当前位置: 仪器信息网 > 行业主题 > >

太赫兹消色偏振转换器

仪器信息网太赫兹消色偏振转换器专题为您提供2024年最新太赫兹消色偏振转换器价格报价、厂家品牌的相关信息, 包括太赫兹消色偏振转换器参数、型号等,不管是国产,还是进口品牌的太赫兹消色偏振转换器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合太赫兹消色偏振转换器相关的耗材配件、试剂标物,还有太赫兹消色偏振转换器相关的最新资讯、资料,以及太赫兹消色偏振转换器相关的解决方案。

太赫兹消色偏振转换器相关的资讯

  • 西安交大:3D打印超宽带太赫兹超材料吸波器
    太赫兹波,指频率为0.1-10 THz的电磁波,位于微波和红外之间,属于电子学与光子学的过渡区间。由于具有光子能量低、穿透力强、特征光谱分辨能力好等属性,太赫兹技术在生物传感、无损检测以及高速无线通讯等领域具有重要的应用前景。然而,由于自然界中的天然材料在太赫兹频段没有电磁响应,导致太赫兹频段的功能材料和器件非常匮乏,这也是造成太赫兹技术尚未广泛应用的重要原因。THz超材料,一种新型的周期性人工电磁材料,其性质主要取决于所设计的结构,通过特定的结构设计,可获得与自然界已知材料截然不同的电磁性质,从而实现丰富的功能器件,如吸波器、调制器和偏振转换器等。目前常见的太赫兹超材料,主要由光刻工艺制备得到,存在制备工艺复杂、加工成本高的问题。此外,目前宽带吸波器常采用上下重叠式多层结构设计,其在太赫兹频段所需的多步光刻工艺更是进一步提高了加工难度及成本。因此,探索太赫兹器件的无光刻、低成本、简单高效的制备方法获得超宽带太赫兹吸波器,将有利于促进太赫兹技术的繁荣发展。 近日,西安交通大学张留洋教授课题组提出了一种偏振不敏感的超宽带太赫兹吸波器设计及其制备方法,该超宽带吸波器由叠堆于类宝塔基底表面的多层环形谐振器构成,通过相邻谐振器共振模式的重叠实现带宽的扩展,最终通过叠堆12层圆形和环形谐振器实现1.07-2.88 THz频段的近完美吸收。该研究结合微尺度3D打印技术(nanoArch S130,摩方精密)制备得到实验样件,实验测试结果验证了宽带吸收机理的准确性。该成果以“Three-Dimensional Printed Ultrabroadband Terahertz Metamaterial Absorbers”为题发表于国际期刊Physical Review Applied上,该研究工作由西安交通大学机械工程学院博士生沈忠磊与硕士生李胜男共同合作完成。图1 具有面外形态的太赫兹吸波器结构示意图图2 太赫兹超宽带吸收谱 通过结合微尺度3D打印技术,超宽带太赫兹吸波器可由简单的三步工艺制备得到。其中,周期性阵列的三维类宝塔结构采用面投影微立体光刻3D打印技术(nanoArch S130,摩方精密)加工得到。实验结果表明:得益于高精度的微尺度3D打印技术,测试所得的宽带吸收谱谐振频率和吸收幅值均与数值模拟结果较为吻合。图3 太赫兹超宽带吸波器实验验证(其中单元周期Px=Py=185μm,顶层圆形谐振器半径r12=10μm, 叠堆环形谐振器宽度w=6μm,叠堆层厚Dt=10μm) 此外,文章进一步证明了该制备方法之于常见太赫兹窄带吸波器制备的适用性。实验结果表明:两种太赫兹窄带吸波器的吸收谱测试结果与数值模拟结果和理论结果均较为吻合,表明基于微尺度3D打印技术的制备方法同样可实现对常见太赫兹窄带吸波器的高质量制备。图4 太赫兹窄带吸波器实验验证原文链接:https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.16.014066官网:https://www.bmftec.cn/links/10
  • 西安交大《Physical Review Applied》:3D打印超宽带太赫兹超材料吸波器
    太赫兹波,指频率为0.1-10 THz的电磁波,位于微波和红外之间,属于电子学与光子学的过渡区间。由于具有光子能量低、穿透力强、特征光谱分辨能力好等属性,太赫兹技术在生物传感、无损检测以及高速无线通讯等领域具有重要的应用前景。然而,由于自然界中的天然材料在太赫兹频段没有电磁响应,导致太赫兹频段的功能材料和器件非常匮乏,这也是造成太赫兹技术尚未广泛应用的重要原因。THz超材料,一种新型的周期性人工电磁材料,其性质主要取决于所设计的结构,通过特定的结构设计,可获得与自然界已知材料截然不同的电磁性质,从而实现丰富的功能器件,如吸波器、调制器和偏振转换器等。目前常见的太赫兹超材料,主要由光刻工艺制备得到,存在制备工艺复杂、加工成本高的问题。此外,目前宽带吸波器常采用上下重叠式多层结构设计,其在太赫兹频段所需的多步光刻工艺更是进一步提高了加工难度及成本。因此,探索太赫兹器件的无光刻、低成本、简单高效的制备方法获得超宽带太赫兹吸波器,将有利于促进太赫兹技术的繁荣发展。 近日,西安交通大学张留洋教授课题组提出了一种偏振不敏感的超宽带太赫兹吸波器设计及其制备方法,该超宽带吸波器由叠堆于类宝塔基底表面的多层环形谐振器构成,通过相邻谐振器共振模式的重叠实现带宽的扩展,最终通过叠堆12层圆形和环形谐振器实现1.07-2.88 THz频段的近完美吸收。该研究结合微尺度3D打印技术(nanoArch S130,摩方精密)制备得到实验样件,实验测试结果验证了宽带吸收机理的准确性。该成果以“Three-Dimensional Printed Ultrabroadband Terahertz Metamaterial Absorbers”为题发表于国际期刊Physical Review Applied上,该研究工作由西安交通大学机械工程学院博士生沈忠磊与硕士生李胜男共同合作完成。图1 具有面外形态的太赫兹吸波器结构示意图图2 太赫兹超宽带吸收谱 通过结合微尺度3D打印技术,超宽带太赫兹吸波器可由简单的三步工艺制备得到。其中,周期性阵列的三维类宝塔结构采用面投影微立体光刻3D打印技术(nanoArch S130,摩方精密)加工得到。实验结果表明:得益于高精度的微尺度3D打印技术,测试所得的宽带吸收谱谐振频率和吸收幅值均与数值模拟结果较为吻合。图3 太赫兹超宽带吸波器实验验证(其中单元周期Px=Py=185μm,顶层圆形谐振器半径r12=10μm, 叠堆环形谐振器宽度w=6μm,叠堆层厚▲t=10μm) 此外,文章进一步证明了该制备方法之于常见太赫兹窄带吸波器制备的适用性。实验结果表明:两种太赫兹窄带吸波器的吸收谱测试结果与数值模拟结果和理论结果均较为吻合,表明基于微尺度3D打印技术的制备方法同样可实现对常见太赫兹窄带吸波器的高质量制备。图4 太赫兹窄带吸波器实验验证原文链接:https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.16.014066
  • 太赫兹无损检测技术及应用
    1. 太赫兹技术太赫兹(Terahertz,THz)又称远红外波,被评为“改变未来世界的十大技术”之一,其频率位于0.1 THz至10 THz,如图1所示。从能量辐射角度,太赫兹辐射能量介于电子与光子之间,在无线电领域被称为亚毫米波,在光学领域通常被命名为远红外辐射。太赫兹波段两侧的微波与红外波段技术研究已经非常成熟,且得到了广泛应用。然而,由于太赫兹源的功率强度和太赫兹接收器的探测灵敏度落后于邻近的微波和红外波段,一定程度上限制了太赫兹技术发展,使得该频段很长一段时间被称为“太赫兹间隙”。从本世纪八十年代中期以来,伴随着物理学超快激光技术的发展,太赫兹源越来越强大,探测器也越来越灵敏,太赫兹技术得以迅猛发展。太赫兹时域光谱技术、太赫兹成像技术以及利用非线性效应产生大功率太赫兹是其中为数不多的重大突破,将太赫兹研究推向了中心舞台。太赫兹技术在无极性非金属材料检测方面明显优于传统方法,而且比其他方法有更高的时间分辨率,极大促进了太赫兹技术在无损检测领域应用。图1 THz波频谱分布2. 太赫兹时域光谱系统依据太赫兹波源类型差异,太赫兹检测技术可分为脉冲型和连续型。连续型太赫兹成像系统效率较高,但其频谱宽度较窄且缺乏时间信息。这促使脉冲型太赫兹时域光谱(Terahertz-time domain spectroscopy, THz-TDS)技术成为无损检测与分析领域的“舞台新星”。该技术具有以下独特优点:(1)相干性:由于光电导与光整流产生太赫兹脉冲的独特机制,使得其单色性较好,具有极强时间与空间相干性,太赫兹脉冲的相干长度甚至可以达到ns量级。这一特性使太赫兹相干测量技术得以实现。(2)强穿透性:太赫兹的穿透性与物质的颜色等物理性质无关,仅仅取决于物质的极性,太赫兹无法透过极性物质,而对于纸张、陶瓷以及涂层等非极性材料,太赫兹对绝大部分非极性物质具有极强的穿透性,其透过非极性物质时能量衰减极小。(3)低能性:相较于物质中各种化学键的键能,1 THz单光子能量远低于键能,一般仅仅为4.1 meV,不会引起物质发生电离作用,也就不会导致被测物质损伤,从而保证了该技术的安全性。(4)瞬态性:太赫兹脉冲时间宽度通常仅为皮秒量级,甚至能达到亚皮秒量级,可以用于材料的超快过程研究。(5)特征指纹性:脉冲太赫兹辐射的频谱范围从数百GHz到几THz,而许多生物大分子的振动和转动能级、以及半导体和超导材料的声子振动能级均落在太赫兹频段。分子振动和转动能级在太赫兹频段往往具有独特的吸收峰,这种独特的吸收特性使得每种物质拥有独一无二的指纹吸收谱。因此,特征指纹性使得太赫兹技术在光谱分析和物质识别等方面具有得天独厚的优势和广阔的应用前景。太赫兹时域光谱系统检测原理,如图2所示。图2 太赫兹时域光谱系统原理飞秒脉冲激光器产生飞秒脉冲激光,脉冲激光在光纤中传输会产生色散、偏振以及非线性效应等,这些现象均会对脉冲品质产生不利影响。在光纤中传输后的飞秒脉冲激光首先需要进行色散补偿,再由偏振分束镜将飞秒激光分为探测光和泵浦光两束,探测光将会直接照射在用于探测的光电导天线上,另一束泵浦光先汇聚在太赫兹发射器上并通过光电导天线两侧的偏置电压产生THz脉冲。最后用准直透镜和非球面聚焦透镜对THz脉冲聚焦后,将THz脉冲准直聚焦照射在待测样品上,携带样品信息的THz信号再次经过分束器的反射后返回太赫兹探测器,光电导天线检测器上的探测光通过测量THz电场的变化来获得微弱的电流信号,该电流信号经过锁相放大等操作后转化为THz时域信号波形,最后计算机通过A/D转换器等效采样收集获得样品的THz检测信号。3. 太赫兹无损检测技术研究进展由于太赫兹技术的安全性、高分辨率和无接触非破环性等优点,在无损检测领域备受关注,该技术在检测领域主要可分为以下两个方面:(1)缺陷成像太赫兹(Terahertz, THz)成像技术在许多领域被视为最前沿技术之一,在无损检测中取得了巨大进步。中国矿业大学范孟豹教授课题组在THz成像取得了相关研究进展。2020年,该团队基于时域有限差分数值模型模拟了热障涂层不同脱粘缺陷情况下的太赫兹信号,基于支持向量机方法实现了缺陷自动辨识。同年,发表了太赫兹成像技术进展综述论文。2021年,团队分析了太赫兹图像乘性噪声产生机理,提出基于同态滤波的THz图像增强模型,消除了太赫兹图像局部伪影,提高了图像的边缘强度。同年,课题组结合蜂窝材料纹理提出了新型滤波算子,称为苯环算子,消除了边缘与高斯-泊松噪声在高频混叠现象,提高成像质量。同时,撰写了THz超分辨率成像系统与信号处理技术综述论文。图3 苯环算子去噪方法(2)参数检测参数测量是表征材料服役与状态关键一环,在无损检测行业中备受关注。White首次使用反射式THz时域光谱系统对热障涂层厚度进行检测,但在其研究中取热障涂层折射率为固定经验值,并不能适用不同制备工艺条件和所有服役工况下的热障涂层;Fukuchi提出定位THz反射信号的三个反射峰,通过朗伯比尔定理获得了热障涂层的折射率,该方法需要THz信号的反射峰,不适应于薄涂层与多层结构的涂层。Krimi等人利用广义的Rouard模型来模拟任意多层薄膜内的太赫兹波与物质的相互作用,然而其使用的遗传优化算法存在收敛速度慢、控制变量较多等问题。近年来,随着人工智能方法快速,发展太赫兹与机器学习相结合参数测量方法应用广泛。中国矿业大学范孟豹教授课题组在参数测量方面取得了相关研究进展。2020年,范孟豹教授团队构建了多层涂层太赫兹信号解析模型,提出了基于全局优化算法减小实验与仿真信号间残差,反演出涂层厚度与折射率参数。2021年,课题组提出了差分进化自适应教与学优化算法,平衡全局与局部寻优能力,准确求解出热障涂层材料参数。同年,课题组针对Fuhucki方法需要手动定位反射的问题,提出了将长短时记忆神经网络与太赫兹技术相结合,完成了时域信号中多反射峰自动定位,实现热障涂层厚度与折射率在线测量。2022年,团队从THz参数测量机理出发,分析出折射率测量需要频域信息,据此开展了小波时频研究,并基于卷积神经网络建立了时频图与厚度、折射率间数学映射。同年,团队提出了全新的THz参数测量视角,深入探究了THz波与热障涂层间作用机理,发现了THz信号前两反射峰携带了测厚关键信息,阐述了实验与仿真信号在峰值处吻合度高的原因。据此,提出了基于模型驱动的THzResNet网络新结构,形成了可解释网络框架,最终实验结果表明THzResNet能够准确预测出热障涂层厚度,测量误差小于1%。图4 多反射峰自动定位方法图5 THzResNet新结构4. 总结随着材料科学技术进步,非金属材料应用逐渐广泛,使得具有非接触、非电离、波长短等优点太赫兹技术必将成为无损检测行业新星,解决缺陷成像与光学参数测量的行业痛点问题。作者简介范孟豹,博士,教授,博士研究生导师,机器人工程系主任,专业负责人,入选江苏省六大人才高峰资助计划。2009年6月毕业于浙江大学控制科学与工程专业,获工学博士学位,2015年1月至2016年1月在英国Newcastle University大学做访问学者。主要研究方向为智能机器人感知理论及应用研究。作为项目负责人,主持国家自然基金项目3项、JKW基础加强项目子课题、“863”计划子课题、江苏省自然科学基金面上项目、高等学校博士学科点专项科研基金新教师项目、国家博士后科学基金特别资助项目、国家博士后科学基金面上项目等项目,承担各类项目近30项。在国内外期刊及学术会议上发表SCI收录论文50余篇、EI收录10余篇。申请国家发明专利40余项,授权发明专利25项,出版专著1部。获国家安全生产监督管理总局科技进步一等奖、浙江省科技进步三等奖、中国腐蚀与防护学会一等奖等省部级奖励3项。担任科技部重点研发项目评审专家、教育部和浙江省科技奖励评审专家、国家自然科学基金项目函评专家、重庆与江西省基金项目评审专家,担任IEEE Transactions on Industrial Informatics、IEEE Transactions on Industrial Electronics、Mechanical Systems and Signal Processing、IEEE Transactions on Instrumentation and Measurement、NDT&E International、Measurement、IEEE Sensors Journal、机械工程学报、中国机械工程等30多个期刊审稿人。欢迎对太赫兹检测技术有兴趣的同行通过邮件联系:wuzhi3495@cumt.edu.cn。近三年课题组与太赫兹检测技术相关的学术论文:(1) 参数测量[1] Binghua Cao, MengyunWang, Xiaohan Li, Mengbao Fan, et al. Accurate thickness measurement of multilayer coatings on metallic substrate using pulsed terahertz technology. IEEE Sensors Journal, 2020, 20(6): 3162-3171.[2] Fengshan Sun, Mengbao Fan, Binghua Cao, et al. Terahertz based thickness measurement of thermal barrier coatings using long short-term memory networks and local extrema[J]. IEEE Transactions on Industrial Informatics, 2022, 18(4): 2508-2517.[3] Fengshan Sun, Mengbao Fan, Binghua Cao, et al. THzResNet: A physics-inspired two-stream residual network for thermal barrier coating thickness measurement [J]. IEEE Transactions on Industrial Informatics, 2022, Early Access.[4] 孙凤山, 范孟豹, 曹丙花, 等. 基于时频关键信息融合的热障涂层太赫兹准确测厚方法. 机械工程学报, 2022. (录用).[5] 曹丙花, 郑德栋, 范孟豹, 孙凤山, 等. 基于太赫兹时域光谱技术的多层涂层高效可靠测厚方法[J]. 光学学报, 2022, 42(01): 127-137.(2) 缺陷成像[1] Binghua Cao, Enze Cai, Mengbao Fan. NDE of Discontinuities in thermal barrier coatings with terahertz time-domain spectroscopy and machine learning classifiers[J]. Materials Evaluation, 2021, 79(2) :125-135.[2] 曹丙花, 李素珍, 蔡恩泽, 范孟豹, 淦方鑫.太赫兹成像技术的进展[J]. 光谱学与光谱分析, 2020, 40(09): 2686-2695.[3] 曹丙花, 张宇盟, 范孟豹, 孙凤山, 等. 太赫兹超分辨率成像研究进展[J]. 中国光学, 2022, 15(03): 405-417.[4] 孙凤山, 范孟豹, 曹丙花, 等. 基于几何纹理与Anscombe变换的蜂窝材料太赫兹图像降噪模型[J]. 机械工程学报, 2021, 57(22): 96-105.[5] 孙凤山, 范孟豹, 曹丙花, 等. 基于混沌映射与差分进化自适应教与学优化算法的太赫兹图像增强模型[J]. 仪器仪表学报, 2021, 42(04): 92-101.
  • 来自激光尾流场加速光子的多毫焦耳太赫兹辐射
    近日,韩国基础科学研究所的Taegyu Pak等人观察到高功率太赫兹辐射从被100太瓦级激光脉冲照射的气体喷射器中发射出来,用于电子的激光视场加速。在氮气靶上,小于10太赫兹时产生了超过4毫焦耳的能量,激光到太赫兹的转换效率约为0.15%。这种强大的太赫兹辐射被认为是由等离子体电子产生的,这些电子在激光脉冲时间尺度上加速。该模型通过粒子在细胞中的模拟和分析计算进行研究,以更好地理解激光尾流场加速中高能太赫兹辐射的产生机制。太赫兹(THz)是位于电磁波谱的微波和红外区域之间的一个频段,这个频段下传统技术在产生和检测辐射方面效率低下,人们正在通过开发新的太赫兹源和检测器来弥补这一缺口。基于激光的太赫兹源由于能够产生相干的、单周期到多周期的、宽带(或窄带)辐射而备受关注。这种源也可以提供与驱动激光的自然同步,允许超快时间分辨光谱和成像。最近,高功率飞秒激光器被用来产生强大的太赫兹辐射,以及探索新的太赫兹驱动的现象,如分子排列,谐波生成和分子加速等。在许多基于激光的源中,基于激光等离子体的源很适合于高功率太赫兹的产生。等离子体已经被电离,因此可以维持高电磁场,当高功率激光脉冲被聚焦到一个小的体积中用于产生能量可存储的太赫兹时,几乎不需要材料损坏。从激光产生的气体和固体密度等离子体中产生的相干太赫兹已经被广泛地研究。在气体中,单色或双色激光产生的等离子体可以通过超快的激光驱动电流产生相干的宽带太赫兹辐射。在双色激光混合中,通过使用中红外激光驱动器,激光到太赫兹的转换效率提高到百分比水平。最近,从一个被高能量皮秒激光脉冲照射的金属箔中观察到了几十毫焦耳的太赫兹能量。然而,与气体靶材不同,高密度的靶材往往会带来靶材碎片和靶材重装的问题,这使得它们不利于用于连续或高重复率的操作。激光尾流场加速器(LWFA)是一种基于气态等离子体的紧凑型电子加速器方案,可以产生宽带电磁辐射。在激光尾流场加速器中产生的相对论性电子束,当它通过相干过渡辐射离开等离子体-真空边界时,可以发射出太赫兹辐射。当电子束的长度与发射的太赫兹辐射的波长可比拟或小于辐射波长时,就会出现这种情况,且单个电子产生的太赫兹场在辐射方向相干叠加。在实验中,用10 TW级激光器从激光尾流场加速器中观察到小于100纳焦的太赫兹能量,太赫兹辐射的波形被单次测量,也被利用来诊断电子束本身。然而到目前为止,激光尾流场加速器输出的太赫兹能量尚未超过微焦水平,人们也没有研究过太赫兹能量的扩展。韩国基础科学研究所的Taegyu Pak等人通过使用相对论激光科学中心(CoReLS)的150太瓦激光器,在激光尾流场加速器中明显增强了太赫兹的产生,达到了多毫焦耳水平。研究人员测试了激光尾流场加速器和各种目标条件下太赫兹的生成,并同时表征了两种光束,以便更好地了解激光尾流场加速器中太赫兹产生的起源。实验结果表明,多兆焦耳的太赫兹生成并不完全由相干跃迁辐射模型解释。研究人员研究了太赫兹产生的另一种可能机制,即由激光推动力和等离子体加速的等离子体电子的相干辐射。实验装置示意图如图1所示,激光脉冲电离气体射流并通过激光尾流场加速器加速等离子体电子,同时产生太赫兹辐射。在电子束通过带有偶极磁铁的电子光谱仪后,测量电子能谱。从等离子体发出的太赫兹辐射被准直,传送到真空室外,然后重新聚集到热释电检测器上进行检测。图1 激光驱动的电子加速和太赫兹生成示意图发出的太赫兹辐射通过其光谱、能量和偏振进行了表征,得到的太赫兹光谱在图2(a)中以散射形式显示,水平误差条代表滤波器传输带的光谱宽度,红线表示放置在光束路径上所有过滤器的整体传输曲线。其偏振通过一个带有热释电探测器的线栅偏振器来表征,收集35个热释电信号并取其平均值,结果显示在图2(b)中。测量的偏振分布是各向同性的,与电子的径向加速所预期的偏振相一致,沿垂直偏振方向有一些明显的增强。图2 太赫兹辐射的光谱和偏振表征
  • 物理所等澄清双色场太赫兹辐射方案推广及物理机制
    p   太赫兹波通常指频率处于0.1THz到10THz的电磁波。由于波段独特,太赫兹波在多各领域具有应用潜力,但如何产生可调谐的强太赫兹辐射源是一个长期存在的难题。近三十年的研究表明,等离子体可以把强激光转化成强太赫兹辐射源。其中,2000年提出的“双色场方案”,由于转换效率高和技术简单等优点,得到最为广泛的关注。在双色场方案中,一束常规的800nm激光穿过一块倍频晶体产生的400nm激光,后者与剩余的800nm激光混合,在大气中就能产生MV/cm的强太赫兹波。该方案自提出以来,其物理机制一直存在着争议,存在等离子体电流模型和非线性光学的多波混频两种不同的理论模型。同时,在所有的实验中,两束模型的激光波长比始终固定在2:1,是否能够将其推广至其它波长比尚不清晰。 /p p   中国科学院物理研究所、北京凝聚态物理国家研究中心光物理重点实验室L05组王伟民、李玉同和上海交通大学盛政明等人针对以上问题进行了理论和实验研究。2013年,他们首次从理论上预测了双色场方案可以推广到4:1、6:1等波长比。2017年,他们后续的理论工作进一步预测双色场方案可以推广到波长比为2n:1、(n+0.5):1系列(n为正整数)。基于上述理论工作,王伟民与首都师范大学张亮亮、张岩实验团队合作,首次在实验上证实了理论预测,演示了双色场方案在波长比为4:1和3:2时,也能够有效地产生太赫兹波。实验上还观察到,太赫兹波的偏振可以通过旋转较长波长激光的偏振进行调节,但是旋转较短波长激光的偏振时,该偏振调节方法失效 取不同的激光波长比时,太赫兹波能量满足相似的定标率。这些现象与多波混频理论模型给出的关于介电张量对称性、不同波长比条件下太赫兹波能量具有不同的定标率等预测相矛盾。相反地,以上两个实验结果与王伟民等人的等离子体电流模型结果一致:太赫兹波椭圆偏振率正比于(λ长/λ短)4 在不同波长比条件下,太赫兹波能量满足相似的定标率,并在激光强度比较低的情况下满足线性定标率。该系列工作进一步证实了其物理机制应主要归结为等离子体电流模型,对基于“双色场方案”的太赫兹辐射产生和调控具有重要指导意义。 /p p   相关研究成果发表在Phys. Rev. Lett.和Phys. Rev. A/E上。该研究得到了国家自然科学基金委、国家重点基础研究计划、中科院战略性先导科技专项、教育部激光聚变科学与应用协同创新中心等的资助。 /p p style=" text-align: center " img title=" 001.png" src=" http://img1.17img.cn/17img/images/201712/insimg/769c27db-eb3a-41e2-974f-bd8aa56c267c.jpg" / /p p   图1.左图中第一束激光波长为800nm,第二束激光波长在1200nm到1600nm间变化,发现太赫兹波能量峰值出现在1200nm和1600nm附近(波长比为3:2和2:1) 右图中第一束激光波长为400nm,当第二束激光波长为1600nm时,出现太赫兹波能量峰值,对应的波长比为4:1。在两幅图中“x”点为实验结果,实线为KLAPS粒子模拟(PIC)结果 /p p style=" text-align: center " img title=" 002.png" src=" http://img1.17img.cn/17img/images/201712/insimg/c63f7f30-2cd0-46f5-8861-7798530d377e.jpg" / /p p   图2.双色场方案中采用400nm和1600nm激光组合,两束激光初始偏振均在水平方向上,然后分别旋转1600nm激光的偏振(左图)和400nm激光的偏振(右图),让其具有竖直方向的分量。在左图中随着1600nm激光的旋转角从0增加到90度,太赫兹波水平分量逐渐减小,竖直分量先增加再较小 在右图中随着400nm激光的旋转角从0增加到90度,太赫兹波竖直分量始终处于很低的水平。此实验结果与根据等离子体电流模型预测的太赫兹波椭圆偏振率正比于(λ长/λ短)4相符。在两幅图中“o”点为实验结果,实线为KLAPS粒子模拟(PIC)结果 /p p style=" text-align: center " img title=" 003.png" src=" http://img1.17img.cn/17img/images/201712/insimg/cb95bdae-1c43-4290-b1c4-6f88e6171142.jpg" / /p p   图3.太赫兹波能量?THz随激光峰值功率的变化,左图中激光波长比为4:1,右图中波长比为3:2。根据多波混频理论的预测,左图中?THz应该正比于(P1600nm)4,右图中?THz应该正比于(P800nm)2,实验结果不符合这些定标率。当激光功率比较低时(曲线的开始阶段),在不同波长比情形均满足线性定标率,这与根据等离子体电流模型预测一致。在两幅图中“x”点为实验结果,实线为KLAPS粒子模拟(PIC)结果 /p
  • 上海光机所在太赫兹波电子加速研究中取得重要进展
    近期中国科学院上海光学精密机械研究所李儒新、田野和宋立伟团队在太赫兹波电子加速领域取得重要进展。研究团队基于上海光机所新一代超强超短脉冲激光综合实验装置,利用超强超短激光驱动丝波导产生毫焦耳级太赫兹表面波,并采用表面波进行电子加速,解决了高能量太赫兹波产生以及自由空间太赫兹波至波导能量耦合效率低等难题。该项研究将太赫兹波的产生、传输及耦合集成到波导上,并在波导管中5mm距离实现了最高1.1 MeV的电子能量增益和210 MV/m的平均加速梯度,较当前太赫兹波加速电子能量增益的世界纪录提升了近一个量级,同时为全光学集成化电子加速器研究开辟了崭新途径。相关研究成果于2023年7月13日以“Megaelectronvolt electron acceleration driven by terahertz surface waves”为题发表于《自然光子学》(Nature Photonics)期刊。   小型化集成化的电子加速器将极大地推动其在前沿科学与技术领域的广泛应用。利用太赫兹波驱动电子加速作为近十年来发展的新兴加速技术,能够提供比传统射频加速更高的加速梯度,是实现小型化、低成本加速装置的可靠途径之一,有望将加速器的应用推广向包括小型实验室、医院等在内的更多应用场景。   当前发展的太赫兹电子加速基于自由空间的太赫兹源技术,太赫兹波产生后,经收集、传输、偏振转换,再聚焦至用于加速电子的波导结构。实验上,为了尽可能提高波导内部的太赫兹加速梯度,需要太赫兹源提供足够的能量以弥补光路中散射、反射,以及模式转换的能量损耗。常见的太赫兹源,例如基于光学晶体产生的太赫兹辐射通常需要经过光学元件的收集及导引,并通过分段波片或相移片进行模式转换,不可避免地造成能量损失。相比自由空间的太赫兹辐射,束缚于介质表面的光学表面波,如表面等离极化激元(surface plasmon polaritons, SPP),为太赫兹的导引与模式转换提供了全新的思路。   研究团队近年来在小型化的激光加速电子源与辐射光源等领域长期探索,并于近期发现了太赫兹表面等离极化激元相干放大机制(Nature 611, 55–60 (2022)),能够实现高功率表面等离极化激元相干辐射源。围绕轴对称金属圆柱形波导上的太赫兹表面等离极化激元的索莫菲波属性,以及对低色散基横磁(TM)模式,研究团队进一步将此高功率的太赫兹表面等离极化激元直接与加速波导耦合,实现了85%的耦合效率,能有效将飞秒激光泵浦金属圆柱波导产生的毫焦耳级太赫兹能量与电子束作用,并最终在5mm长度上使电子获得最高1.1 MeV的能量增益及210 MV/m的平均加速梯度,将当前国际上太赫兹波驱动的电子能量增益最好结果提升了近一个量级。   未来,研究团队将基于这一太赫兹表面波模式驱动电子加速的全新方案进一步发展集成化的全光学电子加速技术,并拓展其在小型辐射源及材料检测等领域的交叉应用。   相关研究工作的合作团队包括北京航空航天大学与张江实验室等,该工作共同第一作者为上海光机所博士研究生余谢秋与特别研究助理曾雨珊,工作得到了科技部重点研发计划、中科院先导B、基础研究特区计划、中科院人才引进计划、国家自然科学基金、中科院青促会和上海市科技启明星扬帆计划等支持。图1 太赫兹表面波驱动电子加速实验示意图图2 实验测得的最大电子能量增益结果图3 自由空间(a)与金属圆柱波导(b)太赫兹耦合状态下,加速波导内的电场强度对比(c)
  • 欧美太赫兹技术研发进展
    近年来,随着国际恐怖主义的扩散和世界性灾害的发生,防恐、减灾、构建安全的现代社会已成为世界共同的紧要课题。欧、美等发达国家对利用太赫兹辐射波技术给予了很大的关注。   在欧洲,政府和企业围绕太赫兹技术的广泛应用,加强产学研合作的研发日益活跃。2000年以后,在欧洲第五、第六研究开发框架计划(Informationt Society Technologies,IST)的有关项目里,围绕太赫兹波段医疗、通信技术应用的研究非常活跃。英国在2000-2003年开展了WANTED(Wireless Area Networking of Terahertz Emitters and Detectors)项目研究,开发了l-10太赫兹的广域半导体振动器和检波器,研讨Tbps级WAN的可能性 同一时期,英国还开展了TERAVISION(Terahertz Frequency Imaging Systems for Optically Labeled Signals)项目,开发应用高功率、小型近红外短脉冲激光的小型医用太赫兹脉冲成像装置,并通过风险企业TeraView取得了产业化进展。法国在2001-2004年实施NANO-TERA项目(Ballistic Nanodevices For Terahertz Data Processing),研究太赫兹波段信号处理装置。瑞典在2002-2004年开展了SUPER-ADC(A/D converter in superconductor-semiconductor hybrid technology)项目研究,旨在实现高温超导体和半导体混合的超高速AD转换器。   近年来,以美国防高级研究计划署DARPA等为中心,积极推进以国防为主要目的尖端技术开发和超高速电子领域的相关项目研究。如开展TIFT(Terahertz Imaging Focal-plane-array Technology)项目研究,开发安全应用方面的小型高感度太赫兹感测系统。2003-2006年进行TFAST(Technology for Frequency Agile Digitally Synthesized Transmitter)项目研究,开发高速通信、定相整列天线发射机(phased-array antena)的数字化应用超高速IC。从2005年开始实施SWIFT(Submillimeter Wave Imaging FPA Technology)项目,开发安全防卫用的成像应用亚毫米波FPA组合装置。美国已有超过10家企业在太赫兹波相关产品的开发方面取得进展。如Picometrix公司开发的宇宙飞船外壁薄板内部缺陷检查用太赫兹成像系统已在美国国家宇航局NASA投入使用。Physical Sciences Inc.、波音等公司也积极进行太赫兹波在安全领域应用的研究开发。(2005年9月20日)
  • 麻省理工学院工程师利用量子点技术开发出低成本的太赫兹相机
    太赫兹辐射,也被称为亚毫米辐射,其波长位于微波和可见光之间。它可以穿透许多非金属材料并探测某些分子的特征。这些便利的特性可以使其得到广泛的应用,包括工业质量控制、机场安全扫描、材料的无损表征、天体物理观测以及比目前手机频段带宽更高的无线通信。插图显示太赫兹照明(右上角的黄色曲线)进入新的相机系统,它刺激纳米级孔内的量子点(显示为照明环)发出可见光,然后使用基于CMOS的芯片(左下角)检测,就像数码相机中的那些。然而,设计检测和制作太赫兹波图像的设备一直是个挑战。因此,大多数现有的太赫兹设备是昂贵的,缓慢的,笨重的,并需要真空系统和极低的温度。现在,麻省理工学院、明尼苏达大学和三星公司的研究人员已经开发出一种新的相机,它可以快速检测太赫兹脉冲,具有高灵敏度,并且在室温和压力下。更重要的是,它可以同时实时捕捉到关于波的方向,或"偏振"的信息,而现有的设备无法做到。这种信息可以用来描述具有不对称分子的材料,或确定材料的表面细节。这个新系统使用被称为量子点的粒子。这些粒子最近被发现在受到太赫兹波的刺激时有能力发射出可见光。然后,这些可见光可以被一个类似于标准电子相机探测器的装置记录下来,甚至可以用肉眼看到。11月3日发表在《自然-纳米技术》杂志上的一篇论文描述了这一装置,作者是麻省理工学院的博士生史娇健、化学教授Keith Nelson和其他12人。该团队制造了两种不同的装置,可以在室温下运行。一个是利用量子点将太赫兹脉冲转换为可见光的能力,使该装置能够产生材料的图像;另一个是产生显示太赫兹波偏振状态的图像。新的"照相机"由几层组成,采用像用于微芯片的标准制造技术制成。基板上有一排纳米级的平行金线,用窄缝隔开;上面是一层发光的量子点材料;上面是一个用于形成图像的CMOS芯片。偏振检测器使用类似的结构,但有纳米级的环形狭缝,这使得它能够检测到进入的光束的偏振。太赫兹辐射的光子具有极低的能量,这使得它们很难被检测到。因此,这个设备正在做的是将那小小的光子能量转化为易于用普通相机检测的可见物。在该团队的实验中,该设备能够在低强度水平上检测太赫兹脉冲,超过了今天大型和昂贵系统的能力。研究人员通过拍摄他们设备中使用的一些结构的太赫兹照明照片来证明该探测器的能力,例如纳米间隔的金线和用于偏振探测器的环形狭缝,证明了该系统的灵敏度和分辨率。一个CMOS相机被用来捕捉太赫兹光束的旋转。资料来源:研究人员提供开发一个实用的太赫兹相机需要一个产生太赫兹波以照亮一个物体的部件,以及另一个检测它们的部件。在后一点上,目前的太赫兹探测器要么非常慢,因为它们依赖于检测波冲击材料所产生的热量,而热量传播缓慢,要么它们使用相对较快的光电探测器,但灵敏度非常低。此外,直到现在,大多数方法都需要整个太赫兹探测器阵列,每个探测器产生一个像素的图像。问题在于每一个都相当昂贵,一旦他们开始被用来制造相机,探测器的成本就会开始迅速扩大。虽然研究人员说他们已经通过新的工作破解了太赫兹脉冲检测问题,但缺乏良好的源的问题仍然存在--而且世界各地的许多研究小组正在努力解决。尼尔森说,新研究中使用的太赫兹源是一个庞大而繁琐的激光器和光学设备阵列,不容易被扩展到实际应用中,但基于微电子技术的新源正在顺利开发中。论文的共同作者、明尼苏达大学电气和计算机工程系麦克奈特教授Sang-Hyun Oh补充说,虽然目前的太赫兹相机版本要花费数万美元,但该系统使用的CMOS相机的廉价特性使其"向建立实用的太赫兹相机迈进了一大步"。商业化的潜力促使制造CMOS相机芯片和量子点设备的三星公司合作开展这项研究。尼尔森说,这种波长的传统探测器在液氦温度(-452华氏度)下工作,这对于从背景噪声中挑出能量极低的太赫兹光子是必要的。这种新设备能够在室温下用传统的可见光相机检测并产生这些波长的图像,这一点出乎了从事太赫兹领域工作的人的意料。研究人员说,有许多途径可以进一步提高这种新相机的灵敏度,包括组件的进一步小型化和保护量子点的方法。他们说,即使在目前的检测水平上,该设备也可以有一些潜在的应用。在新设备的商业化潜力方面,Nelson说,量子点现在价格低廉,而且容易获得,目前被用于消费产品,如电视屏幕。相机设备的实际制造更加复杂,但也是基于现有的微电子技术。事实上,与现有的太赫兹探测器不同,整个太赫兹照相机芯片可以用今天的标准微芯片生产系统来制造,这意味着最终大规模生产这些设备应该是可能的,而且价格相对便宜。目前,尽管该相机系统离商业化还很远,但麻省理工学院的研究人员在需要快速检测太赫兹辐射时已经在使用这种新的实验室设备。"我们没有那些昂贵的相机,"纳尔逊说,"但是我们有很多这样的小设备。人们只需将其中一个插入光束中,用眼睛看一下可见光的发射,这样他们就知道太赫兹光束何时开启,这真的很方便。"虽然太赫兹波原则上可以用来探测一些天体物理现象,但这些来源将是极其微弱的,而且新设备无法捕捉这种微弱的信号,该团队正在努力提高其灵敏度。下一代的研究工作在于把所有东西都做得更小,它的灵敏度也会更高。
  • 太赫兹自旋解耦的高效双功能全介质超构表面
    近日,复旦大学物理系周磊\孙树林课题组利用由高深宽比(20:1)的硅基人工原子构建的超构表面,在太赫兹波段实现了绝对效率高达88%的透射式自旋解耦双功能器件,例如在不同手性太赫兹光照射下实现聚焦\偏折或双全息成像等等不同功能。相关研究成果以“Bifunctional Manipulation of Terahertz Waves with High-Efficiency Transmissive Dielectric Metasurfaces”为题,于2022年12月在线发表在Advanced Science上。太赫兹(Terahertz,THz)波因其在信息通讯、生物医疗和国防安全等领域具有重大应用需求而备受相关科研人员的关注。然而,传统太赫兹器件由于自然材料在该波段的电磁响应很弱,而普遍存在体积庞大、效率低和功能单一等问题。近年来,具有强大电磁波调控能力和超薄结构特性的超构表面的出现为光学器件的小型化和功能多样化方面带来了新的契机。太赫兹超构表面器件研究在成为太赫兹领域研究热点的同时,也面临着诸多困难与挑战:金属欧姆损耗极大限制超构器件的绝对工作效率,现有全介质超构表面器件存在功能相对单一和效率低等问题。针对这些问题,研究团队提出了利用具有高深比的全介质柱人工原子(例如:纯硅)构建透射式太赫兹高效自旋解耦超构表面功能器件的新思路,并实验验证了不同圆偏振太赫兹光激励下的多功能光场调控(见图1)。图1.高效双功能全介质超构表面的示意图复旦大学周磊教授团队在太赫兹波段基于高深宽比(20:1)全介质人工原子构建了多功能超构器件,实验实现了对左右旋圆偏振入射光的高效(绝对效率88%)且完全不同的波前调控(即自旋解耦)。光学器件的效率和多功能操控一直以来都是一个瓶颈问题,对于透射式器件尤为明显。究其本质是构建超构表面的人工原子既要满足全相位覆盖要求,还要具备高的透射效率。团队发现具有高深宽比的全介质人工原子可同时满足上述条件,同时利用散射相消原理在器件反面引入减反结构可进一步提升器件的绝对效率。团队通过将套刻技术与深硅刻蚀Bosch Process工艺相结合,调节刻蚀(etch)和钝化(passivation)工艺平衡,成功制备出了具有100%偏振转化效率的高深宽比双面介质人工原子(如图2所示)。 图2. 器件加工中的Bosch平衡,器件SEM图以及太赫兹光谱图基于上述高效透射型全介质人工原子,团队充分利用与自旋无关的传输相位和与自旋相关的几何相位这两个独立调控自由度,设计和实现了手性完全解锁的高效双功能波前调控器件。图3 展示了高效双功能波前调控器件所对应的透射相位分布及其对应的人工原子的几何参数和旋转角度分布。团队的太赫兹实验远场实验完美验证了该超构器件对左右旋圆偏振光实现的聚焦和偏折效应,其绝对工作效率高达88%。为了进一步验证该设计方法的普适性,团队进一步设计并实验表征了功能更加复杂的高效全息成像双功能器件。在图4中展示了该太赫兹双功能全息超构器件的实验和模拟结果:该器件在不同圆偏振太赫兹光的激励下,可在器件透射端焦平面的左右两侧呈现不同的全息图像(字母“F”和“D”)。 图3.双功能器件的相位分布与SEM图以及实验测试架构和结果 图4. 全息成像器件SEM图、相位分布图以及近场扫描的实验结果与模拟结果周磊教授团队在此项工作中系统地阐述了利用全介质超构表面实现太赫兹高效自旋解耦多功能波前调控的设计方法,并基于成功制备的高深宽比高达20:1的全硅基超构表面样品,实验验证了具有自旋解锁的聚焦/偏折双功能器件和双功能全息超构器件。此项工作可为实现高效、小型化且多功能的透射式太赫兹器件研究提供新思路和新方法,并为未来的片上光子学研究发展提供更多的可能。复旦大学物理学系博士后王卓与博士研究生姚尧为论文的共同第一作者。复旦大学物理学系周磊教授和复旦大学光科学与工程系孙树林研究员为该论文共同通讯作者。该工作还得到上海大学通信学院肖诗逸教授和复旦大学物理学系何琼教授的大力支持与帮助。该研究工作获得了国家重点研发计划、国家自然科学基金和上海市科委的项目的支持。
  • 太赫兹光子马约拉纳零模量子级联激光芯片
    近日,新加坡南洋理工大学电气与电子工程学院的Qi Jie Wang教授团队及其合作者们通过构建光子类马约拉纳零模(Majorana-like zero mode),在量子级联激光芯片中实现单模、柱状矢量光场输出的太赫兹量子级联激光器。相关成果以“Photonic Majorana quantum cascade laser with polarization-winding emission”为题发表于期刊《Nature Communications》上。新加坡南洋理工大学电气与电子工程学院博士后韩松(现为浙江大学杭州国际科创中心和浙江大学信电学院研究员)为论文第一作者,博士研究生Yunda Chua为共同第一作者;南洋理工大学电气与电子工程学院Qi Jie Wang教授为论文第一通讯作者,武汉大学信息电子学院曾永全教授为共同通讯作者。拓扑学研究的是几何物体或空间在连续形变下保持的全局性质,它只关注物体之间的空间关系而不考虑其大小和形状。对具有特殊拓扑性质的光子结构而言,空间上的缺陷和无序只会引起局部参数变化,不影响该空间的全局性质。拓扑光子结构的典型特征在于结构内部是绝缘体,而表面则能支持无带隙的界面(表面)态。受结构全局性质的规范,界面态可沿着有限光子绝缘系统的边缘或畴壁单向传输,并且能够有效地绕过结构拐角及制备误差引起的缺陷和无序而无后向散射(即拓扑保护)。因此,拓扑光子结构可用于实现高鲁棒性半导体激光器,即“拓扑激光器”。然而,拓扑激光器研究面临两大共性难题:1)需要光泵;2)需要外加磁场或者构建等效磁场来产生受拓扑保护的界面态激光模式。二者均显著增加了激光器系统的复杂程度、成本和功耗,降低了激光器的可靠性,阻碍了其实用化进程。针对上述难题,课题组前期利用量子能谷霍尔效应的原理,以太赫兹有源超晶格材料为增益介质,集成能谷光子晶体,通过简单的设计打破结构反对称性来产生“能谷-动量锁定”的边界传输模式,实现了拓扑界面态的片上单向传输和放大,从而首次研发出电泵浦拓扑激光器。然而该工作是多模激光器且其信噪比低,难以实现激光器出射光的光束控制。随后,来自南加州大学的科学家利用量子自旋霍尔效应,在室温条件下,实现近红外电泵浦单模激光。然而,该工作设计复杂的超大尺寸耦合环形谐振腔阵列实现拓扑边界态,其样品整体尺寸在200个波长以上,且需要耦合光栅增强激光输出和信噪比,难以实现光束调控、赋形、极化控制等高性能激光器。此外,两个工作均需要选择性地泵浦边界态,牺牲光子晶体体态增益材料,难以实现大面积集成的高功率激光器。因此,对电泵浦拓扑激光器性能的提升,如光束调控、赋形、极化控制、高功率输出等,亟待新的物理机制。团队创造性地将凝聚态中p波超导的马约拉纳零能模式引入到光子晶体体系,并利用光子类马约拉纳零能模式的辐射特性,实现了全动态范围单模输出(边模抑制比大于15dB,输出光率约1毫瓦)、柱状矢量光场调控、固态电泵浦、单片集成的太赫兹拓扑激光器。该成果的独特优势还有:(1)在不需要选择性泵浦的情况下,其发光腔体整体直径可以低至大约4个波长,是目前报道能保证毫瓦量级功率条件下最紧凑的太赫兹拓扑激光器(相对激光波长),这极大提升了该类半导体激光器在实际应用中的集成度。(2)光子马约拉纳微腔的自由光谱程(free spectral range)与腔体尺寸呈现二次方反比律[3],这一特性使得光子马约拉纳微腔更容易在大面积条件下保持单模激光输出。团队也在电泵浦拓扑激光器体系中证实了该二次方反比律,并实现了大面积泵浦下高功率(大于9毫瓦)和单模激光输出,其功率是同等尺寸下脊形激光器的5.4倍。图1.光子马约拉纳激光器的示意图a和加工样品图b。图2.a.超胞(supercell)能带随Kekule调制相位的变化。b.类马约拉纳光子腔的相位分布及六方晶格位置与相位之间的关系。中心虚线圆包围的部分为非Kekule调制区域(non-Kekule modulated region),其半径标记为ζ,这里ζ=2a。图中显示马约拉纳光子腔的相位绕数为+1。c.相位绕数为+1的类马约拉纳光子腔的空气孔的大小分布。d,e.三维模拟的类马约拉纳光子腔的近场(Ez)与远场(Intensity)分布。图3. a,b实验测到的激光模式随泵浦电流密度变化,a.相位绕数+1,b.相位绕数-1。c.理论计算的净增益。d.实验测得的L-I-V曲线和在对应位置激光光谱。图4.远场测试。a.测试装置示意图。b,c.数值仿真和实验测试的远场光斑。d,e.加偏振片后的激光光谱和光斑。图5.大面积激光的L-I-V曲线,激光光谱,和单模性分析。
  • 3D打印的基于环偶极子的高性能太赫兹传感器及其应用
    在各种各样的超表面应用中,太赫兹传感凭借着高灵敏度和太赫兹波的非电离性质为分析物的无损检测提供了强大的潜力,尤其受到了广泛的关注。为持续提高太赫兹传感器的灵敏度,基于多种物理机制,包括Fano共振、连续域束缚态共振和环偶极子共振,科研人员开发了多款太赫兹传感器。其中,环偶极子谐振传感器因其微弱的辐射特性,使得电磁能量在近场范围内受到高度的局域,因此受到广泛的关注。然而,目前的环偶极子谐振传感器的灵敏度受到分析物和局域增强电磁场之间有限的空间重叠的极大限制。此外,加工这些微米级的结构也是一个挑战。 近日,基于上述问题,西安交通大学张留洋老师课题组提出了一种面外太赫兹传感器,通过面外结构,增强了光和物质的空间重叠,从而增强传感性能。该传感器通过摩方精密提供的nanoArch S130设备进行了加工,并通过实验验证了传感器的高灵敏度。图 1 (a)三步制备法示意图,包括(1)衬底制备,(2)3D打印,和(3)金属膜沉积 最右边的面板描绘了设计的传感器的原型。(b)所制传感器的SEM图像。沿传感器x轴(c)和y轴(d)的表面轮廓。图1(a)显示了基于面投影微立体光刻(PSL)3D打印技术(nanoArch S130,摩方精密)的三步制备方法示意图。与传统的微纳制造技术相比,这种方法简单有效,是面外微结构通用制造的实用候选方法。采用这种三步制备方法,成功制备了具有30×30个超分子阵列的太赫兹传感器,其扫描电镜图像如图1(b)所示。为了表征所制作传感器的三维轮廓,分别沿x轴[图1(c)]和y轴[图1(d)]测量了其表面轮廓,数据表明打印样品的测得轮廓总体上与设计模型吻合较好。 此外,分别通过阻抗匹配理论(图2)和近场分析、多偶极子散射理论(图3)解释了传感器的共振机理。 图 2 (a)传感器在x偏振和y偏振入射下的模拟(实线)和实验(虚线)反射谱。(b)y偏振入射下传感器阻抗。图 3(a)归一化散射功率。(b)电场分布(轮廓轮廓)和表面电流分布(箭头)。(c)磁场的分布。在传感器的应用方面,选择了三种类型的粉末——乳糖,半乳糖和葡萄糖——作为检测分析物。首先,将粉末经过适当研磨后均匀撒在传感器上,如图 4(a)显微镜图像所示。然后通过THz-TDS测量了相应的反射谱,如图 4(b)给所示,可观察到半乳糖的共振频率与其他分析物相比有明显的红移。 此外,为避免测量误差,采用C扫描获得面积为6×6 mm2的区域的反射谱曲线,分别提取各点对应谐振频率处的强度和谐振频率。然后,随机选择每种分析物的500个点的计算平均谐振频率,重复此过程10次,结果如图 4(f)所示。实验结果表明,所提出的传感器能够准确地检测出葡萄糖、乳糖和半乳糖粉末。 图 4 (a)被分析物粉末覆盖的传感器的显微镜图像。(b)测定的三种分析电解质粉末的反射光谱。(c)有或没有传感器下的乳糖粉末的反射谱。(d)乳糖粉加载时各点电场(传感器)的共振强度和(e)共振频率。(f)三种分析物的频移分布。
  • 中科院研发太赫兹扫描隧道显微镜
    ▲图 | 太赫兹扫描隧道显微镜系统(来源:资料图)太赫兹,是介于远红外和微波之间的电磁波,具有光子能量低、穿透性好等特点,在高速无线通信、光谱学、无损伤成像检测和学科交叉等领域具备广泛应用前景,被誉为“改变未来世界的十大技术”之一。简单来看,太赫兹扫描隧道显微镜系统就是一个超快摄影机,只不过它要观察和拍摄的对象是分子和原子世界,并且拍摄的帧率在亚皮秒量级。对于非线性太赫兹科学来说,控制太赫兹脉冲的“载波包络相位”,即激光脉冲的载波与包络之间的关系至关重要,特别是用于超快太赫兹扫描隧道显微镜时。太赫兹载波包络相位移相器的设计和实现,在利用太赫兹脉冲控制分子定向、高次谐波生成、阈上电离、太赫兹波前整形等领域,均具备潜在应用价值。(来源:Advanced Optical Materials)1. 为调控太赫兹的载波包络相位提供新方案据介绍,王天武在中科院空天信息研究院(广州园区)-广东大湾区空天信息研究院担任主任和研究员等职务,研究方向为太赫兹技术。目前,其主要负责大湾区研究院的太赫兹科研队伍建设。该研究要解决的问题在于,常规探测手段只能得到静态的原子形貌图像,无法观察物质受到激发,例如经过激光辐照后的动态弛豫过程图像,即无法观察到激子的形成、俄歇复合、载流子谷间散射等过程,而这些机理的研究,对于凝聚态物理学包括产业化应用都非常重要。原因在于,这些动力学过程发生的时间尺度,往往都在皮秒量级,即万亿分之一秒的时间,任何普通调控手段均无法达到这一时间量级。利用飞秒脉冲激光技术,能显著提高扫描隧道显微镜(Scanning Tunneling Microscope,STM)这一扫描探针显微术工具的时间分辨率。但是,目前仍受到多种因素的限制,比如样品和针尖制备困难、针尖的电容耦合效应、脉冲光引起的热膨胀效应等。太赫兹的脉冲宽度位于亚皮秒尺度,其电场分量可被看作一个在很宽范围内、连续可调的交流电流源。因此,将太赫兹电场脉冲与 STM 结合,利用其瞬态电场,即可作用于扫描针尖和样品之间的空隙,从而产生隧穿电流进行扫描成像,能同时实现原子级空间分辨率和亚皮秒时间分辨率。如前所述,太赫兹扫描隧道显微镜系统好比一个超快摄影机。但是,太赫兹电场脉冲和 STM 的实际结合过程,却并非那么简单,中间要攻克诸多难题。其中一个最基础的重要难题,在于太赫兹源的相位调控技术。太赫兹扫描隧道显微镜系统是利用太赫兹激发针尖尖端和样品之间的空隙,来产生隧穿电流并进行采样。不同相位太赫兹源的电场方向不一样,这样一来所激发的隧穿电流的方向亦不相同。根据不同样品施加不同相位的太赫兹源,可以更好地匹配样品,进而发挥系统性能优势,借此得到高质量光谱。因此,通过简单高效的途径,就能控制太赫兹脉冲的载波包络相位,借此实现对于隧道结中近场太赫兹时间波形的主动控制,同时这也是发展超快原子级分辨技术的必备阶段。通常,超短脉冲的载波包络相位,必须通过反馈技术来稳定。除少数例子外,比如用双色场激光等离子体产生的太赫兹辐射源,大多数商业化设备产生的太赫兹脉冲的载波包络相位都是锁定的,例如人们常用的光整流技术生成的太赫兹脉冲。多个太赫兹偏振元件组成的复杂装置,可用于控制太赫兹脉冲的载波包络相位。然而,鉴于菲涅耳反射带来的损耗,致使其插入损耗很大,故无法被广泛应用。另外,在太赫兹波段,大部分天然材料的色散响应较弱、双折射系数较小,很难被设计成相应的载波包络相位控制器件,因此无法用于具有宽频率成分的太赫兹脉冲。与天然材料相比,超材料是一种由亚波长结构衍生而来的、具有特殊光学特性的人工材料,其对电磁波的色散响应和双折射系数,均可进行人为定制。虽然超材料技术发展迅猛。但是,由于近单周期太赫兹脉冲的宽带特性,利用超材料对太赫兹脉冲的载波包络相位进行控制,仍是一件难事。为解决这一难题,王天武用超材料制备出一款芯片——即柔性太赫兹载波包络移相器,专门用于控制太赫兹脉冲的载波包络相位。该芯片由不同结构的超材料阵列组成,可在亚波长厚度和不改变太赫兹电场极化的情况下,实现对太赫兹载波包络相位的消色差可控相移,其对太赫兹脉冲的载波包络相位的相移调制深度高达 2π。相比传统的太赫兹载波包络相位移相器,该移相器具有超薄、柔性、低插损、易于安装和操作等优点,有望成为太赫兹扫描隧道显微镜系统的核心部件。近日,相关论文以《基于超材料的柔性太赫兹载波环移相器》(Flexible THz Carrier-Envelope Phase Shifter Based on Metamaterials)为题发表在 Advanced Optical Materials 上,李彤和全保刚分别担任第一和第二作者,王天武和空天信息创新研究院方广有研究员担任共同通讯作者。▲图 | 相关论文(来源:Advanced Optical Materials)审稿人认为:“此研究非常有趣、简明扼要,研究团队完成了一套完备的工作体系。该芯片的设计和实现,为调控太赫兹的载波包络相位提供了新的解决方案。”2. 建立国际领先的太赫兹科学实验平台据介绍,王天武所在的研究院,围绕制约人类利用太赫兹频谱资源的主要科学问题和技术瓶颈,致力于形成一批引领国际的原创性理论方法和太赫兹核心器件技术,以建立国际领先的太赫兹科学实验平台。他说:“太赫兹扫描隧道显微镜是我们院的一大特色,该设备摒弃了此前施加电压的方式,以太赫兹为激发源,去激发探针尖端和样品之间的间隙,从而产生隧穿电流并进行成像。相关技术在国内属于首创,在国际上也处于领先水平。”在诸多要克服的困难中,太赫兹载波包络相位的调制便是其中之一。入射太赫兹的相位大小对激发的隧穿电流的幅值、相位等信息影响甚大,是提高设备时间和空间分辨率必须要解决的重要问题之一。由于设备腔体比较长,并且腔体内部为高真空环境,与外界空气是隔绝的。传统的太赫兹相位改变方式比较难以实现,因此需要研发新型的相位调制器件。而该课题立项的初衷,正是希望找到一种结构简单、但是对太赫兹载波包络相位调制效率高的方法和装置,以便更好地服务于太赫兹扫描隧道显微镜系统。在文献调研的初始阶段,该团队商定使用超材料来制作太赫兹相位调制器。具体来说,其利用特定的金属分裂环谐振器的几何相位、以及共振相位,来控制太赫兹脉冲的载波包络相位值。之所以选择金属分裂环谐振器作为基本相控单元,是因为在一定条件下,它对太赫兹具有宽谱响应。当任意方向的线偏振波与谐振器耦合时,入射电场分量可映射到平行于谐振器对称轴和垂直于谐振器对称轴,借此可以激发谐振器的对称本征模和反对称本征模。此时,通过改变金属分裂环谐振器的几何相位和共振相位,散射场的某一偏振分量的电场相位会相应延迟,大小可以轻松覆盖 0-2π。但是,由于存在电偶极子的双向辐射,导致金属分裂环谐振器存在明显的反射和偏振损耗。为此,课题组引入了一对正交的定向光栅,利用多光束干涉的方式解决了谐振器插入损耗大的问题。随之而来的另一难题是,由于正交光栅的存在,导致入射波和透射波之间的电场偏振始终是垂直的,在太赫兹扫描隧道显微镜系统的工作中,这是不被允许的。好在样品均是由互易材料制成的,于是这一问题很快迎刃而解。随后,该团队采用常规紫外光刻、电子束沉积以及聚酰亚胺薄膜上的剥离技术,制备出相关样品,并利用太赫兹时域光谱系统,对所制备的样品性能进行表征。当入射的太赫兹脉冲,依次被样品中不同的微结构阵列调制时,研究人员通过太赫兹时域光谱测量,清晰观察到了太赫兹脉冲的时间波形的变化,且与仿真结果十分吻合。此外,课题组还在广角入射和大样品形变时,验证了该样品的鲁棒性。总而言之,该成果为宽带太赫兹载波包络相位的控制,提供了一种新型解决方案,并在不改变太赫兹电场极化的情况下,利用“超材料”在亚波长厚度的尺度上,实现了针对宽带太赫兹载波包络相位的消色差可控相移。关于这一部分成果的相关论文,也已发表在《先进光学材料》期刊。(来源:Advanced Optical Materials)据介绍,此次芯片能把太赫兹的相位最高移动至 2π 大小,并且具有大的光入射角度和良好的柔韧性等优点,在太赫兹扫描隧道显微镜系统,以及其他相关领域有较高的应用价值。但是,该芯片目前仍存在一个缺点,即无法做到太赫兹载波包络相位的连续调制。这是由于,采用的金属分裂环谐振器是单次加工制成的,所能调制的几何相位和共振相位已经确定,无法再被人为改变。因此,使用过程中只能通过加工特定结构的芯片,来实现所需相位的调制。未来,该团队打算将当下比较热门的二维材料、相变材料、液晶材料等材料集成到芯片中,这些材料的优势在于光学性能可被人为改变。同时,其还将综合电、光、热等手段,实现金属分裂环谐振器几何和共振相位的主动控制,从而实现对太赫兹脉冲的连续载波包络相位调制。此外,课题组也会继续优化微加工工艺和原料制备流程,进一步提升芯片的综合性能指标,比如器件的低插入损耗、高工作带宽等,同时也将降低制造成本,以便后续的产业化推广。
  • 西安光机所在太赫兹消色差超透镜研究方面取得新进展
    近日,瞬态光学与光子技术国家重点实验室在太赫兹频段可变焦消色差超透镜领域取得新进展,相关研究成果发表于Journal of Science: Advanced Materials and Devices(IF = 7.38)。论文第一作者为博士生江晓强,通讯作者为范文慧研究员。   超透镜是一种二维平面透镜结构,具有体积小、重量轻、易于集成等特点,可实现对太赫兹波振幅、相位、偏振等参量的灵活调控,有望解决天然材料在太赫兹频段电磁响应不足而导致的效率低、体积大等问题。近年来,消色差超透镜由于能够有效消除宽频带成像产生的色差问题而受到广泛关注。然而,如何在实现宽频带消色差的同时,赋予超透镜连续变焦的能力,仍然是目前亟待解决的难题。   针对此问题,研究团队首先基于Ⅲ-Ⅴ族半导体材料锑化铟(InSb)设计了性能优异的单元结构。随后,研究团队采用几何相位和传输相位相结合的方式,巧妙设计超透镜单元结构的排布方式与空间取向,采用单层超透镜实现了太赫兹波的宽频带聚焦,有效消除了色差现象。进一步地通过改变器件工作温度,进而调控器件单元结构的相位补偿范围,实现了焦距736.25 μm (NA = 0.62)至 861.02 μm(NA = 0.56)的连续变焦。本研究成果为设计多功能消色差超透镜提供了一种新思路,有望进一步拓展太赫兹频段超透镜在显微成像和内窥镜等领域的实际应用。 图1 连续变焦消色差超透镜工作示意图   西安光机所范文慧研究员带领的太赫兹光子学与表面微纳智造团队已在超宽频谱太赫兹波产生与探测、超快太赫兹波谱成像与应用、太赫兹频段超材料与超表面功能器件等领域开展持续研究并取得一定突破。相关研究成果陆续发表于Angewandte Chemie - International Edition、Carbon、Journal of Science: Advanced Materials and Devices、Optics Letters、Optics Express、Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy、Nanomaterials等国际知名期刊,获得了国内外同行的广泛认同。
  • 太赫兹器件研究取得系列进展
    p   中国科学技术大学教授陆亚林量子功能材料和先进光子技术研究团队在太赫兹主动调控器件研究方面取得系列进展。该团队研究了太赫兹波与超构材料、氧化物超晶格薄膜相互作用机制,并成功制备了超快的太赫兹调制器,率先实现了皮秒级的高调制深度的太赫兹超快开关 同时制备了多功能的太赫兹器件,在单一器件中实现电开关、光存储和超快调制多种功能。相关研究成果近期相继发表在国际学术期刊《先进光学材料》。 /p p   太赫兹波具有独特的时域脉冲、低能、谱指纹、宽带等特性,它在物理化学、材料科学、生物医学、环境科学、安全检查、卫星通讯等领域有着广阔的应用前景。其中,影响太赫兹技术发展和应用的关键因素之一是难以获得主动太赫兹调控元器件。超构材料,一种由金属或介质材料的亚波长微结构阵列组成的人工材料,其奇异的电磁响应特性为太赫兹调控器件提供了绝佳的解决方案。遗憾的是,以往基于超构材料的太赫兹元器件均由金属材料构成,加工尺寸固定后,器件的功能在实际应用中便难以主动改变。因此,发展主动调控的太赫兹元器件有着重要的研究意义。 /p p   通常主动调控是对太赫兹波偏振、振幅、相位等进行调控,调控速度是另外一个指标。一些实际应用也迫切需求对太赫兹波进行超快调控。陆亚林团队设计并制作了基于硅介质的超快调控超表面。通过对硅薄膜进行离子注入和快速热处理工艺,大大减小了硅的载流子寿命并提高了自由载流子浓度。然后通过光刻、刻蚀工艺将硅薄膜加工为能在太赫兹波段共振的圆盘阵列结构的超表面。利用红外飞秒脉冲的激发,率先实现了皮秒级的高调制深度的太赫兹超快开关(开20ps,关300ps),并基于半导体载流子动力学建立理论模型对其进行了合理的解释。相关研究成果近日在《先进光学材料》期刊上线。 /p p   另外,当前研究的太赫兹主动调控器件功能比较单一,即只能在单一外场下实现单一的功能。但单一功能难以适应当今技术发展的要求。因此,在单一器件上,实现多物理场的调控,并实现对太赫兹波的多功能调控,是当前太赫兹技术的发展前沿之一,也是实际应用的现实需求。有鉴于此,该团队基于VO2的绝缘-金属相变,通过将VO2与金属非对称开口谐振环结合,设计了一种太赫兹波段的多功能可调谐复合超表面,并利用国家同步辐射实验室副研究员邹崇文提供的高质量VO2薄膜,通过刻蚀、光刻等工艺制备了器件。此复合超表面能够通过加热和施加电流的方式实现对透射太赫兹波的振幅调控,绝对调制深度高达54%,品质因数高达138%。基于VO2在相变过程中的回滞特性,该复合超表面可以通过电流触发实现室温下对太赫兹波的记忆存储功能。此外,利用超快强脉冲泵浦,此复合超表面还能实现对太赫兹波的超快调控。从而,在单一器件实现了对太赫兹波的多功能调控。相关研究成果近日在《先进光学材料》期刊上线。 /p p   此外,很多材料在太赫兹波段的响应仍是未知的,而只有研究清楚了各类材料与太赫兹波相互作用的特性,设计主动太赫兹器件才能有迹可循。该团队利用自行搭建的两套太赫兹系统测量并分析了量子功能材料与太赫兹波的相互作用。重点研究了不同周期数的La0.7Sr0.3MnO3/ SrTiO3超晶格薄膜的太赫兹响应,发现了532 nm连续激光的泵浦对此超晶格在太赫兹波段的介电常数具有较大的调控作用,并通过Drude-Lorentz模型的拟合对此现象进行了微观机理的解释,这为寻找新的可用于太赫兹主动调控器件的功能材料开辟了新路径。相关研究成果发表在《光学快讯》[Opt. Express. 26, 7842 (2018)]上。 /p p   上述论文的第一作者为合肥微尺度物质科学国家实验中心博士研究生蔡宏磊,通讯作者为黄秋萍、陆亚林。该工作得到了科技部、国家自然科学基金委、中科院和教育部等关键项目的资助。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/2420c70a-1699-4d09-9881-605198df6544.jpg" title=" 1.png" / /p p style=" text-align: center " 硅介质超表面器件示意图以及其对太赫兹波超快调控的实验结果 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/c2bbe902-a857-47af-9110-dac15eec004e.jpg" title=" 2.png" / /p p style=" text-align: center " 金属-VO2复合超表面器件示意图及其电开关、光存储功能的实验结果 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/d4a3ee1d-337a-4aa6-812d-3a05c3fe2e87.jpg" title=" 3.png" / /p p style=" text-align: center " La0.7Sr0.3MnO3/ SrTiO3超晶格薄膜在太赫兹波段的介电常数和激发光功率关系 /p p br/ /p p br/ /p
  • 2012太赫兹科学仪器及前沿技术专题研讨会在京成功召开
    仪器信息网讯 2012年8月8日-9日,由中国仪器仪表学会、“太赫兹光电子学教育部重点实验室”、《现代科学仪器》编辑部主办的2012太赫兹科学仪器及前沿技术专题研讨会在北京紫玉饭店成功召开。本次会议的宗旨是为太赫兹科学仪器研制开发提供技术交流平台,为太赫兹仪器选购提供技术咨询,并为太赫兹仪器使用提供技术支撑。本次研讨会特别邀请到电子科技大学刘盛纲院士、天津大学姚建铨院士等太赫兹研究领域的多名专家学者做精彩报告,吸引了来自各科研院所、仪器公司的近100位代表参会。 会议现场   开幕式由太赫兹光电子学教育部重点实验室主任张存林教授主持,中国仪器仪表学会副理事长兼秘书长吴幼华先生,电子科技大学刘盛刚院士分别为大会致辞。 中国仪器仪表学会副理事长兼秘书长吴幼华先生 电子科技大学刘盛纲院士   首先,吴幼华先生代表主办方对各位代表表示热烈的欢迎。并介绍到,太赫兹科学仪器涉及的领域很广,专业性很强,是非常重要的交叉前沿领域,其技术进步为技术创新、国民经济发展和国家安全提供了一个非常诱人的发展机遇。   电子科技大学刘盛纲院士在致辞中指出,“重要的科学成就必须以实验研究为基础,在国际上重要的仪器设备是一流大学所必备的条件。近几年,中国也越来越多的认识到科学仪器的重要性。在过去的十几年中,日本人拿了6个诺贝尔奖,以色列拿了两个诺贝尔奖,我们相信中国一定会拿诺贝尔奖,但是不知什么时候。我们有很多好的思想,只是做不出实验结果来,我们国家要想成为科技大国,加强对仪器设备的支持是非常必要的。此外,中国的太赫兹技术发展非常快,也得到了国家自然科学基金委的大力支持,不过目前还存在一些问题,如投资不太集中等”。 国家自然科学基金委员会信息科学部张兆田主任   在开幕式中,国家自然科学基金委员会信息科学部张兆田主任还做了《信息优先资助领域及其基金资助工作》的相关报告。在报告中,张兆田主任介绍了信息科学的发展规律与特点,发展状况与未来发展趋势、重点优先发展领域等。其中,新型毫米波与太赫兹器件就是其优先发展的领域之一,其研究内容包括太赫兹核心器件及阵列检测器、微结构太赫兹功能器件;新型太赫兹探测技术等。此外,张兆田主任还介绍了信息科学部的部门设置、资助方针、资助格局、资助项目类型、项目受理评审过程等相关内容。 首都师范大学物理系张岩主任   此外,首都师范大学物理系张岩主任也介绍了太赫兹科学仪器及前沿技术专题研讨会的会议组织等相关情况。   大会报告 技术发展篇 太赫兹光电子学教育部重点实验室主任张存林教授 报告题目:基于飞秒激光的太赫兹时域光谱仪开发   张存林教授在报告中详细介绍了国家重大科学仪器设备开发专项“基于飞秒激光的太赫兹时域光谱仪开发”的相关情况。介于微波和红外之间的太赫兹是物理与信息领域重大科学技术问题,太赫兹波谱是反应分子结构和空间阵列的指纹谱。太赫兹时域光谱仪未来将向宽谱、高能量、小型化的方向发展,在科研及食品药品鉴定和检测方面具有很重要的应用价值和前景,对经济社会发展、民生改善具有很重要的支支撑作用。在市场方面,近三年来,已经有上百家应用单位有着明确的应用需求。据2010年度太赫兹市场报告的预期,太赫兹在医学、安全和制造业领域相关产品的经济效益到2020年将可达到数千万到数亿美元,市场总额可达到数十亿美元。张存林教授还介绍说按此推算,“基于飞秒激光的太赫兹时域光谱仪开发”项目完成后,若中国市场可占到10%的全球市场份额,预期经济效益也将达到数亿美元。由此,也将拉动中关村高科技示范区高端仪器制造业及相关产业产值约10亿元人民币/年。 上海大学马国宏教授 报告题目:太赫兹脉冲的产生及波前控制研究   马国宏教授介绍到目前THz波的研究主要包括THz源、THz检测和THz传输等方面,要使THz波的研究成果得到广泛的应用,尤其是将THz技术应用到远红外光谱学中,有必要研究THz脉冲的波前控制以及各种THz光子学器件的工作原理,从而实现对THz辐射的人工调控。随后,马国宏教授介绍了上海大学超快光子学实验室近年来在THz波的产生、THz的主动和被动控制、THz光子学和THz自旋电子学等方面开展的一系列研究工作。其中,主要探讨了利用THz波与各种微结构相互作用实现THz波前的控制,包括THz偏振控制、抗反射、全吸收设计、THz全禁带光子晶体以及THz磁共振器件等。中科院紫金山天文台副研究员张文先生 报告题目:太赫兹高灵敏超导热电子探测器技术   张文先生谈到,太赫兹波段存在丰富的分子转动谱线和原子精细结构谱线,通过对这些分子谱线的高频率分辨率观测,可以研究天文、大气和深空探测等领域的重要科学问题。超导HEB混频器是1HTz以上灵敏度最高的相干探测器,已经成功应用到Herschel空间卫星、SOFIA天文台和地面APEX望远镜开展天文观测研究。张文先生所在系统改进了超导HEB热电子混频器的热点模型,深入理解其机制,率先实现了4K闭环制冷环境下的超导HEB混频实验;并研制国际上最高频率(5.3HTz)天线耦合超导HEB混频器,灵敏度率先突破5倍量子噪声极限。此外,张文先生还介绍了其课题组在太赫兹超导HEB混频器应用方面的研究工作。 天津大学姚建铨院士 报告题目:太赫兹技术及太赫兹仪器的发展趋势   姚建铨院士在报告中介绍到,随着太赫兹科学技术的飞速发展,对太赫兹科学仪器也不断提出新的需求,不仅推动了太赫兹科学仪器的快速发展,也催发了太赫兹前沿技术的不断涌现。同时,太赫兹科学仪器的前沿技术也表征着太赫兹科学仪器的先进性和尖端性,引领着太赫兹科学仪器的进一步发展。在这一部分内容中姚建铨院士介绍了太赫兹技术国内外研究及应用概况,光学太赫兹辐射源研究及太赫兹功能器件-微结构材料的应用等方面的情况。并且指出,微结构光学材料在激光技术、THz技术等方面可望实现传输、源、开关、放大、滤波、调制、吸收、偏振等功能,有十分重要的科学价值及实际意义。如果将微结构材料施加各种场(电、磁、声、光、热、机械等)作用可望产生新现象、出现新机理、实现新功能、制成新器件。此外,姚建铨院士还介绍了基于法布里-珀罗干涉仪的THz波长测试法及THz傅立叶变换光谱仪的相关研究工作。 首都师范大学赵国忠教授 报告题目:太赫兹波产生探测及太赫兹时域光谱技术   赵国忠教授谈到,对于太赫兹光谱应用来说,获得宽带太赫兹辐射至关重要,目前,实验室使用的宽带太赫兹辐射源以光整流和电导天线为主。随后详细介绍了基于飞秒激光的宽带光电导天线的设计、研制,光电导天线温控系统和太赫兹辐射测量装置的研制,光电导天线太赫兹辐射特性等方面的研究工作。另外,半导体表面太赫兹辐射可以提供方便的宽带太赫兹源,进一步研究非常必要。其中,富含缺陷的氮化铟有望代替砷化铟成为高效、实用的宽带太赫兹辐射源。此外,赵国忠教授还指出太赫兹发射光学的研究也有助于探索半导体表面和内部的载流子动力学。   此外,北京理工大学胡伟东教授、哈尔滨工业大学(威海)田兆硕教授、中国计量科学研究院孙青博士等也就太赫兹技术现状及研究进展做了精彩的报告。 北京理工大学胡伟东教授 报告题目:Progress in the Terahertz Pulse 3D Imaging System (220GHz) 哈尔滨工业大学(威海)田兆硕教授 报告题目:THz激光F-P旋转透过率研究 中国计量科学研究院孙青博士 报告题目:太赫兹光谱与功率计量技术   大会报告 应用篇 首都师范大学沈京玲教授 报告题目:太赫兹光谱技术在毒品检测中的应用研究   沈京玲教授介绍到,太赫兹波能够用于毒品检测和识别是基于下列两个事实:多数毒品在太赫兹波段具有特征吸收;多数包装材料如纸张、织物、塑料、木头,对太赫兹波是透明的。将两者结合起来,使太赫兹技术非常适于进行毒品的无损检测应用。随后,沈京玲教授详细的介绍了所在课题组近年来在毒品检测识别方面的相关工作:应用太赫兹光谱和成像技术对毒品进行品种鉴定和含量分析,完成了确定毒品纯度和有效成分含量的理论和实验方法;对隐藏在信封和包裹中的毒品进行探查;建立了含有38种纯度在90%以上的毒品的太赫兹光谱数据库等。 上海理工大学副院长朱亦鸣教授 报告题目:基于太赫兹技术的药物分析与检测   朱亦鸣教授介绍到,国内外现有药物检测技术手段无法有效的检测出假药,而且无法做到在线式检测。太赫兹波处于微波电子学与红外光子学的交叉、过渡区域,是被公认的有重要科学价值和巨大应用前景的频率窗口。太赫兹技术先后被列为“改变未来世界的10种技术”及“2011年六大类电子类新技术”之一,是分析分子有机功能基团最有效的手段。基于这些优势,朱亦鸣教授所在课题组利用时域太赫兹波谱系统对中西药做了相关检测,结果显示太赫兹光谱技术对各种药物鉴别率可达90%,扫描速度达到1s/片,可以做到无损探测及真正的在线检测和分析,并且结合HIPHOP模型,还可以进行药理基团的解析。 中国石油大学(北京)赵卉博士 报告题目:太赫兹技术在油气光学中的应用   赵卉博士在报告中介绍说,油气光学是研究油气物质的光学性质、光在油气介质中的传播规律和光学技术在油气领域应用的科学。它是在石油与天然气工程、地球探测与信息技术、材料科学与工程、物理学、光学工程等学科发展与支持的基础上建立起来的一个新兴交叉学科。针对国家重大需求,并且基于太赫兹与油气物质相互作用的认知,赵卉博士所在课题组建设了以油气资源、石油化工为研究对象的太赫兹波谱与探测技术平台,开发了油品光学性能透射式测试装置,岩石光学性能透射式测试装置,基于对岩石有机质、干酪根、基础油、汽油等多种体系的太赫兹频段特征吸收带的认知,建立了石油化工产品太赫兹光谱特性和理化性能之间的关系,为太赫兹技术在油气领域的应用提供了实验基础。   此外,中科院上海微系统所谭智勇博士、中科院工程物理研究院流体物理研究所助研朱礼国先生也就太赫兹技术的应用做了精彩的报告。 中科院上海微系统所谭智勇博士 报告题目:太赫兹量子器件及其成像应用 中科院工程物理研究院流体物理研究所助研朱礼国先生报告题目:超快太赫兹光谱在研究太阳能光伏材料中的应用   除了以上各位专家的报告之外,安捷伦科技(中国)有限公司叶伟斌先生,脉动科技有限公司陆明先生,先锋科技股份有限公司Albert Rsdo-Sanchez先生、Patrick F. Tekavec先生,顶尖科仪(中国)股份有限公司贺雪鹏先生也介绍了公司的产品特点及研发情况。 安捷伦科技(中国)有限公司叶伟斌先生 报告题目:安捷伦毫米波测试解决方案 脉动科技有限公司陆明先生 报告题目固体THz源和异步采样THz时域光谱系统 先锋科技股份有限公司Albert Redo-Sanchez先生 报告题目:Terahertz Instrumentation Status and Market Outlook 先锋科技股份有限公司Patrick F. Tekavec先生 报告题目:High Power THz sources 顶尖科仪(中国)股份有限公司贺雪鹏先生 报告题目:飞秒光纤激光器及其在太赫兹光谱学中的应用   报告会之后,与会代表参观了首都师范大学太赫兹光电子学教育部重点实验室,相关工作人员为与会代表详细介绍了实验室整体概况,并就相关仪器及其研究的课题同与会代表进行了深入的沟通。 与会代表参观太赫兹光电子学教育部重点实验室 太赫兹光电子学教育部重点实验室部分仪器设备 与会代表合影
  • 太赫兹成像微芯片可探测物质内部信息
    一位特工正在和时间赛跑,他知道炸弹就在周围。他跑到一个拐角,发现小巷内堆满了可疑的纸箱。他急忙掏出手机,快速地逐个扫描面前的箱子,包装内的物品一一展现。千钧一发之际,手机屏幕上出现了爆炸装置的轮廓,形势瞬间扭转,待爆炸装置运行中止时,他才长出了一口气。   看起来像是电影情节?但这一幕却很有可能成为现实,而这要得益于美国加州理工学院工程师们开发出的一种低成本的微小硅芯片。这种成像芯片能够产生并发射出高频的电磁波,即太赫兹(THz)波。当它处于尚未被完全开发的电磁光谱区域,介于微波和远红外辐射之间,能够渗透多种材料,却不会出现X射线的电离损伤。   在扫描和成像领域应用潜力大   把这种新型微芯片整合进手持设备中,能够应用于国家安全、无线通信、医疗保健甚至非接触式游戏研发等多个方向。未来,这一技术还有望为非侵入式的癌症诊断提供帮助。相关研究报告发表在最新一期的电气电子工程师学会(IEEE)《固态电路杂志》上。   该校的电气工程系教授阿力· 哈基姆瑞说:&ldquo 利用与制造现今手机微芯片同样成本低廉的集成电路技术,我们研发出了比它们运行速度快300倍的硅芯片。这些芯片将为制造下一代十分多能的传感器奠定基础。&rdquo   频率从0.3THz到3THz的太赫兹波,具有在扫描和成像等领域的应用潜力。这些电磁波能轻易渗透包装材料,使得探测材料内部信息成为可能。例如,陶瓷、硬纸板和塑料制品等对太赫兹电磁辐射而言就是透明的,因此太赫兹波可以作为X射线的非电离和相干的互补辐射源,用于机场、车站等地的安全监测,比如探查枪械、生物武器、爆炸物和毒品等隐藏的非法物品。然而现有的太赫兹设备多为笨重而昂贵的激光装置,有时甚至需要处于低温环境。而技术的匮乏,也使太赫兹成像和扫描的发展停滞不前。   为了实现太赫兹波在这一领域的应用,哈基姆瑞和考西克· 森古普塔使用了互补金属氧化物半导体,即通常会被用于电子设备芯片制造中的CMOS技术,来设计具有全面集成功能的、可在太赫兹频率运行的硅芯片,而其尺寸只有指尖大小。研究人员表示,这使太赫兹波成像成为了可能。新芯片能够激发比现有途径强劲1000倍的信号,而发出的太赫兹信号能在特定方向被动态程控,使它们成为世界上第一个集成的太赫兹扫描阵列。借助这种扫描装置,研究人员能够发现藏在塑料制品中的剃须刀片,或者确定动物组织中脂肪和肌肉的分布,诊断人体烧伤部位的损伤程度,以及植物叶片组织的水分含量分布等。而太赫兹成像技术与其他波段的成像技术相比,所得到探测图像的分辨率和景深也均有明显提高。&ldquo 这并不是在谈这项技术的潜能,而是切实地展现出它的实际效用。第一次看到太赫兹扫描图像时,我们都屏住了呼吸。&rdquo 哈基姆瑞说。   新研究克服了诸多技术限制   事实上,研究小组克服了诸多技术限制,才将CMOS技术转变成了可运行的太赫兹芯片。每个晶体管都具有一个截止频率,在这一频率之上信号放大就无法实现,而标准的晶体管亦不能在太赫兹频率放大信号。为了解决截止频率的难题,科学家尝试令多个晶体管一起工作。在正确的频率和时间结合它们的力量,来促进集体信号的强度提升。借助新的晶体管操作方法,可使晶体管保持在截止频率之上40%至50%,并能产生较大的功率。&ldquo 就像一群蚂蚁联合起来,也能做到大象所能做到的事情,而且不止于此。&rdquo 森古普塔解释说。   科研人员还解决了太赫兹信号的发射和传输。在如此高的频率下,无法按常理使用导线,而传统的天线在微芯片尺寸效率也很低下。因此,科学家将整个硅芯片当作天线,集成了芯片上的金属部分,在特定的时间和强度一起发射信号。整个解决方案囊括了集成电路、天线、电磁学和应用科学等多领域的创新,可谓十分全面。此外,IBM公司亦有助于此次的芯片制造。
  • 西安交通大学张留洋课题组《Optics Letters》:3D打印的基于环偶极子的高性能太赫兹传感器
    在各种各样的超表面应用中,太赫兹传感凭借着高灵敏度和太赫兹波的非电离性质为分析物的无损检测提供了强大的潜力,尤其受到了广泛的关注。为持续提高太赫兹传感器的灵敏度,基于多种物理机制,包括Fano共振、连续域束缚态共振和环偶极子共振,科研人员开发了多款太赫兹传感器。其中,环偶极子谐振传感器因其微弱的辐射特性,使得电磁能量在近场范围内受到高度的局域,因此受到广泛的关注。然而,目前的环偶极子谐振传感器的灵敏度受到分析物和局域增强电磁场之间有限的空间重叠的极大限制。此外,加工这些微米级的结构也是一个挑战。近日,基于上述问题,西安交通大学张留洋老师课题组提出了一种面外太赫兹传感器,通过面外结构,增强了光和物质的空间重叠,从而增强传感性能。该传感器通过摩方精密提供的nanoArch S130设备进行了加工,并通过实验验证了传感器的高灵敏度。相关成果以“Highly sensitive terahertz sensing with 3D-printed metasurfaces empowered by a toroidal dipole”为题发表在光学期刊《Optics Letters》上。图 1 (a)三步制备法示意图,包括(1)衬底制备,(2)3D打印,和(3)金属膜沉积 最右边的面板描绘了设计的传感器的原型。(b)所制传感器的SEM图像。沿传感器x轴(c)和y轴(d)的表面轮廓。图1(a)显示了基于面投影微立体光刻(PµSL)3D打印技术(nanoArch S130,摩方精密)的三步制备方法示意图。与传统的微纳制造技术相比,这种方法简单有效,是面外微结构通用制造的实用候选方法。采用这种三步制备方法,成功制备了具有30×30个超分子阵列的太赫兹传感器,其扫描电镜图像如图1(b)所示。为了表征所制作传感器的三维轮廓,分别沿x轴[图1(c)]和y轴[图1(d)]测量了其表面轮廓,数据表明打印样品的测得轮廓总体上与设计模型吻合较好。此外,分别通过阻抗匹配理论(图2)和近场分析、多偶极子散射理论(图3)解释了传感器的共振机理。 图 2 (a)传感器在x偏振和y偏振入射下的模拟(实线)和实验(虚线)反射谱。(b)y偏振入射下传感器阻抗。 图 3(a)归一化散射功率。(b)电场分布(轮廓轮廓)和表面电流分布(箭头)。(c)磁场的分布。在传感器的应用方面,选择了三种类型的粉末——乳糖,半乳糖和葡萄糖——作为检测分析物。首先,将粉末经过适当研磨后均匀撒在传感器上,如图 4(a)显微镜图像所示。然后通过THz-TDS测量了相应的反射谱,如图 4(b)给所示,可观察到半乳糖的共振频率与其他分析物相比有明显的红移。此外,为避免测量误差,采用C扫描获得面积为6×6 mm2的区域的反射谱曲线,分别提取各点对应谐振频率处的强度和谐振频率。然后,随机选择每种分析物的500个点的计算平均谐振频率,重复此过程10次,结果如图 4(f)所示。实验结果表明,所提出的传感器能够准确地检测出葡萄糖、乳糖和半乳糖粉末。 图 4 (a)被分析物粉末覆盖的传感器的显微镜图像。(b)测定的三种分析电解质粉末的反射光谱。(c)有或没有传感器下的乳糖粉末的反射谱。(d)乳糖粉加载时各点电场(传感器)的共振强度和(e)共振频率。(f)三种分析物的频移分布。
  • 我国首台高平均功率太赫兹自由电子激光饱和出光
    p   由我国科学家自主研发的国内首台高平均功率太赫兹自由电子激光装置,日前在四川成都首次饱和出光。经第三方检测,实验真实可靠且装置运行稳定。我国太赫兹源从此正式进入自由电子激光时代。 /p p   8月29日,由中国工程物理研究院应用电子学研究所牵头的高平均功率太赫兹自由电子激光装置(CTFEL)首次饱和出光,并实现稳定运行。9月20日,经过专家组现场测试和中国兵器工业第205研究所第三方检测,CTFEL装置太赫兹频率在1.99THz、2.41THz和2.92THz三个频率点稳定运行,平均功率均大于10W,最高达到17.9W 微脉冲峰值功率均大于0.5MW,最高达到0.84MW。通过调节电子束能量和磁场强度,可以实现输出激光频率连续可调。 /p p   太赫兹(THz)辐射通常指频率在0.1THz—10THz区间的电磁辐射,波段位于微波和红外光之间,是人类尚未完全认识并很好加以利用的最后一个波(光)谱区间。物质的太赫兹光谱(包括发射、反射和透射)包含有丰富的物理和化学信息,研究有关物质在这一波段的光谱响应,探索其结构性质及其所揭示的新的物理内容已成为一个新的研究方向。自由电子激光(FEL)由于具有频率连续可调、功率大、线宽窄、方向性好、偏振强等优点,使得在同一台装置上实现太赫兹波段全覆盖的大功率理想太赫兹源成为了可能,故自由电子激光是目前该波段最有前途的高功率可调谐相干光源。 /p p   CTFEL装置是依托科技部支持的国家重大科学仪器设备开发专项“相干强太赫兹源科学仪器设备开发”项目,于2011年立项启动。作为一种新型相干强太赫兹光源,CTFEL装置在材料、生物医学等领域有着重要应用前景。 /p
  • 【含回放】聚焦科学热点 “太赫兹前沿进展国际交流论坛2021”圆满落幕
    2021年1月5-6日,新年伊始,由中国仪器仪表学会光学仪器分会、中国光学学会工程光学专委会、上海理工大学及仪器信息网联合举办的首届“太赫兹前沿进展国际交流论坛2021”网络会议圆满落幕!本次会议汇集了5个国家、24位太赫兹科学专家,带来了17个高质量报告,共吸引了近900位来自太赫兹研发、应用领域的相关工作者报名参会。会议以网络交流的形式面向国内外太赫兹领域的科研技术专业人士,跨越时空、为大家提供实时便捷、深入交流平台,促进了太赫兹科学领域的发展。报告专家太赫兹(THz)波段对应电磁波谱中0.1THz-10THz的电磁波(波长范围0.03~3.00mm),处于宏观电子光学与微观光子学的过渡区域, 属于微波与红外之间的远红外波段,也是电磁波谱中唯一有待全面开发的频谱资源。因其低能量、高穿透性、带宽大等特性,太赫兹技术在通讯、遥感、计量、环境监测、材料科学、安全反恐、生物医学与医学诊断、药品检测等领域蕴藏巨大的应用前景。在线直播页面会议围绕太赫兹光谱核心器件研发与应用进展,拟分设太赫兹辐射源、太赫兹探测与调控器件、太赫兹的生物医学应用三个主题专场,邀请国内外太赫兹领域的科研工作者、相关领域厂商研发及应用专家,聚焦太赫兹光谱研发、应用及技术转化的最新前沿进展。值得一提的是,会议得到了中国工程院院士、上海理工大学庄松林教授的大力支持,并为大会致辞。会议日程(点击报告题目即可查看回放)主题报告题目报告人单位/职称1月5日太赫兹辐射源 主持人:彭滟 教授吴侃 教授领导致辞庄松林上海理工大学中国工程院院士High-power portable THz laser systemsQing HuMassachusetts Institute of TechnologyProfessor太赫兹诱导克尔效应揭示液态水分子间超快氢键运动的研究张亮亮首都师范大学研究员自旋太赫兹源:性能、调控及其应用冯正中国工程物理研究院电子工程研究所副研究员高功率光电导太赫兹辐射源的研究进展侯磊西安理工大学教授Terahertz generation from liquidsYiwen EUniversity of RochesterResearch AssociateCompact ultrafast Terawatt class lasers for high energy ultrashort THz generationOlivier ZABIOLLEAmplitude 科研激光器销售总监主题报告题目报告人单位/职称1月5日 太赫兹探测与调控器件 主持人:王伟波 副教授姚凯男 副研究员 磁光微结构电磁调控机理与非互易单向传输器件常胜江南开大学教授太赫兹波传输/调控技术和功能器件的研究文岐业电子科技大学教授柔性波导在中红外及太赫兹波段的传输特性石艺尉复旦大学教授基于缀饰里德堡原子的微波超外差接收机张临杰山西大学 激光光谱研究所教授High Tc Superconducting Josephson mixers for THz receivers张挺悉尼科技大学讲师基于太赫兹超构表面的偏振、相位调控与成像臧小飞上海理工大学教授主题报告题目报告人单位/职称1月6日太赫兹在生物医学领域的应用 主持人:闫明 研究员金钻明 副教授Image contrast in terahertz apertureless near-field measurements: electrostatic and electrodynamic effectsDaniel Mittleman美国布朗大学终身教授Prospects of terahertz technology in diagnosis of glioma molecular markersOlga P.CherkasovaNovosibirsk State Technical UniversityProfessor太赫兹半导体激光光频梳及其应用黎华中科院上海微系统与信息技术研究所研究员生物分子的太赫兹光谱学研究赵红卫中国科学院上海高等研究院副研究员生物医学检测中太赫兹光谱技术信噪比的提升吴旭上海理工大学讲师 此次合作,是中国仪器仪表学会光学仪器分会、中国光学学会工程光学专委会、上海理工大学与仪器信息网合作的开始,后续双方还会进行更加深入的合作,为广大科研工作者奉上更多精彩的内容,也为我国仪器仪表行业,特别是光学仪器领域的发展作出贡献。
  • 石墨烯太赫兹外差混频探测器研究获重大进展
    p   中国电子科技集团有限公司第十三研究所专用集成电路国家级重点实验室与中国科学院苏州纳米技术与纳米仿生研究所、中国科学院纳米器件与应用重点实验室再次合作,在高灵敏度石墨烯场效应晶体管(G-FET)太赫兹自混频(Homodyne mixing)探测器的基础上,实现了外差混频(Heterodyne mixing)和分谐波混频(Sub-harmonic mixing)探测,最高探测频率达到650 GHz,利用自混频探测的响应度对外差混频和分谐波混频的效率进行了校准,该结果近期发表在碳材料杂志Carbon上(Carbon 121, 235-241 (2017))。 /p p   频率介于红外和毫米波之间的太赫兹波(Terahertz wave)在成像、雷达和通信等技术领域具有广阔的应用前景,太赫兹波与物质的相互作用研究具有重要的科学意义。高灵敏度太赫兹波探测器是发展太赫兹应用技术的核心器件,是开展太赫兹科学研究的重要手段与主要内容之一。太赫兹波探测可分为直接探测和外差探测两种方式:直接探测仅获得太赫兹波的强度或功率信息 而外差探测可同时获得太赫兹波的幅度、相位和频率信息,是太赫兹雷达、通信和波谱成像应用必需的核心器件。外差探测器通过被测太赫兹信号与低噪声本地相干太赫兹信号的混频,将被测信号下转换为微波射频波段的中频信号后进行检测。与直接探测相比,外差探测通常具备更高的响应速度和灵敏度,但是探测器结构与电路更加复杂,对混频的机制、效率和材料提出了更高的要求。 /p p   天线耦合的场效应晶体管支持在频率远高于其截止频率的太赫兹波段进行自混频探测和外差混频探测。前者是直接探测的一种有效方法,可形成规模化的阵列探测器,也是实现基于场效应晶体管的外差混频探测的基础。目前,国际上基于CMOS晶体管实现了本振频率为213 GHz的2次(426 GHz)和3次(639 GHz)分谐波混频探测,但其高阻特性限制了工作频率和中频带宽的提升。 /p p   石墨烯场效应晶体管因其高电子迁移率、高可调谐的费米能、双极型载流子及其非线性输运等特性为实现高灵敏度的太赫兹波自混频和外差混频探测提供了新途径。前期,双方重点实验室秦华团队和冯志红团队合作成功获得了室温工作的低阻抗高灵敏度石墨烯太赫兹探测器,其工作频率(340 GHz)和灵敏度(~50 pW/Hz1/2)达到了同类探测器中的最高水平(Carbon 116, 760-765 (2017))。此次合作进一步使工作频率提高至650 GHz,并实现了外差混频探测。 /p p   如图1所示,工作在650 GHz的G-FET太赫兹探测器通过集成超半球硅透镜,首先通过216、432和650 GHz的自混频探测,验证了探测器响应特性与设计预期一致,并对自混频探测的响应度和太赫兹波功率进行了测试定标。在此基础上,实现了本振为216 GHz和648 GHz的外差混频探测,实现了本振为216 GHz的2次分谐波(432 GHz)和3次分谐波(648 GHz)混频探测。混频损耗分别在38.4 dB和57.9 dB,对应的噪声等效功率分别为13 fW/Hz和2 pW/Hz。2次分谐波混频损耗比216 GHz外差混频损耗高约8 dB。 /p p   此次获得混频频率已远高于国际上已报道的石墨烯外差探测的最高工作频率(~200 GHz),但中频信号带宽小于2 GHz,低于国际上报道最高中频带宽(15 GHz)。总体上,目前G-FET外差混频探测器性能尚不及肖特基二极管混频器。但是,无论在材料质量还是在器件设计与工艺技术上,都有很大的优化提升空间。根据Andersson等人预测,G-FET的混频转换效率可降低至23.5 dB,如何达到并超越肖特基二极管混频探测器的性能指标是未来需要重点攻关的关键问题。 /p p   图3所示为基于432 GHz的直接探测以及二次谐波探测的透射成像图对比,分谐波探测时的透射成像显现出比直接探测更高的动态范围,可达40 dB。 /p p   该研制工作得到了国家自然科学基金项目(No. 61271157, 61401456, 61401297等)、国家重点研发计划(2016YFF0100501, 2014CB339800)、中科院青促会(2017372)、中科院苏州纳米所纳米加工平台、测试分析平台和南京大学超导电子学研究所的大力支持。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/c73fe96e-7527-4de4-8f95-ff4e6c2935aa.jpg" title=" 1.jpg" /   /p p style=" text-align: center " 图1:650 GHz天线耦合的G-FET太赫兹外差混频探测器 br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/70869861-507f-4a27-91dc-64a7cf6c6185.jpg" title=" 2.jpg" / /p p style=" text-align: center " 图2:(a)准光耦合的外差混频探测系统示意图 (b)216 GHz外差混频探测的中频频谱 br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/15463ac0-04f0-4c63-9091-fee1013ca466.jpg" title=" 3.jpg" / /p p style=" text-align: center " 图3:(a)分别采用432 GHz直接探测和本振为216 GHz的2次分谐波探测对树叶进行的透射成像效果对比 (b)采用本振为216 GHz的2次分谐波探测对柠檬片的透视成像。 /p
  • 美设计出太赫兹多像素光波调制器
    据《每日科学》网站2009年5月31日报道,美国科学家首次设计出一款多像素太赫兹频率(THz)光波调制器,将来有望广泛应用于生物光谱学和半导体结构成像研究。   太赫兹辐射是指频率从0.37THz到10THz,波长介于无线波中的毫米波与红外线之间的电磁辐射区域,所产生的T射线在物体成像、医疗诊断、环境检测、通讯等方面具有广阔的应用前景。对太赫兹辐射的正式研究,可以追溯到很多年前,但直到1990年高效生成和检测辐射的方法成为可能后,该研究才变得越来越普遍。   美国莱斯大学物理学家丹尼尔米特尔曼和他在桑迪亚和洛斯阿拉莫斯国家实验室的同事,使用一种特异材料来控制太赫兹波束的流出。之所以称之为特异材料,是因为它包含数组微观分裂的金属环,这些圆环可由附近的电极控制。通过调节圆环的电容来调整辐射水平。也就是说,赫兹光(即T射线)可以通过调制器进行转换,由调制器决定光线能否通过。该调制器由16个像素组成,呈4×4阵列。   米特尔曼称,第一次对太赫兹波束进行电控非常重要。要使光束能够穿过整个平面,而不呈现线性爆裂状态,进而促成光波成像,这是第一步。调制器的切换速度大约为1兆赫,与现今数据传输的最快速率相比并不算快。但他认为,对许多T射线成像任务来说,高带宽并不是必需的。目前他们正在设计一个较大的32×32像素阵。   该研究成果将在2009年激光与电学/国际量子电子学会议(CLEO/IQEC)上提出。该会议将于5月31日至6月5日在美国巴尔的摩召开。
  • 南科大在太赫兹辐射源领域取得进展 研究成果登上国际顶刊《自然-通讯》
    从南方科技大学官网获悉,该校研究人员在在非线性超构表面太赫兹辐射源领域取得进展。近日,南方科技大学材料科学与工程系副教授李贵新课题组和以色列特拉维夫大学教授Tal Ellenbogen课题组等在基于几何相位(Pancharatnam-Berry Phase)的非线性超构表面太赫兹辐射源领域取得新进展,相关成果以“Functional THz Emitters based on Pancharatnam-Berry Phase Nonlinear Metasurfaces”为题发表于《自然-通讯》(Nature Communications)。该论文首次报道了一种新型的基于几何相位(Pancharatnam-Berry Phase)的非线性超构表面太赫兹辐射源。这种非线性超构表面由具有三重(C3)旋转对称性的金等离激元超构单元构成。在飞秒激光泵浦下,通过旋转C3超构单元的方位角,可以在深亚波长尺度上控制超构表面上辐射出太赫兹波的偏振和相位。相关研究有望为太赫兹光源上的光场调控提供重要方法。研究还说明,在太赫兹科学及其应用中,非线性P-B相位扮演了全新的角色。研究人员期望本项研究中提出的原理和方法在设计与制备多功能太赫兹源领域获得更多应用。据悉,以色列特拉维夫大学博士后Cormac McDonnell、南科大量子科学与工程研究院研究助理教授邓俊鸿为论文共同第一作者,李贵新和Tal Ellenbogen为论文共同通讯作者。特拉维夫大学博士生Symeon Sideri在该研究中亦做出了重要贡献。该研究工作得到了国家自然科学基金、广东省“珠江人才计划”引进创新创业团队项目的支持。
  • 综述:高通量太赫兹成像进展与挑战
    无损评估、生物医学诊断和安全筛查等诸多令人兴奋的太赫兹(THz)成像应用,由于成像系统的光栅扫描要求导致其成像速度非常慢,因此在实际应用中一直受到限制。然而,太赫兹成像系统的最新进展极大地提高了成像通量(imaging throughput),并使实验室中的太赫兹技术更加接近现实应用。据麦姆斯咨询报道,近日,美国加州大学洛杉矶分校(University of California Los Angeles,UCLA)的科研团队在Light: Science & Applications期刊上发表了以“High-throughput terahertz imaging: progress and challenges”为主题的综述论文。该论文第一作者为Xurong Li,通讯作者为Mona Jarrahi。该论文主要从硬件和计算成像两个角度回顾了太赫兹成像技术的发展。首先,研究人员介绍并比较了使用热探测、光子探测和场探测的图像传感器阵列实现频域成像与时域成像时的各类硬件。随后,研究人员讨论了利用不同成像硬件和计算成像算法实现高通量捕获飞行时间(ToF)、光谱、相位和强度图像数据的方法。最后,研究人员简要介绍了高通量太赫兹成像系统的未来发展前景和面临的挑战。基于图像传感器阵列的太赫兹成像系统(硬件方面)然而,并非所有类型的图像传感器都能够扩展到大型阵列,但这是高通量成像的关键要求。这部分内容重点介绍了基于各类图像传感器阵列的高通量太赫兹成像系统。这些太赫兹成像系统的性能主要通过空间带宽积(SBP)、灵敏度、动态范围以及成像速度等指标在其工作频率范围内进行量化。太赫兹频域成像系统在热探测太赫兹成像仪中,微测辐射热计是最广泛使用的图像传感器之一,它将接收到的太赫兹辐射所引起的温度变化转化为热敏电阻材料的电导率变化。氧化钒(VOx)和非晶硅(α-Si)是室温微测辐射热计最常用的热敏电阻材料。使用微测辐射热计图像传感器阵列捕获太赫兹图像的示例如图2a所示。热释电探测器是另一类热成像传感器,它将接收到的太赫兹辐射所引起的温度变化转化为能以电子方式感测的热释电晶体的极化变化。图1 目前最先进的频域太赫兹图像传感器的性能对比图2 基于图像传感器阵列的太赫兹频域成像系统示例对于室温太赫兹成像,场效应晶体管(FET)图像传感器是微测辐射热计图像传感器的主要竞争对手。FET图像传感器的主要优势之一是具有出色的可扩展性。与室温微测辐射热计图像传感器相比,FET图像传感器通常工作在较低的太赫兹频率下,其灵敏度也较低。然而,由于无需热探测过程,FET图像传感器可以提供更高的成像速度。使用FET图像传感器阵列捕获太赫兹图像的示例如图2b所示。光子探测器作为可见光成像仪中最主要的图像传感器,在太赫兹成像中也发挥着至关重要的作用。除低温制冷要求外,太赫兹光子探测器还有另外两方面的限制:工作频率限制(高于1.5 THz)以及可扩展性限制(难以实现高像素的探测器阵列)。使用光子探测图像传感器阵列捕获太赫兹图像的示例如图2c所示。另外,可以利用量子点或激光激发的原子蒸汽将从成像物体接收到的太赫兹光子转换为可见光子,并且可以利用光学相机在室温下实现对大量像素的高通量成像。然而,太赫兹到可见光的光子转换过程需要复杂且笨重的装置来实现。与光子成像仪相比,超导太赫兹成像仪可以提供同等水平甚至更高的灵敏度。同时,它们具有更好的可扩展性,并且能够在较低的太赫兹频段工作。超导成像仪主要有四种类型:过渡边缘传感器(TES)、动态电感探测器(KID)、动态电感测辐射热计(KIB)和量子电容探测器(QCD)。使用超导图像传感器阵列捕获太赫兹图像的示例如图2d所示。到目前为止,所讨论的频率域太赫兹成像仪均是进行非相干成像,并且仅能解析被成像物体的强度响应。相干太赫兹成像可使用外差探测方案来解析成像物体的振幅和相位响应。通过将接收到的来自成像物体的辐射与本振(LO)波束混合,并将太赫兹频率下转换为射频(RF)中频(IF),可将高性能射频电子器件用于相干信号探测。超导体-绝缘体-超导体(SIS)、热电子测辐射热计(HEB)、肖特基二极管、FET混频器和光电混频器可用于太赫兹到射频的频率下转换。由于外差探测架构的复杂性,所展示的相干太赫兹成像仪灵敏度被限制在数十个像素。太赫兹时域成像系统基于时域光谱(TDS)的太赫兹脉冲成像仪是另一种相干成像仪,它不仅能提供被成像物体的振幅和相位信息,还能提供被成像物体的超快时间和光谱信息。THz-TDS成像系统使用光导天线或非线性光学操纵在泵浦探针成像装置中产生和探测太赫兹波(如图3)。图3 太赫兹时域成像系统示意图:(a)太赫兹光电导天线阵列成像;(b)太赫兹电光取样成像。传统的THz-TDS成像系统通常是单像素的,并且需要光栅扫描来获取图像数据;而为了解决单像素THz-TDS成像系统成像速度慢、体积庞大又复杂的问题,基于电光效应和光导效应的图像传感器阵列已被采用。图4a为使用光学相机的电光采样技术捕获太赫兹图像的示例。基于电光采样的无光栅扫描THz-TDS成像系统既可用于远场太赫兹成像,也可用于近场太赫兹成像(如图4b)。无光栅扫描THz-TDS成像的另一种方法是使用光导图像传感器阵列(如图4c)。基于光导效应和电光效应图像传感器的无光栅扫描THz-TDS成像系统能够同时采集所有像素的数据。然而,时域扫描所需的光学延迟阶段的特性对整体成像速度造成了另一个限制。图4 基于电光效应和光导效应的图像传感器阵列的太赫兹时域成像系统示例研究人员对基于图像传感器阵列的不同太赫兹成像系统的功能和局限性进行了分析,如图5所示。频域成像系统只能解析被成像物体在单一频率或宽频率范围的振幅响应,无法获得超快时间和多光谱信息;但同时,它们配置灵活,可以使用不同类型的太赫兹光源,以实现主动和被动太赫兹成像。时域成像系统则既可以解析被成像物体的振幅和相位响应,也可以解析超快时间和多光谱信息;然而,它们只能用于主动太赫兹成像,并且需要带有可变光学延迟线的泵浦探针成像装置,从而增加了成像硬件的尺寸、成本和复杂性。图5 基于图像传感器阵列的不同太赫兹成像系统的功能和局限性分析虽然太赫兹成像系统的功能通常由上述原理决定,但可以通过修改其运行架构,以实现新的和/或增强功能。太赫兹光谱各类成像方案如图6所示。图6 太赫兹光谱各类成像方案太赫兹计算成像这部分内容主要介绍了各类计算成像方法,这些方法不仅提供了更多的成像功能,而且减轻了由太赫兹成像带来的对高通量操作的限制(放宽了对高通量太赫兹成像硬件的要求)。太赫兹数字全息成像全息成像允许从与物体和参考物相互作用的两光束的干涉图中提取目标信息。太赫兹全息成像系统利用离轴或同轴干涉。与利用THz-TDS成像系统进行相位成像相比,太赫兹数字全息成像无需基于飞秒激光装置并且更具成本效益。对太赫兹辐射源和图像传感器阵列的选择也更加灵活,可以根据工作频率进行优化。然而,太赫兹数字全息成像对成像物体有着更多限制,并且在对多层次和/或高损耗对象成像时受到限制。基于空间场景编码的太赫兹单像素成像与使用太赫兹图像传感器阵列直接捕获图像相比,太赫兹单像素传感器可以通过利用已知空间模式序列来顺序测量并记录空间调制场景的太赫兹响应,从而重建物体的图像。与用于频域和时域成像系统的太赫兹图像传感器阵列相比,该成像方案得益于大多数太赫兹单像素传感器的优越性能(如信噪比、动态范围、工作带宽)。图7总结了太赫兹单像素成像系统的发展。值得一提的是,压缩感知算法不仅适用于单像素成像,也可用于提高多像素图像传感器阵列的成像通量。图7 基于空间波束编码的太赫兹单像素成像系统的发展基于衍射编码的太赫兹计算成像到目前为止,本文介绍的太赫兹成像系统遵循的范式主要依赖于基于计算机的数字处理来重建所需图像。然而,基于数字处理的重建并非没有局限性。为了解决的其中一些挑战,最佳策略可以是为特定任务的光学编码设计光学前端,并使其能够接管通常由数字后端处理的一些计算任务。近期,一种新型光学信息处理架构正兴起,它以级联的方式结合了多个可优化的衍射层;这些衍射表面一旦优化,就可以利用光与物质相互作用,在输入和输出视场之间共同执行复杂的功能,如图8所示。近年来,衍射深度神经网络技术(D²NN)在太赫兹成像方面有着非常广泛的应用,例如图像分类,抗干扰成像,以及相位成像。图8 基于衍射深度神经网络(D²NN)的太赫兹计算成像系统示意图总结与展望综上所述,高通量太赫兹成像系统将通过深耕成像硬件和计算成像算法而持续发展,目标是具有更大带宽、更高灵敏度和更大动态范围的超高通量成像系统,同时还能为特定应用定制成像功能。太赫兹计算成像技术有望与量子探测、压缩成像、深度学习等技术相结合,为太赫兹成像提供更多的功能及更广泛的应用。研究人员坚信太赫兹成像科学与技术将蓬勃发展,未来太赫兹成像系统不仅会大规模应用于科学实验室和工业环境中,而且还将在日常生活中显著增长。这项研究获得了美国能源部资金(DE-SC0016925)的资助和支持。论文链接:https://doi.org/10.1038/s41377-023-01278-0
  • 国外太赫兹无损检测技术已趋成熟
    太赫兹技术属于一种新型无损检测技术,能够对某些组件及表面进行无损测试分析。但是这种检测装置,尤其是传感器探头,不仅价格昂贵,而且相当笨重。  现在,来自于德国弗劳恩霍夫协会的研究人员已经成功研制出一种非常紧凑、简单的传感器探头,其成本也因此变得更低,装置操作也变得更加容易。他们设计的第一种传感器探头原型已经被用于在塑料管的生产线上检测管壁的厚度。此外,这种装置还非常适用于分析纤维复合材料上的涂层等。  这种新型传感器探头将会于2016年4月25至29日在德国汉诺威工业博览会上进行展出。  十多年以前,当人们谈论最多的还都是人体扫描仪的时候,太赫兹技术就被视为“下一个大事件”。科学家们希望利用太赫兹辐射技术研发出一种能够用于材料测试与分析方面的测量体系 虽然人们对于太赫兹技术一直都抱有很大的期望,但太赫兹技术并没有取得人们所期待的进展。与传统的无损检测技术相比,例如X射线检测、超声检测等,太赫兹技术成本太高,装置笨重、不灵活。  搭配新型传感器探头的测量体系  现在,德国柏林的弗劳恩霍夫海因里希赫兹研究所在太赫兹技术方面取得了一项巨大的进步。由该研究所里Thorsten G?bel领导的太赫兹技术研究小组已经成功的研制出了首例标准太赫兹设备,而且成本更低,操作更为简便。  弗劳恩霍夫海因里希赫兹研究所激发太赫兹辐射的原理是基于一种光电方法 通过使用一种特殊的半导体,激光脉冲被转换成太赫兹电脉冲。而以前太赫兹技术一直没有取得实质性成功的原因主要就在于这种特殊半导体需要具备一些特殊的性质。  “我们研制出了一种半导体材料,能够被波长为1.5微米左右的激光刺激,” G?bel说道:“在光通信领域中,这是一种标准波长,这也是为什么市场上有那么多廉价但高质量的光学组件和激光器”。  但是,要研制出一种能够用于材料测试方面,且成本较低、操作便利的太赫兹体系仍然存在一个大障碍——迄今为止,用于扫描待测试组件的传感器探头太大而且非常笨重,并不便于使用。原因是太赫兹发射器和接收器是两个独立的组件,必须要精确的安装在套管里。这种排列的主要缺点在于测试样品只能在一个角度上进行测量。因此,测试对象必须准确的位于接收器和发射器的焦点上,这样经样品由发射器发出的太赫兹信号才会显示在接收器上。如果传感器探头和样品之间的距离发生了变化,例如发生轻微震动等,测量都会变得更加困难。  如今,研究人员制造了一个能够同时发射和接收信号的集成芯片,这使得操作距离可以更加灵活。人们将发射器和接收器“打包”成一个收发器,并置于一个直径只有25毫米,长度只有35毫米的简易传感器探头内部。  研究人员将太赫兹辐射中的发射单元与接收单元“打包”置于一个直径只有25毫米,长度只有35毫米的简易传感器探头内部  塑料管的壁厚检测  这种太赫兹传感器体系目前已经被一些制造厂商用于塑料管材的生产监测,这些传感器能够直接在生产线上检测塑料管壁的厚度 这项检测在生产过程中也是非常重要的,管壁太薄,塑料管就会变得非常不稳定 管壁太厚,无疑会浪费许多宝贵的原材料。  直到现在,塑料管生产线上一般都是采用超声检测体系。但超声检测不能准确的在空气中进行测量,通常需要用到水等耦合剂来起到超声传感器探头和塑料管材之间的耦合介质作用。正是由于这个原因,接近250℃的塑料管材必须通过水箱,才能完成检测。此外,超声检测技术并不能有效检测由不同材料层构成的所谓的智能管材。  纤维增强复合材料上的涂层检测  这种新型太赫兹传感器探头的另一个应用是验证纤维增强复合材料上的油漆以及涂料等。  人们能够利用涡流检测技术对一些金属基材料进行检测,例如在汽车行业中对金属薄片进行检测 但是涡流检测技术并不适用于导电性不好的纤维复合材料。“因此,随着复合材料在汽车、航空、航天以及能源等领域内的应用越来越广泛,人们迫切的需要一种可靠的检测方法”,G?bel说道,而这种新型太赫兹传感器探头可以解决这个问题。  虽然这种新型的太赫兹传感器体系来自于廉价的标准光学元件,可它目前的价格仍然高于一些超声检测装置,但是,G?bel预测,在不久的将来,随着逐步批量生产,其价格肯定会大幅降低。考虑到这种检测方法的优势及其目前的研究进展,G?bel相信太赫兹技术在未来几年将会取得更多的成功,很快成为一种成熟的无损检测手段。译自:sciencedaily
  • 国家重大科研仪器研制项目“太赫兹近场高通量材料物性测试系统”结题验收会在合肥召开
    7月27日,中国科学技术大学承担的国家重大仪器设备研制专项(部门推荐)“太赫兹近场高通量材料物性测试系统”结题验收会在合肥召开。国家自然科学基金委员会窦贤康主任及相关部门负责人、中国科学院科技基础能力局相关负责人、项目验收专家组(含仪器测试验收专家组、财务验收专家组、技术档案验收专家组)、项目监理组、中国科学技术大学包信和校长及相关部门负责人、项目负责人陆亚林及项目组成员等80余人参加了验收会。验收会由国家自然科学基金委工程与材料科学部常务副主任王岐东主持。项目验收专家组由14位专家组成,清华大学段文晖院士和武汉大学刘胜院士分别担任验收专家组组长和副组长。专家组首先听取了项目负责人、中国科学技术大学杰出讲席教授陆亚林关于“太赫兹近场高通量材料物性测试系统”项目汇报。陆亚林教授带领项目组历时七年,克服了前沿技术挑战和国际贸易形势变化所带来的困难,攻坚克难,成功研制太赫兹近场高通量材料物性测试系统。项目通过研发可调谐预聚束太赫兹激光光源和宽谱脉冲光源、探针和样品双扫描、大口径矢量磁体等核心技术,研制了一套太赫兹近场高通量材料物性测试系统。该系统由复合光源、传输光路、多物理场、近场探测、中央控制及通用系统等构成,主体设备和相关部件已全部就位,系统运行状态良好。达到了计划书的全部技术指标,其中部分指标优于计划书指标。项目组突破了传统需要在100 K左右低温和真空才能实现的瓶颈,首次获得室温大气环境下的原子分辨太赫兹隧道电流成像;突破了多场条件集成技术瓶颈,首次获得低温强磁场下的原子分辨太赫兹近场隧道电流成像;突破了冷壁贯穿孔光学兼容技术瓶颈,成功研制出大口径超导矢量磁体,参数显著高于国际已有矢量磁体;突破了预聚束电子束团串激发0.5-5 THz相干辐射、轻量化固定磁极间隙波荡器、电控偏振分合束激光脉冲串成型光路等技术瓶颈,研制出紧凑型可调谐太赫兹激光器系统,实现了激光中心频率大范围调节。该系统相关技术还被应用于拓扑材料、人工磁结构等测量,包括在超薄氧化物薄膜异质结中测得了斯格明子并具有规模化特性;观测到具有平带结构中的长程铁磁序;在磁阻薄膜中实现了可控磁性莫尔条纹;确立了拓扑克尔效应作为磁斯格明子结构的新机制。验收专家组还听取了松山湖材料实验室冯稷研究员代表项目监理组的监理报告、合肥工业大学吴玉程教授代表仪器测试验收专家组的仪器测试报告、南京信息工程大学袁敏正高级经济师代表财务验收专家组的财务验收报告、中国科学院档案馆潘亚男研究馆员代表技术档案验收组的档案验收报告。其中仪器测试、财务、档案由基金委组织专家于7月24-26日顺利完成了分项验收。验收专家组和基金委相关领导现场考察了仪器设备运行情况。专家组对项目研制工作给予了高度评价,一致认为项目组全面完成了项目工作,评价结果为A。参加验收会的还有国家自然科学基金委工程与材料科学部副主任苗鸿雁、赖一楠,中国科学院科技基础能力局副局长卢方军、科技条件处副处长陈代谢,项目依托单位中国科学技术大学微尺度物质科学国家研究中心主任罗毅等。(合肥微尺度物质科学国家研究中心、科研部)
  • 集成太赫兹收发器在美问世
    据美国物理学家组织网2010年6月30日(北京时间)报道,美国科研人员开发出了首个集成太赫兹(THz)固态收发器,新设备比目前使用的太赫兹波设备更小,功能更强大。相关研究成果发表在最新一期的《自然光子学》杂志上。   太赫兹技术是近年来十分热门的一个研究领域,2004年被评为影响世界未来的十大科技之一。美国能源部桑迪亚国家实验室的研究人员将同一块芯片上的探测器和激光器结合在一起,制造出了该接收设备。在实验中,研究人员将一个小的肖特基二极管嵌入一个量子级联激光器(QCL)的脊峰波导空腔中,让能量能够从量子级联激光器内部的磁场直接到达二极管的阴极,而不需要光耦合通路。这样,研究人员就不需要再为制造这些收发器等设备所需要的光学“零件”如何定位而“抓耳挠腮”了。   新的固态系统利用了太赫兹波发出的频率。太赫兹波是指频率在0.1THz—10THz范围的电磁波,介于微波与红外之间,它能够穿透非金属材料,从而为安检、医学成像提供新的手段,在物体成像、医疗诊断、环境检测、通讯等方面具有广阔的应用前景。   量子级联激光器是产生太赫兹辐射的重要器件之一,科学家于2002年演示了半导体太赫兹量子级联激光器。太赫兹量子级联激光器的一个优势在于其能够同其他组件一起被整合在同一个芯片上。然而,此前要想装配出灵敏的相干收发器系统,研究人员需要将零散的、并且常常是巨大的组件组合到一起。而现在,研究人员只是将太赫兹量子级联激光器和二极管混频器整合在一个芯片上,就可以组成一个简单实用的微电子太赫兹收发器。   研究人员也证明,新的太赫兹集成设备能够执行以前组件零散的太赫兹系统的所有基本功能,例如传输相干载波、接受外部信号、锁频等。
  • 太赫兹技术助力胃癌早期诊断
    继在《Materials Horizons》发表封面论著之后,解放军总医院第一医学中心普通外科医学部杜晓辉教授团队又一研究成果“Calibration-Free, High-Precision, and Robust Terahertz Ultrafast Metasurfaces for Monitoring Gastric Cancers”发表在国际顶级综合性科技期刊《PNAS》上。解放军总医院杜晓辉教授和军事科学院常超教授、新加坡国立大学仇成伟教授为本文的共同通讯作者,空军工程大学研究生院娄菁、解放军总医院研究生院焦亚楠、新加坡国立大学杨蕤生为共同第一作者。胃癌是全球范围内最常见的恶性肿瘤之一,我国胃癌的发病率和死亡率分别位于所有恶性肿瘤的第二位和第三位,远高于世界平均水平,而胃癌的早期诊断是影响其治疗和预后的关键。从细胞层面快速、精准研究胃正常细胞癌变过程中的差异为胃癌的早期诊断提供了新的方向,而太赫兹技术联合超表面应用于生物大分子、细胞等检测一直是太赫兹生物传感领域的研究热点,但是生物样品中水分子对太赫兹波的干扰作为太赫兹生物传感的瓶颈问题,严重影响了生物传感数据的真实可靠性。基于此,杜晓辉教授团队在光调超快太赫兹超表面基础上首次提出自校准传感策略,在理论上证明该方法可以完全剔除水蒸气影响,并利用该方法从electromagnetically induced transparency (EIT)谐振频移、谐振幅移、传输相位三个维度准确识别不同种类胃细胞中细胞核、细胞质、核占比的相对变化,结果显示与生物染色结果高度一致,从而成功鉴别胃正常细胞到腺瘤细胞,再到癌细胞演变的差异化表达进程。这是杜晓辉教授团队应用太赫兹技术攻坚医学难题上的又一重大基础科研成果,为太赫兹技术在生物传感领域的应用拓宽了道路,该关键技术的突破为快速、无创、高精准探索太赫兹技术在细胞层面应用于胃癌早期诊断奠定了基础。
  • 中国计量大学:基于太赫兹波段的负曲率轨道角动量光纤
    随着通信技术的快速发展,近些年的通信容量实现了快速增长,传统的光纤通信网络已经难以满足当前高速通信的需求。增大通信网络的容量和提高通信速度的一种方法是开发太赫兹(Terahertz, THz)波段的光纤通信空间维度。太赫兹波是介于微波和红外光之间的一种电磁波,频率介于0.1THz到10THz之间,由于它带宽大和传输速度快以及可以提供点对点的网络拓扑结构而备受关注。而在空间维度资源中,基于轨道角动量(Orbital Angular Momentum,OAM)的模分复用技术由于携带不同拓朴荷数的相互正交的轨道角动量模式成为扩大通信容量的一种非常有潜力的方案。轨道角动量具有全新的电磁波自由度特性,具有轨道角动量特性的电磁波可以在常用的信息传输方式,如波分复用(Wave Division Multiplexing,WDM)、偏振复用(Polarization Multiplexin,PM)、时分复用(Time Division Multiplexing,TDM)等信息传输方式上成倍的提高信息传输容量。近日,中国计量大学严德贤课题组提出了基于太赫兹波段的负曲率轨道角动量光纤。该光纤以重庆摩方精密科技有限公司提供的HTL聚合物材料(耐高温树脂)为基底,采用两层倾斜椭圆管的结构设计,通过引入环芯区域在0.4-0.8THz波段成功产生50-52个OAM模式,且在所研究的波段内获得了高模式纯度、低限制损耗和低波导色散等传输特性,相关研究成果以“Design of negative curvature fiber carrying multiorbital angularmomentum modes forterahertz wave transmission”为题发表在《Results in Physics》。图1.3D打印负曲率轨道角动量光纤结构图图1展示了基于摩方精密nanoArch S140打印技术的3D打印光纤样品图。光纤整体尺寸为6.57mm,靠近纤芯区域的第二层倾斜椭圆管结构最小尺寸为0.051mm。光纤结构设计完成后,在Comsol Multiphysics有限元仿真软件中选取光纤结构的任一截面进行仿真研究。在研究频段内给定相应的太赫兹频率后,可以获得相应的模场分布,针对相应的模式进行数据收集和处理可以得出所需传输特性。在光纤中产生OAM模式的前提条件是有效生成HE和EH模式,且HEl+1,1与EHl-1,1有效模式折射率差异高于10-4。光纤中的OAM模式合成规则可由公式1表述:图3是OAM光纤各种传输特性随频率的变化趋势。由图3(a)和(b)可知,光纤产生的所有HEl+1,1与EHl-1,1之间的折射率差异均高于10-4,表明HE和EH模式均可以有效合成OAM模式。图3(c)是光纤的限制损耗特性,限制损耗与光纤的有效传输距离密切相关,由图可知光纤的限制损耗在0.55-0.8THz区间最低可以达到10-15(dB/cm)量级。图3(d)表示了OAM光纤的低平坦色散趋势,在0.4-0.8THz区间有近零的波导色散参数,有利于太赫兹波在光纤内部的快速传输。OAM模式的高模式纯度特性表明了光纤可以有效携带信息进行传输,由图3(e)所示结果,在0.55-0.8THz区间光纤的OAM模式纯度均高于80%。图3(f)是OAM光纤的有效模场面积特性,一般来说具有较高的有效模场面积可以产生较小的非线性特性,可以进一步提高信息的传输质量。图3.(a)有效模式折射率,(b)有效模式折射率差异,(c)限制损耗,(d)波导色散,(e)OAM模式纯度,(f)有效模场面积随频率的变化趋势官网:https://www.bmftec.cn/links/10
  • 上海光机所在单层WSe2-Si超快太赫兹发射光谱研究方面取得进展
    近日,中国科学院上海光学精密机械研究所强场激光物理国家重点实验室与国科大杭州高等研究院和中国科学院空天信息研究院合作,在二维WSe2-Si的混合维度异质结中瞬态电流太赫兹发射动力学以及谷自由度探测方面取得研究进展。相关研究成果以 “Ultrafast Drift Current Terahertz Emission Amplification in the Monolayer WSe2/Si Heterostructure”为题发表于The Journal of Physical Chemistry Letters上。基于单层过渡金属硫族化合物(TMDs)的范德瓦尔斯异质结作为同时具有强的自旋动量锁定效应与能带可调等丰富的光电性质的二维半导体,在片上集成光源、新型光电探测和谷电子学技术中具有重要的应用潜力。图1 (a)太赫兹发射光谱系统示意图;(b) 太赫兹脉冲时域波形;(c) 异质结中耗尽电流辐射太赫兹示意图。本工作首次利用非接触的超快太赫兹发射光谱技术探测了TMDs-Si异质结中耗尽场放大的瞬态光电流,并利用其探测了其中单层二维材料放大的谷自由度并实现了全光操控。本工作为基于二维-三维混合维度异质结的谷电子学探索提供了新思路。在这项工作中,研究人员使用时间分辨太赫兹发射光谱系统,研究了单层WSe2-Si异质结经飞秒激光泵浦后的超快太赫兹发射动力学过程。通过对太赫兹发射机理的分析,发现并验证了WSe2-Si异质结中增强的耗尽电场加速载流子迁移,从而导致更大的瞬态电流与对应10倍增强的太赫兹辐射的作用过程。图2 (a) 光学选择定则示意图;(b) 单层WSe2与异质结中的泵浦光手性依赖现象。同时,利用时间分辨太赫兹发射光谱系统可在无需特殊环境(低温、磁场、应力)的室温条件下探测到单层WSe2与WSe2-Si异质结中泵浦光手性依赖的谷光电流,证实了二维-三维异质结中自旋动量锁定效应的存在,同时也发现单层WSe2材料的谷-动量锁定的光电流手性在异质结中得到了保留。由此利用谷光电流偏振依赖特性,也可以实现对半导体材料发射太赫兹的有效调控。硅基二维-三维材料异质结中实现太赫兹辐射放大的方法拓展了基于超快光学方法的太赫兹辐射源提升效率方式,对于新型片上可集成的太赫兹芯片研究具有重要的意义。此外,超快太赫兹发射光谱在室温条件下对于TMDs材料中谷光电流的无接触探测拓宽了探测自旋动量锁定效应的方法路径,为基于此类异质结的谷电子学的研究提供了新的思路。
  • 2008年中英/欧洲毫米波与太赫兹技术学术研讨会召开
    10月20日,为期三天的2008年中国—英国/欧洲毫米波与太赫兹技术学术研讨会在电子科技大学隆重召开。来自中英等国的近100名专家学者和会议代表齐聚我校,纵论毫米波与太赫兹的研究现状和发展趋势,探讨国际毫米波与太赫兹科学技术研究的重大科学问题和前沿进展。       本次会议由英国伦敦皇家协会和中国国家留学基金委发起,由电子科技大学主办。会议同时得到了IEEE的相关技术支持。会议旨在加强毫米波与太赫兹在相关研究领域的技术交流与合作,促进相关成果的转化和技术创新。会议主要议题包括对太赫兹源以及太赫兹的传输发射、模式转换、无线技术的相关研究的研讨和对毫米波与太赫兹的相关技术应用的交流。   会议主席由电子科技大学副校长熊彩东、伦敦大学玛丽女王学院陈晓东教授共同担任,电子科技大学刘盛纲院士担任大会国际顾问委员会主席。     熊彩东副校长代表电子科技大学对会议的召开表示热烈祝贺。他说,此次会议汇集了中英以及欧洲等国在毫米波和太赫兹研究领域的许多专家,会议的召开对推进电子科技大学在毫米波和太赫兹领域的研究以及促进中英和欧洲各国在毫米波和太赫兹研究领域的发展提供了很好的平台。   刘盛纲院士表示,太赫兹技术是当前科学界的一个前沿研究领域,由于其潜在的巨大科学价值和应用价值,现已受到世界各国的高度重视。此次会议的召开对促进中英两国以及中欧各国在毫米波与太赫兹相关领域的交流和合作,加快该领域的科学研究发展、人才交流、培养和科技成果转化将有重要意义。刘院士介绍了电子科技大学在太赫兹领域的研究成果,并希望他们能尽情感受成都,了解成电。   在本次会议上,电子科技大学刘盛纲院士、英国斯特拉斯克莱德大学艾伦菲尔普斯教授等8位毫米波与太赫兹研究领域的专家分别围绕太赫兹科学技术的最新研究进展、发展趋势、应用前景等做了特邀报告。另有40多名专家学者还以口头报告和张贴报告等形式汇报了其在毫米波和太赫兹领域的研究进展和最新探索。本次会议采取了报告和研讨相结合的交流方式,共收到论文50余篇,论文内容涵盖毫米波与太赫兹相关理论及技术应用、前沿研究和学科前景等,反映了当前毫米波和太赫兹领域的最新研究与最新成果。   会议期间,与会专家们参观了电子科技大学物电学院工艺实验室等相关研究机构。   据了解,太赫兹(Terahertz,简称THz)波是指频率在(0.1-10)THz (1THz=1012 Hz, 或波长为30微米-3毫米)范围内的电磁波。它的频谱极宽,覆盖了各种包括凝聚态物质和生物大分子在内的转动和集体振动频率。因此,THz科学技术有很重要的学术研究价值,在国民经济和国防建设领域有着极其重要的应用前景。   从1992年开始,刘盛纲院士就指出在我国发展太赫兹科学技术的必要性和紧迫性,并坚持不懈地为推动我国太赫兹科学技术的发展而努力。2005年11月,受国家科技部、中国科学院、自然科学基金委员会共同委托,刘盛纲院士作为会议执行主席主持召开了以“太赫兹科学技术的新发展”为主题的第270次香山科学会议,这次会议是我国太赫兹研究发展的一个里程碑,标志着我国太赫兹科学技术的起步。目前刘盛纲院士是中国电子学会太赫兹专家委员会主任,是公认的我国太赫兹科学研究的倡导人、学术带头人和学术领导人。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制