光学与化学性能检测蒋龙平安捷伦 产品经理15:20—15:55钙钛矿太阳能电池稳定性的提高魏静北京理工大学特别副研究员五、参会方式免费参会,点击图片报名扫码加入大会交流群
  • 量子点太阳能电池外量子效率首超100%
    据美国物理学家组织网12月16日(北京时间)报道,美国国家可再生能源实验室(NREL)研制出一种新式的量子点太阳能电池,当其被太阳能光谱的高能区域发出的光子激活时,会产生外量子效率最高达114%的感光电流。发表于12月16日出版的《科学》杂志上的这一最新研究为科学家们研制出第三代太阳能电池奠定了基础。   当光子入射到太阳能电池表面时,部分光子会激发光敏材料产生电子空穴对,形成感光电流,此时产生的电子数与入射光子数之比称为感光电流的外量子效率。迄今为止,还没有任何一种太阳能电池在太阳能光谱内光波的照射下,显示出超过100%的外量子效率。   现在,NREL团队首次在量子点太阳能电池上实现了这一点。他们在一个叠层量子点太阳能电池上获得了114%的外量子效率。该电池由具有减反光涂层的玻璃(其包含有一薄层透明的导体)、一层纳米结构的氧化锌、一层经过处理的硒化铅量子点以及薄薄一层用作电极的金组成。   太阳能光子产生超过100%外量子效率基于载子倍增(MEG)过程,借助这一过程,单个被吸收的高能光子能激发多个电子空穴对。NREL团队首次在量子点太阳能电池的感光电流内展示了MEG,科学家们可借此改善太阳能电池的转化效率。研究结果显示,在模拟太阳光的照射下,新量子点太阳能电池的光电转化效率高于4.5%。目前,这种太阳能电池还没有达到最优化,因此,其能源转化效率相对来说偏低。   与传统的太阳能电池相比,量子点太阳能电池内的MEG能将电池的理论热力能转化效率提高35% 量子点太阳能电池也可使用廉价且产量高的卷对卷制程制造而成 其另外一个优势是每单位面积的制造成本很低,科学家们将其称为第三代(下一代)太阳能电池。(记者 刘霞)   所谓第一代太阳能电池是指目前最常见的晶体硅电池,第二代是薄膜电池 第三代,则应该是具有更高转化效率的新型电池的总称。而让单个高能光子激发多个电子空穴对正是提高转化效率的途径之一。不过现有技术并不能有效分离、收集大量的电子空穴对,这也就是新电池转化效率偏低的主要原因。虽然现在看起来,让这么多自由电子白白溜走显得过于奢侈,但如此高的外量子效率还是让我们备受鼓舞——一旦突破电子空穴对收集的技术瓶颈,太阳能电池的发展将会翻开全新一页!
  • “双碳”目标下再看太阳能光伏电池—硅料、硅片杂质元素分析技术
    材料是社会进步的重要物质条件,半导体产业近年来已成为材料产业中备受瞩目的焦点。从沙子到晶片直至元器件的制造和创新,都需要应用不同的表征与检测方法去了解其特殊的物理化学性能,从而为生产工艺的改进提供科学依据。仪器信息网策划了“半导体检测”专题,特别邀请到布鲁克光谱中国区总经理赵跃就此专题发表看法。布鲁克光谱中国区总经理 赵跃赵跃先生拥有超过20年科学分析仪器领域丰富的从业经历,先后服务于四家跨国企业,对于科学分析仪器以及材料研发行业具有深刻理解,促进了快速引进国外先进技术服务于中国的科研创新和产业升级。2020年9月,习近平主席在第75届联合国大会上,明确提出中国力争在2030年前实现“碳达峰”,2060年前实现“碳中和”的目标。“双碳”目标的直接指向是改变能源结构,即从主要依靠化石能源的能源体系,向零碳的风力、光伏和水电转换。加快能源结构调整,大力发展光伏等新能源是实现“碳达峰、碳中和”目标的必然选择。目前,光伏产业已成为我国少有的形成国际竞争优势、并有望率先成为高质量发展典范的战略性新兴产业,也是推动我国能源变革的重要引擎。太阳能光伏是通过光生伏特效应直接利用太阳能的绿色能源技术。2021年,全球晶硅光伏电池产能达到423.5GW,同比增长69.8%;总产量达到223.9GW,同比增长37%。中国大陆电池产能继续领跑全球,达到360.6GW,占全球产能的85.1%;总产量达到197.9GW,占全球总产量的88.4%。截止到2021年底,我国光伏装机量为3.1亿千瓦时。据全球能源互联网发展合作组织预测,到2030、2050、2060年我国光伏装机量将分别达到10、32.7、35.51亿千瓦时,到2060年光伏的装机量将是今天的10倍以上。从发电量来看,虽然其发电容量仍只占人类用电总量的很小一部分,不过,从2004年开始,接入电网的光伏发电量以年均60%的速度增长,是当前发展速度最快的能源。2021年我国光伏发电量3259亿千瓦时,同比增长25.1%,全年光伏发电量占总发电量比重达4%。预计到2030年,我国火力发电将从目前的49%下降至28%,光伏发电将上升至27%。预计2030年之后,光伏将超越火电成为所有能源发电中最重要的能源,光伏新能源作为一种可持续能源替代方式,经过几十年发展已经形成相对成熟且有竞争力的产业链。在整个光伏产业链中,上游以晶体硅原料的采集和硅棒、硅锭、硅片的加工制作为主;产业链中游是光伏电池和光伏组件的制作,包括电池片、封装EVA胶膜、玻璃、背板、接线盒、逆变器、太阳能边框及其组合而成的太阳能电池组件、安装系统支架;产业链下游则是光伏电站系统的集成和运营。硅料是光伏行业中最上游的产业,是光伏电池组件所使用硅片的原材料,其市场占有率在90%以上,而且在今后相当长一段时期也依然是光伏电池的主流材料。在2011年以前,多晶硅料制备技术一直掌握在美、德、日、韩等国外厂商手中,国内企业主要依赖进口。近几年随着国内多晶硅料厂商在技术及工艺上取得突破,国外厂商对多晶硅料的垄断局面被打破。我国多晶硅料生产能力不断提高,综合能耗不断下降,生产管理和成本控制已达全球领先水平。2021年,全球多晶硅总产量64.2万吨,其中中国多晶硅产量50.5万吨,约占全球总产品的79%。全球前十硅料生产企业中中国有7家,世界多晶硅料生产中心已移至中国,我国多晶硅料自给率大幅提升。与此同时,在多晶硅直接下游硅片生产中,因单晶硅片纯度更高,转化效率更高, 消费占比也不断走高,至 2020 年,单晶硅片占比已达 90%的水平。用于光伏生产的太阳能级多晶硅料一般纯度在6N~9N之间。无论对于上游的硅料生产,还是单晶硅片、多晶硅片生产,硅中氧含量、碳含量、III族、V族施主、受主元素含量、氮含量测量是硅材料界非常重要的课题,直接影响硅片电学性能。故准确测试上游硅料、单晶硅片中相应杂质元素含量显得尤为必要、重要。在过去的十几年中,ASTM International(前身为美国材料与试验协会)已经对上述杂质元素的定量分析方法提出了国际普遍通行的标准,其中,分子振动光谱学方法因其相对低廉的设备成本、快速、无损、高灵敏度的测试过程,以及较低的检测下限,倍受业内从事品质控制的机构和组织的青睐。值得一提的是,我国也在近几年陆续制定和出台了多个以分子振动光谱学为品控方法的相关行业标准 (见附录)。这标志着我国硅料生产与品控规范进入了更成熟、更完善、更科学、更自主的新阶段。德国布鲁克集团,作为分子振动光谱仪器领域的领军企业,几十年来坚持为工业生产和科学研究提供先进方法学的助力。由布鲁克光谱(Bruker Optics)研发制造的CryoSAS全自动、高灵敏度低温硅分析系统,基于傅立叶变换红外光谱技术,专为工业环境使用而设计。顺应ASTM及我国相关标准中的测试要求,此系统可以室温和低温下(<15K)工作,通过测试中/远红外波段(1250-250cm-1)硅单晶红外吸收光谱(此波段红外吸光光谱涵盖了硅晶体中间隙氧,代位碳,III-V族施主、受主元素以及氮氧复合体吸收谱带。),可以直接或间接计算出相应杂质元素含量值。检测下限可低至ppta(施主,受主杂质)和ppba量级(代位碳,间隙氧),很好地满足了上游硅料品控的要求,为中游光伏电池和光伏组件的制作打下了扎实的原料品质基础。随着硅晶原料产能的逐年提高,布鲁克公司的 CryoSAS仪器作为光伏产业链上游的重要品控工具之一,已在全球硅料制造业中达到了极高的保有量。随着需求的提升,电子级硅的生产需求也在持续增加。布鲁克公司红外光谱技术也有成熟的方案和设备,目前国内已有多个用户采用并取得了良好的效果。低温下(~12 K),硅中碳测试结果(上图),硅中硼、磷测试结果(下图)附录:产品国家标准:《GB/T 25074 太阳能级多晶硅》《GB/T 25076 太阳能电池用硅单晶》测试方法国家标准:《GB/T 1557 硅晶体中间隙氧含量的红外吸收测量方法》《GB/T 1558 硅中代位碳原子含量红外吸收测量方法》《GB/T 35306 硅单晶中碳、氧含量的测定 低温傅立叶变换红外光谱法》《GB/T 24581 硅单晶中III、V族杂质含量的测定 低温傅立叶变换红外光谱法》(布鲁克光谱 供稿)
  • 普达特科技首批太阳能电池设备预期于Q4交付
    近日,普达特科技披露称,公司将向客户制造及供应14套太阳能电池设备。其中,9套太阳能电池制绒设备预期于今年第四季交付。今年7月,公司完成更名,正式进入面向半导体及太阳能设备制造领域的全面转型期。紧接着8月份,公司宣布完成对两家太阳能设备公司的收购,向泛半导体设备制造商转型再进阶。太阳能设备在中国的市场前景更值得期待,据测算,2023年全球太阳能组件市场规模将达到781亿美元,对应到普达特科技关注的太阳能电池设备市场,则有高达56亿美元的市场规模。其中,中国更是占到全球太阳能设备市场比重的超过95%。在“碳中和”背景下,近年来中国出台了一系列政策鼓励和支持太阳能发电,太阳能电池作为产业链的重要组成部分,成为资本聚焦的核心。普达特科技的设备业务目前有两大板块:半导体设备以及太阳能设备。其中,半导体业务依靠公司强大的自研团队及外延式并购双轮驱动,主要涉及单片机清洗设备以及薄膜沉积工艺的CVD设备。太阳能业务是通过收购德国RENA公司中国区太阳能业务而来,主要涉及湿法清洗制绒设备以及铜电镀设备。目前,公司在徐州的一期生产基地共三层,总建筑面积可达三万平米,目前太阳能设备装配面积4,200平米,半导体设备制造面积1,000平米,及仓储物流面积2,000平米。目前生产基地的年产能约为太阳能设备300台,半导体设备100台,未来3-5年的规划为太阳能1000台,半导体500台。为配合累计订单及多种设备的产能需求,后续扩增生产基地亦是题中之意。今年6月份,公司出货了首台太阳能湿法设备,目前,公司正在组装若干台太阳能湿法设备以及半导体清洗设备。
  • 能源危机,迫在眉睫——高质太阳能电池板的诞生记
    能源是世界和人类赖以生存的驱动力,但地球上的能源储存又是有限的,全球石油还可开采约45年,天然气约61年,煤炭约230年。据世界卫生组织估计,到2060年地球上35种矿物中,将有1∕3在40年内被人类消耗殆尽,世界能源正面临严重紧缺。 然而太阳能是用之不尽,取之不竭的能源,通过从太阳能获得电力,人们可运用光伏效应制造太阳能太阳电池进行光电变换,实现节省资源,造福人类未来生活。 中国也在加大太阳能光伏发电上相继出台了各种扶持政策。到2010年底,国内已经有海外上市的光伏产品制造公司16家,国内上市的光伏产品制造公司16家。 客户案例要生产太阳能发电组件,其核心组件就是太阳能电池板。那么如何确保生产出一块高质量的太阳能电池板呢?我们以某光能有限公司案例来解释说明,这家公司是一家专业从事晶体硅太阳能组件生产的制造商。 产品应用晶体硅太阳能组件的优劣取决于每块电池板的好坏。因此每块电池板的质量至关重要。以下是电池板生产流程图:在核心步骤PECVD 结束后,进入丝网印刷环节前,产线需要精确控制电池板上镀膜的重量,从而控制产品质量。 *PECVD:是借助微波或射频等使含有薄膜组成原子的气体电离,在局部形成等离子体,而等离子体化学活性很强,很容易发生反应,在基片上沉积出所期望的薄膜 这家公司使用OHAUS AR323CN 天平给每块电池板编号和称量。 *OHAUS AR系列天平:可广泛应用于实验室、工业和教育行业等领域,它不但具备坚固大气的外型,且还拥有丰富的应用模式和数据采集工具DDE,是一款功能全面、性能可靠的完美型称量产品。 客户评价客户给每片硅片编号,在硅片镀膜前后分别称取重量,通过电脑输入至客户编写的生产软件中。软件通过计算出薄膜重量判断是否合格,并将数据保存于数据库中,从而控制了产品的质量和确保了可追溯性。客户对OHAUS天平的使用情况表示满意,特别是其优异的性能和友好的操作界面,以及数据采集的独特应用功能极其符合客户的需求。 Adventurer系列天平概览: 保护环境, 节省能源人人有责。不仅是企业还是个人,我们都应该尽量节省能源消耗量,多采用太阳能这种可无限供应的能源原料,让地球更健康!更多AR系列天平产品资讯,请点击这里。抢购热线:4008217188。
  • How It’s Made——钙钛矿太阳能电池的崛起
    导语:与其他光伏材料相比,钙钛矿太阳能电池在性能的提升方面表现出了惊人的速度。近期,来自德国柏林科技大学的Steve Albrecht等研究者在Science正刊中报道了一个单片钙钛矿/硅串联太阳能电池,其认证的功率转换效率高达29.15%,预计还会进一步提高。现如今,钙钛矿太阳能电池生产技术逐渐趋于成熟,生产设备也逐渐小型化和便捷化。继2009年和2012年的早期关键实验之后,人们对这些生产设备的兴趣激增,目前正在进一步优化它们的性能,并寻找可行的商业应用路线。本文,我们将带您看看钙钛矿太阳能电池材料的制造过程和相关技术。什么是钙钛矿太阳能电池钙钛矿太阳能电池(PSC)顾名思义是由钙钛矿材料作为核心部件制备的太阳能电池。钙钛矿材料的种类很多,但它们都有ABX3的化学通式,其中A和B是阳离子,X是阴离子。在钙钛矿光伏材料中,B通常是金属阳离子,X是卤族元素,A可以是有机或无机阳离子。重要的是,这些成分必须以一种特定的几何结构排列,A穿插在阳离子BX6八面体的间隙。如下图所示。 钙钛矿太阳能电池材料晶格结构的3D示意图(中央亮斑为B,红色为X,蓝色为A) 钙钛矿是钙钛矿太阳能电池中吸收光的材料,它吸收光子并产生电子-空穴对。之后,这个电子-空穴对会分离(也可能不会,这是导致太阳能电池效率低下的原因),释放出电子和正电荷载流子。这些电子(负)和空穴(正)载流子分别被设备中的其他材料(传输层)收集,然后流出,在外部电路中产生电压。人们尝试用各种钙钛矿材料来制备PSCs,其中常见的是MAPbI3。这种材料由基铵正离子嵌入Pb2+离子和碘离子(I-)组成的八面体框架。钙钛矿光伏薄膜材料制备太阳能电池的制备过程主要分为薄膜的制备和后续的加工。后续的加工流程与硅基太阳能电池的后续加工有些类似,涉及到微纳加工与封装等流程,我们不做详细介绍。对于薄膜的制备技术目前主要有液体旋涂和真空镀膜两类。旋涂技术由于设备简单,易于快速搭建等特点很容易在实验室实现。但是其规模化拓展性较差,器件的重复性和稳定性以及与后续加工流程的兼容性等方面仍有不足。在真空镀膜方面目前较为流行的是采用物理气象沉积(physical vapor deposition—PVD),例如热蒸发等方式。对于热蒸发技术来说,在真空室中加热钙钛矿前驱体,使它们向上蒸发并覆盖在基片上。通过对过程的精细控制,形成所需的钙钛矿薄膜。热蒸发方法制备出的薄膜不仅性能出色,同时还能与太阳能电池制造过程中需要的其他过程具备良好的兼容性 (例如,传输层和金属接触层的沉积也经常使用PVD)。热蒸发制备方案概要以制备钙钛矿太阳能电池的常用材料MAI(methylammonium iodide)和PbI(lead iodide)为例,MAI蒸发温度约为150℃,而金属卤化物PbI需要400℃~500℃。这与常规的金属热蒸发相比温度低很多,但对热蒸发源温度控制的性要求较高。传统金属热蒸发更注重所能达到的高温(可达~1800℃),如果采用传统的蒸发源生长钙钛矿材料很容易导致温度过冲,制备的薄膜性能不稳定,甚至前驱体会瞬间挥发殆尽导致生长失败。钙钛矿光伏材料除了在较低温度下生长之外,沉积速率也是一个重要的控制变量。由于沉积速率并非温度的直接函数,钙钛矿材料在沉积时需要对每一个蒸发源的速率进行标定与检测。通常在热蒸发过程中,可以采用晶振探头来探测每一个蒸发源的蒸发速率。对于常规的金属热蒸发过程,材料从蒸发源沿着直线方向到达衬底,按照类似于标准分布函数的规律在衬底上沉积成薄膜。然而对于非常易挥发的材料,例如MAI,蒸发过程中会先在源上方形成较高的蒸气压,这会导致材料向侧方扩散,导致材料在腔体的其他部位形成非必要的沉积。因此,对于钙钛矿光伏材料的沉积过程必须控制得更加精密,否则MAI容易导致其他材料的晶振传感器被污染。专业的低温热蒸发技术与设备英国Moorfield 公司基于多年的薄膜设备生产经验发布了低温蒸发(LTE)技术和相关设备。这使得科研人员能够快速建立高性能的钙钛矿光伏薄膜沉积系统。Moorfield 公司用于钙钛矿太阳能电池制备的设备包括台式nanoPVD - T15A,以及功能增强型的落地式MiniLab系列。这样的低温热蒸发系统具有以下几方面的优点:● 低温蒸发源与控制器:超低的热容量,可选择主动水冷方案实现控制和小的温度过冲;基于传感器的PID反馈回路使得温度、功率或沉积速率可控。● 石英晶振传感器探头:水冷式,降低温度影响。专业设计和安装位置,在生长高蒸汽压钙钛矿前驱体时使信号“串扰”小化。● 真空系统:专业真空腔体设计和定制,包括可选的耐腐蚀泵组系统和预抽保护功能。● 过程控制:采用先进的自动过程控制器,允许多阶段程序设定操作,每个阶段包含单个或多个源蒸发(即共同蒸发),反馈回路控制每个源的速率。● 多功能配置:允许在一个系统上通过不同的PVD技术沉积钙钛矿和其他PSC涂层。此外,系统可以配备冷却或加热样品台,用于处理热敏感基片或在沉积期间/沉积后进行热处理。nanoPVD系统中的LTE蒸发源手套箱集成式系统虽然成品PSCs元件可以在大气条件下使用,但通常有必要在惰性气氛下进行器件封装制造。因为在后的保护涂层覆盖之前,湿气和氧气会对材料性能造成影响。因此,一些PSC制备工作通常在惰性气体(如纯氩气或氮气)的手套箱中进行。基于MiniLab 026和MiniLab 090平台的Moorfield LTE系统可以与手套箱集成,允许在惰性气氛中对衬底或样品进行加工处理。Moorfield可以提供整套的手套箱集成系统或与客户选定的手套箱进行集成。其中MiniLab 026系统可以与用户已有的手套箱进行现场的集成安装。Minilab090系统样品腔(左),与手套箱集成的系统(右)总结钙钛矿材料在太阳能电池方面表现出良好的前景,真空蒸发镀膜是一种很有前途的制备方法且容易实现工业化生产。用于钙钛矿薄膜制备的沉积系统需要进行优化设计,以提高薄膜材料的品质。Moorfield Nanotechnology公司具有雄厚的专业技术基础和先进的设备解决方案,包括全套LTE蒸发源、过程控制选件和完整的沉积系统。此外Moorfield Nanotechnology还提供其他多种材料制备的专业设备,例如磁控溅射、电子束蒸发、快速制备石墨烯的nanoCVD系统。台式高精度薄膜制备与加工系统新动态Moorfield 公司在中国科学院技术物理研究所的台设备安装成功,本次在技术物理研究所安装的是台式高性能二维材料等离子软刻蚀系统—nanoETCH。该系统对输出功率的分辨率可达毫瓦量,对二维材料可实现准确的逐层刻蚀,也可实现二维材料层内缺陷制造,此外还可对石墨基材等进行表面处理。该系统目前正处于技术培训阶段,不日将正式交付使用。中国科学院技术物理研究所安装的nanoETCH系统
  • 物理所铜锌锡硫硒薄膜太阳能电池研究取得进展
    铜锌锡硫硒太阳能电池(CZTSSe)是一种新型薄膜太阳能电池,因吸光系数高、弱光响应好、稳定性高、组成元素储量丰富、环境友好且价格低廉而颇具发展潜力,从而备受关注。中国科学院物理研究所/北京凝聚态物理国家研究中心孟庆波团队多年来在该类薄膜太阳能电池方面开展了系统研究,在高质量铜锌锡硫硒薄膜制备、界面调控、器件载流子动力学分析和电池效率提升等方面取得了系列研究成果。例如,基于二甲亚砜(DMSO)体系,发展了一种可以同时调控背界面和吸收层体相缺陷的Ge掺杂策略,所制备的CZTSSe电池认证效率为12.8%;在界面研究方面,引入有机电子传输层(PCBM)增强电荷抽取与传输,实现了12.9%的电池效率;在溶剂工程方面,发展了一种环境友好的水溶液体系,探索了小分子配体与金属离子相互作用对前驱膜、硒化膜晶体生长、薄膜微结构及器件性能的影响,获得了12.8%的电池认证效率。该团队已在CZTSSe电池材料及器件方面申请国家发明及实用新型专利13项。  近日,该团队与南京邮电大学教授辛颢合作,从硒化动力学角度出发,通过调节腔室压强来改变半封闭石墨盒中的硒化反应速率,进而调节铜锌锡硫硒薄膜的相演变过程。增加腔室压强后,研究通过原位实时硒分压监测发现,在硒化早期,硒分压被抑制,从而降低了硒化升温阶段(200-400 ℃)中前驱膜与气态硒蒸汽的碰撞几率;同时,正压条件下硒化能够抑制元素的非均匀扩散。在以上两点共同影响下,相演变过程在相对更高的温度下开始(>400 ℃),前驱膜表面经常出现的CuxSe、Cu2SnSe3等中间相被抑制,因此,实际相演变过程一步完成。由此获得的银替位CZTSSe(ACZTSSe)吸收层晶体质量高、内部孔洞少、表面缺陷浓度显著降低。所制备电池体相缺陷浓度降低了约一个数量级,电学性能也得到明显改善,并实现了全面积14.1%效率(认证全面积13.8%)的太阳能电池,是目前报道的最高效率。这一工作为进一步理解和调控铜锌锡硫硒相演变过程提供了动力学调控思路,并为其他类型多晶薄膜生长制备提供借鉴意义。  相关研究成果以Control of the Phase Evolution of Kesterite by Tuning of the Selenium Partial Pressure for Solar Cells with 13.8% Certified Efficiency为题,发表在《自然-能源》(Nature Energy,DOI:10.1038/s41560-023-01251-6)上。研究工作得到国家自然科学基金的支持。图1.(a)铜锌锡硫硒的相演变路径示意图;(b)原位监测获得的不同腔压下反应过程中的硒分压曲线;(c)铜锌锡硫硒太阳能电池认证报告(国家光伏产业计量测试中心)。图2.(a)对比组吸收层的SEM正面和截面图像;(b)实验组吸收层的SEM正面和截面图像;(c)对比组吸收层的能带结构;(d)实验组吸收层的能带结构。
  • 精彩案例 | 钙钛矿太阳能电池应用于光伏屋顶和光伏幕墙
    3月22日,国家发改委发布关于印发《“十四五”现代能源体系规划》的通知,提到积极推动工业园区、经济开发区等屋顶光伏开发利用,推广光伏发电与建筑一体化应用。光伏发电与建筑一体化是少数同时符合“稳增长”和“减碳”的发展方向,未来有望受到政策支持,从而迎来快速发展。光伏屋顶和光伏幕墙是光伏建筑一体化两大细分方向。光伏屋顶是具有承重隔热防水功能、并叠加电池板形成的屋顶,并能有效提供工业厂房用电需求的绿色建筑类型。光伏幕墙则是将幕墙(比如石材幕墙、玻璃幕墙)和光伏发电功能相结合的幕墙,相较于屋顶,建筑幕墙表面积更大,能有效提高发电量。更适用于高楼大厦安装光伏发电的需求。接下来我们通过两个案例来更直观的了解:案例1. 广州美术馆,具有世界唯一的全建筑光伏组件发电幕墙项目,整体幕墙面积达到7万㎡。案例2. 北京世园会中国馆,整个光伏系统装机容量80kW,年发电量约8.3万度。显而易见,发电玻璃光伏幕墙的一项核心科技为太阳能电池。布劳恩一家位于波兰的客户-SAULE Technologies,其联合创始人兼首席技术官 Olga Malinkiewicz 发明了一种在柔性箔上印刷钙钛矿太阳能的方法并获得了专利。该项技术目前应用在光伏屋顶和光伏幕墙等方向。接下来我们通过视频来详细了解吧~自2014年SAULE Technologies公司成立以来,就一直在使用布劳恩手套箱研究开发钙钛矿太阳能电池。SAULE Technologies公司实验室布劳恩提供的稳定的水、氧含量 1ppm的惰性气体氛围支持着每一个需要惰性气体氛围的应用。在钙钛矿太阳能电池行业,我们不仅为行业用户提供手套箱,还可以根据客户具体需求开发出智能的交钥匙设备解决方案,提供用于惰性气体环境的镀膜、封装以及表征分析等一系列工艺设备。工欲善其事,必先利其器,如果您想了解更多产品详情,欢迎致电我们!
  • 美研发病毒可将太阳能电池效率提高三成
    M13病毒可提高太阳能电池性能   美国麻省理工学院4月26日在其网站上宣称,该校研究人员日前开发出了一种新技术,可通过一种名为“M13”的病毒将太阳能电池的光电转换效率提高近三成。相关论文发表在最新一期《自然纳米技术》杂志上。   先前的研究已经发现,碳纳米管可以提高太阳能电池的转换效率。理想的情况下,碳纳米管会收集更多的电子,提高太阳能电池的表面积,从而产生更大的电流。但麻省理工学院的研究人员发现,该技术也存有一定的局限性。碳纳米管有两种,按功能可分为半导体类碳纳米管和导线类碳纳米管,两种纳米管不但在作用上不同,还容易发生聚集,从而严重影响转化效率。   研究人员经研究发现,M13病毒可以很好地解决这一问题。这种病毒长度为880纳米,结构简单易于操控,且对人体无害。M13病毒中的一种肽可使其附着在碳纳米管上,从而保证纳米管处于恰当的位置上,避免与其他碳纳米管发生黏连。每个病毒使用300个左右的蛋白质分子可以控制大约5到10个纳米管。实验显示,采用病毒结构的新型太阳能电池可将光电转化效率从普通太阳能电池的8%提高到10.6%,而新系统在重量上只增加了0.1%。   研究人员发现,除可固定碳纳米管外,M13病毒还会产生出二氧化钛,而二氧化钛颗粒可有效提高电子的传输效率。这种物质同样也是“格雷策尔电池”中的主要组成部分。“格雷策尔电池”也被称为染料敏化太阳能电池,工作原理是通过模仿光合作用产生电能。其发明人瑞士洛桑联邦高等理工学院光子学和界面试验室主任迈克尔格雷策尔曾因该技术被授予芬兰2010年“千年技术奖”。此外,M13病毒还会让碳纳米管具有水溶性,使其在室温条件下可更方便地加入到太阳能电池板中,从而降低生产成本。   研究人员称,关于两种碳纳米管在太阳能电池中具有不同效用的发现也是此次研究的一项重要成果,此前还没有被实验证明过。半导体纳米管可以提高太阳能电池的性能,但导线类纳米管的作用却正好相反。该发现或有助于设计出更有效的纳米电池、压电材料或其他与电力相关的材料。   负责该项研究的麻省理工学院教授安吉拉贝尔彻说,该技术还可以用来设计其他病毒增强型太阳能电池,包括量子点和有机太阳能电池。在提高普通太阳能电池的转化效率上该技术也有很大的潜力,不过这有赖于生物技术的进一步发展。
  • 宁波材料所在柔性有机太阳能电池领域取得进展
    p   有机太阳能电池具有质轻、柔性、成本低、弱光响应等优点,是当前太阳能电池技术的前沿热点研究方向。高效率﹑耐弯折和廉价的柔性有机太阳能电池在柔性可穿戴和便携式电子设备、光伏建筑一体化和军事等领域具有很强的应用潜力。目前,大多数有机太阳能电池的研究结果都是基于刚性的氧化锡(ITO)玻璃基板。但有机太阳能电池如果要实现商业化应用,其真正的优势是采用低成本的湿法印刷和卷对卷大面积工艺制造。在有机太阳能电池中,最常用的电极材料是铟掺杂的氧化锡(ITO)。然而,ITO在塑料基板上存在导电性差和机械脆性等问题,而且ITO通常在高温下通过真空溅射进行加工,这使得其价格昂贵,并且不利于采用大面积印刷和卷对卷来制备。已经有一些报道采用新的电极材料来代替传统ITO,如纳米银线、石墨烯、碳纳米管、导电聚合物等,其中聚(3,4-亚乙基二氧噻吩):聚(苯乙烯磺酸)(PEDOT:PSS)薄膜的成本相对较低,并且该薄膜表现出高光学和电学特性、优异的热稳定性、良好的柔韧性等。利用酸掺杂PEDOT:PSS可以大幅提高其导电率,但目前报道的大多数采用强酸如硫酸、硝酸等进行掺杂,再进行高温后处理,容易损伤PET等柔性塑料基板。 /p p   近日,中国科学院宁波材料技术与工程研究所研究员葛子义团队在前期高效率有机太阳能电池研究的基础上(Nature Photonics, 2015, 9, 520 Advanced Materials, 2018, 30, 1703005 Macromolecules, 2018, DOI: 10.1021/acs.macromol.8b00683 Journal of Materials Chemistry A, 2018, 6, 464),在柔性有机太阳能电池领域又取得新进展,创新性地开发了低温酸处理PEDOT:PSS电极替代需要高温溅射且昂贵的ITO电极。通过低温甲磺酸处理来提高PEDOT:PSS薄膜的导电性、降低薄膜的粗糙度,同时避免传统的强酸处理对柔性塑料衬底的破坏。进而利用全溶液加工技术,采用PBDB-T和IT-M非富勒烯活性层,制备了全湿法加工非ITO的单结柔性有机太阳能电池,电池的能量转换效率达到10.12%,这是迄今报道的全湿法加工的柔性有机太阳能电池的最高效率。而且这类全溶液加工的柔性有机太阳能电池非常符合卷对卷印刷和刮涂等大面积制备工艺的技术要求,为有机太阳能电池低成本柔性化制备提供了重要的参考途径。该项工作以All Solution-Processed Metal Oxide-Free Flexible Organic Solar Cells with Over 10% Efficiency 为题发表在国际期刊《先进材料》(Advanced Materials)上。葛子义和团队成员樊细为该论文的共同通讯作者,硕士生宋伟为第一作者。 /p p   上述研究得到了国家重点研发计划(2017YFE0106000和2016YFB0401000)、国家自然科学基金(51773212, 21574144和21674123)、中科院前沿科学重点研究项目(QYZDB-SSW-SYS030)、中科院重点国际合作项目 (174433KYSB20160065)、中科院交叉创新团队、浙江省杰出青年基金(LR16B040002)和宁波市科技创新团队(2015B11002,2016B10005)等资助。 /p p style=" text-align: center " img title=" W020180523579124813794.png" src=" http://img1.17img.cn/17img/images/201805/insimg/b0085859-db45-42e0-b92f-b5f1ebccc183.jpg" / /p p style=" text-align: center " 图:柔性有机太阳能电池的结构示意图和光伏特性曲线 /p
  • Nature (IF 69.504):NREL朱凯团队如何提升太阳能电池户外寿命
    【重点摘要】美国国家可再生能源实验室(NREL)由朱凯领导的研究团队发表了这篇研究论文。1. 关联钙钛矿太阳能电池的室内测试和室外老化2. 目的是预测真实世界的可靠性以指导开发3. 光照和高温下的降解是具信息性的4. 层间界面对稳定性至关重要5. 修改界面层可提高稳定性8倍,在85°C下超过1000小时6. 达到8200小时的预计寿命在50°C7. 是报告过的高效率钙钛矿太阳能电池中相当稳定的之一8. 将实验室测试与实际寿命连接起来以评估稳定性【研究背景】钙钛矿太阳能电池是有前途的薄膜光伏技术,但真实世界的稳定性很难理解。将加速的室内测试与户外老化关联对于指导钙钛矿太阳能电池的开发和预测寿命至关重要。【研究成果】1. 光照和高温下的降解对户外可靠性的预测具预示性。2. 修改自组装分子(SAM)的顶层电子传输层(HTL)可提高稳定性8倍,在85°C下超过1000小时。3. 达到8200小时的预计寿命在50°C下。4. 是报告过的高效率钙钛矿太阳能电池中稳定性好之一。【研究方法】1. 测试了高效率的p-i-n型钙钛矿太阳能电池堆叠结构。2. 在光照、高温和湿度下进行了室内加速测试。3. 进行了为期6个月的户外老化测试。4. 分析了在不同应力因素下的降解情况。5. 确定了ITO/SAM HTL/钙钛矿的界面是关键。6. 修改了SAM HTL以改善离子阻挡。【结论】本研究显示了加速室内测试和钙钛矿太阳能电池室外老化之间的强烈相关性。**该框架将实验室和战野的寿命相关联,从室内实验中获得了对真实世界稳定性的见解。通过改变界面层以阻止离子迁移,改善了稳定性。**这使得能更好地通过将室内测试和室外寿命相连接来评估高效率钙钛矿太阳能电池的长期稳定性。这个可靠性框架可以指导进一步的开发和商业化。未封装的p-i-n钙钛矿太阳能电池在不同温度下的平均操作稳定性。 b. 来自不同温度下T80值的每小时降解速率一个典型的p-i-n钙钛矿太阳能电池的J-V曲线及相应的SPO效能
  • 南开刷新有机太阳能电池光电转化效率最高纪录
    p style=" text-align: justify " & nbsp & nbsp 南开大学化学学院陈永胜教授领衔的团队在有机太阳能电池领域研究中获突破性进展。他们设计和制备的具有高效、宽光谱吸收特性的叠层有机太阳能电池材料和器件,实现了17.3%的光电转化效率,刷新了目前文献报道的有机/高分子太阳能电池光电转化效率的世界最高纪录。这一最新成果让有机太阳能电池距离产业化更近一步。美国东部时间8月9日下午,介绍该研究的论文在线发表于国际顶级学术期刊《Science》上。 /p p /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/62f3136a-548f-4a98-8fae-d391287a7e56.jpg" title=" 1.jpg" / /p p style=" text-align: justify " 有机太阳能电池的柔性特征和本工作主要结果 /p p style=" text-align: justify " & nbsp & nbsp 有机太阳能电池是解决环境污染、能源危机的有效途径之一,其在质轻、柔软、半透明、可大面积低成本印刷、环境友好等方面都远远优于传统太阳能电池,被认为是具有重大产业前景的新一代绿色能源技术。然而,实现高效率的太阳能电能转化是有机太阳能电池研究的核心难题。而这一难题能否解决也直接决定着有机太阳能电池能否走出实验室、走进人类的实际生产生活。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/243c9699-f8c4-4bb5-89cc-a57b9b15c3bc.jpg" title=" 2.jpg" / /p p /p p style=" text-align: justify " & nbsp & nbsp 近年来,虽然有机太阳能电池研究获得了迅猛发展,实现了14%~15%的光电转化效率,但仍远远落后于其它主要以无机材料(如硅)为主的太阳能电池转化效率。“主要原因在于,有机高分子材料本身较低的载流子迁移率限制了活性层厚度,因此太阳光不能够获得充分和有效的利用。”陈永胜说。 /p p style=" text-align: justify " & nbsp & nbsp 据介绍,叠层太阳能电池不仅可以克服上述难题,还可以充分发挥有机和高分子材料结构和性质优良的可调性特征,通过叠层电池中前后电池里活性材料互补的光吸收,更有效地利用太阳光,从而实现更高的能量转换效率。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/54c72967-855b-4761-8dbd-15b23150ffa7.jpg" title=" 3.jpg" / /p p /p p style=" text-align: justify " & nbsp & nbsp 陈永胜教授团队与中科院国家纳米科学中心丁黎明教授、华南理工大学叶轩立教授研究团队合作,首先利用半经验模型,从理论上预测了有机太阳能电池实际可以达到的最高效率和理想活性层材料的参数要求。在此基础上,他们以在可见光区域和近红外区域具有良好互补吸收的PBDB-T:F-M和PTB7-Th:O6T-4F:PC71BM分别作为前电池和后电池的活性层材料,采用成本低廉、与工业化生产兼容的溶液加工方法,制备得到了高效的有机太阳能垫层器件,获得了17.3%的验证效率。 /p p style=" text-align: justify " & nbsp & nbsp 该团队研究人员介绍,依据该工作提出的模型和设计原理,结合有机高分子材料结构的多样性和可调性,通过对材料和器件的进一步优化,非常有望获得和无机材料类似的能量转化效率,从而为有机太阳能电池的产业化提供有力技术支撑。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/3a090dba-e3eb-4db6-9406-053ba9748a44.jpg" title=" 4.jpg" / /p p /p p style=" text-align: justify " & nbsp & nbsp “依据我们提出的半经验模型预测,有机太阳能电池(垫层)的最高转化效率理论上可以达到20%以上。本次工作中,我们同时也对电池的寿命进行了初步试验,发现166天实验后电池效率仅降低4%。未来,我们将继续设计新的材料,在进一步提高能量转化效率的同时,针对电池寿命问题进行系统的实验,争取让有机太阳能电池早日从实验室走向实际应用。”陈永胜说。 /p p style=" text-align: justify " & nbsp & nbsp 据了解,该研究得到了科技部、国家自然科学基金委、天津市科委和南开大学的项目支持。 /p p br/ /p
  • 26.81%!中国创造硅太阳能电池效率新世界纪录
    11月19日,隆基绿能(601012)在第十六届中国新能源国际博览会暨高峰论坛上表示,公司自主研发的硅异质结电池转换效率达到26.81%,并经德国哈梅林太阳能研究所(ISFH)的最新认证。据了解,新纪录是继2017年日本公司创造单结晶硅电池效率纪录26.7%以来,时隔五年诞生的最新世界纪录,也是光伏史上第一次由中国太阳能科技企业创造的硅电池效率世界纪录。推动光伏产业降本增效“世界太阳能之父”、新南威尔士大学教授马丁.格林11月19日通过视频宣布,隆基绿能26.81%的电池效率是目前全球硅基太阳能电池效率的最高纪录(不分技术路线)。隆基绿能创始人、总裁李振国表示:“提升转换效率、降低度电成本是光伏产业发展的永恒主题。太阳能电池效率是光伏科技创新的灯塔,每一次0.01的突破都充满挑战。尤其是晶硅电池在目前的光伏市场中占比近95%,所以晶硅太阳能电池的极限效率决定了、也展示了光伏技术的发展潜力和光伏产业的发展方向,在整个光伏领域具有重要的意义。”中国科学技术协会党组书记张玉卓表示,此次打破世界纪录在我国光伏产业发展史上具有里程碑意义,这不仅充分彰显了我国光伏企业硅太阳能电池制造的科技实力,也有力提振了我国在更多科技领域走向世界前列的信心和决心。记者了解到,光伏制造业和光伏设备行业的高弹性与高估值很大程度上来源于其降本增效过程中众多颠覆性技术创新带来的价值重塑。HJT(异质结)是未来具有想象力的技术路线,而发电成本则依赖于太阳能电池的光电转换效率。隆基绿能此次公布的硅异质结电池转换效率达到26.81%,将为实现“双碳”目标提供重要科技支撑。近期连续三次刷新世界纪录据了解,此次突破世界纪录的隆基绿能高效晶硅异质结电池研发团队从2021年6月至今,不断打破并刷新原先的硅异质结电池世界纪录,从25.26%提升到26.81%,实现了一年四个月的时间里绝对值增加1.55%。尤其是在一个多月时间内,隆基绿能就分别以26.74%、26.78%、26.81%“连中三元”,刷新硅太阳能电池效率新纪录,再次印证了隆基绿能持续聚焦科技研发,推动产业进步的决心。业内人士表示,这种成熟的技术和全硅片大面积的世界纪录在整个光伏技术开发历史上也是非常罕见的。隆基绿能此次突破硅太阳能电池效率世界纪录也受到了来自国际能源署、全球能源转型委员会、世界可持续发展工商理事会、全球各国行业协会及行业组织等的关注。李振国曾多次表示,惟有依靠科技创新,抓住全球能源变革的机会,以创新驱动增长,才能按计划实现低碳、乃至零碳的跨越式发展,增强全球的气候韧性。光伏科技创新是应对气候变化的有力武器,并会在实现联合国“2030”可持续发展目标过程中发挥关键作用。
  • 应用分享 | 扫描电镜在钙钛矿太阳能电池上的应用
    什么是钙钛矿电池(PSC)?钙钛矿太阳能电池是一种类型的太阳能电池,是目前发展最快的太阳能技术。钙钛矿材料,如甲基铵卤化铅和全无机卤化铯,生产便宜且易于制造。使用这些材料的设备的太阳能电池效率从2009年的3.8%提高到2020年的25.5%。PSC具有实现更高效率和极低生产成本的潜力,现已成为商业上的吸引力。图1 钙钛矿太阳能电池的构造与运行机理示意图钙钛矿电池中的电子传输层(ETL)PSC 的效率和稳定性很大程度上取决于器件中选择作为电子传输层的材料的形态和类型。目前为止,PSC的电子传输材料主要有TiO2、ZnO等金属氧化物以及富勒烯等有机电子传输材料。ZnO是一种常用于钙钛矿太阳能电池中的电子传输材料。ZnO的优点是无需高温烧结,易于制备成大面积薄膜。应用于器件中的ZnO形貌结构主要有致密平面和纳米棒两种。利用扫描电镜观察ETL的纳米级别的样品形貌,成像清晰且具有立体感,通过调节放大倍数可以直观的观察样品的形貌、成膜质量、有无孔隙等。Thermo Scientific Apreo 2 SEM具有多功能性和高质量成像性能,采用了创新性的末级透镜设计,引入静电式末级透镜,支持镜筒内高分辨率检测。全新Apreo 2 SEM在原有性能基础之上,新一步优化了超高分辨成像能力,并且增设许多新功能提升其易用性。SmartAlign(智能对中)技术,不再需要用户手动进行调整操作,Flash自动执行精细调节工作,只需移动鼠标几次,就可以完成必要的透镜居中、消像散和聚焦矫正。图2 Thermo Scientific Apreo 2 SEM图3为用赛默飞场发射扫描电子显微镜Apreo 2S 在optiplan模式下拍摄的ZnO薄膜,由图(a)、(b)可见,制备出的膜层均匀致密、无孔隙。但(b)较(a)图片相比,噪点更少、分辨率更高。这是因为(b)较(a)参数上增加使用了样品台减速模式,使用减速模式后,电子束依然保持高电压,在试样台上加载一个负电位,电子在出极靴后受到负电位的作用而不断减速,最终以低能状态着落在样品表面。这样既保持了高电压的分辨率,又因为低着落电压而有很高的表面灵敏度。电子传输层的结构对钙钛矿薄膜质量和光学性能影响很大,从而影响钙钛矿太阳能电池的性能。由此可见,高质量的扫描电子显微镜是钙钛矿太阳能电池研发中检测、评估必不可少的设备。参考文献:[1]邓天郭, 高 云, 等.钙钛矿太阳能电池中钙钛矿层及电子传输材料的制备研究.[2]钟敏等. 不同结构ZnO电子传输层对钙钛矿太阳能电池的影响.
  • 河南大学宋金生团队通过宏环封装策略实现四噻吩非全融合型有机太阳能电池15.1%高效率
    【重点摘要】提出了宏环封装策略,通过在四噻吩外围导入融合烷基侧链实现。将该策略应用于非全融合四噻吩类受体材料。实现了高达15.1%的转化效率。【宏环封装策略实现高效有机太阳能电池】有机光伏一直被视为下一代可再生能源的重要候选技术。但是其光电转换效率一直无法达到与无机光伏装置媲美的水平。非全融合四噻吩类受体材料被认为是实现高效有机太阳能电池的一个有前景的方法。【宏环结构限制分子构象,提升分子堆积效率】在美国伯明翰南方研究院的最新研究中,通过在四噻吩外围导入环烷基侧链,形成宏环封装结构。这种设计可以锁定中央分子部分的构象,生成平面分子骨架,有利于分子的高效堆积。【对照组件构象扭曲,分子堆积效率降低】相比之下,没有宏环封装限制的对照分子则出现了扭曲变形的构象。这种构象变化会降低分子堆积的有效性,进而影响相关器件的性能。【噻吩宏环受体器件效率达15.1%】基于四噻吩宏环受体R4T-1的有机太阳能电池成功实现了15.1%的高效率。【宏环封装策略指明下一步优化方向】这项研究为构建高性能有机太阳能电池提供了新的思路。随着在分子设计和器件工程方面的持续优化,有机太阳能电池20%效率的目标指日可待。研究使用光焱科技太阳光模拟器SS系列 与量子效率测试系统 QE-R来协助量测。通过在简单的四噻吩上进行宏环封装设计出非全融合受体R4T-1,该结构实现了构象的单一性,消除了分子中心的电子跨效应,并保证了高效电荷传输通道的形成。因此,实现了高达15.10%的转化效率,短路电流密度显著提高至25.48 mA/cm2。图S7. JD40:4T-5和JD40:R4T-1的J1/2-V曲线,(a)空穴型器件和(b)电子型器件。
  • 柔性钙钛矿太阳能电池研究取得新进展
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 近日,中科院大连物化所薄膜硅太阳电池研究组(DNL1606)刘生忠研究员和陕西师范大学杨栋研究员、冯江山博士等在柔性钙钛矿太阳能电池研究方面取得新进展。相关结果发表在《先进材料》(Advanced Materials)上。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/13912dd6-243e-49a5-a1d3-5c5f9726bf07.jpg" title=" W020180720292898136578.jpg" / /p p style=" line-height: 1.5em "   柔性太阳能电池由于具有质量轻、便携带、易于运输、安装简单等优点备受关注。高性能柔性钙钛矿太阳能电池的关键部分是低温界面层和高质量钙钛矿吸光层。该团队前期通过开发低温界面层,在柔性钙钛矿电池中取得了一系列成果:2015年,利用室温磁控溅射法沉积氧化钛界面层,制备的柔性钙钛矿电池效率达到15.07%(Energy Environ. Sci.) 2016年,首次将离子液体作为界面层应用到柔性钙钛矿电池中,将柔性钙钛矿电池效率进一步提升到16.09%(Adv. Mater.)。 /p p style=" line-height: 1.5em "   最近,该团队运用二甲硫醚作为添加剂,通过控制钙钛矿吸光层的结晶过程,得到晶粒尺寸较大、结晶性较好、以及缺陷态密度较低的钙钛矿薄膜,将柔性钙钛矿太阳能电池的效率提高到18.40%,同时将大面积(1.2cm2)柔性钙钛矿太阳能电池的效率提升到13.35%。另外,利用添加剂制备的钙钛矿吸光层稳定性得到显著增加,在35%的湿度下放置60天,电池的效率仍能保持86%的原有效率,而无添加剂制备的钙钛矿太阳能电池效率相同条件下仅可保持原有效率的50%。此项研究成果是目前柔性钙钛矿电池的最高效率,为柔性钙钛矿太阳能电池的发展奠定了实验和理论基础。 /p p style=" line-height: 1.5em "   该研究工作得到国家重点研究与发展计划、中央高校基础研究基金、国家自然科学基金项目、111项目、国家大学科研基金、长江学者创新团队、国家“千人计划”项目的资助。(文/图 杨栋、段连杰) /p p br/ /p
  • 美国NREL-研究人员应如何测量基于钙钛矿的单片多结太阳能电池的性能?
    【重点摘要】由国家可再生能源实验室(NREL)的研究团队发表如何从校准实验室的角度来衡量钙钛矿基单片多接面太阳能电池的性能。对钙钛矿多接面太阳能电池进行精确的标准测试条件(STC)测量至关重要,但具有挑战性。提出了优化的测量方法,能够实现精确的性能特征化。标准化、与生产相关的量化协议持续进步是实现商业可行性的关键。【研究背景】钙钛矿多接面太阳能电池(PVSK MJs)在与硅能源电池结合时已经取得了显著的功率转换效率提升,效率超过30%。这些高效率是在标准测试条件(STC)下报告的,以便进行比较。准确的多接面太阳能电池在STC下的性能测量至关重要,但比单接面器件更加复杂,需要进行光谱模拟并限制每个子电池。需要谨慎的方法,因为快捷方式可能导致误导性的效率评级。【研究结果】提出的钙钛矿多接面太阳能电池的优化测量方法能够在标准测试条件下准确地表征电流-电压曲线和效率评级。通过调整模拟光谱和平衡每个子电池的电流,可以避免与快捷方法相比的误导性能评级。正在开发的高通量测量程序展示了减少测试时间一个数量级而不影响准确性。进一步改进加速测试协议并在研究团队间标准化方法可以促进持续的效率提升。在标准条件下准确评估效率仍然对评估新型多接面结构中的损失机制至关重要。【研究方法】准确测量PVSK MJ性能需要具有光谱可调的太阳模拟器来调节照射在器件上的光谱。测量过程包括确定每个子电池的光谱响应,调整模拟器光谱以实现电流匹配,并在STC下测量IV曲线和功率输出。讨论了在无法使用光谱模拟器时的常见错误和准确性评估方法。【结论】准确的标准测试条件(STC)下的钙钛矿基多接面太阳能电池测量需要具有光谱可调的太阳模拟器。优化的定量方法包括确定每个子电池的光谱响应,调整模拟器光谱以实现电流匹配,并在STC下精确测量功率输出。随着钙钛矿子电池的串联太阳能电池快速发展,防止误导性效率评级的需求使准确的标准测试量化变得更加迫切。最近更新的IEC 60904-1-1要求对于多接面测量中使用的模拟器提出了严格的规范,包括可调输出光谱范围为300-1700nm,符合AM1.5G标准,平均光谱不匹配率低于6%(A++等级)。这种最先进的设备克服了以往双源系统的可靠性问题。Enlitech的SS-PST利用创新的单氙弧灯基础的光谱控制,独特地满足这些新一代标准。Enlitech SS-PST在400-1100nm波长范围内的光谱偏差为11.2%,在300-1200nm范围内为13.1%。300-1700nm的输出光谱可以满足AM1.5G光谱的要求,平均光谱不匹配率低于6%(IEC 60904-9:2020)。输出光谱可调。校准设施采用这些先进工具有望有助于保持使用校准设备的各组报告性能值之间的一致性。朝着负担得起且标准化的定量技术取得进展是促进高效率多接面概念转化为具有商业竞争力的光伏产品的重要基础。可靠的准确测量消除了最终制造规模扩大和部署具有超越传统技术效率潜力的钙钛矿串联结构的障碍。Figure S1.左图:随着钙钛矿/Si串联电池顶部钙钛矿结构的辐照变化,VMPP、IMPP和ISC的变化。右图:二接面电池的示意IV曲线及其组成部分结构,其中顶部结构限制了电流。图S2. 左图:双结钙钛矿/钙钛矿电池的光电流-电压曲线。右图:顶部钙钛矿结构的辐照变化与双结钙钛矿/钙钛矿串联电池的VMPP、IMPP和ISC的关系。
  • 长春应化所在全高分子太阳能电池领域取得系列进展
    p   在光能转化为电能方面,全高分子太阳能电池采用p型高分子半导体(给体)和n型高分子半导体(受体)的共混物作为活性层,与传统的无机太阳能电池相比,具有柔性、成本低、重量轻的突出优点,已成为太阳能电池研究的重要方向之一。但是,n型高分子半导体的种类和数量远远少于p型高分子半导体,因此开发n型高分子半导体材料是发展全高分子太阳能电池的核心。 /p p   中国科学院长春应用化学研究所高分子物理与化学国家重点实验室刘俊课题组,提出采用硼氮配位键(B←N)降低共轭高分子的LUMO/HOMO能级,发展n型高分子半导体的策略,并发展出两类含硼氮配位键的n型高分子半导体受体材料,其全高分子太阳能电池器件效率与经典的酰亚胺类n型高分子半导体相近。 /p p   该课题组首先阐明了硼氮配位键降低共轭高分子LUMO/HOMO能级的基本原理,首次将硼氮配位键引入到n型高分子半导体的分子设计中(Angew. Chem. Int. Ed., 2015, 54, 3648)。进而提出了两种用硼氮配位键设计n型高分子半导体受体材料的分子设计方法:一是在共轭高分子的重复单元中,用一个硼氮配位键取代碳碳共价键,使共轭高分子的LUMO/HOMO能级同时降低0.5–0.6eV,将常见的p型高分子半导体给体材料转变为n型高分子半导体受体材料(Angew. Chem. Int. Ed., 2016, 55, 5313) 二是先设计基于硼氮配位键的新型缺电子单元——双硼氮桥联联吡啶,再用于构建n型高分子半导体受体材料(Angew. Chem. Int. Ed., 2016, 55, 1436)。 /p p   研究表明,硼氮配位键n型高分子半导体具有LUMO轨道离域、LUMO能级可调的特点(Chem. Sci., 2016, 7, 6197)。基于该独特的电子结构,在得到全高分子太阳电池器件效率6%的同时,实现了光子能量损失0.51 eV,突破了传统有机太阳能电池光子能量损失最小值0.6eV的极限,也是已知文献报道的最低值(Adv. Mater., 2016, 28, 6504)。 /p p   该工作获得了科技部“973”项目、国际自然科学基金、中组部“青年千人计划”和中科院先导计划等项目的资助。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201611/insimg/4e516292-452d-47ca-ae56-f629db3e32c9.jpg" title=" 1_副本.jpg" / /p p style=" text-align: center "   长春应化所在全高分子太阳能电池领域取得系列进展 /p p br/ /p
  • 日本研制新材料可望用于太阳能电池研发
    日本理化研究所日前发布的新闻公报说,其科研人员研制出一种高分子膜,在光线照射下,这种材料的分子相对位置会发生变化。这一成果有望应用于仿生医学和太阳能电池开发。   公报说,研究人员选择能在光线照射下改变自身结构的偶氮苯分子,让它们与一种分子主链周围垂直密布许多侧链的刷子状高分子“聚合物刷”相结合,制成光应答单元。此后,再让这种“单元”夹在两层聚四氟乙烯薄膜之间,给薄膜施加类似熨斗的热和压力,形成具有立体层次结构的聚合物刷薄膜。   研究人员借助同步辐射加速器SPring-8的X射线详细分析这种聚合物刷薄膜。他们观测到聚合物刷以垂直于薄膜表面的形态有规则地分布,由于这种材料分子的排列结构具有特异性,当材料中的偶氮苯分子在光线照射下改变结构时,这种分子的极细微活动会朝一个方向集中,最终使整个薄膜发生肉眼可见的弯曲。也就是说,这种高分子材料能把光能转化成用于运动的能量。   公报说,这种新材料可用作人造肌肉材料,生产这种新材料的分子取向控制技术可应用于有机薄膜太阳能电池等产品研发。据悉,有关这项成果的报告已在美国《科学》杂志上发表。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制